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Abstract. A method with optimal (up to logarithmic terms) complexity for solving elliptic
problems is proposed. The method relies on interior regularity, but the solution may have globally
low regularity due to rough boundary data or geometries. Elliptic regularity results, high order
approximation results, and an efficient preconditioner are presented.

The method is utilized to realize, with linear-logarithmic complexity, an accurate and data-sparse
approximation to the associated elliptic Poincaré–Steklov operators. Further applications include
the treatment of exterior boundary value problems and the solution of problems in the framework of
domain decomposition methods.
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1. Introduction. In this paper, we present the boundary concentrated finite
element method. This method is designed to solve numerically elliptic boundary value
problems with low global Sobolev regularity. The coefficients of the underlying PDE,
however, are assumed to be smooth so that, owing to interior elliptic regularity, the low
global Sobolev regularity is due to boundary effects such as low-regularity boundary
data or geometries. The key idea of the method is to exploit this interior regularity in
the framework of the hp-version of the finite element method (hp-FEM) by using low
order elements on refined meshes near the boundary and high order polynomials on
large elements in the interior of the domain. The combination of mesh refinement near
the boundary and polynomial degree distribution proposed in this paper concentrates
most degrees of freedom in a narrow neighborhood of the boundary, which explains
the name boundary concentrated FEM.

Since the boundary concentrated FEM may be viewed as a generalization of
the boundary element method (BEM), we illustrate its most important properties
by a side-by-side comparison with the classical BEM. In the BEM (see, e.g., [18]
for an introduction to the topic), an elliptic boundary value problem on a domain
Ω ⊂ R

d is reduced to a problem posed on the boundary ∂Ω, thereby effecting a
dimensional reduction. This dimensional reduction immediately leads to a reduction
of the problem size of the discrete problems. In the present paper, we show that
from the “error vs. degrees of freedom” perspective, the boundary concentrated FEM
achieves the same rate of convergence as the classical, low order Galerkin h-BEMs that
are formulated on quasi-uniform boundary triangulations. In this respect, therefore,
the boundary concentrated FEM is comparable to the classical BEM. However, it
represents a generalization of the BEM, in that it can be formulated for equations with
variable (albeit piecewise analytic) coefficients, while the BEM is effectively restricted
to equations with constant coefficients because explicit knowledge of a fundamental
solution is required.
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A second difference between the classical BEM and the boundary concentrated
FEM manifests itself in the structure of the resulting linear system of equations.
The boundary concentrated FEM, being an FEM, naturally leads to sparse stiffness
matrices. In contrast, the stiffness matrix in BEM is in general fully populated.
We mention, however, that this drawback of the classical BEM has been successfully
overcome in recent years by various compression schemes, notably the panel clustering
techniques [21], multipole expansions (see the survey [14] and the references therein),
and wavelet compression methods [12]. A generalization of the clustering techniques
are the recently introduced H-matrices [19, 20].

A further interesting point of comparison is the cost of setting up and solving
the linear system. We show in this paper that the stiffness matrix of the boundary
concentrated FEM can be computed with optimal complexity O(N), where N is
the problem size. The classical BEM, which, as we mentioned above, achieves a
comparable accuracy with the same number of degrees of freedom N , requires O(N2)
operations to set up the linear system due to the fact that the stiffness matrix is fully
populated. Again, only recent progress in compression schemes for the BEM has led
to methods with complexity O(N logq N) for suitable q ∈ N0.

Another important observation is that our technique leads to the accurate and
data-sparse approximation of complexity O(N logN) to Poincaré–Steklov operators
associated with elliptic equations with variable coefficients. This generalizes previ-
ously known methods for equations with piecewise constant coefficients in polygonal
domains such as [24, 27, 28, 25].

In this paper we present a complete theory in the two-dimensional setting. Many
results, however, have analogues in higher dimensions. In particular, the regular-
ity assertion (Theorem 1.4) and hp-approximation results on shape-regular meshes
(Theorem 2.13) can be extended in a straightforward way to three dimensions. Pre-
conditioning techniques for hp-FEM/hp-BEM in three dimensions have recently been
proposed [1, 16, 38], and we expect that these ideas can be employed for the suc-
cessful development of preconditioners for the boundary concentrated FEM in three
dimensions.

The paper is organized as follows. We start with a formulation of the model prob-
lem and provide analytic regularity results for the solution. In section 2, we present
convergence results for the hp-FEM applied to the model problem and show that the
method yields the same optimal convergence rate as the h-BEM on quasi-uniform
meshes. In section 3, we address the question of efficiently solving the resulting lin-
ear system. For Dirichlet problems we show that the condition number of the linear
system grows only polylogarithmically with the problem size. For Neumann prob-
lems, we exhibit a block-diagonal preconditioner such that the condition number of
the preconditioned system grows again polylogarithmically. We show in section 4
how the boundary concentrated FEM can be employed to realize an application of
the Poincaré–Steklov operator with linear-logarithmic complexity with respect to the
boundary degrees of freedom (both in operation count and memory requirement). So
far, for the sake of simplicity, our discussion has been mainly restricted to interior
problems with analytic coefficients. However, the boundary concentrated FEM can
also be employed for exterior problems and domain decomposition problems (piecewise
smooth data with respect to a regular geometric decomposition); these applications
are briefly addressed in section 5. Numerical experiments in section 6 illustrate the
theoretical results of sections 2 and 3.
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1.1. Notation. For a Lipschitz domain Ω ⊂ R
2, the Sobolev spaces Hk(Ω),

Hk
0 (Ω), k ∈ N0, are defined in the standard way. Fractional order Sobolev spaces

Hs(Ω) are defined by interpolation (the real method) between integer order Sobolev
spaces. Negative order spaces such as H−1(Ω) are defined by duality: H−s(Ω) =
(Hs

0(Ω))
′
. Spaces on the boundary ∂Ω are defined in the usual way:

Hs(∂Ω) =


{u|∂Ω |u ∈ Hs+1/2(Ω)} if s > 0,
L2(∂Ω) if s = 0,

(H−s(∂Ω))
′

if s < 0.

We mention at this point the important fact that, for polygonal domains Ω, the spaces
Hs(∂Ω), |s| < 3/2, are invariant under piecewise smooth changes of parametrization
of ∂Ω. In particular, the parametrization ϕ : [0, L) → ∂Ω by arc length provides an
isomorphism u �→ u ◦ ϕ from Hs(∂Ω) to Hs

per([0, L)) for |s| < 3/2. Here, for s > 0
we set Hs

per([0, L)) := {u ∈ Hs(R) | u is L-periodic} with the corresponding topology
and H−sper([0, L)) = (Hs

per([0, L)))′ for s < 0.
Duality pairings will be denoted by 〈·, ·〉, with subscripts indicating the spaces

with respect to which the pairing is taken. Since the spaces H1/2(∂Ω), H−1/2(∂Ω)
arise frequently in this paper, we abbreviate

Y := H1/2(∂Ω), Y ′ := H−1/2(∂Ω).(1.1)

1.2. Problem class. For simplicity of exposition, we will restrict our attention
to problems formulated on polygons, and we will not consider the case of mixed
boundary conditions. That is, we consider for a polygonal Lipschitz domain Ω ⊂ R

2

either the Dirichlet problem

Lu = f ∈ L2(Ω) in Ω,(1.2a)

γ0u = λ ∈ H1/2(∂Ω) on ∂Ω,(1.2b)

or the Neumann problem

Lu = f ∈ L2(Ω) in Ω,(1.3a)

γ1u = ψ ∈ H−1/2(∂Ω) on ∂Ω.(1.3b)

Here, the differential operator L is given by

Lu := −∇ · (A∇u) + b · ∇u+ a0u,(1.4)

with uniformly (in x ∈ Ω) symmetric positive definite matrix A = (aij)
2
i,j=1; the

vector-valued function b and the scalar-valued function a0 are assumed to be analytic
on Ω. The operator γ0 is the trace operator γ0 : H1(Ω) → H1/2(∂Ω), and γ1 :=∑2

i,j=1 niaij∂j is the conormal derivative operator. We assume that the operator L
generates an H1(Ω)-elliptic bilinear form

B(u, v) =

∫
Ω

2∑
i,j=1

aij∂ju∂iv +

2∑
i=1

bi∂iuv + a0uv dx,(1.5)

i.e.,

c0‖u‖21,Ω ≤ B(u, u) ≤ c1‖u‖21,Ω ∀u ∈ V,(1.6)
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where we introduced the space V ⊂ H1(Ω) in the standard way as

V :=

{
H1

0 (Ω) if the Dirichlet problem (1.2) is considered,
H1(Ω) if the Neumann problem (1.3) is considered.

(1.7)

The boundary value problems (1.2), (1.3) are understood in the usual, variational
sense. Solving (1.2) is equivalent to

Find u ∈ H1(Ω) with γ0u = λ and B(u, v) =

∫
Ω

f v dx ∀v ∈ H1
0 (Ω).(1.8)

Solving (1.3) reads as

Find u ∈ H1(Ω) s.t. B(u, v) =

∫
Ω

f v dx+ 〈ψ, γ0v〉Y ′×Y ∀v ∈ H1(Ω).(1.9)

1.3. Assumptions on the data. In this paper we make the following assump-
tions on the data:

The coefficients A, b, a0 and the right-hand side f are analytic on Ω and
the solution u ∈ H1+δ(Ω) for some δ ∈ (0, 1].

(1.10)

Such a situation arises, for example, if the boundary data λ, ψ are not smooth and/or
if the domain Ω is merely a Lipschitz domain.

The problem class under consideration may be viewed as a generalization of the
setting of the classical BEM in that, while the boundary input data are allowed to be
rough, the coefficients of the differential equation are smooth on Ω. The particular
case of constant coefficients and homogeneous right-hand side, which is the setting of
the BEM, is a special case.

Remark 1.1. The boundary concentrated FEM could also be adapted to the case
of piecewise analytic coefficients A, b, a0 and right-hand side f ; see also section 5.3.

Remark 1.2. Methodologically, the analysis of the present paper is closely related
to the classical hp-FEM [40, 42]. In the classical hp-FEM, stronger regularity assump-
tions are made, namely, piecewise analyticity of the boundary ∂Ω, and the boundary
data λ, ψ is stipulated. These stronger regularity assumptions imply stronger regu-
larity results for the solution u. In the classical hp-FEM, these stronger regularity
assertions for u are exploited to design exponentially convergent methods by using
meshes that are graded geometrically towards few singularities located at the bound-
ary. Our weaker regularity assumptions (1.10) require geometric refinement towards
the whole boundary and lead to algebraic rates of convergence only. Nevertheless, the
algebraic rates obtained in this paper are optimal (in the sense of n-widths) for the
class of problems characterized by the regularity assumptions (1.10).

Remark 1.3. Our regularity assumption (1.10) makes strong smoothness assump-
tions on the right-hand side f . However, the techniques presented in this paper could
be employed for methods for solving

Lu = f, γ1u = ψ,

with f ∈ H−1+δ(Ω) and u ∈ H1+δ(Ω), δ ∈ (0, 1/2). In that case, let u0 ∈ H1+δ
0 (Ω)

be the particular solution of Lu = f in Ω solving

B(u0, v) =

∫
Ω

f(x)vdx ∀v ∈ H1
0 (Ω).(1.11)
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For the remaining L-harmonic component of the solution uH = u− u0 ∈ VH , where

VH = {v ∈ V : B(v, z) = 0 ∀z ∈ H1
0 (Ω)},(1.12)

we have the equation

B(uH , v) =

∫
∂Ω

ψvds+ 〈γ1u0, v〉H−1/2(∂Ω)×H1/2(∂Ω) ∀v ∈ H1(Ω)(1.13)

and note that uH solves an equation satisfying the regularity assumptions (1.10).
For finite element discretizations, we may use different ansatz spaces to approximate
the solutions to (1.11) and (1.13). The only constraint is that these spaces have to
provide the same trace space on ∂Ω. In particular, we obtain u = u0 + uH with
u0 ∈ H1+δ(Ω), uH ∈ B̃2

1−δ, where the countably normed space B̃2
1−δ is defined in

(1.17) below.

1.4. Regularity of the solution. The key to efficiently treating (1.2), (1.3) nu-
merically is precise regularity assertions for their solutions. In the case analyzed in the
classical hp-FEM (see Remark 1.2), the regularity of the solution u is best described
in terms of the countably normed spaces B2

β [4, 5]. This regularity assertion allows for
a rigorous proof of exponential convergence of the hp-FEM on suitably chosen meshes
[40]. We are interested in the case of the weakened regularity assumptions (1.10).
That is, we study regularity properties of the solution u to the differential equation

Lu = f on Ω,(1.14)

where f is analytic on Ω; the boundary conditions—of Dirichlet, Neumann, or mixed
type—however, may be rough. By standard interior regularity [35, Chapter 5], any
solution u to (1.14) is analytic on Ω, but control of higher order derivatives is lost as
one approaches the boundary ∂Ω. Nevertheless, it is possible to measure the blow-up
of higher order derivatives near the boundary in terms of weighted spaces. A very
precise control, which is suitable for the hp-FEM error analysis below, is achieved with
the countably normed space B̃2

β that we define as follows: For the distance function

r(x) := dist (x, ∂Ω)(1.15)

and β ∈ [0, 1) the space H2
β(Ω) is the completion of C∞(Ω) under the norm

‖u‖2H2
β
(Ω) := ‖u‖2H1(Ω) + ‖rβ∇2u‖2L2(Ω).(1.16)

For analytic coefficients in the differential operator L, the regularity of the solutions
to (1.14) can be described in terms of countably normed spaces, akin to the spaces

B2
β(C, γ) introduced in [4, 5]. Specifically, for C, γ > 0, β ∈ [0, 1) we define B̃2

β(C, γ)
by

B̃2
β(C, γ) = {u ∈ H2

β(Ω) | ‖u‖H2
β
(Ω) ≤ C, ‖rβ+p∇p+2u‖L2(Ω) ≤ Cγpp! ∀p ∈ N}.(1.17)

We then have the following result. (See Theorem A.1 for the proof, where in fact the
assumptions on the right-hand side f are slightly weaker.)

Theorem 1.4. Let Ω be a Lipschitz domain. Let A, b, a0, f be analytic on Ω,
and assume that u ∈ H1+δ(Ω), δ ∈ (0, 1], solves (1.14). Then u is analytic on Ω, and
there exist C, γ > 0 depending only on Ω, A, b, a0, δ, and ‖u‖H1+δ(Ω) such that

u ∈ B̃2
1−δ(C, γ).
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Remark 1.5. An analogous result can be formulated if the data A, b, c, f are
piecewise analytic.

It is of interest to state conditions under which a solution u to (1.14) satisfies
u ∈ H1+δ(Ω). For example, for a general Lipschitz domain Ω the solution u of the
Dirichlet problem (1.2) satisfies the following shift theorem (see [36]):

‖u‖H1+δ(Ω) ≤ Cδ
[‖f‖H−1+δ(Ω) + ‖λ‖H1/2+δ(∂Ω)

]
, δ ∈ [0, 1/2),(1.18)

provided that the right-hand side of (1.18) is finite. Equation (1.18) represents a
shift theorem with restriction δ ∈ [0, 1/2). Shift theorems where one can shift further
(i.e., δ ≥ 1/2) are known for piecewise smooth boundaries (e.g., polygons). Using
the techniques of [15, 6] shows that for a polygon Ω ⊂ R

2 there exists δ0 ∈ (1/2, 1]
(depending on Ω and A) such that the solution u of the Dirichlet problem (1.2) satisfies

‖u‖H1+δ(Ω) ≤ Cδ
[‖f‖H−1+δ(Ω) + ‖λ‖H1/2+δ(∂Ω)

]
, δ ∈ [0, δ0).(1.19)

We recall further that for convex polygons δ0 = 1.

2. Discretization by hp-FEM.

2.1. Abstract FEM.

2.1.1. Formulation. The FEM is obtained from the weak formulations (1.8),
(1.9) by replacing the space V with a finite-dimensional space. For a space VN ⊂
H1(Ω) the FEM for the Neumann problem (1.9) reads as

Find uN ∈ VN s.t. B(uN , v) =

∫
Ω

f v dx+ 〈ψ, γ0v〉Y ′×Y ∀v ∈ VN .(2.1)

For the Dirichlet problem (1.2), we introduce the space

YN := VN |∂Ω = {γ0v | v ∈ VN} ⊂ H1/2(∂Ω).(2.2)

For an approximation λN ∈ YN to λ we can then define the FEM for (1.8) as

Find uN ∈ VN s.t. uN = λN and B(uN , v) =

∫
Ω

f v dx ∀v ∈ VN ∩H1
0 (Ω).(2.3)

The coercivity assumption (1.6) ensures existence of the finite element approximation
uN . Furthermore, by Céa’s lemma there is C > 0 independent of VN such that

‖u− uN‖H1(Ω) ≤ C inf
v∈VN

‖u− v‖H1(Ω)(2.4)

for the solution uN of (2.1) and

‖u− uN‖H1(Ω) ≤ C inf
v∈VN

γ0v=λN

{‖u− v‖H1(Ω) + ‖λN − λ‖H1/2(∂Ω)

}
(2.5)

for the solution uN of the Dirichlet problem (2.3).
In practice, the approximations λN are obtained with the aid of a linear operator

PN : H1/2(∂Ω) → YN by setting λN = PNλ. In most of the present paper, we will
choose this operator PN to be the L2-projection QN ; i.e., for λ ∈ L2(∂Ω) the function
QNλ is defined by

〈QNλ, v〉0,∂Ω = 〈λ, v〉0,∂Ω ∀v ∈ YN .(2.6)
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2.1.2. Discrete harmonic extension. In this paper, we will consider only
families of approximation spaces VN that are sufficiently large in the following sense:
There exists C̃ > 0 such that for all u ∈ H1(Ω) with u|∂Ω ∈ YN

inf{‖u− v‖H1(Ω) | v ∈ VN and v|∂Ω = u|∂Ω} ≤ C̃‖u‖H1(Ω).(2.7)

Remark 2.1. Condition (2.7) is satisfied for all approximation spaces consid-
ered in this paper. For the standard piecewise linear spaces, condition (2.7) may
be verified with the aid of the Clément-type interpolation operator of [41]. For the
high order spaces employed in the present paper, the corresponding hp-Clément-type
interpolation operator is constructed in [34].

Condition (2.7) is required for the discrete harmonic extension to have the fol-
lowing stability properties.

Lemma 2.2. Let Ω ⊂ R
2 be a Lipschitz domain. Assume that a family of approx-

imation spaces VN ⊂ H1(Ω) satisfies (2.7). Then there exists C > 0 such that the
discrete harmonic extension operator EN : YN → VN given by

B(ENu, v) = 0 ∀v ∈ VN ∩H1
0 (Ω)(2.8)

is stable, i.e.,

‖ENu‖H1(Ω) ≤ C‖u‖H1/2(∂Ω) ∀u ∈ YN .

Moreover, the Galerkin orthogonality implies

B(z, z) = B(z − EN (γ0z), z − EN (γ0z)) +B(EN (γ0z), EN (γ0z)) ∀z ∈ VN .

2.2. Geometric meshes and hp-FEM spaces.

2.2.1. The geometric mesh. For simplicity of notation, we will restrict our
attention to triangulations consisting of affine triangles. We emphasize, however,
that an extension to quadrilateral elements is possible. The triangulation T = {K}
of Ω consists of elements K. Each element K is the image FK(K̂) of the equilateral
reference triangle

K̂ =

{
(x, y) | 0 < x < 1, 0 < y <

√
3

(
1

2
−

∣∣∣∣x− 1

2

∣∣∣∣)}
under the affine map FK . We furthermore assume that the triangulation T is γ-
shape-regular, i.e.,

h−1
K ‖F ′K‖L∞(T ) + hK‖(F ′K)−1‖L∞(T ) ≤ γ ∀K ∈ T .(2.9)

Here, hK denotes the diameter of the element K. Of particular importance to us will
be the “geometric meshes,” which are strongly refined meshes near the boundary ∂Ω,
defined as follows.

Definition 2.3 (geometric mesh). A γ-shape-regular (cf. (2.9)) mesh T is called
a geometric mesh with boundary mesh size h if there exist c1, c2 > 0 such that for all
K ∈ T the following hold:

1. If K ∩ ∂Ω �= ∅, then h ≤ hK ≤ c2h;
2. if K ∩ ∂Ω = ∅, then c1 infx∈K dist (x, ∂Ω) ≤ hK ≤ c2 supx∈K dist (x, ∂Ω).

A typical example of a geometric mesh is depicted in Figure 2.1. Note that the
restriction to the boundary ∂Ω of a geometric mesh is a quasi-uniform mesh, which
justifies speaking of a “boundary mesh size h.”

Remark 2.4. An important algorithmic issue is the automatic generation of
geometric meshes. Such meshes can be generated with the algorithm of [39].
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Fig. 2.1. Example of a geometric mesh in the sense of Definition 2.3.

2.2.2. hp-FEM spaces. In order to define hp-FEM spaces on a mesh T , we
associate a polynomial degree pK ∈ N with each element K, collect these pK in the
polynomial degree vector p := (pK)K∈T , and set

Sp(Ω, T ) := {u ∈ H1(Ω) |u ◦ FK ∈ PpK (K̂) ∀K ∈ T },(2.10)

Sp
0 (Ω, T ) := Sp(Ω, T ) ∩H1

0 (Ω),(2.11)

where for p ∈ N we introduced the space of all polynomials of degree p as

Pp(K̂) = span {xiyj | 0 ≤ i+ j ≤ p}.

For the approximation of solutions to (1.14) on geometric meshes (in the sense of
Definition 2.3), the so-called linear degree vector is a particularly useful polynomial
degree distribution.

Definition 2.5 (linear degree vector). Let T be a geometric mesh in the sense
of Definition 2.3. A polynomial degree vector p = (pK)K∈T is said to be a linear
degree vector with slope α > 0 if

1 + αc1 log
hK
h
≤ pK ≤ 1 + αc2 log

hK
h
.

Here, h := minK∈T is a measure for the mesh size of the quasi-uniform mesh T |∂Ω.
Remark 2.6. Linear degree vectors p have the additional property that the

polynomial degree varies slowly; i.e., there exists C > 0 such that

C−1pK′ ≤ pK ≤ CpK′ ∀K,K ′ ∈ T with K ∩K ′ �= ∅.(2.12)

We conclude this section by showing that for geometric meshes in the sense of
Definition 2.3, the number of elements of T is proportional to the number of elements
on the boundary. Similarly, for linear degree vectors (Definition 2.5), the dimension
dimSp(Ω, T ) is proportional to the number of unknowns on the boundary as is seen
in the following result.

Proposition 2.7. Let T be a geometric mesh with boundary mesh size h. Let
p be a linear degree vector with slope α > 0 on T . Then there exists C > 0 de-
pending only on Ω, the shape-regularity constant γ, and the constants c1, c2, α of
Definitions 2.3, 2.5 such that ∑

K∈T
1 ≤ Ch−1,
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dimSp(Ω, T ) ∼
∑
K∈T

p2
K ≤ Ch−1,

max
K∈T

pK ≤ C| log h|.

Proof. We will prove only the second estimate, as the first one is proved similarly.∑
K∈T

p2
K =

∑
K∈T :K∩∂Ω 
=∅

p2
K +

∑
K∈T :K∩∂Ω=∅

p2
K .(2.13)

For the first sum, we note that the assumptions on a geometric mesh T and the linear
degree vector give that pK ≤ C for all K ∈ T with K ∩ ∂Ω �= ∅. Thus,∑

K∈T :K∩∂Ω 
=∅
p2
K ≤ C

∑
K∈T :K∩∂Ω 
=∅

1 ≤ Ch−1.

For the second sum in (2.13) we bound

∑
K∈T :K∩∂Ω=∅

p2
K ≤ C

∑
K∈T :K∩∂Ω=∅

∫
K

1 + |ln(r(x)/h)|2
r2(x)

dx

≤ C

∫
x∈Ω,r(x)≥ch

1 + |ln(r(x)/h)|2
r2(x)

dx ≤ C

∫ ∞
c′h

1 + |ln(z/h)|2
z2

dz ≤ Ch−1,

where in the penultimate step we have locally flattened the boundary with Lipschitz
maps. The integral represents the integration normal to the boundary, whereas the
integration in the tangential direction was absorbed in the constant C.

2.3. hp-FEM approximation on geometric meshes.

2.3.1. Approximation on the boundary ∂Ω. If T is a geometric mesh and
VN = Sp(Ω, T ) with linear degree vector p, then the space YN defined in (2.2) is a
space of piecewise polynomials of fixed, low degree (depending on α and the constants
c1, c2 appearing in Definition 2.5) on a quasi-uniform mesh. It can be shown (with
the aid of Proposition C.3) that for 0 ≤ s < 3/2 the L2-projector QN is stable on
Hs(∂Ω); in particular, therefore, YN ⊂ Hs(∂Ω) for 0 ≤ s < 3/2. This allows us to
extend the operator QN by duality to an operator H−s(∂Ω)→ YN with 0 ≤ s < 3/2
by

〈QNu, v〉0,∂Ω = 〈u, v〉H−s(∂Ω)×Hs(∂Ω) ∀u ∈ H−s(∂Ω) ∀v ∈ YN .(2.14)

By a slight abuse of notation, the extended operator is again denoted by QN . It has
the following properties.

Lemma 2.8. Let Ω be a polygon, let T be a geometric mesh with boundary mesh
size h in the sense of Definition 2.3, and let p be a linear degree vector given by
Definition 2.5. Set VN := Sp(Ω, T ), and let YN be defined by (2.2), and the L2-
projection QN be given by (2.6) and (2.14). Then

‖QNu‖Hs(∂Ω) ≤ Cs‖u‖Hs(∂Ω) ∀u ∈ Hs(∂Ω), 0 ≤ |s| < 3/2,(2.15)

‖u−QNu‖Hs(∂Ω) ≤ Cs,s′h
s′−s‖u‖Hs′ (∂Ω) ∀u ∈ Hs′(∂Ω),(2.16)

where −3/2 < s ≤ s′ < 3/2. The constants Cs, Cs,s′ depend only on Ω, s, s′, and the
constants appearing in Definitions 2.3, 2.5.
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Proof. Let ϕ : [0, L) → ∂Ω be a parametrization by arclength. The fact that
Ω is a polygon together with Lemma C.1 implies that the map u �→ u ◦ φ is an
isomorphism between the Sobolev spaces Hs(∂Ω) and Hs

per([0, L)), 0 ≤ s < 3/2. The
stability result (2.15) for s ≥ 0 now follows from Proposition C.3 and by duality for
s ∈ (−3/2, 0). For 0 ≤ s, the approximation result (2.16) follows from (2.15) and
standard approximation results in the usual way. The case s ∈ (−3/2, 0) is again
obtained by duality.

2.3.2. Approximation of B̃2
β-functions from Sp(Ω,T ). Our hp-FEM ap-

proximation results for functions of B̃2
β will be based on the following lemma.

Lemma 2.9. Let K̂ be the reference triangle with edges Γi, i ∈ {1, 2, 3}. Let û be
analytic on K̂, and assume that

‖∇n+2û‖L2(K̂) ≤ Cuγ
n
un! ∀n ∈ N0

for some Cu, γu > 0. Let c ∈ (0, 1]. Then for each p, p1, p2, p3 ∈ N with

cp ≤ pi ≤ p, i ∈ {1, 2, 3},
there exists a polynomial πp ∈ Pp(K̂) with

1. πp|Γi
= ipi,Γi

(u|Γi
) for i ∈ {1, 2, 3}. Here, ipi,Γi

denotes the Gauss–Lobatto
interpolant of degree pi on edge Γi.

2. ‖u− πp‖W 1,∞(K̂) ≤ CCue
−bp.

The constants C, b > 0 depend only on c and γu.
Proof. The case p1 = p2 = p3 = p is considered in [32, Theorem 3.2.20, Proposi-

tion 3.2.21]. The extension to the present case is straightforward.
Proposition 2.10. Let T be a geometric mesh with boundary mesh size h, as

defined in Definition 2.3. Let p be a linear degree vector on T with slope α > 0. Let
u ∈ B̃2

β(Cu, γu) for some β ∈ [0, 1), Cu, γu > 0. Then there exist C, b > 0 depending
only on Ω, the shape-regularity constant γ, and the constants c1, c2 of Definition 2.3
as well as Cu, γu, β such that

inf
{‖u− v‖H1(Ω) | v ∈ Sp(Ω, T )

} ≤ Ch1−β + Chbα.(2.17)

In terms of degrees of freedom, we have N = dimSp(Ω, T ) ∼ h−1.

Proof. For u ∈ B̃2
β(Cu, γu) we define

C2
K :=

∞∑
n=0

1

(2γu)2n(n!)2
‖rn+β∇n+2u‖2L2(K).

The assumption u ∈ B̃2
β(Cu, γu) guarantees

∑
K∈T

C2
K ≤

∞∑
n=0

1

(2γu)2n(n!)2
‖rn+β∇n+2u‖2L2(Ω) ≤ C2

u

∞∑
n=0

1

22n
=

4

3
C2
u.

Hence, we conclude that u ∈ B̃2
β(Cu, γu) implies

‖rn+β∇n+2u‖L2(K) ≤ CK(2γu)
nn! ∀n ∈ N0, ∀K ∈ T ,(2.18a) ∑

K∈T
C2
K ≤

4

3
C2
u.(2.18b)
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We explicitly construct an element of Sp(Ω, T ) with the desired approximation prop-
erties. To that end, we first assume, as we may, that pK = 1 for all elements
abutting ∂Ω. Next, we associate with each edge e of T a polynomial degree pe :=
min{pK | e is an edge of element K}. After these preparations, we construct the ap-
proximant element by element. We distinguish the cases K∩∂Ω �= ∅ and K∩∂Ω = ∅.

Using Theorem B.4 and a scaling argument, we obtain for all elements K abutting
on ∂Ω that the linear interpolant Iu satisfies

‖u− Iu‖H1(K) ≤ Ch1−β
K ‖rβ∇2u‖L2(K) ≤ Ch1−βCK .

For the elements not abutting on ∂Ω, we employ Lemma 2.9. Using (2.18a), we see
that the pull-back û := u ◦ FK satisfies

‖∇n+2û‖2
L2(K̂)

≤ Ch
2(n+1)
K ‖∇n+2u‖2L2(K) ≤ Ch2−2β

K ‖rn+β∇n+2u‖2L2(K)

≤ CCK h
2(1−β)
K (2γu)

2n(n!)2,

with C > 0 independent of n and K. The approximant Iu of Lemma 2.9 then satisfies

‖u− Iu‖H1(K) ≤ CCKh
1−β
K e−bpK

for some C, b > 0 independent of the element K. We note that the interpolant
constructed elementwise in this fashion is indeed an element of Sp(Ω, T ). (The edge
polynomial degrees pi in Lemma 2.9 are taken to be the polynomial degrees pe of the
corresponding edges e.) Using pK ≥ cα ln(hK/h), we arrive at

‖u− Iu‖H1(K) ≤ CCKh
1−β−αb′
K hαb

′

for some b′ > 0. Exploiting that hK ≥ ch, a simple calculation reveals that

h1−β−αb′
K hαb

′ ≤ Chmin {1−β,αb′}.

We thus conclude in view of (2.18b) that∑
K∈T

‖u− Iu‖2H1(K) ≤ C
∑
K∈T

C2
Kh

min {1−β,αb′} ≤ Chmin {1−β,αb′},

which is the desired estimate. The bound for the dimension of Sp(Ω, T ) follows from
Proposition 2.7.

Remark 2.11. The meshes T considered here consist of triangles only. Like-
wise, the approximation result in Proposition 2.10 is formulated for triangles only.
This restriction is not essential and was done for simplicity of exposition only. The
approximation results can be formulated for meshes consisting of nonaffine elements
(quadrilaterals, curved elements) as well. To handle this case, it is required that the
element maps FK for elements K not abutting on the boundary be analytic (with
a controlled domain of analyticity; see, e.g., [32]) and that the error on elements
abutting ∂Ω be O(h1−β).

Proposition 2.10 is a result for unconstrained approximation in H1(Ω). For treat-
ing Dirichlet problems, constrained approximation as in (2.5) is required. This is
accomplished in the following corollary.

Corollary 2.12. Assume the hypotheses of Proposition 2.10 and additionally
u ∈ H2−β(Ω)∩ B̃2

β(Cu, γu) for some Cu, γu > 0, β ∈ (0, 1). Let YN be the restriction
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of Sp(Ω, T ) to ∂Ω as given by (2.2). Let QN be the L
2-projection into YN (cf. (2.6)).

Then

inf{‖u− v‖H1(Ω) | v ∈ Sp(Ω, T ) with γ0v = QN (γ0u)} ≤ C
[
h1−β + hbα

]
.(2.19)

The constants C, b > 0 depend only on Ω, the shape-regularity constant γ, the con-
stants c1, c2 appearing in Definition 2.3, and Cu, γu, β, ‖u‖H2−β(Ω).

Proof. We first observe that the trace theorem gives ‖γ0u‖H3/2−β(∂Ω) ≤ C‖u‖H2−β(Ω).
Lemma 2.8 and Proposition 2.10 therefore imply the existence of vN ∈ Sp(Ω, T ) such
that

‖u− vN‖H1(Ω) ≤ C
[
h1−β + hbα

]
,

‖γ0u−QN (γ0u)‖H1/2(∂Ω) ≤ Ch1−β‖u‖H2−β(Ω).

The desired result now follows with the aid of the discrete harmonic extension operator
EN of Lemma 2.2: Since γ0vN − QN (γ0u) ∈ YN , we get that the function ṽN :=
vN − EN (γ0vN −QN (γ0u)) ∈ VN satisfies γ0ṽN = QN (γ0u) and

‖ṽN − u‖H1(Ω) ≤ ‖u− vN‖H1(Ω) + ‖EN (γ0vN −QN (γ0u))‖H1(Ω)

≤ ‖u− vN‖H1(Ω) + C‖γ0vN −QN (γ0u)‖H1/2(∂Ω)

≤ ‖u− vN‖H1(Ω) + C
[‖γ0(vN − u)‖H1/2(∂Ω) + ‖γ0u−QN (γ0u)‖H1/2(∂Ω)

]
.

The result now follows.
Corollary 2.12 allows us to finally formulate an approximation result for the hp-

FEM on geometric meshes applied to (1.2) and (1.3) as follows.
Theorem 2.13. Let T be a geometric mesh with boundary mesh size h, as

defined in Definition 2.3. Let p be a linear degree vector on T with slope α > 0 (cf.
Definition 2.5). Let QN be the L

2-projection onto YN = Sp(Ω, T )|∂Ω.
Let u ∈ H1+δ(Ω), δ ∈ (0, 1), be the solution to (1.2) (resp., the solution to (1.3))

with coefficients A, b, a0, and right-hand side f analytic on Ω. Then the FE-solution
uN given by (2.3) (resp., (2.1)) satisfies

‖u− uN‖H1(Ω) ≤ C
[
hδ + hbα

]
.(2.20)

The constants C, b > 0 depend only on the shape-regularity constant γ, the constants
c1, c2 appearing in Definition 2.3, and the data A, b, c, f , Ω.

Proof. Theorem 1.4 implies that the solution u ∈ H1+δ(Ω) is in B̃2
1−δ(Cu, γu)

for some Cu, γu > 0. In view of the best approximation properties (2.5), (2.4), the
assertion (2.20) now follows from Corollary 2.12.

For α sufficiently large the boundary concentrated FEM achieves the optimal rate
of convergence

‖u− uN‖H1(Ω) ≤ Chδ = O(N−δ).

3. hp-FEM solution procedure. Choosing the slope α of the polynomial de-
gree vector sufficiently large, we obtain for the FEM approximation the optimal rate
‖u−uN‖H1(Ω) ≤ CN−δ. In the present section we discuss how the FE solution uN can

be computed with complexity O(N log2 N). We mention in passing that, in the two-
dimensional situation, a direct solver with complexity O(N log8 N) was constructed in
[26]. We consider iterative methods for solving the Dirichlet and Neumann problems
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Table 3.1
Conditioning of the hp-FEM stiffness matrices: N = # elements, p = maxK∈T pK .

Bdy. cond. p = p(N) DOF cond (Ac) cond (C−1A)

Dirichlet O(logN) N O(p(1 + log p)) O(1 + log2 p)

Neumann O(logN) N O(Np(1 + log p)) O(1 + log2 p)

on geometric meshes in the sense of Definition 2.3. We restrict our attention to the
symmetric positive definite case; i.e., in (1.4) we take

b0 = 0, a0 > 0.

The main results of this section are collected in Table 3.1. A is the stiffness matrix, Ac

stands for the statically condensed stiffness matrix (with the shape functions discussed
in Example 3.1), and C stands for the preconditioners proposed here.

We focus here on the design of preconditioners for Neumann problems. The reason
for our concentrating on this case can be seen in Table 3.1: While the Dirichlet problem
is fairly well conditioned (the condition number without preconditioning grows only
polylogarithmically in N since p = O(logN)), the Neumann problem leads to at least
linearly (in N) growing conditioning numbers, thus requiring preconditioning.

Our approach for the design of a preconditioner for the Neumann problem is based
on the results of [3] (see also [40, section 4.7]).

3.1. Shape functions and assembling.

3.1.1. Element shape functions. In order to set up the stiffness matrix, bases
of the polynomial spaces Pp have to be chosen. It is customary in p- and hp-FEM to
split a basis of PpK into vertex, side, and internal shape functions. These three types
of shape functions are characterized as follows:

1. Vertex shape functions V. These are the usual linear nodal shape functions,
which are equal to one in one node and vanish on the edge opposite that
node. We write Ṽ = spanV.

2. Side shape functions S = S1 ∪ S2 ∪ S3. The side shape functions from Si are
associated with the edge Γi of ∂K̂ and vanish on the edges Γj for j �= i. We

write S̃i = spanSi and S̃ := span {S1 ∪ S2 ∪ S3}.
3. Internal shape functions I. The functions from I vanish on ∂K̂. We write
Ĩ = span I.

The side and internal shape functions are not uniquely defined with the above sep-
aration. An important consideration for an actual choice is the conditioning of the
resulting stiffness matrix. We will discuss this point further below. One possible
choice of a basis of Pp is based on Lagrange interpolation polynomials with respect to
the Gauss–Lobatto points on the sides, which we elaborate in the following example.

Example 3.1. Denote by vi, i = 1, . . . , 3, the three vertices of K̂, and by Γi,
i = 1, . . . , 3, the three edges (we assume Γ1 = {(x, 0) ∈ R

2 | 0 < x < 1}). Let pi ∈ N

be polynomial degrees associated with the edges Γi, and let p ∈ N be the polynomial
degree of the internal shape functions. We then define vertex shape functions V, side
shape functions S = S1 ∪ S2 ∪ S3, and internal shape functions I as follows:

V := the usual linear nodal shape functions ni with ni(vj) = δij ,

S1 :=

{
lj,p1(x)

y −√3x

x

y +
√

3(x− 1)

1− x

∣∣∣ j = 1, . . . , p1 − 1

}
,
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I :=

{
y(y −

√
3x)(y +

√
3(x− 1))Li(x)Lj(y) | 0 ≤ i+ j ≤ (p− 3)(p− 2)

2

}
.

Here, the polynomials Li are the Legendre polynomials scaled to the interval [0, 1].
The polynomials lj,p1 are the Lagrange interpolation polynomials with respect to the
p1 + 1 Gauss–Lobatto points on [0, 1]; letting 0 = x0 < x1 < · · · < xp1 = 1 be the
zeros of the polynomials x �→ x(1− x)L′p1(x), the functions lj,p1(x) are defined by

lj,p1(x) :=

p1∏
i=0
i�=j

x− xi
xj − xi

, j = 0, . . . , p1.(3.1)

The side shape functions S2, S3 are obtained similarly, with p1 replaced with p2 (resp.,
p3) and a suitable coordinate transformation.

3.1.2. Global bases and assembling. The decomposition of a basis BK of
PpK facilitates the assembly process in hp-FEM with variable polynomial degree. For
a detailed discussion of this procedure, we refer, for example, to [37, 13]. The basis
of Example 3.1, however, may serve to illustrate the main point. The topological
entities “edge” and “element” carry a polynomial degree: The polynomial degree
associated with an element K is pK , whereas the polynomial degree pe associated
with an edge e = K ∩ K ′ is pe := min {pK , pK′}. These edge polynomial degrees
pe then correspond to the polynomial degrees pi, i = 1, . . . , 3, in Example 3.1; since
the side shape functions are Lagrange interpolation polynomials on the edges, the
assembly process is straightforward.

We introduce the assembly operator AK∈T of [23] to combine the bases BK of the
spaces PpK into a global basis B of the FE-space VN :

B = A
K∈T

BK .

One can also assemble only the functions from V, S, or I:

VV = A
K∈T

VK , VS = A
K∈T

SK , VI = A
K∈T

IK .(3.2a)

Of course, the functions of VV are just the standard piecewise linear hat functions
spanning the space S1(Ω, T ). The shape functions of VI are supported by a single el-
ement, and the shape functions of VS are supported by at most two adjacent elements.
We can further split VS into

VS = ⊕edges eVe, Ve = {v ∈ VS | v|e′ = 0 for all edges e′ �= e}.(3.2b)

3.2. Cost of setting up the stiffness matrix and local condensation. We
first show that setting up the stiffness matrix and the optional local static condensa-
tion can be performed with optimal complexity on geometric meshes with linear degree
vectors. To see that, we introduce the elementwise bilinear form BK by restricting B
to the element K:

BK(u, v) :=

∫
K

(A∇u · ∇v + a0uv) dx.

Furthermore, for functions u, v ∈ VN , we write uK := u|K , vK := v|K . With this
understanding we can write

B(u, v) =
∑
K∈T

BK(uK , vK).(3.3)
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The actual evaluation of BK(uK , vK) is performed by integrating on the reference
element K̂ instead of K. That is, writing û = uK ◦ FK , v̂ = vK ◦ FK , we set
BK(u, v) := B̂K(û, v̂), where

B̂K(û, v̂) :=

∫
K̂

Â∇û · v̂ + â0ûv̂ dx,

Â := (F ′K)
−1

(A ◦ FK) (F ′K)
−� |detF ′K |, â0 = a0 ◦ FK · |detF ′K |.

In practice, the integration over K̂ that is required for the evaluation of BK is per-
formed with a quadrature rule with O(p2

K) points. In a standard hp-FEM code, the
bilinear form BK defines the element stiffness matrix

AK = (BK(u, v))u,v∈V∪S∪I ,

which is an O(pK)×O(pK)-matrix. Finally, in the assembly the local stiffness matrices
AK are combined into the global stiffness matrix A. As in [23], we write this assembly
process as A = AK∈T AK .

In hp-FEM it is also customary to perform local static condensation. The par-
titioning of the basis of PK in vertex, side, and internal shape functions implies a
corresponding block structure of AK :

AK =

 AVVK AVSK AVIK
ASSK ASIK

sym. AIIK

 .

Since AIIK is invertible, one can form the following Schur complement:

AcK := AEEK −AEIK
(
AIIK

)−1 (
AEIK

)�
,

where we introduce the notion of external shape functions

E := V ∪ S.(3.4)

The condensed global stiffness matrix Ac is obtained by assembling the condensed
local matrices AcK :

Ac := A
K∈T

AcK .(3.5)

An important observation is that the condensed stiffness matrix Ac is the stiffness
matrix corresponding to elementwise discrete harmonic external shape functions.

Proposition 3.2. Let T be a geometric mesh with boundary mesh size h, and
let pK be a linear degree vector with slope α in the sense of Definition 2.5. Assume
that for all elements quadrature rules with O(p2

K) points are used. Then the stiffness
matrix A is generated with work

W (A) = O(N),

where N ∼ h−1. Additionally, the local static condensation, i.e., forming the Schur
complement with respect to the internal shape functions, is performed with work
W (Ac) = O(N).
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Proof. The cost of setting up the local stiffness matrix with O(p2
K × p2

K) entries
using numerical quadrature with O(p2

K) points is O(p6
K). Thus, the total cost to set

up the global stiffness matrix is

W ∼
∑
K∈T

(p2
K)3 = O(N),

where the last bound is obtained by arguments similar to those in the proof of Propo-
sition 2.7. Also computing the condensed stiffness matrix AcK is done with work
O((p2

K)3) = O(p6
K). Again, summing this work estimate over all elements K of the

geometric mesh, we arrive at W (Ac) = O(N).
Remark 3.3. The presence of numerical quadrature introduces variational crimes.

It can be shown (see [33]) that the bilinear form B̃ obtained by numerical quadrature
induces an inner product on VN that is equivalent to the inner product generated by
B, and the approximation result Theorem 2.13 still holds.

3.3. The Dirichlet problem. The aim of the present section is to show that
the stiffness matrix resulting from the discretization of a Dirichlet problem is fairly
well conditioned. We have the following result.

Proposition 3.4. Given a geometric mesh T with boundary mesh size h, let p be
a polynomial degree distribution satisfying (2.12), and let the element shape functions
be taken as described in Example 3.1. Then there exists C > 0 independent of h and
p such that the condensed stiffness matrix Ac corresponding to the Dirichlet problem
has l2-condition number

κ(Ac) ≤ C|p|(1 + log |p|),(3.6)

where |p| = maxK∈T pK . In the case of Neumann boundary conditions, there holds

κ(Ac) ≤ Ch−1 |p|(1 + log |p|).(3.7)

Proof. For the case of Dirichlet boundary conditions, we refer to [31, Theorem 2.2].
The case of the Neumann boundary conditions is obtained by combining the results
of [31] for the p-dependence with those of [7, Theorem 4.1] for the h-dependence.

We mention that the O(1)-condition number estimate for p = 1 and Dirichlet
boundary conditions has already been proved in [44].

Applied to the case of linear degree vector p, Proposition 3.4 yields that in the
case of a Dirichlet problem the condensed stiffness matrix satisfies

κ(Ac) ≤ C logN(1 + log logN)

because |p| ≤ C logN = C| log h|. Thus, solving Dirichlet problems on geometric
meshes can be accomplished efficiently by simple CG-iterations. We remark that the
condition number κ(A) of the full hp-FEM stiffness matrix can be shown to be O(|p|q)
for suitable q ≥ 1; thus, CG-iterations again lead to linear-logarithmic complexity.

Applied to the Neumann problem on geometric meshes with linear degree vectors,
Proposition 3.4 yields a bound of the form κ(Ac) ≤ CN logN(1 + log logN). In this
case, preconditioning seems to be desirable for the efficient solution of the resulting
linear system. We propose a preconditioner in the following two subsections.

3.4. Neumann problem: Reduction to preconditioning on piecewise
linear spaces. The bilinear form B is expressed in (3.3) as a sum of element contri-
butions. The preconditioner C is also constructed elementwise:

C(u, v) :=
∑
K∈T

CK(uK , vK).(3.8)
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For the construction of the preconditioner, we use the fact that by our discussion
in section 3.1.1 the space PpK can be written as PpK = Ṽ ⊕3

i=1 S̃i ⊕ Ĩ, where the
polynomial degrees associated with sets of side shape functions Si and the internal
shape functions I implicitly depend on K. Correspondingly, a function uK ∈ PpK
can be written as

uK = uVK +

3∑
i=1

uSiK + uIK .(3.9)

We then define the element contributions CK of the preconditioner C as

CK(u, v) = BK(uVK , v
V
K) +

3∑
i=1

BK(uSiK , v
Si
K ) +BK(uIK , v

I
K).(3.10)

We mentioned in section 3.1.1 that the splitting of a basis of PpK into vertex, side,
and internal shape functions is not unique. The following result, which is due to [3],
asserts that for discrete harmonic side shape functions the preconditioner C given by
(3.8) is only weakly dependent on p and independent of the mesh.

Proposition 3.5 (see [3]). Let T be a shape-regular mesh consisting of triangles.
Assume that the side shape functions are discrete harmonic, i.e.,

BK(u, v) = 0 ∀u ∈ S̃ ∀v ∈ Ĩ.(3.11)

Then there exist c1, c2 > 0 depending only on the coefficients A, a0 and the shape-
regularity constant γ such that

c1B(u, u) ≤ C(u, u) ≤ c2(1 + ln |p|)2B(u, u) ∀u ∈ Sp(Ω, T ),

where |p| = maxK∈T pK .
Remark 3.6. The condition (3.11) can be achieved by a process akin to the local

static condensation described in section 3.2. By Proposition 3.2, the condition (3.11)
can be enforced with work O(N).

Remark 3.7. When solving the system by local static condensation as described
in section 3.2, the condition (3.11) should be substituted by

BK(u, v) = 0 ∀u ∈ Ẽ ∀v ∈ Ĩ.(3.12)

It is easy to see that the energy minimization property of the discrete B-harmonic
functions now implies the same condition number for the preconditioner (3.10), (3.12)
as in Proposition 3.5. On the other hand, the former preconditioner (3.10), (3.11) can
be shown to have the same condition number as the modified one.

We now analyze the cost of applying the preconditioner C, i.e., solving

C(u, v) = l(v) ∀v ∈ VN .

By the decomposition (3.2) of the basis B of VN , the sought function u ∈ VN can be
written in the form

u = uV +
∑

edges e

ue +
∑
K∈T

uIK ,(3.13)
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where uV ∈ S1(Ω, T ), ue ∈ spanVe, u
I
K ∈ spanVI . Computing the components uV ,

ue, uIK amounts to solving a global problem corresponding to a discretization with
piecewise linear functions and two sets of local problems:

B(uV , v) = l(v) ∀v ∈ VV ,(3.14)

B(ue, v) = l(v) ∀v ∈ Ve for all edges e,(3.15)

B(uIK , v) = l(v) ∀v ∈ VI ∀K ∈ T .(3.16)

Solving (3.15) and (3.16) can be accomplished with work O(N) on geometric meshes
with linear degree vectors as follows.

Proposition 3.8. Let T be a geometric mesh with boundary mesh size h and let
p be a linear degree vector. Then the problems (3.15) and (3.16) can be solved with
work W = O(N), where N ∼ h−1.

Proof. First, we note that the stiffness matrices corresponding to (3.15), (3.16)
are submatrices of the global stiffness matrix; this guarantees that the problems can
be set up with optimal complexity O(N). For the solution step, we observe that
the problems decouple into problems associated with single elements or two adjacent
elements. Specifically, using Gaussian elimination for each element with cost O(p6

K),
we arrive at the total cost for the solution of (3.16)

W ≤ C
∑
K∈T

p6
K = O(N),

by a reasoning like that of the proof of Proposition 2.7. The solution of (3.15) de-
couples into problems associated with each edge of the mesh, and a calculation shows
again that the required work is O(N).

Since dimS1(Ω, T ) = O(N), the cost for solving (3.14) is at least O(N); hence,
by Proposition 3.8, the total cost of applying the preconditioner C is controlled by
the cost of solving (3.14).

3.5. Efficient solution of piecewise linear discretization. The analysis of
the preceding section allowed us to restrict our attention to the case of piecewise linear
approximation on geometric meshes T . By the general theory of preconditioning, it
suffices to find a spectrally equivalent bilinear form B̃ on S1(Ω, T ) × S1(Ω, T ). To
that end, the space S1(Ω, T ) is decomposed further as

S1(Ω, T ) = VH ⊕ (S1(Ω, T ) ∩H1
0 (Ω));(3.17)

here, VH is given by

VH := RangeEV ,

where EV is the S1(Ω, T )-discrete harmonic extension operator

EV : γ0(S
1(Ω, T ))→ S1(Ω, T ),

u �→ EVu with B(EVu, v) = 0 ∀v ∈ S1(Ω, T ) ∩H1
0 (Ω).

The decomposition (3.17) also provides the B-orthogonal splitting (cf. Lemma 2.2)

B(u, v) = B(EVγ0u,EVγ0v) +B(u− EVγ0u, v − EVγ0v)(3.18)

∀u, v ∈ S1(Ω, T ). Due to Proposition 3.4, any spectrally equivalent approximation to

the first term on the right-hand side of (3.18) yields the desired bilinear form B̃. For
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simplicity of exposition, we now assume that Ω is simply connected. Following the
standard construction in the domain decomposition methods, we apply a circulant
preconditioning matrix. Let FΩ : Ĉ → ∂Ω be the bi-Lipschitz mapping providing
the global parametrization of ∂Ω by a 2π-periodic function. Assume that our quasi-
uniform partitioning of T|∂Ω is the image of the uniform grid T

Ĉ
on Ĉ := [0, 2π].

Let ∆
Ĉ,h

be the discrete Laplacian defined on the set T
Ĉ

and associated with the

corresponding FE space of periodic piecewise linear functions Vh(Ĉ):

〈−∆
Ĉ,h

u, v〉
0,Ĉ

=

∫
Ĉ

∇u · ∇v ds+

∫
Ĉ

uv ds ∀u, v ∈ Vh(Ĉ).(3.19)

The bilinear form B̃ is then defined on S1(Ω, T )× S1(Ω, T ) by

B̃(u, v) := 〈(−∆
Ĉ,h

)1/2(γ0u ◦ FΩ), (γ0v ◦ FΩ)〉
0,Ĉ

+B(u− EVγ0u, v − EVγ0v).

The symmetric positive definite bilinear form B̃ is spectrally equivalent to B on
S1(Ω, T ) since

〈(−∆)1/2(γ0u ◦ FΩ), γ0u ◦ FΩ〉 ∼ ‖γ0u‖21/2,∂Ω ∼ ‖EV(γ0u)‖21,Ω.

We are thus left with the efficient solution of the problem

Find u ∈ S1(Ω, T ) s.t. B̃(u, v) = l(v) ∀v ∈ S1(Ω, T ).(3.20)

Problem (3.20) can be solved in four steps as follows.
Algorithm 3.9 (preconditioner for piecewise (p.w.) linear discretization).
1. Determine ũ ∈ S1(Ω, T ) ∩H1

0 (Ω) as the solution of

B(ũ, v) = l(v) ∀v ∈ S1(Ω, T ) ∩H1
0 (Ω).(3.21)

This can be done efficiently by CG-iteration, because the stiffness matrix has
uniformly bounded condition number.

2. Determine γ0u as the solution of

〈(−∆
Ĉ,h

)1/2(γ0u◦FΩ), (γ0v◦FΩ)〉
0,Ĉ

= l(v)−B(ũ, v) ∀v ∈ S1(Ω, T ).(3.22)

Note that the right-hand side in (3.22) depends only on γ0v, which makes
it possible to compute it with the test functions supported within one near-
boundary grid layer. Due to the special structure of the operator ∆

Ĉ,h
on

uniform meshes, solving (3.22) is efficiently accomplished by a forward and a
backward FFT.

3. Compute (approximately) the discrete B-harmonic extension EVγ0u. This
can be achieved with the aid of explicit extension operators [17], or by CG-
iteration of the problem

B(EVγ0u, v) = 0 ∀v ∈ S1(Ω, T ) ∩H1
0 (Ω),

since the stiffness matrix corresponding to this problem has condition number
bounded uniformly in N by Proposition 3.4.

4. Set u := ũ+ EVγ0u.
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Algorithm 3.9 has the following complexity.
Proposition 3.10. If steps 1, 3 in Algorithm 3.9 are solved iteratively with a tol-

erance ε = O(N−q), then the solution of (3.20) with Algorithm 3.9 requires O(N logN)
floating point operations.

Proof. The solution of the problem in step 1 requires O(N | log ε|) work. The cost
of the FFT is O(N logN). Finally, the calculation of the harmonic extension by the
CG-iteration requires O(N | log ε|) arithmetic operations, where ε > 0 is the desired
accuracy. Setting ε = O(N−q) completes the proof.

3.6. Remarks on implementations with static condensation. In compu-
tational practice one would likely base an iterative solution fully on local static con-
densation. One of the advantages of such a procedure is the reduction of the size of the
problem that is solved iteratively. We recall the classical static condensation-based
scheme as follows.

Algorithm 3.11 (solution based on local static condensation).
1. Compute the local stiffness matrices AK and the local load vectors lK .
2. Compute the condensed local stiffness matrices AcK (note that this enforces

(3.12)) and compute the condensed load vectors lcK .
3. Assemble Ac = AK∈T AcK and assemble the condensed load vectors lc (see,
e.g., [42]).

4. Solve the linear system Acx = lc by a preconditioned CG-iteration with the
modified preconditioner of Algorithm 3.12 below.

5. Sweep through the mesh and solve for the internal degrees of freedom.
Note that, with the exception of solving the condensed system Acx = lc, all

steps of this algorithm can be accomplished with work O(N). For Dirichlet problems,
Proposition 3.4 shows that the condition number of the matrix Ac grows polyloga-
rithmically with the problem size and can thus be treated efficiently by CG-iterations.
For the Neumann problem, a preconditioner Cc similar to the one introduced above
is required.

Static condensation on the element level can be interpreted as choosing new nodal
shape functions V c

V and side shape functions V c
S . Specifically, the mapping Z that

accomplishes this transformation of shape functions is given by

Z : u �→ Zu, Zu satisfies

{
Zu|e = u|e ∀ edges e,

B(Zu, v) = 0 ∀v ∈ VI .
(3.23)

The mapping Z maps the set of piecewise linears VV and the set of side shape functions
VS onto discrete harmonic nodal shape functions V c

V := ZVV and discrete harmonic
side shape functions V c

S := ZVS , respectively. The preconditioner Cc employed for
the solution of the condensed linear system can then be realized with the following
algorithm.

Algorithm 3.12 (preconditioner Cc for a statically condensed stiffness matrix).
Output: solution u = uVc + uSc ∈ spanV c

V ∪ V c
S such that

Cc(u, v) = l(v) ∀v ∈ spanV c
V ∪ V c

S .

1. (a) Determine ũ ∈ spanV c
V ∩H1

0 (Ω) as the solution to

B(ũ, v) = l(v) ∀v ∈ spanV c
V ∩H1

0 (Ω).(3.24)

This can be done efficiently by a CG-iteration, as the stiffness matrix has
uniformly bounded condition number (cf. [31]). Note that the stiffness
matrix corresponding to (3.24) is a submatrix of Ac.
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(b) Determine γ0u as the solution of

〈(−∆
Ĉ,h

)1/2(γ0u◦FΩ), (γ0v ◦FΩ)〉
0,Ĉ

= l(v)−B(ũ, v) ∀v ∈ spanV c
V .

(c) Find Ecγ0u ∈ spanV c
V such that

B(Ecγ0u, v) = 0 ∀v ∈ spanV c
V .(3.25)

This could be accomplished by a CG-iteration, as the stiffness matrix cor-
responding to (3.25) has uniformly bounded condition number by Propo-
sition 3.4. Note again that the stiffness matrix is a submatrix of Ac.

(d) Set uVc := ũ+ Ecγ0u.
2. Introduce V c,e := {v ∈ V c

S | v|e′ = 0 for all edges e′ �= e}. Then uSc ∈
spanV c

S is given by uSc =
∑

edges e u
e, with ue ∈ V c,e solving

B(ue, v) = l(v) ∀v ∈ V c,e.(3.26)

Note that the stiffness matrices for these edge-based problems are submatrices
of Ac. Solving all edge problems (3.26) can be achieved with work O(N) by
Gaussian elimination.

We will not analyze the scheme consisting of Algorithms 3.11, 3.12. In view of
the following lemma, however, we expect complexity estimates for this scheme as in
Proposition 3.10.

Lemma 3.13. The mapping Z of (3.23) is an isomorphism between S1(Ω, T ) and
ZS1(Ω, T ); i.e., for some C > 0 there holds

C−1‖Zu‖H1(Ω) ≤ ‖u‖H1(Ω) ≤ C‖Zu‖H1(Ω) ∀u ∈ S1(Ω, T ).(3.27)

Proof. The lower bound ‖Zu‖H1(Ω) ≤ C‖u‖H1(Ω) follows from the fact that the
energy norm is equivalent to the H1-norm and the energy minimization properties of
the mapping Z. For the upper bound, we write Ω as the union of elements. For a
fixed element K, we write û, Ẑu for the pull-backs to the reference element K̂ of the
functions u|K , Zu|K . We then calculate, using the trace theorem on K̂ and exploiting
that û is linear,

‖∇û‖L2(K̂) ∼ |û|H1/2(∂K̂) = |Ẑu|H1/2(∂K̂) ≤ C‖∇Ẑu‖L2(K̂),

where the implied constant in the ∼ notation and the constant C are independent of
the polynomial degree pK and the element K. Scaling to the physical element K and
summing over all elements yields ‖∇u‖L2(Ω) ≤ C‖∇Zu‖L2(Ω). Since u = Zu on ∂Ω,
we get the upper bound ‖u‖H1(Ω) ≤ C‖Zu‖H1(Ω) in (3.27).

4. Approximation to Poincaré–Steklov operators.

4.1. Poincaré–Steklov operators in elliptic problems. In some applica-
tions, the solution u to (1.2) or (1.3) is not the principal quantity of interest, but
instead the missing data for a complete set of Cauchy data are sought. The Poincaré–
Steklov operator T (also known as the Dirichlet-to-Neumann map) is defined as

T : H1/2(∂Ω) → H−1/2(∂Ω),
λ �→ γ1u, u solves (1.2) with f = 0.

(4.1)

Likewise, we define the Poincaré–Steklov operator S (also called the Neumann-to-
Dirichlet map) by

S : H−1/2(∂Ω) → H1/2(∂Ω),
ψ �→ γ0u, u solves (1.3) with f = 0.

(4.2)
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We note that the operators S, T are in fact inverses to each other, i.e., S−1 = T . Akin
to the situations in (1.18), (1.19), the operator T admits a shift theorem. For general
Lipschitz domains Ω, [10, Lemma 3.7] asserts for each s ∈ [0, 1/2] the existence of
Cs > 0 such that

‖Tλ‖H−1/2+s(∂Ω) ≤ Cs‖λ‖H1/2+s(∂Ω) ∀λ ∈ H1/2+s(∂Ω).(4.3)

For polygonal domains Ω, this shift theorem holds in a larger range. While this is
closely related to (1.19), a precise reference seems to be missing, and we therefore
formulate this as the following assumption.

Assumption 4.1. There exists δ0 > 1/2 such that for each δ ∈ [0, δ0) a constant
Cδ > 0 can be found with

‖Eλ‖H1/2+δ(∂Ω) + ‖Tλ‖H−1/2+δ(∂Ω) ≤ Cδ‖λ‖H1/2+δ(∂Ω) ∀λ ∈ H1/2+δ(∂Ω),(4.4)

where the extension Eλ ∈ H1(Ω) solves (1.2) with f = 0.
Remark 4.2. For the case of Laplace’s equation (and thus the case of constant

coefficients), Assumption 4.1 can be verified as follows. Let δ0 ∈ (1/2, 1] be defined by
(1.19). For general Lipschitz domains Ω, the estimate (4.3) covers the case δ ∈ [0, 1/2].
For δ ∈ (1/2, 1), combining [11, Lemma 2.11] and [11, Lemma 2.7] gives

‖Tλ‖H−1/2+δ(∂Ω) ≤ C‖Eλ‖H1+δ(Ω) ≤ Cδ‖λ‖H1/2+δ(∂Ω),

where the second estimate follows from the regularity result (1.19).
In the case of convex polygons, we have δ0 = 1.
Remark 4.3. The case b = 0, a0 = 0 does not fall directly into our framework

because assumption (1.6) is not satisfied. The modification of considering the energy
space V = H1(Ω)/R, as is standard for Laplace’s equation, can be carried out in the
case of nonconstant matrix A as well.

4.2. hp-FEM approximation of Poincaré–Steklov operators T and S.
We recall that the projector QN of (2.6) can be extended to an operator on H−1/2(∂Ω)
by (2.14).

4.2.1. Approximation of the Poincaré–Steklov operator. Viewing the dual
space Y ′N as a subspace of H−1/2(∂Ω), we define the approximation SN to the
Poincaré–Steklov operator S as

SN : Y ′N → YN ,

Ψ �→ SNΨ := γ0uN ,

where uN ∈ VN solves the following discrete Neumann problem:

B(uN , v) = 〈Ψ, v〉0,∂Ω ∀v ∈ VN .

The error analysis for SN is rather straightforward.
Theorem 4.4. Under the assumptions of Theorem 2.13 (with f = 0) there holds

‖SΨ− SNΨ‖H1/2∂Ω ≤ C
[
hδ + hbα

]
.(4.5)

Proof. Applying the trace theorem, we obtain

‖SΨ− SNΨ‖H1/2∂Ω = ‖γ0u− γ0uN‖H1/2∂Ω ≤ C‖u− uN‖1,Ω.
Now (2.20) yields (4.5).
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4.2.2. Approximation of the Poincaré–Steklov operator. The approxima-
tion

TN : YN → Y ′N ,
λ �→ TNλ

(4.6)

to the Poincaré–Steklov operator T defines an element of the dual space Y ′N via

〈TNλ, v〉0,∂Ω = B(uN , ṽ) ∀v ∈ YN ,

where ṽ ∈ VN is an arbitrary extension of v, γ0ṽ = v, and uN ∈ VN satisfies

γ0uN = λ and B(uN , v) = 0 ∀ v ∈ VN ∩H1
0 (Ω).

Theorem 4.5. Let Ω be a polygon, and let δ0 be given by Assumption 4.1. Then
for any δ ∈ [0, δ0) ∩ [0, 3/2) and λ ∈ H1/2+δ(∂Ω) there holds

‖Tλ− TNQNλ‖H−1/2(∂Ω) ≤ Cδ[h
δ + hbα],(4.7)

where Cδ, b > 0 and α > 0 is the slope of the degree vector.
Proof. Using QNTNQN = TNQN , we write

T − TNQN = (Id −QN )T +QNT (Id −QN ) +QN (T − TN )QN .(4.8)

The first two terms in (4.8) lead to estimates of the form

‖(Id −QN )Tλ‖H−1/2(∂Ω) ≤ Cδh
δ‖Tλ‖H−1/2+δ(∂Ω) ≤ Cδh

δ‖λ‖H1/2+δ(∂Ω),(4.9)

‖QNT (Id −QN )λ‖H−1/2(∂Ω) ≤ C‖(Id −QN )λ‖H1/2(∂Ω) ≤ Chδ‖λ‖H1/2+δ(∂Ω),(4.10)

where we exploited the stability and approximation properties of the projector QN
given in Lemma 2.8 and used the shift theorem for T as detailed in Assumption 4.1.
For the third term in (4.8), we first introduce for the elliptic extension EN : YN → VN .
By a reasoning similar to that in the proof of Corollary 2.12, we get for v ∈ H1/2(∂Ω)

‖EN (QNv)‖H1(Ω) ≤ C‖QNv‖H1/2(∂Ω) ≤ C‖v‖H1/2(∂Ω),(4.11)

where we used the stability result (2.15) in the last step. For the treatment of the
third term in (4.8), we next let u ∈ H1(Ω) be the solution to (1.2) with f = 0 and
Dirichlet boundary conditions λ; ũ ∈ H1(Ω) solves (1.2) with f = 0 and boundary
conditions QNλ; and uN ∈ VN is the hp-FEM approximation to u given by (2.3).
Reasoning as in [25, Lemma 6.1], the definitions of the operators T , TN imply

‖QN (T − TN )QNλ‖H−1/2(∂Ω) = sup
v∈H1/2(∂Ω)

〈(T − TN )QNλ,QNv〉0,∂Ω

‖v‖H1/2(∂Ω)

= sup
v∈H1/2(∂Ω)

B(ũ− uN , EN (QNv))

‖v‖H1/2(∂Ω)

≤ C‖ũ− uN‖H1(Ω) ≤ C
[‖u− uN‖H1(Ω) + ‖u− ũ‖H1(∂Ω)

]
≤ C

[‖u− uN‖H1(Ω) + ‖λ−QNλ‖H1/2(∂Ω)

]
.

‖λ − QNλ‖H1/2(∂Ω) can be bounded as required by (4.10), and Theorem 2.13 allows
us to bound ‖u− uN‖H1(Ω) in the desired fashion.
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Fig. 4.1. Refined interface corresponding to Figure 2.1 (left) and to Remark 1.2 (right).

Remark 4.6. We employed the L2(∂Ω)-projection QN in the definition of TN .
Other projections could, in principle, be used as well. Essential is that the projector
PN has the following stability and approximation properties for δ ∈ [0, δ0):

‖PNu‖H−1/2(∂Ω) ≤ C‖u‖H−1/2(∂Ω),

‖PNu‖H1/2+δ(∂Ω) ≤ Cδ‖u‖H1/2+δ(∂Ω),

‖u− PNu‖H1/2(∂Ω) ≤ Cδh
δ‖u‖H1/2+δ(∂Ω).

Due to the results of section 3 (see also Table 3.1), the implementation of the finite-
dimensional operators SN and TN has the linear-logarithmic complexity O(N logq N)
with respect to N = O(dim YN ), except in the case of Neumann boundary conditions,
where we arrive at the cost O(N3/2 logq N).

Remark 4.7. In the case of piecewise constant coefficients in a polygonal domain,
an efficient method for matrix-vector product with the discrete Poincaré–Steklov op-
erators was developed in [24, 27, 28, 25]. It is based on a sparse h-FEM approximation
to the Schur complement matrix on a rectangle, combined with the reduction of the
PDE to the refined interface. In this way the Schur complement matrix in each
n× n rectangular subdomain is treated with O(n log2 n) arithmetic operations using
a truncated Fourier representation. In the case of symmetric and positive definite
operators with piecewise constant coefficients, the spectrally equivalent multilevel in-
terface preconditioners (see [27, 28]) lead to the complexity O(N log3 N) and the
memory requirements O(N logN) for solving the Schur complement equation on the
refined interface.

An example of the refined interface is given in Figure 4.1, where nonconforming
decompositions in Figure 4.1 (left) correspond to the geometric meshes in Figure 2.1.
Figure 4.1 (right) corresponds to the case of composite meshes refined towards the
corner points, related to the situation in Remark 1.2. An extension of this approach
to the biharmonic, Stokes, and Lamé equations was discussed in [25].

In this way, the boundary concentrated hp-FEM presented in this paper ex-
tends the above-mentioned methods to the case of variable (piecewise analytic) coef-
ficients.

5. Further applications.

5.1. Relation to boundary integral equations. Consider the case of con-
stant coefficients. The results on the sparse approximation to the Poincaré–Steklov
operators directly apply to the construction of asymptotically optimal solvers for the
classical boundary integral equations involving the weakly singular, hypersingular,
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and double layer harmonic potential operators V, D, and K, respectively, defined by

V u(x) =

∫
Γ

g(x, y)u(y)dy, Ku(x) =

∫
Γ

∂

∂ny
g(x, y)u(y)dy,

K ′u(x) =

∫
Γ

∂

∂nx
g(x, y)u(y)dy, Du(x) = −

∫
Γ

∂

∂nx

∂

∂ny
g(x, y)u(y)dy ,

where g(x, y) denotes the fundamental solution for the corresponding elliptic operator
L, and Γ = ∂Ω for a Lipschitz domain Ω ∈ R

2. The idea is based on the represen-
tation of the inverse to the above-mentioned boundary integral operators in terms of
interior T1, S1 and exterior T2, S2 Poincaré–Steklov mappings proposed in [24]. Given
a Hilbert space H and an element g ∈ H ′, we denote Hg := {v ∈ H : 〈v, g〉 = 0}.

Theorem 5.1 (see [24]). The operator V −1 : H
1/2
g0 (Γ) → H

−1/2
1 (Γ) has the

representation V −1 = T1 +T2, where g0 is the Robin potential on Γ satisfying K ′g0 =
− 1

2g0. There holds ( 1
2I −K)−1z = (I + S2 · T1)z ∀ z ∈ H1/2(Γ), and ( 1

2I +K)−1z =

(I + S1 · T2)z ∀ z ∈ H
1/2
g0 (Γ). The operator D−1 : H

−1/2
1 (Γ) → H

1/2
g0 (Γ) has the

representation D−1 = S1 + S2.
An important consequence of the above statement is that whenever some efficient

discretization (say, with linear-logarithmic cost) is constructed for the operators Ti
and Si, i = 1, 2, we immediately obtain the corresponding efficient approximation
for the inverse to the classical boundary integral operators in question. We refer to
[19, 20, 8] for an alternative approach to data-sparse approximations of T and S based
on modern H-matrix arithmetic.

5.2. Application to exterior boundary value problems. BEMs are very
often applied to exterior domain problems. In this subsection, we want to briefly
show how the boundary concentrated FEM can be adapted to this setting.

In the exterior domain Ωe := R
d \ Ω, we consider the Dirichlet problem

Leu := −∇ · (A(x)∇u) + b(x) · ∇u+ c(x)u = f in Ωe,(5.1a)

γ0u = λ on ∂Ω,(5.1b)

with similar assumptions on the data as in section 1.3. In addition, we assume that
b, a0, and f have bounded support Ω0 such that Le = −∆ in R

2 \ Ω0, and that u
satisfies the “radiation condition” of the form

|u(x)| = O(|x|−1), |∇u| = O(|x|−2), |x| → ∞.(5.2)

(This requires a compatibility condition that suppresses the logarithmic growth at
infinity typically exhibited by solutions to Laplace’s equation on exterior domains.)
We approximate (5.2) by imposing homogeneous Neumann conditions on the auxiliary
boundary Γ∞ with dist (Γ∞, ∂Ω) = R = O(N1/2). As above, N denotes the number
of degrees of freedom on ∂Ωe. Following [28] (see also the references therein), we
use a mesh on Int (Γ∞) \ Ω that is a geometric mesh in the sense of Definition 2.3
(see Figure 5.1). The number of levels is again estimated by logR = O(logN). We
stress that the approximation and solution schemes remain verbatim as for the interior
problem.

Our arguments indicate that, in the framework of boundary concentrated hp-
FEM, there is no essential difference between solving exterior and interior problems
in the case of smooth coefficients, and we again expect complexity O(N logq N) for
the approximation of the exterior Poincaré–Steklov operators.
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Ω

∂Ω

Ωe

Γ∞

Fig. 5.1. Geometric mesh on an exterior domain.

5.3. Application in domain decomposition. The efficient realization of the
Poincaré–Steklov operators can also be employed in the context of domain decompo-
sition methods. Let the domain Ω consist of M0 ≥ 1 nonoverlapping polygons Ωi,
Ω = ∪M0

i=1Ωi with Γ := ∪M0
i=1Γi \ ∂Ω, and let f ∈ H−1(Ω) and ψi ∈ H−1/2(Γi). Let the

bilinear form B(·, ·) be written as a sum of subdomain contributions, and consider
the problem of finding u ∈ H1

0 (Ω) such that

M0∑
i=1

Bi(u|Ωi
, v|Ωi

) = B(u, v) = F (v) =

∫
Ω

f(x)vdx+

M∑
i=1

〈ψi, v〉L2(Γi) ∀v ∈ H1
0 (Ω),

where the local continuous forms Bi : Vi×Vi → R are supposed to be H1
0 (Ωi)-elliptic

with Vi := H1(Ωi). Letting u0,i ∈ H1
0 (Ωi) be the particular solutions in Ωi,

Bi(u0,i, v) =

∫
Ωi

f(x)vdx ∀v ∈ H1
0 (Ωi),(5.3)

and introducing the trace space on Γ,

YΓ = {u = z|Γ : z ∈ H1
0 (Ω)}, ‖u‖YΓ

= inf
z∈H1

0 (Ω):z|Γ=u
‖z‖H1(Ω),

we transform the above problem into the interface equation

u|Γ ∈ YΓ : BΓ(u|Γ, v) :=

M∑
i=1

〈Tiui, vi〉0,Γi
=

M∑
i=1

〈gi, v〉Γi
∀v ∈ YΓ,(5.4)

where gi = ψi−γ1,iu0,i and ui = u|Γi
, vi = v|Γi

. The local Poincaré–Steklov operators

Ti : H1/2(Γi)→ H−1/2(Γi) are defined by theBi-harmonic extensions; see (4.6). Since
the bilinear form BΓ(·, ·) : YΓ × YΓ → R is continuous and coercive, (5.4) is uniquely
solvable in YΓ for any gi ∈ H−1/2(Γi) providing the trace u|Γ (see [25]). Thus, the
boundary concentrated FEM can be applied on each subdomain Ωi separately to
numerically realize the operators Ti.

6. Numerics. The main goal of this section is to confirm the principal features of
our method (approximation power and conditioning for both full and linear-subspace
stiffness matrices) for a simple model problem. Specifically, we consider

−∆u = 0 on Ω = (0, 1)2, u|∂Ω =

{
sinπx if y = 0,
0 else,

(6.1)

with the exact solution u(x, y) = sinπx sinh(π(1−y))
sinhπ . Our calculations are performed

with the code Concepts [29]. For quadrilateral elements, this general hp-FEM code
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Fig. 6.1. Geometric meshes for levels 1–4 and linear degree vector (left), and H1-error for
hp-FEM versus N (right).

Table 6.1
Iteration count in the case p = 1 with the mesh in Figure 2.1.

Level 6 7 8 9 10 11 12
Nit 27 30 32 35 37 38 41

NΓ 376 760 1528 3064 6136 12280 24568

NΩ 665 1417 2937 5993 12121 24300 48953

employs the so-called Babuška–Szabó shape functions, which are the tensor products
of the following one-dimensional shape functions defined on (−1, 1) (we refer to [42, 40]
for the details):

ϕ1(x) =
1

2
(1−x), ϕ2(x) =

1

2
(1+x), ϕi(x) =

1

‖Li−3‖L2(−1,1)

∫ x

−1

Li−3(t) dt, i ≥ 3.

Here, the polynomials Li are the usual Legendre polynomials. First, we check the
convergence result of Theorem 2.13, which asserts that for suitable linear degree vector
the hp-FEM yields ‖u− uN‖H1(Ω) ≤ Ch. We check this assertion for the meshes and
linear degree vectors depicted in Figure 6.1. The mesh size on the portion y = 0 of
∂Ω takes the role of the boundary mesh size h in the statement of Theorem 2.13.
The convergence behavior (H1-error versus number of degrees of freedom DOF =
dimSp(T ,Ω)) is given in Figure 6.1.

We now turn to our results in Proposition 3.4 concerning the conditioning of the
stiffness matrix. For the present Dirichlet problem and p = 1, Proposition 3.4 asserts
that the condition number is bounded uniformly in h for the meshes of Figure 6.1.
The numerical results can be found in Figure 6.2. A second numerical example for the
condition number estimates for the stiffness matrix is shown in Table 6.1. For meshes
as depicted in Figure 2.1 and polynomial degree p = 1, we present in Table 6.1 the
number of boundary nodes NΓ, the number NΩ of nodes in Ω, as well as the number
of CG-iterations Nit (with diagonal preconditioning) to reach a residual with l2-norm
below 10−6.

We finally consider the condition number of the full stiffness matrix on the meshes
and polynomial degree distributions as depicted in Figure 6.1. From [30] and a rea-
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soning as in the proof of Proposition 3.4 (see also [31]), the condition number of the
full stiffness matrix is bounded by

κ(A) ≤ Cp4,(6.2)

where C is independent of h. Figure 6.3 presents the number of CG-iterations (without
preconditioning) to reach a residual of 10−6. The numerical results are slightly better
than the growth of O(p2) expected from (6.2).

Appendix A. Analytic regularity results. In the present section, we are
interested in analytic regularity results for solutions to the equation

Lu := −∇ · (A(x)∇u) + b(x) · ∇u+ a0(x)u = f(x) on Ω.(A.1)

Here, the symmetric matrix A is uniformly positive definite and b is a vector. We fur-
thermore assume the coefficients A, b, c to be analytic; i.e., we stipulate the existence
of Cd, γd > 0 such that

‖∇pA‖L∞(Ω) + ‖∇pb‖L∞(Ω) + ‖∇pa0‖L∞(Ω) ≤ Cdγ
p
dp! ∀p ∈ N0.(A.2)
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The aim of the present section is the proof of the following analytic regularity result
for the solution u of (A.1).

Theorem A.1. Let Ω ⊂ R
2 be a bounded Lipschitz domain with boundary ∂Ω.

Let the distance function r be given by (1.15). Let f be analytic on Ω and satisfy for
some δ ∈ (0, 1] and Cf , γf > 0

‖rp+1−δ∇pf‖L2(Ω) ≤ Cfγ
p
fp! ∀p ∈ N0.(A.3)

Finally, let u ∈ H1+δ(Ω) solve (A.1) with data A, b, a0 satisfying (A.2). Then there
exist C, γ > 0 depending only on Ω, Cd, Cf , γd, γf , and δ such that

‖rp+1−δ∇p+2u‖L2(Ω) ≤ Cγpp!‖u‖H1+δ(Ω) ∀p ∈ N0.

Remark A.2. The restrictions on the data A, b, c are not minimal: blow-up akin
to that in (A.3) is conceivable. The theorem can also be extended to the case of
piecewise analytic data A, b, c.

In order to prove Theorem A.1, we start with the following lemma.
Lemma A.3. Let BR be a ball of radius R ≤ 1. Assume that A, b, c satisfy (A.2)

with Ω replaced with BR. Assume that f satisfies on BR

‖∇pf‖L2(BR) ≤ Cfγ
p
fp!R

−p−1+δ ∀p ∈ N0

for some Cf , γf > 0, δ ∈ (0, 1]. Let u ∈ H1+δ(BR) solve

−∇ · (A∇u) + b · ∇u+ cu = f on BR.

Then for every c ∈ (0, 1) there exist constants C, γ > 0 depending only on Cd, γd,
Cf , γf , δ, and c such that

‖∇p+2u‖L2(BcR) ≤ CR−p−1+δγpp!
[‖u‖H1(BR) + |∇u|Hδ(BR)

]
,

where |∇u|Hδ(BR) stands for the Aronszajn–Slobodeckij norm.
Proof. Using the techniques of [35], we have (see [32, Proposition 5.5.1] for the

details)

Rp‖∇p+2u‖L2(BcR) ≤ Cγpp!
[
R−1‖∇u‖L2(BR) +R−2‖u‖L2(BR) + CfR

−1+δ
]
,(A.4)

where C, γ > 0 depend only on γf , Cd, and γd. For an arbitrary linear function l,
the function u− l satisfies

L(u− l) = f̃ := f − Ll.
From the assumptions on the data, we then conclude that for all p ∈ N0

‖∇pf̃‖L2(BR) ≤ Cfγ
p
fp!R

−p−1+δ + Cγpp!‖l‖H1(BR)

≤ C̃γ̃pR−p−1+δ
[
Cf +R1−δ‖l‖H1(BR)

]
,

where the constants C̃, γ̃ > 0 depend on Cd, γd, and γf . Applying (A.4) with u
replaced with u− l, we obtain

Rp‖∇p+2u‖L2(BcR) ≤ Cγpp![R−1‖∇(u− l)‖L2(BR)

+ R−2‖u− l‖L2(BR) +R−1+δCf + ‖l‖H1(BR)].(A.5)
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The assumption u ∈ H1+δ(BR) implies the existence of a linear function l such that

‖u− l‖L2(BR) +R‖∇(u− l)‖L2(BR) ≤ CR1+δ|∇u|Hδ(BR),

where | · |Hδ(BR) denotes the Aronszajn–Slobodeckij seminorm. Using R ≤ 1, we get

R1−δ+p‖∇p+2u‖L2(BcR) ≤ Cγpp!
[|∇u|Hδ(BR) + ‖u‖H1(BR) + Cf

]
.

Proof of Theorem A.1. Using the Besicovitch covering theorem (see, e.g., [45]),
we can construct a covering of Ω by a countable collection B = {Bi | i ∈ N} of closed
balls Bi with the following properties:

1. Bi = Bri(xi), where ri = c′ dist (xi, ∂Ω) for some fixed c′ ∈ (0, 1);
2. there exists N ∈ N such that for all x ∈ Ω: |{i ∈ N |x ∈ Bi}| ≤ N ;
3. there exists c ∈ (0, 1) such that Ω ⊂ ∪i∈NBcri(xi).

Set

C2
i :=

∑
p∈N0

1

(2γf )2p(p!)2
‖rp+1−δ∇pf‖2L2(Bi)

.

The properties of the covering B and the assumption (A.3) imply

rp+1−δ
i ‖∇pf‖L2(Bi) ≤ Ci

(
c′

1− c′

)p+1−δ
(2γf )

pp! ∀p ∈ N0,∑
i∈N

C2
i ≤ NC2

f

∑
p∈N0

1

(2γf )2p(p!)2
γ2p
f (p!)2 =

4

3
NC2

f .

From Lemma A.3 we get

rp+1−δ
i ‖∇p+2u‖L2(Bcri

(xi)) ≤ γpp!
[
Ci + ‖u‖H1(Bi) + |∇u|Hδ(Bi)

]
.

Using the fact that Ω ⊂ ∪iBcri(xi) and the finite overlap property of the covering B,
we get by summation over all balls Bi

‖rp+1−δ∇p+2u‖2L2(Ω) ≤
(

1 + c′

c′

)p+1−δ∑
i∈N

r
2(p+1−δ)
i ‖∇p+2u‖2L2(Bcri

(xi))

≤ C(γpp!)2
∑
i∈N

C2
i + ‖u‖2H1(Bi)

+ |∇u|2Hδ(Bi)

≤ C(γpp!)2[C2
f + ‖u‖2H1+δ(Ω)]

for suitable constants C, γ.
The restriction δ ∈ (0, 1] in Theorem A.1 can be removed as follows.
Corollary A.4. Let Ω ⊂ R

2 be a bounded Lipschitz domain and r be defined
by (1.15). Let k = κ + δ with κ ∈ N0, δ ∈ [0, 1) be given. Assume that u ∈ H1+k(Ω)
satisfies (A.1), with coefficients A, b, c satisfying (A.2) and f satisfying

‖f‖Hκ−1(Ω) + ‖rp+1−δ∇p+κf‖L2(Ω) ≤ Cfγ
p
fp! ∀p ∈ N0.(A.6)

Then there exist C, γ > 0 such that

‖rp+1−δ∇p+2+κu‖L2(Ω) ≤ Cγpp!
[
Cf + ‖u‖H1+k(Ω)

]
.
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Proof. The corollary is proved by induction on κ ∈ N0. For κ = 0, the result
holds true by Theorem A.1. Assuming that it holds for all 0 ≤ κ′ < κ for some κ ∈ N,
we show that it holds for κ+ 1. The induction hypothesis implies that

‖rp+1−δ∇p+2+κ′
u‖L2(Ω) ≤ C[Cf + ‖u‖H1+δ+κ′ (Ω)]γ

pp! ∀p ∈ N0, 0 ≤ κ′ < κ.

Differentiating (A.1) κ times, it is easy to see that Dαu with |α| = κ satisfies a
differential equation of the form

LDαu = fα := Dαf + ũα,

where ũα =
∑
|β|≤κ+1 λα,βD

βu for some analytic functions λα,β . The induction
hypothesis and the assumptions on f imply that

‖rp+1−δ∇pfα‖L2(Ω) ≤ C
[
Cf + ‖u‖H1+δ+κ(Ω)

]
γpp! ∀p ∈ N0.

(See [32, Lemma 4.3.3] for a rigorous proof that products λα,βD
βu satisfy the desired

bounds.) Theorem A.1 therefore allows us to conclude the induction argument.

Appendix B. Compact embeddings. For δ ∈ (0, 1) and a domain Ω ⊂ R
2 we

define as usual

‖u‖2
H̃δ(Ω)

:=

∫
Ω

∫
Ω

|u(x)− u(y)|2
|x− y|2+2δ

dxdy +

∫
Ω

|u(x)|2
|dist (x, ∂Ω)|2δ dx.(B.1)

The following lemma is due to von Petersdorff [43] (see also [2] for a proof).
Lemma B.1. Let B = {Bi | i ∈ N} be a covering of a domain Ω ⊂ R

2 that satisfies
a finite overlap property; i.e., there exists N ∈ N such that

sup
x∈Ω

card {i ∈ N |x ∈ Bi} ≤ N.(B.2)

Then ∑
i,j∈N

∫
Bi

∫
Bj

|u(x)− u(y)|2
|x− y|2+2δ

dxdy ≤ N
(
3 +

π

δ

)∑
i∈N

‖u‖2
H̃δ(Bi)

.

Let Ω ⊂ R
2 be a bounded Lipschitz domain, and let r be defined by (1.15). For

k ∈ N and β ∈ (0, 1) introduce the norm

‖u‖2Hk
β
(Ω) := ‖u‖2Hk−1(Ω) + ‖rβ∇ku‖2L2(Ω)(B.3)

and define the spaces Hk
β (Ω) as the completion of C∞(Ω) under this norm.

Lemma B.2. Let Ω ⊂ R
2 be a Lipschitz domain, β ∈ (0, 1). Then for each

0 ≤ δ < min {1/2, 1− β} there exists C > 0 such that

‖u‖Hδ(Ω) ≤ C‖u‖H1
β
(Ω) ∀u ∈ H1

β(Ω).

Proof. We start with the following variant of Hardy’s inequality in one dimension:∫ ∞
0

x−2δ|u(x)|2 dx ≤ Cδ

[∫ ∞
0

x2(1−δ)|u′(x)|2 dx+

∫ ∞
0

|u(x)|2 dx
]

(B.4)
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for all functions u such that the right-hand side is finite (see, e.g., [22, Theorem 330]).
In the standard way by locally flattening the boundary (note that Ω is assumed to be
Lipschitz), we then obtain from (B.4) the following two-dimensional result: For every
δ ∈ [0, 1/2) there exists Cδ > 0 such that

‖r−δu‖L2(Ω) ≤ Cδ
[‖r1−δ∇u‖L2(Ω) + ‖u‖L2(Ω)

] ∀u ∈ H1
β(Ω).(B.5)

We now turn to the proof of the lemma. Let B = {Bi | i ∈ N} be the cover of Ω by
balls given in the proof of Theorem A.1. For each i, let ûi = u ◦ Fi, where the affine
map Fi : B̂ → Bi maps the unit ball B̂ onto Bi. Sobolev’s embedding theorem implies

‖ûi‖2
H̃δ(B̂)

≤ C
[
‖∇ûi‖2L2(B̂)

+ ‖ûi‖2L2(B̂)

]
.

Here, we used the assumption δ < 1/2. Scaling back to the balls Bi, we conclude

r−2+2δ
i ‖u‖2

H̃δ(Bi)
≤ C

[
‖∇u‖2L2(Bi)

+ r−2
i ‖u‖2L2(Bi)

]
.

Thus, using the properties of the covering

‖u‖2
H̃δ(Bi)

≤ C
[
‖r1−δ∇u‖2L2(Bi)

+ ‖r−δu‖2L2(Bi)

]
.

Summing over all balls Bi of the covering and using its overlap property together with
Lemma B.1, we arrive at

‖u‖2Hδ(Ω) ≤ C
∑
i

‖u‖2
H̃δ(Bi)

≤ C
[
‖r1−δ∇u‖2L2(Ω) + ‖r−δu‖2L2(Ω)

]
≤ C

[
‖r1−δ∇u‖2L2(Ω) + ‖u‖2L2(Ω)

]
,

where, in the last step, we appealed to (B.5). Noting 1 − δ > β finishes the
proof.

A consequence of Lemma B.2 is the following.
Theorem B.3. Let Ω ⊂ R

2 be a bounded Lipschitz domain, β ∈ (0, 1). Then
for each 0 ≤ δ < min {1/2, 1 − β} the embedding H2

β(Ω) ⊂ H1+δ(Ω) is compact. In

particular, H2
β(Ω) ⊂ C0(Ω).

Proof. The embedding H2
β(Ω) ⊂ C0(Ω) follows from H1+δ(Ω) ⊂ C0(Ω), valid

for all δ > 0 by Sobolev’s embedding theorem. Because H1+δ(Ω) ⊂ H1+δ′(Ω) is
compactly embedded for 0 ≤ δ < δ′, it suffices to show that for each δ there exists
C > 0 such that ‖u‖H1+δ(Ω) ≤ C‖u‖H2

β
(Ω), which follows from Lemma B.2 applied to

∇u.
Theorem B.4. Let K̂ be the reference square or the reference triangle. Let

r(x) = dist (x, K̂), β ∈ (0, 1). For u ∈ H2
β(K̂) let Iu be the linear (if K̂ = T ) or the

bilinear (if K̂ = S) interpolant of u. Then

‖u− Iu‖H2
β
(K̂) ≤ C‖rβ∇2u‖L2(K̂).

Proof. Let A1, A2, A3 be three vertices of K̂. Exploiting the compactness result
of Theorem B.3 in the same way as in the proof of [40, Lemma 4.16], we obtain the
existence of C > 0 such that

‖u‖2
H2

β
(K̂)

≤ C

[
‖rβ∇2u‖2

L2(K̂)
+

3∑
i=1

|u(Ai)|2
]

∀u ∈ H2
β(K̂).
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As u(Ai) = Iu(Ai) by construction, the result follows.

Appendix C. Sobolev spaces on the boundary of polygons.
Lemma C.1. Let I = [a, b], I ′ = [a′, b′] be intervals. Let ϕ : I → I ′ be a piecewise

smooth bijection. Then for |s| < 3/2 the map u �→ u ◦ φ is an isomorphism between
Hs(I) and Hs(I ′). The same result holds for the spaces Hs

per(I), H
s
per(I

′) of periodic
functions if the piecewise smooth function φ satisfies additionally ϕ(a) = ϕ(b).

In particular, for a polygon Ω, let ϕ : I → ∂Ω be the parametrization by arc
length. Then the map u �→ u ◦φ provides an isomorphism between the spaces Hs(∂Ω)
and Hs

per(I) for |s| < 3/2.
Proof. This result is due to Grisvard; see, e.g., [11, Corollary 2.8].
For a mesh T = {K}, we define piecewise polynomial spaces Sp,k(I, T ), p, k ∈ N0,

by

Sp,k(I, T ) = {u ∈ Hk(I) |u|K is a polynomial of degree p}.

Lemma C.2. Let I ⊂ R be an interval and T a quasi-uniform mesh on I with
mesh size h; i.e., the nodes x0 < x1 < · · · < xN of the mesh satisfy γ

−1h ≤ xi+1−xi ≤
γh, i = 0, . . . , N − 1, for some γ > 0. Then for every ε ∈ [0, 1/2) and every p ∈ N0

there exists Cε,p > 0 such that

‖u‖Hε(I) ≤ Cε,ph
−ε‖u‖L2(I) ∀u ∈ Sp,0(I, T ),(C.1)

‖u‖H1+ε(I) ≤ Cε,ph
−(1+ε)‖u‖L2(I) ∀u ∈ Sp,1(I, T ).(C.2)

Proof. We first show (C.1). Equation (C.1) is trivially valid for ε = 0. Let
therefore ε ∈ (0, 1/2). We characterize the norm ‖ · ‖Hε(I) using the K-functional;
that is, we have for all u ∈ Hε(I)

‖u‖2Hε(I) ∼
∫ ∞

0

t−2ε−1K2(u, t) dt, K2(u, t) := inf
v∈H1(I)

‖u− v‖2L2(I) + t2|v′|2L2(I).

We choose v in the infimum appropriately. For t ≥ h we take v ≡ 0 and get∫ ∞
h

t−2ε−1K2(u, t) dt ≤
∫ ∞
h

t−2ε−1‖u‖2L2(I) dt =
1

2ε
h−2ε‖u‖2L2(I).(C.3)

In the range t ∈ (0, h) we proceed as follows. Let ϕ ∈ C∞0 (R) be a smooth function
with 0 ≤ ϕ(x) ≤ 1 that is supported by [−1, 1] and that satisfies ϕ ≡ 1 on [−1/2, 1/2].
For δ > 0 we set ϕδ(x) := ϕ(x/δ). For t ∈ (0, h) we then set

ψt(x) := 1−
N∑
i=0

ϕt/γ(x− xi)

(γ is the quasiuniformity constant of the mesh T ) and choose the function v in the
infimum defining K(t, u) as v(x) := ψt(x)u(x). Noting the support properties of ψt
and standard polynomial inverse estimates, we get with the shorthand Ii := (xi, xi+1)

‖u− v‖2L2(I) = ‖(1− ψt)u‖2L2(I) ≤
N−1∑
i=0

tγ−1‖u‖2L∞(Ii)
≤ C

N−1∑
i=0

th−1‖u‖2L2(Ii)

≤ Cth−1‖u‖2L2(I),
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‖v′‖2L2(I) ≤
N−1∑
i=0

‖(uψt)′‖2L2(Ii)
≤ 2

N−1∑
i=0

‖u′‖2L2(Ii)
+ ‖u‖2L∞(Ii)

‖ψ′t‖2L2(Ii)

≤ C

N−1∑
i=0

h−2‖u‖2L2(Ii)
+ h−1t−1‖u‖2L2(Ii)

≤ Ch−2

(
1 +

h

t

)
‖u‖2L2(I).

A straightforward calculation then shows∫ h

0

t−1−2εK2(t, u) dt ≤ Ch−2ε‖u‖2L2(I),

where the constant C depends on p, ε, I, and γ but is independent of u and h. This
proves (C.1). For (C.2), we note again that the case ε = 0 is a standard polynomial
inverse estimate. For ε ∈ (0, 1/2), we bound

‖u‖H1+ε(I) ≤ C
[‖u‖L2(I) + ‖u′‖L2(I) + ‖u′‖Hε(I)

] ≤ Ch−1‖u‖L2(I) + C‖u′‖Hε(I).

Since u′ ∈ Sp−1,0(I, T ), we may apply (C.1) to the second term to get

‖u‖H1+ε(I) ≤ Ch−1‖u‖L2(I) + Cε,ph
−ε‖u′‖L2(I) ≤ Cε,ph

−1−ε‖u‖L2(I).

Proposition C.3. Let I ⊂ R be an interval, T be a quasi-uniform mesh on I
with quasiuniformity constant γ. Let P : L2(I)→ Sp,1(I, T ) be a linear operator with

(i) ‖Pu‖L2(I) ≤ Cstable‖u‖L2(I) for all u ∈ L2(I);
(ii) Pu = u for all u ∈ S1,1(I, T ).
Then for every ε ∈ [0, 3/2) there exists a constant Cε > 0 depending only on p, Cstable,
γ, and ε such that

‖Pu‖Hε(I) ≤ Cε‖u‖Hε(I).

Proof. Let u ∈ Hε(I) be arbitrary. By simultaneous approximation in Sobolev
spaces (see, e.g., [9]) there exists Cε > 0 independent of h such that for every u ∈
Hε(I) we can find qu ∈ S1,1(I, T ) with

hε‖u− qu‖Hε(I) + ‖u− qu‖L2(I) ≤ Cεh
ε‖u‖Hε(I).(C.4)

Exploiting the reproduction assumption (ii) and the stability assumption (i), we get

‖u−Pu‖L2(I) ≤ ‖u−qu‖L2(I)+‖P (u−qu)‖L2(I) ≤ (1+Cstable)‖u−qu‖L2(I).(C.5)

We can therefore estimate with Lemma C.2

‖Pu‖Hε(I) ≤ ‖u‖Hε(I) + ‖u− Pu‖Hε(I) ≤ ‖u‖Hε(I) + ‖u− qu‖Hε(I) + ‖qu − Pu‖Hε(I)

≤ Cε‖u‖Hε(I) + Cεh
−ε‖qu − Pu‖L2(I)

≤ Cε‖u‖Hε(I) + Cεh
−ε {‖u− qu‖L2(I) + ‖u− Pu‖L2(I)

}
≤ Cε‖u‖Hε(I) + Cε(2 + Cstable)h

−ε‖u− qu‖L2(I) ≤ C‖u‖Hε(I),

where we have used (C.5) and (C.4). This concludes the proof of the proposi-
tion.

Remark C.4. It can be checked that Proposition C.3 also holds if the linear op-
erator P is replaced with an operator P : H1(I)→ Sp,1(I, T ) that is stable in H1(I),
i.e., ‖Pu‖H1(I) ≤ Cstable‖u‖H1(I) for all u ∈ H1(I), and that satisfies assumption (ii)
of Proposition C.3.

It can also be checked that Proposition C.3 remains valid for periodic functions,
i.e., if P : L2(I)→ Sp,1(I, T ) ∩H1

per(I) satisfies Pu = u for all u ∈ Hs
per(I).
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[28] B.N. Khoromskij and S. Prößdorf, Fast computation with harmonic Poincaré–Steklov
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CONVERGENCE ANALYSIS OF A FINITE VOLUME METHOD FOR
MAXWELL’S EQUATIONS IN NONHOMOGENEOUS MEDIA∗
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Abstract. In this paper, we analyze a recently developed finite volume method for the time-
dependent Maxwell’s equations in a three-dimensional polyhedral domain composed of two dielectric
materials with different parameter values for the electric permittivity and the magnetic permeability.
Convergence and error estimates of the numerical scheme are established for general nonuniform
tetrahedral triangulations of the physical domain. In the case of nonuniform rectangular grids, the
scheme converges with second order accuracy in the discrete L2-norm, despite the low regularity of
the true solution over the entire domain. In particular, the finite volume method is shown to be
superconvergent in the discrete H(curl; Ω)-norm. In addition, the explicit dependence of the error
estimates on the material parameters is given.

Key words. finite volume method, Maxwell’s equations, inhomogeneous medium, stability,
convergence
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PII. S0036142901398453

1. Introduction. Let Ω be a general polyhedral domain in R
3, occupied by a

material with electric permittivity ε and magnetic permeability µ. Maxwell’s equa-
tions state that

ε
∂E

∂t
− curl H = J in Ω× (0, T ),(1.1)

µ
∂H

∂t
+ curl E = 0 in Ω× (0, T ),(1.2)

div(εE) = ρ in Ω× (0, T ),(1.3)

div(µH) = 0 in Ω× (0, T ),(1.4)

where E = E(x, t) and H = H(x, t) denote the electric and magnetic fields, J = J(x, t)
denotes the applied current density, and ρ = ρ(x, t) denotes the charge density. This
paper is concerned with the case where the domain Ω is composed of two distinct
dielectric materials. Let Ω1 be a polyhedral subdomain strictly lying inside Ω, occu-
pied by a material with electric permittivity ε1 and magnetic permeability µ1, and
let Ω2 = Ω\Ω̄1 be occupied by another material with electric permittivity ε2 and
magnetic permeability µ2. For ease of exposition, we shall consider only the case
where the parameters εi and µi are constant functions in Ωi, i = 1, 2, but possibly
with great differences in their values. We remark that our subsequent analyses can be
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Fig. 1. Two-dimensional cross-section of dielectric materials Ω1, Ω2 and their interface Γ.

naturally extended to the case with piecewise smooth coefficients as well as multiple
subdomains for which our methods have broad applications [3, 11].

Let Γ = ∂Ω1 be the boundary of Ω1 with a unit outward normal vector m, and
let ∂Ω be the boundary of Ω with a unit outward normal vector n; see Figure 1. We
supplement the system (1.1)–(1.4) with the perfect conductor boundary condition and
the initial condition given by

E× n = 0 on ∂Ω× (0, T ) ,(1.5)

E(x, 0) = E0(x) and H(x, 0) = H0(x) ∀x ∈ Ω.(1.6)

It is well known [3, 19] that the electric and magnetic fields E and H satisfy the
following physical jump conditions across the interface Γ:

[E×m] = 0, [εE ·m] = ρΓ,(1.7)

[H×m] = 0, [µH ·m] = 0,(1.8)

where ρΓ = ρΓ(x) is the surface charge density and, throughout this paper, the jump
of any function f across the interface Γ is defined by

[f ] := f2|Γ − f1|Γ,
where fi = f |Ωi

for i = 1, 2.
In addition, we have the following constitutive relations:

D = εE, B = µH,(1.9)

where D and B are the electric flux density and the magnetic flux density, respectively.
Over the past few decades, numerical methods for solving Maxwell’s equations in

homogeneous media have received much attention [11, 20]. The simple and popular
Yee’s scheme was proposed in 1966 [21], though its convergence analysis was not avail-
able until the work by Monk and Süli for nonuniform rectangular grids [14]. In order
to handle domains with complicated geometry, both finite element and finite volume
methods have been widely studied. For example, some fully discrete finite element
methods were used to solve the decoupled time-dependent Maxwell’s equations by
Monk [13] and Raviart [18]. Second order convergence for the stationary case was
established there, while a convergence analysis for the fully discrete time-dependent
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case was given by Ciarlet and Zou [7]. Chen and Yee proposed a finite volume method
to solve Maxwell’s equations in [4]. Convergence analyses for both semidiscrete and
fully discrete schemes were given by Nicolaides and Wang [16].

For most real applications, however, one is often confronted with the solution
of Maxwell’s equations in nonhomogeneous media. Many of the aforementioned nu-
merical methods either are not directly applicable or become inefficient (with lower
order convergence) for these problems due to different physical characteristics re-
flected by the electric permittivities and magnetic permeabilities of different media,
and due to the extra jump conditions the electric and magnetic fields need to satisfy
on the interface; see (1.7)–(1.8). Several attempts have been made to handle the
interface Maxwell’s problems [4, 5, 20]. For example, Chen and Yee studied a hybrid
FDTD/FVTD method for the interface problem [4], assuming that both the tangential
components of the electric and magnetic fields are continuous across the interface and
the electric field is tangentially piecewise constant on the interface. Chen, Du, and
Zou [5] proposed an edge finite element method for solving Maxwell’s system with
general interface conditions and developed a general framework for its convergence
analysis.

Recently, Chung and Zou presented a new finite volume method for Maxwell’s
equations in nonhomogeneous media [6], together with numerical experiments. In
this paper, we will give the convergence analysis of the method for general tetrahe-
dral triangulations. As in many interface problems, the regularity of the analytical
solution of Maxwell’s system in the entire physical domain is very low, which makes
the convergence analysis very difficult. Regardless, we will show that, without mak-
ing any extra regularity assumptions beyond those that are used for the case of a
homogeneous medium [14, 16], the method under consideration is first order conver-
gent for general tetrahedral triangulations and second order convergent for general
nonuniform rectangular grids. Furthermore, it is shown that the proposed method
has superconvergence in a discrete H(curl; Ω)-norm, and the explicit dependence of
the error estimates on the physical material parameters is given. To our knowledge,
this seems to be the first rigorous work so far on the convergence of a finite volume
method for Maxwell’s equations with discontinuous coefficients.

We end this section with some notational conventions to be used in the subsequent
analysis. For a nonnegative integer m and 1 ≤ p <∞, we use Wm,p(Ω) to denote the
standard Sobolev space equipped with the norm [1]

‖u‖Wm,p(Ω) =

 ∑
0≤|α|≤m

‖Dαu‖pLp(Ω)

1/p

and the seminorm

|u|Wm,p(Ω) =

 ∑
|α|=m

‖Dαu‖pLp(Ω)

1/p

.

Here Dαu denotes the αth order weak derivative of u. In addition, we define [10]

H(curl; Ω) = {u ∈ L2(Ω)3; curl u ∈ L2(Ω)3},
with its seminorm and norm given by

|u|H(curl;Ω) = ‖curl u‖L2(Ω)3 ; ‖u‖H(curl;Ω) = {‖u‖2L2(Ω)3 + ‖curl u‖2L2(Ω)3}
1
2 ,
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respectively. Furthermore, for some 0 < λ < 1, Cm,λ(Ω) denotes the standard Hölder
spaces of functions whose mth order derivatives are Hölder continuous with expo-
nent λ. The same definitions are adopted on Ω1 and Ω2.

We use Lp(0, T ;X) to denote the space of all Lp integrable functions u(t, ·) from
[0, T ] into the Banach space X, and we also define [12]

Wm,p(0, T ;X) =

{
u ∈ Lp(0, T ;X);

∂αu

∂tα
∈ Lp(0, T ;X) ∀|α| ≤ m

}
,

with norm

‖u‖Wm,p(0,T ;X) =

 ∑
0≤|α|≤m

∥∥∥∥∂αu

∂tα

∥∥∥∥p
X


1/p

.

When p = 2, we set Hm(Ω) = Wm,2(Ω) and Hm(0, T ;X) = Wm,2(0, T ;X).
The rest of the paper is organized as follows. Some discrete vector fields and the

finite volume method are introduced in sections 2 and 3, respectively. In section 4, we
give a discussion of the discrete divergence constraints and stability. The convergence
analysis for the general tetrahedral triangulation and the convergence analysis for the
case of a nonuniform rectangular grid are given in section 5. Some concluding remarks
are given in section 6.

2. Discrete vector fields. We now discuss the triangulation of the domain
Ω. We use the Voronoi–Delaunay triangulation [9], which enjoys many elegant ge-
ometric properties that allow us to derive the numerical schemes in the subsequent
sections. We adopt the notation developed by Nicolaides [15], Nicolaides and Wang
[16], and Nicolaides and Wu [17], where a finite volume method was proposed for
solving Maxwell’s equations with smooth physical coefficients ε and µ.

We first triangulate Ω using the standard tetrahedral elements, which are called
the primal elements. The triangulation is chosen so that the faces of the primal
elements are aligned with the interface Γ. A primal element with at least one face
lying on Γ is called an interface primal element, and a primal face (edge) lying on Γ
is called an interface primal face (edge).

The dual elements are the Voronoi polyhedra formed by connecting the circum-
centers of adjacent primal elements. Those dual elements (faces and edges) separated
by the interface Γ into two parts lying in Ω1 and Ω2, respectively, are called the
interface dual elements (faces and edges). The definitions and convergence analysis
related to dual elements are much more complicated than those related to primal
elements, due to the interface. From geometry, it is known that each primal edge is
perpendicular to and is in one-to-one correspondence with a dual face, and each dual
edge is perpendicular to and in one-to-one correspondence with a primal face.

For the subsequent convergence analysis, we assume that all dihedral angles of
each tetrahedron are uniformly acute and the triangulation restricted to each subdo-
main satisfies

Kr ≤ hrmax

hrmin

≤ K̃r, r = 1, 2 ,(2.1)

where hrmax and hrmin are, respectively, the local maximum and minimum side lengths
of adjacent primal and dual elements in Ωr, andKr and K̃r are two positive constants.

Let N and L be the numbers of primal and dual elements, respectively, and let F
be the number of primal faces (dual edges) and M the number of primal edges (dual
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faces). Assume that these quantities are numbered sequentially in some order. The
individual elements, faces, edges, and nodes of the primal mesh are denoted by τi, κj ,
σk, and νl, respectively. Those quantities related to the dual mesh are denoted by
the primed forms such as τ ′i , κ

′
j , σ

′
k, and ν′l . The area of κj is denoted by sj , and the

length of σk is given by hk. A direction is assigned to each primal and dual edge by
the rule that positive direction is from low to high node number. A direction is also
assigned to each primal (dual) face so that it is the same as that of the corresponding
dual (primal) edge. We denote by F1 the number of interior primal faces (dual edges)
and by M1 the number of interior primal edges (dual faces). For each dual edge σ′j of
length h′j , we define a scaled length:

h̄′j =


1
µ1

h′j if σ′j ∈ Ω1,
1
µ2

h′j if σ′j ∈ Ω2,

( 1
µ1

aj +
1
µ2
(1− aj))h

′
j otherwise,

where 0 < aj < 1 is the ratio of the length of the portion of σ′j that belongs to Ω1

over the length of σ′j . For any u and v in R
F1 , we introduce a mesh and parameter

dependent inner product defined by

(u, v)W :=
∑
κj⊂Ω

ujvjsj h̄
′
j = (Su,D′v) = (D′u, Sv),(2.2)

where S := diag(sj) and D′ := diag(h̄′j) are F1 × F1 diagonal matrices and (·, ·)
denotes the standard Euclidean inner product. Similarly, for each dual face κ′j with
area s′j , we define a scaled area:

s̄′j =


ε1s
′
j if κ′j ∈ Ω1,

ε2s
′
j if κ′j ∈ Ω2,

(ε1bj + ε2(1− bj))s
′
j otherwise,

where 0 < bj < 1 is the ratio of the area of the portion of κ′j that belongs to Ω1

over the area of κ′j . Also, we define a mesh and parameter dependent inner product

in R
M1 by

(u, v)W ′ :=
∑
κ′
j⊂Ω

ujvj s̄
′
jhj = (S′u,Dv) = (Du, S′v),(2.3)

where S′ := diag(s̄′j) and D := diag(hj) are M1 ×M1 diagonal matrices.
For any σj ∈ ∂κi, we say that σj is oriented positively along ∂κi if the direction

of σj agrees with the one of ∂κi formed by the right-hand rule with the thumb pointing
in the direction of σ′i. Otherwise, we say that σj is oriented negatively along ∂κi. For
each interior primal face κi, we define its discrete circulation by

(Cu)κi :=
∑

σj⊂∂κi

uj h̃j ,(2.4)

where

h̃j =

{
hj if σj is oriented positively along ∂κi,

−hj if σj is oriented negatively along ∂κi.
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Similarly, for each interior dual face κ′i we define its discrete circulation by

(C ′u)κ′
i
:=

∑
σ′
j⊂∂κ′

i

uj h̃
′
j ,(2.5)

where

h̃′j =

{
h̄′j if σ′j is oriented positively along ∂κ′i,
−h̄′j if σ′j is oriented negatively along ∂κ′i.

Clearly, C and C ′ are two linear mappings from R
M to R

F1 and R
F1 to R

M1 , respec-
tively. We remark that (2.4) and (2.5) are the discrete analogues of the integrals∫

κ′
i

E · ni dσ and

∫
κi

H · ni dσ

by Stokes’ theorem, where in what follows ni represents the unit normal vector for
both primal and dual faces.

For each strictly interior dual edge σ′j with both endpoints of σ′j lying in Ω and
the ith strictly interior dual face κ′i, we define the entries of a F1 ×M1 matrix G as

(G)ji :=


1 if σ′j is oriented positively along ∂κ′i,
−1 if σ′j is oriented negatively along ∂κ′i,
0 if σ′j does not meet ∂κ′i.

Let w ∈ R
M be a vector whose kth component is the value assigned to the kth

primal edge. Let w1 ∈ R
M1 be the restriction of w to the interior primal edges. Denote

by w|∂Ω the components of w that are related to the boundary. Likewise, denote by
v ∈ R

F1 the vector whose jth component represents a value on the jth interior dual
edge. Similarly to [15, 16, 17], we have the following result.

Lemma 2.1. Let w, w1, and v be defined as above, and w|∂Ω = 0; then we have

Cw = GDw1 , C ′v = GTD′v .(2.6)

Proof. To see the first relation in (2.6), we note that the ith component of both
sides corresponds to the primal face κi. By the definition (2.4) and w|∂Ω = 0, we have

(Cw)κi =
∑

σj⊂∂κi

wj h̃j =

M1∑
j=1

cjwjhj , (GDw1)κi =

M1∑
j=1

gjhjwj ,

where

cj =


1 if σj is oriented postively along ∂κi,

−1 if σj is oriented negatively along ∂κi,

0 if σj does not meet ∂κi

for any interior primal edge σj , and gj = (G)ij . By the orthogonality between primal
and dual meshes, we conclude that cj and gj are the same; the first relation in (2.6)
is thus proved. The second relation can be proved by a similar technique.
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Using Lemma 2.1, we can show a discrete analogue of the following Green’s for-
mula: ∫

Ω

curl E ·B dx =

∫
Ω

curl B ·E dx,

which holds when E× n = 0 on ∂Ω.
Lemma 2.2. With the same definitions as in Lemma 2.1, we have

(Cw,D′v) = (C ′v,Dw1).(2.7)

Proof. Equation (2.7) follows directly from Lemma 2.1 and (2.6):

(C ′v,Dw1) = (GTD′v,Dw1) = (D′v,GDw1) = (D′v, Cw).

With the definition of the discrete circulation operator C, we define the following
inner product:

(u, v)V :=
∑
κi⊂Ω

(Cu)i(Cv)is
−1
i h̄′i = (S−1Cu,D′Cv) = (D′Cu, S−1Cu)(2.8)

for any vectors u, v ∈ R
M , and the induced norm

|u|V := (u, u)
1
2

V .(2.9)

This norm is equivalent to the discrete seminorm of H(curl; Ω). We also define

‖u‖V := (‖u‖2W ′ + |u|2V )
1
2 ,(2.10)

which is a discrete analogue of the norm in H(curl; Ω).
Let τi be a primal element and κj ∈ ∂τi be a primal face. We say κj is oriented

positively along ∂τi if the dual edge σ′j on κj is directed towards the outside of τi.
Otherwise, we say κj is oriented negatively along ∂τi. For each primal element τi we
define a discrete flux by

(Du)i :=
∑

κj⊂∂τi
uj s̃j ∀u ∈ R

F1 ,(2.11)

where no components of u on the boundary faces are involved, and s̃j is given by

s̃j =

{
sj if κj is oriented positively along ∂τi,
−sj if κj is oriented negatively along ∂τi.

The mapping D is the discrete version of the divergence operator by noting that∫
τi

div u dx =

∫
∂τi

u · n ds.

Similarly, for each dual element τ ′i , we define a discrete flux by

(D′u)i :=
∑

κ′
j⊂∂τ ′

i

uj s̃
′
j ∀u ∈ R

M1 ,(2.12)
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where

s̃′j =
{

s̄′j if κ′j is oriented positively along ∂τ ′i ,
−s̄′j if κ′j is oriented negatively along ∂τ ′i .

Next we present a discrete analogue of the identity div(curl u) = 0 for the discrete
divergence operators D and D′. To do so, we introduce two matrices B1 and B′1. B1 is
a F1 ×N matrix given by

(B1)ji :=

 1 if κj is oriented positively along ∂τi,
−1 if κj is oriented negatively along ∂τi,
0 if κj does not meet ∂τi,

while B′1 is a M1 × L matrix given by

(B′1)ji :=


1 if κ′j is oriented positively along ∂τ ′i ,
−1 if κ′j is oriented negatively along ∂τ ′i ,
0 if κ′j does not meet ∂τ ′i .

Then we have the following relations (cf. [6]).
Lemma 2.3. We have

D = BT
1 S, D′ = (B′1)

TS′,(2.13)

BT
1 C = 0, (B′1)

TC ′ = 0.(2.14)

3. The finite volume method. The finite volume method proposed in Chung
and Zou [6] for solving the interface Maxwell’s equations (1.1)–(1.8) approximates the
edge average of E on each primal edge and the face average of B on each primal face.
The use of the magnetic flux density B in the approximation, instead of the magnetic
field H as in most existing numerical methods, is crucial for maintaining accuracy
in interface problems. This observation is supported by the numerical experiments
presented in [6].

We now introduce some average quantities. For the magnetic flux density B, we
define its primal face average Bf ∈ R

F1 by

(Bf )i :=
1

si

∫
κi

B · ni dσ

for each primal face κi and its dual edge average B′e ∈ R
F1 by

(B′e)i :=
1

h′i

∫
σ′
i

B · ti dl

for each noninterface dual edge σ′i. Further, we let

(B′e)i := αi(B
′
e1)i + (1− αi)(B

′
e2)i

:= αi
1

h1
i

∫
σ1
i

B · ti dl + (1− αi)
1

h2
i

∫
σ2
i

B · ti dl(3.1)

for each interface dual edge σ′i. Here, for r = 1, 2, σr
i = σ′i ∩ Ωr is the portion of σ′i

in Ωr and αi := µ−1
r hri (h̄

′
i)
−1 with hri being the length of σr

i .
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γ1

✸
m1

γ2

✲ m2

κ2
i ⊂ Ω2

κ1
i ⊂ Ω1

Fig. 2. A dual face κ′i, divided by the interface into two parts κ
1
i , κ

2
i .

For the electric field E, we define its primal edge average Ee ∈ R
M1 by

(Ee)i :=
1

hi

∫
σi

E · ni dl

for each primal edge σi and its dual face average E′f ∈ R
M1 by

(E′f )i :=
1

s′i

∫
κ′
i

E · ni dσ

for each non-interface dual face κ′i, and we let

(E′f )i := βi(E
′
f1)i + (1− βi)(E

′
f2)i

:= βi
1

s1
i

∫
κ1
i

E · ni dσ + (1− βi)
1

s2
i

∫
κ2
i

E · ni dσ(3.2)

for each interface dual face κ′i; see Figure 2. Here, for r = 1, 2, κri = κ′i ∩ Ωr is the
portion of κ′i in Ωi with its area being sri , and βi := εrs

r
i (s̄
′
i)
−1.

With the above notation, one can show that for each primal face κj and dual face
κ′j the true electric and magnetic fields E and B satisfy the equations [6]

sj
d

dt
(Bf )j + (CEe)κj

= 0,(3.3)

s̄′j
d

dt
(E′f )j − (C ′B′e)κ′

j
=

∫
κ′
j

J · nj dσ .(3.4)

Let E ∈ R
M1 and B ∈ R

F1 be the approximations of the primal edge and face
averages of the true solution E and B to (1.1)–(1.4), respectively. Note that each
dual face (edge) average and the corresponding primal edge (face) average are ap-
proximately the same for sufficiently small h. Due to continuity of the tangential
component of E and the normal component of B across the interface Γ, we naturally
come to the following approximations based on (3.3) and (3.4):
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Find E ∈ R
M1 and B ∈ R

F1 such that E(0) = Ee(0), B(0) = Bf (0), and

S′
dE

dt
− C ′B = J̃ ,(3.5)

S
dB

dt
+ CE = 0,(3.6)

where J̃ ∈ R
M1 are defined by the right-hand sides of (3.4), while Ee(0) and Bf (0)

are the primal edge average of E and primal face average of B at time t = 0.
Applying standard results concerning the well-posedness of systems of first order

ordinary differential equations, we obtain the following theorem.
Theorem 3.1. The semi-discrete scheme (3.5)–(3.6) is well-posed.

4. Discrete divergence constraints and stability. In this section, we show
that the solutions E and B of the semidiscrete finite volume scheme (3.5)–(3.6) satisfy
the divergence constraint conditions (1.3)–(1.4) at the discrete level.

Theorem 4.1. Let E and B be the solutions of (3.5)–(3.6), and let Bf , Ee,
and E′f be the average vectors of B or E as defined in section 3. Then

DB(t) = 0, DBf (t) = 0,(4.1)

D′E(t) = ρ̃(t) +D′(Ee − E′f )(0), D′Ee(t) = ρ̃(t) +D′(Ee − E′f )(t)(4.2)

for any 0 ≤ t ≤ T , where

ρ̃j(t) :=

∫
τ ′
j

ρ(x, t) dx+

∫
τ ′
j∩Γ

ρ
Γ
(x, t) dσ.(4.3)

Furthermore, we have the following discrete charge conservation law:

(B′1)
T J̃ =

dρ̃(t)

dt
.(4.4)

Proof. Multiplying (3.3) and (3.6) by the matrix BT
1 , and using (2.14), we have

DdBf

dt
= 0, DdB

dt
= 0.

So DB(t) = DBf (t) = DBf (0). Now (4.1) follows directly from the divergence-free
condition (1.4).

To show (4.2) and (4.4), we multiply (3.4) by the matrix (B′1)
T and then use

(2.13) to get

D′ dE
′
f

dt
= (B′1)

T J̃ .(4.5)

Integrating the divergence condition (1.3) on each dual element, we obtain

D′E′f (t) = ρ̃(t)(4.6)

for any 0 ≤ t ≤ T , which is the second relation in (4.2). Also, the discrete charge
conservation law (4.4) follows readily from the two equations above.

Now we multiply (3.5) by the matrix (B′1)
T and use (4.4) to get

D′ dE
dt

= (B′1)
T J̃ =

dρ̃(t)

dt
.
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Integrating in time, we have

D′E(t) = ρ̃(t) +D′E(0)− ρ̃(0),

which is the first equation in (4.2) by applying (4.6) at t = 0.
Next we state some stability results for the approximate solutions E and B.
Theorem 4.2. The solution (E,B) to the semidiscrete scheme (3.5)–(3.6) sat-

isfies the following stability inequality:

max
0≤t≤T

{‖B(t)‖2W + ‖E(t)‖2W ′} ≤ 2‖B(0)‖2W + 2‖E(0)‖2W ′ + 4T

∫ T

0

‖S′−1J̃(t)‖2W ′ dt.

Proof. Multiplying (3.6) by D′B and (3.5) by DE, and adding up the resulting
equations and using (2.7), we obtain(

S
dB

dt
,D′B

)
+

(
S′

dE

dt
,DE

)
= (J̃ , DE),

and consequently

1

2

d

dt
‖B(t)‖2W +

1

2

d

dt
‖B(t)‖2W ′ = (J̃ , DE).

Integrating with respect to time, we get for any 0 ≤ s < t

‖B(s)‖2W + ‖E(s)‖2W ′ = ‖B(0)‖2W + ‖E(0)‖2W ′ + 2

∫ s

0

(J̃ , DE) dt.

Using the above equation, the desired bound follows from the estimate

2

∫ s

0

(J̃ , DE) dt ≤ 2

∫ s

0

‖S′−1J̃(t)‖W ′‖E(t)‖W ′ dt

≤ 2T

∫ s

0

‖S′−1J̃(t)‖2W ′ dt+
1

2T

∫ s

0

‖E(t)‖2W ′ dt.

5. Error estimates for the finite volume method. We devote this section to
the error analysis of the finite volume scheme (3.5)–(3.6). We will present the discrete
L2-norm error estimates for both a tetrahedral grid and a rectangular grid, where
the same convergence orders can be achieved as for noninterface Maxwell’s equations.
Also, we will show a discrete H(curl; Ω)-norm error estimate, from which one can
observe some superconvergence results for the finite volume method.

5.1. Discrete L2-norm error estimate for tetrahedral grids. The purpose
of this section is to develop the error analysis of the numerical scheme (3.5)–(3.6) in
the discrete L2-norms ‖ · ‖W ′ and ‖ · ‖W . To do so, subtracting (3.3) from the jth
component of (3.6), we obtain

S
d

dt
(B −Bf ) + C(E − Ee) = 0 ;(5.1)

then subtracting (3.4) from the jth component of (3.5) gives

S′
d

dt
(E − E′f )− C ′(B −B′e) = 0 .(5.2)
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Now multiplying (5.1) by D′(B − B′e) and (5.2) by D(E − Ee), and then adding the
resulting equalities, we have

(S(Ḃ − Ḃf ), D
′(B −Be)) + (S′(Ė − Ė′f ), D(E − Ee))

= (C ′(B −B′e), D(E − Ee))− (C(E − Ee), D
′(B −B′e)),

(5.3)

where the dot represents the time derivative. By the boundary condition E× n = 0
on ∂Ω, we know that all the components of E − Ee on the boundary vanish. So by
Lemma 2.2 we see that

(C ′(B −B′e), D(E − Ee))− (C(E − Ee), D
′(B −B′e)) = 0,

and consequently we obtain from (5.3) that

(Ḃ − Ḃf , B −B′e)W + (Ė − Ė′f , E − Ee)W ′ = 0.(5.4)

Now we rewrite (5.4) as

(Ḃ − Ḃ′e, B −B′e)W + (Ė − Ėe, E − Ee)W ′

= (Ė′f − Ėe, E − Ee)W ′ + (Ḃf − Ḃ′e, B −B′e)W

or, equivalently, as

1

2

d

dt
(‖B −B′e‖2W + ‖E − Ee‖2W ′) = (Ė′f − Ėe, E − Ee)W ′ + (Ḃf − Ḃ′e, B −B′e)W .

(5.5)

This enables us to show the following (optimal) first order convergence result for the
finite volume scheme (3.5)–(3.6) for solving Maxwell’s equations (1.1)–(1.4) on general
tetrahedral grids.

Theorem 5.1. Assume that E,B ∈ W 1,1(0, T ;W 1,p(Ωi)
3), for i = 1, 2 and

p > 2, are the solutions to Maxwell’s system (1.1)–(1.4), while E and B are the finite
volume solution of (3.5)–(3.6). Then the following error estimate holds for some
constant K, independent of the mesh and the material parameters:

max
0≤t≤T

{‖(E − Ee)(t)‖W ′ + ‖(B −Bf )(t)‖W }

≤ Kh
2∑

i=1

{‖ε 1
2
i E‖W 1,1(0,T ;W 1,p(Ωi)3) + ‖µ−

1
2

i B‖W 1,1(0,T ;W 1,p(Ωi)3)}.
(5.6)

Proof. We prove this theorem by using (5.5). For each noninterface interior primal
edge σi, by definition we have

(Ė′f − Ėe)i =
1

s′i

∫
κ′
i

Ė · ni dσ − 1

hi

∫
σi

Ė · ti dl,

where ni is the unit normal vector to the dual face κ′i. Let τ
′
i1

and τ ′i2 be the two dual
elements sharing the same dual face κ′i; then by the Sobolev embedding theorem we
have, for p > 2,

W 1,p(τ ′i1 ∪ τ ′i2) ↪→ L1(κ′i), W 1,p(τ ′i1 ∪ τ ′i2) ↪→ L1(σi) .
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Hence, (Ė′f − Ėe)i is a bounded linear functional on W 1,p(τ ′i1 ∪ τ ′i2)
3 and vanishes

for all constant functions. By the Bramble–Hilbert lemma and a standard scaling
argument, we obtain

|(Ė′f − Ėe)i| ≤ Kh1− 3
p |Ė|W 1,p(τ ′

i1
∪τ ′

i2
)3(5.7)

for some generic constant K.
Next, for each interface primal edge σi corresponding to an interface dual face κ′i,

using (3.2) we get

(Ė′f − Ėe)i = (βiĖ
′
f1 + (1− βi)Ė

′
f2)i − (Ėe)i

= βi(Ė
′
f1 − Ėe)i + (1− βi)(Ė

′
f2 − Ėe)i .

Let Oi1 = (τ ′i2 ∪ τ ′i1) ∩ Ω1 and Oi2 = (τ ′i2 ∪ τ ′i1) ∩ Ω2; then the same reasoning

as above shows that (Ė′f1 − Ėe)i and (Ė′f2 − Ėe)i are bounded linear functionals on

W 1,p(Oi1)
3 andW 1,p(Oi2)

3, respectively, and vanish for all constant functions. Again,
an application of the Bramble–Hilbert lemma and a scaling argument yield

|(Ė′f1 − Ėe)i| ≤ Kh1− 3
p |Ė|W 1,p(Oi1 )3 ,(5.8)

|(Ė′f2 − Ėe)i| ≤ Kh1− 3
p |Ė|W 1,p(Oi2 )3 .(5.9)

By the definitions of s̄′i and βi, it is easy to see that s̄′iβ
2
i ≤ ε1s

1
i and s̄′i(1−βi)2 ≤ ε2s

2
i .

Thus we have

s̄′ihi|(Ė′f − Ėe)i|2 ≤ s̄′ihi(2β
2
i |(Ė′f1 − Ėe)i|2 + 2(1− βi)

2|(Ė′f2 − Ėe)i|2)
≤ 2ε1his

1
i |(Ė′f1 − Ėe)i|2 + 2ε2his

2
i |(Ė′f2 − Ėe)i|2 .

This, along with the estimates (5.7)–(5.9) and the Cauchy–Schwarz inequality, leads
to

‖Ė′f − Ėe‖2W ′ =
∑

κ′
i⊂Ω1∪Ω2

s̄′ihi|(Ė′f − Ėe)i|2 +
∑

κ′
i∩Γ 
=φ

s̄′ihi|(Ė′f − Ėe)i|2,

≤ Kh5− 6
p

M1∑
i=1

{
ε1|Ė|2W 1,p(Oi1 )3 + ε2|Ė|2W 1,p(Oi2 )3

}
,

≤ Kh5− 6
p

{
M1∑
i=1

ε
p/2
1 |Ė|pW 1,p(Oi1 )3 + ε

p/2
2 |Ė|pW 1,p(Oi2 )3

} 2
p
{

M1∑
i=1

1

}1− 2
p

.

Noting the fact that h3
∑M1

i=1 1 ≤ K, we conclude that

‖Ė′f − Ėe‖W ′ ≤ Kh

2∑
r=1

|ε 1
2
r Ė|W 1,p(Ωr)3 .(5.10)

Similarly, we have

‖Ḃf − Ḃ′e‖W ≤ Kh

2∑
r=1

|µ− 1
2

r Ḃ|W 1,p(Ωr)3 .(5.11)
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By integrating (5.5) over (0, t) and applying the Cauchy–Schwarz inequality, we obtain

‖(B −B′e)(t)‖2W + ‖(E − Ee)(t)‖2W ′ ≤ 2

∫ t

0

(‖(B −B′e)(s)‖W ‖(Ḃf − Ḃ′e)(s)‖W
+ ‖(E − Ee)(s)‖W ′‖(Ė′f − Ėe)(s)‖W ′) ds,

≤ 2 max
0≤t≤T

(‖(B −B′e)(t)‖W + ‖(E − Ee)(t)‖W ′)

×
∫ T

0

(‖(Ḃf − Ḃ′e)(s)‖W + ‖(Ė′f − Ėe)(s)‖W ′) ds.

Then, by (5.10) and (5.11), we have

max
0≤t≤T

(‖(E − Ee)(t)‖W ′ + ‖(B −B′e)(t)‖W )

≤ Kh
2∑

i=1

(|ε 1
2
i E|W 1,1(0,T ;W 1,p(Ωi))3 + |µ−

1
2

i B|W 1,1(0,T ;W 1,p(Ωi))3).

In order to complete the proof, we first observe that

‖(B −Bf )(t)‖W ≤ ‖(B −B′e)(t)‖W + ‖(B′e −Bf )(t)‖W .

So it remains to estimate ‖(B′e −Bf )(t)‖W . Following the same argument as the one
that led to (5.11), we have

‖Bf −B′e‖W ≤ Kh

2∑
r=1

|µ− 1
2

r B|W 1,p(Ωr)3 .

Hence,

max
0≤t≤T

‖(Bf −B′e)(t)‖W ≤ Kh

2∑
r=1

max
0≤t≤T

|µ− 1
2

r B(t)|W 1,p(Ωr)3

≤ Kh

2∑
r=1

‖µ− 1
2

r B‖W 1,1(0,T ;W 1,p(Ωr))3 .

Remark. There are very few studies in the literature concerning the regularity
of the solution to the time-dependent Maxwell system (1.1)–(1.4) with discontinu-
ous coefficients. However, for domains with smooth boundaries and interfaces, the
regularity B,E ∈ L2(0, T ;W 1,p(Ωi)) (i = 1, 2) can be shown by slightly modifying
the proof of Theorem 6.2 [8] in combination with the equivalence between the space
{w ∈W 1,p(Ω); w · n = 0 on ∂Ω} and the space

{w ∈ Lp(Ω)3; curl w ∈ Lp(Ω)3,div w ∈ Lp(Ω)3, w · n = 0 on ∂Ω}.

The additional time differentiability B,E ∈W 1,1(0, T ;W 1,p(Ωi)) can be proved using
standard arguments; see, e.g., [2].

5.2. Discrete L2-norm error estimate for rectangular grids. The first
order convergence of the finite volume scheme (3.5)–(3.6) given in the last subsection
is generally optimal in terms of the regularities used. In this section, we intend to
improve the convergence rate of the scheme (3.5)–(3.6) on rectangular grids by one
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order; namely, we establish second order convergence by making full use of the local
regularities of the fields E and B. Such a second order convergence result is invalid
for general tetrahedral triangulations, even in the case of the noninterface Maxwell’s
equations [14, 16].

Let Ω be a rectangular cuboid in R3. Similarly to the case of a polyhedral domain
in section 2, we generate the primal and dual triangulations of Ω by using smaller
rectangular cuboids. Note that both the primal and dual meshes are now made up of
rectangular cuboids. For simplicity, the directions of edges and faces are assigned as
follows: a direction is assigned to each primal and dual edge by the rule that positive
direction means that it points in the positive axis direction. The directions of primal
and dual faces are the same as those of the corresponding dual and primal edges.
Below, we adopt the same notations as in section 2.

Clearly, most of the arguments presented in the previous subsection remain valid
for the case of rectangular domain Ω considered here. To begin, we rewrite (5.4) as

(Ḃ − Ḃf , B −Bf )W + (Ė − Ėe, E − Ee)W ′

= (Ḃ − Ḃf , B
′
e −Bf )W + (Ė′f − Ėe, E − Ee)W ′

or, equivalently, as

1

2

d

dt
(‖B −Bf‖2W + ‖E − Ee‖2W ′)(5.12)

= (Ḃ − Ḃf , B
′
e −Bf )W + (Ė′f − Ėe, E − Ee)W ′ .(5.13)

Next we estimate the terms on the right-hand side of (5.13), and this needs the
following two auxiliary lemmas.

Lemma 5.2. There exist functions u(t) and ξ(t) ∈ R
F1 such that all the nonin-

terface components of ξ(t) vanish, all the components of u and ξ are bounded linear
functionals of B, and the following relation holds for all φ ∈ R

M with φ|∂Ω = 0:

(Cφ,D′(Bf −B′e)) = (Cφ,D′u) + (Cφ, ξ) .(5.14)

Furthermore, the following estimates hold for u(t) and ξ(t):

‖u‖W ≤ Kh2
2∑

i=1

‖µ− 1
2

i B‖H3(Ωi)3 , ‖D′−1ξ‖W ≤ Kh2
2∑

i=1

‖µ− 1
2

i B‖H3(Ωi)3 .

(5.15)

Proof. By definition, for any strictly interior primal face κj we have

(Bf −B′e)j =
1

sj

∫
κj

B · nj dσ − 1

h′j

∫
σ′
j

B · tj dl.

Assume that κj is parallel to the xy-plane, with P1 as its center; see Figure 3. We
know that the quadrature rule∫

κj

B · nj dσ = sj (B · nj)(P1)

is exact for linear functions.
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Fig. 3. Noninterface element.

Note that P1 is not the center of the dual edge σ′j . By adding a first order
correction term, it is easy to see that the quadrature rule∫

σ′
j

B · tj dl = (B · tj)(P1)h
′
j +

1

2
(O′P1

2
B3z(O

′)−OP1
2
B3z(O))

is then exact for linear functions. Here O′P1 denotes the distance from O′ to P1 and
B3z denotes the derivative of the third component of B with respect to z. Similar
notation will be used below. By the two relations above, we can rewrite (Bf − B′e)j
as

(Bf −B′e)j =
1

h̄′j
ũj + uj ,(5.16)

where uj vanishes for linear functions and the first order correction ũj is given by

ũj :=
1

2µr
(OP1

2
B3z + h2

xB1x + h2
yB2y)(O)

− 1

2µr
(O′P1

2
B3z + h2

xB1x + h2
yB2y)(O

′).(5.17)

Here r = 1 or 2 is the index corresponding to the subdomain Ωr in which κj lies.
Moreover, notice the fact that B1x(O) − B1x(O

′) and B2y(O) − B2y(O
′) vanish for

all linear functions, and the terms related to B1x and B2y are added to the above
equation to make the relation more symmetric.

Next, by (3.1), for an interface primal face κi lying on Γ, we have

(Bf −B′e)i = αi(Bf −B′e1)i + (1− αi)(Bf −B′e2)i .
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Fig. 4. Interface element.

Without loss of generality, we assume that κi is parallel to the xy-plane; see
Figure 4. It is easy to verify that the quadrature rules∫

κi

B · ni dσ = si (B · ni)(Q1) ,

(B′e1)i =
∫
σ1
i

B · ti dl = (B · ti)(Q1)h
1
i −

1

2
IQ1

2
B3z(I),

(B′e2)i =
∫
σ2
i

B · ti dl = (B · ti)(Q1)h
2
i +

1

2
I ′Q1

2
B3z(I

′)

are all exact for linear functions. Using these relations, we can rewrite (Bf −B′e)i as

(Bf −B′e)i =
1

h̄′i
ũi +

1

h̄′i
ξi + ui,(5.18)

where ui = αiu
1
i + (1 − αi)u

2
i , u

1
i and u2

i both vanish for linear functions, and the
correction terms ũi and ξi are given by

ũi :=
1

2µ1
(IQ1

2
B3z + h2

xB1x + h2
yB2y)(I)

− 1

2µ2
(I ′Q1

2
B3z + h2

xB1x + h2
yB2y)(I

′),(5.19)

ξi :=
1

2µ2
(h2

xB1x + h2
yB2y)(I

′)− 1

2µ1
(h2

xB1x + h2
yB2y)(I) .(5.20)

For the same reason as earlier for the noninterface face κi, we have also added some
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extra terms related to B1x and B2y here. Note, however, that due to the jumps across
the interface, ξi no longer vanishes for linear functions.

By (5.17), (5.19), and the definition of B1, we can write ũ = B1φ̃ for some φ̃ ∈ R
N .

Hence for any φ ∈ R
M with φ|∂Ω = 0, we get from (5.16) and (5.18) that

(Cφ,D′(Bf −B′e)) = (Cφ, ũ) + (Cφ,D′u) + (Cφ, ξ)

= (Cφ,B1φ̃) + (Cφ,D′u) + (Cφ, ξ)

= (BT
1 Cφ, φ̃) + (Cφ,D′u) + (Cφ, ξ)

= (Cφ,D′u) + (Cφ, ξ).

This proves (5.14).
For the estimate (5.15), let uj be a component of u corresponding to an interior

primal face κj in Ωr, r = 1, 2. We recall from (5.16) that

uj = (Bf −B′e)j −
1

h̄′j
ũj .

By the Sobolev embedding theorem, we have

H3(τj1 ∪ τj2) ↪→ C1, 12 (τj1 ∪ τj2),

where τj1 and τj2 are two elements in Ωr and share the face κj . Hence, uj is a bounded
linear functional of B in H3(τj1 ∪ τj2)3 and vanishes for linear fields B. Then, by the
Bramble–Hilbert lemma, we have

|uj |2 ≤ K(h)
(
|B|2H2(τj1∪τj2 )3 + |B|2H3(τj1∪τj2 )3

)
.

A standard scaling argument yields

|uj |2 ≤ Kh
(
|B|2H2(τj1∪τj2 )3 + |B|2H3(τj1∪τj2 )3

)
≤ Kh‖B‖2H3(τj1∪τj2 )3 .(5.21)

Now consider a component ui of u corresponding to an interface face κi, which is
shared by the element τi1 in Ω1 and τi2 in Ω2. Recall that

ui = αiu
1
i + (1− αi)u

2
i ,

where

h1
iu

1
i := h1

i (B
′
e1i
− (Bf )i)− 1

2
IQ1

2
B3z(I) ,

h2
iu

2
i := h2

i (B
′
e2i
− (Bf )i) +

1

2
I ′Q1

2
B3z(I

′).

By the Sobolev embedding theorem, uri is a bounded linear functional of B inH3(τir )
3

and vanishes for all linear fields for r = 1 or 2. Hence, again by the Bramble–Hilbert
lemma and a scaling argument, we have

|u1
i | ≤ Kh

1
2 ‖B‖H3(τi1 )3 , |u2

i | ≤ Kh
1
2 ‖B‖H3(τi2 )3 .
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Similarly to the proof of (5.10), using the above estimates and (5.21) we obtain

‖u‖2W =
∑

σ′
i⊂Ω1∩Ω2

sj h̄
′
j |uj |2 +

∑
σ′
i∩Γ 
=φ

sj h̄
′
j |uj |2

≤
∑

σ′
i⊂Ω1∩Ω2

sj h̄
′
j |uj |2 +

∑
σ′
j∩Γ 
=φ

sj h̄
′
j(2α

2
j |u1

j |2 + 2(1− αj)
2|u2

j |2)

≤ Kh4

 ∑
τi1⊂Ω1

µ−1
1 ‖B‖2H3(τi1 )3 +

∑
τi2⊂Ω2

µ−1
2 ‖B‖2H3(τi2 )3


≤ Kh4

{
2∑

r=1

‖µ− 1
2

r B‖2H3(Ωr)3

}2

.

We are now ready to estimate ξ. For each interface primal face κi shared by the
element τi1 in Ω1 and τi2 in Ω2, we rewrite ξi using the interface condition (1.8) as

ξi :=

{
1

2
(h2

xH1x + h2
yH2y)(I

′)− 1

2
(h2

xH1x + h2
yH2y)(Q1)

}
+

{
1

2
(h2

xH1x + h2
yH2y)(Q1)− 1

2
(h2

xH1x + h2
yH2y)(I)

}
.(5.22)

By the Hölder continuity of H1x, we have

|H1x(I
′)−H1x(Q1)| ≤ Kh

1
2 ‖H‖

C1, 1
2 (τi2 )3

.

Similar estimates hold for the other pairs in (5.22). This leads to

|ξi| ≤ Kh
5
2

{
‖H‖

C1, 1
2 (τi1 )3

+ ‖H‖
C1, 1

2 (τi2 )3

}
.

Consequently, by the fact that ξi = 0 for any noninterface primal face, we get

‖D′−1ξ‖2W =

F1∑
i=1

sih̄
′
i|(h̄′j)−1ξi|2

≤ Kh6
∑
κi⊂Γ

{
µ1‖H‖2

C1, 1
2 (τi1 )3

+ µ2‖H‖2
C1, 1

2 (τi2 )3

}

≤ Kh4
2∑

r=1

‖µ 1
2
r H‖2

C1, 1
2 (Ωr)3

.

Lemma 5.3. There exist functions v(t), λ(t) ∈ R
M1 , and w(t) ∈ R

F1 , such that
all the noninterface components of λ(t) vanish and all the components of v, w, and λ
are bounded linear functionals of E, and the following relation holds for all φ ∈ R

M

with φ|∂Ω = 0:

(Ė′f − Ėe, φ)W ′ = (v̇, φ)W ′ + (D′ẇ, Cφ) + (S
′−1λ̇, φ)W ′ .(5.23)

Furthermore, we have the following estimates for v(t), λ(t), w(t), and p > 3:

‖v̇‖W ′ ≤ Kh2
2∑

i=1

‖ε 1
2
i Ė‖H3(Ωi)3 , ‖ẇ‖W ≤ Kh2

2∑
i=1

‖ε 1
2
i Ė‖W 2,p(Ωi)3 ,(5.24)

‖S′−1λ̇‖W ′ ≤ Kh2
2∑

i=1

‖ε 1
2
i Ė‖H3(Ωi)3 .(5.25)
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Proof. The proof is similar to that of Lemma 5.2. First, we consider a noninterface
dual face κ′j lying in Ωr (r = 1, 2). Recall that

(E′f − Ee)j =
1

s′j

∫
κ′
j

E · nj dσ − 1

hj

∫
σj

E · tj dl.

We see from Figure 3 that C1 is the center of the primal edge σj , so the quadrature
rule ∫

σj

E · tj dl = E1(C1)hj

is exact for all linear functions. However, C1 is not the center of the dual face κ′j . By
adding a first order correction term w̃j , the quadrature rule∫

κ′
j

E · nj dσ = E1(C1)s
′
j + w̃j

is then exact for all linear functions, where w̃j is given by

2w̃j = [E1y(P2)P2C1
2 −E1y(P1)P1C1

2
]P3P4 + [E1z(P4)P4C1

2 −E1z(P3)P3C1
2
]P1P2.

By direct computations, w̃j can be represented by the discrete circulation as follows:

w̃j :=
1

εr
(C ′w)j ,(5.26)

where the components of w corresponding to the four edges of κ′j containing the points
P1, P2, P3, and P4 are assigned, respectively, the following values:

w(P1) :=
1

2
εrµr(h

2
yE1y(P1)− h2

xE2x(P1)),

w(P2) :=
1

2
εrµr((P2C1

2
E1y(P2)− h2

xE2x(P2)),

w(P3) :=
1

2
εrµr(h

2
xE3x(P3)− P3C1

2
E1z(P3)),

w(P4) :=
1

2
εrµr(h

2
xE3x(P4)− P4P1

2
E1z(P4)).

We remark that for the verification of (5.26) we have used the simple fact that E2x(P1)
and E2x(P2), as well as E3x(P1) and E3x(P2), are equal, respectively, for all linear
functions. Using (5.26), we can rewrite Ė′f − Ėe as

(Ė′f − Ėe)j =
1

s̄′j
(C ′ẇ)j + v̇j ,(5.27)

where v̇j is a functional which vanishes for all linear functions.
Now consider an interface dual face κ′i. By the definition (3.2) we have

s̄′i(Ė
′
f − Ėe)i =

d

dt
{ε1s

1
i (E

′
f1 − Ee)i + ε2s

2
i (E

′
f2 − Ee)i}.
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Without loss of generality, we assume that κ′i is parallel to the zy-plane and perpen-
dicular to the interface primal face κi; see Figure 4. It is straightforward to verify
that the three quadrature rules

(Ee)i =
1

hi

∫
σi

E · ti dl = E1(C2),

(E′f1)i =
1

s1
i

∫
κ1
i

E · ni dσ =
1

s1
i

{E1(C2)s
1
i + w̃1

i },

(E′f2)i =
1

s2
i

∫
κ2
i

E · ni dσ =
1

s2
i

{E1(C2)s
2
i + w̃2

i }

are all exact for linear functions, where

w̃1
i :=

1

2
[−E1y(Q1)Q1C2

2
]Q3C2 +

1

2
[−E1z(Q3)Q3C2

2
]Q1C2

and

w̃2
i :=

1

2
[E1y(Q2)Q2C2

2
]Q3Q4 +

1

2
[−E1y(Q1)Q1C2

2
]Q4C2

+
1

2
[E1z(Q4)Q4C2

2
]Q1Q2 +

1

2
[−E1z(Q3)Q3C2

2
]Q2C2.

Then we have

s̄′i(Ė
′
f − Ėe)i =

d

dt
(ε1w̃

1
i + ε2w̃

2
i ) +

d

dt
(ε1s

1
i v

1
i + ε2s

2
i v

2
i ),

where v1
i and v2

i are linear functionals which vanish for all linear functions. We further
write

d

dt
(ε1w̃

1
i + ε2w̃

2
i ) = (C ′ẇ)i + λ̇i,(5.28)

where the components of w on the four edges of κ′i containing the points Q1, Q2, Q3,
and Q4 are assigned, respectively, the following values:

w(Q1) :=
1

2h̄′i1
(ε1Q3C2h

2
yE1y(Q1) + ε2Q4C2h

2
yE1y(Q1))

+
1

2h̄′i1
(−ε1Q3C2h

2
xE2x(Q1)− ε2C2Q4h

2
xE2x(Q1)),

w(Q2) :=
1

2h̄′i2
(ε2Q3Q4 C2Q2

2
E1y(Q2)− ε2Q3Q4h

2
xE2x(Q2)),

w(Q3) :=
1

2h̄′i3
(−ε1Q1C2 Q3C2

2
E1z(Q3)− ε2C2Q2 Q3C2

2
E1z(Q3))

+
1

2h̄′i3
(ε1Q1C2h

2
xE3x(Q3) + ε2C2Q2h

2
xE3x(Q3)),

w(Q4) :=
1

2h̄′i4
(−ε2Q1Q2 C2Q4

2
E1z(Q4) + ε2Q1Q2h

2
xE3x(Q4)),
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and λi is a term due to the jump in the coefficients across the interface:

λi =
1

2
{−ε1Q3C2h

2
xE2x(Q1)− ε2C2Q4h

2
xE2x(Q1) + ε2Q3Q4h

2
xE2x(Q2)}

+
1

2
{−ε1Q1C2h

2
xE3x(Q3)− ε2C2Q2h

2
xE3x(Q3) + ε2Q1Q2h

2
xE3x(Q4)}

:≡1

2
I +

1

2
II .

As above, we can write

(Ė′f − Ėe)i =
1

s̄′i
(C ′ẇ)i +

1

s̄′i
λ̇i + v̇i,(5.29)

where v̇i = (ε1s
2
i v̇

1
i + ε2s

2
i v̇

2
i )/s̄

′
i. It is easy to see by using (5.27) and (5.29) that

(Ė′f − Ėe, φ)W ′ = (C ′ẇ,Dφ) + (v̇, φ)W ′ + (S
′−1λ̇, φ)W ′

= (D′ẇ, Cφ) + (v̇, φ)W ′ + (S
′−1λ̇, φ)W ′ .

The estimates in (5.24) can be proved similarly to those in Lemma 5.2. We show only
(5.25).

First, we rewrite İ as İ = δ̇1 + δ̇2 with

δ̇1 = −ε2C2Q4h
2
xĖ2x(Q1) + ε2C2Q4h

2
xĖ2x(Q2),

δ̇2 = −ε1Q3C2h
2
xĖ2x(Q1) + ε2Q3C2h

2
xĖ2x(Q2).

Note that the term δ̇1 clearly vanishes for any linear field E, so it can be absorbed
into the term v̇i. The remaining term δ̇2 can be written as

δ̇2 = ε1Q3C2h
2
x{−Ė2x(Q1) + Ė2x(C2)} − ε2Q3C2h

2
x{Ė2x(C2)− Ė2x(Q2)}

by using the interface condition (1.7) and the fact that the function ρΓ depends only
on the spatial variables. Then, by the Hölder continuity of Ė2x, we have

|Ė2x(Q1)− Ė2x(C2)| ≤ Kh
1
2 ‖Ė‖

C1, 1
2 (τ ′

i1
)
,

|Ė2x(Q2)− Ė2x(C2)| ≤ Kh
1
2 ‖Ė‖

C1, 1
2 (τ ′

i2
)
,

where τ ′ir is the intersection of Ωr with the union of all dual elements sharing the dual
face κ′i (r = 1, 2). Hence,

|δ2| ≤ Kh
7
2

{
ε

1
2
1 ‖Ė‖C1, 1

2 (τ ′
i1

)
+ ε

1
2
2 ‖Ė‖C1, 1

2 (τ ′
i2

)

}
.

The term II can be estimated in the same manner. The rest of the proof is the same
as the proof for ξ in (5.15).

We are now ready to give the main result of this section.
Theorem 5.4. Assume that the following regularity hypotheses hold for the so-

lution of the interface Maxwell system (1.1)–(1.8):

E ∈W 1,1(0, T ;H3(Ωi)
3) ∩W 2,1(0, T ;W 2,p(Ωi)

3), B ∈W 1,1(0, T ;H3(Ωi)
3)
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for i = 1, 2 and p > 3, and (E, B) is the solution of (3.5)–(3.6) on a nonuniform
rectangular grid of size h. Then we have

max
0≤t≤T

{‖(E − Ee)(t)‖W ′ + ‖(B −Bf )(t)‖W }

≤ Kh2
2∑

i=1

{‖ε 1
2
i E‖W 1,1(0,T ;H3(Ωi)3)

+ ‖ε 1
2
i E‖W 2,1(0,T ;W 2,p(Ωi)3) + ‖µ−

1
2

i B‖W 1,1(0,T ;H3(Ωi)3)}.

(5.30)

Proof. It follows from (5.1), (5.13), (5.14), and (5.23) that

1

2

d

dt
(‖B −Bf‖2W + ‖E − Ee‖2W ′)

= (C(E − Ee), D
′(Bf −B′e)) + (v̇, E − Ee)W ′

+ (D′ẇ, C(E − Ee)) + (S
′−1λ̇, E − Ee)W ′

= (C(E − Ee), D
′u) + (C(E − Ee), ξ) + (v̇, E − Ee)W ′

− (ẇ, Ḃ − Ḃf )W + (S
′−1λ̇, E − Ee)W ′

= − (Ḃ − Ḃf , u)W − (Ḃ − Ḃf , D
′−1ξ)W + (v̇, E − Ee)W ′

− (ẇ, Ḃ − Ḃf )W + (S
′−1λ̇, E − Ee)W ′ .

Integrating over (0, t1), we have

1

2
(‖B −Bf‖2W + ‖E − Ee‖2W ′)(t1)

=

∫ t1

0

[−(Ḃ − Ḃf , u)W − (Ḃ − Ḃf , D
′−1ξ)W + (v̇, E − Ee)W ′

−(ẇ, Ḃ − Ḃf )W + (S
′−1λ̇, E − Ee)W ′ ]dt .

Then, by integration by parts,

1

2
(‖B −Bf‖2W + ‖E − Ee‖2W ′)(t1)

=

∫ t1

0

[(v̇, E − Ee)W ′ + (S
′−1λ̇, E − Ee)W ′ ] dt

+

∫ t1

0

(B −Bf , u̇+ ẅ)W dt+

∫ t1

0

(B −Bf , D
′−1ξ̇)W dt

− (B −Bf , ẇ + u)W (t1)− (B −Bf , D
′−1ξ)W (t1).

Now the desired estimate follows from the Cauchy–Schwarz inequality and the esti-
mates in Lemmas 5.2 and 5.3.

5.3. Superconvergence in the discrete H(curl; Ω)-norm. We now show
that the finite volume scheme (3.5)–(3.6) has certain superconvergence property;
namely, the errors E −Ee and B −Bf are also second order convergent in a discrete
H(curl; Ω)-norm. To do so, we first differentiate (3.5) with respect to t to obtain

S′
d2E

dt2
− C ′

dB

dt
=

dJ̃

dt
,
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and then by (3.6) we obtain

S′
d2E

dt2
+ C ′S−1CE =

dJ̃

dt
.(5.31)

We supplement (5.31) with the following initial conditions:

E(0) = Ee(0), Ė(0) = Ėe(0).(5.32)

Upon rewriting (5.31) as

S′
d2

dt2
(E − Ee) + C ′S−1C(E − Ee) =

dJ̃

dt
− S′

d2Ee

dt2
− C ′S−1CEe,

and by (3.3), we then have

S′
d2

dt2
(E − Ee) + C ′S−1C(E − Ee) = S′

d2

dt2
(E′f − Ee) +

d

dt
(C ′(Bf −B′e)).(5.33)

This indicates that E −Ee satisfies the ordinary differential equation (5.33) with the
homogeneous initial conditions

(E − Ee)(0) = 0, (Ė − Ėe)(0) = 0.(5.34)

Multiplying (5.33) by D(Ė − Ėe), we obtain

(S′(Ë − Ëe), D(Ė − Ėe)) + (C ′S−1C(E − Ee), D(Ė − Ėe))

= (S′(Ë′f − Ëe), D(Ė − Ėe)) + (C ′(Ḃf − Ḃ′e), D(Ė − Ėe)).

Then, using (2.7), we get

(S′(Ë − Ëe), D(Ė − Ėe)) + (D′S−1C(E − Ee), C(Ė − Ėe))

= (S′(Ë′f − Ëe), D(Ė − Ėe)) + (D′(Ḃf − Ḃ′e), C(Ė − Ėe)),

which can be written as

1

2

d

dt
‖Ė − Ėe‖2W ′ +

1

2

d

dt
‖E − Ee‖2V

= (Ë′f − Ëe, Ė − Ėe)W ′ + (D′(Ḃf − Ḃ′e), C(Ė − Ėe)).
(5.35)

The following theorem gives a superconvergence result for E − Ee.
Theorem 5.5. Assume that

E ∈W 2,1(0, T ;H3(Ωi)
3) ∩W 3,1(0, T ;W 2,p(Ωi)

3), B ∈W 2,1(0, T ;H3(Ωi)
3)

satisfy the interface Maxwell system (1.1)–(1.8) for i = 1, 2 and p > 3, and (E, B) is
the solution of (3.5)–(3.6) on a nonuniform rectangular grid of size h. Then we have

max
0≤t≤T

{‖(Ė − Ėe)(t)‖W ′ + ‖(E − Ee)(t)‖V }

≤ Kh2
2∑

i=1

{‖ε 1
2
i E‖W 2,1(0,T ;H3(Ωi)3)

+ ‖ε 1
2
i E‖W 3,1(0,T ;W 2,p(Ωi)3) + ‖µ−

1
2

i B‖W 2,1(0,T ;H3(Ωi)3)}.

(5.36)
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Proof. By Lemma 5.3 we have

(Ė′f − Ėe, E − Ee)W ′ = (v̇, E − Ee)W ′ + (D′ẇ, C(E − Ee)) + (S
′−1λ̇, E − Ee)W ′ .

A proof similar to the one for (5.23) leads to the following relations:

(Ë′f − Ëe, E − Ee)W ′ = (v̈, E − Ee)W ′ + (D′ẅ, C(E − Ee)) + (S
′−1λ̈, E − Ee)W ′ ,

(
...
E
′
f −

...
Ee, E − Ee)W ′ = (

...
v ,E − Ee)W ′ + (D′

...
w,C(E − Ee)) + (S

′−1...
λ,E − Ee)W ′ ,

with v̈,
...
v , ẅ,

...
w, λ̈,

...
λ obeying the same estimates as those stated in Lemma 5.3. In

addition, by Lemma 5.2 and (5.1), we have

(C(E − Ee), D
′(Bf −B′e)) = (C(E − Ee), u) + (C(E − Ee), ξ).

Again, by a proof similar to the one of Lemma 5.2 we deduce that

(C(E − Ee), D
′(Ḃf − Ḃ′e)) = (C(E − Ee), u̇) + (C(E − Ee), ξ̇),

(C(E − Ee), D
′(B̈f − B̈′e)) = (C(E − Ee), ü) + (C(E − Ee), ξ̈),

with the corresponding estimates for u̇, ü, ξ̇, and ξ̈ as those stated in Lemma 5.2. Now,
integrating (5.35) over [0, t1], and by (5.34), we obtain

‖(Ė − Ėe)(t1)‖2W ′ + ‖(E − Ee)(t1)‖2V
= 2

∫ t1

0

(Ë′f − Ëe, Ė − Ėe)W ′ ds+ 2

∫ t1

0

(D′(Ḃf − Ḃ′e), C(Ė − Ėe)) ds.

An application of integration by parts yields

‖(Ė − Ėe)(t1)‖2W ′ + ‖(E − Ee)(t1)‖2V
= 2

∫ t1

0

(Ë′f − Ëe, Ė − Ėe)W ′ ds

+ 2(D′(Ḃf − Ḃ′e), C(E − Ee))(t1)− 2

∫ t1

0

(D′(B̈f − B̈′e), C(E − Ee)) ds.

Substituting the relations given in the beginning of the proof into the above equation,
and using the Cauchy–Schwarz inequality together with the estimates in Lemmas 5.2
and 5.3, we obtain the desired estimate.

The following theorem gives a superconvergence result for B −Bf .
Theorem 5.6. Under the same assumptions as in Theorem 5.5, we have

max
0≤t≤T

{
‖(Ḃ − Ḃf )(t)‖W + sup

φ∈RM1

|(C ′(B −Bf ), Dφ)|
‖φ‖V

}

≤ Kh2
2∑

i=1

{‖ε 1
2
i E‖W 2,1(0,T ;H3(Ωi)3) + ‖ε

1
2
i E‖W 3,1(0,T ;W 2,p(Ωi)3)

+ ‖µ− 1
2

i B‖W 2,1(0,T ;H3(Ωi)3)} .
Proof. By (5.1) and (5.36), we obtain

max
0≤t≤T

‖(Ḃ − Ḃf )(t)‖W

≤ Kh2
2∑

i=1

{‖ε 1
2
i E‖W 2,1(0,T ;H3(Ωi)3) + ‖ε

1
2
i E‖W 3,1(0,T ;W 2,p(Ωi)3)

+ ‖µ− 1
2

i B‖W 2,1(0,T ;H3(Ωi)3)}.



62 ERIC T. CHUNG, QIANG DU, AND JUN ZOU

By (5.2), we have

C ′(B −Bf ) = S′
d

dt
(E − Ee)− S′

d

dt
(E′f − Ee)− C ′(Bf −B′e).(5.37)

For any φ ∈ R
M1 , multiplying (5.37) by Dφ and using (2.7), we obtain

(C ′(B −Bf ), Dφ) = (Ė − Ėe, φ)W ′ − (Ė′f − Ėe, φ)W ′ − (D′(Bf −B′e), Cφ).

First, by (5.36) we have

|(Ė − Ėe, φ)W ′ |

≤ Kh2‖φ‖W ′

2∑
i=1

{‖ε 1
2
i E‖W 2,1(0,T ;H3(Ωi)3) + ‖ε

1
2
i E‖W 3,1(0,T ;W 2,p(Ωi)3)

+ ‖µ− 1
2

i B‖W 2,1(0,T ;H3(Ωi)3)}.

Then, using (5.23) and (5.25), we easily derive

|(Ė′f − Ėe, φ)W ′ | ≤ Kh2‖φ‖V
2∑

i=1

{‖ε 1
2
i E‖W 2,1(0,T ;H3(Ωi)3) + ‖ε

1
2
i E‖W 3,1(0,T ;W 2,p(Ωi)3)},

while using (5.14) and (5.15) we have

|(D′(Bf −B′e), Cφ)| ≤ Kh2‖φ‖V
2∑

i=1

‖µ− 1
2

i B‖W 2,1(0,T ;H3(Ωi)3).

Collecting the above results leads to

|(C ′(B −Bf ), Cφ)|
‖φ‖V ≤ K1h

2
2∑

i=1

(‖ε 1
2
i E‖W 2,1(0,T ;H3(Ωi)3) + ‖ε

1
2
i E‖W 3,1(0,T ;W 2,p(Ωi)3))

+ K2h
2

2∑
i=1

‖µ− 1
2

i B‖W 2,1(0,T ;H3(Ωi)3)

for any φ ∈ R
M1 .

6. Conclusion. Through a detailed analysis, we have established some rigor-
ous convergence results for a finite volume method for the time-dependent Maxwell’s
equations in a three-dimensional polyhedral domain. Different materials are allowed
to occupy portions of the domain, and interface conditions are imposed. Our analysis
does not require extra regularity assumptions on the solutions of the interface prob-
lem beyond those for the analogous convergence results for noninterface Maxwell’s
equations, and our estimates also exhibit the detailed dependence on the material pa-
rameters. For brevity, we have chosen the case of two subdomains in our derivations,
though much of our theory can be generalized to cases involving multiple subdo-
mains. Implementations and applications of the methods discussed here are currently
underway, and the results will be reported elsewhere.
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Abstract. The approximate solution of the Boltzmann transport equation via Galerkin-type
series expansion methods leads to a system of conservation laws in space and time for the expansion
coefficients. In this paper, we derive discretization methods for these equations in the mean field
approximation, which are based on the entropy principles of the underlying Boltzmann equation, and
discuss the performance of these discretizations and the series expansion approach in nonequilibrium
regimes.
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PII. S003614290138958X

1. Introduction. This paper is concerned with the numerical solution of the
steady state Boltzmann–Poisson system, describing the transport of an ensemble
of electrons or holes in a crystal interacting with a phonon background under the
mean field approximation. The Boltzmann–Poisson system in steady state is given
by (see [14])

(a) ∇x · [∇kε(k)f ]− q∇k · [∇xV (x)f ] +
1

λ
Q(f) = 0,(1)

(b) −σ∆xV + q[Ddop(x)− ρ] = 0, ρ(x) :=

∫
f(x, k)dk,

where the phase space density function f(x, k) is a function of position x ∈ Rdx (d =
1, 2, or 3) and wave vector k ∈ R3

k. The function ε(k) describes the energy band under
consideration. So ∇kε denotes the velocity with which a particle (electron or hole)
with wave vector k travels. (If more than one energy band is considered, one density
function f per band would have to be computed.) The Boltzmann equation (1) arises
from a many body problem under the mean field approximation. So the function V (x)
denotes the mean field potential and q denotes the charge of the particle (q = −1 for
electrons, q = 1 for holes). ρ(x), as defined in (1)(b), denotes the density of particles in
physical space and σ stands for the dielectricity constant of the material. The function
Ddop(x) in (1)(b) models the doping concentration, the background density of ions due
to the implantation of donor and acceptor atoms into the crystal. Equation (1) has
already been brought into a scaled dimensionless form, where the parameter λ denotes
scaled mean-free path, i.e., the average distance a particle travels before it undergoes
a collision event. (See [14, Chap. 1] for details of the scaling.) Finally, collisions of
electrons or holes with the phonon background (the vibrations of the crystal lattice)
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6792 and INT 960-3253.
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are modeled by the integral operator Q in (1)(a). For the semiconductor Boltzmann–
Poisson problem, Q is of the form

Q[f ](x, k) =

∫
R3

k

S(k, k′)[f(x, k)eε(k) − f(x, k′)eε(k′)]dk′,(2)

where S(k, k′) denotes the scaled scattering cross section. Because of the principle of
detailed balance [3], the scattering cross section S is a symmetric function (S(k, k′) =
S(k′, k)), which guarantees that the charge ρ is conserved by the collision operator Q.
Moreover, the above form of the collision operator guarantees that the Maxwellians of
the form f(x, k) = c(x)e−ε(k) are in the kernel of Q. The collision operator Q models
the generation and annihilation of phonons, resulting in a specified gain or loss of
energy of the particles. Consequently, the function S is a distribution of the form

S(k, k′) =

1∑
ν=−1

sν(k, k
′)δ(ε(k)− ε(k′) + νω),(3)

where ω is the amount of energy gained or lost due to the collisions. Because of the
symmetry of the scattering cross section,

sν(k, k
′) = s−ν(k′, k)

has to hold. The assumption of a linear collision operator of the form (2) implies
that we neglect electron-electron interactions. The steady state Boltzmann–Poisson
system (1) is subject to a mixed set of Dirichlet and Neumann boundary conditions
which will be discussed in the context of the discretization in section 3.

The outline of this paper is as follows. We will discretize the Boltzmann equa-
tion (1)(a) by a spectral Galerkin method in the wave vector direction, obtaining
a system of conservation laws in x, which is solved by a difference method. This
difference method is the actual topic of this paper. The spectral Galerkin method
is chosen such as to preserve the entropy properties of the Boltzmann equation. So
in section 2 we briefly review the general concepts involved in entropy based series
expansion methods for the Boltzmann equation. In section 3, we derive the actual
difference scheme which, in more than one spatial dimension, is based on a staggered
grid approach. The resulting difference equations are nonlinear due to the coupling
to the Poisson equation (1)(b). In section 4, we prove the stability of the linearization
of these equations. Section 5 is devoted to the actual implementation of the method
in one spatial dimension and to a numerical test example. The example consists of a
standard n+ − n − n+ semiconductor diode with a 50nm channel. We demonstrate
that in this example the solution to the Boltzmann equation exhibits truly kinetic
features, which cannot be modeled by fluid dynamical approximations.

2. Entropy based Galerkin methods. This paper is concerned with the spa-
tial discretization of first order systems of partial differential equations in physical (x-)
space, which arise from employing a certain type of series expansion method for the
Boltzmann equation (1) in the wave vector direction. Series expansion methods for
the Boltzmann–Poisson system in the context of modeling semiconductor devices were
first used effectively in [8]. The expansion methods considered in this paper make use
of the entropy property of the Boltzmann equation. In this section, we briefly present
the use of such entropy principles in a somewhat more general framework than is actu-
ally used in this paper. It is generally more convenient to consider entropy principles



66 CHRISTIAN RINGHOFER

for the case of the time dependent Boltzmann equation in the absence of boundary
conditions (x ∈ Rdx, k ∈ R3

k), which we will do in this section. So the following is a
brief review of general concepts described in detail in [7] or [11]. It should be pointed
out here that, for the purpose of this paper, we approach the subject from a somewhat
different angle. The entropy concept is usually relevant for the transient kinetic prob-
lem in the absence of boundary conditions. As a matter of fact, it does not hold in
the form described here in the presence of boundary conditions. (See [5].) However,
when discretizing the steady state Boltzmann equation with boundary conditions,
one still has to deal with a rather stiff system of partial differential equations due to
rapid potential variation; i.e., the same problems which make the discretization of the
drift-diffusion or the energy transport system non-trivial arise again. The subject of
this paper is the development of discretization methods for these systems, and we will
only make use of the structure of the free-space operator induced by the free-space
entropy property.

Generally, an entropy is given by a function H(f, x, k), satisfying the following
properties.

P1. The entropy is dissipated by the collision operator, so∫
Rd

x×R3
k

∂fH(f, x, k)Q[f ](x, k)dxdk > 0

holds.
P2. The entropy is preserved by the free streaming operator, so∫

Rd
x×R3

k

∂fH(f, x, k)[∇x · (∇kε(k)f)− q∇k · (∇xV (x)f)]dxdk = 0

holds.
P3. For fixed x and k the functionH is a strictly convex function of the variable f

and the functional

η(f) =

∫
Rd

x×R3
k

H(f(x, k), x, k)dxdk(4)

is a convex functional of f .
The above properties guarantee that, for the time dependent Boltzmann equation

∂tf +∇x · [∇kε(k)f ]− q∇k · [∇xV (x)f ] +
1

λ
Q(f) = 0,(5)

the functional η is nonincreasing in time. This can be easily verified by integrating (5)
against ∂fH(f, x, k) over R3

x × R3
k. However, since this paper is concerned with the

steady state problem, we will use the structure induced by the entropy functional for
a stability estimate for the steady state problem. Entropy based Galerkin methods
are truncated series expansions of the solution f of (1) which preserve this structure.
To this end, we introduce the inverse of ∂fH with respect to the variable f by

g = ∂fH(f, x, k) ⇐⇒ f = µ(g, x, k),

which exists since ∂fH is a monotone function of f . To obtain an approximation which
preserves the entropy property, we apply a Galerkin procedure to the Boltzmann
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equation (5) in the entropy variable g. Thus, after choosing some basis functions
{φm(k), m = 0, 1, . . . ,M}, we set

g(x, k, t) =

M∑
n=0

fn(x, t)φn(k), f(x, k, t) = µ

( M∑
n=0

fn(x, t)φn(k), x, k

)
and integrate the Boltzmann equation for the entropy variable g, which is of the form

∂tµ(g, x, k) +∇x · [∇kε(k)µ(g, x, k)]− q∇k · [∇xV (x)µ(g, x, k)] +
1

λ
Q(µ(g, x, k)) = 0

against each of the basis functions with respect to the wave vector k. This yields a
first order system of partial differential equations of the form

(a) ∂tG(F )+

d∑
j=1

[∂xjA
j(F )−q(∂xjV )Bj(F )]+

1

λ
C(F ) = 0, F = (f0, . . . , fM )T ,(6)

(b) Gm(F, x) =

∫
φm(k)f(x, k, t)dk, Ajm(F, x) =

∫
φm(k)(∂kjε(k))f(x, k, t)dk,

(c) Bjm(F, x) =

∫
φm(k)∂kjf(x, k, t)dk, Cm(F, x) =

∫
φm(k)Q[f ](x, k, t)dk,

which, by virtue of construction, automatically satisfies the entropy estimate

∂tη(F ) ≤ 0, η(F ) =

∫
FT (x, t)G(F, x)dx,

where, for simplicity, we denote the entropy function η(F ) of the coefficient vector F
with the same symbol as the entropy η(f) in (4) evaluated at the corresponding linear
combination of the basis functions. The existence of the above estimate automatically
guarantees that the generally nonlinear first order system (6) is hyperbolic [11]. The
actual form of the system is determined by the choice of basis function φm and the
form of the entropy function H.

Choice of entropies. The classical physical entropy, which arises in the kinetic
description of fluids, where the collision operator Q models particle-particle interac-
tions and is nonlinear, is given by the natural logarithm ∂fH = ln f , H = f(ln f −1).
Since we are dealing with a greatly simplified linear operator, and also are considering
a plasma driven by the field ∇xV , there is a much larger degree of freedom in the
choice of entropy. A straightforward calculation gives∫

∂fH(f, x, k)Q[f ](x, k)dk(7)

=
1

2

∫
R3

k
×R3

k

S(k, k′)[∂fH(f, x, k)− ∂fH(f ′, x, k′)][feε − f ′eε′ ]dkdk′,

where the prime denotes evaluation of the corresponding function at k′. Thus, any en-
tropy H whose derivative is a nondecreasing function of feε (meaning ∂fH(f, x, k) =
h1(fe

ε(k), x) with ∂uh1(u, x) ≥ 0) will satisfy the first requirement on the entropy
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since the term [h1(fe
ε(k), x)− h1(f ′eε(k′), x)][f(x, k)eε(k) − f(x, k′)eε(k′)] in the inte-

grand of (7) will always be nonnegative. To satisfy the second requirement, namely,
that the entropy is preserved by the free streaming operator, we note that

∂fH(f, x, k)[∇x · (∇kε(k)f)− q∇k · (∇xV (x)f)](8)

= [∇x · (∇kε(k)H)− q∇k · (∇xV (x)H)]− [∇kε · ∇2H − q∇xV (x) · ∇3H]

holds, where ∇2,∇3 denote the derivatives with respect to the second and third
variables of H(f, x, k). The integral over the whole phase space of the first term on
the right-hand side of (8) is zero since it represents a total derivative. So the second
condition on the entropy H is satisfied if the second term on the right-hand side of (8)
vanishes. The general solution of [∇kε · ∇2 − q∇xV (x) · ∇3]H(f, x, k) = 0 is given
by all functions of the total energy ε(k) + qV (x). So H(f, x, k), and therefore also
∂fH(f, x, k), should depend on x and k only through the total energy ε(k) + qV (x).
Combining this with the first requirement ∂fH(f, x, k) = h1(fe

ε(k), x), we see that
any function H satisfying

∂fH(f, x, k) = h(f exp(ε(k) + qV (x)), h′(u) ≥ 0,

can be chosen as an entropy for the Boltzmann equation. The physical entropy, the
logarithm, now corresponds to the choice

h(u) = lnu, H(f, x, k) = f [ln f−1+ε(k)+qV (x)], µ(g, x, k) = exp[g−ε(k)−qV (x)].

If this entropy is used with the basis functions 1, k, ε(k), we obtain the classical hy-
drodynamic model for semiconductors. If more terms are used in the Galerkin ap-
proximation (6), we face the problem that, because of the exponential function µ,
the involved integrals will in general become infinite. This problem can be remedied
by using special restricted sets of basis functions developed by Levermore [11]. How-
ever, we face the additional problem that we have to evaluate the quite complicated
integrals of the collision operator Q. In the Levermore approach, as well as in the
hydrodynamic models, the collision operator is usually replaced by some form of BGK
approximation with fitted relaxation times. Indeed, the Galerkin approach (6) can be
philosophically viewed in two different ways. One is to regard (6) as deriving exten-
sions of the Euler equations. The other one is to regard (6) as an actual numerical
method for the Boltzmann equation. The difference is that in the first approach only
relatively few terms are taken which have some physical interpretation. In the second
approach, arbitrarily many terms in the expansion (6) have to be generated automati-
cally, and the physical interpretation of the high order terms is not important. In this
paper, we follow the second approach. This means that we use the simplest possible
entropy, namely a quadratic function.

(9)

η(u) = u, H(f, x, k) =
1

2
f2 exp[ε(k) + qV (x)], µ(g, x, k) = g exp[−ε(k)− qV (x)].

This choice makes the Galerkin equations (6) linear, as long as we do not couple
the Boltzmann equation to the Poisson equation (1)(b), and the entropy estimate
becomes an L2 estimate with the weight function exp[ε+qV ]. Methods based on these
basis functions have been analyzed and implemented in [17], [18], and suitable time
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discretization methods have been developed in [15]. All of this work was concerned
with the linear time dependent Boltzmann equation for a given potential V . In this
paper, we treat the steady state Boltzmann–Poisson problem instead, using the same
linear entropy. So the role of the entropy will not be to provide an a priori estimate
on the time dependent solution. Instead, we will make use of the effect of the entropy
on the structure of the involved nonlinear operators. The convergence of Galerkin
methods using the linear entropy in the linear case (i.e., for a given potential) has
been analyzed in [16], [18].

3. Difference schemes. In this section, we present the spatial discretization of
the Galerkin equations arising from (6) together with the Poisson equation (1)(b).
When designing the spatial discretization one is confronted with two somewhat con-
tradictory priorities. On one hand, the discretization should reflect the entropy preser-
vation property of the free streaming operator; that is, a discrete equivalent of P3 in
section 2 should hold. In the case of the quadratic entropy used in this paper, this
means that the spatially discretized free streaming operator should be antisymmetric
with respect to the weight function eqV . This results in obviously desirable stability
properties of the discretization. On the other hand, we wish to locally conserve charge.
Building the zero order moment of the Boltzmann equation (1)(a) with respect to the
wave vector k yields the continuity equation

∇x · 〈∇kε〉 = 0, 〈∇kε〉 :=
∫
∇kε(k)f(x, k)dk.(10)

This continuity equation should hold locally; that is, we should be able to apply a
discrete version of Gauss’s theorem locally over any submesh. In the context of a
finite element discretization in the spatial direction, the first priority would suggest
a straightforward finite element discretization using a weighted scalar product, which
would automatically not be locally conservative. A similar problem exists when us-
ing difference schemes. Our approach is the following: We will split the balance
equations (6)(a) into those governing the even and odd order moments of the kinetic
density function f . The difference scheme for the even order moment equations will
be designed in such a way that it locally conserves the appropriate momenta. The
difference scheme for the odd order moment equations will then be chosen such that
the whole scheme has the appropriate entropy properties outlined in the previous sec-
tion. This represents a compromise between the two priorities of local conservation
and entropy dissipation. This compromise is acceptable, since the collisions modeled
by the operator Q are nonelastic and the odd order moments are not conserved any-
way. In the steady state case, the odd order moments have to be viewed rather as
constitutive relations.

First we observe that the free streaming operator L, defined by

L[f ] = ∇x · [∇kε(k)f ]− q∇k · [∇xV (x)f ],

induces a natural decomposition of the function space for f . If the band energy ε(k) is
an even function of the wave vector k (which always can be assumed), the operator L
maps even functions of k into odd functions and vice versa. So we split the density
function f , as well as the Boltzmann equation, into its even and odd parts

(a) f = fe + fo, fe(x, k) = fe(x,−k), fo(x, k) = −fo(x,−k),(11)

(b) L[fo] +Qe[fe + fo] = 0, (c) L[fe] +Qo[fe + fo] = 0,
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where Qe, Qo denote the even and odd parts of the collision operator. Next we observe
that the important conservation laws (for charge and energy) are given by the even
part of the Boltzmann equation. Since the given collision operator does not preserve
momentum anyway, the moments of the odd part of the Boltzmann equation gives
rise to constitutive relations rather than conservation laws. Consequently, we will
dicretize (11)(b) conservatively and choose the discretization of (11)(c) to satisfy the
entropy conservation property P2 of the operator L. After splitting into even and odd
parts, the entropy property of the free streaming operator L reads∫

R3
x×R3

k

eε+V feL[fo]dxdk +

∫
R3

x×R3
k

eε+V foL[fe]dxdk = 0.(12)

We will use (12) as a weak definition of L[fe] in terms of L[fo]. Moreover, we can also
assume that in general the scattering cross section S(k, k′) (3) is an even function of
its arguments. This implies that the collision operator Q maps even functions of k
into even functions and odd functions into odd functions, giving

Qe[fe + fo] = Q[fe], Qo[fe + fo] = Q[fo].

In keeping with the spirit of the entropy based Galerkin approach outlined in the
previous section, we expand fe and fo into

fe(x, k) =

Ne∑
n=0

fen(x)e
−εφen(k), f

o(x, k) =

No∑
n=0

fon(x)e
−εφon(k),

where we have absorbed the factor e−qV in (9) into the coefficients fe,on for no-
tational convenience. Integrating (11)(b) against the even basis functions φem and
(11)(c) against the odd basis functions φom yields the system

(a)

d∑
ν=1

[Aeoν ∂xν
F o − q(∂xν

V )Beoν F
o] +

1

λ
CeF e = 0,(13)

(b)
d∑
ν=1

[Aoeν ∂xν
F e − q(∂xν

V )Boeν F
e] +

1

λ
CoF o = 0,

where F e,o(x) denotes the coefficient vector (fe,o0 , . . . , f
e,o
Ne,o

) and the matrices are
defined in the obvious way by

(a) Aeoν (m,n) =

∫
[φem(∂kνε)e

−εφon]dk, A
oe
ν (m,n) =

∫
[φom(∂kνε)e

−εφen]dk,(14)

(b) Beoν (m,n) =

∫
φem∂kν [e

−εφon]dk, B
oe
ν (m,n) =

∫
φom∂kν [e

−εφen]dk,

(c) Ce(m,n) =

∫
φemQ[e−εφen]dk, C

o(m,n) =

∫
φomQ[e−εφon]dk.

As mentioned, we will discretize the even part (13)(a) by a conservative difference
method and the odd part (13)(b) in its weak form defined by the relation (12). A
simple calculation gives that the relations

Beoν + (Boeν )T +Aeoν = 0, ν = 1, . . . , d,(15)
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hold. Furthermore, because of the symmetry of the scattering cross section S, the
odd collision operator is given by

Co(m,n) =

∫
φomσ(k)φ

o
ndk, σ(k) =

∫
S(k, k′)dk′.

Therefore the matrix Co, corresponding to the odd part of the collision operator, is
invertible as a consequence of the fact that the kernel of Q contains only even func-
tions. This suggests eliminating F o locally by inverting Co in (13)(b) and inserting
the resulting expression into (13)(a). To discretize (13) in the spatial direction, we
will need difference operators which are conservative and satisfy a discrete version of
Gauss’s theorem. This is nontrivial in more than one spatial dimension if a general
nonrectangular mesh is used, unless they do not act on the same grids. We therefore
assume two separate grids for F e and F o and difference operators acting between
them. We define the meshes

Me = {xj , j = 0, . . . , Je}, Mo = {yj , j = 0, . . . , Jo}
and difference operators Deoν , D

oe
ν , both approximating ∂xν , acting between them

(Deoν u
o)(xj) =

Jo∑
s=0

deoν (j, s)uo(ys), (Doeν u
e)(yj) =

Je∑
s=0

doeν (j, s)ue(xs)

for grid functions ue, uo defined on the respective meshes. Using appropriate discrete
integration operators Ie, Io, the discrete integration by parts formula we assume takes
the form

(a) Ie[(u
e)T (Deoν u

o)] = −Io[(uo)T (Doeν u
e)] + be(ue)T bo(uo), ν = 1, . . . , d,(16)

(b) Ie[u
e] =

Je∑
s=0

γe(s)u
e(xs), Io[u

o] =

Jo∑
s=0

γo(s)u
o(ys)

for vector grid functions ue, uo with appropriate integration weights γe, γo. The
boundary operators be, bo correspond to evaluation of the grid function at the bound-
ary points of the respective meshesMe,Mo. There is one minor problem caused by the
introduction of the dual meshes Me,Mo, which is that the free streaming operator L
contains derivatives of the density function as well as zero order terms, which cou-
ples the meshes. This is remedied by using an interpolation formula which is in some
sense generic for the free streaming operator. In order to write the term q(∂xνV )(∂kνf)
solely in terms of spatial derivatives of f , we replace it by ∂xν

[qV ∂kνf ]− qV ∂xν
∂kνf .

Thus (13)(a) is discretized by

LeoF o+
1

λ
CeF e = 0, LeoF o =

d∑
ν=1

[Deoν (Aeoν F
o− qV Beoν F o)+ qV Beoν Deoν F o].(17)

The odd part (13)(b) of the Boltzmann equation is now discretized using the dual
operator to Leo as defined by (12). This gives

(a) LoeF e +
1

λ
CoF o = 0,(18)

(b) LoeF e =

d∑
ν=1

e−qV [(Aeoν − qV Beoν )TDoeν (eqV F e) + (Beoν )TDoeν (qV eqV F e)].

This represents a consistent discretization of (13)(b) because of the relation (15) for
the coefficient matrices, as can be easily verified. By virtue of construction, the
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discrete system (17), (18) now has the desired symmetry properties and accurately
represents a discrete version of the conservation law (10). We summarize these state-
ments in the following proposition.

Proposition 1. The discretized operators Leo, Loe in (17), (18) satisfy the equal-
ity

Ie[e
qV (F e)TLeoF o] + Io[e

qV (F o)TLoeF e](19)

=
d∑
ν=1

be(eqV F e)T bo(Aeoν F
o − qV Beoν F o) + be(qV eqV F e)bo(Beoν D

eo
ν F

o)

for any choice of grid functions F e, F o, V . Furthermore, the discrete conservation law

Ie[e
TLeoF o] =

d∑
ν=1

be(e)T bo(Aeoν F
o)(20)

holds, where e denotes the first unit vector in RNe .
Proof. Equation (19) holds by virtue of construction, using the discrete integration

by parts formulae (16). Equation (20) is obtained from (19) by setting F e = e and
observing that because of (14)(b) the first row of Beoν vanishes.

We now turn to coupling (17), (18) to the Poisson equation (1)(b). Using the
obvious discretization induced by the difference operators Deoν , D

oe
ν , the discretization

of the Poisson equation reads

−σ
d∑
ν=1

Deoν D
oe
ν V

e + q[Ddop − ρTF e] = 0, ρT = (ρ1, . . . , ρNe), ρn =

∫
e−εφendk.

Therefore, if the even coefficient vector F e is only defined on the mesh Me, so is the
potential. The discretization of the Boltzmann equation (17), (18) requires, however,
the potential on both meshes Me and Mo, and therefore some interpolation formula
is needed which computes the potential V on the meshMo from V e. So, in summary,
the discretized Boltzmann–Poisson system is given by

(a) Leo(F e, F o) +
1

λ
CeF e = 0, (b) Loe(F e) +

1

λ
CoF o = 0,(21)

(c) −σ
d∑
ν=1

Deoν D
oe
ν V

e + q[Ddop − ρTF e] = 0, V o = S(V e),

(d) Leo(F e, F o) =

d∑
ν=1

[Deoν (Aeoν F
o − qV oBeoν F o) + qV eBeoν D

eo
ν F

o],

(e) Loe(F e) =

d∑
ν=1

e−qV
o

[(Aeoν − qV Beoν )TDoeν (eqV
e

F e) + (Beoν )TDoeν (qV eeqV
e

F e)],

where V o is somehow interpolated from V e using the interpolation operator S. Notice
that Leo and Loe are now nonlinear operators because the potentials V e, V o are given
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in terms of F e through the solution of the Poisson equation (21)(c). In principle, any
interpolation formula could be used which is of a high enough order as to keep the
total order of accuracy of (17), (18), and the choice of interpolation formula cannot
be discussed further without being more specific about the structure of the mesh and
the form of the difference operators. In practice, we will take the following approach:
The Galerkin approximation to the Boltzmann–Poisson system will reduce to the
drift-diffusion system if only the basis functions 1, k1, k2, k3 are used with Ne = 0,
No = 2. In this case, the matrices Beoν and Ce vanish and the matrices Aeoν will form
the rows of a multiple of the identity matrix; i.e., there will be no mixed derivatives
appearing in the equations. Given a certain mesh structure and a set of difference
operators, we will choose the interpolation formula to compute V o in such a way that
the resulting scheme reduces to the well-known Scharfetter–Gummel scheme on this
mesh.

Boundary conditions. For practical applications, the boundary will be de-
composed in two types of boundary segments, namely insulating parts at which the
particle fluxes normal to the boundary vanish and parts at which particles are injected
according to a Maxwellian distribution in such a way that charge neutrality in the
Poisson equation is preserved (meaning ρ = D in (1)(b)). The insulation property
simply translates into the odd component of the density function being equal to zero.
The injection of particles results in a quite complicated mixed boundary condition
involving the diagonalization of the matrices Aeoν , A

oe
ν . (See [15] for more details.)

For the solution of the transient problem, it is quite essential to capture the precise
structure of the boundary conditions in order to avoid artificial reflections. For the
steady state problem, it turns out the structure of the boundary conditions has actu-
ally relatively little impact on the solution as long as charge neutrality is guaranteed.
As mentioned before, we will actually eliminate the odd component vector F o for the
practical implementation of the scheme and solve (21) in the form

λLeo(F e,−λ(Co)−1Loe(F e)) + CeF e = 0.

In this formulation, dealing with the mixed boundary condition resulting from the
particle injection is actually quite cumbersome. We therefore use the simplified set of
boundary conditions

(a) be(F e) = Ddope, V e = V eb for xj ∈ ∂Me
Dir ,(22)

(b) bo(F o) = 0, bo(DeoV e) = 0 for yj ∈ ∂Mo
Neu ,

where the subscripts Dir,Neu denote the union of Dirichlet and Neumann segments
of the boundary and be, bo are the boundary operators in (16). Note that bo is actually
the discretization of the outward normal component of a vector. Also, (22)(a) tacitly
assumes that φe0 = 1 holds and that the basis functions form an orthonormal system,
which implies that the physical space density ρ is actually given by F e0 and therefore
Maxwellians of the form e−ε correspond to the first unit vector e.

4. Stability of the linearization. In this section, we prove that the lineariza-
tion of the scheme defined in the previous section around the equilibrium solution is
stable. This implies, among other things, that close to equilibrium Newton’s method
will be locally quadratically convergent when applied to the nonlinear system (21). To
this end, we first reformulate (21) slightly by essentially writing it as a correction to a
discretization of the drift-diffusion–Poisson equations. We assume that the Galerkin



74 CHRISTIAN RINGHOFER

approximation (13) to the Boltzmann equation contains the balance equations for
charge and momentum, i.e., that the functions 1, k are contained in the set of basis
functions. So we set

φe0 = 1, φon = kn, n = 1, . . . , d.

Next we split the system (21) into the balance equations for charge and momentum
and the rest by setting

F e =

(
F e0
F e1

)
, F o =

(
F o0
F o1

)
, Leo =

(
Leo0
Leo1

)
, Loe =

(
Loe0
Loe1

)
,

where F e0 and Leo0 denote the first component of F e, Leo and F e1 and Leo1 denote
the other Ne components. In the same way, F o0 , L

oe
0 denote the first d components

of F o, Loe and F o1 , L
oe
1 denote the other No + 1 − d components. Accordingly, we

partition the matrices Aeoν , Beoν , Ce, and Co into

Aeoν =

(
A00
ν A01

ν

A10
ν A11

ν

)
, Beoν =

(
0 0
B10
ν B11

ν

)
,

Ce =

(
0 0
0 C11

e

)
, Co =

(
C00
o C01

o

C10
o C11

o

)
.

Note that the first row of Beo and the first row and column of Ce vanish because of
the conservation properties. In this partition, the system (21) now becomes

(a) Leo0 (F o0 , F
o
1 ) = 0, (b) Loe0 (F e0 , F

e
1 ) +

1

λ
[C00
o F

o
0 + C01

o F
o
1 ] = 0,(23)

(c) −σ
d∑
ν=1

Deoν D
oe
ν V

e + q[Ddop − F e0 ] = 0, V o = S(V e),

(d) be(F e0 ) = Ddop , be(V e) = V eb , xj ∈ ∂Me
Dir ,

bo(F o0 ) = 0, bo(DeoV e) = 0 yj ∈ ∂Mo
Neu ,

(24)

(a) Leo1 (F e0 , F
e
1 , F

o
0 , F

o
1 )+

1

λ
C11
e F

e
1 = 0, (b) Loe1 (F e0 , F

e
1 )+

1

λ
[C10
o F

o
0 +C11

o F
o
1 ] = 0,

(c) be(F e1 ) = 0, xj ∈ ∂Me
Dir , b

o(F o1 ) = 0, yj ∈ ∂Mo
Neu ,

where the involved operators are given by

(a) Leo0 (F o0 , F
o
1 ) =

d∑
ν=1

Deoν (A00
ν F

o
0 +A01

ν F
o
1 ),(25)
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(b) Loe0 (F e0 , F
e
1 )

=

d∑
ν=1

e−qV
o

[(A00
ν )TDoeν (eqV

e

F e0 )+(A10
ν −qV B10

ν )TDoeν (eqV
e

F e1 )+(B10
ν )TDoeν (qV eeqV

e

F e1 )],

(c) Leo1 (F e0 , F
e
1 , F

o
0 , F

o
1 )

=

d∑
ν=1

[Deoν (A10
ν F

o
0 +A11

ν F
o
1−qV oB10

ν F
o
0 )−qV oB11

ν F
o
1 )+qV eB10

ν D
eo
ν F

o
0 +qV eB11

ν D
eo
ν F

o
1 ],

(d) Loe1 (F e0 , F
e
1 )

=

d∑
ν=1

e−qV
o

[(A01
ν )TDoeν (eqV

e

F e0 )(A11
ν −qV B11

ν )TDoeν (eqV
e

F e1 )+(B11
ν )TDoeν (qV eeqV

e

F e1 )].

We write the system (23), (24) as a nonlinear equation for F e1 and F o1 , where the
remaining variables are given implicitly by (23). So write (24) as

(a) Ke(F e1 , F
o
1 ) = 0, Ko(F e1 , F

o
1 ) = 0,(26)

(b) Ke(F e1 , F
o
1 ) = Leo1 (F e1 , F

e
1 , F

o
0 , F

o
1 ) +

1

λ
C11
e F

e
1 ,

(c) Ko(F e1 , F
o
1 ) = Loe1 (F e0 , F

e
1 ) +

1

λ
[C10
o F

o
0 + C11

o F
o
1 ]

with V e, V o, F o0 , F
e
0 given in terms of F e1 , F

o
1 as the solution of the equations (23). So,

in order to evaluate Ke,Ko a drift-diffusion–Poisson problem has to be solved where
F e1 , F

o
1 appear as source terms. We will show that the linearization of (26) is stable

around the equilibrium solution. The equilibrium solution is given by a Maxwellian
in the wave vector direction multiplied by the function eiqV , where the potential V
is such that it satisfies the resulting nonlinear Poisson equation (1). We first confirm
that this solution is an exact solution of our difference scheme by proving the following
theorem.

Theorem 1. If the boundary potential V eb in (23)(b) is given by V eb = − 1
q lnDdop,

and the corresponding discrete Poisson problem

−σ
d∑
ν=1

Deoν D
oe
ν V

e + q[Ddop − e−qV e

] = 0

has a solution, the system

Ke(F e1 , F
o
1 ) = 0, Ko(F e1 , F

o
1 ) = 0

has a solution F e1 = 0, F o1 = 0.
The proof is deferred to the appendix.
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If we now consider the linearization around this equilibrium solution, we have the
following theorem.

Theorem 2. Let δF e1 , δF
o
1 be the solution of the linearized problem

(a) dKe(0, 0)(δF e1 , δF
o
1 ) = Re1, dKo(0, 0)(δF e1 , δF

o
1 ) = Ro1,(27)

(b) be(δF e1 ) = 0, xj ∈ ∂Me
Dir , bo(δF o1 ) = 0, yj ∈ ∂Mo

Neu .

Then there exists a constant c, dependent only on the collision matrices Ce, Co, such
that δF e1 , δF

o
1 satisfy ||(δF e1 , δF o1 )|| ≤ cλ||(Re1, Ro1)||, where the norm is defined by

||(δF e1 , δF o1 )|| = Ie[eqV e |δF e1 |2] + Io[eqV
o |δF o1 |2],

and V e, V o are the potentials corresponding to the equilibrium solution.
The proof is deferred to the appendix.
Two remarks should be made at this point. First, while the reformulation and

partitioning of the problem seems like a formality at first sight, it does have a practical
implication. The stability result of Theorem 2 guarantees, among other things, that
the solution can be computed by a locally quadratically convergent Newton method
of the form

dKe(F e1 , F
o
1 )(δF e1 , δF

o
1 ) = −Ke(F e1 , F

o
1 ), dKo(F e1 , F

o
1 )(δF e1 , δF

o
1 ) = −Ko(F e1 , F

o
1 ).

However, to compute the right-hand side of the linearized equations, we have to
evaluate the terms Ke,Ko, which involves solving the nonlinear problem (23) ex-
actly, which corresponds to solving a nonlinear drift-diffusion–Poisson problem at
each Newton step. While this is not really necessary in practice, the convergence
of Newton’s method can be improved dramatically if a few extra iterations are per-
formed on the low-dimensional system (23) within each Newton step. Second, the
above formulation tacitly assumes that Ke,Ko can be evaluated, that is, that the
drift-diffusion–Poisson system can be solved by the discretization (23) for any source
terms arising from F e1 , F

o
1 . This is the main reason why the interpolation operator S

in (21) is chosen such that the resulting scheme reduces to the Scharfetter–Gummel
scheme on the given mesh, which is a well tested and incredibly robust discretization.
(See [19] for an overview.)

5. Implementation and numerical test example. In this section we present
a numerical test example in one spatial dimension and outline how to actually com-
pute the coefficient matrices Ce, Co, corresponding to the collision operator. The
computation of these matrices is not completely trivial because of the presence of the
δ− functions in the integral kernel (3). (See [12], [13].) In one spatial dimension, the
choice of meshesMe andMo and the choice of the corresponding difference operators
Deo1 , D

oe
1 is quite obvious. We define the grids by

Me = {x0 < · · · < xJ}, Mo =

{
yj : yj =

1

2
(xj + xj+1), j = 0, . . . , J − 1

}
and the difference operators by

(Doeue)(yj) =
ue(xj+1)− ue(xj)

xj+1 − xj
, (Deouo)(xj) =

uo(yj)− uo(yj−1)

yj − yj−1
.
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If we define the discrete integral operators Ie, Io by

Ie(u
e) =

J−1∑
j=1

(yj − yj−1)u
e(xj), Io(u

o) =

J−1∑
j=0

(xj+1 − xj)u
o(yj),

then the discrete integration by parts formula (16) holds with the boundary terms
be, bo given by

be(ue) =

(−ue(x0)
ue(xJ)

)
, bo(uo) =

( −uo(y0)
uo(yJ−1)

)
.

In order for the scheme to reduce to the exponentially fitted Scharfetter–Gummel
scheme in one dimension, the interpolation operator S for the potential V o is chosen
such that eqV is expressed as d

dV e
qV . So S is chosen as

S(V e)(yj) =
1

q
ln

(
exp[qV (xj+1)]− exp[qV (xj)]

qV (xj+1)− qV (xj)

)
.

For a general band energy function ε(k), the matrices Aeo, Beo, Ce, Co will have to be
computed numerically. This can be done at a considerable computational expense,
since it has to be done only once for a given set of basis functions. In particular, the
collision matrices Ce, Co have to be computed exercising some care so that the con-
servation and dissipation properties are not destroyed by the involved numerical inte-
gration. Generally, we have to compute integrals of the form

∫
φm(k)Q[e−εφn(k)]dk,

where φm, φn denote either the even or the odd basis functions. Using the symmetry
of the collision operator, we will compute the matrix elements of the collision operator
as

C(m,n)

=
1

2

1∑
ν=−1

∫
R3

k
×R3

k′

sν(k, k
′)δ(ε(k)− ε(k′) + νω)[φm(k)− φm(k′)][φn(k)− φn(k′)]dkdk′

and use numerical integration formulas for the integral in this form. Note that, in
this form, it is apparent that the matrix C will be symmetric and that, if either φm
or φn are constants, the matrix element will be zero, corresponding to conservation
of charge and the Maxwellian kernel. Thus, we just have to make sure that numerical
integration is applied in the same way in the k and k′ variables to preserve these
properties. The presence of the δ− functions in the integration kernel suggests writing
the wave vector k in polar coordinates k = r(cosα, sinα sinβ, sinα cosβ) giving

C(m,n)

=
1

2

1∑
ν=−1

∫
sνδ(ε− ε′+ νω)[φm−φ′m][φn−φ′n]r2 sin(α)(r′)2 sin(α′)drdαdβdr′dα′dβ′,

where the ′ denotes evaluation at r′, α′, β′. We now choose as basis functions spherical
harmonic functions in the angular directions and polynomials in the radial direction
r = |k|,

φm(r, α, β) = Pm1
(r)Γm2

(α, β), m = (m1,m2).
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To take care of the δ− function in the integral kernel, we change variables in the
integral from r to ε. Thus, we need to invert the band energy function ε as a function
of the radius r for fixed angles α, β:

ε(r, α, β) = u ⇐⇒ r = g(ε, α, β).(28)

In the transformed variables, the integration with respect to ε′ can now be carried
out exactly using the δ function. So the matrix element C(m,n) now becomes

C(m,n) =
1

2

1∑
ν=−1

∫ ∞
0

dε

∫
dαdβdα′dβ′[g2(g′)2

dg

dε

dg′

dε′
sin(β) sin(β′)](29)

× θ(ε+ νω)sν [Pm1
Γm2
− P ′m1

Γ′m2
][Pn1

Γn2
− P ′n1

Γ′n2
],

where the ′ now denotes evaluation at r = g(ε + νω, α′, β′) and α′, β′, and θ is
the Heaviside function. The structure of the scattering cross sections sν is usually
sufficiently simple, such that the integrals with respect to the angular variables can
be carried out exactly, leaving only the one-dimensional integral with respect to the
energy to be evaluated numerically. The procedure outlined above is applicable in
principle to an arbitrary band structure. It becomes significantly simpler if the band
energy is actually radially symmetric, i.e., ε = ε(|k|), since in this case the inverse
band energy function g depends only on the energy. A popular choice is the dispersion
relation due to Kane which is of the form (see [9])

ε(k) =
|k|2

1 +
√

1 + κ|k|2 .

We should point out that, if the band energy is actually not radially symmetric, the
solution will actually depend on how the sample is aligned with the crystal direction,
which might pose a considerable technological problem.

We now present results of a numerical test on the standard n+ − n − n+ silicon
diode with a channel of 50nm length. This means that the doping concentration Ddop

in (1) is given by a step function of the form

Ddop(x) =

 1024m−3 0 < x < 50nm
1021m−3 50nm < x < 100nm
1024m−3 100nm < x < 150nm

 .
For the sake of simplicity, we restrict ourselves to parabolic band structures. So

(in scaled variables) ε(k) = |k|2
2 holds, which makes the computation of the inverse

function g(ε, α, β) in (28) trivial. (g(ε, α, β) =
√

2ε holds and all integrations in (29)
can be carried out exactly.) Also, since the problem in one spatial dimension admits
solutions which are cylindrically symmetric around the k1 direction (i.e., f(x, k) =
f(x1, k1, k

2
2 + k23)), we choose only spherical harmonics with this symmetry as basis

functions. For scattering cross sections we choose Fermi’s golden rule formula

(30)

(a) Q[f ](x, k) =
h̄2VLF (ξ)2π

Ω

∑
ν=±1

(
Nξ+

1 + ν

2

)
δ(ε(k)−ε(k′)+νh̄ω)f(x, k′)dk′−f(x, k)

τ(k)
,
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(b)
1

τ(k)
=

2VLF (ξ)2m
3/2
∗

h̄2Ω
4π2

∑
ν=±1

(
Nξ +

1 + ν

2

)√
2(ε(k)− νh̄ω)+,

(c) ε(k) =
h̄2|k|2
2m∗

, Ω = ln

(
Nξ + 1

Nξ

)
,

where F (ξ) denotes the frequency of the lattice state with momentum ξ and Nξ de-
notes its occupation number. VL denotes the volume of one lattice cell. F (ξ) is given
according to the formula

F (ξ) =

√
q2h̄ω

2VL|ξ|2ε0

(
1

ε∞
− 1

εs

)
.

The constants are given by the following expressions:

Symbol Value Unit Meaning

q 1.602 ∗ 10−19 C electron charge
h̄ 6.626196 ∗ 10−34 kgm2/sec Planck constant
m∗ 0.063 ∗ 0.109 ∗ 10−31 kg effective electron mass
h̄ω 0.036 eV emission/absorption energy
ε0 8.85 ∗ 10−12 C

Vm dielectricity constant (vacuum)
ε∞ 10.92 1
εs 12.9 1

We take into account only one single phonon momentum vector (corresponding to a
δ− function collision potential; see [2], [4], [10]), which is evaluated at equilibrium,
meaning |ξ|2 = m∗KT holds at room temperature. This gives, for an occupation
number Nξ corresponding to room temperature, numerical values of

h̄2VLF (ξ)2π

Ω
Nξ = 5.9356e ∗ 105 m

3

sec2
,

2VLF (ξ)2m
3/2
∗

h̄2Ω
Nξ4π

2 = 9.6044 ∗ 1023 1

m
√
kg

for the constants necessary to evaluate (30). Finally, choosing computational units
of 10−7m for x and 107m−1 for k, this gives a value of λ = 0.3974 for the dimensionless

parameter λ in (1) with a scaled band energy ε = |k|2
2 .

The results below were obtained by varying the applied bias (the difference of
the boundary potential V eb between the right and the left endpoint) form −0.1V
to −0.5V . A uniform mesh with 151 gridpoints and 128 expansion terms (16 in the
energy direction and 8 in the angular direction) was used. The obtained figures did not
change significantly when either doubling the number of expansion terms or halving
the mesh size.

Figures 1–4 depict the potential as well as the physical densities for electrons,
electron velocity, and electron energy as functions of the spatial variable x. Figure 1
shows the potential distribution V (x). Figure 2 shows the electron density 〈1〉(x) =∫
f(x, k)dk = ρTF e. Figure 3 shows the velocity distribution u(x) =

〈∂k1
ε〉(x)

〈1〉(x) with

〈∂k1ε〉 =
∫
∂k1ε(k)f(x, k)dk. Figure 4 shows the corresponding energy densities given

by w(x) = 〈ε〉(x)
〈1〉(x) .

Figures 5–8 depict the kinetic density f(x, k) for the bias value of 0.4V for
various values of x. Using spherical harmonic basis functions φm(k) gives the ki-
netic density function f in spherical coordinates as f = f sph(x, r, cos(α), β) with
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Fig. 1. Potential.

k = (r cos(α), r sin(α) sin(β), r sin(α) cos(β)), α ∈ [0, π], β ∈ [−π, π]. It is, however,
more instructive to look at the kinetic density f = fcar in Cartesian coordinates.
In the case of one spatial dimension, the kinetic energy density will be cylindrically
symmetrical around the k1-axis. So fcar (x, k) = f(x, k1,

√
k22 + k23) and f sph(x, k) =

f(x, r, cos(α)) hold. fcar and f sph are related through fcar (x, r cos(α), r sin(α)) =
r2f sph(x, r, cos(α)), where the factor r2 arises from the infinitesimal volume
element due to the coordinate transformation. So Figures 5–8 show the function
r2f sph(x, r, cos(α)) for fixed values of x as a function of k1 = r cos(α) and

√
k22 + k23 =

r sin(α), which is the density against which any function of Cartesian coordinates has
to be integrated to compute expectations.

The purpose of these computations is to investigate how far away from the fluid
dynamic regime we are. (For such a short channel and the given applied bias, we
expect to see some distinctly nonequilibrium phenomena.) Figure 5 shows the distri-
bution to the left of the channel. It is essentially given by a forward and a backward
traveling Maxwellian of roughly the same amplitude. Figures 6 and 7 show the dis-
tribution at the beginning and the end of the channel. First we notice that the wave
has developed a second peak in the forward as well as in the backward traveling com-
ponent. Moreover, it has become definitely asymmetric in the k1 direction at the
end of the channel (in Figure 7). After the electron has left the channel in Figure 8,
remnants of the second peak are still visible, but the solution has become symmetric
in k1 again. Figure 5 could have been produced by a hydrodynamic model or even by
drift-diffusion equations, considering the low values of the group velocity in Figure 3
at this point. The second peak in Figure 8 (after leaving the channel) could have
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been produced by a SHE-model. However, the strongly asymmetric distribution at
the channel end (Figure 7) is a truly kinetic phenomenon and could not have been
produced by either of the above approximations.

Concluding remarks. We conclude this section with some remarks concerning
future work and the extension of this approach to two spatial dimensions. First, going
to two spatial dimensions means a dramatic increase in the computational cost, since
in addition to the added spatial dimension the cylindrical symmetry of the density
function is lost. In the two-dimensional case, the density has to be taken of the
form f(x, k) = f(x1, x2, k1, k2, |k3|), thus going effectively from a three- to a five-
dimensional problem. The computations above were carried out using 16 expansion
terms in the energy direction and 8 terms in the angular directions, so a system of
128 one-dimensional conservation laws was solved. Roughly estimating the cost in
the two-dimensional case, allowing for a little less resolution and still exploiting the
symmetry in the k3 direction, this would translate into solving anywhere between
256 and 1024 two-dimensional conservation laws. On the other hand, we do not
expect it to be necessary to solve the full kinetic problem in the whole device; i.e.,
for the simulation of a transistor this amount of resolution would only be necessary
in a rather narrow region around the channel. Indeed, the promise of the expansion
approach in two spatial dimensions is that it allows for a model hierarchy ranging from
a Scharfetter–Gummel solution of the drift-diffusion equation (i.e., taking only three
terms) to the full Boltzmann solution. Taking this into account, we estimate that a
two-dimensional solution would involve around half a million variables. This raises,
of course, the issue of the iterative solution of the involved linear system. In the one-
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dimensional case, a direct solution of the linear system was combined with a standard
Gummel iteration procedure for the coupling to Poisson’s equation. (See [19].) One
possibility is to precondition the system by a solution of the drift-diffusion equations
(i.e., by the the equations corresponding to the first three terms only). This would
result in a pseudo time marching algorithm where the diffusive part of the operator
is discretized implicitly in time and the hyperbolic part explicitly, as first proposed
in [17] for the solution of the transient problem.

Finally, we would like to comment on the differences in the approaches to solving
the steady state problem and the transient Boltzmann equation. There have been
several approaches to deterministic solutions of the transient Boltzmann equation us-
ing methods designed for hyperbolic conservation laws. (See [1], [6], and references
therein.) The transient solution (as well as the conservation law resulting from its
Galerkin approximation in the wave vector direction) will exhibit a variety of hy-
perbolic and dispersive transient phenomena which would be unduly damped by the
pseudo time marching algorithm suggested above. (See [15].) On the other hand, be-
cause of this fact, a pseudo time marching algorithm, based on the discretization pre-
sented here, will arrive at the correct steady state much faster, albeit with the wrong
transient response, than a method designed for hyperbolic equations. So the method
presented in this paper is really designed for the computation of steady states and for
accurate deterministic simulations of the transient behavior it is probably preferable
to use methods which take into account the hyperbolic and dispersive nature of the
transient problem as given in [6] and [15].
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6. Appendix.
Proof of Theorem 1. Setting F e1 = 0, F o1 = 0 in (26) gives the equations

d∑
ν=1

[Deoν (A10
ν F

o
0 − qV oB10

ν F
o
0 )) + qV eB10

ν D
eo
ν F

o
0 ] = 0,

d∑
ν=1

e−qV
o

[(A01
ν )TDoeν (eqV

e

F e0 )] +
1

λ
C10
o F

o
0 = 0,

which depend only on F o0 and discrete derivatives of eqV
e

F e0 . For F e1 = 0, F o1 = 0
these terms are given by (23) as the solution of

d∑
ν=1

Deoν (A00
ν F

o
0 ) = 0,

d∑
ν=1

e−qV
o

[(A00
ν )TDoeν (eqV

e

F e0 )] +
1

λ
C00
o F

o
0 = 0,

−σ
d∑
ν=1

Deoν D
oe
ν V

e + q[Ddop − F e0 ] = 0,
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Fig. 5. r2 ∗ f : Bias = −0.4V , x = 30.0752nm.

and setting F o0 = 0 and F e0 = e−qV satisfies all of the above equations and the
boundary conditions, except for the Poisson equation. Therefore V e has to be chosen
as the solution of

−σ
d∑
ν=1

Deoν D
oe
ν V

e + q[Ddop − e−qV e

] = 0

together with the corresponding boundary conditions (23)(d) which corresponds to
the equilibrium solution.

Proof of Theorem 2. The linearized problem (27) is given by the equations

(a) dLeo1 (F e0 , 0, 0, 0)(δF
e
0 , δF

o
1 , δF

o
0 , δF

o
1 ) +

1

λ
C11
e δF

e
1 = Re1,(31)

(b) dLoe1 (F e0 , 0)(δF
e
0 , δF

e
1 ) +

1

λ
[C10
o δF

o
0 + C11

o δF
o
1 ] = Ro1,

where the terms δF e0 , δF
o
0 , δV

e, δV o are given in terms of δF e1 , δF
o
1 by linearizing the

drift-diffusion–Poisson system (23):

(a) dLeo0 (0, 0)(δF o0 , δF
o
1 ) = 0,(32)

(b) dLoe0 (F e0 , 0)(δF
e
0 , δF

e
1 ) +

1

λ
[C00
o δF

o
0 + C01

o δF
o
1 ] = 0,
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Fig. 6. r2 ∗ f : Bias = −0.4V , x = 50nm.

(c) −σ
d∑
ν=1

Deoν D
oe
ν δV

e + q[Ddop − δF e0 ] = 0

together with homogeneous boundary conditions of the form (23)(d). Combining
(31)(a–b) with (32)(a–b) we obtain the linearized system for the full equations

(a) dLeo(F e, 0)(δF e, δF o) +
1

λ
CeδF e = Re,(33)

(b) dLoe(F e)(δF e) +
1

λ
CoδF o = Ro,

with

δF e =

(
δF e0
δF e1

)
, δF o =

(
δF o0
δF o1

)
, F e =

(
F e0
0

)
,

Re =

(
0
Re1

)
, Ro =

(
0
Ro1

)
.

So we basically obtain the same linearized system as if we had linearized (21) directly,
except for the crucial fact that the first component of Re and the first three compo-
nents of Ro are zero. Now, by virtue of construction of the discrete operators Leo, Loe
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Fig. 7. r2 ∗ f : Bias = −0.4V , x = 100nm.

(see Proposition 1) and because of the structure of the boundary conditions, we have
that

Ie[h
e(F e)TLeo(F e, F o)] + Io[h

o(F e, F o)TLoe(F e)] = 0(34)

holds for any choice of F e, F o, where Ie, Io denote the discrete integral operators
defined in (16) and the entropies he, ho are given by he(F e) = eqV

e

F e, ho(F e, F o) =
eqV

o

F o and, of course, the potentials V e, V o depend on F e through the Poisson
equation. Differentiating (34) twice functionally with respect to all of its arguments
yields

Ie[(d
2he(F e)(δF e)2)TLeo(F e, F o)]

+ 2Ie[(dh
e(F e)(δF e))T (dLeo(F e, F o)(δF e, δF o))]

+ Ie[h
e(F e)(d2Leo(F e, F o)T (δF e, δF o)2)]

+ Io[(d
2ho(F e, F o)(δF e, δF o)2)TLoe(F e)]

+ 2Io[(dh
o(F e, F o)(δF e, δF o))T (dLoe(F e)(δF e))]

+ Io[h
o(F e, F o)(d2Loe(F e)T (δF e)2)] = 0.

Inserting the equilibrium solution F o = 0, F e = e−qV
e

e into the above equations, we



A MIXED SPECTRAL-DIFFERENCE METHOD 87

−1

−0.5

0

0.5

1

x 10
9

0

2

4

6

8

x 10
8

0

1

2

3

4

5

x 10
14

k1, (m−1)

FIGURE 8: r2*f:,Bias=−0.4V,x=120.3008nm

(k22+k32)0.5, (m−1)

r2 *f
,(

m
−
2)

Fig. 8. r2 ∗ f : Bias = −0.4V , x = 120.3008nm.

see that

Leo(F e, F o) = 0, Loe(F e) = 0, ho(F e, F o) = 0, he(F e) = e

holds, which eliminates three of the six terms in the above relations. Thus, we obtain

2Ie[(dh
e(F e)(δF e))T (dLeo(F e, F o)(δF e, δF o))](35)

+ Ie[h
e(F e)(d2Leo(F e, F o)T (δF e, δF o)2)]

+ 2Io[(dh
o(F e, F o)(δF e, δF o))T (dLoe(F e)(δF e))] = 0,

where in the second term of (35) only the first component of Leo is left because of
the form of he. However, from (25) it can be seen that Leo0 is a pure divergence
operator, and therefore, because of the structure of the boundary conditions, the
discrete integral over Leo0 vanishes for all arguments. Therefore the same is true for
its second functional derivative, and we obtain the formula

2Ie[(dh
e(F e)(δF e))T (dLeo(F e, F o)(δF e, δF o))]

+ 2Io[(dh
o(F e, F o)(δF e, δF o))T (dLoe(F e)(δF e))] = 0
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which we use to estimate the linearized equations (33). Multiplying (33)(a) by
(dhe(F e)(δF e))T and (33)(b) by (dho(F e, 0)(δF e, δF o))T , and applying the discrete
integral operators Ie, Io, we obtain

Ie[(dh
e(F e)(δF e))TCeδF e] + Io[(dh

o(F e, 0)(δF e, δF o))TCoδF o](36)

= λIe[(dh
e(F e)(δF e))TRe] + λIo[(dh

o(F e, 0)(δF e, δF o))TRo].

Computing the first Frechet derivatives of he, ho at the equilibrium solution gives

dhe(F e)(δF e) = qδV ee+ eqV
e

δF e, dho(F e, 0)(δF o, δV o) = eqV
o

δF o,

with δV e, δV 0 the solutions of the linearized Poisson equation with homogeneous
boundary conditions. Inserting this into (36), and using the fact that the first row
and column of Ce vanishes, and that the first component of Re, Ro is also zero, we
get

Ie[e
qV e

(δF e1 )TC11
e δF

e
1 ] + Io[e

qV o

(δF o)TCoδF o]

= λIe[e
qV e

(δF e1 )TRe1] + λIo[e
qV o

(δF o1 )TRo1].

Now the matrices C11
e and Co are strictly positive definite. Using the Cauchy–Schwarz

inequality gives the result.
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Abstract. In this paper we describe and analyze Krylov subspace techniques for accelerating
the convergence of waveform relaxation for solving time-dependent problems. A new class of acceler-
ated waveform methods, convolution Krylov subspace methods, is presented. In particular, we give
convolution variants of the CG algorithm and the GMRES algorithm and analyze their convergence
behavior. We prove that the convolution Krylov subspace algorithms for initial value problems have
the same convergence bounds as their linear algebra counterparts. Analytical examples are given to
illustrate the operation of convolution Krylov subspace methods. Experimental results are presented
which show the convergence behavior of traditional and convolution waveform methods applied to
solving a linear initial value problem as well as the convergence behavior of static Krylov subspace
methods applied to solving the associated linear algebraic equation.
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1. Introduction. Dynamic iteration methods for initial value problems were
first studied by Picard (1893) and Lindelöf (1894) in the context of existence and
uniqueness of solutions to ODEs. In the early 1980’s, dynamic iteration was reintro-
duced (with the name “waveform relaxation”) as an efficient method for solving the
large sparsely coupled differential equation systems generated by the simulation of
integrated circuits [15, 43]. Since then, this method has been extended and applied to
various other application areas [20, 24, 40]. Waveform relaxation continues to attract
interest because of its natural medium-scale parallelism.

With the waveform approach, a dynamic system of equations is first decomposed
spatially (i.e., at the equation level). Individual equations, or sets of equations taken
together, are then solved iteratively by using values from previous iterates of other
equations as input. Thus, the iterates are functions (“waveforms”) rather than vec-
tors.

Unfortunately, the convergence rate of standard waveform relaxation can be pro-
hibitively slow for many problems of interest. As with relaxation-based approaches
for linear algebra (e.g., Jacobi), application of appropriate acceleration is necessary
to make the waveform approach practical. Previous approaches for accelerating the
convergence of waveform relaxation include the shifted Picard iteration [34], multi-
grid [18, 41], SOR [23], Chebyshev acceleration [17], convolution SOR [30], L

2 Krylov
subspace methods [19], and adaptive window size selection [14].

Many of these waveform acceleration techniques are analogous to acceleration
methods for iteratively solving linear systems of equations. However, in most cases,
the generalizations of those approaches to waveform relaxation do not accelerate con-
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vergence to the same degree as their linear algebra counterparts [23]. An analysis
of why linear acceleration of waveform relaxation can, in general, be expected to be
limited is given in [28].

One acceleration method for waveform relaxation that does, in fact, provide the
same degree of acceleration as the analogous linear algebra method is convolution
SOR, developed in [30, 31]. Inspired by convolution SOR, we use a convolution-based
approach to develop an entirely new class of algorithms for accelerating the conver-
gence of waveform relaxation, namely, convolution Krylov subspace methods. As
particular exemplars of this new class of algorithms, we develop and analyze convolu-
tion GMRES (CGMRES) and biconvolution CG (BiCCG). Analysis of these methods
shows that the convolution algorithms for linear differential equations and the cor-
responding algorithms for the associated linear algebraic equations have the same
convergence rate bounds. In other words, the convolution Krylov subspace methods
accelerate the convergence of waveform relaxation to the same degree as their linear
algebra counterparts.

In the next two sections, we first review waveform relaxation and the L
2 Krylov

subspace techniques presented in [19]. The convolution Krylov subspace methods
are then developed and analyzed. Experimental results comparing various waveform
approaches are presented, and we conclude with a discussion and suggestions for
further work.

2. Waveform relaxation. The mathematical description of waveform methods
that we will be use throughout this paper is based on the model initial value problem:{

d
dtx(t) +Ax(t) = f(t),

x(0) = x0,
(2.1)

where A ∈ R
n×n, f(t) ∈ R

n is a given input, and x(t) ∈ R
n is the unknown vector

to be computed over an interval of interest [0, T ].
In (2.1), let A =M −N be a splitting of A. The waveform relaxation algorithm

based on this splitting is expressed in matrix form as follows.
Algorithm 1 (waveform relaxation for linear systems).
1. Initialize: Pick x0.
2. Iterate: For waveform iteration k = 0, 1, . . .

Solve {
d
dtx

k+1(t) +Mxk+1(t) =Nxk(t) + f(t),
xk+1(0) = x0

for xk+1(t) on [0, T ].
Using operator notation, the waveform relaxation iteration can be expressed as

xk+1 = Kxk +ψ,(2.2)

where the variables are defined on L
2([0, T ],Rn). The operator

K : L
2([0, T ],Rn)→ L

2([0, T ],Rn)

is defined by

(Kx)(t) =
∫ t

0

e−M(t−s)Nx(s)ds,(2.3)
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and ψ ∈ L
2([0, T ],Rn) is given by

ψ(t) = e−Mtx0 +

∫ t

0

e−M(t−s)f(s)ds.

It is obvious then that x will satisfy

(I −K)x = ψ,(2.4)

where I is the identity operator.

2.1. Properties. In this section we briefly review some relevant properties of
the operator K.

Remark. Associated with the initial value problem (2.1) is a linear algebraic
problem

Ax = b.(2.5)

Similarly, associated with the waveform relaxation equation (2.4) is a preconditioned
linear system of equations

(I −M−1N)x =M−1b.(2.6)

In what follows, we relate properties (in particular, spectral properties) ofM−1N to
properties of K and relate the behavior of algorithms applied to (2.4) to the behavior
of algorithms applied to (2.6).

Lemma 2.1. The operator K as defined in (2.3) is compact, has zero spectral
radius, and has adjoint operator K∗ given by

(K∗x)(t) =
∫ T

t

[
e−M(s−t)N

]T
x(s)ds.

Remark. In general, K is not self-adjoint with respect to the L
2 inner product,

even when M−1N , the matrix for the corresponding linear system, is symmetric in
R
n (or Hermitian in C

n).
Since K is compact with zero spectral radius, a straightforward convergence result

can be stated.
Theorem 2.2. The waveform relaxation algorithm (2.2) generates a sequence of

iterates {xk} such that xk → x as k →∞.
Although K has zero spectral radius, it is highly nonnormal and thus the char-

acteristics of the operator are far from trivial. That is, the spectrum itself provides
very little insight into the behavior of iterative methods involving the operator K.
One approach to understanding iterative methods involving K is to consider the case
for T → ∞, in which case spectral properties of the operator apparently do provide
information about the behavior of iterative methods involving K. A detailed analysis
of waveform relaxation for the T →∞ case is given in [23].

Unfortunately, the spectrum of K is discontinuous as a function of T—for any
finite T , the spectral radius of K is zero. Thus, the degree to which the results for
infinite T apply to real problems (which necessarily use finite T ) is problem-dependent.
One tool for understanding the behavior of K for finite T , and one that in some sense
unifies the two cases of finite and infinite T , is pseudospectral analysis [38].
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Definition. Let X be a Banach space with norm ‖ · ‖. The ε-pseudospectrum of a
densely defined closed linear operator A : X→ X is defined as

Λε(A) ≡
{
λ ∈ C : ‖(λI −A)−1‖ ≥ ε−1

}
,

where it is understood that ‖(λI − A)−1‖ = ∞ for λ ∈ Λ(A). Here Λ(A) is the
spectrum of A.

The following result (the proof is given in [22]) shows that the pseudospectrum
is continuous as T →∞.

Theorem 2.3. Let KT and K∞ denote the operator K on L
2([0, T ],Rn) and

L
2([0,∞),Rn), respectively. Then, for ε > 0,

cl lim
T→∞

Λε(KT ) = Λε(K∞).

2.2. Example. To aid our subsequent discussion, we provide a graphical illus-
tration of the spectrum and pseudospectrum of K for the model problem (2.1). We
take A to be a symmetric positive definite matrix:

A =
1

∆x2


2 −1 0
−1 2 −1

. . .
. . .

. . .

−1 2 −1
0 −1 2


n×n

,(2.7)

which is obtained, e.g., from discretizing the one-dimensional heat equation with
spatial discretization ∆x. For this example, we use a Jacobi splitting to obtain M
and N from A, and we take ∆x = 1/16, n = 17, and ε = 10−3.

Figure 2.1 shows the spectra and pseudospectra of KT and K∞ for A given
in (2.7), where KT and K∞, respectively, denote the operator K on L

2([0, T ],Rn)
and L

2([0,∞),Rn). Since the matrix M−1N is normal, the pseudospectrum of K∞
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Fig. 2.1. Spectrum and pseudospectrum of KT and K∞ for A given in (2.7). In the left figure,
Λ(K∞) is the union of the interiors of the circles shown, Λ(KT ) is the origin (indicated with o),
and the eigenvalues of M−1N are indicated with x. In the right figure, Λε(K∞) is the union of the
interiors of the dotted circles.
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is also very close to the spectrum. The spectra and pseudospectra were plotted using
the formulae given in [22]. Note that Λε(KT ) does not have a known formula (only
bounds are known), and so it is not plotted.

3. Hilbert space acceleration methods. For solving linear algebra problems,
Krylov subspace algorithms form sequences of approximate solutions {xk} with

xk = x0 +

k−1∑
i=0

αiA
ir0,

where x0 is the initial estimate for x and rk = b − Axk is the residual associated
with the kth iterate. That is, each xk is a member of the affine Krylov subspace

xk ∈ x0 + K
k(A, r0) = x0 + span{r0,Ar0, . . . ,Ak−1r0} ⊂ R

n.

Algorithms for generating {xk} typically do so by enforcing some type of Galerkin
or minimal residual condition on the iterates. To enforce these conditions, it is only
necessary that the underlying space has certain geometric properties, namely, that a
notion of orthogonality exists. This is usually taken to mean Hilbert space, but, as we
will see, it seems that Hilbert space geometry may be too strong and that weaker ge-
ometric conditions can yield effective methods (see the discussion in section 7). Thus,
Krylov subspace algorithms can readily be extended from R

n to Hilbert space (a fact
that has been known since the early development of Krylov subspace iterative meth-
ods for linear algebra [10]). By embedding (2.4) into an appropriate Hilbert space, it
is a rather straightforward matter to develop Krylov subspace acceleration techniques
for waveform relaxation. A natural Hilbert space for this problem is L

2([0, T ],Rn).

3.1. Waveform GMRES. By Lemma 2.1, it is obvious thatK is not self-adjoint
with respect to the L

2 inner product. Thus, in order to accelerate waveform relaxation,
we must restrict our attention to those Krylov subspace algorithms suitable for non-
Hermitian linear systems. At present, the premier such algorithm is the GMRES
algorithm of Saad and Schultz [33].

The waveform GMRES (WGMRES) algorithm is as follows.
Algorithm 2 (WGMRES).
1. Start: Set r0 = ψ − (I −K)x0, v1 = r0/‖r0‖, β = ‖r0‖.
2. Iterate: For k = 1, 2, . . . , until satisfied do:

hjk = 〈(I −K)vk,vj〉, j = 1, 2, . . . , k

ṽk+1 = (I −K)vk −∑k
j=1 hjkv

j

hk+1,k = ‖ṽk+1‖
vk+1 = ṽk+1/hk+1,k.

3. Form approximate solution:

xk = x0 + V kyk, where yk minimizes ‖βe1 − H̄k
yk‖,

V k = (v1,v2, . . . ,vk), e1 = (1, 0, . . . , 0)T , and H̄
k
= (hij)(k+1)×k.

Remark. Symbolically, this algorithm is identical to the GMRES algorithm on
R
n. The difference is that the vectors and vector-space operations are understood to

be defined on the Hilbert space L
2([0, T ],Rn) rather than on R

n. That is, xk, rk, ψ,

vk, ṽk ∈ L
2([0, T ],Rn), hjk ∈ C, and 〈·, ·〉 is the L

2 inner product.
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3.2. Analysis of WGMRES. In order to analyze WGMRES, it is useful to
recall that GMRES is a Galerkin method. The use of a Galerkin method over a
Krylov space generated by (I−K) is discussed in [25] and [29], where the approach is
called the method of moments (see also [42]). The following two results can be found
in [19, 21].

Theorem 3.1. Let X be a Hilbert space and let A : X → X be a bounded
bijective linear operator. Let Xk ⊂X be a k-dimensional subspace with Xk ⊂Xk+1

for all k ∈ N. If x is in the closure of S =
⋃∞
k=1X

k, then the Galerkin method for
the operator equation Ax = f converges.

Corollary 3.2. The Galerkin method for (I −K)x = ψ converges in the space
L

2([0, T ],Rn), with finite dimensional subspaces K
m(K,ψ) = {ψ,Kψ,. . . ,Km−1ψ} for

all m ∈ N.
As an immediate consequence, we have that WGMRES converges.
Unfortunately, because of the nonnormality of the operator K, nothing much can

be said about the rate of convergence, particularly in relationship to the spectrum of
M−1N (or, more to the point, in relationship to the behavior of GMRES applied to
solving a linear system of equations based on M−1N).

Although precise statements about the convergence behavior of GMRES cannot
be made, certain (rather pessimistic) qualitative statements can be made. Nevan-
linna considered the general case of linear acceleration of waveform relaxation in [28],
with the conclusion that significant speedups (of the sort one sees for linear algebra
problems) would not be achievable in general.

Intuitively, we can see that it is much more difficult for GMRES to be effective
when applied to waveform relaxation. Figure 2.1 shows the spectrum and pseudospec-
trum of K. For the matrix problem, the spectrum of M−1N consists of a set of
distinct eigenvalues on the real axis. For the waveform problem, the pseudospectrum
of K fills a two-dimensional region in the complex plane. Clearly, it is much more
difficult to find a good minimizing polynomial for the waveform case than for the
linear algebra case. In fact, by using conformal mapping techniques, it is possible to
show that there is, in fact, no essential speedup possible for WGMRES for a large
class of problems [37] (on the infinite interval).

However, all is not lost. Similar pessimistic results hold for waveform relaxation
accelerated with SOR [23]. However, with the use of convolution techniques, Reichelt
developed a variant of SOR for waveform relaxation that does for (2.4) what algebraic
SOR does for (2.6) [31]. That convolution techniques can provide the desired rate of
acceleration for SOR gives us hope that similar results can be achieved for Krylov
subspace techniques. We develop such a class of algorithms and prove their rates of
convergence in the next section.

4. Convolution methods. The principle behind convolution SOR (CSOR),
and, indeed, the convolution methods developed in this paper, is that rather than sim-
ply taking linear combinations of waveform iterates, the methods take sums weighted
by a convolution kernel. The resulting algorithms thus circumvent the limitations of
linear acceleration as described in [23] and [28]. In fact, CSOR and the convolution
Krylov subspace algorithms developed here exhibit speedup precisely comparable to
that in the associated linear algebra problem.

4.1. CSOR. A waveform relaxation algorithm using CSOR for solving (2.1)
is shown in Algorithm 3. The algorithm takes an ordinary Gauss–Seidel waveform
relaxation step to obtain a value for the intermediate variable x̂k+1

i . The iterate xk+1
i

is obtained by adding a correction obtained by convolving x̂k+1
i − xk+1

i with a kernel
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function ω(t). This is in contrast to simple waveform SOR in which xk+1
i is obtained by

multiplying x̂k+1
i −xk+1

i with a scalar parameter ω. With the convolution, the CSOR
method correctly accounts for the temporal frequency-dependence of the spectrum of
the Jacobi waveform relaxation operator (e.g., Jacobi waveform relaxation smoothes
high frequency components of the error waveform more rapidly than low frequency
components) by, in effect, using a different SOR parameter for each frequency [31].

Algorithm 3 (Gauss–Seidel waveform relaxation with CSOR acceleration).
1. Initialize: Pick vector waveform x0(t) ∈ C1([0, T ],Rn) with x0(0) = x0.
2. Iterate: For k = 0, 1, . . . , until converged,

• Solve for scalar waveform x̂k+1
i (t) ∈ C1([0, T ],R) with x̂k+1

i (0) = x0i,

(
d
dt + aii

)
x̂k+1
i (t) = fi(t)−

i−1∑
j=1

aijx
k+1
i (t)−

n∑
j=i+1

aijx
k
i (t).

• Overrelax to generate xk+1
i (t) ∈ C1([0, T ],R),

xk+1
i (t) = xki (t) +

∫ t

0

ω(τ) ·
[
x̂k+1
i (t− τ)−xki (t− τ)

]
dτ.(4.1)

4.2. Convolution Krylov subspace algorithms. In this section and the next,
we incorporate convolution into the Krylov subspace approach for accelerating wave-
form relaxation. We begin by identifying some key spaces and associated operations
to be used in what follows.

Assume f, g ∈ L
2(R,R) are functions, and x = (x1, . . . , xn)

T , y = (y1, . . . , yn)
T

∈ L
2(R,Rn) are vectors of functions. Define

(f � g)(t) =

∫ ∞
−∞

f(s)g(t− s)ds ∈ L
1(R,R),

(f � x)(t) = ((f � x1)(t) . . . (f � xn)(t))
T ∈ L

1(R,Rn),

〈x,y〉(t) =
n∑
i=1

(xi � ỹi)(t) ∈ L
1(R,R),

where f̃(t) = f(−t), and x̃(t) = x(−t).
Remark. Although the above formulae are defined in general for L

2 functions, one
important subset of L

2 that will figure prominently is C0([0,∞),R), the compactly
supported continuous functions, and we will be working with this space in what fol-
lows. The following technique is purely for the analysis of the algorithms, although
the implementational computations are not related to it. For brevity we will indicate
KT by K.

From the basic operational calculus [26, 27, 36], it is known that convolution in-
duces a ring structure on C0([0,∞),R). As with any ring structure, this ring structure,
can be algebraically extended to a quotient field (in a manner similar to extending
the ring of integers to the field of rational numbers). Define Q to be the set of ordered
pairs (“fractions”)

Q = {f/g : f, g ∈ C0([0,∞),R)}.

By a result of Titchmarsh [36], there are no zero divisors; i.e., f � g = 0 implies that
either f = 0 or g = 0. The axiomatic operations required for field structure are then
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readily defined. An operational calculus has been developed on this basis, adding a
theoretical underpinning to the operational calculus of Heaviside [26, 27].

A result of Foiaş shows that the range of convolution is dense in L
1, a result

that was later extended to the continuous case [7, 35]. More recently, a constructive
proof of these results has been given by Bäumer [2]. As a direct consequence of the
injectivity and dense range properties of convolution, we have the following.

Lemma 4.1. Let Q be the quotient field induced by the convolution ring {C0([0,∞),
R), �}. For any element f/g ∈ Q, there is a sequence {φi} with φi ∈ C0([0,∞),R)
such that

lim
i→∞

φi � g = f.

Remark. Q is, in fact, a space of generalized functions; the limit limi→∞ φi may
not necessarily exist in C0([0,∞),R). For example, the element in Q identified with
f/f is the Dirac δ-distribution. In this regard, Q is a completion of C0([0,∞),R)
with respect to the convolution operator. Notice that a function f ∈ C0([0,∞),R)
can be identified with any quotient of the form (f �g)/g, g �= 0; i.e., f ∈ C0([0,∞),R)
implies f ∈ Q.

Using this definition of convolution between elements of Q and continuous func-
tions, we can readily create a vector space over the field Q using convolution.

Proposition 4.2. Let Q be the quotient field induced by the convolution ring
{C0([0,∞),R), �}. For q ∈ Q and x ∈ C0([0,∞),Rn), let φi → q in the sense of
Lemma 4.1. With the convolution operation defined by

q � x = lim
i→∞

φi � x,

C0([0,∞),Rn) forms a vector space over Q.
Definition. Assume A is a bounded linear operator defined on C0([0,∞),Rn)

and r0 ∈ C0([0,∞),Rn) is fixed. The m-dimensional convolution Krylov subspace
generated by A and r0 is defined to be

K
m
 (A, r0) = span{r0,Ar0, . . . ,Am−1r0}

=

{
m−1∑
i=0

αi �Air0 : αi ∈ Q

}
⊂ C0([0,∞),Rn).

Notice that this definition of the convolution Krylov subspace differs from the
usual definition of a Krylov subspace due to the convolution operator; by span we
mean combinations under convolution. However, as with methods that use the tradi-
tional definition of a Krylov subspace, we seek to find the element of K

m
 (A, r0) that

best satisfies (2.4).

4.3. Examples. Using convolutions in Krylov subspace methods may seem coun-
terintuitive. To demonstrate the general operation of convolution Krylov subspace
methods, we present two examples.

Example. Consider the following initial value problem:{
d
dtx(t) +Ax(t) = 0,

x(0) = (0, 1)T ,
(4.2)

where A is a 2× 2 matrix

A =

(
2 −1
−1 2

)
.
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For splitting A = M −N with M = 2I, in order to solve (I − K)x = ψ, we
choose

x = α0 � r0 + α1 � (I −K)r0.

By the Galerkin conditions,

〈(I −K)x, r0〉 = 〈ψ, r0〉,

〈(I −K)x, (I −K)r0〉 = 〈ψ, (I −K)r0〉,

we can find  α0 = 2
3 [e
−2t � (−2 + e−2t)]/[(e−2t − 1) � (e−2t − 1)],

α1 = − 2
3 [−1 + 2e−2t)]/[(e−2t − 1) � (e−2t − 1)]

and  x1 = −(te−2t)/(te−2t − 1) = e−2t sinh t,

x2 = −(e−2t)/(te−2t − 1) = e−2t cosh t,

which is the analytic solution for (4.2).
Example. Let us consider another initial value problem:{

d
dtx(t) +Ax(t) = 0,

x(0) = (0, 1)T ,
(4.3)

where A is a 2× 2 matrix

A =

(
0 1
−1 0

)
.

In this case, we take splitting A =M −N with M = 0. Again choose

x = α0 � r0 + α1 � (I −K)r0.

As in the last example, by using the Galerkin conditions, we can find α0 = −(6t− t3)/(6t+ t3),

α1 = 6/(6t+ t3)

and  x1 = t3/(6t+ t3) = sin t,

x2 = (3t2)/(6t+ t3) = cos t,

which is the analytic solution for (4.3).
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4.4. Fourier transform. Define the Fourier–Laplace transform on L
2(R,R) to

be

f̂(z) =
1√
2π

∫ ∞
−∞

e−izxf(x)dx for z ∈ C.

It is well known that ‖f̂‖L2(R,R) = ‖f‖L2(R,R).
Remarks.
1. 〈x,y〉 (̂ξ) = 〈x̂(ξ), ŷ(ξ)〉, where 〈·, ·〉 is the Hermitian inner product in C

n,
and ξ ∈ R.

2. 〈x,y〉 = 〈̃y,x〉 = 〈ỹ, x̃〉.
3. For f, g ∈ C0([0,∞),R) (f/g)̂ = f̂

ĝ
is a meromorphic function with discrete

poles [1]. (Here ·· indicates normal division.)
4. Under the convolution inner product “〈·, ·〉,” the convolution adjoint oper-

ator of K is the same as the L
2 adjoint operator K∗ of K. Thus, even with

real symmetric A, K is not self-adjoint with respect to 〈·, ·〉.
Since convolution is closely related to the Fourier transform (which is isometric

on the L
2(R,R) space), we restrict our analysis to L

2 spaces. In this context, we view
C0([0,∞),Rn) as a subspace of L

2(R,Rn) by extending elements in C0([0,∞),Rn)

trivially on (−∞, 0). Hence, for any f ∈ C0([0,∞),R) we have ‖f̂‖ = ‖f‖ in the
L

2(R,R) norm.

4.5. The convolution GMRES algorithm. In this section, we introduce the
convolution GMRES (CGMRES) algorithm. Analogous to GMRES for linear systems
of equations, CGMRES is appropriate for operator systems where A is not self-adjoint
with respect to the convolution inner product.

Algorithm 4 (CGMRES). Let A : C0([0,∞),Rn) → C0([0,∞),Rn) be a
bounded linear operator. By Bäumer [2], A is extendable to C0([0,∞),Rn), the

vector-valued generalized function space, i.e., the completion of C0([0,∞),Rn) under
operator A, which is a vector space over Q due to the commutative of A and �. Let
f ∈ C0([0,∞),Rn).

1. Pick x0 ∈ C0([0,∞),Rn) and compute r0 = f −Ax0, β = |r̂0|∨,v1 = r0/β.
2. For j = 1, . . . , until converged,

wj = Avj
hij = 〈wj ,vi〉, i = 1, . . . , j

wj = wj −
∑
i≤j

hij � v
i

hj+1,j = |ŵj |∨, if hj+1,j ≡ 0, set m = j and go to step 3
vj+1 = wj/hj+1,j .

3. Compute ym, the minimizer of 〈(β�(δ0, 0, . . . , 0)T−H̄m
�y), (β�(δ0, 0, . . . , 0)

T−
H̄

m
� y)〉 and xm=x0 + V m � ym, where H̄

m
=(hij)(m+1)×m,

V m = (v1,v2, . . . ,vm), and δ0 is the Dirac δ-distribution.
Remarks.
1. In the above algorithms, “| · | ” is the Euclidean norm defined in C

n, and
“ ∨ ” means the inverse Fourier transform.

2. By x/f for x ∈ C0([0,∞),Rn) and f ∈ C0([0,∞),R) we mean the vector
(x1/f, x2/f, . . . , xn/f)

T ∈ Q
n.
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3. It is not hard to see that there is a compactly supported sequence βi ∈
C0(−∞,∞) such that βi → β ∈ L

2(R). Rewrite v1 = r0/β = (r0 � h)/(β � h),
where h �= 0 is any function in C0([0,∞),R). Now βi �h ∈ C0([0,∞),R). We
view Av1 = limi→∞(Ar0 �h)/(βi �h) which is well-defined on the completion

vector space C0([0,∞),Rn) over Q.

4.6. Convergence of CGMRES. To analyze the convergence of the CGMRES
algorithm we begin with the convolution Petrov–Galerkin conditions

〈f −Ax,w〉 = 0 ∀w ∈ AK,

where for brevity K indicates K
m
 (A, r0). Based on these conditions, we say that

f −Ax is convolutionally perpendicular to AK. Note that 〈x,y〉 = 0 if and only if
〈x̂(ξ), ŷ(ξ)〉 = 0 for all ξ ∈ R.

Therefore, after taking Fourier transforms, the CGMRES algorithm becomes the
GMRES algorithm for the linear algebraic equation

A(ξ)u = f̂(ξ)

at each fixed ξ ∈ R, where A(ξ) = (iξ + d)−1(iξI +A).
Notice that Fourier transform is isometric on L

2. Therefore, by Proposition 6.15
in [32], we have the following result.

Theorem 4.3. Assume A =X diag(λ1, . . . , λn)X
−1 has a splittingM−N with

M = dI, d > 0. Define

ε(k) = max
ξ∈R

min
p ∈ Pk

p(0) = 1

max
j=1,...,n

∣∣∣∣p( iξ + λj
iξ + d

)∣∣∣∣ .
Then the residual rk = ψ − (I −K)xk obtained by the CGMRES algorithm satisfies

‖rk‖L2 ≤ κ2(X)ε(k)‖r0‖L2 ,

where κ2(X) = ‖X‖2‖X−1‖2 is the condition number of X under the 2-norm.
Proof. For each fixed ξ ∈ R, it is known that∣∣∣r̂k(ξ)∣∣∣

2
≤ κ2(X) min

p ∈ Pk
p(0) = 1

max
j=1,...,n

∣∣∣∣p( iξ + λj
iξ + d

)∣∣∣∣ · ∣∣∣r̂0(ξ)
∣∣∣
2
.

The right-hand side of the above inequality is bounded by κ2(X)ε(k)|r̂0(ξ)|2. Inte-
grating both sides in ξ, we get the desired inequality.

In order to estimate ε(k), we assume that eigenvalues of A are included in an
ellipse E(c, e, a), centered at c, with focal distance e and semimajor axis a, which
excludes the origin.

Assume a kth order polynomial p satisfies p(0) = 1. Then, since d > 0, ξ ∈
R, iξ + d �= 0,

qξ(z) = p

(
iξ + z

iξ + d

)
is of degree k in z and qξ(−iξ) = 1. For fixed ξ,

{qξ ∈ Pk : qξ(−iξ) = 1} = {q ∈ Pk : q(−iξ) = 1}.
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In fact, assume q(z) = 1+a1(z+ iξ)+ · · ·+ak(z+ iξ)k. Define kth order polynomials

p(z) = 1 + a1(d+ iξ)z + · · ·+ ak(d+ iξ)kzk,

qξ(z) = p

(
iξ + z

iξ + d

)
,

and then q(z) = qξ(z). Therefore, the above two sets are equal. Hence,

ε(k) ≤ max
ξ∈R

min
p ∈ Pk

p(0) = 1

max
z∈E(c,e,a)

∣∣∣∣p( iξ + z

iξ + d

)∣∣∣∣
= max

ξ∈R

min
qξ ∈ Pk

qξ(−iξ) = 1

max
z∈E(c,e,a)

|qξ(z)|

= max
ξ∈R

min
q ∈ Pk

q(−iξ) = 1

max
z∈E(c,e,a)

|q(z)|.

By an estimate in [32, p. 192],

min
q∈Pk, q(−iξ)=1

max
z∈E(c,e,a)

|q(z)| = Ck
(
a
e

)∣∣∣Ck ( c+iξe )∣∣∣ ,
where Ck is the kth order Chebyshev polynomial. Hence,

ε(k) ≤ max
ξ∈R

Ck
(
a
e

)∣∣∣Ck ( c+iξe )∣∣∣ .
The following is a key lemma for analyzing the convergence of CGMRES.

Lemma 4.4. If c, e are real and positive, then

min
ξ∈R

∣∣∣∣Ck (c+ iξ

e

)∣∣∣∣ = Ck

( c
e

)
.

Proof. By the definition of the Chebyshev polynomial Ck(z), or by noticing that

Ck(z) has real coefficients, we have Ck(z) = Ck(z). As an immediate consequence,

min
ξ∈R

∣∣∣∣Ck (c+ iξ

e

)∣∣∣∣ = min
ξ≥0

∣∣∣∣Ck (c+ iξ

e

)∣∣∣∣ .
In order to find the minimum, define

f(ξ) =

∣∣∣∣Ck (c+ iξ

e

)∣∣∣∣2 .
Let w = ρeiθ such that

1

e
(c+ iξ) =

1

2
(w + w−1).

Then

(ρ+ ρ−1) cos θ =
2c

e
, (ρ− ρ−1) sin θ =

2ξ

e
.
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By a computation, we get

f ′(ξ) =
k

2eβ2
[(ρ2k − ρ−2k)(ρ+ ρ−1) sin θ − 2(ρ− ρ−1) cos θ sin(2kθ)],

where β2 = |ρeiθ − ρ−1e−iθ|2.
If ρ = 1 or θ = 0, then ξ = 0 and f ′(ξ) = 0. However, in our case, since c > e,

ρ �= 1. Otherwise, cos θ = c
e > 1, which is impossible.

By the relation (ρ − ρ−1) sin θ = 2ξ
e , if 0 < θ < π

2 , then ρ > 1; if −π2 < θ < 0,
then ρ < 1. By symmetry, in order to prove that f ′(ξ) > 0 for ξ > 0, it is enough to
prove that

g(ρ, θ) = (ρ2k − ρ−2k)(ρ+ ρ−1) sin θ − 2(ρ− ρ−1) cos θ sin(2kθ) > 0

for 0 < θ < π
2 and ρ > 1. By introduction, one can prove that sin(mθ) ≤ m sin θ

for 0 < θ < π
2 and m ∈ N. Also, notice that ρ + ρ−1 > 2. Hence, in order to prove

g(ρ, θ) > 0, it is sufficient to prove that

g(ρ) = ρ2k − ρ−2k − k(ρ2 − ρ−2) > 0

for ρ > 1. However, g(ρ) is a strictly increasing function for ρ > 1, which implies
g(ρ) > g(1) = 0. This proves the lemma.

Notice that the Chebyshev polynomial Ck(z) has properties |Ck(z)| = |Ck(z)| =
|Ck(−z)| = |Ck(−z)|. Therefore, by the last lemma, we have the following conse-
quence.

Corollary 4.5. If c is a complex number and e �= 0 is real, then

min
ξ∈R

∣∣∣∣Ck (c+ iξ

e

)∣∣∣∣ = Ck

( |Re c|
|e|

)
.

Finally, we have the following convergence result for CGMRES.
Theorem 4.6. Assume A =XΛX−1 =M−N , M = dI, d > 0. The spectrum

of A is included in ellipse E(c, e, a), centered at c, with focal distance e and semimajor
axis a, which excludes origin. Then the residual rk = ψ − (I −K)xk obtained by the
CGMRES algorithm satisfies the estimate

‖rk‖L2 ≤ κ2(X)
Ck
(
a
e

)
Ck
(
c
e

)‖r0‖L2 .

Remark. Thus, CGMRES applied to (2.4) is bounded by the same rate of con-
vergence as GMRES applied to the associated problem (2.6).

5. Biconvolution acceleration methods. The CGMRES algorithm demon-
strates that the use of convolution can accelerate waveform relaxation in a manner
similar to GMRES applied to the associated linear algebra problem. However, there
is still something unsatisfying about the algorithm in that even for Hermitian A one
must use CGMRES. In this section, we turn our attention to a method that exploits
Hermitian properties of the matrix A, namely, biconvolution CG (BiCCG). The de-
velopment of BiCCG will use a convolution bilinear form in place of the convolution
inner product used by CGMRES.

We begin by defining the following bilinear form:

[x,y](t) =

n∑
i=1

(xi � yi)(t) ∈ L
1(R,R).
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Remarks.
1. Convolution between a function and a vector of functions is the same as

defined in section 4. However, the convolution bilinear form [·, ·] is different
from the previously defined inner product 〈·, ·〉.

2. Notice that [x,y] (̂ξ) = [x̂(ξ), ŷ(ξ)]. Here [·, ·] is the bilinear form in C
n

defined by

[z,w] =

n∑
i=1

ziwi

for w,z ∈ C
n. Note that this is not the typical inner product in C

n. It is,
however, the bilinear form used in the BiCG algorithm [8], hence the name
“biconvolution CG.”

3. Since, by assumption, functions and vectors are compactly supported, f � x
and [x,y] are in fact in L

2.

5.1. The BiCCG algorithm. The CG algorithm is a popular and effective
iterative method for solving symmetric positive definite systems of equations [11, 13].
Waveform extensions (using scalar parameters) of the CG algorithm are not well-
defined, even for symmetric positive definite A, since, in general, the operator K is
not self-adjoint with respect to the L

2 inner product. On the other hand, as we will
see below, it is possible to develop a well-defined waveform extension to CG using
convolution, i.e., the BiCCG algorithm.

Definition. An operator A : L
2([0, T ],Rn)→ L

2([0, T ],Rn) is called convolution
self-adjoint if for any u, v ∈ L

2([0, T ],Rn), [Au,v] = [u,Av].
Remark. IfA is Hermitian, the operator K is convolution self-adjoint with respect

to the convolution bilinear form “[·, ·].”
Definition. An operator A : L

2([0, T ],Rn)→ L
2([0, T ],Rn) is called convolution

definite if for any nonzero u ∈ L
2([0, T ],Rn), [Au,u] �= 0 in the L

2 sense.
Since (s + d)−1(sI + A) is symmetric positive definite for positive real s and

symmetric positive definite A, the following lemma follows immediately from the
above definitions and the equivalence (via the Fourier transform) between (I − K)
and (s+ d)−1(sI +A).

Lemma 5.1. If A is real symmetric with splitting M −N , M = dI, d > 0,
then (I − K) is convolution self-adjoint. Furthermore, if A is positive definite, then
(I −K) is also convolution definite.

If A is convolution self-adjoint and convolution definite on L
2([0, T ],Rn), then we

can define the following BiCCG algorithm (analogous to CG).
Algorithm 5 (BiCCG). Let A : C0([0,∞),Rn)→ C0([0,∞),Rn) be a bounded

linear operator. As before, A is extendable to C0([0,∞),Rn), the vector-valued gen-
eralized function space, which is again a vector space over Q. Let f ∈ C0([0,∞),Rn).

1. Pick x0 ∈ C0([0,∞),Rn) and compute r0 = f −Ax0, p0 = r0.
2. For j = 0, 1, . . . until converged,

αj = [rj , rj ]/[Apj ,pj ]
xj+1 = xj + αj � p

j

rj+1 = rj − αj �Apj ,
βj = [rj+1, rj+1]/[r

j , rj ]
pj+1 = rj+1 + βj � p

j .

Note that the Fourier transform of the BiCCG algorithm for A = I − K is the
BiCG algorithm (see [6, 8, 13]) for matrix A(ξ) = (iξI +M)−1(iξI +A). Therefore,
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we can view the BiCG algorithm (for a complex system) as a continuation of the CG
algorithm (for a real system). Also, notice that by [5] there is a CG algorithm for
matrix A(ξ) = (iξ + d)−1(iξI +A).

5.2. Laplace and Fourier transforms. To analyze the convergence of the
BiCCG algorithm, we first give some definitions for weighted Sobolev spaces (see
[16]) and introduce some results related to Laplace and Fourier transforms.

Definition. For a real number λ > 0, α ≥ 0, define the weighted Sobolev space
H
α
λ(R,R) according to

H
α
λ(R,R) = {u ∈ L

2(R,R) : (λ2 + |ξ|2)α/2|û(ξ)| ∈ L
2(R,R)}.

In particular, if λ = 1, then the weighted H
α
1 space is the regular H

α space [16].
Also notice that H

α
λ can be defined by another equivalent norm as follows:

H
α
λ(R,R) = {u ∈ L

2(R,R) : (|λ|+ |ξ|)α|û(ξ)| ∈ L
2(R,R)}.

Now assume A = U diag(λ1, . . . , λn)U
T = UΛUT is real symmetric positive

definite, where UUT = I, and 0 < λ1 ≤ · · · ≤ λn. Define a weighted H
α
A as follows:

H
α
A(R,Rn) = {u = (u1, . . . , un)

T : (λj + |ξ|)α|(UT û)j(ξ)| ∈ L
2(R,R)}.

By the definition, we can see that H
α
A = H

α
λ1
×H

α
λ2
× · · · ×H

α
λn

. Also, on H
α
A, we

can define an inner product

(u,v)α =

∫
R

ûT (ξ)(|ξ|I +A)2αv̂(ξ)dξ

=

∫
R

〈û(ξ), v̂(ξ)〉(|ξ|I+A)2αdξ,

which makes H
α
A a Hilbert space with norm

‖u‖Hα
A
=

 n∑
j=1

∫
R

(λj + |ξ|)2α|(UT û)j(ξ)|2dξ
1/2

.

Now we want to study the relationship between the Laplace transform and the
Fourier transform.

Since f ∈ L
2([0, T ],R), and the trivial extension of f to L

2(R,R) is compactly
supported, the Fourier transform of f is therefore entire in C. By Cauchy’s theorem,∫

R

(f̂(z))2dz = 0,

where R is a rectangle as shown in the figure at the
right. Therefore,∫ α

0

(f̂(ξ))2dξ +

∫ −β
0

(f̂(α+ is))2d(is)

+

∫ 0

α

(f̂(ξ − iβ))2dξ +

∫ 0

−β
(f̂(is))2d(is) = 0.

✲

✻

✲

❄

✛

✻

�

s

ξ
α

−iβ

R
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For fixed β, let α → ∞. By a property of the Fourier transform (see [12]),

limα→∞ f̂(α+ is) = 0. Also, since (f̂(α+ is))2 is absolutely integrable,

lim
α→∞

∫ −β
0

(f̂(α+ is))2d(is) = i

∫ −β
0

lim
α→∞(f̂(α+ is))2ds = 0.

The third term becomes − ∫∞
0

(f̂(ξ − iβ))2dξ. Let β →∞, and then by

f̂(ξ − iβ) =
1√
2π

∫ ∞
0

e−βx−iξxf(x)dx→ 0

we get that

lim
β→∞

∫ ∞
0

(f̂(ξ − iβ))2dξ = 0.

Hence, we conclude that

i

∫ ∞
0

(f̂(ξ))2dξ =

∫ ∞
0

(f̂(−is))2ds ≥ 0,(5.1)

since f̂(−is) is the Laplace transform and is real. We denote the Laplace transform

by Lf(s) = f̂(−is). This relationship between the Laplace and Fourier transforms
plays an important role in what follows.

For subsequent analysis, we require the following definition (see [16]).
Definition.

H
α
0 ([0,∞),R) = closure of C∞0 [0,∞) in H

α ([0,∞),R) ,

where C∞0 [0,∞) = {f : f ∈ C∞[0,∞) with compact support }.
If we assume that f ∈ H

1/2
0 ([0,∞),R), then by Cauchy’s theorem again,∫

R

z(f̂(z))2dz = 0,

so that

−
∫ ∞

0

ξ(f̂(ξ))2dξ =

∫ ∞
0

s(Lf(s))2ds ≥ 0.(5.2)

Combining (5.1) and (5.2) yields a key lemma.

Lemma 5.2. For f ∈ H
1/2
0 ([0,∞),R), λ ∈ C,

i

∫ ∞
0

(iξ + λ)(f̂(ξ))2dξ =

∫ ∞
0

(s+ λ)(Lf(s))2ds.

Because of this key equality, we can give the following definitions.

Definition. Assume f = (f1, . . . , fn)
T , g = (g1, . . . , gn)

T ∈ H
1/2
0 ([0,∞),Rn), and

real symmetric and positive definite A = U diag(λ1, . . . , λn)U
T with UUT = I and

0 < λ1 ≤ · · · ≤ λn. Define an A-weighted inner product by

〈f , g〉A = i

∫ ∞
0

〈f̂ , ĝ〉iξI+Adξ

=

n∑
j=1

i

∫ ∞
0

(iξ + λj)
(
Ûf
)
j
(ξ)
(
Ûg
)
j
(ξ)dξ.
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Definition. For f ∈ H
1/2
0 ([0,∞),Rn), define a norm by

‖f‖
K

1/2

A

= 〈f ,f〉1/2A .

The new normed space is again a Hilbert space and is denoted by K
1/2
A ([0,∞),Rn).

Remarks.
1. By integration over a wedge instead of over a rectangle as in Lemma 5.2, one

can see that

ieiθ
∫ ∞

0

(ireiθ + λ)(f̂(reiθ))2dr =

∫ ∞
0

(s+ λ)(Lf(s))2ds.

This means the integral

i

∫
R(θ)

(iz + λ)(f̂(z))2dz =

∫
R(θ+π/2)

(z + λ)(Lf(z))2dz

is invariant in θ, where R(θ) = {reiθ : 0 ≤ r < +∞} is a ray starting at the
origin.

2. The K
1/2
A norm is bounded by the H

1/2
A norm.

3. By Theorem 11.1, Chapter 1 in [16], H
1/2
0 (R+,Rn) = H

1/2(R+,Rn), where
R

+ = {x ∈ R : x > 0} is the positive half ray of R.

5.3. Convergence of the BiCCG algorithm. By using the projection proper-
ties and Chebyshev polynomials, one can prove the following well-known theorem [32]
for CG applied to the linear system Ax = b.

Theorem 5.3. Assume matrix A is real symmetric and positive definite. Let
{xm} be the sequence of approximate solutions obtained by the CG algorithm and let
x∗ be the exact solution. Then the iterates satisfy

‖x∗ − xm‖A ≤ 2

[√
κ(A)− 1√
κ(A) + 1

]m
‖x∗ − x0‖A,

where κ(A) = λmax

λmin
is the condition number of the matrix A.

For the BiCCG algorithm we can prove a similar convergence theorem.
Theorem 5.4. Let M −N be a splitting of a real symmetric positive definite

matrix A with M = dI, d > 0. Then the BiCCG algorithm applied to (2.4) generates
a sequence of iterates {xm} that satisfy the weighted 1

2 -estimates

‖x∗ − xm‖
K

1/2

A

≤ 2

[√
κ(A)− 1√
κ(A) + 1

]m
‖x∗ − x0‖

K
1/2

A

,(5.3)

where x∗ is the exact solution.
Proof. By taking Fourier transform on the BiCCG algorithm, we can see that,

for each m, x∗ − xm ∈ L
2([0,∞),Rn). Since x∗ − xm is differentiable on [0, T ]

and (x∗ − xm)(0) = 0, by Urysohn’s lemma, we can assume that x∗ − xm is also

compactly supported on [0,∞). Therefore x∗ − xm is in fact in H
1/2
0 ([0,∞),Rn).

By taking Laplace transform on the BiCCG algorithm, we can see that L(xm)(s)
is an approximate solution obtained by the CG algorithm applied to real matrix
(s+ d)−1(sI +A). By Theorem 5.3, for each fixed s ≥ 0,

‖L(x∗ − xm)(s)‖ sI+A
s+d
≤ 2

[√
κ(sI +A)− 1√
κ(sI +A) + 1

]m
‖L(x∗ − x0)(s)‖ sI+A

s+d
.(5.4)
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Since A is positive definite, there exists an unitary matrix U such that

A = UΛUT ,

where Λ = diag(λ1, . . . , λn), and 0 < λ1 ≤ · · · ≤ λn. It is easy to see that

κ(sI +A) =
s+ λn
s+ λ1

.

Notice that

max
s∈R+∪{0}

κ(sI +A) = max
s∈R+∪{0}

[
s+ λn
s+ λ1

]
= κ(A).

Since f(x) =
√
x−1√
x+1

is an increasing function on [0,+∞), we have

√
κ(sI +A)− 1√
κ(sI +A) + 1

≤
√
maxs∈R+∪{0} κ(sI +A)− 1√
maxs∈R+∪{0} κ(sI +A) + 1

=

√
κ(A)− 1√
κ(A) + 1

.

By (5.4) we get

‖L(x∗ − xm)(s)‖2sI+A
s+d

≤ 4

[√
κ(A)− 1√
κ(A) + 1

]2m

‖L(x∗ − x0)(s)‖2sI+A
s+d

.(5.5)

Multiplying both sides of (5.5) by (s+ d), we obtain

‖L(x∗ − xm)(s)‖2sI+A ≤ 4

[√
κ(A)− 1√
κ(A) + 1

]2m

‖L(x∗ − x0)(s)‖2sI+A.(5.6)

Integrating both sides of (5.6) with respect to s and taking the square root gives the
desired inequality (5.3).

Remarks.
1. Thus, under the weighted K

1/2
A norm, BiCCG applied to (2.4) is bounded by

the same rate of convergence as CG applied to the associated problem (2.6).
2. Another important point to note is that, for the Laplace transform, we have

the pointwise inequality (5.4). For the Fourier transform, it is not known
whether a similar pointwise inequality is true or not. Such an inequality with
the Fourier transform is unnecessary, however, because, by Theorem 5.4, it
is the integral of the Fourier transforms of x∗ − xm and x∗ − x0 which must
satisfy a similar inequality.

Notice that, since ((I −K)n)ˆ = ((I −K)ˆ)n, and the CG algorithm terminates
in finite steps, we have the following result regarding finite termination.

Corollary 5.5. The BiCCG algorithm applied to (2.4) terminates in finite
steps.

Remark. For the algebraic equation (2.5), the CG algorithm terminates in finite
steps. For the differential equation (2.1), we should expect that finite termination
is possible [34]. Although the finite termination property is typically not important
in practice, the fact that convolution Krylov subspace methods exhibit this property
is another indication that they are the “right” generalization from linear algebra
problems to waveform problems. The Hilbert space methods in section 3 do not
exhibit finite termination.
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6. Numerical experiments. In this section, we present preliminary experi-
mental results using convolution Krylov subspace methods. For our model problem,
we take the one-dimensional heat equation with unit spatial dimension and T = 64
for the temporal dimension. The problem is discretized with 64 spatial points and 32
temporal points and is integrated using backward-Euler.

Two convolution Krylov subspace methods are examined: BiCCG and the convo-
lution variant of the generalized conjugate residual algorithm [4], CGCR. The CGCR
algorithm is included rather than convolution GMRES because, although it is theo-
retically equivalent to GMRES, it is much simpler to implement. Thus, the CGCR
results should be taken to be indicative of CGMRES.

The experimental code for BiCCG was written in C++, using the CG module
from the IML++ class library [3]. Although IML++ was developed for solving lin-
ear systems of equations, by using it with a waveform class and by overloading the
appropriate operators, the same CG code was able to be used for both linear alge-
bra problems and waveform problems. The code for CGCR was similarly based on a
GCR module (auxiliary to the IML++ library distribution). The experimental code
for CSOR and WGMRES was written in C. The convolution kernel for CSOR was
obtained according to the algorithms given in [30, 31].

Elements in Q were applied to functions by first convolving with the numerator
and then deconvolving with the denominator. The deconvolution was implemented in

a variety of ways, including computation of ( f̂ĝ )
∨, inversion of the convolution based

recurrence, and a Newton iteration. All approaches gave similar results.
Figure 6.1 compares the convergence rates of waveform relaxation, WGMRES,

CSOR, and BiCCG applied to solving the model problem. We also show the perfor-
mance of CG applied to solving the corresponding linear algebra problem. For this
experiment, BiCCG and CGCR have remarkably better convergence behavior than
the other waveform methods and is, in fact, much better than CG itself. This be-
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Fig. 6.1. Convergence of waveform relaxation, WGMRES, CSOR, BiCCG, and CGCR ap-
plied to solving a model initial value problem. Also shown is the convergence of CG applied to the
corresponding linear algebra problem.
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havior is typical of BiCCG and CGCR over a wide variety of experiments that we
conducted (with a particular caveat, which we discuss below).

7. Discussion.

7.1. Deconvolution. It is well known that, in general, deconvolution is an ill-
posed problem and that therefore numerical deconvolution will be ill-conditioned.
This ill-posedness arises because the “divisor” in the deconvolution may have zero
values at particular frequencies.

Theoretically, the convolution Krylov subspace algorithms avoid this ill-posedness
naturally because of our choice of functions (i.e., compactly supported L

2 functions).
That is, the deconvolution is well-defined in the L

2 sense.
Practically, however, the issue becomes somewhat more delicate, because we need

to be concerned not simply with possible zero divisors, but with divisors that are
small in a relative numerical sense. Since the convolution Krylov algorithms can be
interpreted as being simultaneous iterative processes in the frequency domain, one at
each frequency, small divisors can occur during the solution process if the residual
values at particular frequencies are small relative to others.

The numerical ill-conditioning can be avoided in part by ensuring that each tem-
poral frequency is present in the initial waveform x0. In our experiments, we effected
this by setting x0 to have random values as a function of t �= 0. Unfortunately, for
problems having a large number of timepoints, higher temporal frequencies will tend
to converge at a much higher rate than the lower frequencies, and numerical insta-
bilities due to deconvolution may appear. Practical implementations of convolution
Krylov subspace algorithms (if there turn out to be such things) should be able to
circumvent this difficulty via windowing (which may be attractive for memory conser-
vation reasons at any rate) or perhaps by restarting. Alternatively, it may be possible
to modify the algorithms in such a way as to equalize the rates of convergence at all
frequencies, or through the incorporation of some kind of regularization procedure.

7.2. Conclusion. As should be evident from this paper, convolution Krylov sub-
space methods are tremendously interesting, and we have scratched only the surface
here. These methods appear to be the “right” generalization of linear algebra acceler-
ation techniques to waveform relaxation. Moreover, they open some entirely new lines
of inquiry about Krylov subspace iterations. For instance, the vector space defined by
convolution with generalized function is seemingly more abstract than R

n or L
2, where

Krylov subspace algorithms are normally thought to be appropriate. The geometry of
Hilbert space is explicitly present only in the transform domain. Finally, there have
been a number of algorithms developed recently for the efficient iterative solution,
large nonsymmetric linear systems of equations—QMR [9] and Bi-CGSTAB [39] to
name just two. Adaptation of these and other methods to the convolution case should
be relatively straightforward in terms of description and implementation (although, as
with BiCCG and CGMRES, analysis may be somewhat less straightforward). How-
ever, a comprehensive experimental study of an assortment of convolution Krylov
subspace methods, particularly if applied to practical application problems, would
help to shed light on whether or not these methods will be practical in real life.
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Abstract. We introduce and study a new class of projection methods—namely, the velocity-
correction methods in standard form and in rotational form—for solving the unsteady incompressible
Navier–Stokes equations. We show that the rotational form provides improved error estimates in
terms of the H1-norm for the velocity and of the L2-norm for the pressure. We also show that
the class of fractional-step methods introduced in [S. A. Orsag, M. Israeli, and M. Deville, J. Sci.
Comput., 1 (1986), pp. 75–111] and [K. E. Karniadakis, M. Israeli, and S. A. Orsag, J. Comput.
Phys., 97 (1991), pp. 414–443] can be interpreted as the rotational form of our velocity-correction
methods. Thus, to the best of our knowledge, our results provide the first rigorous proof of stability
and convergence of the methods in those papers. We also emphasize that, contrary to those of the
above groups, our formulations are set in the standard L2 setting, and consequently they can be
easily implemented by means of any variational approximation techniques, in particular the finite
element methods.

Key words. Navier–Stokes equations, projection methods, fractional-step methods, incom-
pressibility, finite elements, spectral approximations
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1. Introduction. We consider in this paper the time discretization of the un-
steady incompressible Navier–Stokes equations in primitive variables. For a given
body force f(t) and an initial solenoidal vector field v0, we look for u and p such that

∂tu− ν∇2u + u·∇u +∇p = f in Ω× [0, T ],

∇·u = 0 in Ω× [0, T ],

u|Γ = 0,

u|t=0 = v0 in Ω.

(1.1)

The boundary condition on the velocity is set to zero for the sake of simplicity. The
fluid domain Ω is open and bounded in R

d (d = 2 or 3 in practical situations). The
domain boundary Γ is assumed to be smooth; e.g., Γ is Lipschitzian and Ω is locally
on one side of its boundary.

The goal of this paper is to present a new class of fractional-step projection meth-
ods. The original projection method was introduced by Chorin [3] and Temam [15]
in the late 60s. An important class of projection methods is the so-called pressure-
correction methods introduced in [5, 8]. These schemes consist of two substeps per
time step: the pressure is treated explicitly in the first substep and corrected in the sec-
ond substep by projecting the intermediate velocity onto the space of divergence-free
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fields. These schemes are widely used in practice and have been rigorously analyzed
in [4, 14, 7].

The new class of projection methods that we introduce in this paper also consist
of two substeps per time step: here the viscous (velocity) term is treated explicitly
in the first substep and corrected in the second one. Two versions of the method are
presented: a standard form and a rotational form. We prove stability and O(δt2)
convergence in the L2-norm of the velocity for both versions. We also prove improved
error estimates for the rotational form, namely, O(δt3/2) convergence in the H1-norm
of the velocity and the L2-norm of the pressure. Such estimates are new and, as
indicated by our numerical results, appear to be the best possible under the general
context considered in this paper. Since this class of projection methods can be viewed
as the dual class of pressure-correction methods, we shall hereafter refer to them as
velocity-correction methods.

An interesting aspect of the new class of projection methods is its relation to a
set of schemes introduced in [10] and [9]. These schemes have never been analyzed
rigorously, partly because they do not fit into any standard weak setting. As originally
presented in [10] and [9], these schemes use normal traces of second derivatives of the
velocity at the boundary, introducing formidable difficulties in analysis as well as
in implementation. In contrast, the new schemes are set in the standard L2 weak
setting and consequently can be naturally implemented and analyzed by means of
finite elements or spectral methods. In fact, the schemes in [10] and [9] are formally
equivalent, in the spatial continuous case, to the rotational forms of our velocity-
correction methods. Thus, to the best of our knowledge, this paper provides the first
rigorous proof of stability and convergence of the methods introduced in [10] and [9].

The paper is organized as follows. In the next section, we introduce the velocity-
correction method in standard form and prove error estimates for both the time
continuous and the time discrete versions of the method. Then, in section 3, we
introduce the rotational form of the velocity-correction method and show that this
version yields better convergence rates than its standard counterpart. In section 4,
we present numerical results, using a finite element method and a Legendre spectral
method, which are consistent with our theoretical analysis. In section 5, we examine
the relation between the splitting schemes introduced in [10] and [9] and our velocity-
correction methods in rotational form. In section 6, we indicate how nonlinear terms
can be treated in the velocity-correction schemes. We present concluding remarks in
section 7.

We now introduce some notation. We shall use the standard Sobolev spaces
L2(Ω)d, H1(Ω)d, H−1(Ω)d, etc., whose norm will be denoted by ‖ · ‖0,Ω, ‖ · ‖1,Ω,
‖ · ‖−1,Ω, etc. The L2 scalar product for scalar and vector valued functions is denoted
by (·, ·). We equip H1

0 (Ω)d with the following norm:

∀β ∈ H1
0 (Ω)d, ‖β‖1,Ω := (‖∇·β‖20,Ω + ‖∇×β‖20,Ω)1/2.(1.2)

We introduce two spaces of solenoidal vector fields

H = {v ∈ L2(Ω)d; ∇·v = 0; v · n|Γ = 0},(1.3)

V = {v ∈ H1(Ω)d; ∇·v = 0; v|Γ = 0},(1.4)

and we define PH to be the L2 projection onto H.
We denote by dt and ∂t the time derivative and the partial derivative with respect

to time, respectively. Let δt > 0 be a time step and set tk = kδt for 0 ≤ k ≤ K =
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[T/δt]. Let φ0, φ1, . . . , φK be some sequence of functions in some Banach space E.
We shall use the following discrete norms:

‖φ‖l2(E) :=

(
δt

K∑
k=0

‖φk‖2E
)1/2

, ‖φ‖l∞(E) := max
0≤k≤K

(‖φk‖2E) .(1.5)

We denote by c a generic constant which is independent of ε and δt but possibly
depends on the data and the solution, and the value of which may vary at each
occurrence.

Since the nonlinear term does not contribute in any essential way to the error
analysis of projection methods, we shall carry out our analysis for the linearized
equations only, so as to avoid technicalities which may obscure the essential ideas in
the proof. Our proofs can be adapted to account for the nonlinearity using standard
techniques (cf. [16, 14, 7]).

2. Velocity-correction methods: Standard form.

2.1. Introduction of the scheme. Before introducing velocity-correction
methods, let us recall the second-order pressure-correction scheme. Hereafter, we
take ν = 1 for simplicity and drop the nonlinear term. A second-order pressure-
correction scheme is written in the following form: set u0 = u(0), p0 = p(0), and
choose u1 and p1 to be reasonable approximations of u(δt) and p(δt); then for k ≥ 1
we look for (ũk+1;uk+1, pk+1) such that{

1
2δt (3ũ

k+1 − 4uk + uk−1)−∇2ũk+1 +∇pk = f(tk+1),

ũk+1|Γ = 0
(2.1)

and 
3

2δt (u
k+1 − ũk+1) +∇(pk+1 − pk) = 0,

∇·uk+1 = 0,

uk+1 · n|Γ = 0,

(2.2)

where n is the outward normal of Ω. For a rigorous analysis of this scheme and its
variants, we refer to [4, 14, 7].

Now we propose to adopt a new point of view by switching the role of pressure
and velocity. We first treat the viscous (velocity) term explicitly in the first substep
and then correct it in the second substep. The corresponding scheme is as follows:
set ũ0 = v0 and choose ũ1 to be a good approximation of u(δt); then for k ≥ 1 we
look for (uk+1, pk+1; ũk+1) such that

1
2δt (3u

k+1 − 4ũk + ũk−1)−∇2ũk +∇pk+1 = f(tk+1),

∇·uk+1 = 0,

uk+1 · n|Γ = 0

(2.3)

and {
3

2δt (ũ
k+1 − uk+1)−∇2(ũk+1 − ũk) = 0,

ũk+1|Γ = 0.
(2.4)
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We shall hereafter refer to this scheme as the standard form of the velocity-correction
method. Note that there is a strong similarity between the velocity-correction method
and the pressure-correction method. In fact, our velocity-correction scheme can be
regarded as the dual of the pressure-correction scheme.

Note also that (2.3) can be written as

uk+1 = PH

(
4

3
ũk − 1

3
ũk−1 +

2δt

3
(∇2ũk + f(tk+1))

)
,

where PH is the L2 projection onto H. Hence, the method defined by (2.3)–(2.4) falls
into the class of the projection methods as introduced by Chorin and Temam. Since
the projection step precedes the viscous step, one could also refer to these methods
as “projection–diffusion” methods as in [1].

We observe from (2.4) that ∇2(ũk+1 − ũk) · n|Γ = 0, which implies that

∇2ũk+1 · n∣∣
Γ

= ∇2ũk · n|Γ = · · · = ∇2ũ0 · n|Γ.(2.5)

We then derive from the above and (2.3) that

∂pk+1

∂n

∣∣∣∣
Γ

= (f(tk+1) +∇2ũ0) · n|Γ.(2.6)

This is obviously an artificial Neumann boundary condition for the pressure, which
will introduce a numerical boundary layer on the pressure and limit the accuracy of
the scheme, just as in the case of pressure-correction schemes.

2.2. Implementation of the standard form. When working with H1-
conformal finite elements, it is difficult to solve (2.3) as a weak Poisson problem
for the pressure, for there is a second derivative in the right-hand side which cannot
be tested against gradients. To avoid this difficulty, we rewrite the algorithm in an
equivalent form by making algebraic substitutions.

By subtracting step (2.3) at time tk from step (2.3) at time tk+1 and by substi-
tuting step (2.4) at time tk into the resulting equation, one obtains a new equivalent
form of the projection step:

1
2δt (3u

k+1 − 7ũk + 5ũk−1 − ũk−2) +∇(pk+1 − pk) = f(tk+1)− f(tk),

∇·uk+1 = 0,

uk+1 · n|Γ = 0.

(2.7)

Note that in this form the projection step can be solved easily as a weak Poisson
problem as follows:{

Find pk+1 in H1(Ω)/R such that ∀q in H1(Ω)/R

(∇(pk+1 − pk),∇q) = (f(tk+1)− f(tk) + 1
2δt (7ũ

k − 5ũk−1 + ũk−2),∇q).
(2.8)

Once the pressure is known, the new viscous velocity ũk+1 is evaluated by solving{
1

2δt (3ũ
k+1 − 4ũk + ũk−1)−∇2ũk+1 +∇pk+1 = f(tk+1),

ũk+1|Γ = 0.
(2.9)

Note that the projected velocity uk+1 has been completely eliminated from the
algorithm (2.8)–(2.9); hence, it is not necessary to evaluate this quantity, i.e., ũk+1 is
the approximate velocity to be considered in practice.
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2.3. The time continuous version: A singularly perturbed PDE. Just
as in the pressure-correction case (cf., e.g., [11, 14]), the behavior of the error for the
velocity-correction scheme (2.7)–(2.9) is determined by the corresponding singularly
perturbed system:

∂tu
ε −∇2uε +∇pε = f, uε|Γ = 0,(2.10)

∇·(uε − ε(∇pεt − ft)) = 0,

(
∂pεt
∂n
− ft · n

) ∣∣∣
Γ

= 0,(2.11)

uε|t=0 = u(0), pε|t=0 = p(0).(2.12)

Note that (2.11) is obtained by taking the divergence of (2.7) and letting δt→ 0. Its

singular nature comes from the nonphysical boundary condition (
∂pεt
∂n − ft · n)|Γ = 0,

which introduces a numerical boundary layer for the pressure.
The following theorem characterizes the errors u− uε and p− pε.
Theorem 2.1. If the solution of (1.1) is sufficiently smooth, we have

‖u− uε‖L2(L2) + ε
1
4 ‖u− uε‖L∞(L2) + ε

1
2 (‖u− uε‖L∞(H1) + ‖p− pε‖L∞(L2)) ≤ cε.

Proof. We shall first derive some a priori estimates.
We denote e = u− uε and q = p− pε. Subtracting (2.10) from (1.1), we find

{
et −∇2e +∇q = 0, e|Γ = 0,

∇·e = −ε∇·(∇pεt − ft) = ε∇·∇qt − ε∇·(∇∂tp− ft), (
∂pεt
∂n − ft · n)|Γ = 0,

(2.13)

with e(0) = 0 and q(0) = 0. Taking the inner product of (2.13) with (e, q), we find

1

2
dt‖e‖20,Ω + ‖∇e‖20,Ω +

ε

2
dt‖∇q‖20,Ω = ε(∇∂tp− ft,∇q)

≤ ε

2
‖∇∂tp− ft‖20,Ω +

ε

2
‖∇q‖20,Ω.

Thus, an application of the Gronwall lemma leads to

‖e(t)‖20,Ω + ε‖∇q(t)‖20,Ω +

∫ t

0

‖∇e‖20,Ωds ≤ cε.(2.14)

Now, noticing that e(0) = 0 and q(0) = 0 imply that et(0) = 0, we can repeat the
computation above to obtain

‖et(t)‖20,Ω + ε‖∇qt(t)‖20,Ω +

∫ t

0

‖∇et‖20,Ωds ≤ cε,(2.15)

which implies, in particular, that

‖uεt‖L∞(L2) + ‖∇pεt‖L∞(L2) ≤ c.(2.16)

We are now in position to derive the desired error estimates. Consider the fol-
lowing parabolic dual problem:

wt +∇2w +∇r = e(s), s ∈ (0, t),

∇·w = 0,

w|Γ = 0, w(t) = 0.

(2.17)
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It is well known (and an easy matter to show) that∫ t

0

(‖w‖22,Ω + ‖∇r‖20,Ω)ds ≤ c

∫ t

0

‖e(s)‖20,Ωds.(2.18)

Taking the inner product of (2.17) with e(s) and using the error equation (2.13) and
the fact that ∇·w = 0, we infer

‖e‖20,Ω = (e, wt) + (e,∇2w) + (∇r, e)

= dt(e, w)− (et, w) + (∇2e, w)− (r,∇·e)
= dt(e, w)− ε(∇r,∇(pεt − ft)).

(2.19)

Integrating the equation above on the interval [0, t], we find∫ t

0

‖e‖20,Ωds ≤ ε

(∫ t

0

‖∇r‖20,Ωds
) 1

2
(∫ t

0

‖∇(pεt − ft)‖20,Ωds
) 1

2

.

Using this bound together with (2.16) and (2.18), we finally obtain

‖e‖L2(L2) ≤ cε.

Next, we consider a second parabolic dual problem:
wt +∇2w +∇r = et(s), s ∈ (0, t),

∇·w = 0,

w|Γ = 0, w(t) = 0.

(2.20)

Owing to (2.15), we have∫ t

0

(‖w‖22,Ω + ‖∇r‖20,Ω)ds ≤ c

∫ t

0

‖et(s)‖20,Ωds ≤ cε.(2.21)

Taking the inner product of (2.20) with e(s), and proceeding in the same fashion as
above, we find

1

2
dt‖e‖20,Ω = dt(e, w)− (r,∇·e) = dt(e, w)− ε(∇r,∇(pεt − ft)).(2.22)

Integrating this equation in time and using (2.21), we deduce

‖e(t)‖20,Ω ≤ 2ε

(∫ t

0

‖∇r‖20,Ωds
) 1

2
(∫ t

0

‖∇(pεt − ft)‖20,Ωds
) 1

2

≤ cε
3
2 .

To estimate ‖e‖L∞(H1), we take the inner product of the first equation in (2.13)
with et as follows:

‖et‖20,Ω +
1

2
dt‖∇e‖20,Ω = (q,∇·et) = ε(∇q, ∂t∇(pεt − ft))

= εdt(∇q,∇(pεt − ft))− ε(∇qt,∇(pεt − ft)).
(2.23)

Integrating this equation in time and using the a priori estimates in (2.16), we obtain

‖et‖2L2(L2) + ‖∇e‖2L∞(L2) ≤ Cε(‖∇q‖L∞(L2) + ‖∇qt‖L2(L2))‖∇(pεt − ft)‖L∞(L2) ≤ cε.

Finally, using the estimate above and (2.15), we derive

‖q‖L∞(L2) ≤ cε
1
2 .

The proof is now complete.
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2.4. Error estimates for the standard velocity-correction scheme. In
this section we derive error estimates for the standard velocity-correction scheme
(2.3)–(2.4). Hereafter we assume that the following nonessential initialization hy-
pothesis holds:

(H)


‖u(δt)− ũ1‖0,Ω ≤ cδt2,

‖u(δt)− ũ1‖1,Ω ≤ cδt3/2,

‖u(δt)− ũ1‖2,Ω ≤ cδt.

Remark 2.1. We point out that this hypothesis would hold, in particular, if
(ũ1, u1, p1) were obtained by using a first-order velocity-correction projection scheme.
This would amount to replacing the second-order BDF (backward difference formula)
time stepping in (2.3) with the backward Euler time stepping at the very first time
step.

Theorem 2.2. Under the initialization hypothesis (H) and provided that the
solution to (1.1) is smooth enough in time and space, the solution (uk, ũk, pk) to
(2.3)–(2.4) is such that

‖u− u‖l2(L2(Ω)d) + ‖u− ũ‖l2(L2(Ω)d) ≤ c(u, p, T ) δt2,

‖u− u‖l∞(L2(Ω)d) + ‖u− ũ‖l∞(L2(Ω)d) ≤ c(u, p, T ) δt
3
2 ,

‖u− ũ‖l∞(H1(Ω)d) + ‖p− p‖l∞(L2(Ω)) ≤ c(u, p, T ) δt.

Note that the discrete norms in the theorem above, and subsequently in later sections,
are defined in (1.5). By comparing the time discrete version (2.3)–(2.4) and the time
continuous version (2.10)–(2.12), one observes that ε in (2.10)–(2.12) corresponds to
δt2 in (2.3)–(2.4). Thus, the results of Theorem 2.2 are fully consistent with those of
Theorem 2.1.

The proof of Theorem 2.2 follows exactly the same procedure as the proof of
Theorem 2.1 but for the time discretization. The main technical difficulty comes from
the treatment of the second-order BDF term, which will be treated in detail in the
proof of Theorem 3.1. Thus, we omit the proof here to avoid unnecessary repetition.

3. Velocity-correction method: Rotational form.

3.1. Introduction of the scheme. The main obstacle in proving error esti-
mates better than first-order on the velocity in the H1-norm and the pressure in the
L2-norm comes from the fact that the algorithm enforces the nonphysical pressure
Neumann boundary condition (2.6). This phenomenon is reminiscent of the numeri-
cal boundary layer induced by the nonphysical boundary condition ∂np

k+1|Γ = · · · =
∂np

0|Γ enforced by the pressure-correction method in its standard form; cf. [14, 7].
Thus, in order to obtain better approximation for the pressure, we need to correct this
nonphysical boundary condition. Considering the identity ∇2ũk = ∇∇·ũk−∇×∇×ũk
and the fact that we are searching for divergence-free solutions, we are led to replace
−∇2ũk in (2.3)–(2.4) with ∇×∇×ũk. The new scheme is as follows:

1
2δt (3u

k+1 − 4ũk + ũk−1) +∇×∇×ũk +∇pk+1 = f(tk+1),

∇·uk+1 = 0,

uk+1 · n|Γ = 0

(3.1)
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and {
3

2δt (ũ
k+1 − uk+1)−∇2ũk+1 −∇×∇×ũk = 0,

ũk+1|Γ = 0.
(3.2)

This scheme is hereafter referred to as the rotational form of the velocity-correction
algorithm.

Observing from (3.2) that (∇2ũk+1 +∇×∇×ũk) · n|Γ = 0, we derive from (3.1)
that

∂pk+1

∂n

∣∣∣∣
Γ

= (f(tk+1) +∇2ũk+1) · n|Γ,(3.3)

which, unlike (2.6), is a consistent Neumann boundary condition for the pressure.
This is the main reason why the rotational form yields a much better pressure ap-
proximation than the standard form.

3.2. Implementation of the rotational form. As in the standard form of
the method, the projection step (3.1) cannot be solved as a weak Poisson problem
when working with H1-conformal finite elements, for there is a second derivative in
the right-hand side. This difficulty can be solved once more by making algebraic
substitutions.

By subtracting step (3.1) at time tk from step (3.1) at time tk+1 and by substi-
tuting step (3.2) at time tk into the resulting equation, a more adequate form of the
projection step is obtained:

1
2δt (3u

k+1 − 7ũk + 5ũk−1 − ũk−2) +∇(pk+1 − pk +∇·ũk)
= f(tk+1)− f(tk),

∇·uk+1 = 0,

uk+1 · n|Γ = 0.

(3.4)

The new viscous velocity ũk+1 is evaluated by solving{
1

2δt (3ũ
k+1 − 4ũk + ũk−1)−∇2ũk+1 +∇pk+1 = f(tk+1),

ũk+1|Γ = 0.
(3.5)

Note that the new form of the projection step is still not satisfactory since a second
derivative remains in the form of the term ∇∇·ũk. To remove this final difficulty, we
introduce an auxiliary pressure φk+1 = pk+1 − pk +∇·ũk. The final algorithm is as
follows: 

1
2δt (3u

k+1 − 7ũk + 5ũk−1 − ũk−2) +∇φk+1 = f(tk+1)− f(tk),

∇·uk+1 = 0,

uk+1 · n|Γ = 0,

(3.6)

pk+1 = φk+1 + pk −∇·ũk,(3.7)

{
1

2δt (3ũ
k+1 − 4ũk + ũk−1)−∇2ũk+1 = f(tk+1)−∇pk+1,

ũk+1|Γ = 0.
(3.8)
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In practice, the projection step is processed as follows:{
Find φk+1 in H1(Ω)/R such that ∀q in H1(Ω)/R,

(∇φk+1,∇q) = (f(tk+1)− f(tk) + 1
2δt (7ũ

k − 5ũk−1 + ũk−2),∇q).
(3.9)

Note once again that the projected velocity uk+1 has been eliminated from the
algorithm.

3.3. A time continuous version. We emphasize that it is informative to study
the time continuous version of the scheme, since it both reveals the behavior of the
splitting error and indicates the procedure to follow for obtaining stability and con-
vergence results on the discrete system.

By neglecting some small terms, the following can be considered an “approximate”
time continuous version of the scheme (3.6)–(3.8):

∂tu
ε −∇2uε +∇pε = f, uε|Γ = 0,(3.10)

∇·uε − ε∇·(∇φ− εft) = 0, (∇φ− εft) · n|Γ = 0,(3.11)

φ = εpεt +∇·uε,(3.12)

with uε(0) = u(0) and pε(0) = p(0). Note that (3.10) and (3.12) correspond, re-
spectively, to (3.8) and (3.7), while (3.11) corresponds to the divergence of (3.6), and
ε ∼ ∆t.

Without going into the full details of proving the well-posedness of (3.10)–(3.12)
and providing a detailed error analysis as we did for (2.10)–(2.12), we just indicate
how to derive the first a priori estimate. This will guide us to prove the stability of
the discrete scheme and will show that this scheme provides a better control on the
divergence of the approximate velocity.

Taking the inner product of εuεt with the time derivative of (3.10), we find

ε

2
dt‖uεt‖20,Ω + ε‖∇uεt‖20,Ω = ε(uεt , ft) + ε(pεt ,∇·uεt )

= ε(uεt , ft)− (∇·uε − φ,∇·uεt )
= ε(uεt , ft)−

1

2
dt‖∇·uε‖20,Ω + (φ,∇·uεt ).

Noting that

(φ,∇·uεt ) = (φ, ε∇2φt − ε2∇·ft) = −ε

2
dt‖∇φ‖20,Ω + ε2(∇φ, ft),

we obtain

ε

2
dt‖uεt‖20,Ω + ε‖∇uεt‖20,Ω +

1

2
dt‖∇·uε‖20,Ω +

ε

2
dt‖∇φ‖20,Ω = ε(uεt , ft) + ε2(∇φ, ft).

Using the fact that the initial data are such that uεt (0) = f(0) +∇2uε(0)−∇pε(0) =
f(0) +∇2u(0)−∇p(0), the Gronwall lemma yields

‖uεt (t)‖20,Ω + ‖∇φ(t)‖20,Ω +
1

ε
‖∇·uε(t)‖20,Ω +

∫ t

0

‖∇uεt‖20,Ωds ≤ c, t ∈ [0, T ].

Let us define e = u− uε and ψ = ε∂t(p− pε) +∇·uε. By working with the error
equation, the above results become

‖et(t)‖20,Ω + ‖∇ψ(t)‖20,Ω +
1

ε
‖∇·uε(t)‖20,Ω +

∫ t

0

‖∇et‖20,Ωds ≤ cε2, t ∈ [0, T ].
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A remarkable consequence, which is essential for obtaining improved error estimates,
is that we have

‖∇·uε‖L∞(L2) ≤ cε
3
2 .(3.13)

3.4. Error analysis. We now turn our attention to the error analysis of the
discrete scheme (3.1)–(3.2). The main result in this section is the following.

Theorem 3.1. Under the initialization hypothesis (H), if (u, p), the solution
to (1.1), is smooth enough in time and space, the solution (uk, ũk, pk) to (3.1)–(3.2)
satisfies the estimates

‖u− u‖l2(L2(Ω)d) + ‖u− ũ‖l2(L2(Ω)d) ≤ c(u, p, T ) δt2,

‖u− ũ‖l2(H1(Ω)d) + ‖p− p‖l2(L2(Ω)) ≤ c(u, p, T ) δt3/2.

The remainder of this section is devoted to the proof of the above theorem. Let
us introduce some notation. For any sequence φ0, φ1, . . . , we set

δtφ
k = φk − φk−1, δttφ

k = δt(δtφ
k), δtttφ

k = δt(δttφ
k).

For any sequence of functions in H1
0 (Ω)d ∩H2(Ω)d, say φ0, φ1, . . . , we set

Dtφ
k = −∇2φk −∇×∇×φk−1.

We shall make use of the following identity:

∀β ∈ H1
0 (Ω)d, (Dtφ

k+1, β) = (∇·φk+1,∇·β) + (∇×δtφ
k+1,∇×β).(3.14)

Hereafter we shall make use of the following notation:
ek = u(tk)− uk,

ẽk = u(tk)− ũk,

ψ̃k = u(tk+1)− ũk,

εk = p(tk)− pk.

(3.15)

The proof of Theorem 3.1 will be carried out through a sequence of estimates presented
below.

3.4.1. Stability and the improved estimate on ‖∇·ũk‖0,Ω.
Lemma 3.1. Provided that the solution of (1.1) is smooth enough in space and

time and satisfies the initialization hypothesis (H), then we have the following error
estimates:

‖∇·ũ‖l∞(L2(Ω)d) ≤ c(u, p, T ) δt3/2,

‖ẽ− e‖l∞(L2(Ω)d) ≤ c(u, p, T ) δt2,

‖δtẽ− δte‖l2(L2(Ω)d) ≤ c(u, p, T ) δt5/2.

Proof. The proof of this lemma follows the procedure set out in section 3.3 for the
time continuous counterpart of the scheme. The critical step here consists of working
with the time increments δte

k+1 and δtẽ
k+1, which corresponds to taking the inner

product of ε∂tu
ε with the time derivative of (3.10).
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Step 1: Let us first write the equations that control the time increments of the
errors. By defining Rk = ∂tu(t

k) − (3u(tk) − 4u(tk−1) + u(tk−2))/2δt, we have for
k ≥ 2 

1
2δt (3δte

k+1 − 4δtẽ
k + δtẽ

k−1) + Dtψ̃
k +∇(δtε

k+1 +∇·ũk) = δtR
k+1,

∇·δtek+1 = 0,

δte
k+1 · n|Γ = 0,

(3.16)

{
3

2δtδtẽ
k+1 + Dtẽ

k+1 = 3
2δtδte

k+1 + Dtψ̃
k,

ẽk+1|Γ = 0.
(3.17)

Step 2: Let us multiply (3.16) by 4δtδte
k+1 and integrate over Ω. We obtain

2(δte
k+1, 3δte

k+1 − 4δtẽ
k+ δtẽ

k−1) + 4δt(δte
k+1, Dtψ̃

k) = 4δt(δte
k+1, δtR

k+1)

≤ 4δt(‖δtek+1 − δtẽ
k+1‖0,Ω + ‖δtẽk+1‖0,Ω)‖δtRk+1‖0,Ω

≤ δt‖δtẽk+1‖21,Ω + δt‖δtek+1 − δtẽ
k+1‖20,Ω + cδt7,

where we have used the Poincaré inequality and the fact that ‖δtRk+1‖0,Ω ≤ cδt3.
Note also that we have used the inequality 2ab ≤ γa2+b2/γ, which holds for all γ > 0.
We shall repeatedly use this standard trick hereafter without mentioning it anymore.

Since the treatment of the approximate time derivative is quite involved, we show
the details. Let us define

I = 2(δte
k+1, 3δte

k+1 − 4δtẽ
k + δtẽ

k−1)

= 6(δte
k+1, δte

k+1 − δtẽ
k+1) + 2(δte

k+1 − δtẽ
k+1, 3δtẽ

k+1 − 4δtẽ
k + δtẽ

k−1)

+ 2(δtẽ
k+1, 3δtẽ

k+1 − 4δtẽ
k + δtẽ

k−1)

and denote by I1, I2, and I3 the three terms in the right-hand side. Owing to the
standard identities

2(ak+1, ak+1 − ak) = |ak+1|2 + |ak+1 − ak|2 − |ak|2,
2(ak+1, 3ak+1 − 4ak + ak−1) = |ak+1|2 + |2ak+1 − ak|2 + |δttak+1|2

− |ak|2 − |2ak − ak−1|2,
(3.18)

we deduce

I1 = 3‖δtek+1‖20,Ω + 3‖δtek+1 − δtẽ
k+1‖20,Ω − 3‖δtẽk+1‖20,Ω,

I3 = ‖δtẽk+1‖20,Ω + ‖2δtẽk+1 − δtẽ
k‖20,Ω + ‖δtttẽk+1‖20,Ω

− ‖δtẽk‖20,Ω − ‖2δtẽk − δtẽ
k−1‖20,Ω.

For the remaining term I2, we make use of (3.17) as follows:

3

2δt
I2 = 2(Dtẽ

k+1 −Dtψ̃
k, 3δtẽ

k+1 − 4δtẽ
k + δtẽ

k−1).

Using the relation ψ̃k = δtu(t
k+1) + ẽk, we obtain

3

2δt
I2 = 2(Dtδtẽ

k+1, 3δtẽ
k+1 − 4δtẽ

k + δtẽ
k−1)

− 2(Dtδtu(t
k+1), 3δtẽ

k+1 − 4δtẽ
k + δtẽ

k−1).
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By denoting as I21 and I22 the two terms in the right-hand side, and by using the
identities (3.14) and (3.18), we infer

I21 = 2(∇·δtẽk+1,∇·(3δtẽk+1 − 4δtẽ
k + δtẽ

k−1))

+ 2(∇×δttẽ
k+1, 3∇×δttẽ

k+1 −∇×δttẽ
k)

= ‖∇·δtẽk+1‖20,Ω + ‖∇·(2δtẽk+1 − δtẽ
k)‖20,Ω + ‖∇·(δtttẽk+1)‖20,Ω

− ‖∇·δtẽk‖20,Ω − ‖∇·(2δtẽk − δtẽ
k−1)‖20,Ω + 3‖∇×δttẽ

k+1‖20,Ω
+

1

3
‖∇×(3δtẽ

k+1 − 4δtẽ
k + δtẽ

k−1)‖20,Ω −
1

3
‖∇×δttẽ

k‖20,Ω,
I22 =− 2(∇×δttu(t

k+1),∇×(3δtẽ
k+1 − 4δtẽ

k + δtẽ
k−1))

≥− cδt4 − 1

6
‖∇×(3δtẽ

k+1 − 4δtẽ
k + δtẽ

k−1)‖20,Ω.
By combining all the results above, we deduce the following bound:

3‖δtek+1‖20,Ω− 3‖δtẽk+1‖20,Ω + 3(1− δt)‖δtek+1 − δtẽ
k+1‖20,Ω

+ ‖δtẽk+1‖20,Ω + ‖2δtẽk+1 − δtẽ
k‖20,Ω + ‖δtttẽk+1‖20,Ω

+
2δt

3

(
‖∇·δtẽk+1‖20,Ω + ‖∇·(2δtẽk+1 − δtẽ

k)‖20,Ω + ‖∇·(δtttẽk+1)‖20,Ω
+ 3‖∇×δttẽ

k+1‖20,Ω +
1

6
‖∇×(3δtẽ

k+1 − 4δtẽ
k + δtẽ

k−1)‖20,Ω
)

+ 4δt(δte
k+1, Dtψ̃

k)

≤ δt‖δtẽk+1‖21,Ω + ‖δtẽk‖20,Ω + ‖2δtẽk − δtẽ
k−1‖20,Ω

+
2δt

3

(
‖∇·δtẽk‖20,Ω + ‖∇·(2δtẽk − δtẽ

k−1)‖20,Ω +
1

3
‖∇×δttẽ

k‖20,Ω
)

+ cδt5.

Step 3: By taking the square of (3.17), multiplying the result by 4
3δt

2, and inte-
grating over the domain, we have

3‖δtẽk+1‖20,Ω+ 4δt(δtẽ
k+1, Dtẽ

k+1) +
4δt2

3
‖Dtẽ

k+1‖20,Ω

= 3‖δtek+1‖20,Ω + 4δt(δte
k+1, Dtψ̃

k) +
4δt2

3
‖Dtψ̃

k‖20,Ω.
Owing to (3.14), we deduce

3‖δtẽk+1‖20,Ω − 3‖δtek+1‖20,Ω + 2δt‖∇·ẽk+1‖20,Ω
+ 2δt‖∇·δtẽk+1‖20,Ω + 4δt‖∇×δtẽ

k+1‖20,Ω +
4δt2

3
‖Dtẽ

k+1‖20,Ω

= 2δt‖∇·ẽk‖20,Ω + 4δt(δte
k+1, Dtψ̃

k) +
4δt2

3
‖Dtψ̃

k‖20,Ω.

A control on ‖Dtψ̃
k‖20,Ω is obtained as follows:

‖Dtψ̃
k‖20,Ω ≤

(‖Dtδtu(t
k+1)‖0,Ω + ‖Dtẽ

k‖0,Ω
)2

≤ (cδt2 + ‖Dtẽ
k‖0,Ω

)2
= c2δt4 + 2δtcδt‖Dtẽ

k‖0,Ω + ‖Dtẽ
k‖20,Ω

≤ c2δt4 + δt
(
c2δt2 + ‖Dtẽ

k‖20,Ω
)
+ ‖Dtẽ

k‖20,Ω
≤ cδt3 + (1 + δt)‖Dtẽ

k‖20,Ω.
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Note that it is at this very point that the splitting error spoils the optimality. Finally,
we have

3‖δtẽk+1‖20,Ω− 3‖δtek+1‖20,Ω + 2δt‖∇·ẽk+1‖20,Ω + 2δt‖δtẽk+1‖21,Ω +
4δt2

3
‖Dtẽ

k+1‖20,Ω

≤ 2δt‖∇·ẽk‖20,Ω + 4δt(δte
k+1, Dtψ̃

k) +
4δt2

3
(1 + δt)‖Dtẽ

k‖20,Ω + cδt5.

Step 4: By combining the bounds obtained at Steps 2 and 3, and by dropping
some nonessential positive terms on the left-hand side, we finally deduce

‖δtẽk+1‖20,Ω + ‖2δtẽk+1 − δtẽ
k‖20,Ω + 2δt‖∇·ẽk+1‖20,Ω +

4δt2

3
‖Dtẽ

k+1‖20,Ω

+
2δt

3

(
‖∇·δtẽk+1‖20,Ω + ‖∇·(2δtẽk+1 − δtẽ

k)‖20,Ω +
1

3
‖∇×δttẽ

k+1‖20,Ω
)

+ 3(1− δt)‖δtek+1 − δtẽ
k+1‖20,Ω + δt‖δtẽk+1‖21,Ω

≤ ‖δtẽk‖20,Ω + ‖2δtẽk − δtẽ
k−1‖20,Ω + 2δt‖∇·ẽk‖20,Ω + (1 + δt)

4δt2

3
‖Dtẽ

k‖20,Ω

+
2δt

3

(
∇·δtẽk2

+ ‖∇·(2δtẽk − δtẽ
k−1)‖20,Ω +

1

3
‖∇×δttẽ

k‖20,Ω
)

+ cδt5.

By applying the discrete Gronwall lemma and using the initialization hypothesis (H),
we infer

δt‖∇·ẽk+1‖20,Ω+ δt2‖Dtẽ
k+1‖20,Ω +

k∑
l=0

‖δtel − δtẽ
l‖20,Ω

≤ c(‖ẽ2‖20,Ω + δt‖ẽ2‖21,Ω + δt2‖ẽ2‖22,Ω + δt4).

Thanks to (H), it is an easy matter to show directly that

‖ẽ2‖20,Ω + δt‖ẽ2‖21,Ω + δt2‖ẽ2‖22,Ω + δt4 ≤ cδt4.

Finally, noticing that

3

2
‖ẽk+1 − ek+1‖0,Ω = δt‖Dtẽ

k+1 +∇×∇×δtu(t
k+1)‖0,Ω

≤ δt‖Dtẽ
k+1‖0,Ω + cδt2,

the desired result follows from the last three inequalities.
Remark 3.1. The first result in the above lemma, namely, ‖∇·ũ‖l∞(L2) ≤ cδt

3
2 , is

the key for obtaining error estimates that improve on those from the standard velocity-
correction scheme. A remarkable property of the rotational velocity-correction scheme
is that even if the time stepping in (3.1)–(3.2) is replaced by the first-order backward
Euler stepping, the estimate on ∇·ũ still holds.

3.4.2. The inverse of the Stokes operator. In this section we recall proper-
ties of the inverse of the Stokes operator that will be useful for proving estimates in
the L2-norm. This operator, which we shall denote by S : H−1(Ω)d −→ V , is defined
as follows. For all v in H−1(Ω)d, S(v) ∈ V is the solution to the following problem:{

(∇S(v),∇w)− (r,∇·w) = 〈v, w〉 ∀w ∈ H1
0 (Ω)d,

(q,∇·S(v)) = 0 ∀q ∈ L2
0(Ω),



PROJECTION METHODS 125

where 〈·, ·〉 denotes the duality pairing between H−1(Ω)d and H1
0 (Ω)d. Obviously, we

have

∀v ∈ H−1(Ω)d, ‖S(v)‖1,Ω + ‖r‖0,Ω ≤ c‖v‖−1,Ω.(3.19)

We shall assume hereafter that the domain Ω is such that the following regularity
property holds:

∀v ∈ L2(Ω)d, ‖S(v)‖2,Ω + ‖r‖1,Ω ≤ c‖v‖0,Ω.(3.20)

The operator S has interesting properties, as listed below.
Lemma 3.2. For all v in H1

0 (Ω)d and all 0 < γ < 1 we have

∀v� ∈ H, (∇S(v),∇v) ≥ (1− γ)‖v‖20,Ω − c(γ)‖v − v�‖20,Ω.
In particular,

∀v ∈ V, (∇S(v),∇v) = ‖v‖20,Ω.
Proof. Owing to the definition of S(v), we have

(∇S(v),∇v) = (r,∇·v) + ‖v‖20,Ω
= (r,∇·(v − v�)) + ‖v‖20,Ω ∀v� ∈ H

= − (∇r, v − v�) + ‖v‖20,Ω
≥ − ‖r‖1,Ω‖v − v�‖0,Ω + ‖v‖20,Ω
≥ − c(γ)‖v − v�‖20,Ω + (1− γ)‖v‖20,Ω, owing to (3.20).

This completes the proof.
Lemma 3.3. The bilinear form

H−1(Ω)d ×H−1(Ω)d � (v, w) �−→ 〈S(v), w〉 := (∇S(v),∇S(w)) ∈ R

induces a seminorm on H−1(Ω)d that we denote | · |�, and
∀v ∈ H−1(Ω)d, |v|� = ‖∇S(v)‖0,Ω ≤ c‖v‖−1,Ω.

Proof. It is clear that it is symmetric 〈S(v), w〉 = (∇S(v),∇S(w)) = 〈S(w), v〉 and
positive 〈S(v), v〉 = ‖∇S(v)‖20,Ω; hence, 〈S(v), w〉 induces a seminorm on H−1(Ω)d.
Furthermore,

|v|2� = 〈S(v), v〉 = (∇S(v),∇S(v)) = ‖∇S(v)‖20,Ω ≤ c‖v‖2−1,Ω.

The proof is complete.

3.4.3. Proof of the L2-estimate on the velocity. In this subsection we prove

‖u− u‖l2(L2(Ω)d) ≤ cδt2.

Proof. We begin by reconstructing the momentum equation at time tk+1 by
adding the projection step to the viscous step. In terms of the errors, we obtain

3ẽk+1 − 4ẽk + ẽk−1

2δt
−∇2ẽk+1 +∇εk+1 = Rk+1.(3.21)
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By taking the L2 scalar product with 4δtS(ẽk+1), we obtain

|ẽk+1|2� + |2ẽk+1 − ẽk|2� + |δttẽk+1|2� + 4δt(∇S(ẽk+1),∇ẽk+1)

= 4δt(Rk+1, S(ẽk+1)) + |ẽk|2� + |2ẽk − ẽk−1|2�.

Owing to Lemma 3.2 and the fact that ek+1 is in H, we infer

4δt(∇S(ẽk+1),∇ẽk+1) ≥ 2δt‖ẽk+1‖20,Ω − cδt‖ẽk+1 − ek+1‖20,Ω.

Thanks to (3.20), we have

4δt(Rk+1, S(ẽk+1)) ≤ cδt‖Rk+1‖20,Ω + δt‖ẽk+1‖0,Ω.

As a result, we obtain

|ẽk+1|2� + |2ẽk+1 − ẽk|2� + |δttẽk+1|2� + δt‖ẽk+1‖20,Ω ≤ cδt5 + c′δt‖ẽk+1 − ek+1‖20,Ω
+ |ẽk|2� + |2ẽk − ẽk−1|2�.

By applying the discrete Gronwall lemma and using the initialization hypothesis, we
infer

‖e‖2l2(L2(Ω)d) ≤ c‖ẽ− e‖2l2(L2(Ω)d) + δt4.

The desired result is now an easy consequence of Lemma 3.1.

3.4.4. Proof of the H1-estimate on the velocity. First we need to prove an
estimate on the approximate time derivative. For any sequence of functions φ0, φ1, . . . ,
we set

Dtφk+1 =
1

2
(3φk+1 − 4φk + φk−1).

Lemma 3.4. Under the hypotheses of Theorem 3.1 we have the following error
estimates:

‖Dtẽ‖l2(L2(Ω)d) ≤ cδt5/2.

Proof. We use the same argument as for the proof of the L2-estimate, but we use
it on the time increment δtẽ

k+1. For k ≥ 2 we have

1

2δt
(3δtẽ

k+1 − 4δtẽ
k + δtẽ

k−1)−∇2δtẽ
k+1 +∇δtε

k+1 = δtR
k+1.

By taking the L2 scalar product with 4δtS(δtẽ
k+1) and repeating the same arguments

as above, we obtain

|δtẽk+1|2� + |2δtẽk+1 − δtẽ
k|2� + |δtttẽk+1|2� + δt‖δtẽk+1‖20,Ω

≤ cδt7 + c′δt‖δtẽk+1 − δte
k+1‖20,Ω + |δtẽk|2� + |2δtẽk − δtẽ

k−1|2�.

Owing to this inequality, the discrete Gronwall lemma, and the initialization hypothe-
ses, we infer

‖δtẽ‖2l2(L2(Ω)d) ≤ c‖δtẽ− δte‖2l2(L2(Ω)d) + cδt7.
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The conclusion is an easy consequence of Lemma 3.1 together with the bound

‖Dtẽ‖l2(L2(Ω)d) ≤ 2‖δtẽ‖2l2(L2(Ω)d).

Now we are in position to prove the H1-estimate for the velocity approximation
and the L2-estimate for the pressure approximation.

Consider the error equation corresponding to (3.8):{
1

2δt (3ẽ
k+1 − 4ẽk + ẽk−1)−∇2ẽk+1 = Rk+1 −∇εk+1,

ẽk+1|Γ = 0.
(3.22)

We rewrite the above equation and (3.2) as a nonhomogeneous Stokes system for
(ẽk+1, εk+1): {

−∇2ẽk+1 +∇εk+1 = hk+1, ẽk+1|Γ = 0,

∇·ẽk+1 = gk+1,
(3.23)

where we have defined

hk+1 = Rk+1 − 3ek+1 − 4ek + ek−1

2δt
,

gk+1 = −∇·ũk+1.

(3.24)

Owing to Lemma 3.1, we have

‖gk+1‖0,Ω = ‖∇·ũk+1‖0,Ω ≤ cδt
3
2 ∀k.(3.25)

We also have

‖hk+1‖−1,Ω ≤ ‖Rk+1‖−1,Ω +

∥∥∥∥3ẽk+1 − 4ẽk + ẽk−1

2δt

∥∥∥∥
−1,Ω

= ‖Rk+1‖−1,Ω +
1

δt
‖Dtẽk+1‖−1,Ω.

(3.26)

Now, the standard result for the nonhomogeneous Stokes system (3.23) leads to

‖ẽk+1‖1,Ω + ‖εk+1‖0,Ω ≤ c‖hk+1‖−1,Ω + ‖gk+1‖0,Ω.(3.27)

Thanks to (3.25), (3.26), and Lemma 3.4, we derive

‖ẽ‖l2(H1(Ω)d) + ‖ε‖l2(L2(Ω)) ≤ cδt
3
2 .

Thus, all the results in Theorem 3.1 have been proved.

4. Numerical results. To test the two versions of the velocity-correction meth-
ods described above, we make convergence tests with respect to δt with finite elements
and a Legendre spectral approximation.

4.1. Convergence tests with finite elements. We test the finite element
approximation on the Stokes problem (1.1) in Ω = ]0, 1[2. We set the source term so
that the exact solution is

p(x, y, t) = cos(πx) sin(πy) sin t,

u(x, y, t) = π sin(2πy) sin2(πx) sin t,

u(x, y, t) = −π sin(2πx) sin2(πy) sin t.
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Fig. 1. Convergence tests for the velocity-correction methods with BDF2 and finite elements.
Left: velocity; right: pressure.

We use mixed P2/P1 finite elements. The mesh used in the tests is composed of 3694
triangles so that the mesh size is h ≈ 1/40. There are 1928 P1-nodes and 7549 P2-
nodes. We make the tests on the range 5.10−4 ≤ δt ≤ 10−1 so that the approximation
error in space is far smaller than the time splitting error.

We have tested the algorithms (2.3)–(2.4) and (3.1)–(3.2); the results are reported
in the Figure 1. In the left panel we show the errors on the velocity in the L∞-
and L2-norms as functions of δt. The + and × symbols are for the results from
the velocity-correction method in rotational form, whereas the black symbols are for
the results from the standard form of the method. It is clear that for the velocity,
the improvement brought by the rotational form is marginal and both schemes are
second-order accurate in the L2-norm. Note, however, that for any given δt the results
from the rotational form of the algorithm are systematically more accurate than their
standard counterparts. The situation is somewhat different for the pressure. The
convergence results for this quantity in the L∞- and L2-norms are reported in the
right panel of Figure 1, the + and × symbols being for the rotational form of the
method and the black symbols for the standard form. The behavior of the errors
in the L2-norm seems to be identical for both variants of the method with a slope
slightly less than 2; however, the rotational form results are systematically better
than the standard ones. For the L∞-norm the picture is different. The results from
the rotational form seem to behave like δt3/2, whereas those from the standard form
of the algorithm behave more or less like δt.

The difference between the standard form and the rotational form of the velocity-
correction algorithm is more spectacular when looking directly at the error fields. We
show in Figure 2 the error on the pressure obtained by both algorithms at time T = 1
with δt = 0.01, using the same scale on both graphs to emphasize the differences. It
is clear from this picture that the pressure field from the standard method is polluted
by a numerical boundary layer, whereas that from the rotational form is smooth.

4.2. Legendre spectral approximation. We have also implemented the
second-order standard and rotational velocity-correction schemes with a Legendre–
Galerkin approximation [13] using 32 × 32 modes. We tested the same analytical
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Fig. 2. Pressure error fields at T = 1 with finite elements. Left: standard form; right: rotational
form.
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Fig. 3. Convergence tests for the velocity-correction methods with BDF2 and the Legendre–
Galerkin method. Left: velocity; right: pressure.

solution as above but with Ω = ]−1,+1[2. The convergence rates and the pressure
error fields are presented in Figures 3 and 4. We observe that the results are similar
to those obtained with the finite element approximation and are consistent with our
theoretical analysis.

5. Connection with the schemes in [10, 9]. In this section we show how
the schemes proposed by Orszag, Israeli, and Deville [10] and Karniadakis, Israeli,
and Orszag [9] can be interpreted as the rotational form of our velocity-correction
methods.

Let us denote by 1
δt (βqu

k+1 −∑q−1
j=0 βju

k−j) the qth-order BDF approximation

for ∂tu(t
k+1). Then, the scheme originally proposed in [10] and [9] (with an Adams–

Moulton-type scheme replacing our BDF scheme—note that this replacement is made
for the convenience of our presentation only; it does not change the essential error
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Fig. 4. Pressure error fields at T = 1 with a Legendre–Galerkin approximation. Left: standard
form; right: rotational form.

behaviors) can be written as follows:
1
δt (βqû

k+1 −∑q−1
j=0 βj ũ

k−j) +∇pk+1 = f(tk+1),

∇·ûk+1 = 0,

ûk+1 · n|Γ = −δt(∇2u)�,k · n|Γ.
(5.1)

We then correct the velocity ûk+1 by computing ũk+1 as follows:{ βq

δt (ũ
k+1 − ûk+1)−∇2ũk+1 = 0,

ũk+1|Γ = 0,
(5.2)

where (∇2u)�,k is some approximate value of ∇2u(tk+1). The authors in [10, 9] pro-
posed the followings choices:

(∇2u)�,k =


0 for O(δt) accuracy,

−∇×∇×ũk for O(δt2) accuracy,

−∇×∇×(2ũk − ũk−1) for O(δt3) accuracy.

(5.3)

In practice, problem (5.1) is solved as a Poisson equation with the Neumann
boundary condition

∂np
k+1|Γ = (f(tk+1) + (∇2u)�,k) · n.

These methods differ from the standard pressure-correction projection methods in
the sense that a consistent pressure boundary condition is enforced. Hence, in princi-
ple, these methods should achieve better convergence properties. To the best of our
knowledge, no proof of stability or convergence is available in the literature for this
class of methods. Furthermore, since second derivatives of the velocity are used in
the Neumann boundary condition for the pressure, this class of methods cannot be
applied directly with a finite element method where these derivatives are usually not
available. This is the main reason why successful implementations of these methods
are reported only with spectral or spectral-element approximations where the trace
of the second-order derivatives of the velocity are available. On the other hand, the
explicit treatment of second derivatives of the velocity leads one to suspect that this
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type of algorithm can be only conditionally stable, with a stability condition of type
δt ≤ ch2 for finite element approximations and δt ≤ cN−4 for spectral or spectral
element approximations.

We shall see in what follows that the boundary condition ambiguity can be re-
moved by rewriting the algorithm in the L2 weak framework, and that the resulting
algorithm is indeed unconditionally stable, for it is a velocity-correction algorithm.

5.1. The weak setting. Let us now rewrite (5.1), (5.2) in L2. Let us assume
for the time being that ∇·(∇2ũ)�,k = 0. By setting uk+1 = ûk+1 + δt(∇2ũ)�,k and
observing that ∇·uk+1 = 0 and uk+1 · n|Γ = 0, the system (5.1) can be rewritten

1
δt (βqu

k+1 −∑q−1
j=0 βj ũ

k−j)− (∇2ũ)�,k +∇pk+1 = f(tk+1),

∇·uk+1 = 0,

uk+1 · n|Γ = 0.

(5.4)

Now, inserting the definition of uk+1 back into (5.2), we obtain βq(ũ
k+1 − uk+1)

δt
−∇2ũk+1 + (∇2ũ)�,k = 0,

ũk+1|Γ = 0.
(5.5)

Note that for q = 2 and (∇2ũ)�,k = −∇×∇×ũk, the scheme (5.4)–(5.5) is exactly the
velocity-correction algorithm in rotational form (3.1)–(3.2), while the case q = 2 and
(∇2ũ)�,k = ∇2ũk corresponds to the velocity-correction algorithm in standard form
(2.3)–(2.4).

5.2. First-order schemes. It is interesting to consider the case q = 1 and
(∇2ũ)�,k = 0, the resulting scheme being

uk+1 − ũk

δt
+∇pk+1 = f(tk+1),

∇·uk+1 = 0,

uk+1 · n|Γ = 0,

(5.6)

 ũk+1 − uk+1

δt
−∇2ũk+1 = 0,

ũk+1|Γ = 0.
(5.7)

In this case, the standard version and the rotational version coincide, and this method
can be viewed as the dual of the original Chorin–Temam method. Of course, it suffers
from the dual ailments of the Chorin–Temam algorithm, i.e., it enforces ∂np

k+1|Γ =
f(tk+1)·n and∇2ũk+1|Γ = 0, whereas the Chorin–Temam scheme enforces∇2ũk+1|Γ =
f(tk+1) and ∂np

k+1|Γ = 0.
From the point of view of accuracy, the two algorithms are equivalent.
Theorem 5.1. If (u, p), the solution to (1.1), is smooth enough in space and

time, the solution to (5.6)–(5.7) satisfies the following error estimates:

‖u− u‖l∞(L2(Ω)d) + ‖u− ũ‖l∞(L2(Ω)d) ≤ c(u, p, T ) δt,

‖p− p‖l∞(L2(Ω)) + ‖u− ũk‖l∞(H1(Ω)d) ≤ c(u, p, T ) δt1/2.

Proof. Since the proof is very similar to that of the Chorin–Temam algorithm,
we refer the reader to Shen [12], Rannacher [11], Guermond [6], or to the proof of
second-order accuracy in section 3.4.
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6. Treatment of nonlinear terms.

6.1. Semi-implicit treatment. We now describe briefly how the nonlinear
terms can be properly treated. Taking the second-order rotational velocity-correction
scheme as an example, one way to treat the nonlinear term semi-implicitly is as fol-
lows: 

3uk+1 − 4ũk + ũk−1

2δt
+ ν∇×∇×ũk

+ d(2ũk−1 − ũk−2, ũk) +∇pk+1 = f(tk+1),

∇·uk+1 = 0,

uk+1 · n|Γ = 0

(6.1)

and 
3ũk+1 − 3uk+1

2δt
− ν∇2ũk+1 + d(2ũk − ũk−1, ũk+1)

− ν∇×∇×ũk − d(2ũk−1 − ũk−2, ũk) = 0,

ũk+1
|Γ = 0,

(6.2)

where the bilinear form d accounts for the advection and can take various forms to
ensure unconditional stability. For instance, we can use

d(v, w) =

{
v ·∇w + 1

2 (∇·v)w or

(∇×v)× w,
(6.3)

where in the second case, pk+1 is the total pressure, i.e., the kinetic energy has to be
subtracted from pk+1 to get the real pressure. One can show, just as in the linear case,
that the scheme (6.1)–(6.2) is unconditionally stable and that Theorem 3.1 holds.

Note that with the presence of the nonlinear term, the projection step is once
again given by (3.4) in strong form or (3.9) in weak form. By adding (6.2) to (6.1),
one obtains

3ũk+1 − 4ũk + ũk−1

2δt
− ν∇2ũk+1 + d(2ũk − ũk−1, ũk+1) +∇pk+1 = f(tk+1),(6.4)

with ũk+1
|Γ = 0, which is a linear elliptic equation for ũk+1 that can be solved by

standard procedures. As a result, a simple way to code the semi-implicit velocity-
correction algorithm in rotational form with the projected velocity eliminated is (3.9),
(3.7), (6.4).

6.2. Explicit treatment. One can also treat the nonlinear term totally explic-
itly as is done usually with spectral approximations [2]:

3uk+1 − 4ũk + ũk−1

2δt
+ ν∇×∇×ũk

+ (2d(ũk, ũk)− d(ũk−1, ũk−1)) +∇pk+1 = f(tk+1),

∇·uk+1 = 0,

uk+1 · n|Γ = 0

(6.5)

and {
3ũk+1 − 3uk+1

2δt
− ν∇2ũk+1 − ν∇×∇×ũk = 0,

ũk+1
|Γ = 0.

(6.6)
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In this case, the scheme is only conditionally stable with a usual CFL condition.
In practice the projected velocity can be completely eliminated from the algo-

rithm as follows. Upon substituting f(tk+1) into (3.9) by f(tk+1) − (2d(ũk, ũk) −
d(ũk−1, ũk−1)), the projection step is still (3.9). After updating the pressure accord-
ing to (3.7), the new velocity ũk+1 is obtained by solving

3ũk+1 − 4ũk + ũk−1

2δt
− ν∇2ũk+1 + (2d(ũk, ũk)− d(ũk−1, ũk−1)) +∇pk+1

= f(tk+1)(6.7)

with ũk+1
|Γ = 0.

7. Concluding remarks. We have introduced a class of velocity-correction
schemes in standard and rotational form. We proved stability and O(δt2) conver-
gence in the L2-norm of the velocity for both versions. We also proved improved
error estimates for the rotational form, i.e., O(δt3/2) convergence in the H1-norm of
the velocity and the L2-norm of the pressure. Our numerical results indicate that
these estimates appear to be the best possible under the general assumptions on Ω
considered in this paper.

We have also shown that the schemes introduced in [10] and [9] are formally
equivalent, in the spatial continuous case, to the velocity-correction projection meth-
ods in rotational form. Thus, our results provide the first rigorous proof of stability
and convergence for these schemes. In addition, contrary to the original form of
these methods which involve the normal trace of second-order derivatives of the ve-
locity at the boundary, the new velocity-correction projection methods, being set in
the standard L2 weak setting, can be easily implemented by using any variational
approximation techniques, including finite element methods.
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Abstract. We study several schemes of first- or second-order accuracy based on kinetic approx-
imations to solve pressureless and isothermal gas dynamics equations. The pressureless gas system
is weakly hyperbolic, giving rise to the formation of density concentrations known as delta-shocks.
For the isothermal gas system, the infinite speed of expansion into vacuum leads to zero timestep in
the Godunov method based on exact Riemann solver. The schemes we consider are able to bypass
these difficulties. They are proved to satisfy positiveness of density and discrete entropy inequalities,
to capture the delta-shocks, and to treat data with vacuum.
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1. Introduction. The purpose of this work is to study some numerical approx-
imations of the pressureless gas and isothermal gas dynamics equations. These equa-
tions take the form {

ρt + div(ρu) = 0,
(ρu)t + div(ρu⊗ u+ ν2ρ I) = 0,

(1)

where t > 0, x ∈ R
N , ρ(x, t) ≥ 0, u(x, t) ∈ R

N , with initial data

ρ(x, 0) = ρ0(x), ρ(x, 0)u(x, 0) = ρ0(x)u0(x).(2)

The momentum will also be denoted by q ≡ ρu. When ν = 0, (1) is referred to as the
pressureless gas equations, which arise in the modeling of sticky particles to explain
the formation of large scale structures in the universe [26], [24]. The pressureless
system has been studied at the theoretical level by several authors; see [2], [11], [14],
[7], [21], [25], [23], [22], and for related problems see [8], [6], [1]. In the pressureless gas
system, the Jacobian matrix of the flux is a Jordan block, thus the system is weakly
hyperbolic. A main feature of this weakly hyperbolic system is the development of
delta-shocks and the emergence of the vacuum state. For the isothermal gas equations,
ν > 0, the density profile forms a concentration that turns to a delta-wave as ν → 0
[12], [13]. Vacuum state cannot form for this system, but, if we start from vacuum, an
expansion occurs at infinite velocity. Thus the Godunov method based on the exact
Riemann solver requires the timestep to be zero for numerical stability, resulting in
the failure of the method.

Some numerical schemes were introduced in [2], [4], [5] for the pressureless gas
and related equations, and this paper can be viewed as a continuation of these earlier
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investigations. We consider here several first-order and second-order schemes based
on kinetic approximations that are able to treat delta-waves and vacuum, and we
compare their numerical performances. The maximum principle on the velocity u is
also established.

In the case of isothermal gas dynamics, we introduce a kinetic scheme that re-
duces to the kinetic scheme for pressureless gas as ν → 0. This kinetic scheme is
able to treat vacuum state since it takes the form of a flux vector splitting, giving
some approximate Riemann solver that can deal with the vacuum state with nonzero
timestep for numerical stability. Indeed, we establish an entropy inequality under
some natural CFL condition.

Weakly hyperbolic systems also arise in mathematical modelings of multiphase
geometrical optics [15, 18]. Simple and efficient numerical schemes for such problems
include the Lax–Friedrichs scheme and its second-order extension [15], [17]. Compared
with upwind-type schemes, including the Godunov and kinetic schemes, the central
schemes offer greater simplicity and efficiency, yet they are slightly more diffusive.
See more numerical experiments carried out in [16], [18].

The paper is organized as follows. In section 2, we study several schemes for the
one-dimensional pressureless gas equations. In section 3, we generalize some kinetic
schemes to two dimensions. In section 4, we study a kinetic scheme for an isothermal
gas, and in section 5 we perform numerical tests.

2. Kinetic schemes for one-dimensional pressureless gas. As is now clas-
sical, gas dynamics equations can be solved by kinetic schemes; see [9], [19]. We refer,
for example, to [3] for general properties of such schemes. For the pressureless system
(1) with ν = 0, a simple δ function can be taken as a Maxwellian [2], and the scheme
can be written as follows in one space dimension. Starting from functions ρn(x) and
un(x) at time tn, one solves the transport equation{

∂tf + ξ ∂xf = 0 in Rx × Rξ×]tn, tn+1[,
f(x, ξ, tn) = fn(x, ξ) =M(ρn(x), un(x), ξ),

(3)

where the Maxwellian is defined for any ρ ≥ 0, u ∈ R, and ξ ∈ R by

M(ρ, u, ξ) = ρ δ(ξ − u).(4)

The transport equation has the exact solution f(x, ξ, t) = fn(x − ξ(t − tn), ξ) for
tn ≤ t < tn+1. In the projection step, let(

ρn+1−(x)
qn+1−(x)

)
=

∫
R

(
1
ξ

)
f(x, ξ, tn+1−) dξ.(5)

In order to obtain discrete values over a mesh of constant size ∆x, one defines
the new averages ρn+1−

j , qn+1−
j , with the usual definition

wnj =
1

∆x

∫ xj+1/2

xj−1/2

w(x, tn) dx.(6)

It remains only to define functions ρn(x) and un(x) from the average values ρn−j , qn−j .

This is the reconstruction step, which needs to conserve ρnj = ρn−j , qnj = qn−j . For a
first-order scheme, one just takes ρn(x) and un(x) (or, equivalently, qn(x)) piecewise
constant.
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Notice that this algorithm keeps the nonnegativeness of the density ρ since f itself
is nonnegative, and satisfies the maximum principle on the velocity u, in the following
form:

inf
x
un(x) ≤ q

n+1−(x)

ρn+1−(x)
≤ sup

x
un(x),(7)

which is easily seen from (5) and by the fact that from (3) and (4) the support in ξ of f
lies in the range of un. The same inequalities (7) obviously hold also for qn+1−

j /ρn+1−
j .

In order to obtain an explicit formula, one integrates the transport equation (3)
over (xj−1/2, xj+1/2)×Rξ×(tn, tn+1), and a conservative numerical scheme is obtained
as

ρn+1
j = ρnj −

∆t

∆x

(
F

(1)
j+1/2 − F (1)

j−1/2

)
,

qn+1
j = qnj −

∆t

∆x

(
F

(2)
j+1/2 − F (2)

j−1/2

)
,

(8)

where

Fj+1/2 =

(
F

(1)
j+1/2

F
(2)
j+1/2

)
=

1

∆t

∫ tn+1

tn

∫
R

ξ

(
1
ξ

)
f(xj+1/2, ξ, t) dξdt.(9)

In addition, one can compute the integrals over R
+ and R

− separately, and then the
numerical flux can be written in the flux vector splitting form,

Fj+1/2 = F+
j+1/2 + F−j+1/2,(10)

with

F±j+1/2 =
1

∆t

∫ tn+1

tn

∫
±ξ>0

ξ

(
1
ξ

)
fn
(
xj+1/2 − ξ(t− tn), ξ, t

)
dξdt.(11)

2.1. First-order kinetic scheme. For a first-order scheme, one uses piecewise
constant data:

ρ(x) = ρj , u(x) = uj for xj−1/2 < x < xj+1/2.(12)

Note that under the CFL condition

|uj |∆t ≤ ∆x(13)

the integrals involved in (11) have support on at most one point. For instance, the
integral for F+

j+1/2 has support {ξ = uj} only if uj is nonnegative. Therefore,

F
+(1)
j+1/2 =

1

∆t

∫ tn+1

tn

∫ ∞
0

ξ ρj δ(ξ − uj) dξdt = ρj(uj)+.(14)

Similarly,

F
−(1)
j+1/2 = ρj+1(uj+1)−, F

+(2)
j+1/2 = ρjuj(uj)+, F

−(2)
j+1/2 = ρj+1uj+1(uj+1)−,(15)

with the convention u+ + u− = u, u+ − u− = |u|. Thus the final scheme takes the
form (8), (10), (14), (15), with qnj = ρnj u

n
j . As is easily seen, under the CFL condition

(13), this first-order kinetic scheme keeps the density ρ nonnegative and satisfies the
maximum principle on the velocity u. Other properties, like entropy inequalities or
the TVD property on u, can also be proved; see [2].
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2.2. Godunov scheme. To compare with the kinetic scheme, we also derive the
first-order Godunov scheme in this section. As was derived in [2], [23], the Riemann
problem (1) with ν = 0 and initial data

(ρ0(x), u0(x)) =

{
(ρj , uj) x < xj+1/2,

(ρj+1, uj+1) x > xj+1/2,
(16)

where uj ≥ uj+1, has the delta-shock solution

(ρ(x, t), u(x, t)) =

 (ρj , uj) x < xj+1/2 + uδt,
(w(t) δ(x− xj+1/2 − uδt), uδ) x = xj+1/2 + uδt,

(ρj+1, uj+1) x > xj+1/2 + uδt,
(17)

where

w(t) =
√
ρjρj+1(uj − uj+1)t, uδ =

√
ρjuj +

√
ρj+1uj+1√

ρj +
√
ρj+1

.(18)

Therefore, still in the case when uj ≥ uj+1, we obtain the Godunov flux

Fj+1/2 =


(ρjuj , ρju

2
j ) if uδ > 0,

(ρj+1uj+1, ρj+1u
2
j+1) if uδ < 0,

((ρjuj + ρj+1uj+1)/2, ρju
2
j = ρj+1u

2
j+1) if uδ = 0.

(19)

In the case when uδ = 0, there is a stationary delta-shock at the interface, thus the
formula has to be explained a bit. We choose arbitrarily to put half of the mass to
the left and the other half to the right of the line x = xj+1/2. This means that

ρn+1
j =

1

∆x

(∫ xj+1/2−

xj−1/2

ρn+1−(x) dx+
1

2
w(∆t)

)
.

In order to see which numerical flux we get, we write down the finite difference formula

ρnj +
1

2

∆t

∆x

√
ρjρj+1(uj − uj+1)− ρnj +

∆t

∆x
(F

(1)
j+1/2 − F (1)

j−1/2) = 0,

and assuming that F
(1)
j−1/2 = ρjuj this yields by using the fact that uδ = 0:

F
(1)
j+1/2 = ρjuj − 1

2

√
ρjρj+1(uj − uj+1) =

1

2
(ρjuj + ρj+1uj+1).

On the contrary, there is no momentum on the delta-shock since uδ = 0, and a similar

computation as above gives the flux F
(2)
j+1/2 = ρju

2
j = ρj+1u

2
j+1.

In the case where uj < uj+1, the exact solution of the Riemann problem contains
vacuum and is given by

(ρ(x, t), u(x, t)) =

 (ρj , uj) x < xj+1/2 + ujt,
(0,undefined) xj+1/2 + ujt < x < xj+1/2 + uj+1t,
(ρj+1, uj+1) x > xj+1/2 + uj+1t,

(20)

and the numerical flux takes the form

Fj+1/2 =


(ρjuj , ρju

2
j ) if uj > 0,

(ρj+1uj+1, ρj+1u
2
j+1) if uj+1 < 0,

(0, 0) otherwise.
(21)

Again under the CFL condition (13), it is easy to see that the Godunov scheme (8),
(19), (21), with qnj = ρnj u

n
j , keeps the density ρ nonnegative and satisfies the maximum

principle on the velocity u.
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2.3. A second-order kinetic scheme. For a second-order scheme, one can use
a piecewise linear reconstruction,{

ρ(x) = ρj +Dρj(x− xj)
u(x) = uj +Duj(x− xj) for xj−1/2 < x < xj+1/2,(22)

where uj is chosen as

uj = uj − DρjDuj
12ρj

∆x2,(23)

uj = qj/ρj ,(24)

in order to have the conservation property; namely, the cell average of q(x) = ρ(x)u(x)
must be qj . There are several limitations onDρj andDuj , which need to be computed
from ρj and qj in the reconstruction step. We shall collect and summarize all the
restrictions at the end of this section.

Let us first explain the evolution step (3)–(6), starting from the initial data (22).
We need to compute F+

j+1/2 in (11). We use the CFL condition

∆t sup
x
|un(x)| ≤ ∆x.(25)

To get an explicit expression, we assume the piecewise nonovertaking condition

∆tDunj > −1.(26)

Then we can proceed with the calculation,

F+
j+1/2 =

1

∆t

∫ ∆t

0

∫ ∞
0

ξ

(
1
ξ

)
ρn(xj+1/2 − ξt) δ(ξ − un(xj+1/2 − ξt)) dξdt

=
1

∆t

∫ ∞
0

∫ xj+1/2

xj+1/2−ξ∆t

(
1
ξ

)
ρn(x) δ(ξ − un(x)) dxdξ

=
1

∆t

∫ xj+1/2

xj−1/2

ρn(x)

(
1

un(x)

)
1Ix+∆tun(x)>xj+1/2

dx

=
1

∆t

∫ xj+1/2

xL
j+1/2

(
ρn(x)

ρn(x)un(x)

)
dx,

(27)

where

xLj+1/2 = xj+1/2 −∆t
(uj + ∆x

2 Duj)+

1 + ∆tDuj
.(28)

Thus we obtain

F
+(1)
j+1/2 =

ρLj+1/2(u
L
j+1/2)+

1 + ∆tDuj
− ∆t

2
Dρj

uLj+1/2(u
L
j+1/2)+

(1 + ∆tDuj)2
,

F
+(2)
j+1/2 = ρLj+1/2u

L
j+1/2(u

L
j+1/2)+

1 + ∆t
2 Duj

(1 + ∆tDuj)2

− ∆t

6
Dρj

(uLj+1/2)
2(uLj+1/2)+

(1 + ∆tDuj)3
(3 + ∆tDuj),

(29)
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with

ρLj+1/2 = ρj + ∆x
2 Dρj ,

ρRj+1/2 = ρj+1 − ∆x
2 Dρj+1,

uLj+1/2 = uj + ∆x
2 Duj ,

uRj+1/2 = uj+1 − ∆x
2 Duj+1.

(30)

Similarly,

F−j+1/2 = − 1

∆t

∫ xR
j+1/2

xj+1/2

(
ρn(x)

ρn(x)un(x)

)
dx,(31)

xRj+1/2 = xj+1/2 −∆t
(uRj+1/2)−

1 + ∆tDuj+1
,(32)

and

F
−(1)
j+1/2 =

ρRj+1/2(u
R
j+1/2)−

1 + ∆tDuj+1
− ∆t

2
Dρj+1

uRj+1/2(u
R
j+1/2)−

(1 + ∆tDuj+1)2
,

F
−(2)
j+1/2 = ρRj+1/2u

R
j+1/2(u

R
j+1/2)−

1 + ∆t
2 Duj+1

(1 + ∆tDuj+1)2

− ∆t

6
Dρj+1

(uRj+1/2)
2(uRj+1/2)−

(1 + ∆tDuj+1)3
(3 + ∆tDuj+1).

(33)

An interpretation of (27) is that we put in the flux F+
j+1/2 the total mass and mo-

mentum of all particles located at x ∈ (xj−1/2, xj+1/2) at time tn that pass through
the node xj+1/2 (in the sense of characteristics) between times tn and tn+1. Indeed,
x + (t − tn)un(x) = xj+1/2 for some tn < t < tn+1 is equivalent to x + ∆t un(x) >
xj+1/2. Under condition (26), these characteristics do not cross; however, this is done
regardless of the trajectories of particles coming from the right.

Finally, we have to specify the reconstruction step. In order to ensure the non-
negativity of ρ, one needs that

|Dρj∆x/2| ≤ ρj .(34)

To guarantee the maximum principle property on the velocity

mj ≤ u(x) ≤Mj , x ∈ (xj−1/2, xj+1/2),(35)

where

mj = min{uj−1, uj , uj+1}, Mj = max{uj−1, uj , uj+1},(36)

we need that

mj ≤ uj +
∆x

2
Duj(1−Dρj∆x/6ρj) ≤Mj ,

mj ≤ uj − ∆x

2
Duj(1 +Dρj∆x/6ρj) ≤Mj .

(37)
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Therefore we have the restrictions on the slopes of u,

Duj ≤ min

{
Mj − uj

(1−Dρj∆x/6ρj)∆x
2

,
uj −mj

(1 +Dρj∆x/6ρj)
∆x
2

}
(38)

and

Duj ≥ max

{
mj − uj

(1−Dρj∆x/6ρj)∆x
2

,
uj −Mj

(1 +Dρj∆x/6ρj)
∆x
2

}
.(39)

In practice, we can choose the following limiters to satisfy all the constraints:

Dρj =
1

2

(
sgn(ρj+1 − ρj) + sgn(ρj − ρj−1)

)
×min

{ |ρj+1 − ρj |
∆x

,
|ρj − ρj−1|

∆x
,
2ρj
∆x

}
,

Duj =
1

2

(
sgn(uj+1 − uj) + sgn(uj − uj−1)

)
×min

{ |uj+1 − uj |
(1−∆xDρj/6ρj)∆x

,
|uj − uj−1|

(1 + ∆xDρj/6ρj)∆x
,

1

∆t

}
.

(40)

The scheme we obtain is then second-order in space and time. The second-order
accuracy in time here comes from the very special property of the system of pres-
sureless gas, which is that (3) is indeed a kinetic formulation of (1) with ν = 0, in
the sense that as soon as we have smooth solutions to (1) the solution to (3) remains
Maxwellian. This property was proved in [2] (see also [10]).

2.4. A simplified second-order kinetic scheme. In order to obtain an easy
extension of our second-order method to two-dimensional problems, we can rather use
the standard extension to second-order of the scheme we have obtained in section 2.1.
It can be interpreted as using the transport-projection method (3)–(6) with initial
data that are piecewise constant over half-cells,

ρ(x) = ρRj−1/2, u(x) = uRj−1/2 for xj−1/2 < x < xj ,

ρ(x) = ρLj+1/2, u(x) = uLj+1/2 for xj < x < xj+1/2,
(41)

with as before

ρLj+1/2 = ρj +Dρj∆x/2,

ρRj+1/2 = ρj+1 −Dρj+1∆x/2,

uLj+1/2 = uj +Duj∆x/2,

uRj+1/2 = uj+1 −Duj+1∆x/2.

(42)

Now, to have conservation of momentum, uj is chosen as

uj = uj − DρjDuj
4ρj

∆x2, uj = qj/ρj .(43)

By restricting the CFL number to 1/2,

∆t sup
x
|un(x)| ≤ ∆x/2,(44)
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we obtain the same numerical flux as in the first-order scheme,

Fj+1/2 =

(
ρLj+1/2(u

L
j+1/2)+ + ρRj+1/2(u

R
j+1/2)−,

(ρu)Lj+ 1
2
(uLj+1/2)+ + (ρu)Rj+1/2(u

R
j+ 1

2
)−

)
.

(45)

From this construction, we obviously achieve second-order accuracy in space.
Concerning time, a simple second-order Runge–Kutta method can be used,

U∗j = Unj − ∆t
∆x (F

n
j+1/2 − Fnj−1/2),

U∗∗j = U∗j − ∆t
∆x (F

∗
j+1/2 − F ∗j−1/2),

Un+1
j = (Unj + U∗∗j )/2.

(46)

In the reconstruction step, the restrictions on slopes are similar to the previous section,

Dρj =
1

2

(
sgn(ρj+1 − ρj) + sgn(ρj − ρj−1)

)
×min

{ |ρj+1 − ρj |
∆x

,
|ρj − ρj−1|

∆x
,
2ρj
∆x

}
,

Duj =
1

2

(
sgn(uj+1 − uj) + sgn(uj − uj−1)

)
×min

{ |uj+1 − uj |
(1−Dρj∆x/2ρj)∆x,

|uj − uj−1|
(1 +Dρj∆x/2ρj)∆x

}
.

(47)

Again, this reconstruction preserves the nonnegativity of the density and satisfies the
maximum principle on the velocity. Similar properties were established in [20] for
such a scheme.

2.5. An improved second-order kinetic scheme. A scheme that is even
more precise than that of subsection 2.3 can be derived in the following way. We use
again piecewise linear functions (22) with (23), (24) but perform a different recon-
struction. By considering the mesh with half the cells of the original one, one can
compute, under a half CFL condition, the new averages on half-cells ρn+1−

j±1/4, q
n+1−
j±1/4,

with formulas similar to those of subsection 2.3. Then the averages are given by

ρn+1
j =

1

2

(
ρn+1−
j+1/4 + ρn+1−

j−1/4

)
, qn+1

j =
1

2

(
qn+1−
j+1/4 + qn+1−

j−1/4

)
.(48)

Formulas (23), (24) still hold for conservativity, but now the slopes are computed in
a different way. Indeed, one evolves both the averages and the slopes, and therefore
one has to give the value of the new slopes Dρn+1

j , Dun+1
j from the evolution step.

We use

Dρn+1
j = sgn

(
ρn+1−
j+1/4 − ρn+1−

j−1/4

) 2

∆x
min

(∣∣∣ρn+1−
j+1/4 − ρn+1−

j−1/4

∣∣∣ , ρn+1
j

)
,(49)

Dun+1
j = sgn

(
qn+1−
j+1/4

ρn+1−
j+1/4

−
qn+1−
j−1/4

ρn+1−
j−1/4

)

× 2

∆x
min

(∣∣∣∣∣ q
n+1−
j+1/4

ρn+1−
j+1/4

−
qn+1−
j−1/4

ρn+1−
j−1/4

∣∣∣∣∣ , min(Mj − un+1
j , un+1

j −mj)

1 + |Dρn+1
j |∆x/6ρn+1

j

)
,

(50)
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where mj and Mj are a bit less restrictive than in (36),

mj = inf
xj−3/2<x<xj+3/2

un(x)

= min
(
unj−1 − |Dunj−1|

∆x

2
, unj − |Dunj |

∆x

2
, unj+1 − |Dunj+1|

∆x

2

)
,

(51)

Mj = sup
xj−3/2<x<xj+3/2

un(x)

= max
(
unj−1 + |Dunj−1|

∆x

2
, unj + |Dunj |

∆x

2
, unj+1 + |Dunj+1|

∆x

2

)
.

(52)

3. Two-dimensional pressureless gas. For convenience, we write the two-
dimensional pressureless gas equations as ρt + px + qy = 0,

pt + (pu)x + (pv)y = 0,
qt + (qu)x + (qv)y = 0,

(53)

with p = ρu, q = ρv. We shall use a conservative scheme

Un+1
j,k − Unj,k +

∆t

∆x
(Fj+1/2,k − Fj−1/2,k) +

∆t

∆y
(Gj,k+1/2 −Gj,k−1/2) = 0,(54)

with U = (ρ, p, q) = (ρ, ρu, ρv). The numerical fluxes have positive and negative
contributions

Fj+1/2,k = F+
j+1/2,k + F−j+1/2,k, Gj,k+1/2 = G+

j,k+1/2 +G−j,k+1/2.(55)

3.1. The first-order scheme. As usual, we use a piecewise constant data for
xj−1/2 < x < xj+1/2, yk−1/2 < y < yk+1/2, ρ(x, y) = ρj,k,

u(x, y) = uj,k,
v(x, y) = vj,k.

(56)

We use the same kinetic model (3)–(4), except that now ξ ∈ R
2. The following

computational lemma in one dimension will be useful.
Lemma 3.1. Suppose that u(x) and r(x) are piecewise constant functions,

u(x) = uj , r(x) = rj as x ∈ (xj−1/2, xj+1/2),(57)

and the CFL condition is

∆t

∆x
|u| ≤ 1.(58)

Then

1

∆t

∫ ∆t

0

1

∆x

∫ xj+1/2

xj−1/2

∫ ∞
−∞
r(x− ξt) δ(ξ − u(x− ξt)) dtdxdξ

=
∆t

2∆x
rj−1(uj−1)+ +

(
1− |uj | ∆t

2∆x

)
rj − ∆t

2∆x
rj+1(uj+1)−.

(59)
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In order to get the numerical fluxes, we integrate the kinetic equation (3) over
(xj−1/2, xj+1/2)× (yk−1/2, yk+1/2)× R

2 × (0,∆t). Under the CFL conditions

∆t

∆x
|u| ≤ 1,

∆t

∆y
|v| ≤ 1,(60)

we find

F
(1)+
j+1/2,k =

1

∆t∆y

∫ ∆t

0

∫ yk+1/2

yk−1/2

∫
R

p(xj , y − ξ2t)+δ(ξ2 − v(xj , y − ξ2t)) dtdydξ2

= (pj,k)+ +
∆t

2∆y

(
(pj,k−1)+(vj,k−1)+

−(pj,k+1)+(vj,k+1)− − (pj,k)+|vj,k|
)
,

F
(1)−
j+1/2,k =

1

∆t∆y

∫ ∆t

0

∫ yk+1/2

yk−1/2

∫
R

p(xj+1, y − ξ2t)−δ(ξ2 − v(xj+1, y − ξ2t)) dtdydξ2

= (pj+1,k)− +
∆t

2∆y

(
(pj+1,k−1)−(vj+1,k−1)+

−(pj+1,k+1)−(vj+1,k+1)− − (pj+1,k)−|vj+1,k|
)
.

Therefore, in compact form, the first-order kinetic scheme reads

F+
j+1/2,k = Uj,k(uj,k)+

+
∆t

2∆y

(
Uj,k−1(uj,k−1)+(vj,k−1)+

−Uj,k+1(uj,k+1)+(vj,k+1)− − Uj,k(uj,k)+|vj,k|
)
,

F−j+1/2,k = Uj+1,k(uj+1,k)−

+
∆t

2∆y

(
Uj+1,k−1(uj+1,k−1)−(vj+1,k−1)+

−Uj+1,k+1(uj+1,k+1)−(vj+1,k+1)− − Uj+1,k(uj+1,k)−|vj+1,k|
)
,

G+
j,k+1/2 = Uj,k(vj,k)+

+
∆t

2∆x

(
Uj−1,k(vj−1,k)+(uj−1,k)+

−Uj+1,k(vj+1,k)+(uj+1,k)− − Uj,k(vj,k)+|uj,k|
)
,

G−j,k+1/2 = Uj,k+1(vj,k+1)−

+
∆t

2∆x

(
Uj−1,k+1(vj−1,k+1)−(uj−1,k+1)+

−Uj+1,k+1(vj+1,k+1)−(uj+1,k+1)− − Uj,k+1(vj,k+1)−|uj,k+1|
)
.

3.2. A second-order scheme. As in subsection 3.1, we use a simplified second-
order scheme. Define

uIj,k = uj,k +
∆x

2
Dxuj,k +

∆y

2
Dyuj,k,(61)
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uIIj,k = uj,k − ∆x

2
Dxuj,k +

∆y

2
Dyuj,k,(62)

uIIIj,k = uj,k − ∆x

2
Dxuj,k − ∆y

2
Dyuj,k,(63)

uIVj,k = uj,k +
∆x

2
Dxuj,k − ∆y

2
Dyuj,k,(64)

where

uj,k = uj,k − ∆x2

4ρj,k
Dxρj,kDxuj,k − ∆y2

4ρj,k
Dyρj,kDyuj,k.(65)

We can define ρ and v in a similar way. Then it is easy to derive the following formulas,
valid under half CFL conditions:

F+
j+1/2,k =

1

2

(
(Uu+)Ij,k + (Uu+)IVj,k

)
+

∆t

2∆y

(
−(Uu+v+)Ij,k + (Uu+v−)IVj,k

+(Uu+v+)Ij,k−1 − (Uu+v−)IVj,k+1

)
,

F−j+1/2,k =
1

2

(
(Uu−)IIj+1,k + (Uu−)IIIj+1,k

)
+

∆t

2∆y

(
−(Uu−v+)IIj+1,k + (Uu−v−)IIIj+1,k

+(Uu−v+)IIj+1,k−1 − (Uu−v−)IIIj+1,k+1

)
,

G+
j,k+1/2 =

1

2

(
(Uv+)Ij,k + (Uv+)IIj,k

)
+

∆t

2∆x

(
−(Uv+u+)Ij,k + (Uv+u−)IIj,k

+(Uv+u+)Ij−1,k − (Uv+u−)IIj+1,k

)
,

G−j,k+1/2 =
1

2

(
(Uv−)IVj,k+1 + (Uv−)IIIj,k+1

)
+

∆t

2∆x

(
−(Uv−u+)IVj,k+1 + (Uv−u−)IIIj,k+1

+(Uv−u+)IVj−1,k+1 − (Uv−u−)IIIj+1,k+1,
)
.

4. Isothermal gas dynamics. We now wish to generalize the previous schemes
to the system of isothermal gas dynamics{

∂tρ+ ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu

2 + ν2ρ) = 0,
(66)

with ρ(x, t) ≥ 0, u(x, t) ∈ R, and ν > 0. Features that are desirable for a numerical
scheme to solve (66) are positivity preserving for the density ρ, the ability to treat
data with vacuum, and a discrete entropy inequality. We shall achieve these goals in
such a way that (at least for first-order), as ν → 0, the scheme reduces to the one
presented in section 2.1. We recall that the physical energy

η(ρ, u) = ρu2/2 + ν2ρ ln
ρ√
2πν

(67)
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is a convex entropy for (66), with entropy flux

ϑ(ρ, u) =
(
η(ρ, u) + ν2ρ

)
u,(68)

i.e., ϑ′ = η′F ′, where F = (ρu, ρu2 + ν2ρ), and prime stands for differentiation with
respect to (ρ, q = ρu).

Since second-order accuracy can be obtained as usual with a half CFL condition
(as in section 2.4), we give only the first-order scheme. We shall use again a kinetic
method, as described in [3], with the physical Maxwellian equilibrium

M(ρ, u, ξ) =

(
1
ξ

)
ρ√
2πν

e−(ξ−u)2/2ν2

, ρ ≥ 0, u, ξ ∈ R.(69)

We can decompose the flux F of (66) as

F (ρ, u) ≡ (ρu, ρu2 + ν2ρ) = F+(ρ, u) + F−(ρ, u),(70)

with

F+(ρ, u) =

∫ ∞
0

ξM(ρ, u, ξ) dξ, F−(ρ, u) =

∫ 0

−∞
ξM(ρ, u, ξ) dξ.(71)

These half-fluxes are homogeneous of degree 1 with respect to (ρ, ρu), and this enables
the scheme to treat vacuum data. The numerical scheme then takes the form

Un+1
j − Unj +

∆t

∆x
(Fj+1/2 − Fj−1/2) = 0,(72)

with Unj = (ρnj , ρ
n
j u

n
j ) and

Fj+1/2 = F+(ρnj , u
n
j ) + F−(ρnj+1, u

n
j+1).(73)

Since the Maxwellian M in (69) does not have a compact support in ξ, we cannot
apply the classical CFL condition ∆t supξ∈suppM |ξ| ≤ ∆x to derive positiveness of
density and entropy inequalities. Therefore, we are going to use the analysis of [3]
to derive explicitly a sufficient CFL condition. The scheme will satisfy the discrete
entropy inequality

η(ρn+1
j , un+1

j )− η(ρnj , unj ) +
∆t

∆x
(ϑj+1/2 − ϑj−1/2) ≤ 0,(74)

with

ϑj+1/2 = ϑ+(ρnj , u
n
j ) + ϑ−(ρnj+1, u

n
j+1),(75)

and ϑ+, ϑ− verify (ϑ+)′ = η′(F+)′, (ϑ−)′ = η′(F−)′ and are given by

ϑ+(ρ, u) =

∫ ∞
0

ξH(M(ρ, u, ξ), ξ) dξ, ϑ−(ρ, u) =

∫ 0

−∞
ξH(M(ρ, u, ξ), ξ) dξ,(76)

where, for any f = (f0, f1) with f0 ≥ 0, f1 = ξf0,

H(f, ξ) = f0ξ
2/2 + ν2f0 ln f0.(77)

Let us recall the results of [3], which apply to our case.
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Definition 4.1. A vector function W (U) satisfying

W ′(U)tη′′(U) is symmetric(78)

is said to be η-dissipative in a set Ustab if

Dη[W ](U, V ) ≤ 0 for all U, V ∈ Ustab,(79)

where the elementary entropy dissipation is defined by

Dη[W ](U, V ) = Gη[W ](U)−Gη[W ](V ) + η′(U)(W (V )−W (U)),(80)

and

Gη[W ]′ = η′W ′.(81)

Proposition 4.2 (see [3]). Let F+, F− be given by (70), and assume that

F+, −F− are η-dissipative in Ustab,(82)

and the CFL conditions are

c∆t ≤ ∆x,(83)

Id− (F+ − F−)/c is η-dissipative in Ustab(84)

for some c > 0. Then the scheme (72)–(73) satisfies the discrete entropy inequality
(74)–(75) as soon as Unj ∈ Ustab, j ∈ Z, and Un+1

j ∈ Ustab, j ∈ Z.
The main result of this section is the following. We state it for positive densities,

but by continuity it also holds for data with vacuum.
Theorem 4.3. Assume that at time tn, Unj = (ρnj , ρ

n
j u

n
j ) satisfy for some c > 0

ρnj > 0, |unj |+
(

4√
2π

+

√
2π

2

)
ν ≤ c for j ∈ Z.(85)

Define Ustab as

Ustab =

{
(ρ, ρu) ; ρ > 0, |u|+ 4√

2π
ν ≤ c

}
.(86)

Then the stability requirements (82), (84) hold, and under the CFL condition (83) the
(Un+1

j )j∈Z defined by (72) belong to Ustab. Therefore, by Proposition 4.2, the entropy
inequalities (74) hold.

Before going into the proof of Theorem 4.3, let us first give explicit formulas for
the fluxes and entropy fluxes. Let us define

M(ξ) =
e−ξ

2/2

√
2π
,(87)

erf(y) =

∫ ∞
y

M(ξ) dξ.(88)
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Then ∫ ∞
y

ξM(ξ) dξ =M(y),

∫ ∞
y

ξ2M(ξ) dξ = yM(y) + erf(y),∫ ∞
y

ξ3M(ξ) dξ = (y2 + 2)M(y).
(89)

With these formulas, one can easily check that

F+(ρ, u) =
(
ρu erf(−u/ν) + ρνM(u/ν),

(ρu2 + ρν2) erf(−u/ν) + νρuM(u/ν)
)
.

(90)

Noticing that, with M = (M0,M1),

M(ρ, u,−ξ) =
(
M0(ρ,−u, ξ),−M1(ρ,−u, ξ)

)
,(91)

we get

F−(ρ, u) =
(
−F+

0 (ρ,−u), F+
1 (ρ,−u)

)
,(92)

where F+ = (F+
0 , F

+
1 ), and therefore

F+ − F− =
(
ρu (erf(−u/ν)− erf(u/ν)) + 2νρM(u/ν),

(ρu2 + ν2ρ) (erf(−u/ν)− erf(u/ν)) + 2νρuM(u/ν)
)
.

(93)

For the computation of ϑ+, we have

ϑ+(ρ, u) =

∫ ∞
0

ξH(M(ρ, u, ξ), ξ) dξ

=

∫ ∞
0

ξ
ρ

ν
M
(
ξ − u
ν

)(
ν2 ln

ρ√
2πν

− u2/2 + uξ

)
dξ

=

(
ν2 ln

ρ√
2πν

− u2/2

)
F+

0 (ρ, u) + uF+
1 (ρ, u)

(94)

and

ϑ−(ρ, u) = −ϑ+(ρ,−u).(95)

Proof of Theorem 4.3. Let us first prove that (82) and (84) hold. We notice that
η is strictly convex, with

η′ =
(
ν2

(
1 + ln

ρ√
2πν

)
− u2/2, u

)
≡ (v0, v1),(96)

and that η′(Ustab) is convex. Therefore, as pointed out in [3], a function W is η-
dissipative in Ustab if and only if it satisfies

W ′(U)tη′′(U) is symmetric nonnegative for any U ∈ Ustab.(97)

This is also equivalent to assert that

W = ∇v0,v1ψW , ψW convex in η′(Ustab).(98)



PRESSURELESS AND ISOTHERMAL GAS DYNAMICS 149

We observe that

ν2M0(ρ, u, ξ) = ν
ρ√
2π
e−(ξ−u)2/2ν2

= ν2e(v0+v1ξ−ξ
2/2)/ν2−1,(99)

thus

M(ρ, u, ξ) = ∇v0,v1ψ(ρ, u, ξ), ψ(ρ, u, ξ) = ν2M0(ρ, u, ξ),(100)

and therefore F+ = ∇v0,v1ψ+, F− = ∇v0,v1ψ−, with

ψ+ =

∫ ∞
0

ξψ(ρ, u, ξ) dξ, ψ− =

∫ 0

−∞
ξψ(ρ, u, ξ) dξ.(101)

Since (ρ, ρu) = ∇v0,v1η∗(v0, v1) with η∗(v0, v1) = η′ · U − η, the dual convex function
of η (here, η∗ = ν2ρ), we have to check that ψ+, −ψ− and η∗ − (ψ+ − ψ−)/c are
convex with respect to (v0, v1) ∈ η′(Ustab). In other words, we have to check the
nonnegativity of D2

v0,v1ψ
+, −D2

v0,v1ψ
−, (η′′)−1 −D2

v0,v1(ψ
+ − ψ−)/c in η′(Ustab).

From (101) and (99), we get

D2
v0,v1ψ

+ =

∫ ∞
0

ξ ψ(ρ, u, ξ)

(
1 ξ
ξ ξ2

)
dξ

ν4
,(102)

D2
v0,v1ψ

− =

∫ 0

−∞
ξ ψ(ρ, u, ξ)

(
1 ξ
ξ ξ2

)
dξ

ν4
,(103)

and the two first properties follow. Next, since

(η′′)−1 = ∇v0,v1
(
ρ
ρu

)
= ∇v0,v1

∫
R

M(ρ, u, ξ) dξ

= D2
v0,v1

∫
R

ψ(ρ, u, ξ) dξ

=

∫
R

ψ(ρ, u, ξ)

(
1 ξ
ξ ξ2

)
dξ

ν4
,

(104)

we obtain for (ρ, ρu) ∈ Ustab
c(η′′)−1 −D2

v0,v1(ψ
+ − ψ−)

=
1

ν4

∫
R

(c− |ξ|)ψ(ρ, u, ξ)

(
1 ξ
ξ ξ2

)
dξ

≥ 1

ν4

∫
R

(
|u|+ 4√

2π
ν − |ξ|

)
ψ(ρ, u, ξ)

(
1 ξ
ξ ξ2

)
dξ

≥ 1

ν4

∫
R

(
4√
2π
ν − |ξ − u|

)
ψ(ρ, u, ξ)

(
1 ξ
ξ ξ2

)
dξ.

(105)

Noticing that(
1 ξ
ξ ξ2

)
·
(
y0
y1

)
·
(
y0
y1

)
=

(
1 (ξ − u)/ν

(ξ − u)/ν (ξ − u)2/ν2

)
·
(
y′0
y′1

)
·
(
y′0
y′1

)
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with y′0 = y0+uy1 and y′1 = νy1, we observe that the positiveness of (105) is equivalent
to ∫

R

(
4√
2π
ν − |ξ − u|

)
ψ(ρ, u, ξ)

(
1 (ξ − u)/ν

(ξ − u)/ν (ξ − u)2/ν2

)
dξ ≥ 0.(106)

This is checked easily with (89); the computation of this integral is left to the reader;
and this concludes the first part of the theorem.

It now remains to prove that Un+1
j ∈ Ustab.

Lemma 4.4. For any ρ ≥ 0, u ∈ R, we have F+
0 (ρ, u) ≥ 0, F−0 (ρ, u) ≤ 0, and

0 ≤ F+
1 (ρ, u) ≤

(
u+ + ν

√
2π/2

)
F+

0 (ρ, u),(107)

0 ≤ F−1 (ρ, u) ≤
(
(−u)+ + ν

√
2π/2

)
(−F−0 (ρ, u)).(108)

Moreover, whenever (ρ, ρu) ∈ Ustab,

ρ− F
+
0 (ρ, u)− F−0 (ρ, u)

c
> 0,(109)

∣∣∣∣ρu− F+
1 (ρ, u)− F−1 (ρ, u)

c

∣∣∣∣ ≤ (ρ− F+
0 (ρ, u)− F−0 (ρ, u)

c

)
|u|.(110)

Let us postpone the proof of the lemma and conclude with Theorem 4.3. Since
U ≡ Unj satisfies (85), we have U ∈ Ustab, and by (109)–(110)∣∣∣∣ρu− (F+

1 − F−1 )/c

ρ− (F+
0 − F−0 )/c

∣∣∣∣+ 4√
2π
ν ≤ c.(111)

Then, from (107), (108), and (85)

F+
1

F+
0

+
4√
2π
ν ≤ u+ +

√
2π

2
ν +

4√
2π
ν ≤ c,(112)

F−1
−F−0

+
4√
2π
ν ≤ (−u)+ +

√
2π

2
ν +

4√
2π
ν ≤ c.(113)

We deduce that

F+(ρ, u)/c, −F−(ρ, u)/c, U − (F+(ρ, u)− F−(ρ, u))/c ∈ Ustab.(114)

Finally, we write

Un+1
j = Unj −

∆t

∆x

(
F+(Unj ) + F−(Unj+1)− F+(Unj−1)− F−(Unj )

)
=

(
1− c∆t

∆x

)
Unj +

c∆t

∆x

(
Unj − F+(Unj )/c+ F−(Unj )/c

)
+

∆t

∆x
F+(Unj−1)−

∆t

∆x
F−(Unj+1),

(115)
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and since Ustab is a convex cone we conclude with the CFL condition (83) that Un+1
j ∈

Ustab.
Proof of Lemma 4.4. From (69) and (71), we obviously have F+

0 ≥ 0, F+
1 ≥ 0.

However, from (90),

F+
1 = uF+

0 + ν2ρ erf(−u/ν).(116)

One can check that

sup
y≥0

erf(−y)
y erf(−y) +M(y)

=

√
2π

2
,(117)

the maximum being attained at y = 0. Therefore,

for all u ≥ 0, F+
1 (ρ, u) ≤

(
u+

√
2π

2
ν

)
F+

0 (ρ, u).(118)

Then we observe that if ρ > 0,

F+
0 =

∫ ∞
0

ξe(v0+v1ξ−ξ
2/2)/ν2−1 dξ,(119)

with (v0, v1) defined in (96), thus this function is log-convex in v1 as an integral of a
log-convex function. Next,

F+
1 =

∫ ∞
0

ξ2e(v0+v1ξ−ξ
2/2)/ν2−1 dξ = ν2∂v1F

+
0 .(120)

Therefore, F+
1 /F

+
0 = ν2∂v1(lnF

+
0 ) is nondecreasing in v1, and we deduce that, for

v1 ≤ 0, F+
1 /F

+
0 is upper bounded by the value at v1 = 0, that is, ν

√
2π/2. Together

with (118), we conclude that (107) holds. Obviously, (108) follows from (92). In order
to prove (109)–(110), let us first establish that, for any u ∈ R,

(u2 + ν2)
2

u

∫ u/ν

0

e−ξ
2/2

√
2π
dξ ≤ |u|+ 2√

2π
ν.(121)

Indeed, the left-hand side is an even nonnegative function of u. On one hand, if
u ≥ ν√2π/2, by bounding the integral by 1/2, we can estimate the left-hand side by
(u2+ν2)/u ≤ u+2ν/

√
2π. On the other hand, if 0 < u ≤ ν√2π/2, we can estimate the

integral by u/
√

2πν, thus the left-hand side is less than (u2+ν2)2/
√

2πν ≤ u+2ν/
√

2π.
This proves (121).

Now we use (93) and get that

ρ− F
+
0 − F−0
c

= ρ

(
1−

(
2u

∫ u/ν

0

M(ξ) dξ + 2νM(u/ν)

)
/c

)
,(122)

and using (121) andM(u/ν) ≤ 1/
√

2π we get with (86) that (122) is positive. Finally,
from (93),

ρu− F
+
1 − F−1
c

= u

(
ρ− F

+
0 − F−0
c

− ν
2ρ

c

2

u

∫ u/ν

0

M(ξ) dξ

)
.(123)
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By (121) and (86) again,

0 ≤ ρ− F
+
0 − F−0
c

− ν
2ρ

c

2

u

∫ u/ν

0

M(ξ) dξ ≤ ρ− F
+
0 − F−0
c

,(124)

which yields (110).
Remark. When using the Godunov method to solve the isothermal problem with

vacuum initial data, the speed defined by the exact Riemann solution is infinity; see
the third test in section 5. The kinetic scheme, which takes the form of a flux vector
splitting, can be interpreted as an approximate Riemann solver with a finite speed [3],
thus the timestep can be nonzero. The speed of this approximate Riemann solver is
the c in Theorem 4.3, which needs to bound the eigenvalues, but only on initial data
rather than the exact solution (which would be infinity). The counterpart is that the
sound speed is increased by a factor greater than one, 4/

√
2π+

√
2π/2 in (85). Then,

at the end of the first timestep, the new velocity will be greater than its initial value,
thus c needs to be recomputed at each timestep. A rough estimate of this increase is
contained in the statement in Theorem 4.3 that says that Un+1

j belongs to Ustab. Thus

the maximal velocity increases by at most a constant, ν
√

2π/2, at each timestep (that
is chosen to satisfy the CFL condition). This gives the following rough estimates:

‖un‖ ≈ ‖u0‖+ nν, ∆tn ≈ ∆x/(‖u0‖+ nν) .

The sum over all n of these timesteps is infinity. This justifies that we can attain any
given time T in a finite number of timesteps, roughly ∆x/ν ln(1+nν/‖u0‖) = T , thus
n = ‖u0‖(eTν/∆x − 1)/ν. The size of the support is of the order of n∆x.

5. Numerical tests. We now conduct several numerical tests using the numeri-
cal schemes we have derived. In the first two tests, we solve the pressureless gas system
and compare the first-order kinetic scheme with the first-order Godunov scheme and
the second-order kinetic schemes. In the third test, we solve the isothermal system
with vacuum data by both the first- and the second-order kinetic schemes.

In the first numerical test, we take the initial data to be

ρ0 = 0.5 , u0(x) =


−0.5, x < −0.5,
0.4, −0.5 < x < 0,

0.4− x, 0 < x < 0.8,
−0.4, x > 0.8.

The exact solution at time t = 0.5 is

u(x, 0.5) =


−0.5, x < −0.75,

undefined −0.75 < x < −0.3,
0.4, −0.3 < x < 0.2,

0.8− 2x, 0.2 < x < 0.6,
−0.4, x > 0.6,

and

ρ(x, 0.5) =

 0, −0.75 < x < −0.3,
1, 0.2 < x < 0.6,
0.5 otherwise.

The initial velocity jumps to a higher value at x = −0.5, which leads to a vacuum
state, followed by a linearly decreasing part, where the mass accumulates and causes
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Fig. 1. Numerical test I. ∆t/∆x = 5/3, ∆x = 0.025.

the density to increase. In the density profile, first-order kinetic and Godunov schemes
form a spike, due to some inconsistency at sonic points that was noticed in [2]. See
Figure 1. This problem goes away with all second-order kinetic schemes, among which
the improved scheme slightly outperforms the other two and the simplified scheme is
slightly inferior to the other two, as shown by Figure 2.

A Riemann problem is solved in the second test. We take

(ρ0(x), u0(x)) =

{
(1, 0.5) x < 0,

(0.25,−0.4) x > 0.

A delta-shock immediately develops and by (18) the shock speed is 0.2. As shown in
Figures 3 and 4, all the numerical schemes are able to capture the delta-shock with
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Fig. 2. Numerical test I. ∆t/∆x = 5/3, ∆x = 0.025.

the correct propagation speed. The numerical approximations provided by the second-
order schemes give a slightly sharper profile across the velocity discontinuity.

In the third test, we solve the isothermal gas equations (66) with ν = 0.2 and the
vacuum initial data

ρ0(x) =

{
0 x < 0,
1 x > 0,

u0(x) = 0.

The exact solution at time t is given by

(ρ(x, t), u(x, t)) =

{
(ex/νt−1, x/t− ν) x < νt,

(1, 0) x > νt.
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Fig. 3. Numerical test II. ∆t/∆x = 5/3, ∆x = 0.025.

The density decays exponentially to zero while the velocity goes to minus infinity
linearly in the vacuum state. The numerical results for t = 0.5 are shown in Figure
5. Both first- and second-order kinetic schemes give accurate density profile, while
for the velocity the second-order scheme yields more accurate velocity slope than the
first-order one.
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Fig. 4. Numerical test II. ∆t/∆x = 5/3, ∆x = 0.025.
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Fig. 5. Numerical test III. t = 0.5, ∆x = 0.02.

REFERENCES

[1] F. Berthelin, Existence and weak stability for a pressureless model with unilateral constraint,
Math. Models Methods Appl. Sci., 12 (2002), pp. 249–272.

[2] F. Bouchut, On zero pressure gas dynamics, in Advances in Kinetic Theory and Computing,
Ser. Adv. Math. Appl. Sci. 22, World Scientific, River Edge, NJ, 1994, pp. 171–190.

[3] F. Bouchut, Entropy satisfying flux vector splittings and kinetic BGK models, Numer. Math.,
to appear.

[4] F. Bouchut and G. Bonnaud, Numerical simulation of relativistic plasmas in hydrodynamic
regime, Z. Angew. Math. Mech., 76 (1996), pp. 287–290.

[5] F. Bouchut, G. Bonnaud, S. Dussy, and E. Lefebvre, Comportement électromagnétique
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Abstract. We consider parabolic problems u̇+Au = f in (0, T )×Ω, T <∞, where Ω ⊂ R
d is a

bounded domain and A is a strongly elliptic classical pseudodifferential operator of order ρ ∈ [0, 2] in
H̃ρ/2(Ω). We use a θ-scheme for time discretization and a Galerkin method with N degrees of freedom
for space discretization. The full Galerkin matrix for A can be replaced with a sparse matrix using
a wavelet basis, and the linear systems for each time step are solved approximatively with GMRES.
We prove that the total cost of the algorithm for M time steps is bounded by O(MN(logN)β)
operations and O(N(logN)β) memory. We show that the algorithm gives optimal convergence rates
(up to logarithmic terms) for the computed solution with respect to L2 in time and the energy norm
in space.
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tinuous Galerkin method

AMS subject classifications. 35K15, 45K05, 65M12, 65M60, 65T60

PII. S0036142901394844

1. Introduction. Fast algorithms such as wavelets and multipole or clustering
methods for the numerical solution of elliptic integrodifferential equations

A[u](x) =

∫
Ω

k(x, x− y)u(y)dy = f, x ∈ Ω,(1.1)

with kernel function k(x, z), have been introduced and analyzed in recent years (see,
e.g., [3, 4, 7]). In the present paper we investigate the numerical solution of a class of
parabolic integrodifferential equations

ut = A[u](x) + f in (0, T )× Ω,(1.2)

with suitable initial and boundary conditions. Such equations arise as Kolmogorov
forward equations for Lévy processes Xt with infinitesimal generators A[u]. Brownian
motion Bt with diffusion σ(x) and drift r(x) is a particular Lévy process. The in-
finitesimal generator of Bt in dimension d = 1 is the second order elliptic differential
operator

AB [u](x) = − d

dx

(
σ(x)

du

dx
(x)

)
+ r(x)

du

dx
,(1.3)

and the Kolmogorov forward equation is the diffusion equation with drift. The decom-
position theorem of Lévy states that the infinitesimal generator A of any Lévy-process
Xt is the sum of a differential operator AB as in (1.3), which accounts for the diffusion
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part of Xt and could possibly vanish, and a nonlocal operator AL of the form (1.1),
which corresponds to the pure jump part of the process (see, e.g., [2, 12]). The order
ρ of the infinitesimal generator A of a Lévy-process always satisfies

0 ≤ ρ ≤ 2.(1.4)

We emphasize that due to (1.4) the kernels k(x, z) are not integrable near z = 0 and
that the integral in (1.1) has to be understood as a finite part or principal value, i.e.,
in the sense of distributions [16]. Interpretations of the integral operators A in the
distribution sense can naturally be accounted for in Galerkin discretizations.

While the initial-boundary value problems (1.2) with (1.3) and constant σ, r can
be solved analytically for certain initial conditions, numerical solutions are required for
nonconstant coefficients, general Lévy-processes, and free boundary problems arising
with optimal stopping of Xt. In a numerical solution, u(x, t) is approximated by
finite differences or finite elements in x with N degrees of freedom, reducing (1.2) to
a system of N ordinary differential equations for the approximation uN which must
be integrated in t by a time-stepping scheme. We consider the θ-scheme for time
discretization, which includes as special cases the forward Euler method (θ = 0),
the backward Euler method (θ = 1), and the Crank–Nicolson method (θ = 1

2 ). In
general this leads to implicit methods where a linear system has to be solved for each
time step. For the differential operator (1.3) in dimension d = 1, the matrices to be
inverted in each time step are banded and can be factored in O(N) operations. If
the operator A is nonlocal, however, standard Galerkin discretizations of u with N
degrees of freedom entail dense stiffness matrices and hence at least O(N2) complexity
per time step for the numerical solution of (1.2). We reduce this complexity by a
wavelet-based matrix compression as in [10, 11, 14, 4]. The basic idea behind this
compression is to represent the Galerkin approximation uN of (1.2) in a wavelet basis.
Wavelet matrix compression exploits the fact that the generators A are often classical
pseudodifferential operators, which implies special properties of their Schwartz kernel
function k(x, z) such as

sing supp(k(x, z)) ⊂ {z = 0}
and even analyticity of k(x, z) off the origin z = 0. Wavelet matrix compression
requires only finite differentiability of k(x, z) for z �= 0 and allows the generation of
an approximate stiffness matrix of the nonlocal operator A in (1.1) in O(N(logN)a)
memory and operations where a ≥ 0 is a small integer (see, e.g., [3, 4, 10, 9, 11, 14]
and the references there).

The analysis of the impact of this truncation error on stability and consistency of
the θ time-stepping scheme for the nonlocal parabolic initial-boundary value problems
(1.1), (1.2) is the purpose of the present paper. A large body of literature on time-
stepping for parabolic problems with Galerkin discretization is available; see [18] and
the references there. The impact of quadrature errors on spatial semidiscretizations
was also investigated early on, for example, in [13]. However, the present fully discrete
setting with integral operators and wavelet matrix compression causes consistency
errors which do not fit readily into existing error analyses of fully discrete schemes:
For consistency errors resulting from numerical integration, one has that the difference
between the energy bilinear form a(uh, vh) and the perturbed bilinear form ãh(uh, vh)
goes to zero with respect to the energy norms of uh, vh; i.e.,

|a(uh, vh)− ãh(uh, vh)| ≤ η(h) ‖uh‖V ‖vh‖V , with η(h)→ 0 as h→ 0.
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For a perturbed bilinear form ãh(uh, vh) resulting from wavelet compression, however,
this is no longer true.

Here, we develop a framework for perturbation error analysis of the θ-scheme
which accommodates consistency errors due to wavelet compression of the spatial
nonlocal operator A without any loss in order. We note in passing that our framework
can accommodate other matrix compression techniques, such as, e.g., multipole-based
methods. Unlike wavelet-based compression, these techniques exploit the analytic-
ity of the kernel function and yield exponentially convergent matrix approximations.
We also give a stability analysis for the perturbed θ-schemes that does not require
symmetry or resort to eigenfunction expansions of the spatial operator. As is well
known, the stability of explicit time-stepping schemes for Galerkin discretizations for
the parabolic problems (1.2), (1.4) requires a CFL condition which, as we will show,
depends on the order ρ of the operator A and which takes the form

∆t ≤ C(∆x)ρ, ρ ∈ [0, 2].(1.5)

For ρ = 2, e.g., the heat equation, we recover the classical CFL condition which forces
small time steps ∆t in explicit schemes when the meshwidth h = ∆x of the space
discretization is reduced. If, however, the order of A is ρ ≤ 1, condition (1.5) is of the
type usually encountered in time-stepping for first order hyperbolic equations, and
explicit time-stepping schemes appear competitive.

Next, we present classes of spline wavelets and a matrix compression strategy
which leads to sparse approximations for the stiffness matrix of A with O(N logN)
(rather than O(N2) for standard Galerkin schemes) nonvanishing entries. We prove
that this compression preserves the asymptotic convergence rates of the full Galerkin
scheme.

In the θ-scheme, a linear system of equations at each implicit time step must
be solved. Since the compressed matrices are not banded and possibly nonsymmetric
(due to the presence of a drift term or if k(x, z) is asymmetric for z → ±∞), we propose
inexact equation solution by GMRES iteration. Using wavelets, we precondition the
compressed matrix in dependence on the discretization parameters and the order ρ of
A. We relate the GMRES stopping criterion to the discretization error of the scheme
and prove that the resulting method converges still with optimal order in space and
time while its complexity is essentially O(N) memory and operations per (explicit or
implicit) time step. This is comparable to the complexity for the heat equation using
the backward Euler method in time and banded matrices in space.

We emphasize that our analysis is applicable to general kernels k(x, z), translation
invariant or not, of any order ρ ≥ 0. Therefore, the θ-scheme with wavelet compression
allows the numerical solution of the Kolmogorov equations (1.2) for a large class of
Lévy-processes with complexity comparable to standard finite differences for the heat
equation in one dimension.

The outline of the paper is as follows. In section 2, we present the class of parabolic
problems and the class of spatial integrodifferential operators A admissible in our
analysis. In section 3, we discuss the fully discrete θ-scheme. We describe wavelet
Galerkin discretization of A and give several examples of wavelets. Section 4 is devoted
to the stability analysis of the θ-scheme with compression in the “explicit” case 0 ≤
θ < 1

2 as well as in the implicit case θ > 1
2 . In section 5, we prove our convergence

estimates with particular attention to the error due to wavelet compression of the
stiffness matrix A of A. Section 6 is devoted to the complexity estimates, the matrix
preconditioning in the implicit time-stepping schemes, and the error analysis in the
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presence of incomplete GMRES iterations. Throughout, C will denote a generic
positive constant independent of the discretization parameters taking different values
in different places. If the value of C is relevant, we write also Ci.

2. Problem formulation. In the time interval J = (0, T ) with T > 0, we
consider parabolic evolution problems of the form

u̇(t) +Au(t) = g(t), t ∈ J,(2.1)

u(0) = u0,(2.2)

where A is a possibly nonlocal operator of order ρ > 0.
For a variational formulation of this problem we introduce Sobolev spaces. Let

Ω ⊂ R
d be a bounded domain with Lipschitz boundary Γ = ∂Ω. We denote by

H = L2(Ω) the usual square integrable functions with inner product (., .), and by
Hs(Ω), s ≥ 0, the corresponding Sobolev spaces (see, e.g., [1]). Further, for s ≥ 0, we
define the space

H̃s(Ω) = {u|Ω | u ∈ Hs(Rd), u|Rd\Ω = 0}.(2.3)

If s+ 1/2 �∈ N, then H̃s(Ω) coincides with Hs0(Ω), the closure of C∞0 (Ω) with respect
to the norm in Hs(Ω). We identify L2(Ω) with its dual and define

V = H̃ρ/2(Ω).(2.4)

Then V
d
↪→ L2(Ω) with dense injection, and V ∗, the dual of V , satisfies

V
d
↪→ L2(Ω)

d
↪→ V ∗.(2.5)

We assume that A ∈ L(V ;V ∗). By (·, ·)V ∗×V we denote the extension of (., .) as
duality pairing in V ∗ × V , and by ‖ · ‖, ‖ · ‖V , ‖ · ‖V ∗ the norms in L2(Ω), V, V ∗,
respectively. We associate with A the bilinear form a(·, ·): V × V → C via

a(u, v) := (Au, v)V ∗×V , u, v ∈ V.(2.6)

Then the form a(·, ·) is continuous,

∀u, v ∈ V : |a(u, v)| ≤ α ‖u‖V ‖v‖V ,(2.7)

and we assume that it is coercive in the sense that

∀u ∈ V : a(u, u) ≥ β ‖u‖2V(2.8)

for some 0 < β ≤ α <∞. Then A ∈ L(V, V ∗) is an isomorphism and ‖A‖L(V,V ∗) ≤ α,

‖A−1‖L(V ∗,V ) ≤ 1
β . The time derivative u̇(t) in (2.1) is understood in the weak sense;

i.e., for u ∈ L2(J ;V ) we have u̇ ∈ L2(J ;V ∗) defined by∫
J

(u̇(t), v)V ∗×V ϕ(t)dt = −
∫
J

(u(t), v) ϕ̇(t)dt(2.9)

for every v ∈ V , ϕ ∈ C∞0 (J). The weak form of (2.1), (2.2) reads: Given

u0 ∈ H, g ∈ L2(J ;H),(2.10)
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find u ∈ L2(J ;V )∩H1(J ;V ∗) such that u(0) = u0 and, for every v ∈ V , ϕ ∈ C∞0 (J),

−
∫
J

(u(t), v) ϕ̇(t)dt+

∫
J

a(u, v)ϕ(t)dt =

∫
J

(g(t), v)V ∗×V ϕ(t)dt.(2.11)

Note that the initial condition is well defined since (see [8])

L2(J ;V ) ∩H1(J ;V ∗) ⊂ C0([0, T ]; H).(2.12)

Under the assumption (2.10), problem (2.11) has a unique weak solution u(t), and
there holds the a priori estimate (see, e.g., [8])

‖u‖C(J;H) + ‖u‖L2(J;V ) + ‖u̇‖L2(J;V ∗) ≤ C(‖g‖L2(J;H) + ‖u0‖H).(2.13)

Remark 2.1.
(i) We do not assumeA to be self-adjoint. The form a(·, ·) need not be symmetric.
(ii) Properties (2.7) and (2.8) allow us to define on V an equivalent norm by

‖u‖a := (a(u, u))1/2 ∼ ‖u‖V ,(2.14)

to which we shall refer below as the “energy-norm.”
(iii) Testing (2.1) with u(t) in the (·, ·) inner product, we find with (2.6) that for

almost every t ∈ (0, T )

(u, u̇) + a(u, u) = (u, g),

and integrating from t = 0 to t = T , we find

1

2
‖u(T )‖2 − 1

2
‖u(0)‖2 +

∫ T

0

a(u(t), u(t))dt =

∫ T

0

(u, g)dt

≤
∫ T

0

‖u(t)‖a sup
v∈V

(v, g)

‖v‖a dt ≤
1

2

∫ T

0

‖u(t)‖2a dt+
1

2

∫ T

0

‖g(t)‖2V ∗ dt,

which implies the a priori estimate

‖u(T )‖2 +

∫ T

0

‖u(t)‖2a dt ≤ ‖u(0)‖2 +

∫ T

0

‖g(t)‖2V ∗ dt,(2.15)

where we have set, for any g ∈ V ∗,

‖g‖V ∗ = sup
v∈V

(g, v)

‖v‖a .

Some examples follow.
Example 2.2 (diffusion problem). Here ρ = 2 and

A = −∇ ·D(x)∇, V = H1
0 (Ω)

d
↪→ L2(Ω) = H, a(u, v) =

∫
Ω

∇v ·D(x)∇u dx,

where D ∈ L∞(Ω)d×d satisfies for some γ > 0

ξT D(x)ξ ≥ γ |ξ|2 ∀ξ ∈ R
n, a.e. x ∈ Ω .

Then (2.1), (2.2) is the Dirichlet problem for the heat equation in Ω× (0, T ).
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In this example, the operators A are differential operators and, in particular, local.
The nonlocal operators A of interest to us are classical pseudodifferential operators.

Example 2.3. For 0 ≤ ρ ∈ R, Ω ⊂ R
d open, bounded, and Lipschitz, we consider

classical pseudodifferential operators of order ρ ∈ [0, 2] in Ω, i.e., A ∈ Ψρ(Ω), which

acts from V → V ∗, where V = H̃
ρ
2 (Ω). By the Schwartz kernel theorem (see, e.g.,

[16, 15]), A ∈ Ψρ(Ω) has a representation in terms of a distributional kernel

k(x, x− y) ∈ D′(Ω× Ω)(2.16)

plus a C∞ kernel c(x, y). To the singular kernel, we associate a bilinear form

a(u, v) = (Au, v)V ∗×V =
〈
k(x, x− y), v(x)⊗ u(y)

〉
.(2.17)

Moreover, the singular kernel k(x, x− y) ∈ C∞(Ω×Ω\{x = y}) satisfies the so-called
Calderón–Zygmund estimates: for all α, β ∈ N

n
0 , (x, y) ∈ Ω× Ω\{x = y},

|∂αx ∂βy k(x, x− y)| ≤ C(α, β)|x− y|−(d+ρ+|α|+|β|) .(2.18)

A particular example for a nonlocal operator of order ρ = 1 is given by Ω = (−1/2, 1/2)

⊂ R and, for u ∈ V = H̃1/2(Ω),

(Wu)(x) = −p.f.

∫
Ω

u(y)

|x− y|2 dy,(2.19)

where the integral is to be understood in the finite-part sense (see, e.g., [16]). For
the bilinear form a(u, v) corresponding to the hypersingular operator W in (2.19),
integration by parts yields the representation

∀u, v ∈ H̃1/2(Ω) : a(u, v) = −
∫

Ω

v′(x)

∫
Ω

log(x− y)u′(y) dy dx,(2.20)

and one can show that there are β, γ > 0 with

∀u ∈ H̃1/2(Ω) : a(u, u) ≥ β ‖u‖2
H̃1/2(Ω)

.(2.21)

Remark 2.4. In the setting (2.17), we often do not have the coercivity (2.8), but
rather a (weaker) G̊arding inequality: There is γ ≥ 0 such that

∀u ∈ V : a(u, u) + γ ‖u‖2 ≥ β ‖u‖2V(2.22)

(where ‖u‖2 is, e.g., due to the C∞ part of the kernel of A).
This case can be reduced to (2.8) by the substitution w = exp(−γt)u, since then

(2.1) implies that w solves the problem

ẇ + (A+ γI)w = exp(−γt) g in (0, T ),

and the operator A+ γI is, by (2.22), once again coercive.

3. Discretization. We discretize (2.1) in time using the so-called θ-scheme, and
in space by a finite element method. We describe wavelet finite element bases and the
compression of the stiffness matrix.
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3.1. Space discretization. To discretize the parabolic problem (2.11) in space,
we use an elliptic projection onto a family {Vh}h ⊂ V of finite dimensional subspaces
of V , based on piecewise polynomials of degree p ≥ 0 on a quasi-uniform family of
triangulations {Th}h of Ω.

The semidiscrete problem reads: Given u0 ∈ H, g ∈ L2(J ;H), first choose an
approximation u0,h ∈ Vh for the initial data u0. Then find uh ∈ H1(J ;Vh) such that

uh(0) = u0,h(3.1)

and

d

dt
(uh, vh) + a(uh, vh) = (g(t), vh) ∀vh ∈ Vh.(3.2)

Let Ph : L2 → Vh be a projector. Then the approximation of the initial data could be
chosen as u0,h = Phu0 or as an interpolant of u0.

The semidiscrete problem (3.1), (3.2) is an initial value problem for N = dimVh
ordinary differential equations

K
d

dt
u+Au = g(t), u(0) = u0,

where u(t) denotes the coefficient vector of uh(t) with respect to some basis of Vh.
Likewise u0 denotes the coefficient vector of u0,h, and K,A denote the mass- and
stiffness matrix, respectively, with respect to the basis of Vh.

In the ensuing error analysis, we need to consider functions in V which have ad-
ditional regularity and introduce for this purpose the spaces Hs(Ω) which are defined
as

Hs(Ω) =

{
V = H̃ρ/2(Ω) for s = ρ/2,
V ∩Hs(Ω) for s > ρ/2.

We assume the approximation property: For all u ∈ Ht with t ≥ ρ/2 there exists a
uh ∈ Vh such that for 0 ≤ s ≤ ρ

2 and ρ/2 ≤ t ≤ p+ 1

‖u− uh‖H̃s(Ω) ≤ cht−s ‖u‖Ht(Ω).(3.3)

We assume that the projector Ph : V → Vh satisfies (3.3) with uh = Phu.
We shall also need the inverse property: There is c > 0 independent of h such

that

∀uh ∈ Vh ‖uh‖H̃s(Ω) ≤ ch−s ‖uh‖L2(Ω) , 0 ≤ s ≤ ρ

2
.(3.4)

3.2. Time discretization using the θ-scheme. For T < ∞ and M ∈ N,
define the time step

k =
T

M

and tm = mk, m = 0, . . . ,M . The fully discrete θ-scheme reads: Given u0 ∈ H, find
umh ∈ Vh satisfying

u0
h = u0,h,(3.5)
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and, for m = 0, 1, . . . ,M − 1, find um+1
h ∈ V such that for all vh ∈ Vh(

um+1
h − umh

k
, vh

)
+ a
(
um+θ
h , vh

)
=
(
gm+θ, vh

)
(3.6)

holds. Here um+θ
h := θum+1

h + (1 − θ)umh and gm+θ := θg(tm+1) + (1 − θ)g(tm). In
matrix form, (3.6) reads

(k−1K+ θA)um+1 = k−1Kum − (1− θ)Aum + gm+θ, m = 0, 1, . . . ,M − 1,

where um is the coefficient vector of umh with respect to a basis of Vh.
Remark 3.1. Even for the forward Euler method (i.e., for θ = 0), we have to solve

at each time step a linear system with the mass matrix. For 0 ≤ ρ < 1 the spaces
Hρ/2(Ω) allow for the use of discontinuous multiwavelets to obtain a diagonal mass
matrix. In this case, each time step requires only one matrix-vector product with the
matrix A.

3.3. Perturbation. Previous analyses of the θ-scheme (3.5) assumed that the
form a(·, ·) : Vh×Vh → R can be evaluated exactly, i.e., that the corresponding stiffness
matrix A is available. In practice, this is unrealistic. Even for the heat equation,
numerical integration and isoparametric boundary approximations allow one to realize
only an approximation of A. The impact of the resulting consistency error in the
context of semidiscrete schemes was investigated early on [13].

Here, we are interested in wavelet compression of A as in, e.g., [10, 11, 14], re-
sulting in a compressed matrix Ã. With the compressed matrix Ã we associate the
perturbed bilinear form ã(·, ·). (Other perturbations, e.g., due to numerical integra-
tion or domain approximation by isoparametric elements in the context of Example
2.2, can be treated in the same way.) Using ã(·, ·) in place of a(·, ·) in (3.6) gives
perturbed θ-schemes

ũ0
h = u0,h,(3.7a)

(
ũm+1
h − ũmh

k
, vh

)
+ ã
(
ũm+θ
h , vh

)
=
(
gm+θ, vh

)
(3.7b)

for m = 0, 1, 2, . . . ,M − 1 and every vh ∈ Vh, where ũm+θ
h := θũm+1

h + (1− θ) ũmh . In
matrix form, (3.7b) reads

(k−1K+ θÃ)ũm+1 = k−1Kũm − (1− θ)Ãũm + gm+θ, m = 0, 1, . . . ,M − 1,

where ũm is the coefficient vector of ũmh with respect to a basis of Vh.
We shall assume for ã(·, ·) the following consistency conditions: There is δ < 1

independent of h such that

|a(uh, vh)− ã(uh, vh)| ≤ δ ‖uh‖a ‖vh‖a ∀uh, vh ∈ Vh,(3.8)

and there is C > 0 independent of h such that

|a(Phu, vh)− ã(Phu, vh)|
≤ Chp+1−ρ/2| log h|ν‖u‖Hp+1(Ω) ‖vh‖H̃ρ/2(Ω) ∀u ∈ Hp+1(Ω), vh ∈ Vh,(3.9)

with some ν ≥ 0.
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Condition (3.8) shows that on Vh × Vh the form ã(·, ·) is equivalent to a(·, ·) in
the following sense.

Proposition 3.2. For δ < 1 in (3.8), we have for some constants 0 < β̃ ≤ α̃ <∞
independent of h

∀uh, vh ∈ Vh : |ã(uh, vh)| ≤ α̃ ‖uh‖a ‖vh‖a(3.10)

and

∀uh ∈ Vh : |ã(uh, uh)| ≥ β̃ ‖uh‖2a .(3.11)

Proof. Consider (3.11). We have for uh ∈ Vh
|ã(uh, uh)| ≥ |a(uh, uh)| − |a(uh, uh)− ã(uh, uh)| = ‖uh‖2a − |a(uh, uh)− ã(uh, uh)| ,

and, using the definition of ‖·‖a and the consistency condition (3.8), we get (3.11)

with β̃ = 1− δ. The continuity (3.10) is proved in the same way.

3.4. Wavelet compression. In the context of Example 2.3, perturbed bilinear
forms ã are obtained by various matrix compression techniques which reduce the dense
matrices A to sparse ones that can be manipulated in linear complexity. We illustrate
this by the wavelet compression of operators of order 0 ≤ ρ ≤ 2 in dimensions d = 1, 2;
we present here only the main principles—for details and proofs, see [9, 14, 4]. All
results carry over to dimensions d > 2 if a suitable wavelet basis is used.

3.4.1. Subspaces Vh. For d = 1 the domain Ω is an interval. For d = 2 we
assume that Ω is a polygon. Let T0 be a fixed coarse triangulation of the domain.
We then define the triangulation Tl for l > 0 by bisection of each interval in Tl−1

for d = 1, or by subdivision of a triangle in Tl−1 into four congruent subtriangles for
d = 2. We assume that the triangulation {Th} is obtained in this way as TL, for some
L > 0 so that h = C2−L.

For 0 ≤ ρ < 1 we define Vh as the space of piecewise polynomials of total degree
p ≥ 0 (without any continuity restriction) on the triangulation TL.

For 1 ≤ ρ ≤ 2 the space Vh is defined as the space of continuous piecewise
polynomials of degree p ≥ 1 on the triangulation with zero values on the boundary
∂Ω.

In the same way we define the spaces V l corresponding to the triangulation Tl,
so that we have

V 0 ⊂ V 1 ⊂ · · · ⊂ V L = Vh.

Let N l = dimV l and M l := N l −N l−1 so that N = dimVh = NL = C2L.

3.4.2. Wavelet basis. By choosing a suitable basis for Vh we will be able to
represent the bilinear form a(·, ·) as a matrix where most elements are small and can
be neglected, yielding the approximate bilinear form ã(·, ·). The basis will also allow
optimal preconditioning. We will use so-called biorthogonal wavelets. (Note that the
dual wavelets described below will not be used in the computation.)

We will use a hierarchical basis of functions ψlj with j = 1, . . . ,M l and l = 0, 1, . . .
with the following properties:

1. V l = span{ψlj | 0 ≤ l ≤ L, 1 ≤ j ≤M l}.
2. The function ψlj has support Slj := suppψlj of diameter bounded by C 2−l.
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3. Wavelets ψlj with S̄lj ∩ ∂Ω = ∅ have vanishing moments up to order p, i.e.,

(ψlj , q) = 0 for all polynomials q of total degree p or less.

4. The functions ψlj for l ≥ l0 are obtained by scaling and translation of the

functions ψl0j .
5. A function v ∈ Vh has the representation

v =

L∑
l=0

M l∑
j=1

vljψ
l
j

with vlj = (v, ψ̃lj), where ψ̃lj are the so-called dual wavelets. For v ∈ V one
obtains an infinite series

v =
∞∑
l=0

M l∑
j=1

vljψ
l
j

with vlj = (v, ψ̃lj), which converges in H̃s for 0 ≤ s ≤ ρ/2 .
6. There holds the norm equivalence

c1 ‖v‖2H̃s(Ω) ≤
∞∑
l=0

M l∑
j=1

∣∣vlj∣∣2 22ls ≤ c2 ‖v‖2H̃s(Ω)(3.12)

for 0 ≤ s ≤ ρ/2, and for ρ/2 < s ≤ p+ 1 we have the one-sided bounds

L∑
l=0

M l∑
j=1

∣∣vlj∣∣2 22ls ≤ c3Lν ‖v‖2Hs(Ω) ,

where ci > 0 are independent of L, ν = 0 if s < p+ 1, and ν = 1 if s = p+ 1.
We now define the projection Ph : V → Vh by truncating the wavelet expansion: For
v ∈ V

Phv :=

L∑
l=0

M l∑
j=1

vljψ
l
j .(3.13)

This projection satisfies the approximation property (3.3).

3.4.3. Examples for wavelets. In the case 0 ≤ ρ < 1 a multiwavelet basis as
in [11] can be used: Let {pk} be a basis for polynomials of total degree p or less. Then
the functions ψ0

j are the functions which are on one element equal to a function pk,

and zero elsewhere. For l > 1 we choose for ψlj functions in V l that are nonzero on
one element of Tl−1 and that are orthogonal on all polynomials of total degree p or
less.

In all cases 0 ≤ ρ ≤ 2, so-called prewavelets can be used; these are functions in
V l with small support which are orthogonal on V l−1.

Another possibility are so-called biorthogonal wavelets, which need not be orthog-
onal on V l−1. For piecewise linears the functions ψlj in the interior of the interval
have values 0, . . . , 0,−1, 2,−1, 0, . . . , 0. In the case of Neumann boundary conditions
the wavelet at the left boundary has values −2, 2, 1, 0, . . . , 0; in the case of Dirichlet
conditions the values are 0, 2,−1, 0, . . . , 0 (and similarly at the right boundary). Note
that the boundary wavelets have fewer vanishing moments in general.

In dimension d = 2 the construction of piecewise linear prewavelets on arbitrary
polygons is described, e.g., in [5, 17].
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3.4.4. Matrix compression. The bilinear form a on Vh × Vh corresponds to a
matrix A with elements A(l,j),(l′,j′) = a(ψlj , ψ

l′
j′).

We assumed that the kernel of the operator satisfies the estimates (2.18). This
implies a decay of the matrix elements with increasing distance of their supports.

We define the compressed matrix Ã and the corresponding bilinear form ã by
replacing certain small matrix elements in A with zero:

Ã(j,l),(j′,l′) :=

{
A(j,l),(j′,l′) if dist(Slj , S

l′
j′) ≤ δl,l′ or Slj ∩ ∂Ω �= ∅,

0 otherwise.
(3.14)

Here the truncation parameters δl,l′ are given by

δl,l′ := cmax{2−L+α̂(2L−l−l′), 2−l, 2−l
′}(3.15)

with some parameters c > 0 and α̂ > 0. The consistency conditions (3.8), (3.9) can
be satisfied as follows (see, e.g., [9, 10, 11, 14]).

Proposition 3.3. If c in (3.15) is chosen sufficiently large, then for all L > 0
condition (3.8) holds. If additionally

α̂ ≥ 2p+ 2

2p+ 2 + ρ
(3.16)

holds, then condition (3.9) holds with ν = 3
2 if equality holds in (3.16), and ν = 1

2
otherwise.

The matrix compression (3.14) reduces the number of nonzero elements from N2

to N times a logarithmic term as follows (see [9, 10, 11, 14]).
Proposition 3.4. The compressed matrix Ã has O(N logN) nonzero elements

if α̂ < 1, and O(N(logN)2) nonzero elements if α̂ = 1.
In particular, for operators of order ρ > 0 we can choose α̂ such that ν = 1

2 in

(3.9) and the number of nonzero elements in Ã is O(N logN). In the case of order
ρ = 0 we have to choose α̂ = 1, implying ν = 3

2 in (3.9), and the number of nonzero

elements in Ã is O(N(logN)2).

4. Stability. The stability of the θ-scheme is well known in the context of Ex-
ample 2.2, i.e., if the spatial operator is elliptic and of second order. We investigate
here general operators A of order ρ ≥ 0 that are elliptic in the sense that (2.7), (2.8)

hold in V = H̃ρ/2(Ω). We prove an L2(J ;V ) stability estimate for the approximate
solutions obtained from the θ-scheme with wavelet-compressed space operator.

In the analysis, we will use for f ∈ V ∗h the following notation:

‖f‖∗ := sup
vh∈Vh

(f, vh)

‖vh‖a .(4.1)

We will also need λA defined by

λA := sup
vh∈Vh

‖vh‖2
‖vh‖2∗

.

We first address the stability of the θ-scheme with exact bilinear form a(·, ·). In the
case 1

2 ≤ θ ≤ 1, the θ-scheme is stable for any time step k > 0, whereas in the case
0 ≤ θ < 1

2 , the time step k must be sufficiently small.
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Proposition 4.1. In the case of 1
2 ≤ θ ≤ 1 assume that

0 < C1 < 2, C2 ≥ 1

2− C1
,(4.2)

and in the case of 0 ≤ θ < 1
2 assume that

σ := k(1− 2θ)λA < 2,(4.3)

0 < C1 < 2− σ, C2 ≥ 1 + (4− C1)σ

2− σ − C1
.(4.4)

Then the sequence {umh }Mm=0 of solutions of the θ-scheme (3.5) satisfies the stability
estimate

‖uMh ‖2 + C1k

M−1∑
m=0

‖um+θ
h ‖2a ≤ ‖u0

h‖2 + C2k

M−1∑
m=0

‖gm+θ‖2∗.(4.5)

Proof. Let

Xm := ‖umh ‖2 −
∥∥um+1
h

∥∥2
+ C2k

∥∥gm+θ
∥∥2

∗ − C1k
∥∥um+θ
h

∥∥2

a
.

We want to show that Xm ≥ 0. Then adding these inequalities for m = 0, . . . ,M − 1
will obviously give (4.5).

Let w := um+1
h − umh ; then um+θ

h = (umh + um+1
h )/2 + (θ − 1

2 )w and∥∥um+1
h

∥∥2 − ‖umh ‖2 = (um+1
h − umh , um+1

h + umh ) = (w, 2um+θ
h − (2θ − 1)w).

By the definition of the θ-scheme, we have

(w, um+θ
h ) = k(−Aum+θ

h + gm+θ, um+θ
h ) = k

[
−∥∥um+θ

h

∥∥2

a
+ (gm+θ, um+θ

h )
]

≤ k
[
−∥∥um+θ

h

∥∥2

a
+
∥∥gm+θ

∥∥
∗
∥∥um+θ
h

∥∥
a

]
.

This gives

Xm ≥ (2θ − 1) ‖w‖2 + k
[
(2− C1)

∥∥um+θ
h

∥∥2

a
− 2

∥∥gm+θ
∥∥
∗
∥∥um+θ
h

∥∥
a

+ C2

∥∥gm+θ
∥∥2

∗
]
.

In the case of 1
2 ≤ θ ≤ 1 we now obtain Xm ≥ 0 if the conditions (4.2) are satisfied.

In the case 0 ≤ θ < 1
2 we have by the definition of the θ-scheme that (w, vh) =

k(−Aum+θ
h + gm+θ, vh), yielding

‖w‖ ≤ λ1/2
A ‖w‖∗ ≤ λ1/2

A k
(∥∥Aum+θ

h

∥∥
∗ +

∥∥gm+θ
∥∥
∗
)

= λ
1/2
A k

(∥∥um+θ
h

∥∥
a

+
∥∥gm+θ

∥∥
∗
)
,

since (Aum+θ
h , vh) ≤ ‖um+θ

h ‖a‖vh‖a gives ‖Aum+θ
h ‖∗ ≤ ‖um+θ

h ‖a and choosing vh :=

um+θ
h gives ‖Aum+θ

h ‖∗ ≥ ‖um+θ
h ‖a. Hence

k−1Xm ≥ (2− C1 − σ)
∥∥um+θ
h

∥∥2

a
− 2(1 + σ)

∥∥gm+θ
∥∥
∗
∥∥um+θ
h

∥∥
a

+ (C2 − σ)
∥∥gm+θ

∥∥2

∗ .

Therefore we have Xm ≥ 0 if conditions (4.3) hold.
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Remark 4.2. The a priori estimate (4.5) is, in a sense, the discrete analogue of the
a priori estimate (2.15). Note, however, that ‖gm+θ‖∗ is not identical to ‖gm+θ‖V ∗—
in fact, for g ∈ V ∗ we have by Vh ⊂ V that

‖gm+θ‖∗ ≤ ‖gm+θ‖V ∗ .

Consider now the sequence {ũmh }Mm=0 of solutions to the perturbed θ-scheme
(3.7a), (3.7b). We analogously define for vh ∈ Vh and f ∈ V ∗h

‖vh‖ã := ã(vh, vh), ‖f‖∗̃ := sup
vh∈Vh

(f, vh)

‖vh‖ã
, λÃ := sup

vh∈Vh

‖vh‖2
‖vh‖2∗̃

.(4.6)

Due to the norm equivalence in Proposition 3.2, we obtain in the same way as in
Proposition 4.1, with ã(·, ·) in place of a(·, ·), the following result.

Proposition 4.3. Assume that (3.8) holds with δ < 1. In the case of 1
2 ≤ θ ≤ 1

assume that (4.2) holds. In the case of 0 ≤ θ < 1
2 assume that

σ := k(1− 2θ)λÃ < 2(4.7)

and that (4.4) holds.
Then the sequence {ũmh }Mm=0 of solutions of the perturbed θ-scheme (3.7a), (3.7b)

satisfies the stability estimate

‖ũMh ‖2 + C1k

M−1∑
m=0

‖ũm+θ
h ‖2ã ≤ ‖ũ0

h‖2 + C2k

M−1∑
m=0

‖gm+θ‖2∗̃.(4.8)

Remark 4.4. By the inverse estimate (3.4) and the norm equivalence (2.14) we
have for wh ∈ Vh

‖wh‖a ≤ C ‖wh‖ρ/2 ≤ C ′h−ρ/2 ‖wh‖ ,
and therefore for vh ∈ Vh

‖vh‖∗ = sup
wh∈Vh

(vh, wh)

‖wh‖a
≥ Chρ/2 sup

wh∈Vh

(vh, wh)

‖wh‖ = Chρ/2 ‖vh‖ ,(4.9)

λ
1/2
A = sup

vh∈Vh

‖vh‖
‖vh‖∗

≤ Ch−ρ/2.(4.10)

Hence there exists a positive constant C∗ independent of h and θ such that the time-
step restriction

k ≤ C∗ hρ

1− 2θ
(4.11)

is sufficient for stability (4.3). For ρ = 2 and θ < 1
2 (e.g., forward Euler and the heat

equation) this reduces to the well-known time-step restriction k ≤ Cθh
2 for explicit

schemes. For smaller values of ρ the restriction is less severe, and in the limiting case
ρ = 0 condition (4.11) gives k ≤ C∗/(1− 2θ) with a bound independent of h.

For the perturbed scheme (3.7) we can proceed in the same way and obtain, using
Proposition 3.2, that (4.11) is a sufficient condition for (4.7) (with a different value of
C∗).

Remark 4.5. As θ tends to 1
2 from below the bound on k in the stability condition,

(4.3) tends to infinity, and for θ ≥ 1
2 the stability holds with σ = 0 and C1, C2 as in

(4.4) for all values of k.
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5. Convergence. Based on the stability results obtained in section 4 and the
consistency (3.8), (3.9) of the compressed form ã(·, ·), we shall now obtain optimal
convergence estimates of the compressed θ-scheme (sufficient regularity of the exact
solution u(x, t) in space and time provided). Throughout this section, we shall set

um = u(tm) ∈ V.(5.1)

We will estimate the error

ẽmh := um − ũmh .(5.2)

To this end, we split ẽmh as follows:

ẽmh = (um − Phum)︸ ︷︷ ︸
ηm

+ (Phu
m − ũmh )︸ ︷︷ ︸
ξm
h

= ηm + ξmh ,(5.3)

where Ph : V → Vh is the quasi interpolant in (3.13) (realized as a truncated wavelet
expansion; see section 3.4 or [9, 3] for details).

As ηm is a best approximation error, we focus now on ξmh ∈ Vh.
Lemma 5.1. If u ∈ C1(J ;H), the {ξmh }m are solutions of the θ-scheme

ξ0h = Phu0 − ũ0
h

for m = 0, 1, . . . ,M − 1 and every vh ∈ Vh;
k−1(ξm+1

h − ξmh , vh) + ã (θξm+1
h + (1− θ) ξmh , vh) = (rm, vh),(5.4)

where the weak residuals rm: Vh → R are given by

rm = rm1 + rm2 + rm3 + rm4(5.5)

with

(rm1 , vh) :=

(
um+1 − um

k
− u̇m+θ, vh

)
,

(rm2 , vh) :=

(
Phu

m+1 − Phum
k

− um+1 − um
k

, vh

)
,

(rm3 , vh) := ã (Phu
m+θ, vh)− a (Phu

m+θ, vh) ,

(rm4 , vh) := a (Phu
m+θ − um+θ, vh) .

Proof. We note that (2.11) and u ∈ C1(J ;H) imply

(u̇m+θ, v) + a(um+θ, v) = (gm+θ, v) ∀v ∈ V .(5.6)

Since Vh ⊂ V , we get for every vh ∈ Vh
k−1(ξm+1

h − ξmh , vh) + ã(θξm+1
h + (1− θ) ξmh , vh)

=

(
(Phu

m+1 − ũm+1
h )− (Phu

m − ũmh )

k
, vh

)
+ ã (Phu

m+θ, vh)− ã (ũm+θ
h , vh)

=

(
Phu

m+1 − Phum
k

, vh

)
+ ã(Phu

m+θ, vh)
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−
{(

ũm+1
h − ũmh

k
, vh

)
− ã (ũm+θ

h , vh)

}
(3.7)
=

(
Phu

m+1 − Phum
k

, vh

)
+ ã (Phu

m+θ, vh)− (gm+θ, vh)

(5.6)
=

(
Phu

m+1 − Phum
k

− u̇m+θ, vh

)
+ ã (Phu

m+θ, vh)− a (um+θ, vh) =: (r, vh) .

The representation (5.5) of (r, vh) is now evident.
Lemma 5.1 implies, together with the stability result Proposition 4.3, the following

estimate for the ξmh .
Corollary 5.2. Under the assumptions of Proposition 4.3 and if u ∈ C1(J ;H),

we have

‖ξMh ‖2 + C1k

M−1∑
m=0

∥∥ξm+θ
h

∥∥2

ã
≤ ‖ξ0h‖2 + C2k

M−1∑
m=0

∥∥rm∥∥2

∗̃.(5.7)

Based on (5.5), we must estimate the ‖rmj ‖∗̃, j = 1, . . . , 4.
Estimate of rm1 . This value is based on a Taylor expansion in t. Noting that for

any vh ∈ Vh

|(rm1 , vh)| ≤ ‖k−1(um+1 − um)− u̇m+θ‖∗̃ ‖vh‖ã

and

k−1
∣∣(um+1 − um)− u̇m+θ

∣∣ = k−1

∣∣∣∣∫ tm+1

tm

(s− (1− θ)tm+1 − θ tm) ü ds

∣∣∣∣ ,
we get

‖k−1(um+1 − um)− u̇m+θ‖∗̃ ≤ k−1

∫ tm+1

tm

|s− (1− θ) tm+1 − θ tm| ‖ü‖∗̃ ds

≤ Cθ
∫ tm+1

tm

‖ü(s)‖∗̃ ds

≤ Cθ k 1
2

(∫ tm+1

tm

‖ü(s)‖2∗̃ ds
) 1

2

.

(5.8)

If θ = 1
2 , an integration by parts gives

∣∣k−1(um+1 − um)− u̇m+θ
∣∣ =

1

2k

∣∣∣∣∫ tm+1

tm

(tm+1 − s)(tm − s) ...
u (s)ds

∣∣∣∣ ,
and it follows that

‖k−1(um+1 − um)− u̇m+θ‖∗̃ = C k
3
2

(∫ tm+1

tm

‖ ...u (s)‖2∗̃ ds
) 1

2

.
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Estimate of rm2 . Here

|(rm2 , vh)| ≤ C ‖k−1 [(um+1 − um)− Ph(um+1 − um)]‖∗̃ ‖vh‖ã
= C k−1

∥∥∥∥(I − Ph)

∫ tm+1

tm

u̇(s) ds

∥∥∥∥
∗̃
‖vh‖ã

≤ C k−1

∫ tm+1

tm

‖(I − Ph) u̇‖∗̃ ds ‖vh‖ã

≤ Ck− 1
2hp+1−ρ/2

(∫ tm+1

tm

‖u̇‖2Hp+1−ρ/2(Ω)ds

) 1
2

,

(5.9)

where we used ‖w‖∗̃ ≤ C ‖w‖ and the approximation property (3.3) of Ph pointwise
in t.

Estimate of rm3 . Here we use the consistency (3.9)

|(rm3 , vh)| ≤ C hp+1−ρ/2| log h|ν‖um+θ‖Hp+1(Ω)‖vh‖H̃ρ/2(Ω) .(5.10)

By (2.14) and (3.11), we get ‖vh‖H̃ρ/2 ≤ C ‖vh‖ã and hence a bound on ‖rm3 ‖∗̃.
Estimate on rm4 . Using (3.11) gives

|(rm4 , vh)| ≤ C ‖um+θ − Phum+θ‖a ‖vh‖ã,

and with the approximation property (3.3) we find

|(rm4 , vh)| ≤ C hp+1−ρ/2‖um+θ‖Hp+1(Ω) ‖vh‖ã .(5.11)

Collecting the bounds (5.8)–(5.11) gives the following result.
Lemma 5.3. Assume that (3.8), (3.9) hold. If u(x, t) is sufficiently smooth in

J × Ω, we have for rm given by (5.5)

‖rm‖∗̃ ≤ C


k

1
2

(∫ tm+1

tm

‖ü(s)‖2∗ds
) 1

2

∀ θ ∈ [0, 1],

k
3
2

(∫ tm+1

tm

‖...u (s)‖2∗ds
) 1

2

∀ θ =
1

2

+ Ck−
1
2hp+1−ρ/2

(∫ tm+1

tm

‖u̇‖2Hp+1−ρ/2(Ω)ds

) 1
2

+ Chp+1−ρ/2| log h|ν‖um+θ‖Hp+1(Ω) .

(5.12)

Theorem 5.4. Assume that the consistency conditions (3.8), (3.9) hold. For
θ ∈ [0, 1

2 ) assume (4.7). Assume further that the approximation u0,h ∈ Vh of the
initial data u0 is quasi-optimal in L2(Ω). Then the following error estimate holds for
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the perturbed θ-scheme with θ ∈ [0, 1] :

∥∥uM − ũMh ∥∥2
+ k

M−1∑
m=0

‖um+θ − ũm+θ
h ‖2a ≤ Ch2(p+1−ρ/2)| log h|2ν max

0≤t≤T
‖u(t)‖2Hp+1(Ω)

+ C


k2

∫ T

0

‖ü(s)‖2∗ds ∀ θ ∈ [0, 1],

k4

∫ T

0

‖...u (s)‖2∗ds for θ = 1
2

+ Ch2(p+1−ρ/2)
∫ T

0

‖u̇(s)‖2Hp+1−ρ/2(Ω)ds.

(5.13)

Proof. Based on (5.3), we have for every M ≥ 1

∥∥ẽMh ∥∥2
+ k

M−1∑
m=0

‖ẽm+θ
h ‖2a

≤ 2

{∥∥ηM∥∥2
+ k

M−1∑
m=0

‖ηm+θ‖2a
}

+ 2

{∥∥ξMh ∥∥2
+ k

M−1∑
m=0

‖ξm+θ
h ‖2a

}
.

The first term can be estimated with the approximation property (3.3). The second
term is treated using (3.11) and (4.8). We get

∥∥ξMh ∥∥2
+ k

M−1∑
m=0

‖ξm+θ
h ‖2a ≤

∥∥ξMh ∥∥2
+ kβ̃−1

M−1∑
m=0

∥∥ξm+θ
h

∥∥2

ã

≤ max

{
1,

1

(β̃C1)

}{∥∥ξMh ∥∥2
+ C1k

M−1∑
m=0

∥∥ξm+θ
h

∥∥2

ã

}

≤ max

{
1,

1

(β̃C1)

}{∥∥ξ0h∥∥2
+ C2k

M−1∑
m=0

∥∥rm+θ
h

∥∥2

∗̃

}
.

Using now the bound (5.12) for
∥∥rm+θ
h

∥∥
∗̃, the quasi optimality of u0,h and the ap-

proximation property (3.3) with s = 0 to estimate
∥∥ξ0h∥∥ give the assertion.

6. Approximate solution of linear equations and complexity. In order
to compute the approximate solution ũmh in (3.7) for m = 1, . . . ,M , we proceed as
follows.

First we compute the mass matrixK in the wavelet basis with elementsK(l,j),(l′,j′),
where O(N logN) elements are nonzero. Note that for discontinuous multiwavelets
(which can be used for 0 ≤ ρ < 1) the mass matrix is diagonal.

Then we compute the compressed stiffness matrix Ã, where O(N(logN)r) el-
ements are nonzero and r = 1 if ρ ∈ (0, 2], r = 2 if ρ = 0; see Proposition 3.4.
If explicit antiderivatives of the kernel function are available (as is often the case),
the total cost for computing the stiffness matrix Ã is O(N(logN)r) operations. In
other cases, quadrature as described in [10] can be used. This preserves the consis-
tency conditions (3.8), (3.9), and the total cost of computing Ã is O(N(logN)r+d)
for d = 1, 2.



176 T. VON PETERSDORFF AND C. SCHWAB

For each time step we have to solve (3.7b): We have to find w̃mh := ũm+1
h −ũmh ∈ Vh

satisfying

k−1(w̃mh , vh) + θã(w̃mh , vh) = (gm+θ, vh)− ã(ũmh , vh) ∀vh ∈ Vh(6.1)

and then update ũm+1
h := ũmh + w̃mh . Let w̃m ∈ R

N denote the coefficient vectors

of w̃mh with respect to the wavelet basis, and K, Ã ∈ R
N×N the mass and stiffness

matrices corresponding to (·, ·) and ã(·, ·) in this basis. Then we obtain for w̃m a
linear system Bw̃m = b̃m with the matrix B = k−1K + θÃ and a known right-hand
side vector b̃m.

For a standard finite element basis, the matrix B has a condition number of order
h−ρ for small h and fixed k. For the matrix B in the wavelet basis we can achieve
a uniformly bounded condition number if we scale the rows and columns of B as
follows: Let µl := (k−1 + θ2lρ)1/2 and let B̂(l,j),(l′,j′) := µ−1

l µ−1
l′ B(l,j),(l′,j′). A similar

scaling was proposed in [4]. In what follows let ‖·‖ denote the 2-norm of a vector or
the 2-norm of a matrix. We will use the GMRES method with restart every m0 ≥ 1
iterations, denoted by GMRES(m0).

Lemma 6.1. For the linear system B̂x = b let xj for j ∈ N denote the iterates
obtained by the restarted GMRES(m0) method with initial guess x0. Then there holds

‖x− xj‖ ≤ Cqj ‖x− x0‖ ,(6.2)

where C and q < 1 are independent of L, k, θ.
Proof. Throughout the proof, Ci will denote generic positive constants indepen-

dent of h, k and unrelated to Ci in the main body of the text above. Let D denote
the diagonal matrix with entries D(l,j),(l,j) = 2lρ/2. Because of the norm equiva-
lence (3.12), we have for all x, y ∈ R

N

C1 ‖x‖2 ≤ xTKx, xTKy ≤ C2 ‖x‖ ‖y‖ .

Using the consistency conditions (3.8) of the wavelet truncation and (2.7), (2.8), we
obtain

C3 ‖Dx‖2 ≤ xT Ãx, xT Ãy ≤ C4 ‖Dx‖ ‖Dy‖ .

The constants Cj > 0 are independent of L. Therefore B = k−1K+ θÃ satisfies with
C5 := min{C1, C3} and C6 := max{C2, C4}

C5 x
T (k−1I+ θD2)x ≤ xTBx,(6.3)

xTBy ≤ C6[k−1 ‖x‖ ‖y‖+ θ ‖Dx‖ ‖Dy‖]

≤ C6

[
xT (k−1I+ θD2)x

]1/2[
yT (k−1 + θD2)y

]1/2(6.4)

using the Cauchy–Schwarz inequality for the last estimate. Hence scaling with the
diagonal matrix S := (k−1I+θD2)1/2 yields with B̂ = S−1BS−1 and x̂ := Sx, ŷ := Sy
that

C5 ‖x̂‖2 ≤ x̂T B̂x̂, x̂T B̂ŷ ≤ C6 ‖x̂‖ ‖ŷ‖(6.5)
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for all x̂, ŷ ∈ R
N , and therefore

λmin

(
(B̂+ B̂T )

2

)
≥ C5, ‖B̂‖ ≤ C6.

According to [6], the GMRES iterates xj+ν and their residuals rj+ν := b − B̂xj+ν
after a restart satisfy for ν = 1, . . . ,m0

‖rj+ν‖ ≤
(

1− C2
5

C2
6

)ν/2
‖rj‖ .

Because of C5 ‖xj − x‖2 ≤ (xj − x)T B̂(xj − x) ≤ C6 ‖xj − x‖ ‖rj‖, a corresponding
estimate holds for the errors ‖xj − x‖.

Remark 6.2. If the operator A is symmetric, we can also use the conjugate
gradient method for the symmetric matrix B̂. This will in general give the bound
(6.2) with a smaller constant q than the GMRES method.

Note that, for a function vh ∈ Vh with coefficient vector v and scaled coefficient
vector v̂ = Sv, we have from (6.5) that with b(u, v) := k−1(u, v) + θã(u, v) and

‖v‖2b := b(v, v)

‖v̂‖2 ∼ v̂T B̂v̂ = ‖vh‖2b .

A functional fh ∈ V ∗h corresponds to a coefficient vector f so that (fh, vh) = fT v,

and a scaled vector f̂ = S−1f so that (fh, vh) = f̂T v̂. Assume that we solve a linear

system B̂v̂∗ = f̂ using nG steps of GMRES(m0), starting with initial guess 0, yielding
an approximation v̂. We then have

‖vh,∗ − vh‖b ≤ CqnG ‖vh,∗‖b ,

and for the residuals ρh ∈ V ∗h defined by (ρh, wh) = (f, wh)− b(vh, wh) it holds that

‖ρh‖b,∗ ≤ CqnG ‖fh‖b,∗ ,

where for gh ∈ V ∗h with B̂s := (B̂+ B̂T )/2

‖gh‖b,∗ := sup
wh∈Vh

(gh, wh)

‖wh‖b
= (ĝT B̂−1

s ĝ)1/2 ∼ ‖ĝ‖ .

We have with the inverse inequality

(c1k
−1hρ + θ)ã(vh, vh) ≤ b(vh, vh) ≤ (c2k

−1 + θ)ã(vh, vh)

implying

(c2k
−1 + θ)−1/2 ‖fh‖∗̃ ≤ ‖fh‖b,∗ ≤ (c1k

−1hρ + θ)−1/2 ‖fh‖∗̃
and

‖vh,∗ − vh‖ã ≤ Cγ1/2qnG ‖vh,∗‖ã ,(6.6)

‖ρh‖∗̃ ≤ Cγ1/2qnG ‖fh‖∗̃ ,(6.7)
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where

γ :=
c2k
−1 + θ

c1k−1hρ + θ
.

We now define the perturbed θ-scheme with GMRES approximation as follows.
Pick a value m0 ≥ 1 for the restart number, e.g., m0 = 1, and a value nG for the
number of GMRES iterations. Let ǔ0

h := u0,h. At each time step we want to find an
approximation of wmh,∗ satisfying

b(wmh,∗, vh) = (gm+θ, vh)− ã(ǔmh , vh) ∀ vh ∈ Vh,

which corresponds to a scaled linear system B̂ŵm∗ = b̂m. We solve this system ap-
proximately with nG steps of GMRES(m0), using zero as initial guess, yielding an
approximation ŵm of the exact solution ŵm∗ . We then let ǔm+1

h := ǔmh + wmh , where
wmh ∈ Vh is the function corresponding to the scaled vector ŵm. Then we have the
following.

Theorem 6.3. Assume that the consistency conditions (3.8), (3.9) hold. For
θ ∈ [0, 1

2 ) assume (4.3). Then the solution ǔmh of the perturbed θ-scheme with GMRES
approximation satisfies the same error bound as ũmh in (5.13) if nG ≥ C |log h|.

Proof. Let ũmh denote the solution of (3.7) (with all linear systems solved exactly),
and let ǔmh denote the corresponding solution where the linear system (6.1) for each
time step is solved with nG GMRES(m0) steps, using zero as initial guess. Let
ρmh ∈ V ∗h denote the residual of the approximate GMRES solution wmh : For all vh ∈ Vh

(ρmh , vh) = b(wmh , vh)− (gm+θ, vh) + ã(ǔmh , vh)

= k−1(ǔm+1
h − ǔmh , vh) + ã(ǔm+θ

h , vh)− (gm+θ, vh).

Then the difference ζmh := ǔmh − ũmh satisfies ζ0
h = 0 and a θ-scheme of the same form

as (3.7b),

k−1(ζm+1
h − ζmh , vh) + ã(ζm+θ

h , vh) = (ρmh , vh),

where ζm+θ
h = (1− θ)ζm + θζm+1.

We now apply Proposition 4.3 and obtain for l = 0, . . . ,M

El :=
∥∥ζl∥∥2

+ C1k

l−1∑
m=0

∥∥ζm+θ
h

∥∥2

ã
≤ C2k

l−1∑
m=0

‖ρmh ‖2∗̃

≤ Cγq2nGk

l−1∑
m=0

∥∥gm+θ − ã(ǔmh , · )
∥∥2

∗̃

≤ C ′γq2nGk

l−1∑
m=0

(∥∥gm+θ
∥∥2

∗̃ + ‖ζmh ‖2ã + ‖ũmh ‖2ã
)
.

We denote the right-hand side of (4.8) by Q.
Let us first assume that θ = 0 or θ = 1. In this case we choose nG large enough

so that C ′γq2nG ≤ C1/2 and obtain with l = M

∥∥ζM∥∥2
+ 1

2C1k

M−1∑
m=0

∥∥ζm+θ
h

∥∥2

ã
≤ Cγq2nGQ,(6.8)
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since the terms ‖ζmh ‖2ã occur in EM and the terms ‖ũmh ‖2ã occur in the left-hand side
of (4.8).

In the general case θ ∈ [0, 1] we use

‖ũmh ‖2ã ≤ Ch−ρ ‖ũmh ‖2 ≤ Ch−ρQ,
‖ζmh ‖2ã ≤ Ch−ρ ‖ζmh ‖2 ≤ Ch−ρEm,

yielding

El ≤ Cγq2nG

(
(1 + h−ρ)Q+ k

l−1∑
m=0

h−ρEm

)
.

Therefore we have estimates of the form

E0 = 0, El ≤ µ+ ν

l−1∑
m=0

Em,

from which we easily get by induction

El ≤ µ(1 + ν)l−1.

Here we have ν = Cγq2nGh−ρT/M . We choose nG large enough so that Cγq2nGh−ρ ≤
1 and get (1 + ν)M ≤ eT and

EM ≤ Cγq2nG(1 + h−ρ)QeT .(6.9)

Finally we have to choose nG large enough so that the right-hand side in (6.8)
or (6.9) is less than the bound in Theorem 5.4: If k ≤ 1, we have γ ≤ Ch−ρ, and
therefore we need nG such that

q2nGh−2ρ ≤ Ch2(p+1−ρ/2),

which is satisfied for nG ≥ C |log h| with C > 0 sufficiently large, but independent of
h, k.

Theorem 6.3 allows us to estimate the complexity of the time-stepping scheme
with incomplete GMRES solution of the linear systems.

Corollary 6.4. Given the compressed stiffness matrix Ã, the additional work
for computing ǔ1

h, . . . , ǔ
M
h is bounded by CMN(logN)r+1, where r = 1 for ρ ∈ (0, 2],

r = 2 for ρ = 0.
The total work of the algorithm (for computing the compressed stiffness matrix

and performing M time steps) is bounded by CMN(logN)r+1 operations if we use
exact antiderivatives, and by CN(logN)r+d + CMN(logN)r+1 operations if we use
quadrature for d = 1, 2.

We remark in closing that the powers of logN in these complexity estimates could
be reduced by more elaborate compression techniques; see, e.g., [14].
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DOMAIN DECOMPOSITION FOR A MIXED FINITE ELEMENT
METHOD IN THREE DIMENSIONS∗
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Abstract. We consider the solution of the discrete linear system resulting from a mixed finite
element discretization applied to a second-order elliptic boundary value problem in three dimensions.
Based on a decomposition of the velocity space, these equations can be reduced to a discrete elliptic
problem by eliminating the pressure through the use of substructures of the domain. The practical-
ity of the reduction relies on a local basis, presented here, for the divergence-free subspace of the
velocity space. We consider additive and multiplicative domain decomposition methods for solving
the reduced elliptic problem, and their uniform convergence is established.

Key words. divergence-free basis, domain decomposition, second-order elliptic problems, mixed
finite element method
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1. Introduction. In [6], Ewing and Wang considered and analyzed a domain
decomposition method for solving the discrete system of equations which result from
mixed finite element approximation of second-order elliptic boundary value problems
in two dimensions. The approach in [6] is first to seek a discrete velocity satisfying
the discrete continuity equation through a variation of domain decomposition (static
condensation), and then to apply a domain decomposition method to the reduced
elliptic problem arising from elimination of the pressure in the saddle-point problem.
For analogous work, see also [8], [10], and [4]. The crucial part of the approach in
[6] is to characterize the divergence-free velocity subspaces. This is also the essential
difference with those in [8], [10], and [4].

In this paper, we will use the domain decomposition approach in [6] for the solu-
tion of the algebraic system resulting from the mixed finite element method applied
to second-order elliptic boundary value problems in three dimensions. As mentioned
above, the basis of the divergence-free velocity subspace plays an essential role in the
approach; hence we will construct a basis of this subspace for the lowest-order rect-
angular Raviart–Thomas–Nedelec velocity space [13], [12]. The construction in two
dimensions (2-D) is more general and rather easier than in three dimensions (3-D)
due to the fact that any divergence-free vector in 2-D can be expressed as the curl
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of a scalar stream function. Extension of this work to triangular or irregular meshes
and to multilevel domain decomposition will be discussed in a forthcoming paper.

This approach has several practical advantages. For an n × n × n grid in 3-D,
the number of discrete unknowns is approximately 4n3, essentially one pressure and
three velocity components per cell. Using the divergence-free subspace, we decouple
the system in such a manner that the velocity can be obtained by solving a symmetric
positive definite system of order roughly 2n3. In contrast to some other proposed pro-
cedures, this does not require the introduction of Lagrange multipliers corresponding
to pressures at cell interfaces, and it permits direct computation of the velocity, which
is often the principal variable of interest, alone. If the pressure is also needed, it can be
calculated inexpensively in an additional step. Furthermore, the approach deals read-
ily with the case of full-tensor conductivity (cross-derivatives), where the mass matrix
is fuller than tridiagonal and methods based on reduced integration (mass lumping)
are difficult to apply. This case results, for example, from anisotropic permeabilities
in flows in porous media, where highly discontinuous conductivity coefficients are also
common. For such problems, mixed methods are known to produce more realistic
velocities than standard techniques [11].

The outline of the remainder of this paper is as follows. In section 2, we review
the mixed finite element method for elliptic problems with homogeneous Neumann
boundary conditions. The domain decomposition method for the resulting algebraic
system is discussed in section 3, and its uniform convergence is established in sec-
tion 5. A computationally convenient, divergence-free basis with minimal support is
constructed in section 4.

2. Mixed finite element method. In this section, we begin with a brief review
of the mixed finite element method with lowest-order Raviart–Thomas–Nedelec [13],
[12] (RTN) approximation space for second-order elliptic boundary value problems in
three dimensions. For simplicity, we consider a homogeneous Neumann problem: find
p such that { −∇ · (k∇p) = f in Ω = (0, 1)3,

(k∇p) · n = 0 on ∂Ω,
(2.1)

where f ∈ L2(Ω) satisfies the relation∫
Ω

f dx dy dz = 0(2.2)

and n denotes the unit outward normal vector to ∂Ω. The symbols ∇· and ∇ stand
for the divergence and gradient operators, respectively. Assume that k = (kij)3×3 is a
given real-valued symmetric matrix function with bounded and measurable entries kij
(i, j = 1, 2, 3) and satisfies the ellipticity condition; i.e., there exist positive constants
α1 and α2 such that

α1ξ
t ξ ≤ ξtk(x, y, z)ξ ≤ α2ξ

t ξ(2.3)

for all ξ ∈ R
3 and almost all (x, y, z) ∈ Ω̄.

We shall use the following space to define the mixed variational problem. Let

H(div; Ω) ≡ {w ∈ L2(Ω)3 | ∇ ·w ∈ L2(Ω)},
which is a Hilbert space equipped with the norm

‖w‖H(div;Ω) ≡ (‖w‖2L2(Ω)3 + ‖∇ ·w‖2L2(Ω))
1/2
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and the associated inner product. By introducing the flux variable

v = −k∇p,

which is of practical interest for many physical problems, we can rewrite the PDE of
(2.1) as a first-order system {

k−1v +∇p = 0,
∇ · v = f

and obtain the mixed formulation of (2.1): find (v, p) ∈ V × Λ such that{
a(v, w)− b(w, p) = 0 ∀w ∈ V,
b(v, λ) = (f, λ) ∀λ ∈ Λ.

(2.4)

Here V = H0(div; Ω) ≡ {w ∈ H(div; Ω) |w · n = 0 on ∂Ω}, Λ is the quotient space
L2

0(Ω) = L2(Ω)/{constants}, the bilinear forms a(· , ·) : V × V → R and b(· , ·) :
V × Λ→ R are defined by

a(w, u) =

∫
Ω

(k−1w) · u dx dy dz and b(w, λ) =

∫
Ω

(∇ ·w)λ dx dy dz

for any w, u ∈ V and λ ∈ Λ, respectively, and (·, ·) denotes the L2(Ω) inner product.
To discretize the mixed formulation (2.4), we assume that we are given two finite

element subspaces

Vh ⊂ V and Λh ⊂ Λ

defined on a uniform rectangular mesh with elements of size O(h). The mixed ap-
proximation of (v , p) is defined to be the pair (vh, ph) ∈ Vh × Λh satisfying{

a(vh, w)− b(w , ph) = 0 ∀w ∈ Vh,
b(vh, λ) = (f, λ) ∀λ ∈ Λh.

(2.5)

We refer to [13] for the definition of a class of approximation subspaces Vh and Λh. In
this paper, we shall consider only the lowest-order RTN space defined on a rectangular
triangulation of Ω. Such a space for the velocity consists of vector functions whose
ith component is continuous piecewise linear in the xi variable and discontinuous
piecewise constant in the xj variable for j �= i. The corresponding pressure space
Λh consists of discontinuous piecewise constants with respect to the triangulation T h
with a fixed value on one element. Specifically, let T h denote a uniform rectangular
triangulation of Ω. Then the lowest-order RTN approximation space for the velocity
on a rectangle K ∈ T h is defined by

Vh(K) = P1, 0, 0 × P0, 1, 0 × P0, 0, 1,(2.6)

and the corresponding pressure space is

Λh(K) = P0, 0, 0,(2.7)

where Pi1, i2, i3(K) denotes the polynomials of degree ij (j = 1, 2, 3) with respect to
xj . It is well known that the above RTN space satisfies the Babǔska–Brezzi stability
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condition (cf. [13]): there exists a positive constant β independent of the mesh size h
of T h such that

sup
w∈Vh

b(w , λ)

‖w‖H(div,Ω)
≥ β‖λ‖L2(Ω) ∀λ ∈ Λh.(2.8)

Also, Raviart and Thomas in [13] demonstrated the existence of a projection operator
Πh : V −→ Vh such that, for any v ∈ V,

b(Πhv , λ) = b(v , λ) ∀λ ∈ Λh,(2.9)

‖Πhv − v‖L2(Ω)3 ≤ C hs‖v‖Hs(Ω)3 , s = 0, 1.(2.10)

3. Domain decomposition. Problem (2.5) is clearly symmetric and indefinite.
To reduce it to a symmetric positive definite problem, we need a discrete velocity
vhI ∈ Vh satisfying

b(vhI , λ) = (f, λ) ∀λ ∈ Λh.(3.1)

Define the discretely (as opposed to pointwise) divergence-free subspace Dh of Vh:

Dh = {w ∈ Vh | b(w, λ) = 0 ∀λ ∈ Λh},(3.2)

and let

vhD = vh − vhI ,

which is obviously in Dh by the second equation of (2.5) and which satisfies

a(vhD, w) = −a(vhI , w) ∀w ∈ Dh,(3.3)

by the first equation. This problem is symmetric and positive definite.
This suggests the following procedure for obtaining vh, the solution of (2.5): find

vhI ∈ Vh satisfying (3.1), compute the projection vhD ∈ Dh satisfying (3.3), then set
vh = vhI + vhD. This procedure will be the basis for Algorithms 3.1 and 3.2 below.
Given vhI , (3.3) leads to a unique vh, which is independent of the choice of vhI . (A
term added to a given vhI must be in Dh, and it is canceled by the resulting change in
vhD.) For an n×n×n grid, computing the projection vhD involves solving a system of
order approximately 2n3. Solving for ph is optional; if it is desired, it can be obtained
from the first equation in (2.5) once vh is known.

There are many discrete velocities in Vh satisfying (3.1), and several approaches
have been discussed in the literature for seeking such a discrete velocity (e.g., [6],
[8], and [10]). All of these approaches are based on a type of domain decomposition
(static condensation) method applied to problem (2.5). In this paper, we will adopt
the approach discussed in [6] by Ewing and Wang. This approach requires solving
only a coarse-grid problem and some local problems of the form (2.5).

To compute vhI and define the domain decomposition method for problem (3.3),
we start with a coarse initial rectangular triangulation T H = {Kj}Jj=1 of the domain

Ω (so that Ω̄ = ∪Jj=1K̄j), and a regular fine rectangular triangulation T h obtained by

further partitioning all of the elements in T H . Associated with the coarse triangula-
tion T H , we construct a set of overlapping subdomains {Ωj}Jj=1 by extending each
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element Kj ∈ T H to a larger subdomain Ωj , whose diameter is denoted by Hj ≤ C H.
Assume that the maximum number of subdomain overlaps is bounded, and further
that the distance between the boundaries ∂Kj and ∂Ωj is bounded below by ζ1H and
above by ζ2H; i.e., for all j ∈ {1, . . . , J} there exist constants ζ1, ζ2 > 0 such that

ζ1H ≤ dist(∂Kj , ∂Ωj) ≤ ζ2H.
Also assume that the boundaries of the Ωj do not cut through any element in T h,
i.e., they must coincide with boundaries of elements of T h. Thus, the restrictions
of T h on Ωj and Kj provide two uniform triangulations T hj and T̃ hj for Ωj and Kj ,
respectively.

Let Vj × Λj and Ṽj × Λ̃j be the lowest-order RTN approximation spaces corre-

sponding to the triangulations T hj and T̃ hj , respectively. For convenience, let VH =

V0 = Ṽ0 and ΛH = Λ0 = Λ̃0. As in [6], let fh and fh0 ≡ fH be the L2 projection of
f in Λh and ΛH , respectively, and fhj ∈ Λ̃hj be the restriction of fh− fh0 on Kj . Then

the discrete velocity vhI satisfying (3.1) may be determined by the sum of vj ’s which

are the solutions of the following problems: find (vj , pj) ∈ Ṽj × Λ̃j such that{
(k̃vj , w)− b(w, pj) = 0 ∀w ∈ Ṽj ,
b(vj , λ) = (fhj , λ) ∀λ ∈ Λ̃j ,

(3.4)

where k̃ ∈ R
3×3 is an arbitrary matrix-valued function which is symmetric positive

definite and defined on Ωj for all j ∈ {0, 1, . . . , J}. Note that v0 is the solution of
problem (2.5) corresponding to the coarse triangulation T H , and that vj for 1 ≤ j ≤ J
can be obtained by solving some local problems.

We shall use additive and multiplicative domain decomposition methods for ap-
proximate computation of the solution of problem (3.3). To this end, we define the
family of discretely divergence-free velocity subspaces {Dj}Jj=0 by D0 = DH , and for
j ∈ {1, 2, . . . , J},

Dj = {u ∈ Vj | b(u, λ) = 0 ∀λ ∈ Λj}.
For any u ∈ Dh, we define the projection operators Pj : Dh −→ Dj associated with
the bilinear form a(· , ·) by

a(Pju, w) = a(u, w) ∀w ∈ Dj
for j ∈ {0, 1, . . . , J}.

Algorithm 3.1 (Additive domain decomposition).
1. For j = 0, 1, . . . , J , compute vj ∈ Ṽj by solving problems (3.4). Then set

vhI = v0 + v1 + · · ·+ vJ .
2. Compute an approximation vD of vhD ∈ Dh by applying conjugate gradient

iteration to

PvD = F,(3.5)

where P = P0 +P1 + · · ·+PJ , F = F0 + F1 + · · ·+ FJ , and Fj = Pjv
h
D.

3. Set

vh = vD + vhI .
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Remark 3.1. The right-hand side F in (3.5) can be computed by solving the
coarse-grid problem and local subproblems. Specifically, for each j ∈ {0, 1, . . . , J},
Fj is the solution of the following problem:

a(Fj , w) = a(Pjv
h
D, w) = −a(vhI , w) ∀w ∈ Dj .(3.6)

For Fj given in (3.6), we can see as follows that (3.5) is equivalent to problem
(3.3). Given (3.3), define Fj as in (3.6), and P and F as above. Then a(Fj , w) =
a(vhD, w) ∀w ∈ Dj , so that Fj = Pjv

h
D, and summing on j yields PvhD = F. To

complete the equivalence, we claim that vhD is the only solution of (3.5). It suffices to
show that Pu = 0 implies that u = 0 for u ∈ Dh. If Pu = 0, then

0 = a(Pu,u) =
∑
j

a(Pju,u) =
∑
j

a(Pju,Pju),

so that a(Pju,Pju) = 0 ∀j; hence Pju = 0 ∀j. In Lemma 5.1 below, we prove that
u has a decomposition u = u0 + u1 + · · ·+ uJ , where uj ∈ Dj . With this,

a(u,u) =
∑
j

a(uj ,u) =
∑
j

a(uj ,Pju) = 0,

and hence u = 0, as claimed.
At each iteration of the conjugate gradient method applied to (3.5), we need to

compute the action of the projection operator Pj on a given u ∈ Dh, which may be
obtained by solving the following problem:

a(Pju, w) = a(u, w) ∀w ∈ Dj .(3.7)

When analyzing the preconditioned conjugate gradient method for a system of linear
equations, the crucial issue is to estimate the condition number of the preconditioned
operator. In section 5, we will establish a uniform estimate of the condition number
for P and find a basis for Dh that allows for efficient computations.

Algorithm 3.2 (Multiplicative domain decomposition).
1. Compute vhI as in the first step of Algorithm 3.1.
2. Given an approximation vlD ∈ Dh to the solution vhD of (3.3), define the next

approximation vl+1
D ∈ Dh as follows:

(a) Set W−1 = vlD.
(b) For j = 0, 1, . . . , J in turn, define Wj by

Wj = Wj−1 + ωPj(v
h
D −Wj−1),

where the parameter ω ∈ (0, 2).
(c) Set vl+1

D = WJ .
3. Set

vh = vhI + vLD.

Remark 3.2. Pj(v
h
D −Wj−1) can be computed by solving the following problem:

a(Pj(v
h
D −Wj−1), w) = −a(vhI +Wj−1, w) ∀w ∈ Dj .(3.8)

A simple computation implies that the error propagation operator of multiplica-
tive domain decomposition at the second step of Algorithm 3.2 has the form of

E = (I−PJ)(I−PJ−1) · · · (I−P0).(3.9)
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Define a norm associated with the bilinear form a(·, ·) by

‖u‖a = a(u, u)1/2 ∀u ∈ Dh.

We shall show in the last section that ‖E‖a is bounded by a constant which is less
than one and independent of the mesh size h and the number of subdomains.

4. Construction of a divergence-free basis. Since the technique of the mixed
method leads to a saddle-point problem, which causes the final system to be indefi-
nite, many well-established efficient linear system solvers cannot be applied. As we
mentioned earlier, (2.5) could be symmetric and positive definite if we discretize it
in the discrete divergence-free subspace Dh. The construction of a basis for Dh is
essential.

In this section, we will construct a computationally convenient basis for Dh—the
divergence-free subspace ofVh. We will do this by first constructing a vector potential
space Uh such that

Dh = curlUh.(4.1)

Next, we will find a basis for Uh, and we will define a basis for Dh by simply taking
the curls of the vector potential basis functions.

Denote the mesh on Ω = (0, 1)3 by 0 = x0 < · · · < xi < · · · < xn = 1, and
similarly with yj and zk, 0 ≤ j, k ≤ n. The assumption of the same number n
of intervals in each direction is merely for convenience and is not necessary for the
construction to follow. Let

φxi,j,k(x, y, z) = χi(x)ψj(y)ψk(z), 1 ≤ i ≤ n, 1 ≤ j, k ≤ n− 1,

where χi is the characteristic function of (xi−1, xi), ψj is the standard hat function
supported on (yj−1, yj+1), and similarly ψk is supported on (zk−1, zk+1). Then φxi,j,k
is the standard bilinear nodal basis function on (yj−1, yj+1)× (zk−1, zk+1), extended
as a constant in the x-direction in the ith slice only, zero in the other slices. For
economy of notation, write φi(y, z) for φxi,j,k(x, y, z), where the single index i, 1 ≤ i ≤
n(n− 1)2, runs through the triples (i, j, k) lexicographically (k varying most rapidly).
The support of a typical φi(y, z) consists of a 1× 2× 2 set of 4 cells and is shown in
Figure 4.1. Similarly, let

φyj,i,k(x, y, z) = χj(y)ψi(x)ψk(z) = φj(x, z), 1 ≤ j ≤ n, 1 ≤ i, k ≤ n− 1,

φzk,i,j(x, y, z) = χk(z)ψi(x)ψj(y) = φk(x, y), 1 ≤ k ≤ n, 1 ≤ i, j ≤ n− 1,

where j, k run lexicographically through (j, i, k) and (k, i, j), respectively. Finally, let
Uh be defined as follows:

Uh = span


 φi(y, z)

0
0

 ,
 0
φj(x, z)

0

 ,
 0

0
φk(x, y)

 ,(4.2)

where 1 ≤ i ≤ (n−1)2 (thus, only the first yz-slice is included) and 1 ≤ j, k ≤ n(n−1)2

(all xz- and xy-slices are included). Note that the number of excluded φi’s is (n−1)3.
If the number of intervals in the x-, y-, and z-directions were ', m, and n, respectively,
the number excluded would be ('− 1)(m− 1)(n− 1) and would be the same if all but
one xz- or xy-slice were excluded instead of all but one yz-slice.
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Fig. 4.1. The support of a typical potential basis function.

Next, we list some properties of Uh which follow directly from the definition of
the potential space.

Remark 4.1. Uh �⊂ H(div; Ω) (because, e.g., φi(y, z) is discontinuous in x), and
hence, Uh �⊂ H1(Ω)3.

Remark 4.2. Every Φ ∈ Uh satisfies Φ × n = 0 on ∂Ω (because, e.g., φj(0, z)
and φk(0, y) are identically zero).

Remark 4.3. Uh is locally divergence-free, i.e., ∇·Φ = 0 on each element K ∈ T h
for every Φ ∈ Uh.

Remark 4.4. Uh ⊂ H(curl; Ω), and hence curlUh ⊂ Vh. To see this, consider as
a typical case the vector function (φi(y, z), 0, 0) ∈ Uh, whose curl is (0, ∂φi/∂z,−∂φi/∂y).
Because φi is discontinuous only in the x-direction and no x-derivatives appear in the
curl, we have (φi, 0, 0) ∈ H(curl; Ω). Further, the y-component of curl(φi, 0, 0) is
∂φi/∂z = χi(x)ψj(y)ψ

′
k(z), which is continuous piecewise linear in y and discontinu-

ous piecewise constant in x and z; similarly, the other components have the correct
form to yield curl(φi, 0, 0) ∈ Vh.

Since div curl ≡ 0, we have curlUh ⊂ Dh. Counting dimensions,

dimUh = (2n+ 1)(n− 1)2 = 2n3 − 3n2 + 1.

Also, divVh consists of those piecewise constants with integral zero over Ω, and hence
has dimension n3 − 1, and we obtain

dimDh = dimVh − dim divVh = 3(n− 1)n2 − (n3 − 1) = 2n3 − 3n2 + 1.

We claim that the curls of the vectors in (4.2) are linearly independent, so that

dimDh = dim curlUh = dimUh = 2n3 − 3n2 + 1,

which implies that for every divergence-free vector v ∈ Dh there exists a unique
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potential vector Φ ∈ Uh such that

v = curlΦ.

To prove linear independence, first note that vectors in Vh can be characterized
in terms of normal fluxes across the 3(n−1)n2 interior faces between elements. For ex-
ample, some calculations will show that curl (φ1(y, z), 0, 0) = curl (φx1,1,1(x, y, z), 0, 0)
has y-component 1 on face (1, 3/2, 1) = (x0, x1) × {y1} × (z0, z1) and −1 on face
(1, 3/2, 2) = (x0, x1) × {y1} × (z1, z2), and z-component 1 on (1, 2, 3/2) and −1 on
(1, 1, 3/2), where the four fluxes have been scaled to unit magnitude. This is shown in
Figure 4.2. We denote this particular curl by +1(1, 3/2, 1)−1(1, 3/2, 2)+1(1, 2, 3/2)−
1(1, 1, 3/2).

Fig. 4.2. The curl of a typical potential basis function.

Now consider curl (0, φj(x, z), 0), 1 ≤ j ≤ n(n− 1)2. Put φj(x, z) = φyj,i,k(x, y, z)

in lexicographic order, noting that curl (0, φyj,i,k, 0) = +1(i + 1/2, j, k + 1) − 1(i +
1/2, j, k) + 1(i, j, k + 1/2) − 1(i + 1, j, k + 1/2) and that face (i + 1/2, j, k + 1) ap-
pears for the first time in curl (0, φyj,i,k, 0). Since each curl introduces a nonzero flux
on a new face, the curls of (0, φj(x, z), 0) are linearly independent. Next, we have
curl (0, 0, φk(x, y)) = curl (0, 0, φzk,i,j) = +1(i + 1, j + 1/2, k) − 1(i, j + 1/2, k) +
1(i + 1/2, j, k) − 1(i + 1/2, j + 1, k), and face (i + 1, j + 1/2, k) appears for the
first time in curl (0, 0, φzk,i,j). Thus, the curls of (0, φj(x, z), 0) and (0, 0, φk(x, y)),

1 ≤ j, k ≤ n(n− 1)2, are all linearly independent.
Finally, consider a linear combination

∑
i

αicurl (φi(y, z), 0, 0) =

n−1∑
j=1

n−1∑
k=1

αjkcurl (φ
x
1,j,k, 0, 0)

(terms from first yz-slice only). Because the curls of (φi, 0, 0) are linearly indepen-
dent by the argument applied above to the curls of (0, φj , 0), it suffices to show
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that this linear combination is independent of the curls of (0, φj , 0) and (0, 0, φk).
We have curl (φx1,j,k, 0, 0) = +1(1, j + 1/2, k) − 1(1, j + 1/2, k + 1) + 1(1, j + 1, k +
1/2) − 1(1, j, k + 1/2). Each of these four terms occurs exactly once in the curls of
(0, φj(x, z), 0) and (0, 0, φk(x, y)), namely in −curl (0, 0, φzk,1,j), +curl (0, 0, φzk+1,1,j),

+curl (0, φyj+1,1,k, 0), −curl (0, φyj,1,k, 0), respectively. Hence, a dependency relation-
ship for curl (φx1,j,k, 0, 0) in terms of the preceding curls must involve these four curls,
and when they are combined we get curl (φx1,j,k, 0, 0)−curl (φx2,j,k, 0, 0). Applying this

fact to each term of the linear combination, we have
∑n−1
j=1

∑n−1
k=1 αjk(curl (φ

x
1,j,k, 0, 0)−

curl (φx2,j,k, 0, 0)). To cancel
∑
j,k αjk(−curl (φx2,j,k, 0, 0)) with the preceding curls,

the forced combination yields
∑
j,k αjk(curl (φ

x
2,j,k, 0, 0) − curl (φx3,j,k, 0, 0)), and so

on until
∑
j,k αjk(−curl (φxn,j,k, 0, 0)) remains, and it is not possible to cancel it. It

follows that no dependency relationship exists, so that the curls of the vectors in (4.2)
are indeed linearly independent.

The vector functions in (4.2) constitute one choice of a basis for Uh. As noted
above, this choice includes all 2n(n− 1)2 vectors of the forms (0, φj , 0) and (0, 0, φk),
but only (n− 1)2 vectors of the type (φi, 0, 0) with support contained in one vertical
slice S of Ω (say, the shaded one in Figure 4.1).

Remark 4.5. The above-defined basis for Uh (and hence for Dh) consists of
vector functions with minimal possible support. (A moment’s reflection shows that a
nontrivial divergence-free vector function must be supported on at least four elements,
as in the pattern in Figure 4.2.)

Now we need to prove the following Poincaré-type inequality.
Lemma 4.1. There exists a constant C(Ω) > 0, independent of the quasi-uniform

mesh size h, such that for all Φ ∈ Uh we have

‖Φ‖L2(Ω)3 ≤ C(Ω) ‖curlΦ‖L2(Ω)3 .(4.3)

(Since the vector potential space Uh �⊂ H1(Ω)3, inequality (4.3) does not follow
from the standard Poincaré inequality.)

Proof. Keeping in mind our choice for a basis in Uh, we have

Φ = (Φx,Φy,Φz)
T
,

and since Φx vanishes outside the vertical slice S we have

‖Φ‖2L2(Ω)3 = ‖Φx‖2L2(S) + ‖Φy‖2L2(S) + ‖Φz‖2L2(S)

+ ‖Φy‖2L2(Ω\S) + ‖Φz‖2L2(Ω\S).

Let us estimate the last term first. Noting that Φz(x, y, z) is a continuous function
of x and vanishes for x = 0 and x = 1, we can write

Φz(x, y, z) =

∫ x

1

∂Φz(x
′, y, z)
∂x

dx′.

After squaring both sides of the above identity, then using the Cauchy–Schwarz in-
equality on the right-hand side, and finally integrating both sides over Ω\S, we obtain

‖Φz‖L2(Ω\S) ≤ C(Ω) ‖curlΦ‖L2(Ω)3 ,

where we have used the fact that on Ω\S we have curlΦ = (∗,−∂Φz

∂x ,
∂Φy

∂x )T . Exactly
in the same manner we get ‖Φy‖L2(Ω\S) ≤ C(Ω) ‖curlΦ‖L2(Ω)3 .
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The next step of the proof will be estimating ‖Φz‖L2(S) in terms of ‖curlΦ‖L2(Ω)3 .

Since Φz is a piecewise constant function in the z-direction, let us denote by Φkz(x, y)
the restriction of Φz to the kth horizontal slice of Ω. Note that Φkz is linear in x within
S and vanishes when x = 0. Then

‖Φz‖2L2(S) =

n∑
k=1

h

∫ 1

0

∫ h

0

[
Φkz(x, y)

]2
dx dy

≤
n∑
k=1

h

∫ 1

0

∫ h

0

[
Φkz(h, y)

]2
dx dy

= h2
n∑
k=1

∫ 1

0

[
Φkz(h, y)

]2
dy ≤ h2 C(Ω) ‖curlΦ‖2L2(Ω)3 ,

where to obtain the last inequality we have again integrated ∂Φz

∂x over Ω\S. The term
‖Φy‖L2(S) is estimated in an analogous manner.

Finally, consider the identity on S,

Φx(y, z) =

∫ z

0

[
∂Φx(y, z

′)
∂z

− ∂Φz(x, y, z
′)

∂x

]
dz′ +

∫ z

0

∂Φz(x, y, z
′)

∂x
dz′.

Again, after we square both sides, apply the Cauchy–Schwarz inequality on the right-
hand side, integrate both sides over S, and note that ∂Φx

∂z − ∂Φz

∂x is a component of
curlΦ, we get

‖Φx‖2L2(S) ≤ C(Ω)

{
‖curlΦ‖2L2(S)3 +

∥∥∥∥∂Φz∂x
∥∥∥∥2

L2(S)

}
.

Now we complete the proof by applying an inverse inequality on the last term and
using the estimate for ‖Φz‖2L2(S) that was obtained earlier.

Corollary 4.2. The linear system (3.3) to be solved in Dh has a symmetric
and positive definite matrix with condition number of order O(h−2).

5. Convergence analysis. In this section, we provide a uniform upper bound
for the condition number of the preconditioned operator P which indicates that the
conjugate gradient iteration for problem (3.5) converges uniformly with respect to
the mesh size h and the number of subdomains J . We also establish the uniform
convergence of the multiplicative domain decomposition proposed in the second step
of Algorithm 3.2. These convergence rates do depend on the factor ζ1 in the minimum
overlap ζ1H, where H is the coarse-grid mesh size.

Here and henceforth, we shall use C with or without a subscript to denote a generic
positive constant independent of the mesh size h and the number of subdomains J .
The next lemma plays an essential role in estimating the minimum eigenvalue of the
preconditioned operator P.

Lemma 5.1. For any v ∈ Dh, there exists a decomposition of the form

v = v0 + v1 + · · ·+ vJ with vj ∈ Dj
and

J∑
j=0

a(vj , vj) ≤ C a(v, v),(5.1)
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where the positive constant C is independent of the mesh size h and the number of
subdomains J (but depends on the factor ζ1 in the minimum overlap ζ1H).

Proof. For any v ∈ Dh, there exists a vector potential (cf. [7]) Φ ∈ H1(Ω)3 such
that v = curlΦ, Φ× n = 0 on ∂Ω, and

‖Φ‖L2(Ω)3 ≤ C ‖curlΦ‖L2(Ω)3 and ‖∇Φ‖L2(Ω)3 ≤ C ‖curlΦ‖L2(Ω)3 .(5.2)

Let UH , associated with the coarse triangulation T H , be defined similarly as in the
previous section and QH be the standard L2 projection operator onto UH . Let
Ψ = Φ−QHΦ; then it is easy to check (see [2]) that

‖Ψ‖L2(Ω)3 ≤ C H‖∇Φ‖L2(Ω)3 and ‖curl (QHΦ)‖L2(Ω)3 ≤ C ‖∇Φ‖L2(Ω)3 .(5.3)

Define v0 = curl (QHΦ); then v0 ∈ D0. By using inequalities (5.3) and (5.2), we
have that

‖v0‖L2(Ω)3 = ‖curl (QHΦ)‖L2(Ω)3 ≤ C ‖∇Φ‖L2(Ω)3

≤ C ‖curlΦ‖L2(Ω)3 = C ‖v‖L2(Ω)3 .(5.4)

Now, let θj ∈ C∞0 (Ωj), j = 1, . . . , J , be a partition of unity such that

|∇θj | ≤ C ζ−1
1 H−1,(5.5)

and let

vj = Πhcurl(θjΨ) ∈ Dj .
Note that v = curlΦ = v0 + curlΨ and Πhv = v. Then linearity of Πh and curl
imply that v has a decomposition of the form

v = v0 + v1 + · · ·+ vJ .
Since

curl(θjΨ) = Ψ×∇θj + θjcurlΨ,

it follows from inequalities (2.3) and (2.10), the Cauchy–Schwarz inequality, and in-
equality (5.5) that for j ∈ {1, 2, . . . , J}

a(vj , vj) ≤ C ‖vj‖2L2(Ω)3

≤ C ‖curl(θjΨ)‖2L2(Ω)3

≤ C
∫

Ωj

(|∇θj |2|Ψ|2 + θ2j |curlΨ|2
)

≤ C ζ−2
1 H−2

∫
Ωj

|Ψ|2 + C

∫
Ωj

|curlΨ|2.

By summing the above inequality over j, it follows from the fact that the maximum
number of subdomain overlaps is bounded, and from inequalities (5.2), (5.3), (5.4),
and (2.3), that

J∑
j=0

a(vj , vj) ≤ C ‖v0‖2L2(Ω)3 + C ζ−2
1 H−2

∫
Ω

|Ψ|2 + C

∫
Ω

|curlΨ|2

≤ C ‖v0‖2L2(Ω)3 + C ζ−2
1 ‖v‖2L2(Ω)3

≤ C (1 + ζ−2
1 ) ‖v‖2L2(Ω)3

≤ C a(v, v).
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This completes the proof of the lemma.

Now, the standard argument provides the condition number estimate for P.

Theorem 5.1. For any vector v ∈ Dh, we have

C1a(v, v) ≤ a(Pv, v) ≤ C2a(v, v),(5.6)

where the constants C1 and C2 are independent of h and J . (C1 contains the factor
(1 + ζ−2

1 )−1.)

Proof. The proof of the right-hand inequality follows from the boundedness of Pj
and the maximum number of subdomain overlaps. The left-hand inequality follows
from Lemma 5.1 and Lions’ lemma [9].

Remark 5.1. In 2-D, a special Poincaré-type lemma (see [5, Lemma 3.1]), together
with a bound of ‖∇φ‖ in terms of ‖curlφ‖, allows an argument from Chapter 5 of
[14] to prove a condition-number bound involving 1+ ζ−1

1 instead of 1+ ζ−2
1 . It is not

clear whether the analogous bound holds in 3-D.

To analyze the convergence of the multiplicative domain decomposition method
defined at the second step in Algorithm 3.2, we note that for any w ∈ D we have by
the definition of the projection operators Pj

a(ωPjw, ωPjw) = ω a(ωPjw, w).(5.7)

And Lemma 5.1, the Cauchy–Schwarz inequality, and the bound on the number of
subdomain overlaps give that

a(v, v) =

J∑
j=0

a(v, vj) =

J∑
j=0

a(Pjv, vj)

≤
 J∑
j=0

a(Pjv, Pjv)

1/2 J∑
j=0

a(vj , vj)

1/2

≤ C
 J∑
j=0

a(ωPjv, ωPjv)

1/2

a(v, v)1/2,

which implies that

a(v, v) ≤ C
J∑
j=0

a(ωPjv, ωPjv).(5.8)

Hence, a straightforward consequence of [1] (see also Remark 2.2 in [3]) gives the
following result.

Theorem 5.2. The iterative method defined at the second step in Algorithm 3.2
is uniformly convergent; i.e.,

‖E‖a ≤ γ < 1,(5.9)

where γ is a constant that does not depend on the number of subdomains and the mesh
size. (γ does depend on ζ1.)
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6. Numerical results. We briefly summarize some computations [15] that will
be presented in more detail elsewhere. The additive preconditioner has been imple-
mented and run on a variety of test problems. Corollary 4.2 was confirmed, as the
smallest and largest eigenvalues of the system matrix varied as O(h) and O(h−1),
respectively. For coarse grids ranging from H = 1/4 (thus 4 × 4 × 4) to H = 1/32,
with fine grids h = H/4 and overlaps ζ1H = h, the iteration counts needed to reduce
the preconditioned residual by 10 orders of magnitude were 31 to 32 for constant k
(Poisson’s equation), 31 for k = 10−5 in (1/4, 3/4)3 and k = 1 elsewhere, and 32 to 36
for k = 10−5 in randomly-distributed coarse-grid blocks and k = 1 elsewhere. These
results correspond to norm reductions of 0.47 (31 iterations) to 0.52 (36 iterations)
per iteration. When random heterogeneity was combined with random anisotropy
(k a diagonal tensor, three random entries of 10−5, 10−4, . . . , 100 in each coarse-grid
block), so that there was an increasing number of random blocks on finer grids, norm
reductions were significantly worse (0.79 to 0.91) and worsened on finer grids. The
theory of this paper does not address the dependence of iteration counts on jumps in
coefficients, but it appears that this dependence is substantial only when heterogeneity
and anisotropy are intertwined.
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Abstract. Vertically discretized linearized hydrostatic equations in hybrid coordinates are con-
sidered. The matrix of vertical structure, which depends on vertical discretization and determines the
classification of the obtained system of time-dependent partial differential equations, is derived. The
main theorem about oscillatory properties of the matrix of vertical structure is proved. This result
ensures the well posedness of the initial value problem for vertically discretized primitive equations.
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1. Introduction. Semi-implicit schemes based on Eulerian and semi-Lagrangian
treatments of advection have been intensively used in numerical weather forecast mod-
els in the last three decades. These two approaches have been developed primarily by
Robert [31, 32] for barotropic equations and are currently the most popular techniques
in all areas of atmospheric modeling. It is sufficient to mention some hydrostatic and
nonhydrostatic atmospheric models with different areas of application (e.g., mesoscale,
regional and global forecasting, climate simulation, and air quality monitoring) based
on finite-difference, spectral, and finite-element numerical schemes and designed for
operational forecasts as well as research simulations. Numerous bibliographic sources
indicated in classical books [17, 21, 27] can be completed by abundant reference lists
in recent papers [14, 28, 37].

Construction and solution of the implicit coupled equations connected to linear
terms of the primitive equations are important parts of all semi-implicit schemes.
This implicit part depends on vertical discretization and the choice of reference tem-
perature profile. Due to its linearity, these discretized equations can be vertically
decoupled, which reduces the three-dimensional space problem to the set of two-
dimensional systems in the form of shallow water equations. The classification of
these two-dimensional systems is determined by the matrix of the vertical structure.
The properties of this matrix have been studied and discussed in the context of design
of numerical weather prediction models [6, 8, 30, 15], forecast accuracy [4, 5], normal
mode initialization [38, 39], and four-dimensional data assimilation [9, 12], among
many other papers and applications.

Usually, the authors’ analysis of the implicit linear equations (including stability
and convergence analysis) is based on the supposition that this matrix has positive dis-
tinct eigenvalues, which guarantees a complete decoupling of the primitive linearized
equations and the well posedness of initial value problems for all obtained shallow
water systems [6, 8, 26, 30, 33]. Although this supposition has been confirmed by nu-
merical computations in different models, it has not been demonstrated analytically
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for any numerical scheme. The goal of the present work is verifying the well posedness
of the initial value problem for a family of linearized vertically discretized hydrostatic
equations to provide additional theoretical justification for using the semi-implicit Eu-
lerian and semi-Lagrangian schemes. Our analysis is for a large set of vertical grids,
including, in particular, the optimal vertical grids constructed in [4, 5] to improve
forecast accuracy.

This paper is divided into two main sections. In section 2, we present primitive
hydrostatic equations, which we linearize and vertically discretize using one of the
commonly used vertical grids. The matrix of vertical structure is derived, and its
influence on vertical decoupling is discussed. Section 3 is devoted to the study of
the properties of the matrix of vertical structure. The principal result consists of the
proof of the oscillatory properties of the considered vertical matrix. Some concluding
remarks are presented in the final section.

2. Deriving the matrix of vertical structure. We set out the continuous
equations in Cartesian coordinates x, y of a conformal mapping projection and hybrid
vertical coordinate η(p, ps), which is a monotonic function of the pressure p and also
depends on the surface pressure ps in such a way that

η (0, ps) = 0, η (ps, ps) = 1.

Following Kasahara [23] and Simmons and Burridge [36], the primitive hydrostatic
equations can be written as follows:

horizontal momentum equations

du

dt
= −u2 + v2

2
m2
x + fv −RTPx − Φx,(1)

dv

dt
= −u2 + v2

2
m2
y − fu−RTPy − Φy,(2)

hydrostatic equation

Φη = −RTPη,(3)

thermodynamic equation

dT

dt
=

RT

cp

dP

dt
,(4)

continuity equation

dpη
dt

= −pηm2 (ux + vy)− pη η̇η,(5)

pressure equation

Pt + η̇Pη = −m2

p

∫ η

0

(upη)x + (vpη)y dη,(6)

surface pressure equation

(Ps)t = −m2

ps

∫ 1

0

(upη)x + (vpη)y dη.(7)
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The last two equations are the consequence of the continuity equation and the upper
and lower boundary conditions

η̇ = 0 at η = 0; 1.

Here

dϕ

dt
= ϕt + m2 (uϕx + vϕy) + η̇ϕη

is the three-dimensional individual derivative, u and v are the horizontal projection
velocity components, and the following common denotations are used: t is the time,
P = ln p, Ps = ln ps, m is the mapping factor, f is the Coriolis parameter, T is
the temperature, Φ = gz is the geopotential, z is the height, g is the gravitational
acceleration, R is the gas constant, cp is the specific heat at constant pressure, and
the subscripts t, x, y, η denote the partial derivatives with respect to the indicated
variable. (Note that other subscripts do not mean differentiation.)

The first step to obtain the vertical structure matrix is linearization of this system
about a state of rest:

ut = fv −RT0Px − Φx,(8)

vt = −fu−RT0Py − Φy,(9)

Φη = −RT0Pη −RTSη,(10)

Tt =
RT0

cp
· (Pt + Sη η̇) ,(11)

Pt + Sη η̇ = − 1

σ

∫ η

0

σηDdη,(12)

(Ps)t = − 1

σs

∫ 1

0

σηDdη.(13)

Here T0 = const is the reference temperature profile, p0 = σ(η) is the reference
pressure profile (σ(η) is the positive strictly increasing function), σs = σ(1), S = lnσ,
and D = m2(ux + vy) is the horizontal divergence.

Substituting the right-hand side of (12) in (11) and introducing a new unknown
function G = Φ + RT0P , the system (8)–(11), (13) can be written in the following
form:

ut = fv −Gx,(14)

vt = −fu−Gy,(15)

Gη = −RTSη,(16)

Tt = −RT0

cpσ

∫ η

0

σηDdη,(17)
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(Gs)t = −RT0

σs

∫ 1

0

σηDdη.(18)

Equation (12), which can be considered an equation for the vertical velocity compo-
nent, is decoupled from the last system and has no effect upon the linear analysis of the
primitive equations. Note that the analogous system (with or without Coriolis terms)
can be obtained for the implicit part of semi-implicit Eulerian or semi-Lagrangian
schemes [6, 8, 26, 30, 33, 34].

Of course, studying the continuous problem one can eliminate T from system
(14)–(18) and, seeking separable solutions, can obtain the differential vertical struc-
ture equation [13, 18]. However, to construct the vertical structure matrix used in
numerical schemes we have to follow the procedure of vertical discretization used in
numerical models. Thus, the second step consists of choosing the type of vertical grid
and vertical discretization. We choose a rather popular Lorenz vertical grid which
carries horizontal velocities, temperature, and geopotential at the same model levels
that represent model layers, while vertical velocity is carried at the interfaces of these
layers (see Figure 1).

This grid divides the considered atmosphere in K vertical layers. The boundaries
ηk+1/2, k = 0, . . . ,K (solid lines) of these layers can be chosen arbitrarily, and the
inner levels ηk, k = 1, . . . ,K (dashed lines) satisfy the natural inequalities

ηk−1/2 < ηk < ηk+1/2, k = 1, . . . ,K.(19)

In [6, 8, 11], the values ηk are defined as midlines of the layers; that is,

ηk =
ηk+1/2 + ηk−1/2

2
, k = 1, . . . ,K,

but it is not essential for our analysis. The restrictions η1/2 = 0, ηK+1/2 = 1, and (19)
are uniquely used in subsequent reasoning. Therefore, the vertical grid construction
is sufficiently flexible, and it involves a wide set of grids.

This type of grid was introduced by Lorenz [25] to construct a vertically discrete
balanced model, which conserves the total energy, the mean potential temperature,
and the variance of the potential temperature under adiabatic and frictionless pro-
cesses. Following Lorenz’s approach, Arakawa and Lamb [1] and Arakawa and Suarez
[2] constructed vertically discrete models based on the Lorenz grid satisfying the most
integral constraints of the continuous system. Thus, the distribution of variables on
the Lorenz grid is more straightforward for keeping conservation properties of the
primitive equations. For this reason, it seems to be the most widespread vertical
grid used for hydrostatic equation models [3]. We can mention the NASA numerical
weather prediction and climate models [6, 11, 35], NCEP global and mesoscale models
[7, 22], and the Pennsylvania State University MM5 model [16], among others, which
use this vertical approximation.

All the variables u, v, T , G of the linearized system (14)–(18) are defined at the
levels ηk. Since variable η̇ is not used in linear analysis, the Lorenz grid coincides
with the completely unstaggered vertical grid. Therefore, our analysis is also applied
to this last grid used, for example, in [24]. Note that the reference pressure σ(η) is a
given function, and then it can be calculated at both boundaries and inner levels.

The approximation of the hydrostatic equation (16) is realized by formulas
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Fig. 1. K layer Lorenz vertical grid.

Gk = GK+1 + R

[
K∑

i=k+1

ln
σi+1/2

σi−1/2
· Ti + ln

σk+1/2

σk
· Tk
]
, k = 1, . . . ,K,

GK+1 ≡ Gs.

The thermodynamic and continuity equations (17)–(18) are approximated as

Tkt = −RT0

cp
·
[
k−1∑
i=1

σi+1/2 − σi−1/2

σk
Di +

σk+1/2 − σk−1/2

2σk
Dk

]
, k = 1, . . . ,K,

(Gs)t = − RT0

σK+1/2

K∑
i=1

(σi+1/2 − σi−1/2)Di.

In the above, a summation is defined to be zero if the lower limit of the summation
index exceeds the upper limit.
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Introducing vector columns

u = (u1, . . . , uK)T ,v = (v1, . . . , vK)T ,D = (D1, . . . , DK)T ,G = (G1, . . . , GK)T ,

T = (T1, . . . , TK , Gs)
T ,

we can write discrete analogues of (14)–(18) in the form

ut = fv −Gx,(20)

vt = −fu−Gy,(21)

G = RAT ·T,(22)

Tt = −RT0

cp
AD ·D.(23)

Here AT and AD are the K × (K + 1) and (K + 1) ×K matrices, respectively, de-
termined as follows:

AT =



ln
σ3/2

σ1
ln

σ5/2

σ3/2
· · · ln

σk+1/2

σk−1/2
· · · ln

σK−1/2

σK−3/2
ln

σK+1/2

σK−1/2
1

0 ln
σ5/2

σ2
· · · ln

σk+1/2

σk−1/2
· · · ln

σK−1/2

σK−3/2
ln

σK+1/2

σK−1/2
1

...
...

. . .
...

...
...

...

0 0 · · · ln
σk+1/2

σk
· · · ln

σK−1/2

σK−3/2
ln

σK+1/2

σK−1/2
1

...
...

...
. . .

...
...

...

0 0 · · · 0 · · · ln
σK−1/2

σK−1
ln

σK+1/2

σK−1/2
1

0 0 · · · 0 · · · 0 ln
σK+1/2

σK
1


and

AD =

σ3/2−σ1/2

2σ1
0 · · · 0 · · · 0 0

σ3/2−σ1/2

σ2

σ5/2−σ3/2

2σ2
· · · 0 · · · 0 0

...
...

. . .
...

...
...

σ3/2−σ1/2

σk

σ5/2−σ3/2

σk
· · · σk+1/2−σk−1/2

2σk
· · · 0 0

...
...

...
. . .

...
...

σ3/2−σ1/2

σK−1

σ5/2−σ3/2

σK−1
· · · σk+1/2−σk−1/2

σK−1
· · · σK−1/2−σK−3/2

2σK−1
0

σ3/2−σ1/2

σK

σ5/2−σ3/2

σK
· · · σk+1/2−σk−1/2

σK
· · · σK−1/2−σK−3/2

σK

σK+1/2−σK−1/2

2σK

σ3/2−σ1/2

σK+1/2/cp
σ5/2−σ3/2

σK+1/2/cp
· · · σk+1/2−σk−1/2

σK+1/2/cp
· · · σK−1/2−σK−3/2

σK+1/2/cp
σK+1/2−σK−1/2

σK+1/2/cp



.
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Finally, differentiating hydrostatic equations with respect to t and eliminating T,
we obtain

Gt = RATTt = RAT

(
−RT0

cp
ADD

)
= −R

cp
RT0ATADD = −R

cp
RT0AD,

where A = ATAD is the K ×K matrix of the vertical structure. If all eigenvalues of
matrix A are positive and respective eigenvectors are linearly independent (that is,
these form a basis in the space RK), then the system

ut = fv −Gx,(24)

vt = −fu−Gy,(25)

Gt = −R

cp
RT0AD(26)

can be vertically decoupled in the K linearized shallow water systems with different
gravitational wave speeds. To make this, one can represent the vertical structure
matrix A in the spectral form A = SΛS−1, where Λ is the diagonal eigenvalue matrix
and S is the matrix of eigenvectors (that is, vertical normal modes) of the A, and,
multiplying (24)–(26) on the left by S−1, one can obtain

ũt = f ṽ − G̃x,(27)

ṽt = −f ũ− G̃y,(28)

G̃t = −R

cp
RT0ΛD̃,(29)

where coefficients of vertical mode expansion are introduced by formula

ϕ̃ = S−1ϕ, ϕ = u,v,G.

If at least one of the eigenvalues of matrix A is negative, then the corresponding
shallow water system in (27)–(29) is elliptic, and the initial value problem is not well
posed for this system, which results in an incorrect problem for system (20)–(23) with
any initial conditions. This leads to an ill posed initial value problem for vertically
discretized primitive equations (1)–(7), and, therefore, their numerical solution has
no meaning.

Thus, the properties of vertical structure matrix A are crucial for the well posed-
ness of vertically discretized equations (20)–(23), which is a necessary condition for
the well posedness of the numerical scheme. In the following section, we verify some
properties of matrix A, which guarantee the positivity of all its eigenvalues and the
completeness of the set of eigenvectors.

3. Oscillatory properties of matrix A. A matrix is called totally positive if
all its minors are nonnegative. A strictly totally positive matrix is a matrix whose
minors are all positive. A K ×K matrix is called oscillatory if it is totally positive
and its certain power is strictly totally positive.

We use the following criterion for oscillatory matrices given in [19].
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THEOREM G1. Matrix A is oscillatory if
(1) A is totally positive;
(2) det A > 0;
(3) aij > 0 for |i− j| ≤ 1; that is, all the entries on the principal diagonal, first

superdiagonal, and first subdiagonal are positive.
The following fundamental theorem is true for oscillatory matrices [19].
THEOREM G2. An oscillatory K×K matrix A has K distinct positive eigenvalues

λ1 > λ2 > · · · > λK > 0, and eigenvector sk(k = 1, . . . ,K), which corresponds to
eigenvalue λk, has k − 1 variations of sign.

Thus, if the oscillatoriness of matrix A is demonstrated, it will guarantee the well
posedness of (20)–(23). According to Theorem G1, we have to show three properties
of matrix A to guarantee its oscillatoriness. We start with the study of the total
positivity of this matrix.

A direct consequence of the well-known Cauchy–Binet identity for determinants is
that the product of totally positive matrices is again a totally positive matrix. Thus,
to show the total positivity of matrix A = ATAD it is sufficient to prove that each
matrix AT and AD is totally positive.

Let us consider matrix AT . We can factor it into the form

AT = BC,

where B is a K × (K + 1) matrix

B =



b1 1 · · · 1 · · · 1 1 1
0 b2 · · · 1 · · · 1 1 1
...

...
. . .

...
...

...
...

0 0 · · · bk · · · 1 1 1
...

...
...

. . .
...

...
...

0 0 · · · 0 · · · bK−1 1 1
0 0 · · · 0 · · · 0 bK 1


with elements

b1 = ln
σ3/2

σ1
, bk =

ln(σk+1/2/σk)

ln(σk+1/2/σk−1/2)
, k = 2, . . . ,K

and C is a (K + 1)×(K + 1) diagonal matrix C = diag[1, c2, . . . , cK , 1] with elements

ck = ln
σk+1/2

σk−1/2
, k = 2, . . . ,K.

Since (19) holds and σ(η) is a positive strictly increasing function, the elements bk,
k = 1, . . . ,K, and ck, k = 2, . . . ,K, are positive and bk < 1 for k = 2, . . . ,K.

Obviously, matrix C is totally positive. The principal property of matrix B is
established in the following theorem. Although this result can be derived from the
test for total positivity provided in [20], for the sake of completeness we include a
direct proof.

Theorem 1. Matrix B is totally positive.
Proof. To prove this result we use the determinantal criterion given in [10] and

[29].
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Criterion C1. A is an m×n matrix, n ≥ m, such that det A[1, . . . , k|1, . . . , k] > 0
for all 1 ≤ k ≤ m. Then A is totally positive if and only if all minors with initial
consecutive columns or initial consecutive rows are nonnegative.

Hereinafter, A[α|β] denotes the k × l submatrix of m× n matrix A (k ≤ m and
l ≤ n), containing rows numbered by α = [α1, . . . , αk] and columns numbered by
β = [β1, . . . , βl], where α and β are increasing sequences of k and l natural numbers
αi, i = 1, . . . , k, and βj , j = 1, . . . , l, respectively.

First, note that det B[1, . . . , k|1, . . . , k] = b1 × · · · × bk > 0 for any k = 1, . . . ,K.
Second, det B[α|1, . . . , k] = 0 for any k = 1, . . . ,K and α �= [1, . . . , k]. Therefore, we
can simplify Criterion C1 for matrix B to the following form.

Criterion C2. B is totally positive if and only if all minors with initial consecutive
rows are nonnegative; that is, det B[1, . . . , k|β] ≥ 0 for any k and for any increasing
set of k indices β �= [1, . . . , k].

Let us consider two cases.
(1) If βk−1 > k, then the columns with indices βk−1 and βk contain all their

entries above the first principal diagonal (above the diagonal with entries b1, . . . , bK).
Hence, these two columns coincide and det B[1, . . . , k|β] = 0.

(2) If βk−1 ≤ k, then, taking into account that βk > k, we have

det B[1, . . . , k|β] =

∣∣∣∣∣∣∣∣∣
b1,β1

. . . b1,βk−1
b1,βk

...
. . .

...
...

bk−1,β1 . . . bk−1,βk−1
bk−1,βk

bk,β1 . . . bk,βk−1
bk,βk

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
b1,β1 . . . b1,βk−1

1
...

. . .
...

...
bk−1,β1

. . . bk−1,βk−1
1

bk,β1 . . . bk,βk−1
1

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
b1,β1 − bk,β1 . . . b1,βk−1

− bk,βk−1
0

...
. . .

...
...

bk−1,β1
− bk,β1

. . . bk−1,βk−1
− bk,βk−1

0
bk,β1 . . . bk,βk−1

1

∣∣∣∣∣∣∣∣∣ .
(30)
Expanding in cofactors along the last column and observing that bk,βi

= 0 for all
i = 1, . . . , k − 2 because βi < βk−1 ≤ k, we obtain the k − 1 order determinant

det B[1, . . . , k|β] =

∣∣∣∣∣∣∣∣∣
b1,β1 . . . b1,βk−2

b1,βk−1
− bk,βk−1

...
. . .

...
...

bk−2,β1 . . . bk−2,βk−2
bk−2,βk−1

− bk,βk−1

bk−1,β1 . . . bk−1,βk−2
bk−1,βk−1

− bk,βk−1

∣∣∣∣∣∣∣∣∣ .(31)

Now two situations can occur. The first, when βk−1 = k − 1, is the simplest. In this
case, βi = i for i = 1, . . . , k − 2, bk,βk−1

= 0, and, consequently,

det B[1, . . . , k|β] = det B[1, . . . , k − 1|1, . . . , k − 1] = b1 × · · · × bk−1 > 0.

In the second case, βk−1 = k and bk,βk−1
= bk,k = bk, bk−1,βk−1

= bk−1,k = 1.
Therefore, we simplify (31) to

det B[1, . . . , k|β] =

∣∣∣∣∣∣∣∣∣
b1,β1 . . . b1,βk−2

1− bk
...

. . .
...

...
bk−2,β1 . . . bk−2,βk−2

1− bk
bk−1,β1 . . . bk−1,βk−2

1− bk

∣∣∣∣∣∣∣∣∣ ,(32)



204 ANDREI BOURCHTEIN AND VLADIMIR KADYCHNIKOV

and we continue to reduce the order of determinant

= (1− bk)

∣∣∣∣∣∣∣∣∣
b1,β1 . . . b1,βk−3

b1,βk−2
− bk−1,βk−2

...
. . .

...
...

bk−3,β1 . . . bk−3,βk−3
bk−3,βk−2

− bk−1,βk−2

bk−2,β1 . . . bk−2,βk−3
bk−2,βk−2

− bk−1,βk−2

∣∣∣∣∣∣∣∣∣ .(33)

Obtained determinant (33) is similar to (31), but it is one order less. Again we have
two choices. If βk−2 = k− 2, then βi = i for i = 1, . . . , k− 3 and bk−1,βk−2

= 0, which
gives the following result:

det B[1, . . . , k|β] = (1− bk) det B[1, . . . , k − 2|1, . . . , k − 2]

= b1 × · · · × bk−2 × (1− bk) > 0.

In the opposite case, βk−2 = k − 1, bk−1,βk−2
= bk−1, bk−2,βk−2

= 1, and we get the
determinant in the form (32), but its order is one less than the order of (32).

We can continue this procedure until a determinant of the first order is obtained.
The final result of the calculus of the determinant (30) can be represented in the form

det B[1, . . . , k|β] = d1 × · · · × dk−1,

where

di = bi or (1− bi+1), i = 1, . . . , k − 1,

which depends on the choice of the index set β. In either case, all di > 0, and,
consequently,

det B[1, . . . , k|β] = d1 × · · · × dk−1 > 0.(34)

Since we consider the arbitrary value of k, Criterion C2 is proved. Therefore, matrix
B is totally positive and Theorem 1 is proved.

Hence, matrix AT is totally positive as the product of two totally positive matrices
B and C.

To prove the total positivity of matrix AD we use factorization in the form

AD = FGH,

where G is (K + 1)×K matrix

G =



1/2 0 · · · 0 · · · 0 0
1 1/2 · · · 0 · · · 0 0
...

...
. . .

...
...

...
1 1 · · · 1/2 · · · 0 0
...

...
...

. . .
...

...
1 1 · · · 1 · · · 1/2 0
1 1 · · · 1 · · · 1 1/2
1 1 · · · 1 · · · 1 1


,

F is (K + 1)× (K + 1) diagonal matrix F = diag[f1, . . . , fK , fK+1] with elements

fk =
1

σk
, k = 1, . . . ,K, fK+1 =

cp
σK+1/2

,
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and H is K ×K diagonal matrix H = diag[h1, . . . , hK ] with elements

hk = σk+1/2 − σk−1/2, k = 1, . . . ,K.

It is evident that matrices F and H are totally positive. Matrix G is totally
positive because it is a particular case of matrix BT . Therefore, matrix AD is totally
positive. Finally, due to the total positivity of matrices AT and AD, matrix A =
ATAD is totally positive too.

It remains to verify the second and third conditions of Theorem G1. To show the
second condition we observe that evaluation (34) considered for k = K means that all
K order minors of matrix B are positive. Obviously, all K order minors of matrix C
are nonnegative and some of these are positive. Therefore, by Cauchy–Binet formulas,
all K order minors of matrix AT are positive. Analogously, we can show that all K
order minors of matrix AD are positive. Applying the Cauchy–Binet identity to the
determinant of K ×K matrix A we demonstrate its positivity. Finally, the positivity
of the elements aij > 0 for |i− j| ≤ 1 follows directly from a structure of matrices
AT and AD.

Thus, all three conditions of Theorem G1 are satisfied, and, therefore, matrix A
is oscillatory. According to Theorem G2, this implies that all eigenvalues are positive
and distinct, which guarantees the strict hyperbolicity of all shallow water systems
(27)–(29). Therefore, the initial value problem is well posed for discretized equations
(20)–(23).

4. Conclusion. An analytical study of the vertical structure matrix of dis-
cretized hydrostatic equations is performed. The principal statement about the oscil-
latoriness of this matrix is proved using the determinantal criterion for total positivity
and the oscillatory matrix test. The properties of the oscillatory matrix ensure that
all the decoupled linearized shallow water equations are strictly hyperbolic. There-
fore, the initial value problem is well posed for linearized primitive equations, which
is the necessary condition for the convergence of semi-implicit schemes.
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Abstract. A new smoothing method is proposed which can be viewed as a finite element
thin plate spline. This approach combines the favorable properties of finite element surface fitting
with those of thin plate splines. The method is based on first order techniques similar to mixed
finite element techniques for the biharmonic equation. The existence of a solution to our smoothing
problem is demonstrated, and the approximation theory for uniformly spread data is presented in
the case of both exact and noisy data. This convergence analysis seems to be the first for a discrete
smoothing spline with data perturbed by white noise. Numerical results are presented which verify
our theoretical results and demonstrate our method on a large real life data set.

Key words. thin plate splines, finite element methods, surface smoothing
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1. Introduction. We propose a new finite element approximation of the thin
plate spline for surface fitting in R

2. We call our new smoother the TPSFEM
smoother. This new approach combines the favorable properties of finite element sur-
face fitting with those of thin plate splines. In particular, the method can deal with
very large data sets consisting of tens of millions of predictor and response observa-
tions. Our smoothing function is a finite element approximation. As a consequence,
the computational problem can be broken into two stages:

1. Forming the finite element matrices and vectors, which entails only a single
scan of the data.

2. Solving for the finite element solution. This entails solving a sparse matrix
system with size dependent on the discretization of a finite element mesh.

The size of the finite element structures can be chosen to be independent of the size
of the data. This enables us to deal with very large data sets (tens of millions). For
instance, in section 4 we present the results of smoothing geomagnetic data [6] with
735,700 data points.

Our method uses techniques typical of mixed finite element methods (see Brezzi
and Fortin [11]) and of first order systems least squares (FOSLS) methods (see Cai,
Manteuffel, and McCormick [14, 12, 13] and Cai et al. [15]). Auxiliary functions repre-
senting the gradient of the smoother are introduced to lower the order of smoothness
of the resulting equations from H2(Ω) to H1(Ω). This allows for the use of simpler
finite elements spaces and results in a better-conditioned problem.

The combined use of smoothing techniques and mixed finite element techniques
provides a smoothing method which can deal with large data sets but still retains
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the good smoothing properties of the thin plate spline. An initial discussion of the
method can be found in [23] and [24], and a discussion of the implementation and
solution of the resulting discrete equations in [16] and [17].

The rest of the paper is organized as follows. The next section provides a detailed
description and motivation for our method. In section 3 we describe the main conver-
gence result, Theorem 3.2 on page 215, which justifies our claim that the TPSFEM
method has approximation properties similar to those of a discrete thin plate spline.
In section 4 we describe the numerical method used to solve our smoothing prob-
lem and present some numerical results for test problems and a real life large data
set. The rest of the paper involves proving various properties of our method. The
TPSFEM smoothing method produces a unique solution, provided that the values
of the predictor variable are not collinear. This is shown in section 5. In section 6 we
provide a number of useful results that will be used in section 7 to prove convergence
of our method, that is, to prove Theorem 3.2. Finally in section 8 we conclude our
discussion.

2. Description of the method.

2.1. Sobolev spaces. Before proceeding, let us introduce some notation. The
L2(Ω) inner-product and norm are given, respectively, by

(v, w)L2(Ω) =

∫
Ω

vw dx and ‖v‖2L2(Ω) = (v, v)L2(Ω).

Standard H1(Ω) and H2(Ω) Sobolev semi-inner-products are given by

(v, w)H1(Ω) =

∫
Ω

(
∂v

∂x1

∂w

∂x1
+

∂v

∂x2

∂w

∂x2

)
dx

and

(v, w)H2(Ω) =

∫
Ω

(
∂2v

∂2x1

∂2w

∂2x1
+ 2

∂2v

∂x1∂x2

∂2w

∂x1∂x2
+

∂2v

∂2x2

∂2w

∂2x2

)
dx.

The corresponding seminorms are given by

|v|2H1(Ω) = (v, v)H1(Ω) and |v|2H2(Ω) = (v, v)H2(Ω),

and the associated norms by

‖v‖2H1(Ω) = ‖v‖2L2(Ω) + |v|2H1(Ω),

‖v‖2H2(Ω) = ‖v‖2L2(Ω) + |v|2H2(Ω).

Note that we use single bars | · | to denote seminorms, and double bars ‖ · ‖ to denote
norms. For vector functions u = (u1, u2),v = (v1, v2) ∈ H1(Ω)2, we define the
(semi-)inner products and (semi-)norms as follows:

(u,v)L2(Ω)2 = (u1, v1)L2(Ω) + (u2, v2)L2(Ω),

‖u‖2L2(Ω)2 = (u,u)L2(Ω)2 ,

(u,v)H1(Ω)2 = (u1, v1)H1(Ω) + (u2, v2)H1(Ω),

|u|2H1(Ω)2 = (u,u)H1(Ω)2 .

The dual norm H−1(Ω) is given by

‖v‖H−1(Ω) = sup
u∈H1

0 (Ω)

∫
Ω
v(x)u(x) dx

‖u‖H1(Ω)
.
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2.2. Overview: Thin plate spline. To describe our method we first recall the
definition of the standard thin plate spline, which provides a smoother that predicts
a real response variable y, given the value of a predictor variable x ∈ R

2. The input
to the construction of this smoother is an array of response values

y = [y(1) · · · y(n)]T ∈ R
n

and a corresponding array of predictor values

P = [x(1) · · · x(n)]T ∈ R
n×2.

We suppose that the predictor values all lie in a convex bounded domain Ω ⊂ R
2.

The thin plate spline is the solution of the following minimization problem.
Problem 1 (Thin plate spline). For a fixed response vector y, find the minimizer

s̄α(y) of the functional

J̄α(s,y) = n−1
n∑
i=1

(s(x(i))− y(i))2 + α|s|2H2(Ω)

= ‖ρns− y‖2n + α|s|2H2(Ω)

over all s ∈ H2(Ω).
Here we have introduced the notation

ρns = [s(x(1)) · · · s(x(n))]T

and a norm on R
n defined by

〈z,w〉n = n−1zTw, ‖z‖2n = 〈z, z〉n.
We have absorbed the n factor into the definition of this norm, so that if s is a
“smooth” function, then ‖ρns‖n provides an estimate of ‖s‖L2(Ω). (This is quantified
in Lemma 6.2.)

Note that we have defined the thin plate spline with respect to a domain Ω.
Indeed it is more common to use R

2 than Ω. In that case the smoother is rotationally
invariant. We are using a finite domain since we will be using simple finite element
spaces.

The functional J̄α also depends on a smoothing parameter α. An appropriate
choice of α depends on the size of the data errors and the number of data points. In
many cases an appropriate choice of α can be made automatically using generalized
cross-validation (see Craven and Wahba [19] or Wahba [29, Chapter 4]). But in this
paper we will generally consider α as being fixed.

It is very reasonable to assume that the predictor variables x(i) are not collinear
(i.e., they do not all lie on a line in R

2). When the domain is R
2, it has been shown

by Duchon [20] that Problem 1 has a unique solution and that the solution has an
explicit representation as a sum of radial basis functions. This approach requires the
solution of a symmetric indefinite dense linear system of equations that has a size
proportional to the number of data records, n. Although this initial approach was
improved later [7, 8, 9, 10, 26], these techniques require complex data structures and
algorithms and an O(n) workspace. Thus, it is a challenge to use standard thin plate
splines for applications that have very large data sets.

Standard finite element discretizations of a problem like Problem 1 involve min-
imizing the functional J̄α over finite dimensional, finite element subspaces of H2(Ω).
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An analysis of these standard methods can be found in the work of Arcangéli and his
coworkers [2, 3, 4, 5, 27]. There are reasonably simple H2(Ω) finite element spaces (for
instance, the Bogner–Fox–Schmidt rectangle [18, pp. 76–77]), but these are necessarily
more complicated than the simpler H1(Ω) finite element spaces. In particular, these
smoother spaces lead to more dense stiffness matrices. For instance, the Bogner–Fox–
Schmidt rectangle space will lead to sparse matrices with 36 nonzeros per variable,
as compared to 9 for the space of bilinear functions. In addition, the conditioning of
the H2(Ω) matrix equations is typically O(h−4), where h is a measure of the “mesh
size” of the finite element space. Hence for problems which do not need the added
smoothness it is more efficient to use the method described in this paper.

2.3. The H1(Ω) method. Our aim is to smooth very large data sets, which
often necessitates fine meshes (typically h < diameter(Ω)/500 in many of our appli-
cations). As such, it is convenient to concentrate on methods in which the underlying
finite element space is as simple as possible. This is very similar to the philosophy
of using mixed finite element methods to solve the Navier–Stokes equation in fluid
mechanics. To this end we reformulate Problem 1 so that only first order derivatives
occur. In this case simple finite element spaces in H1(Ω) can be utilized to discretize
the problem. The conditioning of the resulting matrix problems are O(h−2) and are
readily solved using multigrid preconditioners.

As in many mixed finite element methods (see [11]), a new vector variable u =
(u1, u2) is introduced. This variable represents the gradient of the function s sought in
Problem 1. Our method formulates the minimization in terms of this new variable u.

Suppose that u is the gradient of s, the minimizer of Problem 1. Then

∇s = u,(2.1)

which determines s up to a constant. This constant can be determined by noting that
a necessary condition for s to be the minimizer of Problem 1 is that

〈ρns, e〉n = 〈y, e〉n,(2.2)

where e is the vector of all ones, e = [1 · · · 1]T .
On the other hand, for general u we cannot expect to find an s satisfying (2.1)

and (2.2). But for a given u ∈ H1(Ω)2 it is always possible to find an s ∈ H2(Ω)
satisfying

(∇s,∇v)L2(Ω)2 = (u,∇v)L2(Ω)2(2.3)

for all v ∈ H1(Ω). In fact, there will be a unique such s satisfying (2.2) and (2.3),
which we denote Φ(u,y). Observe that Φ : H1(Ω)2 × R

n → H2(Ω).
The function s = Φ(u,y) also satisfies a Neumann boundary value problem

∆ s = ∇ · u in Ω,

∇s · n = u · n on ∂Ω,

together with the normalization (2.2).
Now consider the associated operator Ψ : H1(Ω)2 → H2(Ω), where g = Ψ(u)

satisfies the Neumann boundary value problem

∆ g = ∇ · u in Ω,(2.4)

∇g · n = u · n on ∂Ω,(2.5)

〈ρng, e〉n = 0.(2.6)
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It is easy to see that Φ(u,y) and Ψ(u) differ by a constant since they satisfy the same
Neumann boundary value problem, and indeed

Φ(u,y) = Ψ(u) + 〈y, e〉n.

We are thus led to the following problem.
Problem 2 (H1 smoother). For a fixed response vector y, find uα(y) ∈ H1(Ω)2

which minimizes the functional

Jα(u,y) = ‖ρnΦ(u,y)− y‖2n + α|u|2H1(Ω)2

over all u ∈ H1(Ω)2. The function Φ(uα(y),y) will correspond to our H1 smoother
and will be denoted sα(y).

Problems 1 and 2 are not equivalent. For instance, there will be u’s which are
not the gradient of any s. Indeed, to force equivalence we would have to ensure that
we minimize over those u’s which are the gradient of some function, and this can be
shown to be equivalent to u having zero curl (∂u1/∂x2 − ∂u2/∂x1 = 0). While this
can be done, and is the subject of many methods associated with the solution of the
Navier–Stokes equation (see [21]), we instead advocate that the zero curl condition
be dropped completely. The resulting Problem 2 is much easier to solve than one in
which a zero curl condition is enforced. In addition, it is our claim that the smoothing
function provided by Problem 2 produces a fit to the data (at least near the data
points) that is similar to the standard thin plate spline. The precise statement of
this result is our main convergence result, Theorem 3.2. The main advantages of this
new minimization problem are that we can work with simple subspaces of H1(Ω) and
the problem becomes essentially an H1(Ω) minimization problem, for which there are
efficient solvers (for example, multigrid solvers).

2.4. The TPSFEM method. To discretize our problem we can minimize Jα
over any simple finite dimensional subspace of H1(Ω)2. In particular, we use simple
continuous piecewise polynomial spaces V

h ⊂ H1(Ω) parameterized by h, the mesh
size. Associated with each finite element space V

h is a mesh T h, consisting of a set
of “elements” (usually triangles or quadrilaterals) K ∈ T h. The mesh size is given by

h = max
K∈T h

diameter(K).

We assume that the finite element spaces V
h, and in particular the associated

meshes T h, satisfy the following assumption.
Assumption 1 (Quasi-uniform meshes). We will assume that the meshes T h are

“quasi-uniform”; that is,

max
K∈T h

diameter(K)

ρ(K)

and

maxK∈T h diameter(K)

minK∈T h diameter(K)

are bounded uniformly in h. Here ρ(K) is the maximum diameter of any ball contained
within K. Hence the elements of T h cannot get too small relative to h, and they cannot
get too “long and thin.”
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We also assume that the family of finite element spaces V
h satisfies the following

approximation properties.
Assumption 2 (Standard approximation). For all V

h there exists a linear oper-
ator Qh : H1(Ω)→ V

h and a constant C > 0 such that for all v ∈ H2(Ω)

‖v −Qhv‖L2(Ω) ≤ Ch2|v|H2(Ω),

|v −Qhv|H1(Ω) ≤ Ch|v|H2(Ω),∑
K∈T h

‖v −Qhv‖2H2(K) ≤ C|v|2H2(Ω).

In what follows, we will also need to control theH−1(Ω) norm of the finite element
approximation. As such, we also assume that our family of finite element spaces
satisfies the following assumption.

Assumption 3 (H−1(Ω) approximation). For all v ∈ H1(Ω) the linear operator
Qh : H1(Ω)→ V

h introduced in Assumption 2 satisfies

‖v −Qhv‖H−1(Ω) ≤ Ch2|v|H1(Ω),

‖v −Qhv‖L2(Ω) ≤ Ch|v|H1(Ω),

|v −Qhv|H1(Ω) ≤ C|v|H1(Ω)

for some constant C > 0.
The spaces of continuous piecewise linear functions associated with quasi-uniform

triangulations of Ω or quadrilateral grids with bilinear functions satisfy Assumptions 2
and 3, with Qh given by the L2(Ω) projection.

The evaluation of Jα(u,y) involves the calculation of Ψ(u). An approximation of
g = Ψ(u) in V

h is given by gh = Ψh(u), where

(∇gh,∇v)L2(Ω)2 = (u,∇v)L2(Ω)2(2.7)

for all v ∈ V
h, also subject to the condition (2.6). We then let

Φh(u,y) = Ψh(u) + 〈y, e〉n.
Our final discrete problem becomes the following.
Problem 3 (TPSFEM smoother). For a given response vector y, find uhα(y) ∈

V
h × V

h, which minimizes the functional

Jhα(u,y) = ‖ρnΦh(u,y)− y‖2n + α|u|2H1(Ω)2

over the space V
h × V

h. The function Φh(uhα(y),y) will correspond to our TPSFEM
smoothing function and is denoted shα(y).

3. Approximation properties of the TPSFEM smoother. To obtain some
quantitative information about the approximation properties of our smoother, we
follow Utreras [28] and make the following assumptions about the form of the response
variable observations and the values of the predictor variables. First the response
variable.

Assumption 4 (Data model). We suppose that our response variable is modelled
by a smooth function f ∈ H2(Ω) plus error. That is, the value of the response variable
at a data point satisfies

y(i) = f(x(i)) + ν(i),
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where ν(i) denotes measurement error. We suppose that the ν(i) are independent
identically distributed random variables with mean zero and variance σ2.

We also make an assumption about the spread of the values of the predictor
variable. Let

d = sup
x∈Ω

distance(x, {x(i)})(3.1)

be the maximum distance of any point in Ω from a data point. Following the problem
formulation in [28], we assume that the predictor variables are “uniformly spread”
throughout Ω in the following sense.

Assumption 5 (Uniformly spread data). We assume that d, as a function of the
number of data points n, is controlled by the minimum distance between data points.
That is, there exists a constant C > 1 such that

d < Cmin
i �=j
|x(i) − x(j)|.

This implies that any ball of radius, say, 2d contained in Ω will have at least three
data points, with the number uniformly bounded above. By filling larger balls B ⊂ Ω
with balls of radius 2d, we conclude that the number of predictor points in a larger
ball is proportional to the area of the ball. In particular we have that

d2nB � area(B) � d2nB .(3.2)

Here nB = card{x(i) : x(i) ∈ B}, the number of predictor points in B. We will use
this notation for any set B.

Remark 1. Note that we have introduced the notation

f(d, h, α) � g(d, h, α),

which will signify that

f(d, h, α) ≤ Cg(d, h, α)

for some constant C > 0 uniformly for all choices of d, h, and α over the specified
range of values. This notation will be used extensively in what follows.

Remark 2. Since our set Ω is convex, we can assume that it satisfies an interior
cone condition and so conclude that (3.2) holds for all balls of radius greater than 2d
with center contained in Ω (i.e., the balls may extend over the boundary of Ω).

Combining the assumptions on the data and the finite element spaces, we conclude
a similar point density estimate for elements of our meshes. Namely, we claim the
following.

Proposition 3.1. Provided that the finite element spaces satisfy Assumption 1
and the data satisfies Assumption 5, then there exists a constant C1 > 1 such that,
for any mesh T h with h > C1d, the elements K ∈ ⋃h>C1 d

T h satisfy

d2nK � area(K) � d2nK .(3.3)

Proof. Assumption 1 implies that for each K ∈ T h there exist balls BK and
BK such that BK ⊂ K ⊂ BK and area(BK) � area(K) � area(BK). The elements
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K cannot get too long and thin. Provided the elements are large enough (h > C1 d
for some C1), we can assume that for all elements K ∈ ⋃h>C1 d

T h the inscribed

balls satisfy radius(BK) > 2d. Hence (3.2) implies that area(BK) � d2nBK
and

d2nBK
� area(BK). Combining these estimates leads to

d2nK � d2nBK
� area(BK) � area(K) � area(BK) � d2nBK

� d2nK ,

which implies (3.3).
Remark 3. By summing (3.3) over all K in the mesh, we conclude that

d2n � area(Ω) � d2n.(3.4)

Now we can state the main convergence property of our smoother when applied
to data which is uniformly spread.

Theorem 3.2 (Main convergence result). Suppose that our finite element spaces
satisfy Assumptions 1, 2, and 3 and our data satisfies Assumptions 4 and 5. Then
there exist constants C1 > 1 and α0 > 0 such that for all f ∈ H2(Ω) the expected
errors of the TPSFEM smoother satisfy

E‖shα(y)− f‖2L2(Ω) � (α+ h4 + d4)‖f‖2H2(Ω) +
σ2

α1/2

(h4 + d4)

h2
,(3.5)

E|shα(y)− f |2H1(Ω) �
1

α1/2
(α+ h4 + d4)‖f‖2H2(Ω) +

σ2

α

(h4 + d4)

h2
,(3.6)

E‖uhα(y)‖2H1(Ω)2 �
1

α
(α+ h4 + d4)‖f‖2H2(Ω) +

σ2

α3/2

(h4 + d4)

h2
,(3.7)

provided that h and α satisfy h > C1 d and d4 + h4 < α < α0.
Hence, under standard assumptions on the data, our smoothing method satisfies

smoothing properties very similar to those of the standard thin plate spline (see [28,
Theorem 1.1]).

To help qualify the contributions of the approximations in our method, we have
elected to present the convergence result with the explicit α, d, and h dependencies
retained. We see that the errors naturally divide into a bias and a variance term. In
the bias term, the quantity α+ d4 + h4 arises from the

1. smoothing error (α),
2. error in approximating L2(Ω) norms with pointwise norms (d4), and
3. finite element approximation error (h4).

The variance term is essentially of the form σ2d2/α1/2 for small h, which is the bound
obtained for the standard thin plate spline. Actually we conjecture that a more
sophisticated analysis will show that the variance term is of the form σ2d2/(α1/2+h2),
which would demonstrate the smoothing influence of coarser grids.

In section 7 we prove this theorem using an argument very similar to that found
in Utreras [28]. First, in Theorem 7.3 we bound the norms of bias of the method
shα(ρ

nf)− f . Then in Theorem 7.8 the norms of the variance shα(ν) are shown to be
bounded by the analogous bounds for the standard thin plate spline. This convergence
analysis seems to be the first for a discrete smoothing spline with data perturbed by
white noise. It should be possible to apply our methodology to proving convergence
for the standard discrete smoothing splines.
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It should be noted that, given the requirements that h > C1 d and d4 + h4 < α <
α0, we can obtain the somewhat “cleaner” estimates

E‖shα(y)− f‖2L2(Ω) � α‖f‖2H2(Ω) + h2 σ2

α1/2
,

E|shα(y)− f |2H1(Ω) � α1/2‖f‖2H2(Ω) + h2σ
2

α
,

E‖uhα(y)‖2H1(Ω)2 � ‖f‖2H2(Ω) + h2 σ2

α3/2
.

4. The numerical method. In this section we will outline the method we use to
calculate our smoother. In subsection 4.2 we describe the generalized cross-validation
method that we often use to calculate an appropriate value for the smoothing param-
eter α. Finally in subsection 4.3 we provide two numerical experiments to compare
our method with Duchon’s method and to demonstrate our method on a large data
fitting problem.

4.1. The discrete equations. TheTPSFEMmethod provides a gradient func-
tion u = uhα(y) and an associated smoothing function s = Φhα(u,y). To obtain an
explicit representation of these functions in V

h we must calculate their expansion in
terms of a basis for V

h. As such, let

h(x) =

h1(x)
...

hm(x)


denote a vector of basis functions for the finite element space V

h. The values of the
basis functions at the data points are encapsulated by the matrix

HT = ρnh(x)T =

h1(x
(1)) · · · hm(x

(1))
...

...
...

h1(x
(n)) · · · hm(x

(n))

 .
Then s and u = [u1, u2]

T will be of the form

s(x) = h(x)T c, u1(x) = h(x)Tg1, u2(x) = h(x)Tg2,(4.1)

where the vectors c, g1, and g2 represent the linear combination coefficients in the
basis h.

Relation (2.3) between s and u can be written as

Lc = G1g1 +G2g2,(4.2)

where L = (∇h,∇hT )L2(Ω) is a matrix approximation to the operator −∆ , and
G1 = (∂x1h,h

T )L2(Ω) and G2 = (∂x2h,h
T )L2(Ω) are matrix approximations to the

operators −∂x1 and −∂x2 , respectively. Consequently

c = L+(G1g1 +G2g2),

where L+ is the pseudoinverse of L which satisfies L+He = 0. In our implementation
all calculations involving L+ are provided by a multigrid Poisson solver.
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Our discrete functional is now equivalent to

Jhα(u,y) = J̃hα(g,y) = ‖Kg + 〈y, e〉ne− y‖2n + αgTLg,(4.3)

where g = [gT1 gT2 ]
T , K =HTL+[G1 G2], and

L =

[
L 0
0 L

]
.

Our smoothing problem consists of minimizing this functional over all vectors g ∈
R

2m.
The minimizer satisfies the equation[KTK + nαL]g = KT ỹ,(4.4)

where ỹ = y − 〈y, e〉ne. In terms of the components g1 and g2, this becomes[
GT

1ZG1 + nαL GT
1ZG2

GT
2ZG1 GT

2ZG2 + nαL

] [
g1

g2

]
=

[
GT

1 L
+z

GT
2 L

+z

]
,(4.5)

where Z = L+HHTL+ and z =HT ỹ. The matrix HHT and the vector z depend
on the data and are evaluated by reading the data arrays from disk and computing
the contribution due to each data point. This is then accumulated into global data
structures. Thus, the formation of HHT and z is scalable with respect to the data
size. These operations parallelize well because the different segments of the data can
be processed independently.

The matrices L, G1, and G2 depend on the specified mesh size, which in many
cases can be chosen independently of the data. It can be seen that the system (4.5)
is symmetric positive definite, and so we use the conjugate gradient method to solve
the equation. In fact, we use the preconditioned conjugate gradient (PCG) method,
with preconditioner matrix

Q =

[
L+ 0
0 L+

]
.

Each iteration of our PCG solver involves four applications of L+. For smooth prob-
lems we need on the order of twenty iterations of our PCG method to reduce the
residual of the equation by a factor of 10−10.

4.2. Estimation of optimal α and h. The parameters α and h provide a
measure of the smoothing effect of our method. We usually determine “optimal”
values for these parameters in a two-step process. For a given h we use generalized
cross-validation (GCV) to determine α. Then we decrease h until the value of α
obtained by the GCV method stabilizes at a fixed value.

4.2.1. The generalized cross-validation method. For a fixed h we obtain
an “optimal” value for α using the GCV method. The GCV function

V (α) =
‖(I −K[KTK + nαL]−1KT )ỹ‖2n
[tr(I −K[KTK + nαL]−1KT )]2

provides a cumulative measure of the error of estimating the response value at a point
by a smoother in which individual data points have been “left out.” This function
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provides a measure of how well the smoother is fitting the data, and also how well
“new” data is approximated by the smoother. The reader is referred to Wahba’s book
[29] for a description of cross-validation and GCV methods. In the GCV method
the “optimal” smoothing parameter α is the minimizer of the GCV function [29,
p. 43]. For us, the problem is how to calculate the function V (α) efficiently. The
most difficult term is the trace term, as we do not want to assemble the full matrix
[KTK+nαL]−1. We use an approximation due to Hutchinson [25], in which the trace
term is approximated by an unbiased stochastic estimator. In particular, we use the
function

V̄ (α) =
‖(I −K[KTK + nαL]−1KT )ỹ‖2n

[tr(I)− uTK[KTK + nαL]−1KTu]2

as an approximation of the standard GCV function. Here u is a random vector whose
entries take on the values 1 and −1 with equal probability 1

2 . To calculate V̄ (α) for
any fixed α, we must solve two smoothing problems (4.4). We have found that it is
necessary to obtain the optimal α only to within an order of magnitude, and so we
generally need to calculate V̄ (α) for only four to five values of α.

4.3. Numerical experiments. We now provide two numerical experiments.
The first verifies that the TPSFEM method and the standard thin plate spline
smoother provide similar results for a simple smoothing problem. Our second ex-
periment demonstrates our method on a reasonably large data set.

First the comparison with the thin plate spline smoother. For clarity, we will
apply our method to a small problem in order to accentuate the difference between
the two smoothers. Our data is of the form

y = ρnf + ν,

where the random variables ν are normally distributed with expectation 0 and stan-
dard deviation 0.2. The components of the data points x(i) are independently nor-
mally distributed with expectation 0.5 and standard deviation 0.25. For f the “peaks”
function from matlab has been chosen. The peaks function is formed as a linear
combination of several scaled and translated Gaussian distributions. The smoothing
parameter is α = 10−6. In this case we use bilinear elements on a uniform 32 by 32
grid.

As can be seen from Figure 4.1, the two smoothers approximate the data well in
the region of high density and show slightly different behavior on the boundary where
the two smoothers satisfy different conditions and the data points are less dense.
Generally the qualitative behavior is similar.

As another example of our method we present results in Figure 4.2 from smoothing
a survey of magnetic field strengths known as the Ebagoola magnetic data set [6].
The survey comprises 735,700 data points consisting of latitude and longitude and
magnetic field strength obtained from an aerial survey of the Ebagoola region of Cape
York Peninsula in northern Australia. The region surveyed is approximately 61 by 63
kilometers. The distance between data points is very small in the direction of flight
(about 10 meters), whereas the distance between adjacent flight paths is longer, on
the order of 500 meters.

The smoother was obtained in 7.5 minutes using a matlab implementation on
a 135 MHz SUN Sparc Station. Reading in and parsing the 17MB ASCII data set
takes 5 minutes on the same workstation. It should be noted the TPSFEM smoother
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Fig. 4.1. Comparison of standard thin plate spline (DUCHON) and the TPSFEM smoother; an
example fitting data with 458 points. Approximation properties are similar except near the bound-
aries, where there are only a small number of data points.
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Fig. 4.2. The TPSFEM smoother for the Ebagoola magnetic data set of 735,700 points with a
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provides an extreme compression of the data. The grid size has been chosen to match
the data spread between flight paths. This is provided by using bilinear elements on a
uniform 128 by 128 grid. Even so, it not guaranteed that each element will have data
points. The use of the TPSFEM provides a robust smoother which deals with the
large data size and is also guaranteed to have a solution for essentially any distribution
of data points (as opposed to a simple finite element least squares fit, which will fail
if any finite element contains no data points).

5. Existence and uniqueness of the minimizers. We will now show that
if the values of the predictor variables x(i) are not collinear, then the unconstrained
minimization problems 2 and 3 will have unique solutions. This will be shown by
proving that equivalent associated variational equations satisfy standard continuity
and ellipticity properties.

First we note that the thin plate spline problem, Problem 1 on page 210, is
equivalent to the following variational problem.

Problem 4 (Thin plate spline smoother). For fixed y ∈ R
n, find s̄α(y) ∈ H2(Ω)

such that

āα(sα(y), v) = F̄ (v,y) for all v ∈ H2(Ω),(5.1)

where

āα(w, v) = 〈ρnw,ρnv〉n + α(w, v)H2(Ω)

and

F̄ (v,y) = 〈y,ρnv〉n.
The existence and uniqueness of the solution of this problem is provided by

Duchon [20].
The H1 smoothing problem, Problem 2 on page 212, is equivalent to the following

variational problem.
Problem 5 (H1 smoother). For fixed y ∈ R

n, find uα(y) ∈ H1(Ω)2 such that

aα(uα(y),v) = F (v,y) for all v ∈ H1(Ω)2,(5.2)

where

aα(u,v) = 〈ρnΨ(u),ρnΨ(v)〉n + α(u,v)H1(Ω)2

and

F (v,y) = 〈y,ρnΨ(v)〉n.
The equivalence of Problems 2 and 5 follows from the fact that

Jα(u,y) = ‖ρnΦ(u,y)− y‖2n + α|u|2H1(Ω)2

= ‖ρnΨ(u)− y + 〈y, e〉ne‖2n + α|u|2H1(Ω)2 .

It is elementary that the minimization problem is equivalent to the variational equa-
tion (5.2), where aα is given above and

F (v,y) = 〈y − 〈y, e〉ne,ρnΨ(v)〉n.
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Now 〈ρnΨ(v), e〉n = 0, and so

F (v,y) = 〈y,ρnΨ(v)〉n,

as required.
The TPSFEM variational problem is given by the following.
Problem 6 (TPSFEM smoother). For fixed y ∈ R

n, find uhα(y) ∈ V
h × V

h

such that

ahα(u
h
α(y),v) = Fh(v,y) for all v ∈ V

h × V
h,(5.3)

where

ahα(u
h
α,v) = 〈ρnΨh(u),ρnΨh(v)〉n + α(u,v)H1(Ω)2

and

Fh(v,y) = 〈y,ρnΨh(v)〉n.

The equivalence of Problem 3 on page 213 and Problem 6 follows in exactly the
same way as the previous equivalence statement.

To prove the existence and uniqueness of solutions of these variational equations,
we must show continuity and ellipticity of the operators. First we show the continuity
of bilinear forms aα(·, ·) and ahα(·, ·) and the linear functionals F (·,y) and Fh(·,y).

Proposition 5.1 (Continuity). The bilinear forms aα(·, ·) and ahα(·, ·) and the
linear forms F (·,y) and Fh(·,y) are continuous on H1(Ω)2.

Proof. The continuity of these linear operators follows from the fact that the
pointwise evaluations of the functions Ψ(v) and Ψh(v) are continuous operations
when v ∈ H1(Ω)2. Recall that the function Ψ(v) satisfies (2.4). Now v ∈ H1(Ω)2,
and so ∇ · v ∈ L2(Ω) and v · n ∈ H1/2(∂Ω). The standard regularity theory for
second order elliptic equations on convex domains and the trace theorem (see [22])
imply that

|Ψ(v)|H1(Ω) + |Ψ(v)|H2(Ω) � ‖∇ · v‖L2(Ω) + ‖v · n‖H1/2(∂Ω) � ‖v‖H1(Ω)2 .

The condition 〈ρnΨ(v), e〉n = 0 implies that a Poincaré inequality holds for Ψ(v),
namely,

‖Ψ(v)‖L2(Ω) � |Ψ(v)|H1(Ω),

and so

‖Ψ(v)‖H2(Ω) � ‖v‖H1(Ω)2 .(5.4)

The Sobolev inequality implies that the pointwise norm ‖·‖n is bounded by the H2(Ω)
norm, and so we conclude that there exists a constant C > 0 (perhaps dependent on
the data distribution) such that

‖ρnΨ(v)‖n ≤ C‖v‖H1(Ω)2 .(5.5)

A similar estimate is necessary for Ψh(v), the finite element approximation of Ψ(v).
It is useful to observe that since the finite element space V

h satisfies Assumption 2
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on page 213, standard error estimates imply that

‖Ψh(v)−Ψ(v)‖2L2(Ω) � h4‖Ψ(v)‖2H2(Ω),(5.6)

|Ψh(v)−Ψ(v)|2H1(Ω) � h2‖Ψ(v)‖2H2(Ω),(5.7) ∑
K∈T h

|Ψh(v)−Ψ(v)|2H2(K) � ‖Ψ(v)‖2H2(Ω).(5.8)

We cannot assume that Ψh(v) ∈ H2(Ω), but we can assume that Ψh(v) restricted to
each element K ∈ T h is in H2(K). Hence there exists a constant C > 0 such that

‖ρnΨh(v)‖2n ≤ C
∑
K∈T h

‖Ψh(v)‖2H2(K).

Equation (5.8) implies that∑
K∈T h

‖Ψh(v)‖2H2(K)

�
∑
K∈T h

‖Ψh(v)−Ψ(v)‖2H2(K) +
∑
K∈T h

‖Ψ(v)‖2H2(K) � ‖Ψ(v)‖2H2(Ω).

By (5.4) we conclude that there exists a constant C > 0 such that

‖ρnΨh(v)‖n ≤ C‖v‖H1(Ω)2 .(5.9)

Equations (5.5) and (5.9) then imply that the bilinear functionals aα(·, ·) and ahα(·, ·)
and the linear functionals F (·,y) and Fh(·,y) are continuous.

Proposition 5.2 (Ellipticity). Suppose that the values of the predictor variable
are not collinear. Then aα(·, ·) and ahα(·, ·) are H1(Ω)2-elliptic.

Proof. First observe that for any constants c1 and c2

Ψ((c1, c2)) = Ψh((c1, c2)) = c1(x1 − 〈ρnx1, e〉n) + c2(x2 − 〈ρnx2, e〉n)
since both H1(Ω) and V

h contain the linear functions. Without loss of generality we
may suppose that the origin of the x variable has been chosen so that 〈ρnx1, e〉n = 0
and 〈ρnx2, e〉n = 0. In this case we have

Ψ((c1, c2)) = Ψh((c1, c2)) = c1x1 + c2x2.(5.10)

Thus constants are mapped to linear functions via both Ψ(·) and Ψh(·).
For v = (v1, v2) ∈ H1(Ω)2 let c1 =

∫
Ω
v1 dx and c2 =

∫
Ω
v2 dx. Then the Poincaré

inequality implies that

‖v − (c1, c2)‖2L2(Ω)2 ≤ C|v|2H1(Ω)2 and ‖v‖2H1(Ω)2 ≤ C[c21 + c22 + |v|2H1(Ω)2 ].

Let P = [x(1) · · · x(n)]T . Since the points x(i) are not collinear, the matrix P has
full rank (of two), and the matrix PTP will be positive definite. Hence

c21 + c22 ≤ C
1

n
[c1 c2]P

TP [c1 c2]
T = C‖ρnΨ((c1, c2))‖2n,

and so

‖v‖2H1(Ω)2 ≤ C[‖ρnΨ((c1, c2))‖2n + |v|2H1(Ω)2 ]
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for some constant C (which can depend on h and n). Finally note that by the triangle
inequality and the Poincaré inequality

‖ρnΨ((c1, c2))‖2n = ‖ρnΨ((c1, c2)− v) + ρnΨ(v)‖2n
≤ 2‖ρnΨ((c1, c2)− v)‖2n + 2‖ρnΨ(v)‖2n
= 2‖(c1, c2)− v‖2H1(Ω)2 + 2‖ρnΨ(v)‖2n
≤ C[|v|2H1(Ω)2 + ‖ρnΨ(v)‖2n],

(5.11)

and consequently

‖v‖2H1(Ω)2 ≤ C[‖ρnΨ(v)‖2n + α|v|2H1(Ω)2 ] = Caα(v,v).

The proof for ahα is identical.
The following theorem is a direct application of a standard existence/uniqueness

result for abstract variation problems; see [18, pp. 2–3].
Theorem 5.3 (Existence-uniqueness). Suppose that the values of the predictor

variable are not collinear. Then there is a unique u ∈ H1(Ω)2 which solves Problems
2 and 5. Similarly, there is a unique uh ∈ V

h × V
h which solves Problems 3 and 6.

Hence our H1 and TPSFEM smoothing problems have unique solutions. They
are not the standard thin plate splines, but, as we will prove in section 7, they do
possess smoothing properties similar to the standard smoothing splines.

6. Auxilary results. We will now quote and prove a number of results which
allow us to estimate the error due to approximating Ψ(v) with Ψh(v), and estimating
the L2(Ω) norms with R

n norms (and visa versa).
We quote an important result which follows from Utreras [28, Theorems 3.3 and

3.4] when applied to each K ∈ T h.
Lemma 6.1 (Element norms). Suppose that our finite element spaces satisfy

Assumption 1 and our data satisfies Assumption 5. Then there exists a constant C1 >
1 such that for any K ∈ T h where h > C1 d, and for any f ∈ H2(K), the following
bounds hold:

d2
∑

x(i)∈K
f(x(i))2 � ‖f‖2L2(K) + d4|f |2H2(K)

and

‖f‖2L2(K) � d2
∑

x(i)∈K
f(x(i))2 + d4|f |2H2(K).

Proof. Results of this type, where the element K is replaced by small balls of
radius 2d, are shown in Utreras [28, Theorems 3.3 and 3.4]. Just as in Proposi-
tion 3.1, we can cover each element K with balls of radius 2d and sum to obtain our
result.

We are working with functions in H1(Ω), which are not in H2(Ω) but are con-
trolled in H2(K) for each element K of a mesh. Hence we need the following gener-
alization of Utreras’ result.

Lemma 6.2 (Pointwise norm equivalence). Suppose that our finite element spaces
satisfy Assumption 1 and our data satisfies Assumption 5. Then there exists a constant
C1 > 1 such that for any K ∈ T h where h > C1 d, and for f ∈ H1(Ω) such that f
restricted to each K has bounded H2(K) norm, we have that

‖ρnf‖2n � ‖f‖2L2(Ω) + d4
∑
K∈T h

|f |2H2(K)
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and

‖f‖2L2(Ω) � ‖ρnf‖2n + d4
∑
K∈T h

|f |2H2(K).

Proof. This result follows by summing the inequalities from Lemma 6.1 over
all K ∈ T h and observing that, since the data points are “uniformly spread,” d2 is
comparable to 1/n.

With this lemma we can prove the following useful results.
Lemma 6.3 (Ψh consistency). Suppose that our finite element spaces satisfy

Assumption 1 and our data satisfies Assumption 5. Then there exists a constant C1 >
1 such that for h > C1 d and for v ∈ H1(Ω)2

‖ρnΨh(v)− ρnΨ(v)‖2n � (h4 + d4)‖v‖2H1(Ω)2 .

Proof. By Lemma 6.2

‖ρnΨh(v)− ρnΨ(v)‖2n
� ‖Ψh(v)−Ψ(v)‖2L2(Ω) + d4

∑
K∈T h

|Ψh(v)−Ψ(v)|2H2(K).

The first term is bounded by (5.6) and the second term by (5.8). Consequently

‖ρnΨh(v)− ρnΨ(v)‖2n � (h4 + d4)‖Ψ(v)‖2H2(Ω).

By (5.4), ‖Ψ(v)‖H2(Ω) is bounded by ‖v‖2H1(Ω)2 so that

‖ρnΨh(v)− ρnΨ(v)‖2n � (h4 + d4)‖v‖2H1(Ω)2 .

Lemma 6.4 (Ψ stability). Suppose that our finite element spaces satisfy Assump-
tion 1 and our data satisfies Assumption 5. Then there exists a constant C1 > 1 such
that for h > C1 d and for v ∈ H1(Ω)2

‖ρnΨ(vh)− ρnΨ(v)‖2n � (h4 + d4)‖v‖2H1(Ω)2 ,

where vh = Qhv, the projection operator referred to in Assumptions 2 and 3, has been
applied to each component of v.

Proof. By Lemma 6.2

‖ρnΨ(vh)− ρnΨ(v)‖2n
� ‖Ψ(vh − v)‖2L2(Ω) + d4|Ψ(vh − v)|2H2(Ω).

Standard regularity results for second order elliptic equations provide the bounds

‖Ψ(vh − v)‖2L2(Ω) � ‖vh − v‖2H−1(Ω)2 ,

|Ψ(vh − v)|2H2(Ω) � ‖vh − v‖2H1(Ω)2 .

Assumption 3 on page 213 implies that

‖vh − v‖2H−1(Ω)2 � h4‖v‖2H1(Ω)2 ,

‖vh − v‖2H1(Ω)2 � ‖v‖2H1(Ω)2 .
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Consequently

‖ρnΨ(vh)− ρnΨ(v)‖2n � (h4 + d4)‖v‖2H1(Ω)2 .

Lemma 6.5 (H1(Ω)2 norm equivalence). Suppose that our finite element spaces
satisfy Assumption 1 and our data satisfies Assumption 5. Then there exists a constant
C1 > 1 such that for h > C1 d and for v ∈ H1(Ω)2

‖v‖2H1(Ω)2 � ‖ρnΨh(v)‖2n + |v|2H1(Ω)2 ,

where the implied constant is independent of the data points.
Proof. In the previous section we proved this result for a fixed choice of data

points. Now we want to show that the constant is independent of the data points,
provided that they satisfy our “uniformly spread” assumption, Assumption 5.

We know that

‖v‖2H1(Ω)2 � c21 + c22 + |v|2H1(Ω)2 ,

where c1 =
∫
Ω
v1 dx and c2 =

∫
Ω
v2 dx. By explicit calculation,

c21 + c22 �
∫

Ω

(c1x1 + c2x2)
2dx.

Lemma 6.2 implies that∫
Ω

(c1x1 + c2x2)
2dx = ‖c1x1 + c2x2‖2L2(Ω) � ‖ρnΨh((c1, c2))‖2n

since the function c1x1+ c2x2 is linear and so ‖c1x1+ c2x2‖H2(Ω) = 0. Using a similar
argument as in (5.11), we conclude that

‖ρnΨh((c1, c2))‖2n � ‖ρnΨh(v)‖2n + |v|2H1(Ω)2 .

Consequently

c21 + c22 � ‖ρnΨh(v)‖2n + |v|2H1(Ω)2 ,

and so

‖v‖2H1(Ω)2 � ‖ρnΨh(v)‖2n + |v|2H1(Ω)2 .

Lemma 6.6 (Energy orthogonality). For any y ∈ R
n,

1. For all s ∈ H2(Ω)

J̄α(s,y) = J̄α(s̄α(y),y) + āα(s̄α(y)− s, s̄α(y)− s).

2. For all v ∈ H1(Ω)2

Jα(v,y) = Jα(uα(y),y) + aα(uα(y)− v,uα(y)− v).

3. For all vh ∈ V
h × V

h

Jhα(v
h,y) = Jhα(u

h
α(y),y) + ahα(u

h
α(y)− vh,uhα(y)− vh).

Proof. Expand J̄α(s− s̄α(y) + s̄α(y),y), Jα(v−uα(y) +uα(y),y), and Jhα(v
h −

uhα(y) + uhα(y),y), and use (5.1), (5.2), and (5.3), respectively, to eliminate cross
terms.
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7. Convergence of the method. In this section we will prove the main con-
vergence result, Theorem 3.2. For a function f ∈ H2(Ω), we will use the notation
uα(f) to denote uα(ρ

nf). Similarly we define uhα(f), sα(f), and shα(f).
Recall that we assume that the response values satisfy Assumption 4 on page 213,

namely,

y = ρnf + ν,

where ν = [ν(1) · · · ν(n)]T and the ν(i)’s are independent identically distributed
random variables with zero mean and variance σ2.

It is clear that uhα and shα are linear operators, and so

uhα(y) = uhα(f) + uhα(ν),

shα(y) = shα(f) + shα(ν).

We want to measure how well shα(y) approximates f . Using the linearity of the
operators, we can separate the errors into those due to bias and those due to variance.
In particular we have

‖shα(y)− f‖L2(Ω) ≤ ‖shα(f)− f‖L2(Ω) + ‖shα(ν)‖L2(Ω),(7.1)

|shα(y)− f |H1(Ω) ≤ |shα(f)− f |H1(Ω) + |shα(ν)|H1(Ω),(7.2)

‖uhα(y)‖H1(Ω) ≤ ‖uhα(f)‖H1(Ω) + ‖uhα(ν)‖H1(Ω).(7.3)

To produce our estimates we will use the following result proved by Utreras for
the exact thin plate spline.

Theorem 7.1 (see Utreras [28, equations (6.2) and (6.4)]). Suppose that the data
satisfies Assumptions 4 and 5. Then there exists a constant α0 > 0 such that

Eāα(s̄(ν), s̄(ν)) � σ2 d2

α1/2
(7.4)

for d4 < α < α0.
Note that we have written the bound in terms of d instead of n by using the result

n−1 � d2.
Throughout this section we will be making the same basic assumption about the

allowed range of values for h and α. We quantify this assumption as follows.
Assumption 6 (Constraints on h and α). Let C1 and α0 be the constants in-

troduced in Proposition 3.1 and Theorem 7.1, respectively. We assume that h and α
satisfy h > C1 d and d4 + h4 < α < α0.

We can now prove convergence of our method by first looking at exact data (the
bias term) and then estimating the variance.

7.1. Exact response variable data. We deal first with the error for exact
data. Using an argument almost identical to that found in Utreras [28, Theorem 4.1],
we will show that the value of the functional Jhα(u

h
α(f),ρ

nf) can be controlled by the
smoothness of the underlying model function f .

Proposition 7.2 (Energy bound). Let the finite element spaces satisfy As-
sumptions 1, 2, and 3, the data satisfy Assumptions 4 and 5, and h and α satisfy
Assumption 6. Then for all f ∈ H2(Ω)

Jhα(u
h
α(f),ρ

nf) � (α+ h4 + d4)‖f‖H2(Ω).
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Proof. Let v = ∇f . Then f = Φ(v,ρnf). Let vh = Qhv. As uhα(f) is the
minimizer of Jhα(·,ρnf), we conclude that

Jhα(u
h
α(f),ρ

nf) ≤ Jhα(v
h,ρnf).

Now

Jhα(v
h,ρnf) = ‖ρnΦh(vh,ρnf)− ρnf‖2n + α|vh|2H1(Ω)2

� ‖ρnΦh(vh,ρnf)− ρnΦ(v,ρnf)‖2n
+ ‖ρnΦ(v,ρnf)− ρnf‖2n + α|vh|2H1(Ω)2

� ‖ρnΨh(vh)− ρnΨ(v)‖2n
+ ‖ρnΦ(v,ρnf)− ρnf‖2n + α|vh|2H1(Ω)2 .

Using Lemmas 6.3 and 6.4, a simple triangle inequality argument bounds the first
term, namely,

‖ρnΨh(vh)− ρnΨ(v)‖2n � ‖ρnΨh(vh)− ρnΨ(vh)‖2n + ‖ρnΨ(vh)− ρnΨ(v)‖2n
� (h4 + d4)[‖vh‖2H1(Ω)2 + ‖v‖2H1(Ω)2 ]

� (h4 + d4)‖v‖2H1(Ω)2 .

The term ‖ρnΦ(v,ρnf) − ρnf‖n is zero since Φ(v,ρnf) = f . Taking this together,
we conclude that

Jhα(v
h,ρnf) � (h4 + d4)‖v‖2H1(Ω)2 + α|vh|2H1(Ω)2

� (α+ h4 + d4)‖f‖2H2(Ω),

since Assumption 2 and the triangle inequality imply that

‖vh‖H1(Ω)2 � ‖v‖H1(Ω)2 ,

and, by the definition of v,

‖v‖H1(Ω)2 = ‖∇f‖H1(Ω)2 ≤ ‖f‖H2(Ω).

We have proved that

‖ρnshα(f)− ρnf‖2n + α|uhα(f)|2H1(Ω)2 � (α+ h4 + d4)‖f‖2H2(Ω).

Now we can obtain L2(Ω) and H1(Ω) norm estimates for the error for exact data.
Theorem 7.3 (Convergence: exact data). We suppose that our finite element

spaces satisfy Assumptions 1, 2, and 3, our data satisfies Assumptions 4 and 5, and
h and α satisfy Assumption 6. Then for all f ∈ H2(Ω)

‖shα(f)− f‖2L2(Ω) � (α+ h4 + d4)‖f‖2H2(Ω),(7.5)

|shα(f)− f |2H1(Ω) �
1

α1/2
(α+ h4 + d4)‖f‖2H2(Ω),(7.6)

‖uhα(f)‖2H1(Ω)2 �
1

α
(α+ h4 + d4)‖f‖2H2(Ω).(7.7)

Proof. First we prove (7.7). Proposition 7.2 implies that

|uhα(f)|2H1(Ω)2 �
1

α
(α+ h4 + d4)‖f‖2H2(Ω)(7.8)
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and

‖ρnΦh(uhα(f),ρnf)− ρnf‖2n � (α+ h4 + d4)‖f‖2H2(Ω).(7.9)

Lemma 6.5, together with (7.8), provides the bound

‖uhα(f)‖2H1(Ω)2 � ‖ρnΨh(uh(f))‖2n + |uhα(f)|2H1(Ω)2

� ‖ρnΨh(uh(f))‖2n +
1

α
(α+ h4 + d4)‖f‖2H2(Ω).

Using the bound (7.9), the Sobolev inequality (which implies that the pointwise norm
‖ρn · ‖n is bounded by the norm ‖ · ‖H2(Ω)) and a triangle inequality estimate give us

‖ρnΨh(uh(f))‖2n � ‖ρnΦh(uh(f),ρnf)− ρnf − 〈ρnf, e〉ne+ ρnf‖2n
� ‖ρnΦh(uh(f),ρnf)− ρnf‖2n + ‖〈ρnf, e〉ne‖2n + ‖ρnf‖2n
� (α+ h4 + d4)‖f‖2H2(Ω) + ‖ρnf‖2n �

1

α
(α+ h4 + d4)‖f‖2H2(Ω).

Consequently

‖uhα(f)‖2H1(Ω)2 �
1

α
(α+ h4 + d4)‖f‖2H2(Ω).

Equation (7.5) follows from Lemma 6.2,

‖shα(f)− f‖2L2(Ω) = ‖Φh(uhα(f),ρnf)− f‖2L2(Ω)

� ‖ρnΦh(uhα(f),ρnf)− ρnf‖2n + d4
∑
K∈T h

|Φh(uhα(f),ρnf)− f |2H2(K),

which by (7.9) and the triangle inequality implies

� (α+ h4 + d4)α‖f‖2H2(Ω) + d4
∑
K∈T h

[
|Φh(uhα(f),ρnf)|2H2(K) + |f |2H2(K)

]
� (α+ h4 + d4)‖f‖2H2(Ω),

since by (5.8) ∑
K∈T h

|Ψh(uhα(f))|2H2(K) � ‖Ψ(uhα(f))‖2H2(Ω) � ‖f‖2H2(Ω).

Finally, (7.6) will follow from an interpolation result which estimates the H1 norm of
shα(f) − f by use of the preceding L2 estimate and an H2 estimate. Unfortunately
shα(f) = Φh(uhα(f),ρ

nf) is not in H2(Ω). On the other hand, Φ(uhα(f),ρ
nf) is in

H2(Ω). We will first use an interpolation result to estimate |Φ(uhα(f),ρnf)− f |2H1(Ω)

in terms of ‖Φ(uhα(f),ρnf)− f‖2L2(Ω) and |Φ(uhα(f),ρnf)− f |2H2(Ω). Now

‖Φ(uhα(f),ρnf)− f‖2L2(Ω)

� ‖Ψ(uhα(f))−Ψh(uhα(f))‖2L2(Ω) + ‖shα(f)− f‖2L2(Ω)

� (α+ h4 + d4)‖f‖2H2(Ω)
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and

|Φ(uhα(f),ρnf)− f |2H2(Ω) �
1

α
(α+ h4 + d4)‖f‖2H2(Ω).

An interpolation estimate (see, for example, [1, Theorem 4.14]) then implies that

|Φ(uhα(f),ρnf)− f |2H1(Ω) �
1

α1/2
(α+ h4 + d4)‖f‖2H2(Ω).

Now we can estimate the quantity |Φh(uhα(f),ρnf)−f |2H1(Ω). Equation (5.7), together
with the previous estimate, implies that

|shα(f)− f |2H1(Ω) = |Φh(uhα(f),ρnf)− f |2H1(Ω)

� |Ψh(uhα(f))−Ψ(uhα(f))|2H1(Ω) + |Φ(uhα(f),ρnf)− f |2H1(Ω)

�
(
h2 +

1

α1/2
(α+ h4 + d4)

)
‖f‖2H2(Ω)

� 1

α1/2
(α+ h4 + d4)‖f‖2H2(Ω)

(since h2 < α1/2), which provides the required H1(Ω) seminorm estimate for
shα(f)− f .

7.2. Variance of the error. We will now bound

E|sh(uh(ν))|2L2(Ω), E|sh(uh(ν))|2H1(Ω), and E|uh(ν)|2H1(Ω),

the expected error due to the random part of the response variable data.
The idea is to use Utreras’ result for the thin plate spline, namely Theorem 7.1,

and in particular the bound (7.4), to bound Eahα(u
h(ν),uh(ν)). Observe that ν =∑n

k=1 ν
(k)ek, where ek is the kth coordinate vector. Using this expansion, we observe

that

ahα(u
h
α(ν),u

h
α(ν)) = ah

 n∑
k=1

ν(k)uhα(ek),

n∑
j=1

ν(j)uhα(ek)


=

n∑
k,j=1

ν(k)ν(j)ah(uhα(ek),u
h
α(ej)).

Hence

Eahα(u
h
α(ν),u

h
α(ν)) =

n∑
k,j=1

E(ν(k)ν(j))ahα(u
h
α(ek),u

h
α(ej))

=

n∑
k=1

σ2ahα(u
h
α(ek),u

h
α(ek))

(7.10)

since the ν(k) are independent random variables with zero mean and variance σ2.
Similarly the thin plate spline function s̄α(ν) satisfies

Eāα(s̄α(ν), s̄α(ν)) =

n∑
k

σ2āα(s̄α(ek), s̄α(ek)).(7.11)
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We will bound ahα(u
h
α(ek),u

h
α(ek)) in terms of āα(s̄α(ek), s̄α(ek)). To do this, note

that

1

n
− 1

n2
= ‖ek − 〈ek, e〉ne‖2n

= J̄(s̄α(ek), ek) + āα(s̄α(ek), s̄α(ek))

= Jα(uα(ek), ek) + aα(uα(ek),uα(ek))

= Jhα(u
h
α(ek), ek) + ahα(u

h
α(ek),u

h
α(ek)).

(7.12)

This follows from Lemma 6.6 with s = 〈ek, e〉n and v = vh = 0. Essentially (7.12)
shows that a result like

ahα(u
h
α(ek),u

h
α(ek)) ≤ āα(s̄α(ek), s̄α(ek))

holds if an opposite inequality of the form

J̄α(s̄α(ek), ek) ≤ Jhα(u
h
α(ek), ek)

holds. In fact we will be able to prove the following slightly weaker results.
Lemma 7.4 (Energy bound). We suppose that our finite element spaces satisfy

Assumptions 1, 2, and 3, our data satisfies Assumptions 4 and 5, and h and α satisfy
Assumption 6. Then

Jα(uα(ek), ek) ≤
(
1 +

h2

α1/2

)
Jhα(u

h
α(ek), ek) +

C1

nα1/2

(h4 + d4)

h2

for some constant C1 independent of h, d, and α.
Lemma 7.5 (Thin plate spline lower bound). We suppose that our finite element

spaces satisfy Assumptions 1, 2, and 3, our data satisfies Assumptions 4 and 5, and
h and α satisfy Assumption 6. Then there exists a constant C2 > 0 such that for
α′ = C2α

J̄α′(s̄α′(ek), ek) ≤ Jα(uα(ek), ek).

Before proving these lemmas, let us use them to show the following.
Proposition 7.6 (Thin plate spline bound). We suppose that our finite element

spaces satisfy Assumptions 1, 2, and 3, our data satisfies Assumptions 4 and 5, and
h and α satisfy Assumption 6. Then there exists a constant C2 > 0 such that for
α′ = C2α

ahα(u
h
α(ek),u

h
α(ek)) ≤ āα′(s̄α′(ek), s̄α′(ek)) +

C3

nα1/2

(h4 + d4)

h2

for some constant C3.
Proof. Combining (7.12), Lemma 7.4, and Lemma 7.5, we conclude that(

1 +
h2

α1/2

)
ahα(u

h
α(ek),u

h
α(ek))

≤ āα′(s̄α′(ek), s̄α′(ek)) +

(
1

n
− 1

n2

)(
h2

α1/2

)
+

C1

nα1/2

(h4 + d4)

h2
,
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where C1 is defined in Lemma 7.4. Our assumption on h ensures that h > d. So we
conclude that for C3 = C1 + 1,

ahα(u
h
α(ek),u

h
α(ek)) ≤ āα′(s̄α′(ek), s̄α′(ek)) +

C3

nα1/2

(h4 + d4)

h2
,

as required.
Now we can estimate Eahα(u

h
α(ν),u

h
α(ν)).

Theorem 7.7 (Energy norm convergence: random data). We suppose that our
finite element spaces satisfy Assumptions 1, 2, and 3, our data satisfies Assumptions 4
and 5, and h and α satisfy Assumption 6. Then

Eahα(u
h
α(ν),u

h
α(ν)) �

σ2

α1/2

(h4 + d4)

h2
.

Proof. By summing the inequalities in the statement of Proposition 7.6 over k
and noting (7.10) and (7.11), we arrive at the conclusion that

Eahα(u
h
α(ν),u

h
α(ν)) ≤ Eāα′(s̄α′(ek), s̄α′(ek)) +

C3σ
2

α1/2

(h4 + d4)

h2
.

Equation (7.4) then implies that there exists a constant C4 such that

Eāα′(s̄α′(ek), s̄α′(ek)) ≤ C4σ
2 d2

α′1/2
≤ C4σ

2

C
1/2
2 α1/2

d2 � σ2

α1/2

(h4 + d4)

h2
.

Putting this together, the required result is obtained.
Note that we have proved that

E(‖ρnΨh(uhα(ν))‖2n + α|uhα(ν)|2H1(Ω)2) �
σ2

α1/2

(h4 + d4)

h2
.

We can now obtain L2(Ω) and H1(Ω) estimates of the error.
Theorem 7.8 (Convergence: random data). We suppose that our finite element

spaces satisfy Assumptions 1, 2, and 3, our data satisfies Assumptions 4 and 5, and
h and α satisfy Assumption 6. Then

E‖shα(ν)‖2L2(Ω) �
σ2

α1/2

(h4 + d4)

h2
,

E|shα(ν)|2H1(Ω) �
σ2

α

(h4 + d4)

h2
,

E‖uhα(ν)‖2H1(Ω)2 �
σ2

α3/2

(h4 + d4)

h2
.

Proof. Just as in the proof of Theorem 7.3, we can use Lemma 6.2 to ob-
tain an L2(Ω) estimate from the pointwise error provided by Theorem 7.7. The
H1(Ω) estimate of uhα(ν) also follows from Theorem 7.7. Finally the H1(Ω) es-
timate of shα(ν) follows from an interpolation result based on the L2(Ω) and an
H2(Ω) estimate of s(uhα(ν),ν). See the proof of (7.6) in Theorem 7.3 for a similar
argument.

The proof of Theorem 3.2 now follows simply from Theorems 7.3 and 7.8 and the
bounds provided by (7.1), (7.2), and (7.3).
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7.3. Proof of Lemma 7.4. Finally we return to the proof of Lemma 7.4, which
quantifies the difference between Jα(·, ek) and Jhα(·, ek) at their respective minimizers.

Now

Jα(uα(ek), ek) ≤ Jα(u
h
α(ek), ek)

≤ Jhα(u
h
α(ek), ek) + ‖ρnΦ(uhα(ek), ek)− ek‖2n

− ‖ρnΦh(uhα(ek), ek)− ek‖2n.
Elementary manipulations and the Cauchy-Schwarz inequality imply that

‖ρnΦ(uhα(ek), ek)− ek‖2n − ‖ρnΦh(uhα(ek), ek)− ek‖2n
= ‖ρnΦ(uhα(ek), ek)− ρnΦh(uhα(ek), ek)‖2n
− 2〈ρnΦ(uhα(ek), ek)− ρnΦh(uhα(ek), ek),ρnΦh(uhα(ek), ek)− ek〉n.

The geometric, arithmetic mean inequality implies that for any 0 < ε < 1

〈v,w〉n ≤ ‖v‖n‖w‖n ≤ ε−1

2
‖v‖2n +

ε

2
‖w‖2n.

Consequently

‖ρnΦ(uhα(ek), ek)− ek‖2n − ‖ρnΦh(uhα(ek), ek)− ek‖2n
≤ (1 + ε−1)‖ρnΦ(uhα(ek), ek)− ρnΦh(uhα(ek), ek)‖2n

+ ε‖ρnΦh(uhα(ek), ek)− ek‖2n.
Since ‖ρnΦh(uhα(ek), ek)− ek‖2n ≤ Jhα(u

h
α(ek), ek), we conclude that

Jα(uα(ek), ek) ≤ (1 + ε)Jhα(u
h
α(ek), ek)

+ (1 + ε−1)‖ρnΦ(uhα(ek), ek)− ρnΦh(uhα(ek), ek)‖2n
≤ (1 + ε)Jhα(u

h
α(ek), ek) + 2ε−1(h4 + d4)‖uhα(ek)‖2H1(Ω)2

≤ (1 + ε)Jhα(u
h
α(ek), ek) + 2ε−1 (h

4 + d4)

nα
.

The last inequality follows from (7.12) since

α‖uhα(ek)‖2H1(Ω)2 ≤ ahα(u
h
α(ek),u

h
α(ek)) ≤

1

n
.

Finally we choose ε = h2/(α1/2) to obtain the required estimate.

7.4. Proof of Lemma 7.5. Next we compare the functionals J̄α and Jα. First
consider the following decomposition of a function in H1(Ω)2. A u ∈ H1(Ω)2 can be
decomposed into gradient and curl components via

u = V (u) +W (u),

where v = V (u) satisfies

∇ · v = ∇ · u in Ω,

∇× v = 0 in Ω,

v · n = u · n on ∂Ω,
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and w =W (u) satisfies

∇×w = ∇× u in Ω,

∇ ·w = 0 in Ω,

w · n = 0 on ∂Ω.

It is possible to show that there exists a constant C2 > 0 such that

|V (u)|2H1(Ω)2 + |W (u)|2H1(Ω)2 ≤
1

C2
|u|2H1(Ω)2 .

If we let α′ = C2α, then

J̄α′(s̄α′(ek), ek) ≤ Jα(uα(ek), ek).(7.13)

Let s′ = s̄α′(ek) and u′ = ∇s′. Note that V (u′) = ∇s′ and W (u′) = 0 and
Φ(u′, ek) = s′. Now (7.13) follows from

J̄α′(s′, ek) = ‖ρns′ − ek‖2n + α′|s′|2H2(Ω)

= ‖ρnΦ(u′, ek)− ek‖2n + α′|V (u′)|2H1(Ω)2 + α′|W (u′)|2H1(Ω)2

≤ ‖ρnΦ(uα(ek), ek)− ek‖2n + α′|V (uα(ek))|2H1(Ω)2 + α′|W (uα(ek))|2H1(Ω)2

≤ ‖ρnΦ(uα(ek), ek)− ek‖2n + α|uα(ek)|2H1(Ω)2

= Jα(uα(ek), ek).

Here we have used the fact that u′ = ∇s′ will be the minimizer of the functional

Mα′(u, ek) = ‖ρnΦ(u, ek)− ek‖2n + α′|V (u)|2H1(Ω)2 + α′|W (u)|2H1(Ω)2

over H1(Ω)2.
It should be noted that the functional Mα(·,y) provides an alternative method

for approximating a thin plate spline, the disadvantage being the need to have an
auxiliary vector function w(u) (or v(u)). On the other hand, we do intend to analyze
this alternative method in a future paper and compare it to the method discussed
here.

8. Conclusions. We have introduced a finite element method which provides
a flexible and practical tool for smoothing as well as surface fitting. It is a scalable
method in the sense that the size of the data set does not affect the overall size of the
system obtained from the discretization of the equations. The assembly of the finite
element matrices involves only a single scan of the data set. We have demonstrated
that the method can be used to provide data fits of very large data sets, providing
results similar to those obtained by standard thin plate splines. Additionally, the
TPSFEM method as described can easily be generalized to three dimensions.
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Abstract. We study variational mesh adaptation for axially symmetric solutions to two-
dimensional problems. The study is focused on the relationship between the mesh density distribution
and the monitor function and is carried out for a traditional functional that includes several widely
used variational methods as special cases and a recently proposed functional that allows for a weight-
ing between mesh isotropy (or regularity) and global equidistribution of the monitor function. The
main results are stated in Theorems 4.1 and 4.2. For axially symmetric problems, it is natural to
choose axially symmetric mesh adaptation. To this end, it is reasonable to use the monitor function
in the form G = λ1(r)ereTr + λ2(r)eθe

T
θ , where er and eθ are the radial and angular unit vectors.

It is shown that when higher mesh concentration at the origin is desired, a choice of λ1 and λ2
satisfying λ1(0) < λ2(0) will make the mesh denser at r = 0 than in the surrounding area whether or
not λ1 has a maximum value at r = 0. The purpose can also be served by choosing λ1 to have a local
maximum at r = 0 when a Winslow-type monitor function with λ1(r) = λ2(r) is employed. On the
other hand, it is shown that the traditional functional provides little control over mesh concentration
around a ring r = rλ > 0 by choosing λ1 and λ2.

In contrast, numerical results show that the new functional provides better control of the mesh
concentration through the monitor function. Two-dimensional numerical results are presented to
support the analysis.

Key words. mesh adaptation, variational method, mesh regularity, equidistribution
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1. Introduction. Mesh adaptation has become an indispensable tool for use in
the numerical solution of PDEs. One of the most widely used approaches for gen-
erating adaptive meshes is a variational method. With such a method, meshes are
generated as images of a reference mesh through a coordinate transformation be-
tween the physical and computational (or logical) domains. The transformation is
determined as the minimizer of a functional formulated to measure difficulties in the
numerical approximation of the physical solution, typically through a so-called mon-
itor function prescribed by the user to control the mesh adaptation. A variational
method often results in an elliptic (PDE) mesh generation system. Such a system
generates smooth meshes, allows for full specification of mesh behavior at the bound-
ary, does not propagate boundary singularities into the domain, has less danger of
producing mesh overlappings, and can be solved efficiently using many well-developed
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algorithms. Moreover, the equidistribution principle, a concept which has been used
successfully in one-dimensional mesh adaptation [3], can be naturally extended to
multidimensions in the variational framework. Finally, many mesh features, such as
orthogonality, smoothness, and concentration, can be incorporated explicitly into the
mesh adaptation functional.

A number of variational methods have been developed in the past. For example,
Winslow [15] proposes the variable diffusion method for which the mesh lines play the
role of equipotentials of a potential problem [14]. Brackbill and Saltzman [1] develop
a popular method combining mesh concentration, smoothness, and orthogonality.
Several functionals are formulated by Steinberg and Roache [13] to control mesh
properties such as the spacing of the points, areas or volumes of the cells, and the
angles between mesh lines. Dvinsky [4] uses the energy of harmonic mappings as his
mesh adaptation functional. Knupp [9, 10] and Knupp and Robidoux [11] develop
functionals based on the idea of conditioning the Jacobian matrix of the coordinate
transformation. A functional balancing mesh regularity and adaptivity is proposed
by Huang [6].

Some theoretical work has been devoted to better understanding the existing
methods. Cao, Huang, and Russell [2] study the qualitative effect of monitor func-
tions on the resulting mesh for a general class of variational methods that includes
Winslow’s method [15] and the method using harmonic mappings [4] as special cases.
In the recent work of Huang and Sun [8], the monitor function for the functional of
[6] is defined based on interpolation error estimates, and asymptotic error bounds are
obtained for interpolation on the resulting adaptive meshes satisfying the so-called
isotropy and equidistribution conditions. The ability of the resulting method to gen-
erate adaptive meshes satisfying these conditions is also demonstrated numerically.
Nevertheless, more work remains to be done on better understanding the existing
variational methods, especially on precisely how the monitor function controls the
concentration of the generated mesh.

In this paper we present such a study for two functionals, the traditional one
studied in [2] and the new one proposed in [6], for the simple but important case
of two-dimensional problems with axisymmetrical solutions. These types of problems
arise in many practical situations, particularly for problems with blowup or quenching
solutions. There has been considerable recent interest in solving higher-dimensional
blowup problems such as the Schrödinger equation, and this work was motivated by
the observation that the standard moving mesh procedures generally perform inade-
quately on such problems (e.g., see [2, 12]).

Let (x, y) be the coordinates in the physical domain Ω, and let (ξ, η) be the
coordinates in the computational domain Ωc. The traditional functional is

Itrad[ξ, η] =

∫
Ω

(∇ξTG−1∇ξ +∇ηTG−1∇η
)
dxdy(1.1)

and the new functional in [6] has the form

Inew[ξ, η] = γ

∫
Ω

√
g
(∇ξTG−1∇ξ +∇ηTG−1∇η

)q
dxdy

+ (1− 2γ)2q
∫

Ω

√
g

(J
√
g)q

dxdy,

(1.2)

where J = xξyη − xηyξ is the Jacobian of the coordinate transformation, G is the
(matrix) monitor function with determinant g, and q ≥ 1 and γ ∈ (0, 1/2] are pa-
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rameters. Here, q ≥ 1 is required in order for the first integral of (1.2) to be convex.
The features of these functionals and the roles of the parameters will be discussed in
sections 2 and 3.

Axisymmetrical problems. For simplicity, we assume that the physical domain
is Ω = {(x, y) | x2 +y2 < 1} and the computational domain is Ωc = {(ξ, η) | ξ2 +η2 <
1}. Let the polar coordinate systems for the physical and computational domains be{

x = r cos θ,
y = r sin θ,

{
ξ = R cosΘ,
η = R sinΘ.

Consider the case where the solution u(x, y) is axially symmetric; i.e., u is invariant
under rotation about the center (0, 0). It is natural to choose an axially symmetric
coordinate transformation

R = R(r), Θ = θ(1.3)

for mesh adaptation. To this end, it is reasonable to use the monitor function in the
form

G = λ1(r)ere
T
r + λ2(r)eθe

T
θ ,(1.4)

where er and eθ are unit vectors in the radial and angular directions, respectively.
Thus, G is determined by its radial and angular components λ1 > 0 and λ2 > 0.

We are interested in the relationship between the monitor function and the mesh
distribution. In particular, we focus on the mesh density D(r). The Jacobian of the
coordinate transformation J is easily seen to satisfy

1

J
≡ det

(
∂(ξ, η)

∂(x, y)

)
=

R

r

dR

dr
,(1.5)

and thus the mesh density is given by

D(r) =
R

r

dR

dr
.(1.6)

The central aim of this paper is to gain insight into how much control one has
on the mesh density D(r) by appropriately choosing λ1 and λ2. In order for the
variational method to be successful one needs that the solution to the variational
problem gives a mesh distribution compatible with the chosen monitor function. For
example, it is natural to choose one or more of the eigenvalues of the monitor function
to have a higher value (a maximum) in the region where a physical solution needs a
high concentration of mesh points; e.g., see [2]. It will become clear below that this
is not always achievable and that if one is not careful in choosing the appropriate
relation between λ1 and λ2 it is possible for the mesh density maximum to occur at a
different location than that of the maximum of the eigenvalue. This can in turn lead
to a large error in the numerical approximation of the physical solution.

An outline of the paper is as follows. In sections 2 and 3 basic properties of
the traditional and new functionals for radially symmetric problems are presented.
In section 4 we carry out an in-depth analysis on the control of the mesh density
via the monitor function. In particular, we find that the relationship between the
radial (λ1) and the angular (λ2) components of the monitor function is crucial for a
good control of the mesh density. Section 5 presents some two-dimensional numerical
results highlighting in part the lack of control of the mesh concentration for a wide
choice of monitor functions. A brief analysis is given in section 6 for the traditional
functional applied to spherically symmetric problems in three dimensions. Finally,
section 7 contains conclusions and comments.
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2. The traditional functional. In this section we consider the traditional func-
tional (1.1) for axisymmetrical problems and give some of its basic properties. It is a
generalization of the functionals for Winslow’s method and Dvinsky’s method of har-
monic mappings. The monitor function G can be defined by arbitrarily choosing λ1

and λ2. However, it is worth pointing out that a number of commonly used monitor
functions can be obtained through the interdependent relationship

λ2 = λp1(2.1)

for some power p. For example, we have

(HM) p = −1 : harmonic mapping monitor function;
(Al) p = 0 : arclength monitor function;
(Ws) p = 1 : Winslow’s monitor function;
(St) p = 2 : strong concentration monitor function.

(2.2)

In polar coordinates the gradient operator reads as

∇ = er
∂

∂r
+
eθ
r

∂

∂θ
,

and it follows from (1.3) and (1.4) that

∇ξTG−1∇ξ +∇ηTG−1∇η =
1

λ1

(
dR

dr

)2

+
1

λ2

(
R

r

)2

.(2.3)

Substituting (2.3) into (1.1) gives

Itrad[R] = 2π

∫ 1

0

[
1

λ1

(
dR

dr

)2

+
1

λ2

(
R

r

)2
]
rdr,

and its Euler–Lagrange equation is

− d

dr

(
r

λ1

dR

dr

)
+

R

rλ2
= 0.(2.4)

This equation is supplemented with the boundary conditions

R(0) = 0, R(1) = 1.(2.5)

For a given monitor function (i.e., for given λ1 and λ2), solving (2.4) determines the
resulting mesh transformation R(r).

2.1. Nonnegativeness and mesh crossing. We have R(r) ≥ 0 for r ∈ (0, 1).
To see this, we note that the minimum of R(r) occurs at the left end and/or an
interior point due to the boundary conditions (2.5). If R(0) = minR(r), then we have
R(r) ≥ 0 from (2.5). If instead the minimum point is r0 ∈ (0, 1), then R′(r0) = 0 and
R′′(r0) ≥ 0. From (2.4)

1

r0λ2
R(r0) =

d

dr

(
r

λ1

)(
dR

dr

)∣∣∣∣
r0

+
r

λ1

d2R

dr2

∣∣∣∣
r0

≥ 0.

Hence, in either case R(r) ≥ R(r0) ≥ 0. Furthermore, (2.4) gives

dR

dr
=

λ1

r

∫ r

0

R(x)

xλ2(x)
dx,

so it follows that dR
dr > 0 for r ∈ (0, 1); i.e., the mesh transformation is guaranteed to

be nonsingular and produce no mesh crossing.
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2.2. Mesh transformation for harmonic mappings. For the case of har-
monic mappings (p = −1 or λ2 = 1/λ1) it is possible to find an analytical form for
the mesh transformation R(r). We explicitly construct R(r) here since it then serves
as the basis of study for other cases. Using the change of coordinates

s(r) =

∫ r

1

λ1(x)

x
dx,(2.6)

(2.4) reads

−d2R

ds2 + R = 0.

Its solution satisfying the boundary conditions (2.5) is R(r) = es. In section 4.1, using
a transformation based on (2.6), we study more general monitor functions (including
arclength and Winslow) in detail.

3. The new functional. The formulation of the new functional (1.2) is based
on the so-called isotropy (or regularity) and equidistribution (or adaptation) require-
ments for an error distribution [6]. Specifically, the first integral term corresponds to
the regularity requirement, while the second is associated with equidistribution. These
two requirements are balanced by adjusting the value of the parameter γ. When q = 1
or γ = 1/2, the second integral becomes constant or simply vanishes, and only the
isotropy plays a role. When q = 1 the functional gives rise to the energy functional of
a harmonic mapping. The relation between the new and traditional functionals will
be addressed later in section 3.3.

From (1.4) the determinant of G is g = det(G) = λ1λ2. Let

Λ =
√

λ1λ2,(3.1)

µ1(r) =
λ1

Λ1/q
, µ2(r) =

λ2

Λ1/q
.(3.2)

Using the symmetry assumption, we can rewrite (1.2) as

Inew[R] = γ

∫ 1

0

[
1

µ1

(
dR

dr

)2

+
1

µ2

(
R

r

)2
]q
rdr + (1− 2γ)2q

∫ 1

0

[
RR′

r
√
g

]q
r
√
gdr.

Its Euler–Lagrange equation is given by

− γ

βq−1

d

dr

(
rβq−1R′

µ1

)
+

γR

rµ2
(3.3)

− (1− 2γ)2q−1(q − 1)R

βq−1

(
RR′

r
√
g

)q−2
d

dr

(
RR′

r
√
g

)
= 0,

where

β =
1

µ1

(
dR

dr

)2

+
1

µ2

(
R

r

)2

.

The highly nonlinear form of the new functional does not lend itself to a straight-
forward analytical treatment of its basic properties. Nonetheless, we devote the rest
of this section to the study of several special cases of (3.3) subject to the boundary
conditions (2.5). These cases are important because they help to better understand
the functional and link it to the traditional one.
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3.1. The exact equidistribution case (γ = 0). We first consider the case
γ = 0 which corresponds to exact equidistribution. Assuming that R(r) > 0 for
r ∈ (0, 1), (3.3) implies

1√
g

R

r

dR

dr
= α,(3.4)

where α is a constant. From (1.5), this is equivalent to

1

J
√
g

= α,

which is a multidimensional generalization of the well-known equidistribution principle
in one dimension. This equation guarantees that J , the Jacobian of the coordinate
transformation, does not change sign in the domain.

3.2. The pure isotropy case (γ = 1/2). For γ = 1/2 the mesh equation (3.3)
reduces to

d

dr

[
βq−1r R′

µ1

]
=

βq−1R

rµ2
.

As in section 2.1, it is easy to show that R(r) ≥ 0 and R′(r) ≥ 0. Thus, for this case
the mesh is also guaranteed not to cross.

In Figure 1 we depict R′(r) for the traditional functional and the new functional
with γ = 1/2 and several values of q. As can be seen, the mesh transformation for the
new functional with different values of q is quite similar to the traditional functional.
This is not surprising since for γ = 1/2 the new functional shifts all the weight towards
isotropy and thus resembles the traditional functional.

3.3. The case q = 1. When q = 1, the second integral in (1.2) becomes con-
stant. From (3.1) the mesh equation (3.3) reduces to

− d

dr

(
Λr

λ1

dR

dr

)
+

ΛR

rλ2
= 0.(3.5)

Once again it is easy to prove that mesh crossing will not occur. Note that the mesh
equation (3.5) is independent of the parameter γ and very similar to (2.4) for the
traditional functional. In fact, for the harmonic mapping case where Λ = 1, the mesh
equations (3.5) and (2.4) are identical.

For the Winslow monitor function case (Λ = λ1 = λ2) the mesh equation is

d

dr

(
r
dR

dr

)
=

R

r
.(3.6)

The solution of (3.6) compatible with the boundary conditions is R(r) = r. Therefore,
the case q = 1 of the new functional method gives a trivial coordinate transformation
R = r and does not allow for any control of the mesh concentration when a Winslow-
type monitor function is used.

Finally, for the arclength monitor function (λ2 = 1) the mesh equation is

− d

dr

(
r√
λ1

dR

dr

)
+

R

r
√
λ1

= 0.

This mesh equation is equivalent to that for the traditional functional (2.4) using a
Winslow-type monitor function with

√
λ1 instead of λ1.

In summary, except for the Winslow case, for q = 1 the new functional corresponds
to the traditional functional with a suitable choice of the monitor function.
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Fig. 1. Comparison of R′(r) for the traditional functional (solid line) and the new functional
with γ = 1/2 (q = 2: dashed, q = 3: dotted-dashed, q = 4: dotted). The plots correspond to
the three popular choices of monitor function (harmonic mapping, arclength, and Winslow) with
λ1(r) = 1 + exp(−r2/a)/a (a = 0.01).

4. Control of mesh density via λ1 and λ2.

4.1. The traditional functional. The Euler–Lagrange equation (2.4) for the
traditional functional relates the coordinate transformation to the monitor function
for a given choice of λ1 and λ2. The purpose of this section is to use this to show
that precise control of the mesh density D(r) cannot be achieved from the choice of
λ1 and λ2. In fact, we prove that the maximum for the mesh concentration does not
occur at the maximum of λ1, resulting in misplacement of mesh concentration.

Let us then take (2.4) and solve for the mesh density D(r) in (1.6). Motivated
by the transformation (2.6) leading to the exact solution of (2.4) for the harmonic
mapping monitor function (λ2 = 1/λ1), we consider the change of dependent variable

R(r) = es(r) with s(r) =

∫ r

1

λ1(x) v(x)

x
dx(4.1)

for a to-be-determined and bounded function v. Substituting this into (2.4) yields the
ODE for v

dv

dr
=

λ1

r

(
1

Λ2
− v2

)
.(4.2)

It satisfies

v(0) =
1

Λ(0)
,(4.3)

since any other initial value (at r = 0) produces an unbounded solution v. The choice
(4.3) is compatible with the special case of the harmonic mapping where v(r) = 1.
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Lemma 4.1. v(r) > 0 for all r ∈ [0, 1].
Proof. This is an immediate result of the initial condition v(0) = 1/Λ(0) > 0 and

the fact that v′ > 0 on the line v = 0.
The overall behavior of v is determined by the nullcline

vnull(r) =
1

Λ(r)
.(4.4)

Lemma 4.2. vmin ≤ v(r) ≤ vmax for all r ∈ [0, 1], where vmin = minr{1/Λ(r)}
and vmax = maxr{1/Λ(r)}. Thus, the solution v(r) is bounded by the minimum and
maximum of the nullcline.

Proof. Note that v′ > 0 below the nullcline and v′ < 0 above it. Since vmin ≤
vnull(r), we have v′ ≥ 0. This and v(0) = 1/Λ(0) ≥ vmin imply that v(r) ≥ vmin.
Similarly, we have v(r) ≤ vmax.

Define rλ as the point where λ1 attains its maximum, i.e.,

λ1(rλ) = max
r∈[0,1]

λ1(r).

We have the following lemma.
Lemma 4.3. Let rλ be a strict maximum point of λ1 (so λ

′′
1 (rλ) < 0), and let

λ2 = cλp1 for some power p > −1 and some constant c > 0. Then, v(rλ) > 1
Λ(rλ) .

Proof. For this particular choice of λ2, we have

Λ′(rλ) = 0, Λ′′(rλ) �= 0, vmin =
1

Λ(rλ)
.

We prove the lemma by contradiction. From Lemma 4.2, we can assume only v(rλ) =
1/Λ(rλ). By differentiating (4.2) twice and using the fact that λ

′
1(rλ) = 0, we get

v′(rλ) = v′′(rλ) = 0,

v′′′(rλ) = −2λ1(rλ)Λ
′′(rλ)

rλΛ(rλ)3
�= 0.

This implies that

v(r) = v(rλ) +
(r − rλ)

3

6
v′′′(rλ) + O((r − rλ)

4)

= vmin +
(r − rλ)

3

6
v′′′(rλ) + O((r − rλ)

4).

Hence, v(r) < vmin at some points in the neighborhood of rλ, which contradicts
Lemma 4.2.

Figure 2 shows a typical vector field for v.
To study the mesh density, note that in terms of s,

D(r) =
R

r

dR

dr
=

es

r
s′es =

s′e2s

r
,

and its rate of change

dD

dr
=

d

dr

(
s′e2s

r

)
=

e2s

r

(
s′′ + 2s′2 − s′

r

)
=

e2s

r2

(
λ′1v + λ1v

′ − 2
λ1v

r
+ 2

λ2
1v

2

r

)
.(4.5)
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Fig. 2. Typical vector field for (4.2). The total variation [vmin, vmax] of the nullcline (4.4)
(dashed line) bounds the behavior of the solution with v(0) = 1/Λ(0) (solid line).

Using (4.2) one obtains

dD

dr
=

e2s

r2

{
λ′1v +

λ2
1

r

[(
v − 1

λ1

)2

+

(
1

Λ2
− 1

λ2
1

)]}
.(4.6)

Equation (4.6) determines where the mesh density reaches an extremum in terms of
λ1 and λ2. In general, it is desired that the mesh has a higher concentration of points
at the maximum location of λ1 so that the mesh concentration can be controlled by
choosing λ1. We first consider mesh concentration at the origin r = 0.

Theorem 4.1. (i) If λ1(0)− λ2(0) �= 0, then D′(0) has the same sign as λ1(0)−
λ2(0) whether λ1 has a maximum at r = 0 or not. Specifically, if λ1(0) > λ2(0), then
D′(0) > 0 (i.e., the mesh at the origin is coarser than in the surrounding area), and
if λ1(0) < λ2(0), then D′(0) < 0 (i.e., the mesh at the origin is denser than in the
surrounding area).

(ii) Let λ2(r) = λ1(r). If λ
′
1(0) �= 0, then D′(0)λ

′
1(0) > 0. If λ

′
1(0) = 0 but

λ
′′
1 (0) �= 0, then D′(0)λ

′′
1 (0) > 0.

Proof. Let y(r) = λ1(r)v(r). Note that y(0) = λ1(0)/Λ(0) =
√

λ1(0)/λ2(0).
Equation (4.5) can be rewritten as

dD

dr
=

e2s

r2

(
y′ − 2y

r
+

2y2

r

)
.

Expanding the bracketed terms on the right-hand side about r = 0, we get

dD

dr
=

e2s

r2

{
2

r
y(0) (y(0)− 1) + y′(0) (4y(0)− 1) + O(r)

}
=

e2s

r2

{
2

r

√
λ1(0)

λ2(0)

(√
λ1(0)

λ2(0)
− 1

)
+ y′(0)

(
4

√
λ1(0)

λ2(0)
− 1

)
+ O(r)

}
.(4.7)

Thus, if λ1(0) �= λ2(0), the first term in the bracket dominates. In this case, D′(r)
has the same sign as λ1(0)− λ2(0). The result in (i) follows.
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We now prove part (ii) using (4.6). This can also be done through (4.5), but
higher order terms must be used. Using the assumption λ1(r) = λ2(r) and expanding
the bracketed terms of (4.6) about r = 0, we get

dD

dr
=

e2s

r2
{v(0)λ′

1(0) + r[λ1(0)v
′(0) + λ

′
1(0)(1 + v′(0)) + λ

′′
1 (0)v(0)] + O(r2)}.

The results in (ii) follow since λ
′
1(0) = 0 implies v′(0) = 0.

We now consider the case where mesh concentration away from the origin is
desired, i.e., when rλ > 0. Let

rD : D(rD) = max
r∈[0,1]

D(r).

The following theorem shows the relative positioning of rD with respect to rλ.
Theorem 4.2. Let rλ > 0.
(i) If λ1(rλ) > λ2(rλ), then D′(rλ) > 0 and thus rD > rλ.
(ii) Further, if we assume that λ2(r) = λ1(r) (Winslow’s method) and rλ is a

strict maximum point of λ1 (i.e., λ1
′′(rλ) < 0), then D′(rλ) > 0 or again rD > rλ.

Proof. (i) The result is an immediate consequence of (4.6) and the assumptions.
(ii) When λ2(r) = λ1(r), we have Λ(r) = λ1(r). Lemma 4.3, the fact that

λ1(rλ) = 0, and (4.6) imply that D′(rλ) > 0.
We note that a result can be obtained for the general choice of λ2 satisfying

λ2(r) = λ1(r) only at r = rλ. Moreover, numerical experiments (see below) show
that the mismatch between rD and rλ for the Winslow monitor function is relatively
small.

The situation with λ1(rλ) < λ2(rλ) is much more complex. Note that the last
term in (4.6) is now negative. In order to determine the relative positions of rD and rλ
it is necessary to compare all the terms on the right-hand side of (4.6). It is possible
for rD and rλ to coincide. However, numerical results (see section 4.1.4) also show
that for λ2 = λp1 with p > 1, rD can be located on either side of rλ.

It is emphasized that part (i) of both Theorems 4.1 and 4.2 requires no explicit
relationship between λ1 and λ2, although we typically apply them to the monitor
functions defined in (2.2).

4.1.1. The harmonic mapping case (p = −1). In this case, λ2 = 1/λ1.
Assuming that λ1(rλ) > 1, we have λ1(rλ) > λ2(rλ). Theorem 4.2 implies that
rD > rλ, or the location of maximum mesh density is to the right of the maximum
for λ1.

When a (local) higher mesh concentration at the origin is desired, Theorem 4.1
implies that if (a) λ1(0) > 1, the mesh at the origin is coarser than in the surrounding
area, whether λ1 has a maximum at r = 0 or not. This effect is clearly depicted in
Figure 3 (left column, second plot) where rD > rλ = 0 implies a failure to concentrate
the points at the origin. If instead (b) 0 < λ1(0) ≤ 1, then λ1(0) ≤ λ2(0) and the
mesh will be denser in the center than in the surrounding area.

We now consider conditions under which rλ > 0 and rD coincide. There is a tight
restriction on the choice of λ1 since D′ = 0 must hold where λ

′
1 = 0. Notice that we

have Λ = 1 for the current case. Equation (4.6) implies that this can be achieved if
and only if λ1(rλ) = 1. However, this cannot hold in general unless the high mesh
concentration is desired only at the global maximum point and λ1(rλ) = 1 can be
achieved by rescaling.
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Fig. 3. Normalized mesh densities obtained with the traditional functional for different monitor
functions defined in (2.2) and with λ1(r) = 1+exp(−(r−rλ)2/a)/a (a = 0.01) that has its maximum
located at rλ = 0 (left column) and rλ = 0.2 (right column). The top plot depicts λ1(r). For
guidance, we plot, along with the normalized densities (solid lines), the normalized curve for λ1(r)
(dashed lines).

From the above analysis we see that if λ1(rλ) > 1, rD will be located to the right
of rλ. This failure to place the higher concentration of points in the desired area is
depicted in Figure 3 (right column, second plot).

4.1.2. The arclength case (p = 0). For the arclength case λ2(r) = 1, a similar
analysis as the one for the harmonic mapping case can be carried out. We assume
λ1(rλ) > 1 since this is the one commonly used in the literature.

If rλ > 0, Theorem 4.2 and λ1(rλ) > 1 = λ2 imply that the maximum of the
mesh density occurs at a location to the right of that of the maximum of λ1. This
mismatch is illustrated in Figure 3 (right column, third plot).

The argument for rλ = 0 is similar, and there is again a mismatch (to the right)
between the locations of the maxima of the mesh density and λ1 (see Figure 3, left
column, third plot.

4.1.3. The Winslow case (p = 1). If a high mesh concentration is desired at
a strict maximum point rλ > 0 of λ1, Theorem 4.2 implies that rD will be located
to the right of rλ. Nevertheless, as Figure 3 (right column, fourth plot) shows, the
mismatch between the maxima for D and λ1 can be very small (compared with the
other cases).

On the other hand, Theorem 4.1 implies that the mesh has higher concentration
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Fig. 4. Normalized mesh densities obtained with the traditional functional for the strong con-
centration case (p = 2) with λ1(r) = 1 + A exp(−(r − rλ)2/a)/a (a = 0.02, rλ = 0.5) and (a)
A = 0.01 and (b) A = 10. The top plots show λ1(r). For guidance, in a2 and b2 we plot the
normalized curve for λ1(r) (dashed lines) along with the normalized densities (solid lines).

at r = 0 if either λ′1(0) < 0 or r = 0 is a local maximum point of λ1. Figure 3 (left
column, fourth plot) shows good agreement between the shape of λ1 and the mesh
density.

4.1.4. The strong concentration case (p = 2). Consider first the case where
a higher mesh concentration at the origin is desired. Theorem 4.1 implies that the
maximum for the mesh density is located at the origin if λ1(0) > 1 (see the last plot in
Figure 3, left column). However, the rate of change of the density may be a very large
negative value—proportional to limr→0 e2s/r3. This effect is observed in Figure 3
(last plot, left column) where the mesh density is very steep at the origin, giving
an overconcentration of points at r = 0. Incidentally, our use of the term “strong
concentration” for the p = 2 case reflects this behavior.

For rλ > 0, the current situation is more complex than the previous cases and
Theorem 4.2 does not apply if λ1(rλ) > 1. Figure 4 shows that rD can be located
to either side of rλ. Since in this case we have λ1(0) < λ2(0), Theorem 4.1 implies
that the mesh concentration has a maximum at the origin. Thus, it is possible for
the mesh concentration to have two (or more) maxima, one near the desired location
rλ and a spurious (and steep) maximum at r = 0 (see the last plot in Figure 3, right
column).

4.2. The new functional. The Euler–Lagrange equation (3.3) corresponding
to the new functional is too complex to carry out an analysis similar to the one for
the traditional functional, and we instead perform a numerical study of the relation
between the monitor function (λ1 and λ2) and the mesh density D(r). In particular,
we show that by appropriate control of the weighting γ between isotropy and equidis-
tribution it is possible to reduce the mismatch between the location of the maximum
for the monitor function and that of the maximum for D(r). As for the traditional
functional, we concentrate our attention on monitor functions of the type (2.1) and
use the same notation as in (2.2) to designate the most popular choices of p. Note
that for the harmonic mapping monitor function g = 1, and equidistribution reads as
J = constant, giving no mesh control in the new functional. As a result, it is expected
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Fig. 5. Normalized mesh densities (solid lines) obtained with the new functional for a monitor
function (dashed lines) such that λ1(r) = 1 + exp(−(r − rλ)2/a)/a (a = 0.01, rλ = 0) for different
choices of λ2 and γ (q = 2).

that the new functional combined with the harmonic mapping monitor function gives
no better results than those with the traditional functional, even for a small value
of γ.

4.2.1. Concentration at r = 0. For rλ = 0, Figure 5 shows the monitor
function and the mesh density for the various choices of monitor function (2.2) and
weighting between isotropy and equidistribution. For large γ (close to 1/2), the
new functional tends to emphasize isotropy, giving similar results to those for the
traditional functional. For γ = 0.1 (first column in Figure 5), the harmonic mapping
and the arclength monitor functions tend to misplace the position of the maximum for
the density as before. For the Winslow and strong concentration cases, D(r) achieves
its maximum at r = 0.

Decreasing γ puts more weight on equidistribution, allowing for a better distri-
bution of the mesh density. In fact, by decreasing γ (second and third columns in
Figure 5) the maximum for the mesh density is pulled towards the correct position
r = 0. As pointed out above, the harmonic mapping case fails to have its maximum
at r = 0 even for very small γ. For the other cases (p ≥ 0), as γ tends to zero, not
only the mesh density has its maximum placed correctly, but its shape tends to mimic
the shape of λ1. This suggests that for small γ it is possible to control the position of
the maximum mesh concentration as well as the shape of the mesh density from the
choice of monitor function. Interestingly, the Winslow case provides the best control
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Fig. 6. Normalized mesh densities (solid lines) obtained with the new functional for a monitor
function (dashed lines) such that λ1(r) = 1+exp(−(r−rλ)2/a)/a (a = 0.001, rλ = 0.2) for different
choices of λ2 and γ (q = 2).

on the mesh density, and for small γ (γ < 0.01) D(r) is almost indistinguishable from
λ1(r).

4.2.2. Concentration at r > 0. For rλ > 0 we obtain similar results to
those for the traditional functional when using a large value of γ (see left column
in Figure 6). In particular, the position of the mesh density maximum does not
coincide with rλ except in the Winslow case. As we decrease γ, the new functional
weights more towards equidistribution, and the location of the maximum for D(r)
tends to approach rλ, again reinforcing the observation that for small γ and p ≥ 0 it
is possible to have a good control on the mesh density (maximum and shape) from
the monitor function.

5. Numerical results. In this section we present some numerical results ob-
tained with the functionals (1.1) and (1.2). For simplicity, square physical and com-
putational domains and structured meshes are used in the computation. As a con-
sequence, axially symmetric meshes are not generated. Nevertheless, the numerical
results are sufficient to support the analysis of the previous sections and highlight the
level of control of mesh concentration through the monitor functions.

The (two-dimensional) Euler–Lagrange equations for functionals (1.1) and (1.2)
are discretized with central finite differences and solved using the moving mesh PDE
approach [5, 7]. With this approach, a derivative (∂x)/(∂t) (where x = (x, y)T ) with
respect to pseudotime t is added to the Euler–Lagrange equation, and the resulting
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parabolic system is integrated using a modified backward Euler scheme with which
the coefficients of terms (∂x)/(∂ξi) and (∂2x)/(∂ξi∂ξj) are calculated at the previous
time level. The linear algebraic system is solved using a preconditioned conjugate
gradient method. The converged mesh is obtained when the root-mean-square norm
of the residual is less than 10−4. All computations start with a uniform mesh of size
41×41 and use a uniform boundary correspondence between Ω and Ωc. We use q = 2
in all cases and, following the common practice, choose λ1 to be greater than 1.

Example 5.1. The first example is to generate adaptive meshes for the monitor
function (1.4) with

λ1 = 1 +
1

a
e−(r−0.2)2/a,(5.1)

where r =
√

x2 + y2 and a = 0.01. In the (x, y) coordinate system, G has the form

G =
λ1

x2 + y2

(
x2 xy
xy y2

)
+

λ2

x2 + y2

(
y2 −xy
−xy x2

)
.(5.2)

The goal is to generate meshes with higher point concentration around the circle
x2 + y2 = 0.22.

The meshes obtained are shown in Figures 7 and 8. The first row corresponds to
the traditional functional, while the second, third, and fourth rows are for the new
functional with γ = 0.5, 0.1 and 0.01, respectively. Each column is associated with a
given monitor function.

The left column of Figure 7 shows that the mesh concentration is badly mis-
placed for both the traditional and new functionals using the harmonic mapping
monitor function (p = −1). In this case the traditional functional gives exactly the
harmonic mapping method used by Dvinsky [4]. Note that the new functional does
not work well, as expected, since g = 1 and J = constant, giving no control of mesh
concentration.

For the arclength monitor function (p = 0, the right column of Figure 7), the
traditional functional still produces the mismatched concentration. However, since
g = λ and the equidistribution becomes J

√
λ = constant, the new functional bears

the feature of equidistribution and leads to the correct concentration when a small
value of γ is used.

Interestingly, with the Winslow-type monitor function, both the traditional and
new functionals generate correct mesh concentration—see the left column of Figure 8.
For the case of strong concentration with p = 2 (see the right column of Figure 8),
the new functional produces the correct results, whereas the traditional one seems to
overconcentrate mesh points inside the circle x2 + y2 = 0.22, although there is also
concentration around the circle.

From these two figures one can also see that the new functional with γ = 0.5 leads
to results similar to but slightly less adaptive than those obtained with the traditional
functional.

Example 5.2. The second example is to generate adaptive meshes for the monitor
function (1.4) with

λ1 = 1 +
1

a
e−r

2/a, a = 0.01.(5.3)

The goal is now to generate adaptive meshes with higher point concentration at the
origin.
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Fig. 7. Adaptive meshes are obtained for Example 5.1 with the harmonic mapping (p = −1)
and arclength (p = 0) monitor functions. Desirable mesh point concentration is around the circle
x2 + y2 = 0.22 (the bold solid circle).
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Fig. 8. Adaptive meshes are obtained for Example 5.1 with the Winslow-type (p = 1) and strong
concentration (p = 2) monitor functions. Desirable mesh point concentration is around the circle
x2 + y2 = 0.22 (the bold solid circle).
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The meshes obtained are shown in Figures 9 and 10. The results confirm the obser-
vations made in Example 5.1 and the analysis given in the preceding sections. That
is, the traditional functional misplaces meshes for the harmonic mapping and arc-
length monitor functions and correctly places them for the Winslow-type and strong
concentration monitor functions; the new functional with γ = 0.5 leads to meshes sim-
ilar to but slightly less adaptive than those obtained with the traditional functional;
and the new functional with a small value of γ leads to meshes with correct concen-
tration when the arclength, Winslow-type, or strong concentration monitor function
is used.

6. The traditional functional for spherically symmetric problems. A
similar analysis can be carried out for the traditional functional applied to spherically
symmetric problems in three dimensions. Consider

Itrad[ξ, η, ζ] =

∫
Ω

(∇ξTG−1∇ξ +∇ηTG−1∇η +∇ζTG−1∇ζ
)
dxdydz,(6.1)

where Ω = {(x, y, z) |x2 + y2 + z2 < 1}. Take Ωc = {(ξ, η, ζ) | ξ2 + η2 + ζ2 < 1}, and
let the spherical coordinates for Ω and Ωc bex = r sin(θ) cos(φ),

y = r sin(θ) sin(φ),
z = r cos(θ),

ξ = R sin(Θ) cos(Φ),
η = R sin(Θ) sin(Φ),
ζ = R cos(Θ).

Consider the case where the physical solution is spherically symmetric. Assume that
the corresponding mesh adaptation is also spherically symmetric, i.e.,

R = R(r), Θ = θ, Φ = φ.(6.2)

Then it is reasonable to use the monitor function in the form

G = λ1(r)ere
T
r + λ2(r)eθe

T
θ + λ3(r)eφe

T
φ ,(6.3)

where er, eθ, and eφ are the unit vectors in the radial, latitudinal, and longitudinal
axes. Under the symmetry assumption, (6.1) reduces to

Itrad[R] =

∫ 1

0

[
1

λ1

(
dR

dr

)2

+
2

λ23

(
R

r

)2
]
r2dr,

where λ23 is defined as

2

λ23
=

1

λ2
+

1

λ3
.

The corresponding boundary value problem is given by

− d

dr

(
r2

λ1

dR

dr

)
+

2

λ23
R = 0,

R(0) = 0, R(1) = 1.(6.4)

The transformation (4.1) can be used for analyzing (6.4). We obtain the equation
for v

v′ =
λ1

r

(
2

λ1λ23
− v

λ1
− v2

)
(6.5)
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Fig. 9. Adaptive meshes are obtained for Example 5.2 with the harmonic mapping (p = −1)
and arclength (p = 0) monitor functions. Desirable mesh point concentration is near the origin.
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Fig. 10. Adaptive meshes are obtained for Example 5.2 with the Winslow-type (p = 1) and
strong concentration (p = 2) monitor functions. Desirable mesh point concentration is near the
origin.
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which is subject to the initial condition

v(0) =
1

2

√
1

λ1(0)2
+

8

λ1(0)λ23(0)
− 1

2λ1(0)
.(6.6)

It is straightforward to show that the solution v of (6.5) has the properties stated in
Lemmas 4.1–4.3.

In the current situation, the mesh density has the form

D(r) =
R2

r2

dR

dr
.

Its rate of change reads as

D′(r) =
e3s

r3

[
(λ1v)

′ − 3(λ1v)

r
+

3(λ1v)
2

r

]
=

e3s

r3

[
λ

′
1v +

2λ2
1

r

((
v − 1

λ1

)2

+

(
1

λ1λ23
− 1

λ2
1

))]
.(6.7)

We have the following theorems which are basically identical to Theorems 4.1 and
4.2. One may notice that in this three-dimensional case, the relation between λ1 and
λ23, rather than those between λ1 and each of λ2 and λ3, plays a role in affecting the
corresponding mesh adaptation.

Theorem 6.1. (i) If λ1(0)−λ23(0) �= 0, then D′(0) has the same sign as λ1(0)−
λ23(0), whether r = 0 is a maximum point of λ1 or not.

(ii) Let λ23(r) = λ1(r). If λ
′
1(0) �= 0, then D′(0)λ

′
1(0) > 0. If λ

′
1(0) = 0 but

λ
′′
1 (0) �= 0, then D′(0)λ

′′
1 (0) > 0.

Theorem 6.2. Let rλ > 0.
(i) If λ1(rλ) > λ2(rλ), then D′(rλ) > 0 and thus rD > rλ.
(ii) Further, if we assume that λ23(r) = λ1(r) and rλ is a strict maximum point

of λ1 (i.e., λ1
′′(rλ) < 0), then D′(rλ) > 0 or rD > rλ.

7. Conclusions and comments. The question of how variational grid genera-
tors behave when solving problems with axisymmetric solutions has been investigated.
Specifically, two functionals have been analyzed in the previous sections for their abil-
ities to precisely control the mesh concentration via monitor functions. One is the
traditional functional (1.1) which includes Winslow’s method and Dvinsky’s method
of harmonic mappings as special cases. The other is the new functional (1.2) proposed
by Huang in [6] which explicitly includes the isotropy (or regularity) and equidistri-
bution features. The analysis is primarily done for axisymmetrical problems in two
dimensions. For axially symmetric mesh adaptation, it is reasonable to use a monitor
function of the form in (1.4).

Theoretical results for the traditional functional are given in Theorems 4.1 and
4.2. Specifically, when higher mesh concentration at the origin is desired, a choice
of the radial and angular components λ1 and λ2 of the monitor function satisfying
λ1(0) < λ2(0) will make the mesh denser at r = 0 than in the surrounding area
whether or not λ1 has a maximum value at r = 0. The purpose can also be served by
choosing λ1 to have a local maximum at r = 0 when a Winslow-type monitor function
with λ1(r) = λ2(r) is employed. Unfortunately, the choice λ2(r) = λ1(r)

p with p < 0,
which includes Dvinsky’s method of harmonic mappings and the arclength monitor
function as special cases, will not satisfy the condition λ1(0) < λ2(0) if λ1(0) > 1 (as
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commonly taken in the literature) and leads to a mesh with coarser concentration of
points in the center than in the surrounding area.

On the other hand, when higher mesh concentration around a ring r = rλ > 0
is desired, the traditional functional provides far less control by choosing λ1 and λ2.
Indeed, Theorem 4.2 shows that there surely is a mismatch between the position rλ of
the maximum of λ1 and the location rD of the maximum of the mesh density if either
(a) λ1(rλ) > λ2(rλ) (which is the case for the harmonic mapping or the arclength
monitor function with λ1(rλ) > 1) or (b) a Winslow-type monitor function is used
and rλ is a strict maximum point of λ1. Moreover, a mismatch between rD and rλ
is also possible for the case λ1(rλ) < λ2(rλ). Indeed, the numerical results show that
rD can be located to either side of rλ when λ1(rλ) > 1 and λ2 is taken as λ2 = λp1 for
p > 1. Nevertheless, the numerical results suggest that |rD−rλ| is relatively small for
the Winslow case λ2 = λ1. The analysis also shows that for the harmonic mapping
case λ2 = 1/λ1, rD can be made to agree with rλ by rescaling λ1 such that λ1(rλ) = 1.
However, this can be done if the mesh concentration is needed only at the location of
the (global) maximum of λ1.

For axially symmetric problems, the new functional leads to a nonlinear mesh
equation too complex to permit an analysis like that for the traditional functional.
Nevertheless, numerical results presented in sections 4 and 5 show that the new func-
tional offers explicit control for mesh concentration by adjusting the value of γ that
weights the isotropy and equidistribution. Specifically, when using a large value of γ
(close to 1/2) we obtain similar results to those for the traditional functional cases.
However, as we decrease γ, the new functional weights more towards equidistribution,
and both the location of the maximum and the profile of the mesh density tend to
coincide with those of λ1 for a monitor function with a nonconstant determinant. For
the case of the harmonic mapping monitor function, the determinant is g = 1 and
equidistribution becomes J = constant so no control of mesh concentration is possible
by choosing λ1. Thus, as expected, the new functional does not work in this case even
when a small value of γ is used.

Analysis has also been carried out for the traditional functional applied to spher-
ically symmetric problems in three dimensions. The results are stated in Theorems
6.1 and 6.2.

In the future we intend to investigate a number of higher-dimensional axisym-
metrical problems arising in physical applications and show the practicability of the
methods which have performed well here.

Acknowledgment. The authors are grateful to the referees for their valuable
comments.
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Abstract. The generalized Davidson (GD) method can be viewed as a generalization of the
preconditioned steepest descent (PSD) method for solving symmetric eigenvalue problems. There
are two aspects of this generalization. The most obvious one is that in the GD method the new
approximation is sought in a larger subspace, namely the one that spans all the previous approximate
eigenvectors, in addition to the current one and the preconditioned residual thereof. Another aspect
relates to the preconditioning. Most of the available results for the PSD method are associated with
the same view on preconditioning as in the case of linear systems. Consequently, they fail to detect
the superlinear convergence for certain “ideal” preconditioners, such as the one corresponding to
the “exact” version of the Jacobi–Davidson method—one of the most familiar instances of the GD
method. Focusing on the preconditioning aspect, this paper advocates an alternative approach to
measuring the quality of preconditioning for eigenvalue problems and presents corresponding non-
asymptotic convergence estimates for the GD method in general and Jacobi–Davidson method in
particular that correctly detect known cases of the superlinear convergence.

Key words. iterative methods for eigenvalue problems, preconditioning, generalized Davidson
method, convergence estimates, superlinear convergence
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1. Introduction. This paper presents convergence estimates for a class of itera-
tive methods for finding the smallest eigenvalue of the generalized eigenvalue problem

Lu = λMu(1)

or, equivalently, finding the global minimum of the Rayleigh quotient functional

λ(u) ≡ (Lu, u)

(Mu, u)
,(2)

where L and M are, respectively, a symmetric and a symmetric positive definite linear
operator in a Euclidean space E , and (·, ·) is the scalar product in E . The class of
methods in question embraces methods based on the following iterative scheme for
calculating λ0 numerically: given an arbitrary nontrivial vector u0 calculate a sequence
λn of approximations to λ0 using the following recurrent formula:

un = arg min
u∈Dn,(Mu,u)=1

λ(u), λn = λ(un),

Dn+1 = span{u0, . . . , un,Kn(L− λnM)un},(3)

where Kn are some linear operators in E .
Two familiar methods based on the iterative scheme (3) are the Davidson method

(see, e.g., [4, 3]) and the Jacobi–Davidson method (see, e.g., [29, 27, 9, 28] and the
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relevant chapters in [1]). In the former, L is a matrix, M = I (the unit matrix),
and Kn = (DL − λnI)−1, where DL is the diagonal of L (i.e., a diagonal matrix of
the same size and with the same diagonal entries as in L). In the Jacobi–Davidson
method v = Knr is calculated by approximately solving the linear system

(1− πn)
T (L− λnM)(1− πn)v = (1− πn)

T r, πnv = 0,(4)

where πnw = (Mw,un)un (this approach is apparently closely related to the so-called
shift-and-invert technique—see, e.g., [1, 24]). The general case is sometimes referred
to as the generalized Davidson (GD) method [1, 25, 22], which is the term adopted
in the present paper.

Nowadays, extensive numerical evidence of the efficiency of the GD method, es-
pecially in the Jacobi–Davidson case, is available in the literature (see, e.g., the above
references). The present paper is one of a few that focus on theoretical convergence
results for the GD method. Accordingly, the GD method is presented here in an
abstract mathematical form (3), which is convenient for the convergence analysis, but
not for its practical implementation, which should follow, e.g., the guidelines in [1].

The GD method can be viewed as a generalization of the preconditioned steepest
descent (PSD) iterations

un+1 = un − τng
n, gn = Kn(L− λ(un)M)un,(5)

where τn are suitably chosen parameters, e.g.,

τn = argmin
τ

λ(un − τgn),(6)

and Kn is a symmetric positive definite operator usually referred to as preconditioner.
Preconditioned eigensolvers based on (5) are among the oldest and best-studied to
date (see, e.g., [26, 7, 5, 6, 11, 12, 17, 18, 19]; for the related historical overview, see
[2, 13]). An obvious aspect of the generalization of (5)–(6) into the GD method is the
minimization of λ(u) over a larger subspace, and this aspect is addressed by Part II
of this paper [23], whereas here we address a less obvious, yet important aspect of the
preconditioning.

Formally speaking, both (3) and (5) can be used with the same preconditioners1

Kn. However, the convergence results available to date for (5) (see, e.g., the references
of the previous paragraph; cf. also section 3 below) are associated with essentially the
same view on preconditioning as that for linear systems, which is certainly not the
case with Davidson and Jacobi–Davidson methods. The “ideal” preconditioner for
the (nondegenerate) linear system Lu = f is obviously K = L−1—indeed, with this
preconditioner the convergence can be achieved in just one iteration. Accordingly,
in the general case the quality of a preconditioner K is measured by its closeness to
L−1, which can be expressed quantitatively via the spectral condition number (the
ratio of the largest and the smallest eigenvalue) of KL, the smaller the better. The
convergence results for (5) mentioned above are formulated in terms of the same ratio
(or related quantities) and thereby suggest the same “ideal” preconditioner. However,
for eigenvalue problems K = L−1 is obviously not the best choice, since it fails to
deliver a superlinear convergence achievable with some other preconditioners.

It is argued in [13] (cf. also [29]) that an “ideal” preconditioner for (5) would be
the pseudoinverse of L0 ≡ L−λ0M . Indeed, with this preconditioner the convergence

1In the PSD method, Kn usually does not depend on n, but this fact is of little importance for
the convergence analysis of this method.
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of (5), and hence (3), is superlinear (in fact, it is cubic—cf. section 5). Accordingly,
the natural measure of the quality of preconditioning for eigenvalue problems should
be based rather on how far the preconditioner Kn is from the pseudoinverse of L0. An
example of a convergence estimate for (5) in such terms is an asymptotic estimate in
[26], which was later reproduced for the GD method in [22]. The major disadvantage
of both is that they are asymptotic, i.e., contain unknown “small enough” quantities.
In the important case of a parameter-dependent problem (e.g., a discretized differen-
tial one, which involves discretization parameters), such estimates are insufficient for
comprehensive analysis of the convergence of iterative methods and its dependence
on the parameters of the problem. In the present paper a similar but nonasymptotic
estimate is derived (Theorem 5.2), alongside an analogous estimate related to the
Jacobi–Davidson-type preconditioning (Theorem 4.2).

The outline of the paper is as follows. After introducing the notation in section 2,
we discuss in section 3 the available convergence estimates for the iterations (5) that
are applicable to the GD method. It should be noted that the discussion is restricted
to the most advanced results, leaving out quite a few historically important ones
(cf. [2, 13, 16] for a more detailed review). In section 4 we study the convergence
of the Jacobi–Davidson method. We show that the approximate solution of (4) is
equivalent to the use of preconditioners Kn (in the GD method) that satisfy the
assumption (22), which measures the quality of preconditioning against the “ideal”
case of solving (4) exactly. Based on this assumption, we present a new convergence
estimate that correctly predicts the cubic convergence in this “ideal” case. In section 5
we discuss the relation between the two “ideal” cases mentioned above and present a
new nonasymptotic convergence estimate for the GD method that detects the cubic
convergence in the case when Kn is the pseudoinverse of L0.

2. Notation. In this paper we use the standard notation A > 0 (A ≥ 0) to
declare that a symmetric linear operator A is positive definite (resp., semidefinite).
Accordingly, A ≥ B stands for A − B ≥ 0, etc. For A ≥ 0 we denote (Au, v) by
(u, v)A, and ‖u‖A stands for

√
(u, u)A.

The minimal eigenvalue of (1) is denoted λ0, and λ1 denotes the second smallest
distinct eigenvalue. The invariant subspace of M−1L corresponding to λ0 is denoted
by I0, and π denotes the (·, ·)M -orthogonal projection onto I0. The orthogonal com-
plement to I0 in E is denoted by Ī0. For any projection π′ we denote π̄′ ≡ 1− π′.

The projection π has the following simple properties:

Lπ = πTL = λ0Mπ, Mπ = πTM, L0 ≡ L− λ0M = L0π̄ = π̄TL0,

the last one implying that

‖π̄u‖2
L0

= ‖u‖2
L0

= ‖u‖2
L
− λ0‖u‖2M = (λ(u)− λ0)‖u‖2M .

Further,

λ(u)‖u‖2
M

= ‖u‖2
L
= ‖πu‖2

L
+ ‖π̄u‖2

L
= λ0‖πu‖2M + λ(π̄u)‖π̄u‖2

M

≥ λ0‖πu‖2M + λ1‖π̄u‖2M = λ0‖u‖2M + (λ1 − λ0)‖π̄u‖2M .

Thus, for any vector u

‖π̄u‖2
M
≤ δ(λ(u))‖u‖2

M
, ‖π̄u‖2

L0
= (λ(u)− λ0)‖u‖2M ,(7)

where

δ(λ) =
λ− λ0

λ1 − λ0
.
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3. Available convergence estimates. From the minimax principle for eigen-
values it follows that λ(u0(Dn+1)) ≤ λ(un − τgn) for any τ . Hence, convergence
results for any method based on (5) in terms of eigenvalues2 apply to (3) with the
same preconditioners Kn. In view of this, let us start with a brief account of (the
most advanced) available convergence results for the PSD method (5), paying special
attention to the assumptions on Kn.

As mentioned in the introduction, in the convergence analysis for methods based
on (5) the following assumption on Kn is standard:

aK−1
n ≤ L ≤ bK−1

n ,(8)

where a and b are some positive constants, or, equivalently,

aL−1 ≤ Kn ≤ bL−1(9)

or else

(1− γ)L ≤ τnLKnL ≤ (1 + γ)L,(10)

where 0 ≤ γ < 1 and τn > 0. The equivalence between (8) and (10) is established by
the following relationships:

τn =
2

a+ b
, γ =

b− a

b+ a
.(11)

One of the best available convergence results for the preconditioned iterations (5)
under the assumption (10) is given in [19] (see also [14, 15, 16] and the related results
in [17, 18]):

∆(λn+1) ≤ q(γ)2∆(λn), ∆(µ) =
µ− λ0

λ1 − µ
, q(γ) = γ + (1− γ)

λ0

λ1
,(12)

where λn ≡ λ(un). The above estimate is sharp for iterations (5) with fixed τn = τ .
For variable τn one can find in [12] an asymptotically better estimate: assuming (8)
one has

λn+1 − λ0 ≤ (γ̃ + ε(λn − λ0))
2(λn − λ0),(13)

where ε(t) = O(√t) and

γ̃ =
1− ξ

1 + ξ
, ξ =

a

b

(
1− λ0

λ1

)
.

The same result for the corresponding variant of the GD method was obtained inde-
pendently in [22].

The main disadvantage of the above results is their failure to detect cubic con-
vergence of (5) achievable with, e.g., K = L−1

0 π̄T (here and below L−1
0 is the inverse

of the restriction of L0 = L − λ0M onto Ī0). To overcome this limitation, which is
apparently closely related to the form of the assumptions (8) and (10), [22] considers
the assumption

(1− γ)L0 ≤ τnL0KnL0 ≤ (1 + γ)L0,(14)

2It is important to emphasize that the convergence results for (5) in other terms (e.g., those in
[8, 20, 30]) may not be straightforwardly applicable to (3).
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leading to the following asymptotic estimate:

λn+1 − λ0 ≤ (γ + εn)
2(λn − λ0),(15)

where εn = O(√λn − λ0). It should be noted that [22] addresses the GD method.
As far as the PSD method is concerned, the above estimate was actually available
as early as in 1958 [26] and represents the first convergence result for preconditioned
eigensolvers. We observe that in the “ideal” case γ = 0 the estimate (15) predicts
quadratic convergence for (5) (in reality, it is cubic—cf. section 5).

As mentioned in the introduction, the main drawback of the estimate (15) is the
presence of an unknown (albeit asymptotically insignificant) term εn. Furthermore, it
is not clear how to apply this estimate to some practical implementations of the GD
method, such as the Jacobi–Davidson method. In section 4 below we show that the
approximate solution of (4) in the Jacobi–Davidson method is equivalent to using the
GD method with preconditioners Kn satisfying the assumption (22). In subsequent
section 5 we show how this new assumption is related to (a generalization of) (14),
thereby illuminating the relevance of the latter to the Jacobi–Davidson method and,
furthermore, present a nonasymptotic analogue of (15).

4. A new convergence estimate for the Jacobi–Davidson method. Let
us rewrite (4) in the following equivalent form:

L̃nv = π̄Tn r,(16)

where

L̃n = ωπTnMπn + π̄Tn (L− λ(un)M)π̄n(17)

and ω is a positive constant. The auxiliary result below shows that (16) is correctly
posed provided that λ0 is simple and λ(un) is “close enough” to λ0.

Lemma 4.1. If λ0 is a simple eigenvalue and λn ≡ λ(un) < (λ0 + λ1)/2, then

L̃n ≥ cnM, cn = min {λ0 + λ1 − 2λn, ω} .

Proof. See Appendix A.2 (cf. also [20]).
If (16) is solved exactly, then the Jacobi–Davidson method is known to have

cubic convergence [24, 29]. If the size of the problem makes the exact solution im-
practical, then one has to resort to solving (16) iteratively (cf. inexact shift-and-invert
iterations—see, e.g., [30]). We note that the iterative solution of (4) by the precon-
ditioned conjugate gradient method was studied in [20]. Just like this paper, [20]
focuses on the preconditioning aspect and thereby considers actually the iterations
(5) (referred to as “simplified GD method” there) rather than (3). However, the con-
vergence results in [20], unlike those below, are given in terms of residuals, and hence
they do not directly apply to the GD method.3

Below we assume that (16) is solved by some iterative method with the error
propagation operators Ti (e.g., Chebyshev semi-iterative method [10]), i.e.,

vi − v = Ti(v
0 − v).(18)

3A recent report [21], which was not available to the author at the time of submission, has
removed this limitation.
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We assume that L̃nTi are symmetric and that we stop (18) after k iterations, where
k is such that

−δkL̃n ≤ L̃nTk ≤ δkL̃n, δk < 1,(19)

which implies the reduction of the L̃n-norm of the error by a factor of δk. If we start
with the zero initial guess v0, then

vk = (1− Tk)v = (1− Tk)L̃
−1
n π̄Tn r ≡ Knπ̄

T
n r = Knr(20)

and from (19) we have

(1− δk)L̃n ≤ L̃nKnL̃n ≤ (1 + δk)L̃n,(21)

which shows that in this Jacobi–Davidson implementation of the GD method Kn can
be viewed as a preconditioner for L̃n. Accordingly, Theorem 4.2 below presents a
convergence estimate for (5) with the following assumption on Kn that generalizes
(21) (cf. (9) and (10)):

a0L̃−1
n ≤ Kn ≤ b0L̃−1

n .(22)

Theorem 4.2. Assume that λ0 is a simple eigenvalue of (1). If λn0 < λ0+λ1

2 for
some n0 and the preconditioner Kn satisfies (22) for n ≥ n0, then the convergence of
the iterations (5) for n ≥ n0 is described by the following estimate:

0 ≤ λn+1 − λ0 ≤ q̃(κ0, ν, δ(λn))2(λn − λ0),(23)

where

κ0 =
b0

a0
, ν =

ω

λ1 − λ0
,

q̃(u, v, w) =
uρ̃(v, w)− 1

uρ̃(v, w) + 1
, ρ̃(v, w) =

1

1− 2w

(1 + w)2 + vw

(1− w)2
.

Proof. See Appendix A.3.
Corollary 4.3. The convergence estimate of Theorem 4.2 applies to the itera-

tions (3).
We observe that in the above Jacobi–Davidson implementation of the GD method

a0 = 1 − δk and b0 = 1 + δk (cf. (21)), and hence q̃(κ0, ν, δ(λn)) = δk + O(δ(λn)).
Thus, in the “ideal” case δk = 0 (i.e., the system (4) solved exactly) the convergence
is indeed cubic.

Finally, we note that Theorem 4.2 remains valid for ω = 0, provided that L̃−1
n

in (22) is the pseudoinverse of L̃n: this case obviously corresponds to solving (4) by
an iterative method in the subspace of vectors orthogonal to un in the scalar product
(·, ·)M .

5. A new convergence estimate for the GD method. The aim of this
section is to present a nonasymptotic convergence estimate for the GD method that
would detect cubic convergence in another “ideal” case mentioned above, namely the
case when Kn is the pseudoinverse of L0. The form of the operator in the left-hand
side of (4) suggests that this case is closely related to the case of solving (4) (or,
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equivalently, (16)) exactly. Below we express this relationship quantitatively based
on the following lemma.

Lemma 5.1. Let P be the (·, ·)M -orthogonal projection onto a subspace of E of
the same dimension as I0, and denote

Lα,P = αPTMP + P̄T (L− λPM)P̄ ,(24)

where λP = maxu λ(Pu) and P̄ = 1− P . If δP ≡ δ(λP ) < δ0, where

δ0 =
min{α, λ1 − λ0}

α+ λ1 − λ0
,

then (
1− 2

√
δP
δ0
− δP

δ1

)
Lα,π ≤ Lα,P ≤

(
1 +

√
δP
δ0

)2

Lα,π,(25)

where

δ1 = min

{
1,

α

λ1 − λ0

}
.

Proof. See Appendix A.1.
From Lemma 5.1 it follows that if λ0 is simple, then

ãnL̃ ≤ L̃n ≤ b̃nL̃,

where ãn = 1 − O(√δ(λn)), b̃n = 1 + O(√δ(λn)), and λn = λ(un). Therefore, the

operators L̃n defined by (17) converge to the operator

L̃ = ω πTMπ + π̄TL0π̄,(26)

and the assumption (22) is asymptotically equivalent to

a0L̃−1 ≤ Kn ≤ b0L̃−1.(27)

In the convergence result below the above assumption is slightly weakened, for the
sake of generality (and in order to cover the case when K is the pseudoinverse of L0),
to become

a0π̄L
−1
0 π̄T ≤ Kn ≤ b0

(
απMπT + π̄L0π̄

T
)−1

,(28)

where a0, b0, and α are positive constants.4 Apart from its relation to (22), the
assumption (28) can also be viewed as a generalization of (8) in the following sense:
if Kn satisfies (8), then it also satisfies (28) with

a0 = a
λ1 − λ0

λ1
, b0 = b, α = λ0.(29)

It is also easy to see that (28) implies (14) with

τn =
2

a0 + b0
, γ =

b0 − a0

b0 + a0
.(30)

4The use of different letters indicates that (28) does not need the same constants as (22).
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The main convergence result of this section combines the advantages of the results dis-
cussed in section 3 and is free from their limitations: it is nonasymptotic, it produces
the same asymptotic convergence factor as in (15) (the smallest one for (5) available
to date), and it adequately predicts the cubic convergence in the “ideal” case a0 = b0.

Theorem 5.2. Assuming that λn0 < λ1 for some n0 and that the condition (28)
is satisfied for n ≥ n0, the convergence of the iterations (5) for n ≥ n0 is described by
the following estimate:

0 ≤ λn+1 − λ0 ≤ q(κ0, σ, δ(λ
n))2(λn − λ0),(31)

where

κ0 =
b0
a0

, σ =
λ1 − λ0

α
,

q(u, v, w) =
uρ(v, w)− 1

uρ(v, w) + 1
, ρ(v, w) =

(1 + w)2 + vw

(1− w)2
.

Proof. See Appendix A.4.
Corollary 5.3. If Kn satisfies (8), then (13) is valid with ε(t) = O(t).
Corollary 5.4. If Kn satisfies (28), then (15) is valid with εn = O(λn − λ0).
Corollary 5.5. The convergence estimate of Theorem 5.2 applies to the GD

method.
We observe that q(κ0, σ, δ(λ

n)) < 1 for λn < λ1, and, by Corollary 5.4, the
asymptotically insignificant term in (31) is smaller than that in (15). Furthermore,
in the “ideal” case κ0 = 1 one has q(κ0, σ, δ(λ

n)) = O(δ(λn)) and, thus, δ(λn+1) =
O(δ(λn)3) (cubic convergence). The last relationship, together with the discussion
at the beginning of this section, advocates the use of the assumption (28) for mea-
suring the quality of preconditioning for eigenvalue problems, instead of the standard
assumptions (8) or (10), which are certainly more simple but do not guarantee the
cubic convergence for any values of a, b, and γ.

Appendix A. Proofs and auxiliary results.
Lemma A.1. Assuming that

auL0 ≤ L0π̄uKπ̄TuL0 ≤ buL0,(32)

where K = KT ,

πuv =
(Mv, u)

(Mu, u)
u,

and 0 �= u ∈ E, the following inequalities are valid:

0 ≤ min
τ

λ(u− τKr(u))− λ0 ≤
(
bu − au
bu + au

)2

(λ(u)− λ0).(33)

Proof. We have

span{u,Kr(u)} = span{u, π̄uKr(u)},
and hence

min
τ

λ(u− τKr(u)) = min
τ

λ(u− π̄uτKr(u)).
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It is easy to verify that

πTuM = Mπu = πTuMπu

and

πTu r(u) = 0, r(u) = π̄Tu r(u) = π̄TuL0u.

Therefore,

u(τ) ≡ u− τ π̄uKr(u) = u− τ π̄uKπ̄Tu r(u) = (1− τKuL0)u,

where Ku ≡ π̄uKπ̄Tu . Since L0 = π̄TL0π̄ we have

π̄u(τ) = (1− τ π̄Kuπ̄
TL0)π̄u ≡ Tτ π̄u.

The operator Tτ : Ī0 → Ī0 is symmetric in the scalar product (·, ·)L0
. Furthermore,

from (32) it follows that for

τ = τopt ≡ 2

au + bu

its spectral radius ρ(Tτ ) is

ρ(Tτopt) = ρopt ≡ bu − au
bu + au

.

Hence,

‖u(τopt)‖L0
≤ ρopt‖u‖L0

.

Since ‖u‖2
L0

= (λ(u) − λ0)‖u‖2M , ‖u(τopt)‖2L0
= (λ(u(τopt)) − λ0)‖u(τopt)‖2M , and

‖u(τopt)‖2M ≥ ‖u‖2M we finally obtain

min
τ

λ(u− τKr(u))− λ0 = min
τ

(λ(u(τ))− λ0) ≤ ρ2
opt(λ(u)− λ0).

The right-hand side inequality in (33) follows from the minimax principle.

A.1. Proof of Lemma 5.1. From (7) it follows that if π̃ is a projection in the
scalar product (·, ·)M onto a subspace Ĩ0 of the same dimension as I0, then

‖(π − π̃)u‖2
M
≤ δ(λ0)‖u‖2

M
, λ0 = max

v∈Ĩ0
λ(v).(34)

Since Lα,π ≥ α0M , where α0 = min{α, λ1 − λ0}, using (34) we obtain

‖(P − π)u‖2
M
≤ δP ‖u‖2M ≤

δP
α0
‖u‖2

Lα,π
.

Further,

‖(P − π)u‖2
L0

= ‖π̄Pu‖2
L0
≤ (λP − λ0)‖u‖2M ≤

λP − λ0

α0
‖u‖2

Lα,π
.

Thus, in the norm [·] given by [u]2 = α‖u‖2
M

+ ‖u‖2
L0

we have

[(P − π)u]2 ≤ αδP + λP − λ0

α0
‖u‖2

Lα,π
=

δP
δ0
‖u‖2

Lα,π
.(35)
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Since δ0 ≤ 1
2 , the same calculations as in the proof of Lemma 4.1 show that Lα,P > 0.

Further,

‖u‖2
Lα,P

= α‖Pu‖2
M

+ ‖P̄ u‖2
L0
− (λP − λ0)‖P̄ u‖2

M
.

Using the relationships Pu = πu+ (P − π)u and P̄ u = π̄u− (P − π)u we obtain

α‖Pu‖2
M

+ ‖P̄ u‖2
L0

= α(‖πu‖2
M

+ 2(πu, (P − π)u)M + ‖(P − π)u‖2
M
)

+ ‖π̄u‖2
L0
− 2(π̄u, (P − π)u)L0 + ‖(P − π)u‖2

L0

= ‖u‖2
Lα,π

+ [(P − π)u]2 + 2(α(πu, (P − π)u)M − (π̄u, (P − π)u)L0).

We have

|α(πu, (P − π)u)M − (π̄u, (P − π)u)L0 |
≤ α‖πu‖

M
‖(P − π)u‖

M
+ ‖π̄u‖

L0
‖(P − π)u‖

L0

≤ ‖u‖
Lα,π

[(P − π)u] ≤
√

δP
δ0
‖u‖2

Lα,π

and

(λP − λ0)‖P̄ u‖2
M
≤ (λP − λ0)‖u‖2M ≤

λP − λ0

α0
‖u‖2

Lα,π
=

δP
δ1
‖u‖2

Lα,π
.

Thus,

‖u‖2
Lα,P

≤
(
1 +

√
δP
δ0

)2

‖u‖2
Lα,π

and

‖u‖2
Lα,P

≥
(
1− 2

√
δP
δ0
− δP

δ1

)
‖u‖2

Lα,π
.

In what follows we assume that ‖un‖
M

= 1, and we denote πnv ≡ πun and

K̃n ≡ π̄nKnπ̄
T
n .

A.2. Proof of Lemma 4.1. We have

(L̃nv, v) = ((L− λnM)π̄nv, π̄nv) + ω‖πnv‖2M ,

((L− λnM)π̄nv, π̄nv) = ‖π̄π̄nv‖2L−λnM
− (λn − λ0)‖ππ̄nv‖2M

≥ (λ1 − λn)‖π̄π̄nv‖2M − (λn − λ0)‖ππ̄nv‖2M
= (λ1 − λn)(‖π̄π̄nv‖2M − δ̃(λn)‖ππ̄nv‖2M ),

where

δ̃(µ) =
µ− λ0

λ1 − µ
=

1

1− δ(µ)
− 1, λ0 ≤ µ < λ1.

From (7) it follows that

‖ππ̄nv‖2M = ‖(π − πn)π̄nv‖2M ≤ δ(λn)‖π̄nv‖2M
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and, thus,

‖π̄π̄nv‖2M = ‖π̄nv‖2M − ‖ππ̄nv‖2M ≥ (1− δ(λn))‖π̄nv‖2M .

Therefore,

(L̃nv, v) ≥ (λ1 − λn)(1− δ(λn)− δ(λn)δ̃(λn))‖π̄nv‖2M + ω‖πnv‖2M
= (λ1 − λn)(1− δ̃(λn))‖π̄nv‖2M + ω‖πnv‖2M

= (λ0 + λ1 − 2λn)‖π̄nv‖2M + ω‖πnv‖2M
≥ min {λ0 + λ1 − 2λn, ω} ‖v‖2

M
.

A.3. Proof of Theorem 4.2. Denote Bn = K−1
n and consider an auxiliary

linear system

Bnv = π̄TnL0u.(36)

We have

π̄TnL0u = L0u− (L0u, u
n)Mun.

Hence, multiplying (36) by π̄u (in the scalar product in E) we obtain

‖u‖2
L0

= (Mun, π̄u)(L0u, u
n) + (Bnv, π̄u).

The first term in the right-hand side can be estimated as follows:

|(Mun, π̄u)(L0u, u
n)| ≤ ‖π̄un‖

M
‖π̄u‖

M
‖un‖

L0
‖u‖

L0
,

‖π̄un‖2
M
≤ λn − λ0

λ1 − λ0
, ‖un‖2

L0
= λn − λ0, ‖π̄u‖2

M
≤ 1

λ1 − λ0
‖u‖2

L0
,

|(Mun, π̄u)(L0u, u
n)| ≤ δ(λn)‖u‖2

L0
.

For the second term we have

|(Bnv, π̄u)| ≤ ‖v‖Bn
‖π̄u‖

Bn

and, thus,

(1− δ(λn))‖u‖2
L0
≤ ‖v‖

Bn
‖π̄u‖

Bn
.

The second factor in the right-hand side can be estimated as follows:

‖π̄u‖2
Bn
≤ 1

a0
‖π̄u‖2

L̃n
=

1

a0

(
ν(λ1 − λ0)‖πnπ̄u‖2M + ((L− λnM)π̄nπ̄u, π̄nπ̄u)

)
,

‖πnπ̄u‖2M = (Mπ̄u, un)2 ≤ δ(λn)

λ1 − λ0
‖u‖2

L0
,

((L− λnM)π̄nπ̄u, π̄nπ̄u) ≤ ‖π̄nπ̄u‖2L0
,

‖π̄nπ̄u‖L0
= ‖π̄u− (Mπ̄u, un)un‖

L0
≤ ‖u‖

L0
+ |(Mπ̄u, un)|‖un‖

L0

≤ (1 + δ(λn))‖u‖
L0

,

‖π̄u‖2
Bn
≤ 1

a0

(
νδ(λn) + (1 + δ(λn))2

) ‖u‖2
L0

,
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which leads to the following estimate:

‖u‖2
L0
≤ 1

a0

νδ(λn) + (1 + δ(λn))2

(1− δ(λn))2
‖v‖2

Bn
=

1

a0
n

‖v‖2
Bn

,(37)

where

a0
n = a0 (1− δ(λn))2

(1 + δ(λn))2 + νδ(λn)
.

Now, multiplying (36) by v we have

(Bnv, v) = (L0u, π̄nv) ≤ ‖u‖L0
‖π̄nv‖L0

≤ λ1 − λ0

λ1 − λn
‖u‖

L0
‖π̄π̄nv‖L−λnM

= (1 + δ̃(λn))‖u‖
L0
‖π̄π̄nv‖L−λnM

.(38)

Further,

(L̃nv, v) ≥ ((L− λnM)π̄nv, π̄nv) ≥ ‖π̄π̄nv‖2L−λnM
− (λn − λ0)‖ππ̄nv‖2M

and (cf. the proof of Lemma 4.1)

‖ππ̄nv‖2M ≤
δ(λn)

1− δ(λn)
‖π̄π̄nv‖2M = δ̃(λn)‖π̄π̄nv‖2M ≤

δ̃(λn)

λ1 − λn
‖π̄π̄nv‖2L−λnM

.

Therefore,

(L̃nv, v) ≥ (1− δ̃(λn)2)‖π̄π̄nv‖2L−λnM

and we obtain from (38) the estimate

(Bnv, v) ≤ 1 + δ̃(λn)√
1− δ̃(λn)2

‖u‖
L0
‖v‖

L̃n
≤ 1 + δ̃(λn)√

1− δ̃(λn)2

√
b0‖u‖

L0
‖v‖

Bn
,

which leads to the estimate

‖u‖2
L0
≥ 1

b0
1− δ̃(λn)2

(1 + δ̃(λn))2
‖v‖2

Bn
=

1

b0
1− δ̃(λn)

1 + δ̃(λn)
‖v‖2

Bn
=

1

b0n
‖v‖2

Bn
,(39)

where

b0n = b0
1 + δ̃(λn)

1− δ̃(λn)
=

b0

1− 2δ(λn)
.

Thus,

a0
n‖u‖2L0

≤ ‖v‖2
Bn
≤ b0n‖u‖2L0

.

Recalling that v = B−1
n π̄TnL0u = Knπ̄

T
nL0u we can rewrite the above inequalities as

a0
n‖u‖2L0

≤ (K̃nL0u, L0u) ≤ b0n‖u‖2L0
.

To complete the proof, it remains to apply Lemma A.1.
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A.4. Proof of Theorem 5.2. Since

(απTMπ + π̄TL0π̄)
−1 = α−1πM−1πT + π̄L−1

0 π̄T

from (28) we have for any u ∈ E

a0‖π̄Tu‖2
L
−1
0

≤ (Knu, u) ≤ b0

(
α−1‖πTu‖2

M−1
+ ‖π̄Tu‖2

L
−1
0

)
.(40)

In order to apply Lemma A.1 let us take u = π̄TnL0v. We have

πTu = πT π̄TnL0v = −πTπTnL0v = −(L0v, u
n)Mπun,

and hence

α−1‖πTu‖2
M−1

= α−1(L0v, u
n)2‖πun‖2

M
≤ α−1‖v‖2

L0
‖un‖2

L0

= σ
λn − λ0

λ1 − λ0
‖v‖2

L0
.

Further,

π̄Tu = π̄T π̄TnL0v = π̄TL0v − π̄TπTnL0v = L0v − (L0v, u
n)π̄TMun.

For w = (L0v, u
n)π̄TMun we have

‖w‖2
L
−1
0

= (L0v, u
n)2‖Mπ̄un‖2

L
−1
0

= (L0v, u
n)2‖L−1

0 Mπ̄un‖2
L0

≤ ‖v‖2
L0
‖un‖2

L0

‖un‖2
L0

(λ1 − λ0)2
=

(
λn − λ0

λ1 − λ0

)2

‖v‖2
L0

= δ(λn)2‖v‖2
L0

.

Hence,

‖π̄Tu‖
L
−1
0

≤ ‖L0v‖
L
−1
0

+ ‖w‖
L
−1
0

= ‖v‖
L0

+ ‖w‖
L
−1
0

≤ (1 + δ(λn))‖v‖
L0

and

‖π̄Tu‖
L
−1
0

≥ ‖v‖
L0
− ‖w‖

L
−1
0

≥ (1− δ(λn))‖v‖
L0

.

Substituting the above estimates for πTu and π̄Tu into (40), we obtain

a0n(L0v, v) ≤ (L0π̄nKnπ̄
T
nL0v, v) ≤ b0n(L0v, v),

where

a0n = a0(1− δ(λn))2, b0n = b0((1 + δ(λn))2 + σδ(λn)).(41)

To complete the proof it remains to apply Lemma A.1.
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PROBLEMS II: THE SUBSPACE ACCELERATION∗
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Abstract. The generalized Davidson (GD) method can be viewed as a generalization of the
preconditioned steepest descent (PSD) method for solving symmetric eigenvalue problems. In the GD
method, the new approximation is sought in the subspace that spans all the previous approximate
eigenvectors, in addition to the current one and the preconditioned residual thereof used in PSD. In
this respect, the relation between the GD and PSD methods is similar to that between the standard
steepest descent method for linear systems and methods in Krylov subspaces. This paper presents
convergence estimates for the (restarted) GD method that demonstrate convergence acceleration
compared to the PSD method, similar to that achieved by methods in Krylov subspaces compared
to the standard steepest descent.

Key words. iterative methods for eigenvalue problems, preconditioning, Krylov subspaces,
generalized Davidson method, convergence estimates
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1. Introduction. This paper presents convergence estimates for the generalized
Davidson (GD) method [1, 17, 11] for finding the smallest eigenvalue of the generalized
eigenvalue problem

Lu = λMu,(1)

where L andM are, respectively, a symmetric and a symmetric positive definite linear
operator in a Euclidean space E . The GD method can be formulated as follows: given
an arbitrary nontrivial vector u0 we calculate a sequence λn of approximations to the
smallest eigenvalue λ0 of (1) using the following recurrent formula:

un = arg min
u∈Dn, (Mu,u)=1

λ(u), λn = λ(un),

Dn+1 = span{u0, . . . , un,Kn(L− λnM)un},(2)

where Kn are some linear operators in E , (·, ·) is the scalar product in E , and λ(u) is
the Rayleigh quotient, i.e.,

λ(u) ≡ (Lu, u)

(Mu, u)
.(3)

Two familiar instances of the GD method are the Davidson method (see, e.g., [3, 2])
and the Jacobi–Davidson method (see, e.g., [19] and the relevant chapters in [1]). In
the former, L is a matrix, M = I (the unit matrix), and Kn = (DL − λnI)−1, where
DL is the diagonal of L (i.e., a diagonal matrix of the same size and with the same
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electronically March 26, 2003.
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diagonal entries as in L). In the Jacobi–Davidson method v = Knr is calculated by
approximately solving the linear system

(1− πn)
T (L− λnM)(1− πn)v = (1− πn)

T r, πnv = 0,(4)

where πnw = (Mw,un)un.
It is easy to see that the number of arithmetic operations needed to perform the

nth iteration (2) is asymptotically proportional to n2. To avoid excessive computa-
tional expenses, in practical calculations the iterations (2) are restarted using the last
approximation un as the initial one.1 If the restart takes place every m iterations,
then we arrive at the following iterative scheme:

ulm+k = arg min
u∈Dlm,k,(Mu,u)=1

λ(u), λlm+k = λ(ulm+k),

Dl,k+1 = span{ulm, . . . , ulm+k,Klm+k(L− λlm+kM)ulm+k}.(5)

An alternative approach to restarting the GD method is to choose some k > 0 and
to remove vectors u0,. . . ,un−k from the definition of the subspace Dn+1 for n ≥ k,
thereby bounding its dimension by k + 1. For k = 2 this yields the so-called locally
optimal preconditioned conjugate gradient (LOPCG) method [6]. Quite interestingly,
there is numerical evidence (see [14]; cf. also [8, 9]) that the LOPCG method converges
at the same rate as the GD method, despite using a smaller subspace. This remarkable
phenomenon still awaits explanation (for some insights into the convergence behavior
of LOPCG, see [6, 8]).

The GD method can be viewed as a generalization of the preconditioned steepest
descent (PSD) iterations

un+1 = un − τng
n, gn = K(L− λ(un)M)un,(6)

where

τn = argmin
τ

λ(un − τgn),(7)

and K is a symmetric positive definite operator usually referred to as preconditioner.
Preconditioned eigensolvers based on (6) are among the oldest and best-studied to
date (see, e.g., [7] and the references therein; for the comparative discussion of the
latest results, see also [13, 15]). Owing to the minimax principle, any convergence
estimate for (6) in terms of eigenvalues apply to (2) and (5) as well.2 However, such
estimates can only be used as preliminary ones because the GD method should obvi-
ously converge faster than the PSD method, by virtue of using larger subspaces for
minimizing λ(u). Indeed, if we take K = L−1, then, assuming λn < λ1, for (6) we
have [5]

µ0 − µn

µn − µ1
≤
(
1− ξ

1 + ξ

)2
µ0 − µn−1

µn−1 − µ1
,(8)

where µ0 = 1/λ0, µ
n = 1/λn, and ξ is the relative distance between λ0 and the second

smallest distinct eigenvalue λ1, i.e., ξ = 1−λ0/λ1. Accordingly, if we take Kn = L−1,

1A somewhat different restart strategy is suggested in [8].
2In fact, the only convergence estimates for the GD method that have been available so far are

those for the PSD method (see [13] and the references therein).
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then the subspaces Dn become Krylov subspaces, and (2) becomes equivalent to the
Lanczos method (for finding the largest eigenvalue µ0 of L

−1M), for which we have [5]

µ0 − µn

µn − µ1
≤
(
Tn

(
1 + ξ

1− ξ

))−2
µ0 − µ0

µ0 − µ1
,(9)

where Tn(x) = cos(n arccosx) are the Chebyshev polynomials and we assume that
µ0 > µ1. Since Tn((1 + ξ)/(1− ξ)) ≥ 0.5((1 +√ξ)/(1−√ξ))n, the estimate (9) leads
to the asymptotic convergence factor ((1 − √ξ)/(1 +

√
ξ))2, which implies that (2)

converges about twice as fast as (6) for a small ξ.
In the general case neither Dn nor Dl,k is a Krylov subspace. However, there are

several Krylov subspaces that Dl,k approaches as l increases. Indeed, assuming for
simplicity that Kn = K, we can define Dl,k equivalently as

Dl,k+1 = span{ulm,K(L− λlmM)ulm, . . . ,K(L− λlm+kM)ulm+k}
from which we see immediately that, as l increases, Dl,k approaches the Krylov sub-
space

Kk+1(u
lm,K(L− λlmM)),(10)

where

Kn(u,A) = span{u,Au, . . . , Anu}.
Some other Krylov subspaces that are “close” to Dl,k are discussed in section 4.
We note that the subspace (10) appears in various preconditioned eigensolvers. For
example, denoting by ν(t) the smallest eigenvalue of At = K(L− tM), we can rewrite
the problem (1) equivalently as ν(λ) = 0. Applying the Newton method to solve
this equation together with a method in Krylov subspaces for At to approximately
compute ν(t), we obtain a two-level method that uses subspaces similar to (10) at the
inner iteration level (see, e.g., [5]; cf. also [1, Algorithms 11.7 and 11.8]).

The present paper uses the above property of the Davidson subspaces Dl,k and the
standard analysis in Krylov subspaces (cf. Lemma 4.1) to obtain convergence estimates
for (5) that are similar to those for two-level methods using Krylov subspaces at the
inner iteration level (cf. [5]). It should be noted that similar estimates for m ≤ 2 can
be found in [6]. For m > 2 the estimates of the present paper are, to the best of the
author’s knowledge, the first estimates for the (restarted) GD method that reflect the
subspace acceleration aspect of this method.

2. Notation. In this paper we use the standard notation A > 0 (resp., A ≥ 0)
to declare that a symmetric linear operator A is positive definite (resp., semidefinite).
Accordingly, A ≥ B stands for A − B ≥ 0, etc. For A ≥ 0 we denote (Au, v)
by (u, v)A, and ‖u‖A stands for

√
(u, u)A. By considering an auxiliary eigenvalue

problem Au = µBu it is easy to show that 0 < A ≤ B implies B−1 ≤ A−1, which,
together with the fact that A ≤ B implies CTAC ≤ CTBC for any C, leads to the
following elementary result:

0 < A ≤ cB−1 ⇒ ‖Au‖2
B
≤ c‖u‖2

A
≤ c2‖u‖2

B−1
,

‖BAu‖
A
≤ c‖u‖

A
, ‖BAu‖

B−1
≤ c‖u‖

B−1
.(11)

The minimal eigenvalue of (1) is denoted λ0, and λ1 denotes the second smallest
distinct eigenvalue. The invariant subspace of M−1L corresponding to λ0 is denoted
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by I0, and the (·, ·)M -orthogonal projection onto I0 is denoted by π. For any projec-
tion π′ we denote π̄′ ≡ I − π′, where I is the identity operator. The projection π has
the following simple properties:

Lπ = πTL = λ0Mπ, Mπ = πTM, L0 ≡ L− λ0M = L0π̄ = π̄TL0,

and for any vector u

‖π̄u‖2
M
≤ δ(λ(u))‖u‖2

M
, ‖π̄u‖2

L0
= (λ(u)− λ0)‖u‖2M ,

where

δ(λ) =
λ− λ0

λ1 − λ0
.

Finally, r(u) denotes the residual Lu−λ(u)Mu, and ui(H) are the Ritz eigenvec-
tors of the problem (1) in a subspace H ⊂ E , i.e.,

ui(H) ∈ H : (r(ui(H)), v) = 0 ∀v ∈ H.(12)

We assume that ‖ui(H)‖M = 1 and we enumerate the Ritz eigenpairs {λi(H), ui(H)}
in the ascending order of λi(H) = λ(ui(H)).

3. Assumptions on the preconditioners. Preconditioning in the GD method
has been discussed in detail in Part I of this paper [13]. Here we summarize that
discussion in order to make proper assumptions on the preconditioners Kn.

The role of preconditioning in iterative methods is to improve the convergence.
Accordingly, a usual assumption on a preconditioner K is

aK∗ ≤ K ≤ bK∗,(13)

where a and b are positive constants and K∗ is some “ideal” preconditioner, i.e., the
one that would lead to a very fast convergence if used. For example, in the case of a
linear system Lu = f with L > 0, taking K = K∗ = L−1 as a preconditioner in the
PSD method makes it converge after just one iteration. Furthermore, convergence
estimates for preconditioned algorithms for solving linear systems show that in the
general case (13) (with K∗ = L−1) the ratio κ = b/a can be used as a measure of the
quality of preconditioning: the smaller, the better, the “ideal” case being κ = 1.

Many papers on preconditioned eigensolvers feature exactly the same choice for
K∗ despite the fact that it is no longer “ideal” in the case of eigenvalue problems, since
it fails to deliver a superlinear convergence achievable with some other preconditioners.
Part I of this paper considers two alternative choices K∗ = L̃−1 and K∗ = L̃−1

n , where

L̃ = απTMπ + π̄TL0π̄

and

L̃n = ωπTnMπn + π̄Tn (L− λ(un)M)π̄n

and α and ω are positive constants. These two choices are, in a sense, asymptotically
equivalent, since L̃n with ω = α converges to L̃ [13]. It should be noted that the
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first choice is not entirely new: the asymptotic estimates in [18] and [11] essentially
use K∗ = L̃ and assumption (13) in the subspace orthogonal to I0. The second
choice is closely related to the Jacobi–Davidson method: if (4) is solved approximately
using a linear iterative algorithm, then the respective Jacobi–Davidson method can
be interpreted as the GD method with preconditioners satisfying (13) with K∗ = L̃n,
a = 1−δ, and b = 1+δ, where δ is the accuracy in the L̃n-norm to which (4) is solved
[13].

The convergence estimates in [18, 11, 13] show that the suggested alternative
assumptions on K are indeed more suitable for preconditioned eigensolvers than the
“standard” one based on K∗ = L−1 because in the “ideal” case a = b both lead to
cubic convergence. In view of this, below we assume that either

a0L̃
−1 ≤ Kn ≤ b0L̃

−1(14)

or

a0L̃−1
n ≤ Kn ≤ b0L̃−1

n ,(15)

where a0, b0, a
0, and b0 are positive constants. To simplify the proofs, we assume

further that λ0 is simple and that Klm+i = Klm for i = 1, . . . ,m − 1 (see [12] for a
more general case).

4. Rayleigh–Ritz approximation in auxiliary Krylov subspaces. As men-
tioned in the introduction, the idea behind the estimates of this paper is to use the
asymptotic closeness of the Davidson subspaces Dl,k to some Krylov subspaces. One
such subspace is that in (10). Another one is obviously

span{ulm,K(L− λ0M)u
lm, . . . , (K(L− λ0M))

kulm}.(16)

In this section we introduce yet another Krylov subspace that appears to be asymp-
totically closer to Dl,k than (16) and provides better approximation for u0 than (10).

Denoting rn ≡ r(un) and gn = Knr
n, we have

Dl,k+1 = Dl,k + span{glm+k}

and, therefore,

Dl,k+1 = span{ulm, glm, . . . , glm+k}
= span{ulm, π̄lmglm, . . . , π̄lmglm+k}.

Since (rn, ulm) = 0 for lm ≤ n ≤ (l+1)m, we have π̄Tlmrn = rn and gn = Knπ̄
T
lmrn =

Klmπ̄Tlmrn. Therefore

Dl,k+1 = span{v0
i }i=−1,k,

where

v0
−1 = ulm, v0

i = π̄lmKlmπ̄Tlmrlm+i ≡ K̂lmrlm+i, i ≥ 0.(17)

Consider now the following Krylov subspaces:

Kl,k = Kk+1(u
lm, K̂lmL0).(18)
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Using the standard technique for estimating the accuracy of the Rayleigh–Ritz approx-
imation in Krylov subspaces (see, e.g., [5]), one easily obtains the following estimate
for the smallest Ritz eigenvalue λl,k = λ(u0(Kl,k)) in Kl,k.

Lemma 4.1. Assume that λl0m < λ1 for some l0 and that Kn satisfies (14) for
n ≥ l0m. Then for l ≥ l0 the following estimate holds for the smallest Ritz eigenvalue
λl,k in the subspace Kl,k:

0 ≤ λl,k − λ0 ≤ λlm − λ0

Tk(ηl)2
,(19)

where ηl = q(κ0, σ, δ(λ
lm))−1 and

κ0 =
b0
a0

, σ =
λ1 − λ0

α
,

q(u, v, w) =
uρ(v, w)− 1
uρ(v, w) + 1

, ρ(v, w) =
(1 + w)2 + vw

(1− w)2
.

Proof. Let us denote for brevity n = lm. We have

λ0 ≤ λl,k = min
u∈Kl,k

λ(u) ≤ λ(Pk(K̂nL0)u
n),

where Pk(x) is any polynomial of degree k. Let us take Pk(x) ≡ T̃k(x), where

T̃k(x) = ckTk

(
2

x− a0n

b0n − a0n
− 1
)

, ck = Tk

(
−b0n + a0n

b0n − a0n

)−1

=
(−1)k
Tk(ηl)

,

a0n and b0n are given in Lemma A.4, and Tk(x) = cos(k arccosx) is the Chebyshev
polynomial of degree k. Since T̃k(0) = 1 we have

T̃k(x) = 1−
k∑
i=1

τix
i

and, thus,

vk ≡ T̃k(K̂nL0)u
n =

(
1−

k∑
i=1

τi(π̄nKnπ̄
T
nL0)

i

)
un.

Since v = vk − un = π̄nv we have (Mv, un) = 0, and hence ‖vk‖
M
≥ 1, and

‖vk‖2
L0
= (λ(vk)− λ0)‖vk‖2M ≥ λ(vk)− λ0 ≥ λl,k − λ0.

Further, since L0 = π̄TL0π̄ we have π̄(K̂nL0)
i = (π̄K̂nπ̄

TL0)
i, and, thus,

‖vk‖
L0
= ‖π̄T̃k(K̂nL0)u

n‖
L0
= ‖T̃k(π̄K̂nπ̄

TL0)u
n‖

L0
.

The operator π̄K̂nπ̄
TL0 is symmetric in the semiscalar product (·, ·)L0

, and so is
T̃k(π̄K̂nπ̄

TL0). From Lemma A.4 it follows that nonzero eigenvalues of π̄K̂nπ̄
TL0 lie
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in the interval [a0n, b0n]. Since |T̃k(x)| ≤ |ck| for a0n ≤ x ≤ b0n, this implies that
‖vk‖

L0
≤ |ck|‖un‖L0

, and, thus,

λl,k − λ0 ≤ c2k‖un‖2L0
= c2k(λ

n − λ0) =
λlm − λ0

Tk(ηl)2
.

Since π̄TlmMulm = 0, we have K̂lmrlm = K̂lmL0u
lm and, thus, Dl,k = Kl,k for

k = 0 and k = 1. For k > 1, K̂lmrlm+i → K̂lmL0u
lm+i as l → ∞ and, thus, the

subspace Dl,k approaches Kl,k as l→∞. The proof of Theorem 5.3 (see Appendix B)
shows that for 0 ≤ i < k the distance between v0

i and Kl,k is of the order O
(
δ(λlm)3/2

)
(cf. (37), (41), and (34)), whereas for (16) the author could only estimate the same
distance as3 O (δ(λlm)). Further, from Lemma 4.1 we observe that λl,k converges to
λ0 as k increases, whereas the same is not true for the minimal Ritz eigenvalue in the
Krylov subspace (10). Hence, this paper uses the subspaces Kl,k for the convergence
analysis of (5), instead of those in (10) or (16).

5. Convergence estimates. In Part I of this paper the following convergence
results for the PSD method (6) were obtained.

Theorem 5.1. Assuming that λn0 < λ1 for some n0 and that the condition (14)
is satisfied for n ≥ n0, the convergence of the iterations (6) for n ≥ n0 is described by
the following estimate:

0 ≤ λn+1 − λ0 ≤ q(κ0, σ, δ(λ
n))2(λn − λ0),(20)

where

κ0 =
b0
a0

, σ =
λ1 − λ0

α
,

q(u, v, w) =
uρ(v, w)− 1
uρ(v, w) + 1

, ρ(v, w) =
(1 + w)2 + vw

(1− w)2
.

Theorem 5.2. Assume that λ0 is a simple eigenvalue of (1). If λ
n0 < λ0+λ1

2 for
some n0 and the preconditioner Kn satisfies (15) for n ≥ n0, then the convergence of
the iterations (6) for n ≥ n0 is described by the following estimate:

0 ≤ λn+1 − λ0 ≤ q̃(κ0, ν, δ(λn))2(λn − λ0),(21)

where

κ0 =
b0

a0
, ν =

ω

λ1 − λ0
,

q̃(u, v, w) =
uρ̃(v, w)− 1
uρ̃(v, w) + 1

, ρ̃(v, w) =
1

1− 2w
(1 + w)2 + vw

(1− w)2
.

Due to the minimax principle, the above results apply to the restarted GD method
as well. In this section we present respective improved estimates that reflect the
acceleration of the convergence due to the increasing size of subspaces Dl,k.

3This is still enough to obtain estimates similar to those in this paper but with somewhat larger
asymptotically insignificant terms—cf. [12].
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Theorem 5.3. Assume that λ0 is simple, that λ
l0m < λ1 for some l0, and that

Kn satisfies (14) for n ≥ l0m. Then the convergence of the restarted generalized
Davidson method (5) for l ≥ l0 is described by the following estimate:

0 ≤ λlm+k − λ0 ≤ q2
lm+k(λ

lm − λ0),(22)

where

qlm+k ≤
lm+k−1∏
n=lm

q(κ0, σ, δ(λ
n)) < 1(23)

and κ0, σ, and q(u, v, w) are given in Theorem 5.1. Furthermore,

qlm+k = Tk

(
κ0 + 1

κ0 − 1
)−1

+O
(√

δ(λlm)

)
, k = 0, . . . ,m− 1.(24)

Proof. The estimate (23) follows immediately from that in Theorem 5.3. The
proof of the estimate (24) is rather long and technical, despite the simplicity of its main
idea—the closeness between the Davidson subspaces Dl,k and the Krylov subspaces
Kl,k discussed in the previous section—and it is therefore placed, together with other
technicalities, in the appendix (see Appendix B).

Remark 5.1. If Kn satisfies “standard” condition aL−1 ≤ Kn ≤ bL−1, then
κ0 =

a
b

λ1

λ1−λ0
and (24) becomes the asymptotic relationship proved earlier for m ≤ 2

by Knyazev (see [6]).
Now, it is easy to see that

q(κ0, σ, δ(λ
n)) =

κ0 − 1
κ0 + 1

+O(δ(λn)).(25)

Comparing the above asymptotics with (24) and recalling (8) and (9), we observe that
the acceleration of convergence in Davidson subspaces is similar to that in Krylov
subspaces.

Finally, using Theorem 4.2 and Lemma 5.1 from [13], we obtain from Theorem 5.3
the following convergence result for the restarted Jacobi–Davidson method.

Theorem 5.4. Assume that λ0 is simple, that λl0m < λ0+λ1

2 for some l0, and
that Kn satisfies (15) for n ≥ l0m. Then the convergence of the restarted generalized
Davidson method (5) for l ≥ l0 is described by (22), where

qlm+i ≤
lm+i−1∏
n=lm

q̃(κ0, ν, δ(λn)) < 1,(26)

qlm+i = Ti

(
κ0 + 1

κ0 − 1
)−1

+O
(√

δ(λlm)

)
, i = 0, . . . ,m− 1,(27)

and κ0, ν, and q̃(u, v, w) are given in Theorem 5.2.
The above result allows one to make the following observation. Assume that

λ0 < (λ0+λ1)/2 and that preconditioners Zn are available that satisfy the assumption
aL̃−1

n ≤ Zn ≤ bL̃−1
n . One has a choice: either to use the preconditioners Zn in the

Jacobi–Davidson method, i.e., in the iterative solution of (4), or to use them directly
in the GD method. It was shown in [13] that if (4) is solved by a linear iterative
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method that reduces the L̃n-norm of the error by a factor of δ < 1, then the resulting
two-level iterative method can be viewed as the GD method with preconditioners Kn

satisfying (15) with a0 = 1 − δ and b0 = 1 + δ. Assuming that j iterations of the
Chebyshev semi-iterative method [4] are applied we have δ = Tj((b + a)/(b − a))−1,
and hence by Theorem 5.4 we have

lim
l→∞

qlm+i = Ti(δ
−1)−1 = Ti(Tj((b+ a)/(b− a)))−1

= Tij((b+ a)/(b− a))−1.(28)

We observe that the above asymptotic relationship is precisely the same as that for
qlm+ij in the restarted GD method with Kn = Zn. Thus, we may conclude that in the
case at hand the use of two-level rather than one-level iterations does not accelerate
the convergence of the GD method. At the same time, (28) suggests that the two-
level option allows one to achieve the same asymptotic convergence rate using j times
smaller Davidson subspaces, which obviously improves the performance of the GD
method (cf. the introduction). The same, however, cannot be said about the LOPCG
versus (the considered implementation of) the Jacobi–Davidson method. Assuming,
on the basis of numerical evidence, that the estimate of Theorem 5.3 is valid for
the LOPCG method (cf. [8, 14]), we observe from (28) that one should expect the
latter method to have an asymptotic convergence rate similar to that of the Jacobi–
Davidson method if the same preconditioners Zn are used in both and, due to the
use of a smaller subspace (of dimension three—cf. the introduction), to have better
overall performance. We note that this theoretical conclusion is in agreement with the
numerical comparisons in [9] between the LOPCG and two practical implementations
of the Jacobi–Davidson method: JDCG by Notay [10] and JDRQ by Sleijpen (see,
e.g., [1]).

Appendix A. Auxiliary results. In the convergence analysis below the fol-
lowing auxiliary scalar product and the associated norm in E are used:

〈u, v〉 = (Mπlmu, πlmu) + (K̂−1
lm π̄lmu, π̄lmv), 〈u〉 =

√
〈u, u〉,(29)

where (and in the rest of the paper) K̂−1
n is the inverse of the restriction of K̂n ≡

π̄nKnπ̄
T
n onto π̄Tn E .

Lemma A.1. If Kn satisfies (14), then

〈u〉2 ≤ ‖πlmu‖2
M
+
1

a0
‖π̄lmu‖2

L̃
≤
(
1 +

α

a0

)
‖u‖2

M
+
1

a0
‖π̄lmu‖2

L0
,(30)

where the norm 〈·〉 is given by (29).
Proof. Let us denote for brevity n = lm. Consider the system

K̂nv = π̄nu, πTn v = 0.

Multiplying the first equation by π̄Tn v and using (14) we obtain

a0‖π̄Tn v‖2L̃−1
≤ (Knπ̄

T
n v, π̄

T
n v) = (π̄nu, π̄

T
n v) ≤ ‖π̄nu‖L̃‖π̄

T
n v‖L̃−1

,

that is, ‖π̄Tn v‖L̃−1
≤ a−1

0 ‖π̄nu‖L̃ . Therefore,

(K̂−1
n π̄nu, π̄nu) = (v, π̄nu) = (π̄nu, π̄

T
n v) ≤

1

a0
‖π̄nu‖2

L̃

=
α

a0
‖ππ̄nu‖2M +

1

a0
‖π̄π̄nu‖2L0

≤ α

a0
‖u‖2

M
+
1

a0
‖π̄nu‖2L0

,

which leads to (30).
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Lemma A.2. The vectors v0
i given by (17) are orthogonal in the scalar product

〈·, ·〉 given by (29).
Proof. From (29) we see that 〈v0

−1, v
0
i 〉 = 0 for i ≥ 0. For 0 ≤ i ≤ j we have

〈v0
i , v

0
j 〉 = 〈K̂lmrlm+i, K̂lmrlm+j〉 = (rlm+i, K̂lmrlm+j)

= (rlm+i,Klmrlm+j).(31)

Since ulm+i is a Ritz vector in Dl,i, we have (cf. (12))
(rlm+i, v) = 0 ∀v ∈ Dl,i

and, thus, for 0 ≤ j < i

〈v0
i , v

0
j 〉 = (rlm+i,Klmrlm+j) = 0

because Klmrlm+j ∈ Dl,j+1 ⊂ Dl,i.
Lemma A.3. Let λ(ul0m) < λ1 for some l0. Let xi be the coordinates of u

lm+k

in the basis {v0
i }i=−1,k−1, i.e.,

ulm+k = x−1u
lm +

k−1∑
i=0

xiv
0
i .(32)

If Kn satisfies (14), then |xi| ≤ (a0(1− δ(λl0m))2)−1 for l ≥ l0 and i ≥ 0.
Proof. For i = j ≥ 0 we have from (31)
〈v0
i 〉2 = ‖rlm+i‖2

Klm
≥ a0‖π̄T rlm+i‖2

L
−1
0

= ‖(L− λlm+iM)π̄ulm+i‖2
L
−1
0

≥ a0

(
λ1 − λlm+i

λ1 − λ0

)2

‖π̄ulm+i‖2
L0
= a0(1− δ(λlm+i))2(λlm+i − λ0)

≥ c20(λ
lm+i − λ0),(33)

where c0 =
√
a0(1 − δ(λl0m)). Multiplying (32) by v0

i in the scalar product 〈·, ·〉 we
obtain

xi〈v0
i 〉2 = 〈ulm+k, v0

i 〉.
We have

|〈ulm+k, v0
i 〉| = |(ulm+k, rlm+i)| = |(ulm+k, (L− λlm+iM)ulm+i)|
= |(λlm+k − λlm+i)(Mulm+k, ulm+i)| ≤ λlm+i − λ0

and, thus, |xi| ≤ c−2
0 = (a0(1− δ(λl0m))2)−1.

Lemma A.4.

a0,nL0 ≤ L0K̂nL0 ≤ b0,nL0,

where a0,n = a0(1 − δ(λn))2, b0,n = b0((1 + δ(λn))2 + σδ(λn)), and σ is defined in
Theorem 5.1.

Proof. See the proof of Theorem 5.2 of [13].

Appendix B. Proof of Theorem 5.3. Nonasymptotic result (23) follows im-
mediately from Theorem 5.1. It remains to obtain the asymptotic result (24).
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First, we note that if δ(λlm+k0) ≤ δ(λlm)3 for some k0 ≤ m, then δ(λlm+k) ≤
δ(λlm)3 for k0 ≤ k ≤ m and therefore we can take in (22)

qlm+k = Tk

(
κ0 + 1

κ0 − 1
)−1

+ δ(λlm)2, k0 ≤ k ≤ m.

Hence, in the rest of the proof we consider only the case k < k0 (in other words, we
assume that δ(λlm+k) > δ(λlm)3).

Let us show that the distance between the vector ulm+i and the subspace Kl,i in
‖ · ‖

L0
is O(δ(λlm) 3

2 ). In other words, let us show that for any 0 ≤ i ≤ m there exists

ũlm+i ∈ Kl,i such that
‖ulm+i − ũlm+i‖2

L0
≤ αiδ(λ

lm)3,(34)

where αi are positive constants independent of l and δ(λlm). Obviously, (34) is valid
for i = 0 and i = 1. Therefore, it is enough to prove that if it is valid for i < k, then
it is valid for i = k.

Let

ṽ0
−1 = ulm, ṽ0

i = K̂lmL0ũ
lm+i, i ≥ 0, ṽi = 〈v0

i 〉−1ṽ0
i ,

ũlm+i =

i−1∑
j=−1

xij ṽ
0
j , δui = ũlm+i − ulm+i,

where xij are the coordinates of u
lm+i in the basis {v0

j }j=−1,i−1. Let us start with the

estimates for ṽ0
i − v0

i in M - and L0-norms. We have

ṽ0
i − v0

i = K̂lm((L− λ0M)ũ
lm+i − (L− λlm+iM)ulm+i)

= K̂lmL0δu
i + (λlm+i − λ0)K̂lmMulm+i ≡ δ1 + δ2.(35)

From (14) we observe that

Kn ≤ b0max

{
1

α
,

1

λ1 − λ0

}
M−1 ≡ bMM−1.(36)

Hence,

‖K̂lmL0δu
i‖2

M
= ‖π̄lmKlmπ̄TlmL0δu

i‖2
M
≤ ‖Klmπ̄TlmL0δu

i‖2
M

≤ bM‖π̄TlmL0δu
i‖2

Klm
= bM‖L0δu

i‖2
K̂lm

≤ bMb0,lm‖δui‖2L0
,

where b0,n is given in Lemma A.4. Further,

‖K̂lmMulm+i‖
M
= ‖π̄lmKlmπ̄TlmMulm+i‖

M
≤ ‖Klmπ̄TlmMulm+i‖

M

= ‖KlmMπ̄lmulm+i‖
M
≤ bM‖π̄lmulm+i‖

M
.

Since λ0 is simple, we have

‖π̄lmulm+i‖
M
= ‖(πlm+i − πlm)u

lm+i‖
M
≤ ‖(πlm+i − π)ulm+i‖

M

+ ‖(πlm − π)ulm+i‖
M
≤ 2
√

δ(λlm),
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and hence ‖K̂lmMulm+i‖
M

< 2bM
√

δ(λlm). Thus,

‖ṽ0
i − v0

i ‖M ≤
√

bMb0,lm‖δui‖L0
+ 2bM (λ1 − λ0)δ(λ

lm+i)
3
2

≤
√

bM (4 + σ)b0‖δui‖L0
+ 2bM (λ1 − λ0)δ(λ

lm+i)
3
2

≡ b1‖δui‖L0
+ b2δ(λ

lm+i)
3
2 = (b1

√
αi + b2)δ(λ

lm+i)
3
2 .(37)

In L0-norm we have

‖δ1‖L0
≤ b0,lm‖δui‖L0

≤ (4 + σ)b0‖δui‖L0
≡ b3‖δui‖L0

.(38)

Further, since (14) implies that L0 ≤ b0K
−1
n , we have

‖K̂lmMulm+i‖
L0
= ‖(1− πlm)KlmMπ̄lmulm+i‖

L0

≤ ‖KlmMπ̄lmulm+i‖
L0
+ ‖KlmMπ̄lmulm+i‖

M
‖ulm‖

L0

≤
(√

b0 +
√
bM
√

λlm − λ0

)
‖Mπ̄lmulm+i‖

Klm

≤
(√

b0bM + bM
√
λl0m

)
‖π̄lmulm+i‖

M

≡ b4‖π̄lmulm+i‖
M
= 2b4

√
δ(λlm).(39)

Thus,

‖δ2‖L0
≤ 2b4(λ1 − λ0)δ(λ

lm+i)
3
2 ≡ b5δ(λ

lm+i)
3
2(40)

and

‖ṽ0
i − v0

i ‖L0
≤ b3‖δui‖L0

+ b5δ(λ
lm+i)

3
2 = (b3

√
αi + b5)δ(λ

lm+i)
3
2 .(41)

Using Lemma A.3 together with (37) and (41) we obtain (34).
The outline of rest of the proof is as follows. First, we show that the vectors ṽi

are linearly independent, by exploiting the fact that ṽi are close to vi in the norm 〈·〉,
and vi are orthogonal in the scalar product 〈·, ·〉. Then, using ṽi, i = −1, . . . , k − 1,
as a basis in Kl,k we obtain an estimate for the coordinates of the Ritz vector vl,k =
u0(Kl,k) in this basis. Finally, we use this estimate together with the above estimates
for ṽ0

i − v0
i in L0-norm and Lemma 4.1 to obtain the asymptotic estimate (24).

Obviously, 〈ṽ−1, ṽi〉 = 0, i ≥ 0. Let Ṽl,k−1 be the Gram matrix for ṽi, i =
0, . . . , k − 1, associated with the scalar product 〈·, ·〉, i.e., the matrix with the entries
〈ṽi, ṽj〉. From (34) we have

‖δui‖2
L0
≤ γ0δ(λ

lm)3, γ0 = max
0≤i<k0

αi,

and hence

〈δ1〉2 = (K̂lmL0δu
i, L0δu

i) ≤ b0,lm‖δui‖2L0
≤ b3γ0δ(λ

lm)3.

Further,

〈δ2〉2 = (λlm+i − λ0)
2‖Mulm+i‖2

K̂lm

≤ 4bM (λ1 − λ0)
2δ(λlm+i)3,
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where δ1 and δ2 are from (35). Thus,

〈ṽ0
i − v0

i 〉2 ≤ γ2
1δ(λ

lm)3,

where γ1 =
√
b3γ0 + 2(λ1 − λ0)

√
bM . Denoting vi = 〈v0

i 〉−1v0
i we have

〈ṽi − vi〉2 = 〈v0
i 〉−2〈ṽ0

i − v0
i 〉2 ≤

γ2
1

c20(λ1 − λ0)

δ(λlm)3

δ(λlm+i)
≡ γ2

2

δ(λlm)3

δ(λlm+i)
,(42)

where c0 is given in the proof of Lemma A.2. From the above estimate, together with
the trivial relationship

〈ṽi, ṽj〉 = 〈vi, vj〉+ 〈ṽi − vi, vj〉+ 〈vi, ṽj − vj〉+ 〈ṽi − vi, ṽj − vj〉,

we obtain for i > j ≥ 0

|〈ṽj〉2 − 1| ≤ εl,j , |〈ṽi, ṽj〉| ≤ εl,i,

where

εl,i = γ2

(
2 + γ2

δ(λlm)
3
2√

δ(λlm+i)

)
δ(λlm)

3
2√

δ(λlm+i)
.

By the same logic as above, we may assume that δ(λlm+k) ≥ δ(λlm)2 and, thus,

εl,i = O(δ(λlm) 1
2 ), and the matrix Ṽl,k−1 can be represented as Ṽl,k−1 = 1 − W̃l,k−1

with ‖W̃l,k−1‖ = O(δ(λlm) 1
2 ). Thus, for l ≥ l0 we have ‖W̃l,k−1‖ < 1, and hence

the matrix Ṽl,k−1 is nondegenerate, which implies that the vectors ṽi are linearly
independent.

Using ṽi, i = −1, . . . , k − 1, as the basis in Kl,k we have

vl,k = u0(Kl,k) = x−1u
lm +

k−1∑
i=0

xj ṽj .(43)

The last technically difficult step in the proof is to obtain for the coordinates xi, i ≥ 0,
the estimate xi = O(δ(λlm) 1

2 ). Multiplying (43) by ṽi, i = 0, . . . , k − 1, in the scalar
product 〈·, ·〉 we obtain the linear system

k−1∑
j=0

xj〈ṽi, ṽj〉 = 〈ṽi, vl,k〉 ≡ yi, i = 0, . . . , k − 1,

or, in matrix form,

Ṽl,k−1x = y,

which is equivalent to

Ṽl,k−1z = W̃l,k−1y,

where z = x− y. Using the above estimates for the norm of W̃l,k−1, we have

‖z‖ ≤ ‖W̃l,k−1‖‖y‖ = O(δ(λlm) 1
2 )‖y‖ ,
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which shows that ‖x‖ = O(‖y‖). To estimate ‖y‖ we observe that
〈vl,k, v0

i 〉 = (vl,k, ri) = (vl,k, (L− λlm+iM)ulm+i)

= (vl,k, L0u
lm+i)− (λlm+i − λ0)(Mvl,k, ulm+i),

and hence

|〈vl,k, v0
i 〉| ≤ ‖vl,k‖L0

‖ulm+i‖
L0
+ |λlm+i − λ0||(Mvl,k, ulm+i)|

≤
√

λl,k − λ0

√
λlm+i − λ0 + λlm+i − λ0.

Now, if λlm+i − λ0 ≤ λl,k − λ0, then λlm+k − λ0 ≤ λl,k − λ0, and, by Lemma 4.1, we
can take qlm+k = Tk(ηl)

−1. Otherwise, we have

|〈vl,k, v0
i 〉| ≤ 2(λlm+i − λ0), |〈vl,k, vi〉| ≤ 2

c0

√
λlm+i − λ0.

Further,

‖π̄lmvl,k‖L0 ≤ ‖vl,k‖L0
+ |(Mvl,k, ulm)|‖ulm‖L0

≤
√

λl,k − λ0 +
√

λlm − λ0 ≤ 2
√

λlm − λ0,

and hence, using Lemma A.1, we have

〈vl,k〉 ≤ 1 + α

a0
+ 4(λl0m − λ0) ≡ γ3.

Thus,

|〈vl,k, ṽi〉| ≤ |〈vl,k, v̂i〉|+ |〈vl,k, (ṽi − vi)〉|

≤ 2

c0

√
λlm+i − λ0 + γ2γ3

δ(λlm)
3
2√

δ(λlm+i)
= O(δ(λlm) 1

2 )

and

‖x‖ = O(‖y‖) = O(δ(λlm) 1
2 ).(44)

The rest of the proof is fairly simple. Let us denote

ul,k = x−1u
lm +

k−1∑
i=0

xjvj .

From (37) and (41) we have

‖ṽi − vi‖M = O(δ(λlm) 1
2 ), ‖ṽi − vi‖L0

= O(δ(λlm) 1
2 ).

Using the above estimates and (44), we have for δvl,k = vl,k − ul,k

‖δvl,k‖
M
= O(δ(λlm)), ‖δvl,k‖

L0
= O(δ(λlm)).

Using Lemma 4.1 we obtain

‖ul,k‖
L0
≤ ‖vl,k‖

L0
+ ‖δvl,k‖

L0
=
√

λl,k − λ0 +O(δ(λlm))
≤ Tk(η)

−1
√

λlm − λ0 +O(δ(λlm))
= (Tk(ηl)

−1 +O(δ(λlm) 1
2 ))
√

λlm − λ0.
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Since ‖ul,k‖
M
≥ ‖vl,k‖

M
− ‖δvl,k‖

M
= 1− ‖δvl,k‖

M
= O(1), we finally obtain

λlm+k − λ0 ≤ λ(ul,k)− λ0 ≤ (λ(ul,k)− λ0)(‖ul,k‖M + ‖δvl,k‖M )2

= ‖ul,k‖2
L0

(
1 +
‖δvl,k‖

M

‖ul,k‖
M

)2

≤ q2
lm+k(λ

lm − λ0),

where

qlm+k = (Tk(ηl)
−1 +O(δ(λlm) 1

2 ))(1 +O(δ(λlm))
= Tk(ηl)

−1 +O(δ(λlm) 1
2 ).
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Abstract. A technique derived from two related methods suggested earlier by some of the
authors for optimization of finite-difference grids and absorbing boundary conditions is applied to
discretization of perfectly matched layer (PML) absorbing boundary conditions for wave equations
in Cartesian coordinates. We formulate simple sufficient conditions for optimality and implement
them. It is found that the minimal error can be achieved using pure imaginary coordinate stretching.
As such, the PML discretization is algebraically equivalent to the rational approximation of the
square root on [0, 1] conventionally used for approximate absorbing boundary conditions. We present
optimal solutions for two cost functions, with exponential (and exponential of the square root) rates
of convergence with respect to the number of the discrete PML layers using a second order finite-
difference scheme with optimal grids. Results of numerical calculations are presented.
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1. Introduction. This paper is a sequel to a number of papers on so-called opti-
mal finite-difference grids or finite-difference Gaussian rules [11, 12, 3, 4, 18, 13], where
exponential superconvergence of standard second order finite-difference schemes at a
priori given points was obtained due to a special grid optimization procedure. This
approach was successfully applied to the approximation of many nontrivial practi-
cally important problems, including elliptic PDEs for both bounded and unbounded
domains. For the latter, in [18] the optimal finite-difference grid was obtained, which
can be considered as the boundary condition requiring minimal arithmetic work for a
given spectral interval. For hyperbolic problems, however, optimal grids were intro-
duced only for the approximation in the interior part of the domain. Here we consider
exterior hyperbolic problems. For this kind of problem a closely related method of con-
tinued fraction boundary conditions was suggested in [16], where absorbing boundary
conditions were reduced to a three-term equations resembling finite-difference rela-
tions. Combining the approaches of [18] and [16] we obtain frequency independent
finite-difference discretization of Berenger’s perfectly matched layer (PML) absorbing
boundary conditions (ABCs) [7], which produces the minimal possible impedance er-
ror for a given number of discrete layers. Similarly to the optimal grid for the Laplace
equation with a solution from a Sobolev space considered in [18], the obtained dis-
cretizations show the exponential of the square root rates of convergence, though they
use only the three-point stencil for second derivatives. Our solution exhibits much
smaller reflection coefficients compared to examples of optimized PMLs (for the same
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numbers of discrete layers) known from the literature [10]. The optimal solution rep-
resents a limiting case of PML with pure imaginary coordinate stretching that results
in a different type of the equation in time domain. The drawback of the proposed
method is that, unlike a conventional PML discretization, it cannot be implemented
in time domain using the same time-stepping realization in the interior and the ex-
terior parts. Nevertheless, the arithmetical cost per grid node of the new method is
close to that of the conventional PML.

Let us consider a model problem for the scalar wave equation on R
2× [0,+∞) in

Cartesian coordinates

uxx + uyy − utt = 0.(1.1)

After the Fourier transform with respect to y and t, (1.1) becomes

uxx −
(
l2 − ω2

)
u = 0,(1.2)

where l and ω are real spatial and temporal frequencies, respectively. We here abuse
notation slightly by using the same name for a function and its Fourier transform; the
use of the time or frequency domain will always be clear from the context. The ratio
σ = l/ω is the sine of the incidence angle of the wave on the plane x = 0; this angle
is labelled θ.

We assume that only so-called propagative modes with |σ| ≤ 1 are present in
the spectrum of the solution and that for positive x the solution contains only waves
moving to the right; i.e., we are considering solutions of the form

u(x) = ce−iω
√
λx if x > 0,(1.3)

where λ = 1− σ2 = cos2 θ is positive.
The solutions of this form do not vanish at infinity, which is the origin of the

notorious problem of domain truncation in the numerical solution of wave problems
on unbounded domains. Functions given by (1.3) satisfy the impedance boundary
condition

ux
∣∣
x=0

= −iω
√
λu
∣∣
x=0

.(1.4)

With the help of this condition, the subdomain x > 0 can be truncated. Many
approximate ABCs are based on rational approximation of

√
λ, e.g., in [14, 16]. The

authors of these investigations used the fact that the approximant after the inverse
Fourier transform to (y, t) coordinates becomes a solution of a PDE in (y, t) plane;
i.e., it can be computed within the finite-difference time-stepping framework of the
solution of (1.1).

Instead of the direct implementation of the approximate condition (1.4), one
can modify (1.2) for x > 0 in such a way that it would be easier to solve and the
new solution would approximate (1.4) well. The methods of this sort that recently
received wide attention in the literature, e.g., in [7, 9, 10, 19], are Berenger’s PML or
sponge layer methods. These methods generate special artificial media layers that add
exponential decay or attenuation to the propagative modes so that the new solution
satisfies the same boundary condition at x = 0. Thus, the domain for the new equation
can be truncated, which will produce only a small reflection for x < 0. For brevity
we will call PML all methods from this group.
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It is known that Berenger’s PML can be obtained using complex coordinate
stretching [9]:

dx =

(
α +

β

iω

)
dx̄ if x > 0, x = x̄ otherwise,(1.5)

where α and β are some real nonnegative functions. The ω−1 dependence of the
imaginary part is introduced to simplify the time-domain formulation and weaken the
dependence on ω of the PML error. The new function ū(x̄) = u(x) is defined, and
the equation is modified in the following way: the new variable x̄ is taken to be real.
This transformation does not change the solution for negative x̄, and for positive x̄ it
transforms (1.3) to

ū(x̄) = c exp

[
−
√
λ

∫ x̄

0

β(ξ)dξ

]
exp

[
−iω
√
λ

∫ x̄

0

α(ξ)dξ

]
;

i.e., the exponential attenuation is added to the resulting function. Because of this
attenuation of the solution in the new coordinate, the subdomain [0,+∞) can be trun-
cated to a finite length L, with the logarithm of the absolute value of the impedance
error (or reflection coefficient) approximately proportional to

R = −
√
λ

∫ L

0

β(ξ)dξ.

From this estimate one might conclude that just choosing large enough β alone would
make error negligibly small, regardless of the temporal frequency. Unfortunately,
this consideration cannot be applied to discretized PML because of the numerical
dispersion, which is frequency dependent and increases with the increase of β. Con-
ventionally, ad hoc rules or general nonlinear optimization algorithms have been used
for the choice of the discrete PML parameters, e.g., in [10]. It is obvious that proper
use of the analytical structure of the cost function can greatly improve the efficiency
of such optimization; this is the main motivation of our investigation.

Let uk denote the solution of (1.2) after a three-point second order finite-difference
discretization of PML with k primary and k dual nodes. In this case, α and β
become finite 2k-dimensional vectors that determine the discrete transformation at the
primary and dual grid nodes. We consider the following PML optimization problem:

• Find α, β minimizing the error functional

δα,βk = sup
0≤λ≤1, 0<ω≤ωmax

s(λ)

∣∣∣∣√λ− ukx
iωuk

∣∣
x=0

∣∣∣∣ ,(1.6)

where ukx is the finite-difference derivative of the discrete solution at the boundary.
Here we assume that the temporal spectrum of the solution is uniformly bounded at
(0, ωmax] by a positive constant, where ωmax is a cutoff frequency (as we shall see, the
value of ωmax is unimportant for the construction of our optimal solution), and s(λ)
is a nonnegative weight, chosen depending on the distribution of the incident waves.
We will consider two cases:

s(λ) =
1√
λ

if λ ∈ [λmin, 1], λmin > 0, s(λ) = 0 otherwise,(1.7)

and

s(λ) = 1, λ ∈ [0, 1].(1.8)



290 ASVADUROV, DRUSKIN, GUDDATI, AND KNIZHNERMAN

Here the first case corresponds to all possible waves with the incidence angles not
exceeding arccos(

√
λmin) < π

2 ; the second case assumes that the wave amplitudes are
uniformly bounded for all incidence angles on [0, π/2]. The first case will be used when
a priori information limiting the range of incidence angles is available; the second case
will generally be used when no such information can be obtained from the geometry
of the model.

Traditionally, only equidistant grids were used for the PML discretization, and the
optimization was performed by adjusting the distribution of α or β. Such discretiza-
tion can be equivalently presented as the one on a nonuniform grid with complex grid
steps but with α = 1, β = 0. So, we can apply the approach of [11, 18], which reduces
the problem of the finite-difference grid optimization to rational approximation and
allows us to make the following conclusions, which will be proven in the following
sections:

• The minimum of δα,βk can be achieved with pure imaginary stretching:

min
α,β

δα,βk = min
β

δ0,β
k ,

though it is not clear if the condition α ≡ 0 is necessary for optimality.
• With pure imaginary stretching the PML discretization becomes independent

of ω and depends only on the incidence angle. In other words, the PML
discretization becomes a well-studied problem of rational approximation of
the
√
λ on a nonnegative interval of real axis.

Choosing appropriate grid steps (or β) for PML with pure imaginary stretching,
one can make it algebraically equivalent to known approximate ABCs of, e.g., [14, 16].
Instead, using known results of approximation theory, we give optimal solutions for
the two weight functions considered here, which are efficient for wide bandwidth of
the incidence angles. For a problem similar to (1.7) the optimal PML discretization is
based on a closed form solution, obtained in 1877 by Zolotarjov [20]. If 0 < λmin 
 1
its error decays with the increase of k approximately as

O

{
exp

[
π2k

log
(√

λmin/4
)]} .(1.9)

For the case (1.8) the optimal grid was computed in the manner of [24], where optimal
rational approximants of a slightly different type were computed to very high precision.
For the latter case the optimal error asymptotically decays as

8e−π
√

2k.(1.10)

Both of these estimates again highlight the phenomenon of exponential super-
convergence of three-point second order finite-different approximations, which has
been earlier used for efficient approximation of elliptic and hyperbolic problems in
[11, 3, 18, 12].

The condition α ≡ 0 does not allow standard split time-domain PML realization;
however, it makes possible a simple nonsplit realization, which is, in fact, similar to
the one of [16].

2. S-fraction representation of discrete PML. We want the propagating
solution u = ce−i

√
ω2−l2x to become nonoscillating evanescent for x > 0. We consider

a limiting case of transformation (1.5) with α = 0 and β = 1:

x̄ = iωx if x > 0, x̄ = x otherwise.
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Define a new function ū(x̄) = u(x) and again take x̄ to be real. The equation that is
satisfied by this new function can be written in divergence form as

d

dx̄

[
γ(x̄)

dū(x̄)

dx̄

]
− λρ(x̄)ū(x̄) = 0,(2.1)

where λ = 1− l2/ω2 = cos2 θ and

γ = iω, ρ = iω if x̄ > 0, γ = 1, ρ = −ω2 otherwise.(2.2)

Equation (2.1) is a standard divergence equation with discontinuous coefficients; ū(x̄)

and γ(x̄)dū(x̄)
dx̄ are continuous across the interface at x̄ = 0.

The transformed Helmholtz equation (2.1) becomes diffusive (absorbing) for x̄ > 0
and remains the same as the original oscillating (1.2) otherwise. Its solution vanishing
at +∞ can be written as

ū = ce−
√
λx̄ if x̄ > 0, ū = ce−iω

√
λx̄ = u otherwise.

From now on we will approximate the above solution for x̄ ∈ R, so we will drop the
bars over all the symbols. The impedance condition (1.4) is then written as

ux
∣∣
x=0+

= −
√
λu
∣∣
x=0+

,(2.3)

and the error functional (1.6) for the discrete absorbing condition is

δk = max
0≤λ≤1

s(λ)

∣∣∣∣√λ− ukx
uk
|x=0

∣∣∣∣ ,(2.4)

where uk is the discrete solution of (2.1), and ukx stands for the finite-difference ana-
logue of the derivative of u.

Now, using a second order finite-difference approximation of the diffusive part
of (2.1) as it was done for diffusive problems in [11, 18], we obtain a formulation
equivalent to the continued fraction of [16].

We want to approximate the ABC (2.3) and to get an explicit expression for
the error functional (2.4) in terms of the steps of the finite-difference discretization.
For this purpose we first consider (2.1) for x ∈ [0,+∞) with the following boundary
conditions:

−γu′(0) = 1, u(+∞) = 0.

Let us approximate the solution of this problem by a staggered three-point finite-
difference scheme. In a staggered scheme, the numerical solution is defined at primary
nodes

xj , j = 1, . . . , k + 1, with x1 = 0 and xj+1 > xj (1 ≤ j ≤ k),

and the finite-difference derivatives are defined at dual nodes

x̂j , j = 0, . . . , k, with x̂0 = 0 and x̂j+1 > x̂j (1 ≤ j ≤ k − 1).

We denote the step sizes by

hj = xj+1 − xj and ĥj = x̂j − x̂j−1
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and solve the following finite-difference problem:

1

ĥj

(
γ̂j
uj+1 − uj

hj
− γ̂j−1

uj − uj−1

hj−1

)
− λρjuj = 0, j = 2, . . . , k,(2.5)

with the boundary conditions

γ̂1

ĥ1

(
u2 − u1

h1

)
− λρ1u1 = − 1

ĥ1

(2.6)

and

uk+1 = 0.(2.7)

Note that the first boundary condition (2.6) is consistent with the differential equation
since it is the same as creating a dummy node u0, allowing j = 1 in (2.5) and setting

−γ̂0
u1 − u0

h0
= 1.

Discrete analogues of γ and ρ equal γ̂j = ρj = iω in accordance with the definition
(2.2) of their continuous counterparts on [0,+∞).

As follows from [11, 18], u1 = − fkγ , where the so-called discrete impedance func-
tion fk is the Stieltjes fraction or S-fraction

fk(λ) =
1

ĥ1λ +
1

h1 +
1

ĥ2λ + . . .
1

hk−1 +
1

ĥkλ +
1

hk

.(2.8)

It is easy to see that this S-fraction formulation is algebraically equivalent to the
continued fraction formulation of [16] with a proper choice of the steps.

Overall, for the error functional we get

δk = max
λ∈[0,1]

s(λ)

∣∣∣∣√λ− 1

γu1

∣∣∣∣ = max
λ∈[0,1]

s(λ)

∣∣∣∣√λ− 1

fk(λ)

∣∣∣∣ .(2.9)

We are now prepared to show that the proper choice of steps for the finite-
difference discretization makes δk attain the minimum value for all δα,βk .

3. Optimality. Let us return to the finite-difference PML for the general case
given by (1.5) and show that the problem of its optimal finite-difference approximation
can be reduced (possibly not uniquely) to the problem considered in the previous
section, i.e.,

min
α,β

δα,βk = min
β

δ0,β
k ≡ min

h,ĥ
δk.

Fortunately, the latter is a well-studied problem of Chebyshev rational approximation.
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In terms of the new variable x̄ defined by (1.5) we obtain the same problem as
(2.1) but with the following new coefficients:

γ =
iω

iωα + β
, ρ = −ω2

(
α +

β

iω

)
if x̄ > 0.

We use a finite-difference discretization similar to (2.5)–(2.7). Let us denote the

discrete counterparts of α and β, respectively, by αj , α̂j and βj , β̂j . Formally we

assume that αj , βj and α̂j , β̂j reside at points xj and x̂j , respectively. Then the PML
finite-difference solution satisfies (2.5)–(2.7) but with γ̂j = ρj = 1 and the new grid
“steps”

aj = hj

(
α̂j +

β̂j
iω

)
, âj = −ω2ĥj

(
αj +

βj
iω

)
, j = 1, . . . , k.(3.1)

The general finite-difference PML solution can be defined similarly to the one from
the previous section if we use the new steps (3.1) in (2.5)–(2.7). We denote by

fα,βk = fα,βk (λ, ω) the discrete impedance function presented by formula (2.8) with

the new steps (3.1). This function fα,βk is still a regular continued fraction but since
its coefficients can be complex now, it is generally not an S-fraction anymore. We can
equivalently rewrite the PML error (1.6) as

δα,βk = max
λ∈[0,1], ω∈[0,ωmax]

s(λ)

∣∣∣∣∣√λ− 1

iωfα,βk (λ, ω)

∣∣∣∣∣ .(3.2)

It is easy to check that when α = 0 the dependence on ω of function f0,β
k (λ, ω) is such

that iωf0,β
k (λ, ω) = fβk (λ). Obviously, for every set βj , β̂j we can find real steps hj ,

ĥj , so that fβk (λ) = fk(λ), and hence the error functional (3.2) with α = 0 coincides
with (2.9), i.e.,

δk = δ0,β
k .

The following proposition shows that the general complex transformations cannot
produce better PML approximations than their purely imaginary counterparts.

Proposition 3.1. For any α and any β �= 0 we have δα,βk ≥ δk.
Proof. From the definitions it follows that[

iωfα,βk (λ, ω)
] ∣∣∣
ω=0

= iωf0,β
k (λ, ω) = fβk (λ);

therefore,

δα,βk = max
λ∈[0,1], ω∈[0,ωmax]

s(λ)

∣∣∣∣∣√λ− 1

iωfα,βk (λ, ω)

∣∣∣∣∣ ≥ max
λ∈[0,1], ω=0

s(λ)

∣∣∣∣∣√λ− 1

iωfα,βk (λ, ω)

∣∣∣∣∣
= max
λ∈[0,1]

s(λ)

∣∣∣∣∣√λ− 1

iωf0,β
k (λ, ω)

∣∣∣∣∣ = max
λ∈[0,1]

s(λ)

∣∣∣∣√λ− 1

fk(λ)

∣∣∣∣ = δ0,β
k = δk.

The proposition allows us to reduce minimization of δα,βk to minimization of δk,
which is a well-studied problem of Chebyshev rational optimization. Using the fact
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that
√
λ is hypernormal on the support [a, b] of s [23], we conclude that the existence

and uniqueness theorems for the Chebyshev (optimal) rational approximation, which
can be found in [2, Chapter II, Theorems 33 and 34], are applicable. Since the func-
tion fk is an S-fraction, it is a [(k − 1)/k] real rational function (though the opposite
statement is not true in general). However, we will be looking for the optimal approx-
imation in the form of the [(k − 1)/k] real rational function. Such an approximant
is irreducible and has exactly 2k + 1 alternating points (set of ordered noncoincid-
ing points λj , where the weighted error is equal to (−1)jδk) on [a, b]. Hence, the
[(k− 1)/k] optimal rational approximant must have 2k interpolation points on (a, b),
so it must be a Markov–Stieltjes function [15]. But any Markov–Stieltjes function can
be presented as an S-fraction [6, Theorem 5.1.2, Corollary 2], i.e., as (2.8) with all hj
and ĥj being positive. The above consideration can be summarized in the following
proposition.

Proposition 3.2. Let the support of s be a segment [a, b] ⊆ [0, 1], and let s be
continuous and positive on [a, b]. Then there exists the unique minimum of δk with
the optimal approximant being an S-fraction (2.8).

The optimal approximant can be uniquely characterized as the one that has exactly
2k + 1 alternation points, all of which are located on [a, b].

From the above proposition we obtain the following corollary.
Corollary 3.3. The choice of parameters αopt

j = α̂opt
j = 0, βopt

j = hj, β̂
opt
j =

ĥj, which minimize δk, defines a solution that minimizes the functional δα,βk .
Remark 3.1. Generally, there is no uniqueness in optimal approximation by

complex rational functions even in approximating real functions on real intervals [25,
Chapter 5]; that is why we cannot say if our optimal solution is unique. Though,
obviously, βopt is unique, so the remaining question is whether there exists an optimal
pair (αopt, βopt) with αopt �= 0.

Remark 3.2. There is an important reason why we chose the L∞ norm in our
“cost” functional, instead of the L2 norm traditionally used in the literature on PML,
e.g., in [10], in addition to the fact that the former provides more reliable bounds.
Even real rational approximation problems in Lp, 1 ≤ p < ∞, may have more than
one optimal solution [20, section 2.3], so using the L∞ norm at least provides us the
uniqueness for βopt.

Remark 3.3. An interesting question is if a high order or spectral Galerkin PML
discretization can perform better than the optimal finite-difference scheme, and the
answer is that it cannot. The reason is that a Galerkin (and, generally, any Galerkin–
Petrov) process on any k-dimensional subspace also generates a [(k − 1)/k] rational
impedance [13], so it cannot do better than the optimal [(k − 1)/k] approximation.

4. Rational approximation and optimal grids. Perhaps the simplest way
to construct a rational approximation is to compute a Padé approximant satisfying
the conditions

di

dλi

[
fk(λ)−

√
λ
] ∣∣∣
λ=1

= 0, i = 0, . . . , 2k − 1,

in which case the PML becomes algebraically equivalent to the ABC by Engquist and
Majda [14]. However, such an approximation is not efficient for small λ. Better results
can be achieved using a more general continued fraction ABC based on multipoint
Padé approximants [16], but the double root interpolation used there does not produce
the alternation of the error and thus cannot arrive at the optimal approximation.

Real optimal rational approximations in rare cases can be obtained in a closed
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form, and in most cases they are obtained numerically, but in all cases the algorithms
are based on the alternation property which was stated in Proposition 3.2.

4.1. Zolotarjov’s approximation. Consider first the case λmin > 0. The in-
terval [λmin, 1] can be linearly shifted onto [1, 1/λmin] = [1, 1/κ′2] with κ′ =

√
λmin.

Let κ =
√

1− κ′2. Zolotarjov found a [(k − 1)/k] rational function r̃ such that∥∥∥1−
√
λr̃(λ)

∥∥∥
C[1,1/κ′2]

= inf
r

{∥∥∥1−
√
λr(λ)

∥∥∥
C[1,1/κ′2]

}
.

When the error is small, this optimization problem is close to (1.6)–(1.7), in the sense
that if the error of one of these approximation is equal to ε, then the error of the
other is ε + O(ε2).

Theorem 4.1 (see Zolotarjov, 1887 [20]). The best approximant is given by

r̃(λ) = D

∏k−1
l=1 (λ + c2l)∏k
l=1(λ + c2l−1)

,(4.1)

where

cl =
sn2 (lK/(2k);κ)

cn2 (lK/(2k);κ)
, l = 1, . . . , 2k − 1,

K = K(κ) is the complete elliptic integral, and the number D is uniquely determined
by the condition

max
C[1,1/κ′2]

[
1−
√
λr̃(λ)

]
= − min

C[1,1/κ′2]

[
1−
√
λr̃(λ)

]
.

Remark 4.1. If λmin is small, then κ is close to 1. Standard subroutines for
computing elliptic functions fail at the very beginning, because they accept κ and
compute κ′ =

√
1− κ2, losing significant digits. We recommend computing the elliptic

functions by the arithmetic-geometric mean method [1, Chapters 16 and 17] in terms
of κ′ =

√
λmin.

Recall that the asymptotic convergence factor is given by formula (1.9).
In Figure 1 one can see the Chebyshev alternation of the error via λ on the optimal

interval for a Zolotarjov’s grid. The L∞ norm of the error for λmin = 10−3 is given in
Figure 2; it is in good agreement with the estimate (1.9).

4.2. Approximation on [0, 1]. In the case λmin = 0 we numerically solved the
optimization problem (1.6), (1.8). Here we followed the solution of this problem given
in [24] with some minor modifications.

For small values of k we used the unconditionally converging differential correction
method [20, section 2.5], the convergence of which, however, deteriorates rapidly with
the increase of k. To solve the associated convex nonsmooth optimization problem,
we exploited the Fortran 90 package SOLVOPT by A. Kuntsevich and F. Kappel (see
http://bedvgm.kfunigraz.ac.at:8001/alex/solvopt).

For larger k the Remez method [20, section 2.5] was exploited. This algorithm
converges quadratically, provided a good initial guess is given, but otherwise it may
diverge. Therefore, we implemented an extrapolation procedure in the spirit of [24]
to obtain good initial iterants. The Fortran 90 multiple precision package [5] was
incorporated into our Fortran program realizing the Remez method.
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Fig. 1. Impedance error
√
λr̃(λ) − 1 of Zolotarjov’s grid for λmin = 10−3 and k = 10 as a

function of λ.

An error estimate is presented by formula (1.10); it follows from [21]. The actual
distribution of the error for k = 10 is plotted in Figure 3; similarly to the Zolotarjov’s
error it exhibits Chebyshev alternating properties according to Proposition 3.2. The
error graph in Figure 4 is in very good agreement with the error estimate (1.10).

4.3. Computation of grid steps. The optimal rational approximations ob-
tained above can be represented in terms of poles and residues as

fk(λ) =

k∑
i=1

yi
λ− θi

,

but to construct the finite-difference scheme we need them in the form of an S-
fraction (2.8). A recursive algorithm of computing hi and ĥi from yi and θi based on
the Lanczos method is given in [11, subsection 3.1]. In Figure 5 we show grids for
Zolotarjov approximation on [0.001, 1]- and [0, 1]-optimal approximations. Qualita-
tively, both the grids behave similarly to other optimal or Gaussian grids described
in [11, 12, 3, 18, 13]; i.e., they exhibit gradual refinement towards the origin and
alternation of primary and dual nodes. Specifically, both grids are close to geometric
progressions, which corresponds well to the asymptotic property of optimal grids on
spectral intervals with large condition numbers, discovered in [18]. Since the [0, 1]-
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Fig. 2. The computed impedance error of Zolotarjov’s grids max[10−3,1] |
√
λr̃(λ) − 1|.

grid is designed to absorb at all incidence angles, it requires thicker PML than the
Zolotarjov grid.

4.4. Comparison with standard PML. The first advantage of the new method
of implementation of PML over the standard implementation is that the errors of the
newly computed meshes depend only on the incidence angle θ = arccos(

√
λ) and not

on the frequency. The practical importance of this fact is that the user can fix the
mesh only once, depending on the requirements of the accuracy and the spectral range
in question. Of course, the reflection coefficient of such a mesh will also depend on
the discretization of the interior domain, and thus the total error of the ABC will not
be better than the error of the interior discretization.

The second important property is that these meshes give an optimal or near-
optimal error for a chosen spectral interval, and no ad hoc or numerical optimization
of parameters is necessary after the mesh is defined.

Previously, in the literature devoted to PML absorbing conditions, near-optimal
solutions for the parameters were obtained by various numerical optimization schemes
[10, 8]. Comparing the magnitudes of these errors to the errors of the new optimal
PML, we conclude that the new scheme produces a much smaller error. From Figure 2
we see that a 5 point Zolotarjov’s mesh gives an error of approximately 10−4 for all
λ ∈ [10−3, 1], which corresponds to the incident angles θ ∈ [0, 88◦], and a 10 point



298 ASVADUROV, DRUSKIN, GUDDATI, AND KNIZHNERMAN

Absolute error

Fig. 3. The impedance error
√
λ− r̃(λ) of optimal grid for the segment [0, 1] and k = 10 as a

function of λ.

mesh gives an error of 10−8 for the same angles, all independent of the frequency. For
comparison, the PML discretizations in [10] for approximately the same range of the
angles give an error that varies (depending on the frequency) between 10−2 and 10−1

(5 point mesh), and between 10−3 and 10−2 (10 point mesh).
Among the disadvantages of the proposed method we see the nontrivial discretiza-

tion of the time-domain problem.

5. Time-domain realization. The S-fraction representation of the impedance
function fk provides stability of the time-domain solution. The poles of S-fractions
are real negative and their residues are real positive, which is sufficient for the absence
of exponentially growing modes [22].

Unfortunately, our modification of the equation in the absorbing region makes
impossible the simple variable-splitting time-domain realization that is commonly
used in the PML methods. Moreover, the equation in the absorbing region becomes
noncausal, and hence the discretized system has to be implicit.

We will first consider the discretization of our two-dimensional wave equation
with the absorbing region in the half-space x > 0; the case with absorbing layers
on the four edges of a square differs only by the treatment of the corners; i.e., the
subdomains in which the imaginary stretching is applied to both coordinates. The
treatment of the two-dimensional domains will be briefly discussed in the end of the
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Fig. 4. The impedance error max[0,1] |
√
λ− r̃(λ)| for different k.

section.
Let us first Fourier transform (2.1)–(2.2) back to the two-dimensional wave prob-

lem while again keeping the same name for the function:

uxx + uyy − utt = 0 if x < 0, uxxtt + uyy − utt = 0 otherwise,

with the interface conjugation conditions

u(0−, y, t) = u(0+, y, t), u(0−, y, t)x = u(0+, y, t)xt

and the boundary condition u(+∞, y, t) = 0. We will demonstrate the discretization
in time and in the x-direction, while leaving the problem continuous in the y-direction.

For x < 0 we write the discretization of the equations in the standard way:

d

dt
u−j =

V −j − V −j−1

ĥ−j
+ W−j,y, j = 1, . . . , k,(5.1)

d

dt
V −j =

u−j+1 − u−j
h−j

, u−k+1 = 0, j = 1, . . . , k,(5.2)

d

dt
W−j = u−j,y, j = 1, . . . , k.(5.3)
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Fig. 5. Zolotarjov and [0, 1]-optimal grids, k = 10.

Here the unknowns are numbered from right to left with u−1 and V −0 being placed
at the boundary of the PML region. We note that the right-to-left numbering of the
unknowns implies that the steps h−j , ĥ−j are negative.

The only change in the PML region, i.e., for x > 0, is that the steps h+
j and ĥ+

j

get divided by iω, which leads to the following system in time domain:

d

dt
u+
j =

d

dt

V +
j − V +

j−1

ĥ+
j

+ W+
j,y, j = 1, . . . , k,(5.4)

d

dt
V +
j =

d

dt

u+
j+1 − u+

j

h+
j

, u+
k+1 = 0, j = 1, . . . , k,(5.5)

d

dt
W+
j = u+

j,y, j = 1, . . . , k.(5.6)

Here the numbering of the unknowns is left to right; hence the steps h+
j , ĥ+

j are
positive.

It is clear that to get the total number of equations equal to the total number of
unknowns we need two extra equations; these are

u−1 = u+
1 , V −0 = V +

0 .(5.7)

The time discretization follows naturally: we place variables u−j at time levels n∆t

and variables V −j and W−j at time levels (n + 1/2)∆t, where ∆t > 0 is a time step.
The system (5.1)–(5.3) is thus solved in the standard explicit “leap-frog” fashion.
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For x > 0, however, we have to place variables u+
j and V +

j at the same time levels

n∆t, and only the variables W+
j at time levels (n+ 1/2)∆t; thus (5.4), (5.5), and the

second equation in (5.7) will compose the system of equations that needs to be solved
at every time step. With the use of the notation

[Dtf ]m+1/2 =
fm+1 − fm

∆t
, [Atf ]m+1/2 =

fm+1 + fm

2
,

where one can put m = n or m = n + 1/2, we rewrite the scheme (5.1)–(5.7) as

[Dtu1]n+1/2 =
V
−,n+1/2
1 − [AtV

+
0 ]n+1/2

ĥ−1
+ W

−,n+1/2
1,y ,

[Dtu
−
j ]n+1/2 =

V
−,n+1/2
j − V

−,n+1/2
j−1

ĥ−j
+ W

−,n+1/2
j,y , j = 2, . . . , k,

[DtV
−
j ]n =

u−,nj+1 − u−,nj

h−j
, j = 1, . . . , k,

[DtW
−
j ]n = u−,nj,y , j = 1, . . . , k,

for x ≤ 0, and

[Dtu
+
j ]n+1/2 =

[DtV
+
j ]n+1/2 − [DtV

+
j−1]n+1/2

ĥ+
j

+ W
+,n+1/2
j,y , j = 1, . . . , k,

[DtV
+
j ]n+1/2 =

[Dtu
+
j+1]n+1/2 − [Dtu

+
j ]n+1/2

h−j
, j = 1, . . . , k,

[DtW
+
j ]n = u+,n

j,y , j = 1, . . . , k,

for x > 0. We note that variables V +
j with j > 0 can be excluded from the scheme

analytically by substituting the second of the three equations above into the first.
The time marching follows in an obvious fashion.

The discretization of the two-dimensional model is performed as a tensor product
of the two one-dimensional discretizations. It can be seen that in the corners of
a rectangular domain in this case the equation is independent of time. In fact, it
turns out that the Helmholtz equation u − uxx − uyy = 0 is solved there, with the
time dependent boundary conditions. For such an equation on a given mesh one
can compute the Neumann-to-Dirichlet map on the boundary and include only the
variables defined on the boundary in the total scheme.

It becomes clear that the computational cost of the new boundary condition
amounts to solving a linear system with a tridiagonal matrix of dimension k for
each point on the interface at every time step. This cost will be linear in k with
the constant close to the one for the implementation of standard Berenger’s PML
with variable splitting. The computation of the corner regions for a two-dimensional
problem requires computing at each time step a partial Neumann-to-Dirichlet map
on a k × k square, which again is an operation proportional to the total number of
nodes in the absorbing region.

6. Numerical experiments. We performed a series of experiments for the fol-
lowing elongated model: the source and the receiver, positioned on the same vertical
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Fig. 6. The relative error for meshes A and B of Experiment 1.

line, are separated by 10 wavelengths with the new PML boundary conditions posi-
tioned at two wavelengths on both sides of that line, as well as below the source and
above the receiver. For such an elongation the average incidence angle is θ = arctan 0.2
and the maximum incidence angle is θ = arctan 0.1; hence the minimum value of λ is
approximately 10−2.

We take the source wavelet as the second derivative of a Blackman–Harris pulse
[17] with the maximum frequency Fmax = 1. The signal recorded at the receiver was
compared with the signal recorded in the “infinite” discrete experiment, i.e., the one
in which the discrete computational domain is big enough so that any reflections from
the boundary do not get recorded within the assumed time frame. The error of the
two signals was calculated as L∞(t), relative to the signal of this larger computation.
As this error obviously depends on the discretization of the propagative part of the
computational domain, we performed the experiments using 8, 16, and 32 points per
wavelength in the interior part.

The experiment was carried out using two different absorbing meshes: mesh A
was taken as Zolotarjov’s optimized for the interval λ ∈ [10−2, 1] with the total of five
points, and mesh B was taken to be optimal on λ ∈ [0, 1] with the total of nine points.
The first mesh was chosen to take advantage of the a priori knowledge of the range
of λ; the second was taken to be of approximately the same error but assuming no
such knowledge. As we see, a priori knowledge of the range of incidence angles lets
one decrease the amount of work required for absorption almost twice for the given
tolerance.

The relative errors (i.e., with s(λ) defined as in (1.7)—notice that mesh B was
designed to provide minimum error in a different norm!) for these meshes are presented
in Figure 6, and we see that these two meshes have approximately the same order of
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Table 1
The L∞(t) relative error in percent for Experiment 1.

Mesh A, k = 5 Mesh B, k = 9
Frequency 8 ppw. 16 ppw. 32 ppw. 8 ppw. 16 ppw. 32 ppw.
Fmax = 1 1.286 0.712 0.710 1.618 0.947 0.906
Fmax = 2 1.191 0.641 0.387 1.258 0.605 0.460
Fmax = 4 1.129 0.591 0.335 1.142 0.563 0.333

approximation on the spectral interval of interest. It is thus not surprising that the
L∞(t) errors that we obtain are similar too, as seen in the line Fmax = 1 of Table 1.

It is clear that the error is partly due to the reflection of the evanescent modes from
the boundary between the interior propagative part of the domain and the absorbing
part. To consider the importance of evanescent reflections, we increase the frequency
of the source, thus keeping the incidence angles of the experiment unchanged, while
effectively increasing the distance from the absorbing boundary to the receiver in
terms of the wavelengths, and decreasing the effect of the evanescent reflections. The
errors resulting from this change (with frequencies Fmax = 2 and Fmax = 4) are shown
on the corresponding lines of Table 1. We note that with this change the boundary
conditions become more effective for all values of the discretization of the interior
for both meshes, but the effect of the decrease of the evanescent modes is especially
notable for fine discretization of 32 points per wavelength, at which the boundary
conditions approach the saturation error.

For the ABCs to be most effective, they need to be able to absorb not only the
propagative modes of the solution but also the evanescent modes. Our proposed PML
ABCs are optimal in terms of the absorption of the propagative part; however, the
evanescent modes were left untreated. The obvious solution to this problem is to
place this boundary condition at a distance to the closest receiver; this will ensure
that the evanescent modes of the solution get absorbed. However, in the problems
in which the receiver stays closer to the boundary conditions than any scatterer, the
necessity of placing the boundary conditions away from the receiver clearly decreases
the effectiveness of such conditions. This problem can be cured by using the regular
nonabsorbing optimal meshes [3, 11, 12, etc.] in the layers between the receiver and
the boundary conditions. This approach allows one to solve the problem of absorbing
both the evanescent and propagative modes in an optimal way.

It can be seen from the results of these experiments that in the cases in which
the spectral interval is known a priori (as above) it is reasonable to use Zolotarjov’s
meshes, specifically designed for such an interval. However, when such a mesh is not
available, or in the case where the spectral interval is not known in advance (such as
in models with multiple reflections), we expect that it will be advantageous to use the
universal optimal mesh of the same type as “B” above, which satisfies the accuracy
requirements.

7. Conclusions. We have shown that the optimal choice of the attenuation
parameters for Berenger PML ABCs can be achieved in the limiting case of the purely
imaginary coordinate stretching approach. Indeed, it was questioned by one of the
reviewers if the proposed approach can and should be included in the class of PML
boundary conditions, because, unlike those conditions, it leads to a diffusion-type
equation in the absorbing region. However, the situation when a minimum is attained
on the boundary of the closure of a set is often encountered in optimization theory,
and thus our new ABC is a part of the closure of the classical PML set.
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For this limiting case, the problem becomes frequency independent and can be
viewed as a classical Chebyshev rational approximation of the square root function,
and the parameters that need to be chosen are the steps of the grid of the resulting
finite-difference scheme. We consider two different error functions and show how to
obtain the optimal grid steps for them. The resulting scheme exhibits attenuative
properties superior to those of the classical PML known to the authors; the goal
attenuation of 1% can be achieved using as few as five points in the absorbing region.
The drawback of the resulting scheme is that, unlike the classic PML, it needs to
be implemented in a fashion that is different in the absorbing and the propagating
regions. The details of the discretization of a two-dimensional scalar wave problem
are discussed and the results of numerical experiments are presented.

Acknowledgments. The authors are grateful to R. Varga for useful discussions
and to D. Bailey (NASA Ames Research Center) for the publication of package [5] on
the Internet.
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Abstract. Poincaré–Friedrichs inequalities for piecewise H1 functions are established. They can
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1. Introduction. Let Ω be a connected open polyhedral domain in R
d (d =

2, 3), and let H1(Ω) be the Sobolev space of (real-valued) functions in L2(Ω) whose
first order distributional derivatives also belong to L2(Ω). The Poincaré–Friedrichs
inequalities (cf. [23, 29]) state that

‖ζ‖L2(Ω) ≤ C
(
|ζ|H1(Ω) +

∣∣∣∣∫
Γ

ζ ds

∣∣∣∣) ∀ ζ ∈ H1(Ω),(1.1)

‖ζ‖L2(Ω) ≤ C
(
|ζ|H1(Ω) +

∣∣∣∣∫
Ω

ζ dx

∣∣∣∣) ∀ ζ ∈ H1(Ω),(1.2)

where

|ζ|H1(Ω) =

(∫
Ω

|∇ζ|2 dx
)1/2

,

Γ is a measurable subset of ∂Ω with a positive (d − 1)-dimensional measure, and ds
is the infinitesimal (d− 1)-dimensional volume.

In this paper we establish analogues of (1.1) and (1.2) for piecewise H1 functions
with respect to a partition P of Ω by open polygons (d = 2) or polyhedra (d = 3),
which is not necessarily a triangulation of Ω. In other words, we assume only that

D ∩D′ = ∅ if D and D′ are distinct members of P, and Ω =
⋃
D∈P

D.

Typical two- and three-dimensional examples of partitions are depicted in Figure 1.1,
where the square is partitioned into seven subdomains and the cube is partitioned
into five subdomains. The space H1(Ω,P) of piecewise H1 functions is defined by

H1(Ω,P) = {ζ ∈ L2(Ω) : ζD = ζ
∣∣
D
∈ H1(D) ∀D ∈ P},
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Fig. 1.1. Examples of general partitions.

and the seminorm | · |H1(Ω,P) is defined by

|ζ|H1(Ω,P) =

(∑
D∈P

∫
D

|∇ζ|2 dx
)1/2

.

We will denote by S(P,Ω) the set of all the (open) sides (i.e., edges (d = 2) or
faces (d = 3)) common to two subdomains in P. For example, there are ten such
edges in the two-dimensional example in Figure 1.1 and eight such faces in the three-
dimensional example. (The precise definition of S(P,Ω) will be given in sections 6
and 7.)

The following are analogues of the Poincaré–Friedrichs inequalities for ζ ∈ H1(Ω,P):

‖ζ‖2L2(Ω) ≤ C
|ζ|2H1(Ω,P) +

∑
σ∈S(P,Ω)

|σ|d/(1−d)
(∫

σ

[ζ] ds

)2

+

(∫
Γ

ζ ds

)2
 ,(1.3)

‖ζ‖2L2(Ω) ≤ C
|ζ|2H1(Ω,P) +

∑
σ∈S(P,Ω)

|σ|d/(1−d)
(∫

σ

[ζ] ds

)2

+

(∫
Ω

ζ dx

)2
 ,(1.4)

where |σ| is the (d − 1)-dimensional volume of the side σ, [ζ] denotes the jump of
the function ζ across a side, and the positive constant C depends only on the shape
regularity of the partition P. In particular, these inequalities are valid for partitions
that are not quasi-uniform. (More details on the shape regularity assumptions are
given in sections 6 and 7.)

Remark 1.1. The Poincaré–Friedrichs inequalities (1.3) and (1.4) can also be
written in the following equivalent forms:

‖ζ‖2L2(Ω) ≤ C
|ζ|2H1(Ω,P) +

∑
σ∈S(P,Ω)

(diamσ)−1‖π0,σ[ζ]‖2L2(σ) +

(∫
Γ

ζ ds

)2
 ,

‖ζ‖2L2(Ω) ≤ C
|ζ|2H1(Ω,P) +

∑
σ∈S(P,Ω)

(diamσ)−1‖π0,σ[ζ]‖2L2(σ) +

(∫
Ω

ζ dx

)2
 ,

where π0,σ is the orthogonal projection operator from L2(σ) onto P0(σ), the space of
constant functions on σ.
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The inequalities (1.3) and (1.4) imply that

‖ζ‖L2(Ω) ≤ C
(
|ζ|H1(Ω,P) +

∣∣∣∣∫
Γ

ζ ds

∣∣∣∣) ,(1.5)

‖ζ‖L2(Ω) ≤ C
(
|ζ|H1(Ω,P) +

∣∣∣∣∫
Ω

ζ dx

∣∣∣∣) ,(1.6)

provided ∫
σ

[ζ] ds = 0 ∀σ ∈ S(P,Ω) .(1.7)

Thus we immediately obtain (1.5) and (1.6) for ζ belonging to many classical noncon-
forming finite element spaces [15, 19, 21, 18, 25, 17, 12, 11] where P is a triangulation
of Ω, and for ζ belonging to mortar element spaces [5, 6, 26, 4, 30, 20] for a general
partition P.

The estimates (1.3) and (1.4) also imply that

‖ζ‖2L2(Ω) ≤ C
|ζ|2H1(Ω,P) +

∑
σ∈S(P,Ω)

|σ|1/(1−d)
∫
σ

[ζ]2 ds+

∫
Γ

|ζ|2 ds
 ,(1.8)

‖ζ‖2L2(Ω) ≤ C
|ζ|2H1(Ω,P) +

∑
σ∈S(P,Ω)

|σ|1/(1−d)
∫
σ

[ζ]2 ds+

(∫
Ω

ζ dx

)2
(1.9)

for all ζ ∈ H1(Ω,P). Such inequalities are useful for the analysis of discontinuous
Galerkin methods (cf. [14, 24, 3] and the references therein). It should be pointed out
that for d = 2 and Γ = ∂Ω the inequality (1.8) is slightly stronger than an earlier one
obtained in [2], which has the form

‖ζ‖2L2(Ω) ≤ C
|ζ|2H1(Ω,P) +

∑
σ∈S(P,Ω)

1

|σ|
∫
σ

[ζ]2 ds+
∑
σ⊆∂Ω

1

|σ|
∫
σ

|ζ|2 ds
 ,(1.10)

where the integrals on the edges along ∂Ω are also penalized.
Note that the classical inequalities (1.1) and (1.2) are simple consequences of the

compactness of the embedding of H1(Ω) in L2(Ω) (cf. [23, 29]), while the proof of
(1.10) in [2] relies on the much deeper regularity theory for the Laplace operator on
nonsmooth domains. In contrast, the approach in this paper is based on the classical
Poincaré–Friedrichs inequalities and therefore the elementary nature of (1.3) and (1.4)
(and hence of (1.8) and (1.9)) is restored.

The rest of the paper is organized as follows. We will first establish (1.3) and (1.4)
for the simpler case where P is a simplicial triangulation of Ω. The key idea is to bridge
the classical estimates and the discontinuous estimates through the construction of a
nonconforming P1 interpolant and through the connections between nonconforming P1

finite elements (in two and three dimensions) and their conforming relatives. These are
carried out in sections 2 and 3. Poincaré–Friedrichs inequalities for nonconforming P1

finite element functions are then derived in section 4, followed by Poincaré–Friedrichs
inequalities for piecewise H1 functions with respect to a simplicial triangulation of
Ω in section 5. Finally, Poincaré–Friedrichs inequalities for piecewise H1 functions
with respect to general partitions are given in sections 6 and 7 for two- and three-
dimensional domains, and some concluding remarks are given in section 8.
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2. A nonconforming P1 interpolant. In this and the next three sections we
restrict our attention to the case where the partition is actually a simplicial triangula-
tion T of Ω consisting of triangles (d = 2) or tetrahedra (d = 3); i.e., the intersection
of the closures of two members of T is either empty, a vertex, a closed edge, or a
closed face. In this case S(T ,Ω) is just the set of interior open edges (d = 2) or open
faces (d = 3). We will also denote the set of boundary edges or faces by S(T , ∂Ω)
and the minimum angle of the triangles or tetrahedra in T by θT .

To avoid the proliferation of constants, we henceforth use the notation A � B to
represent the statement A ≤ κ(θT )B, where the (generic) function κ : R+ −→ R+ is
continuous and independent of T . The notation A ≈ B is equivalent to A � B and
B � A.

The nonconforming P1 finite element space (cf. [15]) associated with the triangu-
lation T is VT = {v ∈ L2(Ω) : vT

= v
∣∣
T
∈ P1(T ) for any T ∈ T and v is continuous at

the center of the common side of any two neighboring triangles (d = 2) or tetrahedra
(d = 3)}. A function in VT is completely determined by its nodal values at the centers
of the sides of the triangles or tetrahedra in T (cf. Figure 2.1).

Fig. 2.1. P1 nonconforming finite elements.

The interpolation operator I : H1(Ω, T ) −→ VT is defined by

(Iζ)(cσ) = 1

|σ|
∫
σ

{ζ} ds ∀σ ∈ S(T ,Ω) ∪ S(T , ∂Ω),(2.1)

where cσ is the center of the side σ and {ζ} is the average of the traces from the two
sides of σ. For σ ⊂ ∂Ω, we take {ζ} to be ζ.

Let ΠT : H1(T ) −→ P1(T ) be the local interpolation operator defined by

(
ΠT ζ

)
(cσ) =

1

|σ|
∫
σ

ζ ds ∀σ ⊂ ∂T .(2.2)

From (2.1) and (2.2) we see that the difference of the two interpolants on T ∈ T is
given by

(Iζ −ΠT ζ
)
(cσ) =


1

2|σ|
∫
σ

[ζ] ds if σ ⊂ ∂T \ ∂Ω,
0 if σ ⊂ ∂T ∩ ∂Ω,

(2.3)

where the jump [ζ] is measured by subtracting the interior trace from the exterior
trace.
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Using (2.3) and standard finite element estimates (cf. [13, 10]), we find

|Iζ −ΠT ζ|2H1(T ) � |T |1−(2/d)
∑
σ⊂∂T

[(Iζ −ΠT ζ
)
(cσ)

]2
� |T |1−(2/d)

∑
σ⊂∂T\∂Ω

1

|σ|2
(∫

σ

[ζ] ds

)2

(2.4)

�
∑

σ⊂∂T\∂Ω

|σ|d/(1−d)
(∫

σ

[ζ] ds

)2

,

‖Iζ −ΠT ζ‖2L2(T ) � |T |
∑
σ⊂∂T

[(Iζ −ΠT ζ
)
(cσ)

]2
(2.5)

�
∑

σ⊂∂T\∂Ω

|σ|(2−d)/(d−1)

(∫
σ

[ζ] ds

)2

,

where |T | is the d-dimensional volume of T . Note that

|T | ≈ |σ|d/(d−1) for σ ⊂ ∂T .(2.6)

On the other hand, we also have the following well-known estimates (cf. [15]) for
the local interpolation operator:

‖ζ −ΠT ζ‖2L2(T ) + |T |2/d |ΠT ζ|2H1(T ) � |T |2/d |ζ|2H1(T ) .(2.7)

Combining the estimates (2.4)–(2.7) and summing over all T ∈ T we find

|Iζ|2H1(Ω,T ) � |ζ|2H1(Ω,T ) +
∑

σ∈S(T ,Ω)

|σ|d/(1−d)
(∫

σ

[ζ] ds

)2

,(2.8)

‖ζ − Iζ‖2L2(Ω) �
∑
T∈T
|T |2/d |ζ|2H1(T ) +

∑
σ∈S(T ,Ω)

|σ|(2−d)/(d−1)

(∫
σ

[ζ] ds

)2

.(2.9)

3. The connections between nonconforming P1 finite elements and their
conforming relatives. Let WT ⊂ H1(Ω) be the P2 Lagrange finite element space
associated with T for d = 2 and the P3 Lagrange finite element space associated
with T for d = 3. The nodal variables (degrees of freedom) of these elements are
depicted in Figure 3.1. We will denote the set of the centers of the sides of T by
C(T ), denote the set of the other nodes by N (T ), and define C(T ) = ⋃T∈T C(T ) and
N (T ) = ⋃T∈T N (T ).

Remark 3.1. The nonconforming P1 finite element and the conforming P2 (re-
spectively, P3) finite element in two (respectively, three) dimensions are relatives in

Fig. 3.1. Two-dimensional P2 and three-dimensional P3 Lagrange elements.
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Fig. 3.2. A sequence of cj ’s connecting T� and T�.

the sense that the shape functions of the first are also shape functions of the latter and
the nodal variables of the first are also nodal variables of the latter (cf. Figures 2.1
and 3.1).

The finite element spaces VT and WT are connected by the operators E : VT −→
WT and F :WT −→ VT defined by

(
Ev
)
(p) =

1

|Ξp|
∑
T∈Ξp

v
T
(p) ∀ p ∈ N (T ) ∪ C(T ),(3.1)

(
Fw
)
(p) = w(p) ∀ p ∈ C(T ),(3.2)

where Ξp = {T ∈ T : p ∈ ∂T} is the set of the simplexes sharing p as a vertex and
|Ξp| is the number of elements in Ξp. Note that

(
Ev
)
(p) = v(p) for p ∈ C(T ) since v

is continuous at the centers of the sides. For d = 2, these connection operators were
introduced in [8, 9] and used in the analysis of domain decomposition methods and
multigrid methods for nonconforming finite elements.

The following lemma contains the basic estimates for E and F .

Lemma 3.2. It holds that

‖Ev − v‖2L2(Ω) ≈
∑
T∈T
|T |2/d|v|2H1(T ) ∀ v ∈ VT ,(3.3)

‖Fw − w‖2L2(Ω) ≈
∑
T∈T
|T |2/d|w|2H1(T ) ∀w ∈WT .(3.4)

Proof. Let p ∈ N (T ) and T�, T ∈ Ξp. We can find a sequence c1, . . . , cm in
C(T ) so that c1 ∈ ∂T�, cm ∈ ∂T, and cj , cj+1 belong to the boundary of Tj ∈ Ξp
for j = 1, . . . ,m − 1 (cf. Figure 3.2 for a two-dimensional example with m = 4).
Note that |Ξp| and hence m are bounded by a constant depending continuously on
the minimum angle θT . Hence it follows from the Cauchy–Schwarz inequality and the
mean value theorem that

[v
T�
(p)− v

T�
(p)]2 � [v

T�
(p)− v

T�
(c1)]

2 +

m−1∑
j=1

[v
Tj
(cj)− vTj

(cj+1)]
2

+ [v
T�
(cm)− v

T�
(p)]2(3.5)

�
∑
T ′∈Ξp

|T ′|(2/d)−1|v|2H1(T ′) .
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Using (3.1), (3.5), and the Cauchy–Schwarz inequality we find for any T ∈ Ξp[(
Ev − v

T

)
(p)
]2 �

∑
T ′∈Ξp

|T ′|(2/d)−1|v|2H1(T ′) ∀ v ∈ VT .(3.6)

Let T ∈ T . We have, by (3.6),

‖Ev − v‖2L2(T ) ≈ |T |
∑

p∈N (T )∪C(T )

[(
Ev − v

T

)
(p)
]2

= |T |
∑

p∈N (T )

[(
Ev − v

T

)
(p)
]2

(3.7)

�
∑

p∈N (T )

∑
T ′∈Ξp

|T ′|2/d|v|2H1(T ′),

where we have also used the fact that

|T | ≈ |T ′| for T ′ ∈ Ξp and p ∈ N (T ) .(3.8)

The estimate (3.3) then follows by summing (3.7) over all T ∈ T .
Observe that, on each T ∈ T , Fw is just the linear nodal interpolant of w with the

nodes placed at the centers of the sides of T . It follows from standard interpolation
and inverse estimates (cf. [13, 10]) that

‖Fw − w‖2L2(T ) � |T |4/d|w|2H2(T ) � |T |2/d|w|2H1(T ) ∀w ∈WT .(3.9)

The estimate (3.4) follows by summing (3.9) over all T ∈ T .
Corollary 3.3. It holds that

‖Ev‖L2(Ω) ≈ ‖v‖L2(Ω) ∀ v ∈ VT ,(3.10)

|Ev|H1(Ω) ≈ |v|H1(Ω,T ) ∀ v ∈ VT .(3.11)

Proof. It follows from (3.3) and a standard inverse estimate (cf. [13, 10]) that

‖Ev‖L2(Ω) ≤ ‖Ev − v‖L2(Ω) + ‖v‖L2(Ω)

�
(∑
T∈T
|T |2/d|v|2H1(T )

)1/2

+ ‖v‖L2(Ω)(3.12)

� ‖v‖L2(Ω) ∀ v ∈ VT .
Similarly from (3.4) we have

‖Fw‖L2(Ω) � ‖w‖L2(Ω) ∀w ∈WT .(3.13)

It is clear from definitions (3.1) and (3.2) that

F (Ev) = v ∀ v ∈ VT ,(3.14)

and hence, by (3.13),

‖v‖L2(Ω) = ‖F (Ev)‖L2(Ω) � ‖Ev‖L2(Ω) ∀ v ∈ VT .(3.15)

The estimates (3.12) and (3.15) together yield (3.10).
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By (3.3) and a standard inverse estimate, we also find

|Ev|H1(Ω) ≤ |Ev − v|H1(Ω,T ) + |v|H1(Ω,T )

�
(∑
T∈T
|T |−(2/d)‖Ev − v‖2L2(T )

)1/2

+ |v|H1(Ω,T )(3.16)

� |v|H1(Ω,T ) ∀ v ∈ VT .

Similarly, we derive from (3.4) that

|Fw|H1(Ω,T ) � |w|H1(Ω) ∀w ∈WT .(3.17)

Again, the estimate (3.11) follows from (3.14), (3.16), and (3.17).

4. Poincaré–Friedrichs inequalities for nonconforming P1 finite element
functions. Functions in the nonconforming P1 finite element space VT are known to
satisfy Poincaré–Friedrichs inequalities (cf. [28, 27, 16, 22]). Here we give a simple
derivation of such inequalities using the connection between VT and its conforming
relative WT developed in section 3.

Let Φ be a seminorm on H1(Ω) with the following properties:

Φ(φ) ≤ C‖φ‖H1(Ω) ∀φ ∈ H1(Ω),(4.1)

where C is a positive constant, and

for a constant function c, Φ(c) = 0 if and only if c = 0.(4.2)

Then we have the generalized Poincaré–Friedrichs inequality (cf. [23]) for H1(Ω):

‖φ‖L2(Ω) ≤ C
[|φ|H1(Ω) +Φ(φ)

] ∀φ ∈ H1(Ω),(4.3)

which follows from the compactness of the embedding of H1(Ω) in L2(Ω).
We can derive from (4.3) a generalized Poincaré–Friedrichs inequality for noncon-

forming P1 finite element functions.
Theorem 4.1. Let Φ be a seminorm on H1(Ω, T ) that satisfies (4.1), (4.2), and

the additional condition that

Φ(Ev − v) � |v|H1(Ω,T ) ∀ v ∈ VT ,(4.4)

where E : VT −→ WT is defined by (3.1). Then there exists a continuous function
κ : R+ −→ R+, independent of T such that

‖v‖L2(Ω) ≤ κ(θT )
(|v|H1(Ω,T ) +Φ(v)

) ∀ v ∈ VT .(4.5)

Proof . Combining (3.10), (3.11), (4.3), and (4.4), we find

‖v‖L2(Ω) ≈ ‖Ev‖L2(Ω) � |Ev|H1(Ω) +Φ(Ev)

� |v|H1(Ω,T ) +Φ(Ev − v) + Φ(v)

� |v|H1(Ω,T ) +Φ(v) ∀ v ∈ VT .

The following are examples of seminorms that satisfy (4.1), (4.2), and (4.4).
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Example 4.2. Let ψ be a square integrable function on ∂Ω such that∫
∂Ω

ψ ds �= 0,

and let Φ1 : H1(Ω, T ) −→ R be defined by

Φ1(ζ) =

∣∣∣∣∫
∂Ω

ψζ ds

∣∣∣∣ .(4.6)

Then (4.2) is obvious and (4.1) follows from the trace theorem. Condition (4.4) can
be established as follows:

[Φ1(Ev − v)]2 ≤ ‖ψ‖2L2(∂Ω)‖Ev − v‖2L2(∂Ω)

�
∑

σ∈S(T ,∂Ω)

‖Ev − v‖2L2(σ)

�
∑

σ∈S(T ,∂Ω)

|σ|
∑

p∈N (σ)

[
(Ev − v

Tσ
)(p)

]2
,

where N (σ) denotes the set of the nodes on σ̄ excluding the center of σ, and Tσ is the
member of T whose boundary contains σ. Combining this last estimate with (2.6),
(3.6), and (3.8), we find

[Φ1(Ev − v)]2 �
∑
T∈T

|∂T∩∂Ω|>0

|T |1/d|v|2H1(T ) � |v|2H1(Ω,T ) .

Example 4.3. Let ψ be a square integrable function on Ω such that∫
Ω

ψ dx �= 0,

and let Φ2 : H1(Ω, T ) −→ R be defined by

Φ2(ζ) =

∣∣∣∣∫
Ω

ψζ dx

∣∣∣∣ .(4.7)

Then (4.1) and (4.2) are trivial, and (4.4) follows from (3.3).
Remark 4.4. The Poincaré–Friedrichs inequalities (1.5) and (1.6) for P1 noncon-

forming finite element functions follow immediately from Theorem 4.1 if we take ψ
to be the characteristic function of Γ in (4.6) and the characteristic function of Ω
in (4.7).

5. Poincaré–Friedrichs inequalities forH1(Ω,T ). Let T be a simplicial tri-
angulation of Ω. The last ingredient for establishing a generalized Poincaré–Friedrichs
inequality for H1(Ω, T ) is the following condition on Φ:

[Φ(Iζ − ζ)]2 � |ζ|2H1(Ω,T ) +
∑

σ∈S(T ,Ω)

|σ|d/(1−d)
(∫

σ

[ζ] ds

)2

(5.1)

for all ζ ∈ H1(Ω, T ) .
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Theorem 5.1. Let Φ be a seminorm on H1(Ω, T ) that satisfies the conditions
(4.1), (4.2), (4.4), and (5.1). Then there exists a continuous function κ : R+ −→ R+,
independent of T , such that

‖ζ‖2L2(Ω) ≤ κ(θT )
|ζ|2H1(Ω,T ) +

∑
σ∈S(T ,Ω)

|σ|d/(1−d)
(∫

σ

[ζ] ds

)2

+ [Φ(ζ)]2

(5.2)

for all ζ ∈ H1(Ω, T ).
Proof . Combining (2.8), (2.9), (4.5), and (5.1) we have

‖ζ‖2L2(Ω) � ‖ζ − Iζ‖2L2(Ω) + ‖Iζ‖2L2(Ω)

� ‖ζ − Iζ‖2L2(Ω) + |Iζ|2H1(Ω,T ) + [Φ(Iζ)]2
� ‖ζ − Iζ‖2L2(Ω) + |Iζ|2H1(Ω,T ) + [Φ(Iζ − ζ)]2 + [Φ(ζ)]2

� |ζ|2H1(Ω,T ) +
∑

σ∈S(T ,Ω)

|σ|d/(1−d)
(∫

σ

[ζ] ds

)2

+ [Φ(ζ)]2 .

Note that condition (5.1) is satisfied by the seminorms Φ1 (Example 4.2) and Φ2

(Example 4.3). The case of Φ2 follows immediately from (2.9). The case of Φ1 can
be established as follows.

First of all we have, by the Cauchy–Schwarz inequality,

[Φ1(Iζ − ζ)]2 �
∑
T∈T

|∂T∩∂Ω|>0

‖Iζ − ζ‖2L2(∂T∩∂Ω)(5.3)

�
∑
T∈T
‖Iζ −ΠT ζ‖2L2(∂T ) +

∑
T∈T
‖ΠT ζ − ζ‖2L2(∂T ) .

Using the equivalence of norms on finite-dimensional spaces and a scaling argument,
we have

‖Iζ −ΠT ζ‖2L2(∂T ) � |T |−(1/d)‖Iζ −ΠT ζ‖2L2(T ) .(5.4)

On the other hand, it follows from the trace theorem, the Bramble–Hilbert lemma
(cf. [7]), and scaling that

‖ΠT ζ − ζ‖2L2(∂T ) � |T |1/d|ζ|2H1(T ) � |ζ|2H1(T ) .(5.5)

From (2.5), (2.6), and (5.3)–(5.5) we then obtain the estimate (5.1):

[Φ1(Iζ − ζ)]2 � |ζ|2H1(Ω,T ) +
∑
T∈T

∑
σ⊂∂T\∂Ω

|σ|−1/(d−1)|σ|(2−d)/(d−1)

(∫
σ

[ζ] ds

)2

� |ζ|2H1(Ω,T ) +
∑
T∈T

∑
σ⊂∂T\∂Ω

|σ|−1

(∫
σ

[ζ] ds

)2

� |ζ|2H1(Ω,T ) +
∑

σ∈S(T ,Ω)

|σ|d/(1−d)
(∫

σ

[ζ] ds

)2

.
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Remark 5.2. Let TΩ be the set of all simplicial triangulations of Ω. From here
on we assume that Φ :

⋃
T ∈TΩ

H1(Ω, T ) −→ R is a seminorm for every T ∈ TΩ and
that it satisfies the conditions (4.1), (4.2), (4.4), and (5.1) for every T ∈ TΩ.

Remark 5.3. The Poincaré–Friedrichs inequalities (1.3) and (1.4) for ζ ∈ H1(Ω, T )
follow immediately from Theorem 5.1 if the functions ψ in (4.6) and (4.7) are chosen
as in Remark 4.4. Similar remarks also apply in the next two sections.

6. Poincaré–Friedrichs inequalities for H1(Ω,P) on two-dimensional
domains. Let us first give the precise definition of interior edges for a general parti-
tion P. We define a vertex of the partition P to be a vertex of any of the subdomains
in P. (For example, the partition of the square in Figure 1.1 has 14 vertices.) We then
define an open edge of P to be an open line segment on the boundary of a subdomain
in P bounded between two of the vertices of P. The set S(P,Ω) contains the open
edges of P that are common to the boundaries of two members of P.

Remark 6.1. The concept of an edge of a polygon D ∈ P and the concept of
an edge of P on ∂D should be distinguished. For example, a square always has four
edges, while there are five edges of the two-dimensional partition in Figure 1.1 on the
boundary of the square at the lower right corner.

In order to apply Theorem 5.1 we define the set

TP ={T : T is a triangulation of Ω by triangles and each member of(6.1)

S(P,Ω) is also an edge of T }.
(A triangulation belonging to TP for the two-dimensional example in Figure 1.1 is
depicted in Figure 6.1.) By definition (6.1), H1(Ω,P) is a subspace of H1(Ω, T ) for
any T ∈ TP . Observing that for a function ζ ∈ H1(Ω,P) the jump [ζ] is zero across
the edges of T that are not in S(P,Ω), we immediately deduce the following result
from Theorem 5.1.

Fig. 6.1. A triangulation in TP for a partition of a square.

Theorem 6.2. Let Φ be as in Remark 5.2. Then we have

‖ζ‖2L2(Ω) ≤
[

inf
T ∈TP

κ(θT )
]|ζ|2H1(Ω,P) +

∑
σ∈S(P,Ω)

|σ|−2

(∫
σ

[ζ] ds

)2

+ [Φ(ζ)]2

(6.2)

for all ζ ∈ H1(Ω,P), where κ : R+ −→ R+ is a continuous function independent
of P.

In an abstract sense the set {θT : T ∈ TP} provides a measure of the shape
regularity of the partition P and infT ∈TP κ(θT ) is a constant depending on the shape
regularity of P.

On the other hand, we can also describe the shape regularity of P more concretely
in terms of the shape regularity of individual subdomains and the relative positions
of subdomains sharing a common edge of P.
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Fig. 6.2. An example of the construction of TPi
.

The shape regularity of a polygonal (or polyhedral) domain D can be measured
by using an affine homeomorphism between D and a reference domain, and by using
the aspect ratio of D defined by the quotient (diameter of D)/(diameter of the largest
disc (or ball) in D̄).

We will use the quantity

ρ(P) = max {|∂D|/|σ| : σ ∈ S(P,Ω), D ∈ P and σ ⊂ ∂D}(6.3)

to measure the relative positions between subdomains sharing a common edge of P.
We can now formulate and prove the following corollary, which gives an applica-

tion of Theorem 6.2 to a fairly general class of two-dimensional partitions.

Corollary 6.3. Let Φ be as in Remark 5.2, and let {Pi : i ∈ I} be a family of
partitions of Ω. Suppose that the polygons appearing in all the partitions Pi are affine
homeomorphic to a fixed finite set of reference polygons and the aspect ratios of the
polygons in all the Pi’s are uniformly bounded. Assume also that the set {ρ(Pi) : i ∈ I}
is bounded. Then there exists a positive constant C, independent of i ∈ I, such that

‖ζ‖2L2(Ω) ≤ C
|ζ|2H1(Ω,Pi)

+
∑

σ∈S(Pi,Ω)

|σ|−2

(∫
σ

[ζ] ds

)2

+ [Φ(ζ)]2

(6.4)

for any ζ ∈ H1(Ω,Pi) and i ∈ I.
Proof. First we impose on each reference polygon a triangulation by triangles

such that each edge of the polygon is also the edge of a triangle in the triangulation
and each triangle of the triangulation has at most one edge on the boundary of the
polygon.

Let D ∈ Pi. We can induce a triangulation TD on D using the triangulation on
a reference polygon and the corresponding affine homeomorphism. Let p ∈ ∂D be a
vertex of P but not a vertex of D. Then p belongs to an edge of D which is a side of a
triangle T ∈ TD, and we connect p to the vertex of T not on ∂D by a straight line (cf.
Figure 6.2 where the construction is carried out for a square reference domain and a
subdomain D which is a parallelogram). In this way we have created a triangulation
Ti ∈ TPi .

Let D̂ be the reference polygon affine homeomorphic to D, and let x̂ �→ α(x̂) =
Bx̂+b be the corresponding affine map from D̂ to D. The uniform boundedness of the
aspect ratios implies (cf. Theorem 3.1.3 in [13]) the existence of a positive constant
C∗, independent of i ∈ I, such that

‖B‖ ≤ C∗(diamD) and ‖B−1‖ ≤ C∗(diamD)−1,(6.5)
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Fig. 6.3. A family of partitions of a square.

where ‖·‖ is the matrix 2-norm induced by the Euclidean vector norm. Hence we have

C−2
∗
|x̂1 − x̂2|
|x̂3 − x̂4| ≤

|x1 − x2|
|x3 − x4| ≤ C

2
∗
|x̂1 − x̂2|
|x̂3 − x̂4| ,(6.6)

where xj = α(x̂j), and x̂1, x̂2, x̂3, x̂3 are any four points such that x̂1 �= x̂2 and
x̂3 �= x̂4.

We conclude from (6.6) and the boundedness of the set {ρ(Pi) : i ∈ I} that θTi is
bounded away from zero. The estimate (6.4) then follows from (6.2) if we take C to
be an upper bound of the bounded set {κ(θTi) : i ∈ I}.

Remark 6.4. If the family of partitions {Pi : i ∈ I} in Corollary 6.3 is actually a
family of triangulations, then the condition on the boundedness of {ρ(Pi) : i ∈ I} is
redundant.

An example of a family of partitions satisfying the assumptions of Corollary 6.3 is
depicted in Figure 6.3, where the partition of the square in Figure 1.1 is being refined
successively towards the upper right corner.

7. Poincaré–Friedrichs inequalities for H1(Ω,P) on three-dimensional
domains. We first give the precise definition of interior faces for a partition P. We
define an edge of P to be an edge of any of the subdomains in P. We then define an
open face of P to be an open subset of the boundary of a member of P enclosed by
edges of P. The set S(P,Ω) contains the open faces of P that are common to the
boundaries of two members of P.

Remark 7.1. Again the concept of a face of a polyhedron D ∈ P and the concept
of a face of P on ∂D should be distinguished. For example, there are always six faces
on a parallelepiped, while there are nine faces of the three-dimensional partition in
Figure 1.1 on the boundary of the subdomain in the back.

The situation here is more complicated than the two-dimensional case discussed in
section 6, since the faces in S(P,Ω) may not be triangles. Accordingly, we introduce
the set

TP ={T : T is a triangulation of Ω by tetrahedra such that each face in(7.1)

S(P,Ω) is triangulated by the (triangular) faces in S(T ,Ω)}.
Since a face in S(P,Ω) may not be a face in S(T ,Ω), we cannot immediately

obtain an analogue of Theorem 6.2. In order to apply Theorem 5.1 to derive a
generalized Poincaré–Friedrichs inequality for H1(Ω,P), we need to introduce two
more parameters related to the shape regularity of P besides the parameter ρ(P)
defined by (6.3).

Let T ∈ TP . For σ ∈ S(P,Ω) we will denote by Tσ the triangulation of σ by faces
of S(T ,Ω), i.e.,

Tσ = {σ̃ ∈ S(T ,Ω) : σ̃ ⊆ σ},
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and define the parameter

ρ(P, T ) = max {|σ|/|σ̃| : σ ∈ S(P,Ω) and σ̃ ∈ Tσ} .(7.2)

Note that we have the following obvious bound for |Tσ| (the number of elements in Tσ):
|Tσ| ≤ ρ(P, T ) ∀σ ∈ S(P,Ω) .(7.3)

Moreover, (6.3) and (7.2) imply that

|∂D|
|σ̃| ≤ ρ(P)ρ(P, T ) for D ∈ P, σ̃ ∈ Tσ and σ ⊂ ∂D .(7.4)

The other parameter is the smallest number λ(P) ≥ 1 with the property that(
1

|F|
∫
F
|ζ − ζ̄| ds

)2

≤ λ(P)
diamD

|ζ|2H1(D),(7.5)

where D is any member of P, F is any face of D, ζ is any function in H1(D), and
ζ̄ = |D|−1

∫
D
ζ dx is the mean of ζ over D. The existence of λ(P) is a consequence of

the trace theorem, the classical Poincaré–Friedrichs inequalities, and scaling.
Note that (7.5) implies(

1

|G|
∫
G

|ζ − ζ̄| ds
)2

≤
(

1

|G|
∫
F
|ζ − ζ̄| ds

)2

≤
( |F|
|G|
)2

λ(P)
diamD

|ζ|2H1(D),(7.6)

where G is any measurable subset of F with a positive (d− 1)-dimensional measure.
Theorem 7.2. Let Φ be as in Remark 5.2. Then we have

‖ζ‖2L2(Ω) ≤
[

inf
T ∈TP

K
(
ρ(P), λ(P), ρ(P, T ), θT

)]
(7.7)

×
|ζ|2H1(Ω,P) +

∑
σ∈S(P,Ω)

|σ|− 3
2

(∫
σ

[ζ] ds

)2

+ [Φ(ζ)]2


for all ζ ∈ H1(Ω,P), where K : R

4
+ −→ R+ is a continuous function independent

of P.
Proof . Since definition (7.1) implies that H1(Ω,P) is a subspace of H1(Ω, T ) for

any T ∈ TP , we deduce from Theorem 5.1 the estimate

‖ζ‖2L2(Ω) ≤ κ(θT )
[
|ζ|2H1(Ω,P) +

∑
σ∈S(P,Ω)

∑
σ̃∈Tσ

|σ̃|1/2
(

1

|σ̃|
∫
σ̃

[ζ] ds

)2

(7.8)

+ [Φ(ζ)]2

]

for any ζ ∈ H1(Ω,P) and T ∈ TP , where κ : R+ −→ R+ is a continuous function.
Let σ ∈ S(P,Ω). Since Tσ is a triangulation of σ, it follows from the Cauchy–

Schwarz inequality and (7.3) that

∑
σ̃∈Tσ

|σ̃|1/2 ≤ |Tσ|1/2
(∑
σ̃∈Tσ

|σ̃|
)1/2

≤ [ρ(P, T )]1/2|σ|1/2 .(7.9)
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Let Pσ be the set of the two polyhedra in P which share σ as a common face.
Then we have, by the Cauchy–Schwarz inequality,(

1

|σ̃|
∫
σ̃

[ζ] ds

)2

≤ 3

(
1

|σ|
∫
σ

[ζ] ds

)2

+ 3
∑
D∈Pσ

(
1

|σ̃|
∫
σ̃

ζ
D
ds− 1

|σ|
∫
σ

ζ
D
ds

)2

(7.10)

for any ζ ∈ H1(Ω,P).
From (6.3), (7.4), and (7.6) we have(

1

|σ̃|
∫
σ̃

ζ
D
ds− 1

|σ|
∫
σ

ζ
D
ds

)2

=

(
1

|σ̃|
∫
σ̃

(ζ
D
− ζ̄

D
) ds− 1

|σ|
∫
σ

(ζ
D
− ζ̄

D
) ds

)2

≤ 2

[
1

|σ̃|
∫
σ̃

|ζ
D
− ζ̄

D
| ds
]2

+ 2

[
1

|σ|
∫
σ

|ζ
D
− ζ̄

D
| ds
]2

≤ 2[ρ(P)]2([ρ(P, T )]2 + 1
) λ(P)
diamD

|ζ|2H1(D)

(7.11)

for D ∈ Pσ, where ζ̄D = |D|−1
∫
D
ζ dx is the mean of ζ over D.

Combining (7.9)–(7.11), we obtain

∑
σ̃∈Tσ

|σ̃|1/2
(

1

|σ̃|
∫
σ̃

[ζ] ds

)2

≤ 3[ρ(P, T )]1/2|σ|−(3/2)

(∫
σ

[ζ] ds

)2

(7.12)

+ 6[ρ(P, T )]1/2[ρ(P)]2([ρ(P, T )]2 + 1
)
λ(P)

∑
D∈Pσ

|ζ|2H1(D),

where we have used the fact that |σ|1/2 < diamD.
Finally, we observe that the number of faces of S(P,Ω) on the boundary of any

subdomain in P is less than or equal to ρ(P), and hence∑
σ∈S(P,Ω)

∑
D∈Pσ

|ζ|2H1(D) ≤ ρ(P)|ζ|2H1(Ω,P) .(7.13)

The generalized Poincaré–Friedrichs inequality (7.7) then follows from (7.8), (7.12),
and (7.13), with the function K given by, for example,

K
(
ρ(P), λ(P), ρ(P, T ), θT

)
= 13[ρ(P)]3λ(P)[ρ(P, T )]5/2κ(θT ) .

Again in an abstract sense the set
{(
ρ(P), λ(P), ρ(P, T ), θT

)
: T ∈ TP

}
provides

a measure of the shape regularity of the partition P, and the number

inf
T ∈TP

K
(
ρ(P), λ(P), ρ(P, T ), θT

)
is a constant depending on the shape regularity of P. In applications one can use
Theorem 7.2 to derive Poincaré–Friedrichs inequalities with a uniform constant for a
family of partitions under appropriate concrete shape regularity assumptions. Since
the geometry of three-dimensional partitions can be much more varied than that of
two-dimensional ones, here we are content with giving only an analogue of Corol-
lary 6.3 for partitions by convex polyhedra.
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Note that a face of a partition of Ω by convex polyhedra is a convex polygon, and
therefore it can be triangulated by connecting the center to the vertices by straight
lines. Such a triangulation will be referred to as the canonical triangulation of the
convex polygon.

Corollary 7.3. Let Φ be as in Remark 5.2, and let {Pi : i ∈ I} be a family of
partitions of Ω. Assume that the following conditions are satisfied:

(i) The polyhedra appearing in all the partitions Pi are affine homeomorphic to
a fixed finite set of convex reference polyhedra and the aspect ratios of the
polyhedra in all the Pi’s are uniformly bounded.

(ii) The set {ρ(Pi) : i ∈ I} is bounded.
(iii) The angles of the triangles in the canonical triangulations of the faces of all

the partitions Pi are bounded below by a positive constant.
Then there exists a positive constant C, independent of i ∈ I, such that

‖ζ‖2L2(Ω) ≤ C
|ζ|2H1(Ω,Pi)

+
∑

σ∈S(Pi,Ω)

|σ|− 3
2

(∫
σ

[ζ] ds

)2

+ [Φ(ζ)]2

(7.14)

for any ζ ∈ H1(Ω,Pi) and i ∈ I.
Proof . Let D ∈ Pi, D̂ be a reference polyhedron affine homeomorphic to D, and

let α(x̂) = Bx̂+ b be the corresponding affine map from D̂ to D. Then the estimates
(6.5) and (6.6) again follow from condition (i).

Let F̂ be a face of D̂ corresponding to a face F ofD. From the Poincaré–Friedrichs
inequalities for D̂ and the trace theorem, we have(

1

|F̂ |

∫
F̂
|ζ̂ − ζ̂| dŝ

)2

≤ λ(D̂)|ζ̂|2
H1(D̂)

∀ ζ̂ ∈ H1(D̂),(7.15)

where ζ̂ is the mean of ζ̂ over D̂ and λ(D̂) is a positive constant depending only on
D̂. Combining (6.5) and (7.15) we find(

1

|F|
∫
F
|ζ − ζ̄| ds

)2

=

(
1

|F̂ |

∫
F̂
|ζ̂ − ζ̂| dŝ

)2

≤ C† λ(D̂)

diamD
|ζ|2H1(D)(7.16)

for all ζ ∈ H1(D), where ζ̄ is the mean of ζ over D, ζ̂ = ζ ◦ α, and C† is a positive
constant independent of i ∈ I. It follows from (7.16) and the finiteness of the number
of reference polyhedra that the set

{λ(Pi) : i ∈ I} is bounded.(7.17)

Let i ∈ I. We construct a triangulation Ti ∈ TPi by first imposing the canonical
triangulation on each face of Pi and then triangulating each member of Pi using its
center and the triangles on its faces.

Since the number of edges on each face of Pi is limited by the number of edges
appearing on the faces of the reference polyhedra, condition (iii) implies that the set

{ρ(Pi, Ti) : i ∈ I} is bounded.(7.18)

Moreover, it follows from conditions (ii) and (iii) that the triangulation induced by Ti
on the boundary of any subdomain in Pi is quasi-uniform, which together with (6.6)
implies

inf{θTi : i ∈ I} > 0 .(7.19)
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Fig. 7.1. A family of partitions of a cube.

Combining condition (ii) and (7.17)–(7.19), we see that the set

{(ρ(Pi), λ(Pi), ρ(Pi, Ti), θTi) : i ∈ I}
is a precompact subset of R

4
+. The estimate (7.14) then follows from (7.7) if we take

C to be an upper bound of the bounded set{
K
(
ρ(Pi), λ(Pi), ρ(Pi, Ti), θTi

)
: i ∈ I}.

Remark 7.4. If the family of partitions in Corollary 7.3 is actually a family of
triangulations, then conditions (ii) and (iii) are redundant.

An example of a family of partitions satisfying the assumptions of Corollary 7.3
is depicted in Figure 7.1, where a cube is being refined successively towards the upper
left corner in the front.

8. Concluding remarks. The approach to Poincaré–Friedrichs inequalities in
this paper depends only on the classical Poincaré–Friedrichs inequalities which in turn
depend only on the compactness of the embedding of H1(Ω) in L2(Ω). Since this is
valid for any Ω satisfying the cone condition (cf. [1]), the results of this paper are also
valid for domains with cracks.

We can, of course, also treat the one-dimensional case where Ω is an interval. In
this case we can take the interpolant Iζ ∈ H1(Ω) to be the piecewise linear function
which takes the average value of ζ at the internal nodes of P and agrees with ζ at the
endpoints. The resulting Poincaré–Friedrichs inequalities for ζ ∈ H1(Ω,P) are

‖ζ‖2L2(Ω) ≤ C
|ζ|2H1(Ω,P) +

∑
p∈P0

∑
e∈Ξp

|e|−1[ζ(p)]2 + |ζ(q)|2
 ,(8.1)

‖ζ‖2L2(Ω) ≤ C
|ζ|2H1(Ω,P) +

∑
p∈P0

∑
e∈Ξp

|e|−1[ζ(p)]2 +

∣∣∣∣∫
Ω

ζ dx

∣∣∣∣2
 ,(8.2)

where P0 is the set of the internal nodes of the partition P, Ξp is the set of the two
subintervals sharing p as an endpoint, [ζ(p)] is the jump of ζ across the point p, q is
an endpoint of Ω, and C is a universal positive constant.

Let Ω = (0, 1), Pn be the uniform partition of Ω by n subintervals, and let ζn be
the piecewise constant function defined by

ζn(x) = i for
i

n
< x <

i+ 1

n
and 0 ≤ i ≤ n− 1.(8.3)

Then ζn ∈ H1(Ω,Pn) and ζn(0) = |ζn|H1(Ω,Pn) = 0. A straightforward calculation
shows that both sides of (8.1) (with q = 0) grow at the rate of n2 for the function ζn,
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and hence the weight |e|−1 in (8.1) cannot be improved. If we define

ζn(x) = −n− 1

2
+ i for

i

n
< x <

i+ 1

n
and 0 ≤ i ≤ n− 1,(8.4)

then
∫
Ω
ζndx = |ζn|H1(Ω,Pn) = 0. Again both sides of (8.2) grow at the rate of n2 for

the function ζn, which shows that the weight |e|−1 in (8.2) also cannot be improved.
Similarly, we can show that the weight |σ|d/(1−d) in (1.3) and (1.4) is sharp.

Indeed, let Ω be the unit square (0, 1)2 and Pn be the uniform partition of Ω by n2

squares. Consider the piecewise constant function (an analogue of the function in
(8.3)) defined by

ζn(x1, x2) = i for
i

n
< x1 <

i+ 1

n
,
j

n
< x2 <

j + 1

n
, and 0 ≤ i, j ≤ n− 1.

We have ζn ∈ H1(Ω,Pn) and |ζn|H1(Ω,Pn) = ζn
∣∣
Γ
= 0, where Γ is the side {(0, t) :

0 < t < 1}. Again both sides of (1.3) grow at the rate of n2 for ζn, and hence the
weight |σ|−2 cannot be improved. The sharpness of |σ|−2 in (1.4) is established by
constructing piecewise constant functions analogous to the ones defined by (8.4), and
the sharpness of the weight |σ|−3/2 for three-dimensional domains can be handled by
similar constructions.

Finally, we remark that the techniques of this paper can also be used to derive
Poincaré–Friedrichs inequalities for piecewise W 1

p functions and p �= 2.
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then introduce a new class of OUMs which decouple systems for general (anisotropic) problems. We
prove convergence of one such scheme to the viscosity solution of the corresponding Hamilton–Jacobi
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by anisotropy in the context of front propagation and optimal trajectory problems.
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1. Introduction. In this paper we present a family of noniterative methods
applicable to the boundary value problem for static Hamilton–Jacobi equations of the
form1

H(∇u,x) = 1, x ∈ Ω ⊂ R2,
u(x) = q(x), x ∈ ∂Ω,

(1)

where the Hamiltonian H is assumed to be Lipschitz-continuous, convex, and homo-
geneous of degree 1 in the first argument:

H(∇u,x) = ‖∇u‖F
(
x,
∇u

‖∇u‖
)

(2)

for some function F . We will further assume that the function q is also Lipschitz-
continuous, and that

0 < F1 ≤ F (x,p) ≤ F2,

q1 ≤ q(x) ≤ q2
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for all x ∈ Ω and for all the vectors of unit length p.
Even for arbitrarily smooth H, q, and ∂Ω, a smooth solution on Ω need not

exist. In general, there are infinitely many weak Lipschitz-continuous solutions, but
the unique viscosity solution can be defined using additional conditions on the smooth
test functions (see [10, 9]).

To obtain a numerical solution, one often starts with a mesh X covering the
domain Ω. Let Ui = U(xi) be the numerical solution at the mesh point xi ∈ X.
Denote the set of mesh points adjacent to xi as N(xi) and the set of values adjacent
to Ui as NU(xi) = {Uj |xj ∈ N(xi)}. Let H be a consistent discretization of H such
that one can write

H(Ui, NU(xi),xi) = 1.(3)

If M is the total number of mesh points, then one needs to solve M coupled nonlinear
equations simultaneously. One typical approach is to solve this nonlinear system
iteratively.

Our ultimate goal is to introduce a set of “single-pass” numerical methods. By
this, we mean that each Ui is recalculated at most r times, where r depends only
upon the PDE (1) and the mesh structure and not upon the number of mesh points.

To construct single-pass algorithms with efficient update orderings, one can utilize
the fact that the value of u(x) for the first-order PDE depends only on the value of u
along the characteristic(s) passing through the point x. If xi1 ,xi2 ∈ N(xi) are such
that the characteristic for the mesh point xi lies in the simplex xixi1xi2 , then it is
useful to consider an upwind discretization of the PDE:

H(Ui, Ui1 , Ui2 ,xi) = 1.(4)

This reduces the coupling in the system: Ui depends only upon Ui1 and Ui2 and not on
all of the NU(xi). A recursive construction allows one to build the entire dependency
graph for xi.

If two or more characteristics collide at the point x, the solution loses smoothness.
The entropy condition does not allow characteristics to be created at these collision
points; hence, if xi is far enough from these collision points, then, for a suitably
chosen discretization, its dependency graph is actually a tree. If the characteristic
directions of the PDE were known in advance, then the dependency-ordering of the
grid points would be known as well, leading to a fully decoupled system. Formally,
this construction would lead to an O(M) method.

In general, characteristic directions are not known in advance due to the non-
linearity of (1). Nonetheless, single-pass methods can be devised to determine the
mesh point ordering (and the characteristic directions) in the process of decoupling
the system. We refer to such methods as “Ordered Upwind Methods” (OUMs) and
show that they have computational complexity of O(M logM).

Since (1) can be interpreted as a description of a continuous control problem, we
start in section 2 by viewing the discrete control problem and by considering Dijkstra’s
method as a prototype for the OUMs to be built for the continuous case.

Next, in section 3, we view the Hamilton–Jacobi PDE (1) as an anisotropic min-
time optimal trajectory problem. In this control-theoretic setting, the speed of a
vehicle’s motion depends not only on its position, but also on the direction. The
corresponding value function u is the viscosity solution of the static Hamilton–Jacobi–
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Bellman equation

max
a∈S1

{(∇u(x) · (−a))f(x,a)} = 1, x ∈ Ω,

u(x) = q(x), x ∈ ∂Ω.
(5)

Here, a is the unit vector determining the direction of motion, f(x,a) is the speed of
motion in the direction a starting from the point x ∈ Ω, and q(x) is the time-penalty
for exiting the domain at the point x ∈ ∂Ω. The maximizer a corresponds to the
characteristic direction for the point x.

If the speed functions F and f depend only upon their first argument, both forms
of the Hamilton–Jacobi PDE reduce to the Eikonal equation

‖∇u(x)‖ = K(x),(6)

where K(x) = 1
F (x) = 1

f(x) . In this case, the characteristics of the PDE coincide

with the gradient lines of its viscosity solution u. This property is the foundation for
two single-pass methods for the Eikonal equation: Tsitsiklis’ algorithm (1994) and
Sethian’s Fast Marching Method (1996), representing Dijkstra-like decoupling of a
semi-Lagrangian and a fully Eulerian discretization of (1), respectively (section 4).

We then proceed to the central part of this paper. First, we show (in section 5)
that neither of these single-pass Eikonal solvers can be directly applied in the general
anisotropic case. Nonetheless, the underlying ideas can be used to build the OUMs
which are applicable for much more general equations. Such methods hinge on two
properties of the unique viscosity solution:

1. The viscosity solution u(x) is strictly increasing along the characteristics of
the PDE (1).

2. We can derive a precise upper bound on the maximum angle between the
characteristic and the gradient of u.

In section 6, we introduce the first general OUM with computational complexity
of O(F2

F1
M logM) based on a semi-Lagrangian discretization; an announcement of this

algorithm without details or proof was first made in [39]. The method’s convergence
to the viscosity solution is proven in section 7.

Next, in section 8, we reinterpret the Hamilton–Jacobi PDE (1), this time as
describing an anisotropic front expansion (contraction) problem. In this context,
F (x,n) is interpreted as the speed of the front in the normal direction n, and ∂Ω as
the initial position of the front.

‖∇u‖F
(
x, ∇u‖∇u‖

)
= 1, x ∈ Ω,

u(x) = 0, x ∈ ∂Ω.

The anisotropy is the result of the dependence of F on n. The level sets of the
viscosity solution u correspond to the positions of the front at different times. We
consider only those front expansion (contraction) problems in which the speed F is
such that the Hamiltonian H is convex.

The fully Eulerian OUMs, introduced in section 8, use the finite-difference approx-
imations developed as a generalization of the Fast Marching Method and are based
on the analysis of the role played by anisotropy in the front propagation and optimal
trajectory problems. These single-pass methods also have the same computational
complexity of O(F2

F1
M logM). The appendix examines the relationship between the

first-order semi-Lagrangian and Eulerian OUMs.
Finally, in section 9, we analyze the efficiency of the new methods and consider

several anisotropic test problems from computational geometry and seismology.
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2. Dijkstra’s method and discrete optimal trajectories. We begin by con-
sidering the problem of computing the shortest path on a network. (See, for exam-
ple, [3] for a catalogue of available algorithms.) Computing the shortest path can
be viewed as a discrete dynamic programming problem. Here, it serves as a simpler
analogue for the continuous optimal trajectory problem considered in the next section.

For the case in which the network is sparsely connected and all arc-costs are
positive, the heap-sort version of Dijkstra’s method [12] is one of the most widely
used algorithms. We will now reinterpret Dijkstra’s method as a single-pass OUM
since it serves as a model for building the OUMs for the continuous front propagation
and optimal trajectory problems.

2.1. Shortest paths and value function. Consider a discrete network of
nodes X = {x1, . . . ,xM}. A vehicle starts somewhere in the network and travels
from node to node until it reaches one of the exit nodes x ∈ Q ⊂ X. A vehicle’s
trajectory is a sequence of nodes (y1, . . . ,yr) such that yr ∈ Q and yk �∈ Q for k < r.
There is a time-penalty K(xi,xj) = Kij > 0 for passing from xi to xj . (Kij = +∞ if
there is no link from xi to xj .) For all x ∈ Q there is an exit time-penalty q(x) <∞.
Thus, the total time needed for a trajectory (y1, . . . ,yr) is

TotalTime(y1, . . . ,yr) =

r∑
j=1

K(yj ,yj+1) + q(yr).(7)

The goal is to find the optimal trajectory for each node x ∈ X\Q.
The key idea of dynamic programming [5, 6] is to solve for all of the nodes at

once. Instead of searching for a particular optimal trajectory, one derives an equation
for the value function U(x), defined as the minimum time to exit the network if one
starts at x: 

U(x) = min
all the paths
starting at x

TotalTime(x, . . . ), x ∈ X\Q,

U(x) = q(x), x ∈ Q.

(8)

Bellman’s optimality principle [5] shows the relationship between U(x) and the
values of U on the set of adjacent nodes N(x) = {y ∈ X | K(x,y) <∞}, namely,

U(x) = min
y∈N(x)

{K(x,y) + U(y)} for all x ∈ X\Q.(9)

Equation (9) is nonlinear, and it has to hold for each node in X\Q. Thus, if there
are M such nodes, we have to solve a coupled system of M nonlinear equations.

2.2. Dijkstra’s method. Dijkstra’s method [12] provides a way of decoupling
system (9) and is based on the following monotonicity observations.

Observation 2.1. If (y1, . . . ,yr) is an optimal trajectory for y1, then we have
U(y1) > · · · > U(yr).

Observation 2.2. If N−(x) = {y ∈ N(x) | U(y) < U(x)}, then Bellman’s
equation (9) can be rewritten as

U(x) = min
y∈N−(x)

{K(x,y) + U(y)} for all x ∈ X\Q.(10)

If the nodes were somehow sorted by the value of U , one could solve equations
(10) one by one, yielding a method with an overall complexity of O(M). Even though



ORDERED UPWIND METHODS FOR STATIC HJ PDEs 329

this ordering on X is not known in advance, Dijkstra’s method reconstructs it (one
node at a time) as follows.

All the nodes are divided into three classes: Far (no information about the
correct value of U is known), Accepted (the correct value of U has been computed),
and Considered (adjacent to Accepted). For every Considered x we define the set
NF(x) = {y ∈ N(x) |y is Accepted}.

1. Start with all the nodes in Far.
2. Move the exit nodes (y ∈ Q) to Accepted (U(y) = q(y)).
3. Move all the nodes x adjacent to the boundary into Considered and evaluate

the tentative values

V (x) := min
y∈NF(x)

{K(x,y) + U(y)} .(11)

4. Find the node x̄ with the smallest value of V among all the Considered.
5. Move x̄ to Accepted (U(x̄) = V (x̄)).
6. Move the Far nodes adjacent to x̄ into Considered.
7. Reevaluate V for all the Considered x adjacent to x̄

V (x) := min {V (x),K(x, x̄) + U(x̄)} .(12)

8. If Considered is not empty, then go to 4.
The described algorithm has the computational complexity of O(M log(M)); the fac-
tor of log(M) reflects the necessity to maintain a sorted list of the Considered val-
ues V (xi) to determine the next Accepted node.2

On a grid-like network, we can reinterpret Dijkstra’s method as an upwind finite
difference scheme. Consider a uniform Cartesian grid of grid size h, where the time-
penalty Kij > 0 is given for passing through each grid point xij = (ih, jh). The
minimal total time-to-exit Uij starting from the node xij can be written in terms of
the minimal total time-to-exit starting at its neighbors:

Uij = min (Ui−1,j , Ui+1,j , Ui,j−1, Ui,j+1) + Kij .(13)

As pointed out by Sethian in [36], the Uij obtained through Dijkstra’s method is
formally a first-order approximation to the solution u(x, y) of the differential equation

H(∇u(x), u(x),x) = max(|ux|, |uy|) = K(x),(14)

provided that the time-penalties are Kij = hK(x).

3. Continuous optimal trajectory problems and semi-Lagrangian dis-
cretization.

3.1. Statement of problem. Consider an optimal trajectory problem for a
vehicle moving inside the domain Ω, with the speed f depending upon the direction
of motion and the current position of the vehicle inside the domain. The dynamics of
the vehicle is defined by

y′(t) = f(y(t),a(t))a(t),

y(0) = x ∈ Ω,(15)

2This variant of Dijkstra’s method is often referred to as a heap-sort Dijkstra’s method since its
implementation requires the use of a binary heap, d-heap, or Fibonacci heap to maintain the ordering
of the Considered nodes efficiently [3].

The complexity estimate for the densely connected network would be O(M2 log(M)), but for
our case, when X is a grid or a mesh, the precise complexity estimate is O(rM log(M)), where r is
the maximum number of nodes connected to a single node in X.
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where y(t) is the position of the vehicle at time t, S1 = {a ∈ R2 | ‖a‖ = 1} is the
set of admissible control values, and A = {a : R+,0 �→ S1 | a(·) is measurable} is the
set of admissible controls. We are interested in studying y(t) only while the vehicle
remains inside Ω, i.e., until the exit time

T (x,a(·)) = inf{t ∈ R+,0|y(t) ∈ ∂Ω}.
If the function q(x) ≥ 0 is the time-penalty for exiting the domain at the point
x ∈ ∂Ω, then a min-time optimal trajectory problem is the task of finding an optimal
control a(·) which minimizes the total time:3

TotalTime (x,a(·)) = T (x,a(·)) + q (y (T (x,a(·)))) .

We will alternatively refer to the above quantity as a total cost of using the control:
Cost (x,a(·)) = TotalTime (x,a(·)).

Unless otherwise explicitly specified, we will assume that both f and q are Lip-
schitz-continuous and that there exist constants f1, f2, q1, q2 such that

0 < f1 ≤ f(x,a) ≤ f2 <∞ for all x ∈ Ω and a ∈ S1,

0 < q1 ≤ q(x) ≤ q2 <∞ for all x ∈ ∂Ω.(16)

For notational convenience, we will also define the anisotropy coefficient Υ = f2
f1

.
Strictly speaking, since f1 and f2 are global bounds, the coefficient Υ reflects the
measure of anisotropy only in the homogeneous domain (i.e., when f(x,a) = f(a)).
We will use Υ in deriving the worst-case-scenario computational complexity of the
algorithms. In section 9.2, the more accurate local anisotropy coefficient Υ(x) will be
defined and used for a more detailed computational complexity analysis.

As in the discrete case, the key idea of dynamic programming [5] is to define the
value function u(x) such that{

u(x) = infa(·) Cost(x,a(·)), x ∈ Ω\∂Ω,

u(x) = q(x), x ∈ ∂Ω.
(17)

In general, an optimal control a(·) does not have to exist; therefore, when prov-
ing properties of the value function u, one uses ε-suboptimal controls a(·) such that
Cost(x,a(·)) < u(x)+ε. To simplify the presentation, we will somewhat loosely refer
to the optimal controls and trajectories. If such optimal controls do not exist, the
corresponding properties can be formulated and proven for the ε-suboptimal controls
and trajectories.

3.2. Properties of the value function. The following lemmas enumerate sev-
eral well-known properties of the value function (see proofs in [46], for example). In
section 7 we will prove the similar properties of the numerical approximation con-
structed by the OUM.

Lemma 3.1 (Fixed-time optimality principle). Let d(x) be the minimum distance
to the boundary ∂Ω. Then for every point x ∈ Ω\∂Ω and for any τ < d(x)

u(x) = τ + inf
a(·)
{u(y(τ))} ,(18)

3A different optimal trajectory problem can be formulated for minimizing the total cost of moving
the vehicle with a unit speed, when the running cost depends upon both the vehicle’s position and
the direction of motion; see [45, 15], for example. It is not hard to show the equivalence of this
min-cost problem to the min-time optimal trajectory problem considered here [46].
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where y(·) is a trajectory corresponding to a chosen control a(·).
Lemma 3.2 (Fixed-boundary optimality principle). Consider a simple closed

curve Γ ⊂ Ω\∂Ω and an arbitrary point x inside Γ. For every control a(·), we define
TΓ(x,a(·)) to be the earliest time at which the corresponding trajectory y(·) reaches
the curve Γ. Then

u(x) = inf
a(·)
{TΓ (x,a(·)) + u (y (TΓ(x,a(·))))} .(19)

Lemma 3.3. The value function u(x) is Lipschitz-continuous4 and bounded on
Ω\∂Ω. If y′(t) = a(t) defines an optimal trajectory for a point x (i.e., y(0) = x
and u(x) = Cost(x,a(·))), then the function u(y(t)) is strictly decreasing for t ∈
[0, T (x,a(·))].

The following two lemmas utilize the fixed-time optimality principle and provide
the key motivation for constructing OUMs for this problem (sections 6 and 8).

Lemma 3.4. Consider a point x̄ ∈ Ω\∂Ω. Then, for any constant C such that
q2 ≤ C ≤ u(x̄), the optimal trajectory for x̄ will intersect the level set u(x) = C at
some point x̃. If x̄ is distance d1 away from that level set, then

‖x̃− x̄‖ ≤ d1Υ.(20)

Proof. Let a(·) be an optimal control for x̄. The intersection point x̃ = y(τ)
exists because of the continuity of the value function and of the optimal trajectory:
u(x̄) ≥ C ≥ q2 ≥ u(y(T (x̄,a(·)))).

Therefore,

u(x̄) = τ + u(x̃) ≥ ‖x̃− x̄‖
f2

+ C.

There also exists some point x̂ on the level set such that ‖x̄ − x̂‖ = d1. Consider a
control a1(t) = x̂−x̄

d1
, and suppose it takes time τ1 to reach x̂ along the corresponding

straight-line trajectory. By the optimality principle,

u(x̄) ≤ τ1 + u(x̂) ≤ d1

f1
+ C.

Thus, ‖x̃− x̄‖ ≤ d1Υ.
Lemma 3.5. Consider an unstructured (triangulated) mesh X of diameter h

on Ω. Consider a simple closed curve Γ ⊂ Ω\∂Ω with the property that for any
point x on Γ there exists a mesh point x̂ inside Γ such that ‖x− x̂‖ < h. Suppose a
mesh point x̄ is such that u(x̄) ≤ u(xi) for all the mesh points xi ∈ X inside Γ. The
optimal trajectory for x̄ will intersect Γ at some point x̃ such that

‖x̃− x̄‖ ≤ hΥ.(21)

Proof. Let a(·) be an optimal control for x̄. The intersection point x̃ = y(τ)
exists because of the continuity of Γ and of the optimal trajectory. Therefore,

u(x̄) = τ + u(x̃) ≥ ‖x̃− x̄‖
f2

+ u(x̃).

4This holds in the interior of Ω even in the presence of state constraints: the assumption f1 > 0
is sufficient for the local controllability near ∂Ω (as defined in [4], for example).
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Let x̂ be a mesh point inside Γ such that ‖x̃ − x̂‖ ≤ h. Consider a control a1(t) =
x̃−x̂
‖x̃−x̂‖ , and let τ1 be the time required to reach x̃ from x̂ using a1(·). Then, by the

optimality principle,

u(x̂) ≤ τ1 + u(x̃) ≤ h

f1
+ u(x̃).

To complete the proof, we recall that u(x̄) ≤ u(x̂).

3.3. Hamilton–Jacobi–Bellman PDE. As in the discrete case, Bellman’s op-
timality principle can be used to formally derive the local equation for u(x) if the value
function is smooth around x:

min
a∈S1

{(∇u(x) · a)f(x,a)} + 1 = 0, x ∈ Ω,

u(x) = q(x), x ∈ ∂Ω.
(22)

The above Hamilton–Jacobi–Bellman PDE can be rewritten in the form H(∇u,x) =
1, where the Hamiltonian H = −mina∈S1

{(p·a)f(x,a)} = maxa∈S1
{(p·(−a))f(x,a)}.

Moreover, this Hamiltonian is convex and homogeneous of degree one in the first ar-
gument; thus, this PDE belongs to the class of problems described in section 1. We
also note that the characteristics of this PDE can be formally shown to be the optimal
trajectories for the corresponding min-time control problem.

In an important case of isotropic optimal speed function (f(x,a) = f(x)), equa-
tion (22) reduces to the Eikonal equation ‖∇u(x)‖ = 1

f(x) . We particularly emphasize

one property of the Eikonal equations: if ∇u is defined at the point, then the mini-
mizer is a = −∇u

‖∇u‖ . Thus, the gradient lines of u(x) coincide with the characteristics

of the Eikonal PDE (i.e., the optimal trajectories for the isotropic min-time control
problem). This is the main reason for the following causality property, a foundation
for the noniterative Eikonal solvers.

Property 3.6 (Causality for the Eikonal equation). If ∇u(x) is defined and
xx1x2 is a sufficiently small acute simplex, which contains the characteristic for x,
then u(x) ≥ max{u(x1), u(x2)}.

Unfortunately, a smooth solution to (22) might not exist even for smooth f , q,
and ∂Ω. Generally, this equation has infinitely many weak Lipschitz-continuous so-
lutions, but the unique viscosity solution [10] can be defined using the conditions on
smooth test functions [9] as follows.

A bounded, uniformly continuous function u is the viscosity solution of (22) if the
following holds for each smooth test function5 φ ∈ C∞c (Ω):

(i) if u− φ has a local minimum at x0 ∈ Ω, then

min
a∈S1

{(∇φ(x0) · a)f(x0,a)}+ 1 ≤ 0;(23)

(ii) if u− φ has a local maximum at x0 ∈ Ω, then

min
a∈S1

{(∇φ(x0) · a)f(x0,a)}+ 1 ≥ 0.(24)

Moreover, the optimality principle (Lemma 3.1) can be used to demonstrate that
the value function of the min-time optimal trajectory problem satisfies the inequalities

5The standard definition of the viscosity solution (see [9, 8], for example) uses the test functions
φ ∈ C1(Ω). However, as shown in [9], the definition using the test functions φ ∈ C∞

c (Ω) is equivalent.
This second formulation enables us to use the upper bounds on the second derivatives of φ in the
convergence proof in section 7.
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(24) and (23) and thus is the viscosity solution of the Hamilton–Jacobi–Bellman PDE
(see [8, 7] or [16], for example6).

3.4. Modified definition of the viscosity solution. Define Sφ,x
1 = {a ∈ S1 |

a ·∇φ(x) ≤ −‖∇φ(x)‖Υ−1}. In [46] we demonstrate that using Sφ,x0

1 instead of S1 in
the inequalities (24) and (23) yields an equivalent definition of the viscosity solution
for (22).

Proof. We first observe that, since f > f1 > 0, if the minimum is attained for

some a = a1, then (a1 · ∇φ(x0)) < 0. Let b = −∇φ(x0)
‖∇φ(x0)‖ . Since a1 is the minimizer,

we have

(∇φ(x0) · a1)f(x0,a1) ≤ (∇φ(x0) · b)f(x0, b) ≤ −‖∇φ(x0)‖f1.

Therefore,

a1 · ∇φ(x0) ≤ −‖∇φ(x0)‖ f1

f(x0,a1)
≤ −‖∇φ(x0)‖Υ−1.

Remark 3.7. We have just established a bound on the angle between the char-
acteristic of the PDE (22) and the gradient line of its viscosity solution. If the gradi-
ent∇u(x0) exists, then∇u(x0) = ∇φ(x0). Therefore, a1·∇u(x0) ≤ −‖∇u(x0)‖Υ−1.
If γ is the angle between∇u(x0) and (−a1), then cos(γ) ≥ 1

Υ . (If the level sets of u(x)
were straight lines, the last inequality would trivially follow from Lemma 3.4.) We
note that the above argument heavily uses the existence of a positive lower bound f1

and, therefore, does not directly apply to more general control problems.

3.5. A semi-Lagrangian discretization for the Hamilton–Jacobi–Bellman
PDE. Assume that a triangulated mesh X of diameter h is defined on Ω. For every
mesh point x ∈ X, define S(x) to be a set of all the simplexes in the mesh adjacent
to x (i.e., the simplexes that have x as one of their vertices). If s ∈ S(x), we will use
the notation xs,1 and xs,2 for the other vertices of the simplex s.

A simple control-theoretic discretization of (19) follows from the assumption that,
as the vehicle starts to move from a mesh point x inside a simplex s ∈ S(x), its
direction of motion a does not change until the vehicle reaches the edge xs,1xs,2 (see
Figure 1). The value u(x̃) at the point of intersection can be approximated7 using
the values u(xs,1) and u(xs,2).

Defining τ(ζ) = ‖x̃ − x‖ = ‖(ζxs,1 + (1 − ζ)xs,2) − x‖ and aζ = x̃−x
τ(ζ) , we can

now write the equation for the numerical approximation U :

U(x) = min
s∈S(x)

Vs(x),

Vs(x) = min
ζ∈[0,1]

{
τ(ζ)

f(x,aζ)
+ ζU(xs,1) + (1− ζ)U(xs,2)

}
.(25)

The above “naive” derivation is based on a direct application of Bellman’s optimality
principle rather than on discretization of the corresponding Hamilton–Jacobi–Bellman

6The control-theoretic problems discussed in these papers are slightly different. They consider
infinite horizon or exit time problems with time-discounted running costs, e.g., Cost(x,a(·)) =∫∞
0 e−λsK(y(s),a(s))ds. Thus, the resulting PDE is also slightly different, but Kruzhkov’s trans-
form [24] can be used to obtain the mapping from one to another; see [8], [4], for example. In
addition, the iterative methods in these papers are also applicable for a more general case of f1 = 0.

7Since the interpolation has to be used to approximate the value at a non–mesh point x̃, we refer
to this and similar discretizations as semi-Lagrangian.



334 JAMES A. SETHIAN AND ALEXANDER VLADIMIRSKY

xs1

xs2

a

x

x

Fig. 1. A control-theoretic discretization: each trajectory is approximated by a straight line
within a simplex.

PDE; a number of related methods, treatment of more general control problems (in-
cluding the case f1 = 0), and the proof of convergence can be found in [25, 26],
and [18]. Similar higher-order control-theoretic numerical methods can be found
in [17].

The discretized equation (25) has to be satisfied at every mesh point in X; this
results in a coupled system of M nonlinear equations, which usually have to be solved
simultaneously through the iterations. Due to the structure of the system, each
iteration involves solving a local minimization problem for each mesh point, and
even in the simplest problems the number of iterations will be proportional to the
diameter of the mesh-graph. The number of iterations can be reduced using Gauss–
Seidel relaxation (as in [18]), but we know of no theoretical guarantees of the rate of
convergence.

4. OUMs for the isotropic case: Dijkstra-like Eikonal solvers. Until
recently, the Eikonal equation, corresponding to the isotropic optimal trajectory and
front propagation problems, was the only case for which single-pass methods were
available. Several fast algorithms have been introduced to solve the corresponding
discretized system as efficiently as Dijkstra’s method solves the shortest path problems
on discrete networks. These methods are based on an observation that a particular
upwind discretization possesses a causality property similar to that of the Eikonal
equation (Property 3.6).

Property 4.1 (Causality). If s is an acute simplex in S(x) and Vs(x) is a value
of U(x) computed under the assumption that the characteristic for x lies in s, then
Vs(x) ≥ max{U(xs,1), U(xs,2)}.

Any upwind discretization possessing this property leads to equations which can
be decoupled by computing the value function at the mesh points in the increasing
order. Since the ordering is not known in advance, we can structure these Dijkstra-like
solvers in the spirit of section 2.2 as follows.

All the mesh points are divided into three classes: Far (no information about the
correct value of U is known), Accepted (the correct value of U has been computed),
and Considered (adjacent to Accepted), for which V has already been computed, but
it is still unclear if V = U . For every Considered x, we define the set NS(x) =
{s ∈ S(x) | xs,1 and xs,2 are Accepted}. We will also use a set S(x1,x2) to denote
the simplexes adjacent to both of these mesh points.

1. Start with all the mesh points in Far.
2. Move the mesh points on the boundary (y ∈ ∂Ω) to Accepted (U(y) = q(y)).
3. Move all the mesh points x adjacent to the boundary into Considered and
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evaluate the tentative values

V (x) := min
s∈NS(x)

Vs(x).(26)

4. Find the mesh point x̄ with the smallest value of V among all the Considered.
5. Move x̄ to Accepted (U(x̄) = V (x̄)).
6. Move the Far mesh points adjacent to x̄ into Considered.
7. Reevaluate V for all the Considered x adjacent to x̄

V (x) := min

{
V (x), min

s∈(S(x,x̄)
⋂

NS(x))
Vs(x)

}
.(27)

8. If Considered is not empty, then go to 4.
Such Dijkstra-like methods use heap-sort data structures to achieve Dijkstra-like effi-
ciency of O(M logM) and compute the numerical solutions converging to the viscosity
solution (due to the upwinding structure of discretization).

The first Dijkstra-like method, introduced by Tsitsiklis in 1994, evolved from
studying isotropic min-cost optimal trajectory problems and was based on a direct
approximation of the characteristic directions at each mesh point [44, 45]. Tsit-
siklis proved that Property 4.1 holds for the particular first-order semi-Lagrangian
discretization (i.e., formula (25)) of the Eikonal equation, when used on a uniform
Cartesian grid in Rn. The algorithm requires solving a local minimization problem to
update the solution at each mesh point; however, as shown in [45], the Kuhn–Tucker
optimality conditions can be used to find a quadratic equation satisfied by the mini-
mum value instead. In the appendix we provide a more general proof that the same
causality property is possessed by the discretization (25) on an arbitrary unstructured
mesh and derive the corresponding quadratic equation for the minimum value.

The family of Fast Marching Methods, introduced by Sethian in [33] and extended
by Sethian and several co-authors in [35, 21, 38], evolved from studying isotropic front
propagation problems (see section 8.1 for the recasting of Eikonal PDE in this con-
text). Those discretizations were based on upwinding approximations of the gradient
and were all obtained in a fully Eulerian frame of reference. Sethian proved that the
causality Property 4.1 holds for a wide class of upwind finite-difference discretizations.
Following that approach, upwind finite-difference operators were then used to obtain
higher-order Cartesian versions [35], extensions to triangulated meshes [21], and gen-
eral higher-order versions for the unstructured meshes in Rn [38]. In addition, the
“lifting-to-surface” technique introduced in [38] allowed the Fast Marching Method
to be used to solve a limited class of non-Eikonal (elliptically anisotropic) problems.
We note that these extensions are all OUMs, relying on an upwinding criterion that
establishes a monotonicity-preserving update procedure. Early applications of the
Fast Marching Methods included the narrow band level set method [1], photolithog-
raphy [34], a comparison of a similar algorithm with volume-of-fluid techniques [19],
and a fast algorithm for image segmentation [27]. More recent applications include
problems in robotic navigation [22], extension velocity computation [2], visibility eval-
uation [35], geophysics [32, 37], and computational geometry [23]. To produce an up-
date for each mesh point, these methods require solving a quadratic equation, which
will depend on the particular upwind finite-difference operator used. The original
Fast Marching Method, as defined in [33], was based on the first-order Godunov-type
discretization on a uniform Cartesian grid, and the corresponding quadratic update
equation coincides with the equation derived from the Kuhn–Tucker conditions in [45].
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(See the appendix for a discussion of the correspondence between the first-order semi-
Lagrangian and fully Eulerian discretizations on unstructured meshes.)

Several different higher-order versions of the Fast Marching Method are available
for structured and unstructured meshes, while there are currently no higher-order
Dijkstra-like methods based on a semi-Lagrangian approach. The reason is the diffi-
culty of finding the higher-order semi-Lagrangian discretization that would provably
possess the causality property. Finally, when such a discretization is found, it will
generally require performing a local minimization at every mesh point, since it is not
obvious whether the Kuhn–Tucker conditions can be used to produce a quadratic
equation in this more general case.

5. Characteristics versus gradients. In this section, we show why the Dijkstra-
like methods cannot be directly applied to handle general (non-Eikonal) Hamilton–
Jacobi equations. As a test problem, consider the “distance from the origin” Eikonal
equation (‖∇d‖ = 1, d(0, 0) = 0), in a plane z = c1x + c2y for some vector c =

[
c1
c2

]
.

The level sets of d will be just the circles around the origin in that plane. Projecting
those circles orthogonally onto the x− y plane, we will see a set of concentric ellipses.
As expected, the function u(x), whose level sets coincide with these ellipses, may be
obtained in two ways:

• As an optimal-trajectory problem. The function d can be considered as a value
function for a vehicle moving with a unit speed in the plane z = c1x + c2y.
As shown in [46], if one considers another vehicle which moves as a shadow of
the first one in the x−y plane, its value function will be the viscosity solution
u(x) of the Hamilton–Jacobi–Bellman equation

min
a∈S1

{(∇u(x) · a)f(x,a)}+ 1 = 0, x ∈ Ω,(28)

and the vehicle’s speed function in the direction a =
[
a1

a2

]
will be given by

f(a, x, y) =
(
1 + (c1a1 + c2a2)

2
)− 1

2 .

• As a front propagation problem. As shown in [36], this same problem can be
viewed in the front propagation framework, using the speed function

F (x,n) =

√
(1 + c2

2)n
2
1 + (1 + c2

1)n
2
2 − 2c2c1n1n2

1 + c2
1 + c2

2

.

The Hamilton–Jacobi PDE corresponding to this speed function F is√
(1 + c2

2)u
2
x(x) + (1 + c2

1)u
2
y(x)− 2c2c1ux(x)uy(x)

1 + c2
1 + c2

2

= 1.(29)

It would appear that Tsitsiklis’ algorithm (defined for the isotropic case in sec-
tion 4) can be applied to this anisotropic problem without any changes at all, except
that the dependence of the speed f upon the direction a will now be present in the
update-from-a-single-simplex formula:

Vs(x) = min
ζ∈[0,1]

{
τ(ζ)

f(x,aζ)
+ ζU(xs,1) + (1− ζ)U(xs,2)

}
.(30)

What happens when this algorithm is used to compute the expansion of the ellipse
(as defined by (28))? In Figure 2 we show the level sets of the numerical solution
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Fig. 2. (a) and (b) Ellipse expansion computed by Tsitsiklis’ algorithm. Both computations
were performed on a 129 × 129 uniform Cartesian grid. (c) The characteristics and the gradient
directions for the second expanding ellipse.

U obtained by this method for two different expanding ellipses. The first contour

plot corresponds to the vector c =
[√

2
0

]
. The numerical solution converges to the

value function u(x) and is first-order accurate as the grid size tends to 0. (We will
return to this example later when we discuss fast methods relying on a particular grid
orientation in section 5.) The second contour plot corresponds to the vector c =

[
1
1

]
.

In this case, it is obvious that U(x) does not approximate the viscosity solution very
well. Nor does it improve under a grid refinement.

In order to understand what is different in the second example, we recall that all
Dijkstra-like methods are fundamentally dependent on the causality property (3.6) of
the Eikonal equation. Each of these single-pass methods is based on the observation
that a certain discretization also possesses a similar causality property. This causality
results from the fact that the characteristics of the Eikonal equation coincide with
the gradient lines of its viscosity solution u. However, for the anisotropic problems
this property does not hold. When the characteristic and gradient directions are
different, the simplex xxjxk may contain the characteristic for the point x, even if
the gradient ∇u(x) is not pointing from that simplex. Thus, no matter how small
that simplex is, it is still possible that u(x) < u(xj). This is an intrinsic problem
with Dijkstra-like methods in the anisotropic case: to produce the numerical solu-
tion efficiently, these methods attempt to compute U(x) in the ascending order (i.e.,
from the simplex containing (−∇u)), whereas, in order to maintain the upwinding,
U(x) has to be computed from the simplex containing the characteristic. That phe-
nomenon is also quite obvious from comparing Figures 2(b) and 2(c): the Dijkstra-like
method fails exactly at those points where the gradient line and the characteristic do
not lie in the same coordinate quadrant (or, more generally, in the same simplex—
the quadrants are used because the numerical solution in Figure 2 is computed on a
Cartesian grid).

However, it is still possible that, for a given PDE and for a chosen discretization
scheme, Dijkstra-like decoupling will produce a convergent numerical solution, pro-
vided that it is used on a specially oriented grid (e.g., Figure 2(a)). A criterion based
on this observation was introduced by Sethian in [36] as follows.

Criterion 5.1 (Applicability of the Fast Marching Method). For a static
Hamilton–Jacobi equation H(∇u,x) = 0, if the convex Hamiltonian H is approxi-
mated on a Cartesian grid by a consistent difference operator

Hij(Ui,j , Ui−1,j , Ui+1,j , Ui,j−1, Ui,j+1,xi,j) = 0,
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and if it is known that Ui,j depends only on the smaller values of U at the neighboring
points, then the Fast Marching Method can be used to compute Ui,j’s efficiently.

Remark 5.2. In the context of upwinding discretizations on unstructured meshes,
the above criterion is equivalent to requiring that the characteristics and the (nu-
merically approximated) vector (−∇u) should always lie in the same simplex. Sev-
eral sufficient conditions for a class of numerical Hamiltonians to satisfy the above
criterion on Cartesian grids were presented by Osher and Fedkiw in [29]. For in-
stance, the causality property was proven in [29] for the Godunov-type upwinding
discretization HG

ij , provided that the original Hamiltonian H(∇u,x) has a special

form H(∇u,x) = G(u2
x, u

2
y) for some function G. We note that, even for a relatively

simple elliptical front propagation (29), this condition is satisfied only in the case
when c1 or c2 is equal to zero, i.e., only when the axes of the ellipse are exactly
aligned with the grid coordinate directions. This is precisely the situation illustrated
by Figure 2(a).

In general, finding discretizations which satisfy Criterion 5.1 is a difficult task.
We note the following problems associated with this approach:

• Whether or not the criterion is satisfied depends upon a particular grid/mesh-
orientation. Indeed, the two test problems in Figure 2 are actually the same
(modulo a rotation by 45◦), yet only one of them satisfies the criterion.
• For any anisotropic problem, there are infinitely many grid orientations such
that the criterion is not satisfied. If an angle between the characteristic and
the gradient line is not zero, then any grid line lying inside that angle will
violate the criterion. Correspondingly, the bigger the anisotropy coefficient Υ
is, the harder it is to find the grid orientation satisfying the criterion.
• The criterion is infinitely sensitive to grid perturbations.
• If the criterion is not satisfied, the numerical solution does not lose stability
under grid refinement. In other words, when it does not work, it is not
immediately obvious.
• If the criterion is not satisfied even at a single grid point, the numerical
solution need not converge to the viscosity solution. Criterion 5.1 is the basis
for determining the order for computing the values of U . Computing even
one of them from a wrong quadrant can greatly affect the ordering of the
remaining computations.
• For many anisotropic problems, the criterion cannot be satisfied for any choice
of the grid directions. Indeed, if the angle between gradient lines and the
characteristics is sufficiently wide, and if the medium is substantially inho-
mogeneous (i.e., if the speed f(x,a) varies significantly in different parts
of Ω), then any Cartesian grid might violate Criterion 5.1 for some grid point
x ∈ X.

As a result, we have chosen to concentrate on a family of robust single-pass methods,
which are independent of the grid choice8 and applicable to a wider class of control
problems. Nevertheless, for the limited class of problems in which Criterion 5.1 can
be analytically demonstrated for a certain choice of grid, the original Dijkstra-like
solvers will perform better than the new OUMs introduced in the next section.

8Of course, it is just the fact of convergence that is independent of the grid choice for our methods;
the speed of convergence is certainly influenced by the choice of the grid and its alignment with the
shock lines.

In fact, if the computational mesh is not fixed for some application-specific reasons, the con-
vergence of our single-pass methods can be further improved by using the computed characteristic
information to dynamically add the mesh points inside the AF , wherever the shock is suspected.
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5.1. Causality in the Hamilton–Jacobi–Bellman PDE. A different (weaker)
causality property for the more general Hamilton–Jacobi–Bellman equation results
from Bellman’s optimality principle (see section 3). Since the characteristics of that
PDE are, in fact, the optimal trajectories of the corresponding control problem, we
know that the value function u is strictly increasing along the characteristics. Our
OUMs for the general anisotropic problems will be based on the fixed-boundary op-
timality principle (Lemma 3.2).

Let u(x) be the value function for the anisotropic min-time optimal trajectory
problem defined on Ω in section 3. We will use the notation Tx̂(x) for the minimum
time required to reach the point x̂ starting from the point x. If Γ is a simple closed
curve in Ω\∂Ω and a point x is inside Γ, then Lemma 3.2 shows that

u(x) = inf
x̂ ∈ Γ

{Tx̂(x) + u(x̂)} .

Because of the properties of the speed function f and by the continuity of Γ, that
infimum is actually a minimum achieved at some point x̃, i.e., u(x) = Tx̃(x) + u(x̃).
The point x̃ can be interpreted as an intersection of the optimal trajectory for x
with the curve Γ. Thus, knowing u on Γ is sufficient for evaluating u at any point
inside Γ. Moreover, if Γ is a level set of u(x), then, by Lemma 3.4, we know that
‖x̃−x‖ ≤ d1Υ, where Υ = f2

f1
and d1 is the distance from x to Γ (see Figure 3). The

last observation9 necessary for constructing a computational algorithm is that, if d1

is small relative to the size of Γ, then the optimal time Tx̃(x) cannot be much smaller
than the time required to traverse the straight line trajectory from x to x̃.

6. Control-theoretic OUM. We now describe our control-theoretic OUM,
which was first discussed without convergence proof in [39]. Consider an unstruc-
tured triangulated mesh X of diameter h (i.e., if the mesh points xj and xk are
adjacent, then ‖xj − xk‖ ≤ h).

Let xj and xk be two adjacent mesh points. Define the upwinding approximation
for U(x) from a “virtual simplex” xjxxk:

Vxj ,xk(x) = min
ζ∈[0,1]

{
τ(ζ)

f(x,aζ)
+ ζU(xj) + (1− ζ)U(xk)

}
,(31)

where τ(ζ) = ‖(ζxj + (1− ζ)xk)− x‖ and aζ =
(ζxj+(1−ζ)xk)−x

τ(ζ) .

Remark 6.1. The above update formula is basically the same as the upwind
formula for simplex s given by (25). The difference is that Vxj ,xk(x) is defined even
when xj and xk are not adjacent to x.

Control-theoretic OUM for anisotropic problems. As before, mesh points
are divided into three classes (Far, Considered, Accepted). The AcceptedFront is
defined as a set of Accepted mesh points, which are adjacent to some not-yet-accepted
(i.e., Considered) mesh points. Define the set AF of the line segments xjxk, where
xj and xk are adjacent mesh points on the AcceptedFront, such that there exists a
Considered mesh point xi adjacent to both xj and xk. For each Considered mesh
point x we define the “near front” as the part of AF “relevant to x”:

NF(x) = {xjxk ∈ AF | ∃x̃ on xjxk s.t. ‖x̃− x‖ ≤ hΥ} .
9Since Γ generally is not a level set of u, the logic of the method is more subtle and cannot really

be based on Lemma 3.4. Instead, it relies on Lemma 3.5, which provides a weaker version of this
inequality, but for any Γ “well-resolved” by an underlying mesh X.
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Fig. 3. The AcceptedFront and the Considered mesh points. Segments of AF are shown in
bold. The optimal trajectory for x̄ cannot intersect AF too far away from x̄, for if ‖x̃ − x̄‖ > hΥ,
then u(xi) < u(x̄).

1. Start with all the mesh points in Far.
2. Move the mesh points on the boundary (y ∈ ∂Ω) to Accepted (U(y) = q(y)).
3. Move all the mesh points x adjacent to the boundary into Considered and

evaluate the tentative values

V (x) := min
xjxk∈NF(x)

Vxj ,xk(x).(32)

4. Find the mesh point x̄ with the smallest value of V among all the Considered.
5. Move x̄ to Accepted (U(x̄) = V (x̄)) and update the AcceptedFront.
6. Move the Far mesh points adjacent to x̄ into Considered and compute their

tentative values by (32).
7. Recompute the value for all the other Considered x such that x̄ ∈ NF(x)

V (x) := min

{
V (x), min

x̄xi∈NF(x)
Vx̄,xi(x)

}
.(33)

8. If Considered is not empty, then go to 4.
We note that the resulting algorithm

• is “single-pass,” since it produces the numerical solution U in O(Υ2M log(M))
steps. This is because there are a total of M points to Accept, every time
a mesh point is accepted there are at most Υ2 Considered points to re-
evaluate, and we must maintain an ordering of Considered based on V , which
contributes a factor of log(M).
• produces the numerical solution U that converges to u as the diameter of the

mesh tends to zero (see the proof in section 7);
• is at most first-order accurate;
• works equally well on acute and nonacute triangulated meshes;
• is applicable for a general anisotropic optimal trajectory problem described

in section 3.
An extension of this method to Rn and manifolds is straightforward, since the update
formula (31) can easily be generalized for these cases. The only part of the program
which needs to be modified to handle a manifold-approximating mesh is the algorithm
for sorting and searching the AcceptedFront.

Remark 6.2 (Comments on computational complexity).
1. In the above complexity analysis, the calculation of an upwind-update-from-

a-single-simplex value Vxj ,xk(x) was counted as a single operation. We note that
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the optimization problem solved to compute Vxj ,xk
(x) is local (i.e., Vxj ,xk

(x) can be
computed independently from any other Vxi,xm(xl)) and, thus, should not be confused
with the iterations necessary to solve the coupled system of nonlinear equations (25)
simultaneously. More details on algorithmic efficiency can be found in section 9.

2. As we will show in section 7, AF can be considered as an approximation for
a level set of U . Thus, if the mesh diameter h is sufficiently small, then the number
of Considered points which have to be updated after each acceptance becomes closer
to Υ, since the Considered points are immediately adjacent to AF . Thus, as h
decreases, the computational complexity of the method tends to O (ΥM log(M)).

3. If the problem is formulated in Rn, the complexity of the corresponding
algorithm is O(Υn−1M log(M)), where M remains the total number of mesh points.

Remark 6.3 (A comment on the rate of convergence). Our proof of convergence
in section 7 does not provide an estimate for the rate of convergence. We believe that
this method is first-order; this belief is based on the first-order accuracy of the ap-
proximations behind the semi-Lagrangian discretization (used to calculate Vxj ,xk

(x))
and is also confirmed by the numerical evidence (see section 9.4 and [38, 46]). Based
on numerical experiments, we note that for sufficiently small h, ‖U − u‖∞ is at worst
O(Υh). This is not surprising, since Υh is the largest distance over which the first-
order accurate approximation might be performed when Vxj ,xk(x) is computed.

Remark 6.4 (A comment on mesh degeneracy). The fast Eikonal solvers de-
scribed in section 4 rely on the causality property, which holds only for the acute
simplexes. An additional “splitting section” construction is required to handle the
nonacute case [21, 38]. Not surprisingly, the acuteness of simplexes in X is not
required for the OUM introduced here. After all, the algorithm uses the mesh con-
nectivity only to determine what becomes Considered, when a new mesh point is
Accepted. All of the upwind-update-from-a-single-simplex values Vxj ,xk

(x) are com-
puted from the simplexes defined by the position of AcceptedFront rather than from
the simplexes present in X.

Nevertheless, in order to prove the convergence of U(x) to the viscosity solution,
we will have to assume that the mesh X cannot be arbitrarily degenerate. Namely,
we will assume that if h is the diameter of X and hmin is the smallest triangle height
in X, then the ratio η = h/hmin is bounded for all sufficiently small h. See the proof
of Lemma 7.5 for details.

Remark 6.5 (A comment on the order of Acceptance). Unlike in Sethian’s Fast
Marching Methods or in Tsitsiklis’ algorithm, in the above method the mesh points
are not Accepted in the order of increasing U . As was pointed out in section 5,
for the anisotropic optimal trajectory problems the fact that the characteristic for x
lies inside the simplex xxjxk does not mean that the gradient is pointing from that
simplex. Thus, it is entirely possible that U(x) ≤ Vxj ,xk

(x) < U(xj). Nevertheless,
we will show in Lemma 7.3 that the order of Acceptance is monotone, albeit in a
much weaker sense than for the single-pass Eikonal solvers.

Remark 6.6 (Decoupling of the “extended semi-Lagrangian scheme”). Define the
extended set of neighbors

NK(x) = {x1x2 ∈ X | x1 and x2 are adjacent and ∃x̃ on x1x2 s.t. ‖x̃− x‖ ≤ hΥ} .

Note that if we replace NF(x) by NK(x), the formula (32) becomes

U(x) = min
x1x2∈NK(x)

Vx1x2(x).(34)
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This is an “extended” version of the semi-Lagrangian scheme (25), and it is easy
to show that its solution U converges to the viscosity solution u. Equation (34)
can be solved by successive approximation techniques described in [18], for example.
However, a single-pass algorithm cannot be used to find U since we need to consider all
possible directions of motion for the vehicle starting at the point x (i.e., U(x) might
potentially depend upon U(y) for all y ∈ NK(x), including the values U(y) > U(x)).
Therefore, the formula (32) can be interpreted as an upwinding analogue of (34).

The above comparison is just an analogue—not an equivalence. The numerical
values produced by executing the above OUM will be different from those obtained by
solving the coupled system (34); thus, the convergence of the OUM has to be proven
separately.

7. Proof of convergence. In this section we prove the convergence of the above
algorithm to the viscosity solution.10

We will assume that the numerical solution U(x) is computed for each x ∈ X,
using the OUM described in section 6. For the points x ∈ Ω\X, U(x) is defined by
linear interpolation as follows.

If x is inside Ω but is not a mesh point, then it lies in some simplex x1x2x3. In
that case, there exist ζ1, ζ2, ζ3 ≥ 0 such that

ζ1 + ζ2 + ζ3 = 1, ζ1x1 + ζ2x2 + ζ3x3 = x.(35)

The value at x is defined to be U(x) = ζ1U(x1) + ζ2U(x2) + ζ3U(x3).
Suppose that hmin is the smallest triangle height in the mesh X. We will use the

constant η = h
hmin

to characterize the degree of “degeneracy” of the mesh X.

7.1. Properties of the numerical solution. The following lemmas demon-
strate several properties of the numerical solution U , which are necessary to prove
the convergence and also mirror the properties of the value function for the optimal
trajectory problem (section 3.2).

7.1.1. Is NF(x) big enough? Suppose that the mesh point x̄ is about to be
Accepted (hence, V (x̄) = minx∈Considered V (x)).

Lemma 7.1. For every Considered mesh point x define

W (x) = min
x1x2∈AF

min
ζ∈[0,1]

{
τ(ζ)

f(x,a)
+ (ζU(x1) + (1− ζ)U(x2))

}
,(36)

where τ(ζ) = ‖(ζx1 + (1− ζ)x2)− x‖ and a = ζ(x1−x)+(1−ζ)(x2−x)
τ(ζ) . If x̄ is about to

be Accepted, then U(x̄) = V (x̄) = W (x̄).
Proof. First, U(x̄) = V (x̄) simply because x̄ is about to be Accepted.
Recall that V (x) for every Considered mesh point x is computed by formula (32)

as follows:

V (x) = min
x1x2∈NF(x)

min
ζ∈[0,1]

{
τ(ζ)

f(x,a)
+ (ζU(x1) + (1− ζ)U(x2))

}
,

10As of now, we do not know of any natural discretized version of the Hamilton–Jacobi–Bellman
PDE that would be exactly satisfied by the numerical solution U(x) produced by the OUM in
section 6. Since U(x) is defined constructively (i.e., by an algorithm to compute it), we cannot rely
on properties of a discretized equation for the proof of convergence; thus, the proof in this section
has to rely on the properties of the algorithm itself.
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where NF(x) is the part of the AcceptedFront “relevant to x”: NF(x) = {x1x2 ∈
AF | ∃x̃ on the line segment x1x2 s.t. ‖x̃ − x‖ ≤ hΥ}. Since NF(x) ⊂ AF , we
immediately see that for any Considered mesh point x

V (x) ≥W (x).(37)

Let x1x2 ∈ AF and ζ ∈ [0, 1] be such that the minimum in formula (36) is attained;
i.e., if x̂ = (ζx1 + (1− ζ)x2), then

W (x̄) =
‖x̂− x̄‖

f(x̄, x̂−x̄
‖x̂−x̄‖ )

+ (ζU(x1) + (1− ζ)U(x2)) .(38)

Let x3 be the Considered mesh point adjacent to both x1 and x2. Then U(x̄) =
V (x̄) ≤ V (x3) since x̄ is about to be accepted. V (x3) is also computed by formula
(32); thus,

V (x3) ≤ ‖x̂− x3‖
f(x3,

x̂−x3

‖x̂−x3‖ )
+ (ζU(x1) + (1− ζ)U(x2)) ≤ h

f1
+ (ζU(x1) + (1− ζ)U(x2)) .

Combining this with the inequalities (37) and(38), we obtain

‖x̂− x̄‖
f2

+ (ζU(x1) + (1− ζ)U(x2)) ≤W (x̄) ≤ V (x̄) ≤ V (x3)

≤ h

f1
+ (ζU(x1) + (1− ζ)U(x2)) ,

which implies ‖x̂− x̄‖ ≤ hΥ. Therefore, x1x2 ∈ NF(x̄) and W (x̄) = V (x̄).

7.1.2. Uniform upper bound.
Lemma 7.2. If Ω is convex and d(x) is the distance from x ∈ Ω to the bound-

ary ∂Ω, then

U(x) ≤ d(x)

f1
+ q2.(39)

Proof. If x ∈ ∂Ω, then the inequality holds trivially since 0 ≤ q(x) ≤ q2.
If x is a mesh point inside Ω, we prove the lemma by induction: assume that

the inequality (39) holds for all the mesh points that are on the AcceptedFront just
before x = x̄ is Accepted. Consider a (possibly nonunique) shortest path from x̄ to
the boundary. By the properties of the distance function d(·), that shortest path is
a straight line. Moreover, suppose that line intersects the segment of AcceptedFront
x1x2 ∈ AF at the point x̂ = (ζx1 + (1 − ζ)x2). It is trivial to show that d(x̄) =
d(x̂) + ‖x̂− x̄‖. Using Lemma 7.1,

U(x̄) = W (x̄) ≤ ‖x̂− x̄‖
f(x̄, x̂−x̄

‖x̂−x̄‖ )
+ (ζU(x1) + (1− ζ)U(x2)) .

Based on the assumption of induction,

U(x̄) ≤ ‖x̂− x̄‖
f1

+ ζ

(
d(x1)

f1
+ q2

)
+ (1− ζ)

(
d(x2)

f1
+ q2

)
.
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By the convexity of Ω, the distance-to-boundary function d(x) is concave and d(x̂) ≥
ζd(x1) + (1− ζ)d(x2). Therefore,

U(x̄) ≤ 1

f1
(‖x̂− x̄‖+ d(x̂)) + q2 =

d(x̄)

f1
+ q2,

which completes the proof by induction. (The base of induction is obvious, since only
the mesh points on the boundary ∂Ω are already Accepted when the algorithm starts.)

If x is inside Ω but is not a mesh point, then it lies in some simplex x1x2x3 and
there exist ζ1, ζ2, ζ3 ≥ 0 such that

ζ1 + ζ2 + ζ3 = 1, x = ζ1x1 + ζ2x2 + ζ3x3, U(x) = ζ1U(x1) + ζ2U(x2) + ζ3U(x3).
(40)

Once again, using the concavity of the distance function,

U(x) ≤ ζ1

(
d(x1)

f1
+ q2

)
+ ζ2

(
d(x2)

f1
+ q2

)
+ ζ3

(
d(x3)

f1
+ q2

)
≤ q2 +

1

f1
(ζ1d(x1) + ζ2d(x2) + ζ3d(x3)) ≤ d(x)

f1
+ q2.

The obtained bound is “uniform” since it is independent of the diameter h of the
mesh X. We also note that a uniform upper bound on U can be derived even for a
nonconvex Ω, assuming that η remains bounded and the boundary ∂Ω is adequately
represented by the mesh as h tends to zero.

7.1.3. Relaxed monotonicity of the Accepted. In contrast with Dijkstra-
like Eikonal solvers, the OUM introduced in section 6 is not computing (and accepting)
the values in a monotone fashion: “xi is Accepted after xj” does not imply “U(xi) ≥
U(xj)” (see Remark 6.5). However, a weaker monotonicity property can still be
formulated, based on the evolution of AF during the computation. Recall that AF
is defined as the set of the line segments xjxk, where xj and xk are adjacent mesh
points on the AcceptedFront such that there exists a Considered mesh point xi

adjacent to both xj and xk. Define UAF
min (and UAF

max) as the min (max) value of U
on the set AF . Note that, since U is defined by the linear interpolation, both UAF

min

and UAF
max are attained at the mesh points.

The following definitions are useful for discussing the evolution of AcceptedFront:

— AFx̄ is the state of AF immediately before x̄ is Accepted.

— U
AFx̄
min and U

AFx̄
max are the minimum and maximum values of U on AFx̄.

— AF x̄ is the state of AF immediately after x̄ is Accepted.

— UAF x̄

min and UAF x̄

max are the minimum and maximum values of U on AF x̄.

Lemma 7.3 (Monotonicity of AF ’s evolution). Suppose that hmin is the smallest
triangle height in the triangulated mesh X on Ω. Then the following weak monotonic-
ity results hold for the numerical solution U :

(i)

U
AFx̄
min +

hmin

f2
≤ U(x̄) ≤ UAFx̄

max +
h

f1
.(41)

(ii)

U
AFx̄
min ≤ UAF x̄

min .(42)
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(iii) If xi is Accepted before xj , then U
AFxi
min ≤ U

AFxj

min .

(iv) If U
AFx̄
max ≤ U

AFx̄
min + h

f1
, then UAF x̄

max ≤ UAF x̄

min + h
f1
.

Proof. (i) Let x1 be a mesh point on AFx̄ such that U(x1) = U
AFx̄
min . Since it

is on AcceptedFront immediately before x̄ is Accepted, there exists at that time a
Considered mesh point x2 adjacent to x1. Thus,

V (x2) ≤ U(x1) +
‖x2 − x1‖

f(x2,
x2−x1

‖x2−x1‖ )
.

Since x̄ is about to be Accepted, U(x̄) = V (x̄) ≤ V (x2) ≤ U
AFx̄
min + h

f1
. On the other

hand,

U(x̄) = V (x̄) = U(x̃) +
‖x̃− x̄‖

f(x̄, x̃−x̄
‖x̃−x̄‖ )

for some x̃ ∈ AFx̄. Thus, U(x̄) ≥ U
AFx̄
min + hmin

f2
.

(ii) As x̄ is Accepted, several mesh points might be removed from the AcceptedFront,
but the only point possibly added to the AcceptedFront is x̄ itself. (x̄ will be added

if there still is a not-yet-Accepted mesh point adjacent to it.) Since U
AFx̄
min ≤ U(x̄), it

follows that U
AFx̄
min ≤ UAF x̄

min .
(iii) This point follows trivially by induction from the inequality (42).
(iv) Since x̄ is the only point possibly added to the AcceptedFront,

UAF x̄

max ≤ max
(
UAFx̄
max , U(x̄)

) ≤ U
AFx̄
min +

h

f1
≤ UAF x̄

min +
h

f1
.

Remark 7.4. It immediately follows from the above Lemma that if q2 ≤ q1+h/f1,
then UAF

max ≤ UAF
min + h/f1 at all times. Thus, if the exit time-penalty q is approxi-

mately constant on ∂Ω, then the AF will be approximately a level set of U throughout
the computation. Moreover, even if q is not approximately constant, the AF will still
approximate a level set of U as soon as UAF

min becomes bigger than (q2 − h/f1).

7.1.4. Uniform Lipschitz-continuity.
Lemma 7.5. (i) Let L1 = η/f1. If x1 and x2 are two adjacent mesh points

inside Ω, then

|U(x1)− U(x2)| ≤ L1‖x1 − x2‖.(43)

(ii) Let L2 = ηL1. If ∇U(x) is defined for some x ∈ Ω\∂Ω such that d(x) > h
(i.e., x is not in a simplex immediately adjacent to ∂Ω), then

‖∇U(x)‖ ≤ L2.(44)

(iii) Finally, for arbitrary points x1,x2 ∈ Ω,

|U(x1)− U(x2)| ≤ L2‖x1 − x2‖.(45)

Proof. (i) Suppose that x1,x2 ∈ Ω\∂Ω are two adjacent mesh points. Without
loss of generality, assume that x1 was Accepted before x2. Thus, immediately before
x2 is Accepted, x1 will still be on the AcceptedFront and

U(x2) ≤ ‖x1 − x2‖
f(x2,

x1−x2

‖x1−x2‖ )
+ U(x1) ≤ ‖x1 − x2‖

f1
+ U(x1) ≤ L1‖x1 − x2‖+ U(x1).
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Since U ’s are not necessarily Accepted in the ascending order, it is not generally true
that U(x2) ≥ U(x1), but from Lemma 7.3,

U(x1) ≤ U
AFx1
min +

h

f1
≤ U

AFx2
min +

h

f1
≤ U(x2)+

h

f1

= U(x2)+ η
hmin

f1
≤ U(x2)+L1‖x1−x2‖,

which concludes the proof of inequality (43).
(ii) Let x1,x2,x3 be the vertices of the simplex in the mesh X which contains

x. Since d(x) > h, we know that x1, x2, and x3 are also inside Ω, i.e., not on the
boundary. Inside each simplex, U is defined by the linear interpolation, and ∇U is a
constant. Whatever the direction of ∇U , a straight line parallel to it passes through
one of the vertices and intersects the opposite side of the triangle. Without loss of
generality, assume that that line passes through x1 and intersects the side x2x3 at
the point x4. Since x4 lies on x2x3, either (x2 − x1) · (x4 − x1) ≥ ‖x4 − x1‖2 or
(x3 − x1) · (x4 − x1) ≥ ‖x4 − x1‖2. Without loss of generality, assume the latter.
Since ‖x4 − x1‖ ≥ hmin,

‖∇U‖hmin ≤ ‖∇U‖‖x4 − x1‖ = |U(x4)− U(x1)| ≤ |U(x3)− U(x1)| ≤ L1h.

Thus, ‖∇U‖ ≤ L1
h

hmin
= L2.

(iii) This point is obvious, since U is piecewise linear, with the slope bounded by
L2 in every simplex.

Remark 7.6. Better estimates of L1 and L2 can be derived if f and q are smooth
and h is sufficiently small. However, to prove the uniform convergence of U to the
value function u, it is just necessary to show that some such L2 independent of h
does indeed exist. The dependence of L2 upon η is not dangerous: if the triangulated
mesh Xr does not become more and more “degenerate” as hr → 0, then ηr will be
bounded.

7.2. Convergence to a viscosity solution.
Theorem 7.7. Consider a sequence of meshes {Xr} such that hr → 0 but

ηr = hr

hrmin
< η as r →∞. Let Ur be the approximate solution obtained on the mesh

Xr by the algorithm described in section 6. As hr → 0, Ur uniformly converges to the
viscosity solution of (22) (defined by the inequalities (23) and (24) in section 3.3).

Proof. Since {Ur} are bounded and uniformly Lipschitz-continuous, by the Arzela–
Ascoli theorem, there exists a subsequence {Xp} of the sequence {Xr} such that
hp → 0 as p→∞, and a function u such that Up → u uniformly as p→∞. Bound-
edness and uniform continuity of u immediately follow from the properties of Up.

(i) Consider any function φ ∈ C∞c (Ω), and suppose that (u− φ) has a strict local
minimum at x0 ∈ Ω. Define Bδ to be the closed ball of radius δ around x0. Then
there exists some δ > 0 such that Bδ ⊂ Ω and x ∈ Bδ implies

(u− φ)(x0) < (u− φ)(x).(46)

If D2(x) is the matrix of second derivatives of φ(x), then there exists µ > 0 such that
‖D2(x)‖2 ≤ µ for all x ∈ Bδ. Now let x0

p be a minimum point for (Up−φ) over Bδ;
from (46) and from the uniform convergence of Up’s it follows that

lim
p→∞x0

p = x0.(47)
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If x0
p is not a mesh point of Xp and lies in the interior of some simplex s, we define

x1
p to be the vertex of s closest to it. If x0

p lies on the edge of a simplex, we take
x1

p to be the closest endpoint of that edge; finally, we use x1
p = x0

p if x0
p is a mesh

point. In any case, since φ is smooth and Up is linear on every simplex, we know that
Up(x1

p)− Up(x0
p) = ∇φ(x0

p) · (x1
p − x0

p) and

(Up − φ)(x1
p) ≤ (Up − φ)(x0

p) +
µhp

2

2
.(48)

Moreover, using inequality (48), we obtain for every x ∈ Bδ

φ(x)−φ(x1
p) = (φ(x)−φ(x0

p))+(φ(x0
p)−φ(x1

p))

≤(Up(x)−Up(x0
p))+

(
Up(x0

p)−Up(x1
p)+

µhp
2

2

)
=Up(x)−Up(x1

p)+
µhp

2

2
.

(49)

Since ‖x0
p − x1

p‖ ≤ hp, it is also clear that limp→∞ x1
p = x0. So, for big enough p,

hpΥ ≤ δ; thus, by the update formula (31), there exists x̃p ∈ AFx1
p

⋂
Bδ such that

Up(x1
p) =

τp
f(x1

p,ap)
+ Up(x̃p),(50)

where τp = ‖x̃p − x1
p‖ and ap = x̃p−x1

p

‖x̃p−x1
p‖ .

Using the smoothness of φ, the inequality (49), and the equality (50), we obtain

∇φ(x1
p) · ap +

1

f(x1
p,ap)

≤ φ(x1
p + τpa

p)− φ(x1
p)

τp
+

1

f(x1
p,ap)

+ τpµ

≤ Up(x1
p + τpa

p)− Up(x1
p) + (µhp

2/2)

τp
+

1

f(x1
p,ap)

+ τpµ

=
Up(x̃p)− Up(x1

p) + τp/f(x1
p,ap)

τp
+

µhp
2

2τp
+ τpµ =

µhp
2

2τp
+τpµ.(51)

Since x̃ lies on the AFx1
p and τp = ‖x̃p − x1

p‖, it is at least as big as the minimal

triangle height in the mesh Xp, i.e., τp ≥ hp

η . On the other hand, τp ≤ hpΥ because

x̃p ∈ NF(x1
p). Combining these bounds with inequality (51), we see that

∇φ(x1
p) · ap +

1

f(x1
p,ap)

≤ µ
(η

2
+ Υ

)
hp.(52)

The sequence {ap} has to have a subsequence converging to some vector b ∈ S1;
we restrict our attention to that subsequence, but will still use the subscript p to
avoid further cluttering of the notation. Now we can use the continuity of f , the
smoothness of φ, and the uniformity of convergence of Up to pass to a limit as p→∞
in the inequality (52):

∇φ(x0) · b+ 1

f(x0, b)
≤ 0 =⇒ (∇φ(x0) · b)f(x0, b) + 1 ≤ 0,

which completes the first half of the proof, since

min
a∈S1

{(∇φ(x0) · a)f(x0,a)} ≤ (∇φ(x0) · b)f(x0, b).
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(ii) Consider any function φ ∈ C∞c (Ω), and suppose that (u−φ) has a strict local
maximum at x0 ∈ Ω. Define Bδ to be the closed ball of radius δ around x0. Then
there exists some δ > 0 such that Bδ ⊂ Ω and x ∈ Bδ implies

(u− φ)(x0) > (u− φ)(x).(53)

If ∇φ(x0) = 0, then the inequality (24) is trivially satisfied. Thus, we will further
assume that ‖∇φ(x)‖ ≥ ν > 0 for all x ∈ Bδ. If D2(x) is the matrix of second
derivatives of φ(x), then there exists µ > 0 such that ‖D2(x)‖2 ≤ µ for all x ∈ Bδ.
Now let x0

p be a maximum point for (Up − φ) over Bδ; from (53) and from the
uniform convergence of Up’s it follows that

lim
p→∞x0

p = x0.(54)

If x0
p is not a mesh point of Xp and lies in the interior of some simplex s, we define

x1
p to be the vertex of s closest to it. If x0

p lies on the edge of a simplex, we take
x1

p to be the closest endpoint of that edge; finally, we use x1
p = x0

p if x0
p is a mesh

point. In any case, since φ is smooth and Up is linear on every simplex, we know that
Up(x1

p)− Up(x0
p) = ∇φ(x0

p) · (x1
p − x0

p) and

(Up − φ)(x1
p) ≥ (Up − φ)(x0

p)− µhp
2

2
.(55)

Moreover, using the inequality (55), we obtain for every x ∈ Bδ,

φ(x)− φ(x1
p) = (φ(x)− φ(x0

p)) + (φ(x0
p)− φ(x1

p))

≥ (Up(x)− Up(x0
p)) +

(
Up(x0

p)− Up(x1
p)− µhp

2

2

)
= Up(x)− Up(x1

p)− µhp
2

2
.

(56)

Since ‖x0
p − x1

p‖ ≤ hp, it is also clear that limp→∞ x1
p = x0. As proven in

section 3.4,

min
a∈S1

{(∇φ(x0) · a)f(x0,a)} = min
a∈Sφ,x0

1

{(∇φ(x0) · a)f(x0,a)}.(57)

Thus, to prove (24), we need to consider only a ∈ Sφ,x0

1 , i.e., only a such that

a · ∇φ(x0) ≤ −Υ−1‖∇φ(x0)‖ ≤ −νΥ−1.(58)

Suppose that a particular a ∈ Sφ,x0

1 was chosen. We would like to show that, for
sufficiently small hp,

(*) if we start at x1
p and go some distance τp = O(hp) in the direction a, then we

will have to intersect the AFx1
p .

If the local maximum were attained at the mesh point (i.e., the case x1
p = x0

p)
and the test function φ were linear, then (*) would be almost obvious: φ would be
linearly decreasing in the direction a, and so would Up, because of the local maximum
condition, and, as we know from Lemma 7.3,

Up(x) ≥ U
AFx1p

min +
hp
ηf2
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for every mesh point x ∈ Xp Accepted after the point x1
p. Since φ is generally not

linear and x1
p �= x0

p, we will have to be more careful.
Suppose we start moving from x1

p in the direction a for some time tp. Using the
inequality (56), the smoothness of φ, and the inequality (58), we obtain

Up(x1
p + tpa)− Up(x1

p) ≤ (φ(x1
p + tpa)− φ(x1

p)) +
µhp

2

2

≤
(

tp(∇φ(x1
p) · a) + µtp

2

2

)
+

µhp
2

2
≤ −νtpΥ

−1 + µ
hp

2 + tp
2

2
.(59)

In order to prove (*) we will need the following inequality to be satisfied:

−νtp
f1

f2
+ µ

hp
2 + tp

2

2
≤ −hp

f1
.(60)

Let tp = Ahp. We will now show that the constant A can be chosen such that (60)
holds for small enough hp. Indeed, (60) can be rewritten as

h2
p

(
µ
1 + A2

2

)
+ hp

(
1

f1
− νA

f1

f2

)
≤ 0.(61)

If A is such that ( 1
f1
− νA f1

f2
) > 0, then we also have that (60) is satisfied for all

hp ∈ [0, (νA f1
f2
− f2)

2
µ(1+A2) ]. Thus, choosing any A > (

f2
2

νf1
), we ensure that (60) is

satisfied for the sufficiently small hp. Combining this with the inequality (59) and
using the monotonicity result in Lemma 7.3, we see that

Up(x1
p + tpa) ≤ Up(x1

p)− hp
f1
≤ U

AFx1p

min ,

i.e., the point (x1
p + tpa) cannot be inside the AFx1

p . Since x1
p is inside AFx1

p ,
that means that (*) holds: there exists some τp ∈ [0, tp] such that

x̃p = (x1
p + τpa) ∈ AFx1

p .

By Lemma 7.1,

Up(x1
p) = W p(x1

p) ≤ τp
f(x1

p,a)
+ Up(x̃p).(62)

The remainder of the proof is similar to what we have done to prove (i).
Using the smoothness of φ, the inequality (56), and the inequality (62), we obtain

∇φ(x1
p) · a+

1

f(x1
p,a)

≥ φ(x1
p + τpa)− φ(x1

p)

τp
+

1

f(x1
p,a)

− τpµ

≥ Up(x1
p + τpa)− Up(x1

p)− (µhp
2/2)

τp
+

1

f(x1
p,a)

− τpµ

=
Up(x̃p)− Up(x1

p) + τp/f(x1
p,a)

τp
− µhp

2

2τp
− τpµ ≥ −µhp

2

2τp
− τpµ.(63)

Since x̃ lies on the AFx1
p and τp = ‖x̃p − x1

p‖, it is at least as big as the minimal

triangle height in the mesh Xp, i.e., τp ≥ hp

η . On the other hand, τp ≤ tp = Ahp,
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where A is a constant chosen for this particular φ, but independent of hp. Combining
these bounds with inequality (63), we see that

∇φ(x1
p) · a+

1

f(x1
p,a)

≥ −µ
(η

2
+ A

)
hp.(64)

We can now use the continuity of f , the smoothness of φ, and the uniformness of
convergence of Up to pass to a limit as p→∞ in the inequality (64):

∇φ(x0) · a+
1

f(x0,a)
≥ 0 =⇒ (∇φ(x0) · a)f(x0,a) + 1 ≥ 0,

which completes the proof of inequality (24), since a was chosen to be an arbitrary

vector in Sφ,x0

1 .
In this proof we have several times passed to a subsequence. If some other subse-

quence of Ur converges to a different limit ū, the above argument could be repeated
for that subsequence to prove that ū also satisfies (23) and (24). The uniqueness of
the viscosity solution (proven in [10, 9]) implies u = ū; thus, the entire sequence Ur

converges to u uniformly as r →∞.

7.3. Additional comments. First, the above proof of convergence, as well as
the preceding lemmas, can be easily repeated for the corresponding method in higher
dimensions. Moreover, if the update formula (31) in the description of the method is
replaced by any other update-from-a-single-simplex formula such that

1. the update formula is consistent (converges to the PDE as h→ 0),
2. the update formula is upwinding (the update is computed/accepted only from

the simplex, which contains the characteristic direction), and
3. the update formula is stable (there exists a uniform bound for U),

then the resulting numerical solutions should converge to the viscosity solution of the
Hamilton–Jacobi–Bellman PDE. This conjecture is the basis for the methods based
on finite-difference discretization discussed in section 8.2.

Second, the above proof uses the continuity of the speed function f , but not the
Lipschitz-continuity. Thus, if the viscosity solution can be defined for f ∈ C(Ω), then
the above proof will still be valid. The majority of the control-theoretic papers to
which we are referring in this work require the speed of motion f (or, equivalently, the
running cost K) to be Lipschitz-continuous. Nevertheless, the value function u can
be defined for a much broader class of control problems, including those for which f is
discontinuous. Some examples of our method applied to such problems can be found
in section 9.4. Numerical evidence confirms that the method described above works
correctly in that more general case. This is not surprising, since Bellman’s optimality
principle is valid even when the speed f(x,a) is very ill-behaved, and our numerical
methods merely mimic the logic of that principle.

8. Front propagation problems and OUMs. Anisotropic aspects of front
propagation have been studied in several different contexts, including geometric op-
tics, geophysics, tomography, and crystal growth; our primary emphasis is on an
application-neutral analysis, concentrating on the properties of the particular class of
static Hamilton–Jacobi PDEs. We begin with the correspondence between anisotropic
optimal trajectory problems and a class of anisotropic front expansion (contraction)
problems described in section 8.1. Our goal is to determine a set of the anisotropic
front expansion (contraction) problems, which can be solved efficiently by our semi-
Lagrangian OUM, and to construct a family of OUMs based on fully Eulerian dis-
cretizations.
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8.1. Front propagation problems: Static Hamilton–Jacobi approach.
Consider a simple curve Γt moving in R2 in the direction normal to itself with some
speed F (x,n), where n is an “outwards pointing” unit vector normal to the curve
as it passes through the point x. If the curve is not smooth, then n is not defined,
but a geometric construction based on a variant of Huygens’ principle can still be
used to define the evolution of Γt. An important subclass of the front propagation
problems consists of applications in which the speed function F never changes sign.
If the function F is strictly positive (or negative), then the front always expands (or
contracts). This implies that the front passes through each point only once. Thus,
we can define u(x) to be the arrival time: u(x) = t ⇐⇒ x ∈ Γt. If F is always

nonnegative, the outwards unit normal vector can be expressed as n(x) = ∇u(x)
‖∇u(x)‖

and, assuming that n(x) is always defined, it is straightforward to show that the
arrival time u satisfies the PDE

‖∇u(x)‖F
(
x,
∇u(x)

‖∇u(x)‖
)

= 1,(65)

u = 0 on Γ0.

This is a static Hamilton–Jacobi PDE of the form H(∇u,x) = 1, where the
Hamiltonian H is homogeneous of degree one in the first argument. To interpret (65)
where ∇u does not exist, one normally uses the unique viscosity solution, as defined
in [9, 10]. As follows from the results in [14] and [41], the level sets of the viscosity
solution u of (65) will correspond to the evolution of Γ0 defined by Huygens’ principle.

We note that, in general, the Hamiltonian H(∇u,x) = ‖∇u‖F (x, ∇u‖∇u‖ ) is not

convex. As shown in [14], such H(∇u,x) can always be considered as a result of
a differential game model. Several iterative numerical schemes are based on this
approach (see [4] or [16], for example). However, if H is convex, it can be alternatively
considered as a product of a dual min-time optimal control problem [41]. Using two
interpretations of the Hamiltonian, we can show that the speeds F and f are related
by a homogeneous Legendre transform:

F (x,n) = max
a∈S1

{(n · (−a))f(x,a)},(66)

f(x,a) = min
n∈S1, (n·a)<0

{
F (x,n)

(−n · a)
}

.(67)

Remark 8.1. We note that F (x,n) is the speed of the front’s movement in

the direction normal to itself (here, n = ∇u(x)
‖∇u(x)‖ ), whereas f(x,a) is the speed of the

vehicle’s motion in the direction a. Correspondingly, the correct n is fully determined
by the gradient direction of the function u(x), while the optimal a ∈ S1 is determined
by the direction of the characteristic passing through the point x and, therefore, is a
function of the particular Hamilton–Jacobi–Bellman equation. In the isotropic case,
however, there is no difference since (66) yields f(x) = F (x).

Define the vehicle’s speed profile Sf (x) = {af(x,a) | a ∈ S1}, its flipped (center
symmetry applied) version S−f (x) = {−af(x,a) | a ∈ S1}, and the front propagation
speed profile SF (x) = {nF (x,n) | n ∈ S1}. The formulas (66) and (67) can now be
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Fig. 4. (a) Using Sf to construct SF ; (b) using SF to construct Sf .

interpreted geometrically:11

— F (x,n) can be obtained by projecting S−f (x) onto a unit vector n and then
by taking the maximum of this (signed) projection (see Figure 4(a));

— S−f (x) can be obtained as an envelope of lines perpendicular to n drawn at
every point of SF (x) (see Figure 4(b)).

By the above construction, Sf is always convex. Thus, different optimal trajectory
problems will yield the same Hamilton–Jacobi–Bellman equation, provided that the
speed profiles have the same convex hull.12 See [30] and the references therein for an
additional discussion of Wulff shapes and mutual properties of functions related by
the homogeneous Legendre transform.

Finally, we note that the correspondence between these two types of anisotropic
problems can be used to build an alternative definition of Huygens’ principle: using
scaled speed profiles S−f at each point of the wavefront instead of the circles of front-
direction-dependent radius; see [14], [40], or [46].

8.2. OUMs for Eulerian discretizations. Given 0 < F1 ≤ F (x,n) < F2 for
all x and n, we can use the formula (67) to prove that 0 < F1 = f1 ≤ f(x,a) < f2 =
F2 for all x and a. Thus, the corresponding control problem can be treated by the
OUMs with the semi-Lagrangian update formula described in section 6.

We now proceed to construct the OUMs for the fully Eulerian approximation of
‖∇u‖F (x, ∇u‖∇u‖ ) = 1. The key idea is that any consistent upwind finite difference

discretization can be used to compute an update-from-a-single-simplex Vxj ,xk
(x).

Our derivation of such discretizations generalizes the approach used in defining the
Fast Marching Method on unstructured meshes given in [38].

11In wave physics, F (x,n) corresponds to the “phase velocity” if n is the direction normal to the
wavefront [11]. In crystalline variational problems, F (x,n) corresponds to the “surface free energy”
if n is the direction normal to the surface [43]. Additionally, f(x,a) corresponds to the “group
velocity,” i.e., the speed with which a blob of energy is moving in the direction a [11]. Finally,
this speed profile is often referred to as a “ray surface” or “impulse-response surface” [11, 31].
The corresponding object in crystalline variational problems is the “Wulff shape”—the shape which
minimizes the free surface energy for a fixed volume with no additional constraints [43].

12Similar geometric construction is common in tomography; the formulas (67) and (66) are related
to the inverse Radon transform [20]. Analytic expressions for F in terms of f and for f in terms of F
can be easily derived for R2 (see [30, 46], for example). Similar formulas expressing the relationship
between the group speed and the phase speed were known in wave physics [28] at least as early as
1837.
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8.2.1. Upwind finite-difference discretization. Consider an unstructured
triangulated mesh X of diameter h (i.e., if the mesh points xj and xk are adjacent,
then ‖xj − xk‖ ≤ h). Let xj and xk be two adjacent mesh points and choose some

other mesh point x ∈ Ω\∂Ω. Define the unit vectors P1 =
x−xj

‖x−xj‖ and P2 = x−xk

‖x−xk‖ .
Assume that P1 and P2 are linearly independent, and consider the 2× 2 nonsingular
matrix P having P1 and P2 as its rows. Let vr(x) be the value of the directional
derivative for the direction Pr evaluated at the point x. Assuming that the function
u is differentiable at x, we have P∇u(x) = v(x), where v(x) =

[
v1(x)
v2(x)

]
. Recall that

the front propagation equation (65) can be written as ‖∇u(x)‖2F 2(x, ∇u(x)
‖∇u(x)‖ ) = 1,

which can be restated in terms of v(x):

v(x)T (PPT )−1v(x)F 2

(
x,

P−1v(x)

‖P−1v(x)‖
)

= 1.(68)

To obtain the discretized equation, we now replace each vr with a difference
approximation: vr(x) ≈ wr ≡ arU + br, where the br’s linearly depend on the values
of U (and possibly of ∇U for higher-order schemes) at the mesh points xj and xk.

Remark 8.2. In general, the choice of the difference approximation will depend
upon the structure of the mesh and will also affect the rate of convergence of the
method. The simplest first-order finite-difference approximation is obtained by choos-
ing

a1 =
1

‖x− xj‖ , b1 =
−U(xj)

‖x− xj‖ , a2 =
1

‖x− xk‖ , b2 =
−U(xk)

‖x− xk‖ .

Higher-order accurate operators can be built using the computed value for ∇U at the
mesh points (see [38, 46] for further details).

For convenience, let Q = (PPT )−1 and use v(x) ≈ w(x) = Vxj ,xk
(x)a+b. Then

the discretized version of (68) can be used as an equation for the upwind-update-
from-a-single-simplex Vxj ,xk(x):(

(aTQa)(Vxj ,xk(x))
2 + (2aTQb)Vxj ,xk(x) + (bTQb)

)
F 2

(
x,

P−1w

‖P−1w‖
)

= 1.(69)

Remark 8.3. In the isotropic case, the analogous equation was just a quadratic
(see the appendix and [38]). Equation (69) is a more complex nonlinear equation
since w(x) also depends on Vxj ,xk(x). In general, this equation will have to be
solved approximately, and the overall efficiency of the method will also depend on the
iterative numerical method used to solve (69). Since these iterations are generally
unavoidable, we will consider solving this equation as a single operation in the further
analysis of computational complexity. We note that the iterative zero-finding required
to compute Vxj ,xk(x) is local (i.e., Vxj ,xk(x) can be computed independently from
any other Vxi,xl(xm)) and thus should not be confused with the iterations necessary
to solve a coupled system of nonlinear equations (such as (25)) simultaneously.

8.2.2. Upwinding criterion and combined update formula. We need to
ensure that the value of Vxj ,xk(x) computed from (69) is truly upwind, i.e., that the
characteristic for the mesh point x lies inside the simplex xxjxk. The approximate
gradient P−1(Vxj ,xk(x)a+ b) can be used to compute an approximation to the char-
acteristic direction a(x). For Rn, the requirement that the characteristic direction



354 JAMES A. SETHIAN AND ALEXANDER VLADIMIRSKY

should point into the simplex xx1 . . .xn is equivalent to the condition that all the
elements of the vector (PT )−1a(x) should be positive.

The unfortunate feature of this upwinding criterion is that it is based on the ap-
proximate rather than the exact characteristic direction. Due to the approximation
error, it is possible that an upwinding criterion will not be satisfied even though the
true characteristic for the mesh point x lies inside the simplex xxjxk. If that sim-
plex is small enough, this can happen only when one of the elements of the vector
(PT )−1a(x) is close to zero, i.e., only when the characteristic direction almost coin-
cides with (−P1) or (−P2). That corresponds to the situation in which U(x) can be
computed based on either U(xj) or U(xk). Thus, we define the “one-sided-update”
formula in a manner consistent with the control-theoretic perspective:

Vxi(x) =
‖xi − x‖

f(x, xi−x
‖xi−x‖ )

+ U(xi).(70)

Therefore, the final formula for the upwind-update-from-a-single-simplex becomes

Vxj ,xk(x) =


solution of (69) if P1 and P2 are linearly independent

and the upwinding criterion is satisfied,

min(Vxj (x), Vxk(x)) otherwise.

(71)

Using the finite-difference update formula (71) instead of the formula (31) in the
algorithm described in section 6, we obtain a new OUM for solving the front expansion
problem (Hamilton–Jacobi equation (65)). In fact, this defines a whole family of such
methods, since different upwind finite-difference operators can be used to approximate
wr(x) in (68).

We note that the resulting methods
• are single-pass and have the same computational complexity as the semi-

Lagrangian OUM introduced in section 6,
• work equally well on acute and nonacute triangulated meshes,
• are applicable for a general anisotropic optimal trajectory problem described

in section 3,
• can be easily extended to Rn and manifolds. (The generalizations of the

mapping n �→ a, of (68), and of the upwinding criterion are obvious.)
Remark 8.4 (Convergence). In the appendix, we show the connection between

a particular first-order Eulerian OUM (based on Remark 8.2) and the first-order
semi-Lagrangian OUM (introduced in section 6); in this case, the convergence to the
viscosity solution follows from section 7. However, as of right now, we do not have
a proof of convergence for the general (higher-order) OUMs based on the Eulerian
discretization. We rely on general convergence considerations (see the remarks fol-
lowing the proof of Theorem 7.7) and on the numerical evidence (section 9.4 and
[39, 46]). In all of our numerical experiments the numerical solution U produced by
these methods converges to the viscosity solution of the original PDE. The rate of
convergence depends on the particular finite-difference operators used to approximate
wr(x) in (68).

9. Implementation and numerical results.

9.1. Implementation notes. An efficient implementation of the described nu-
merical methods for the anisotropic optimal-trajectory and front-propagation prob-
lems requires dealing with several algorithmic issues. Storing and sorting the current
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AcceptedFront, for example, has to be implemented rather carefully to enable efficient
search for the “AcceptedFront neighborhood” NF(x) for every Considered point x.
The inverse operation (searching for all Considered x such that x̄ ∈ NF(x)) is an-
other major component of the implementation. Efficient use of data structures allows
us to construct an algorithm with the computational complexity of O(ΥM logM).

The connection between a particular class of anisotropic front-propagation and
optimal-trajectory problems allows us to build both semi-Lagrangian and fully Eule-
rian single-pass methods. On a fixed mesh X, the computational complexity of these
methods will be the same. However, the overall efficiency of each program will be
affected by the chosen upwind-update-from-a-single-simplex formula. The optimal
choice depends on the particular speed functions F and f and on the details of im-
plementation: the semi-Lagrangian method requires performing a local minimization
at each mesh point (using (31)), whereas the finite-differences upwind update for-
mula requires finding the roots of the nonlinear equation (69). Generally, both the
minimization and the root-finding have to be done approximately, and the overall effi-
ciency depends on the particular numerical method used to compute the approximate
update. Our implementations used the “golden section search” and the Newton–
Raphson method to numerically resolve the control-theoretic and finite-difference up-
date formulas, respectively; the implementation details of these and other numerical
minimization and zero-finding techniques can be found in [42].

We note that the above complexity and efficiency discussion is limited to finding
a numerical solution on a fixed grid. The speed of convergence (of the numerical
approximation U(x) to the viscosity solution u(x) as the grid is refined) is a separate
issue. Thus, the availability of the higher-order accurate upwind update formulas is
a significant advantage of the Eulerian approach.

9.2. Using a local anisotropy coefficient. So far we have always used the
global bounds on the speed function 0 < F1 ≤ F (x,p) ≤ F2 for all p and x. We now
define the local bounds on F ,

F1(x) = min
p∈S1

F (x,p), F2(x) = max
p∈S1

F (x,p),

and the local anisotropy coefficient Υ(x) = F2(x)
F1(x) .

We note that many of the lemmas stated in section 3 for u(x) in terms of F1 and F2

can be restated in terms of F1(x) and F2(x). Most importantly, this is true for
Remark 3.7, which establishes a bound on the angle between the characteristic and
gradient directions. Thus, it is also possible to build the numerical method using
Υ(x) instead of Υ in the definition of NF(x). Moreover, if F is smooth and the
maximum/minimum in defining F1(x) and F2(x) are taken not just at the point but
over some closed ball B centered at x, then the resulting algorithm provably converges
to the viscosity solution. (Indeed, for small enough h, NF(x) ⊂ B even if NF (x) were
defined using the global anisotropy coefficient Υ.)

This observation leads to a substantially more efficient algorithm since the global
anisotropy coefficient Υ can be much larger than supx∈Ω Υ(x) for the front propagat-
ing in a strongly inhomogeneous medium.

9.3. Heuristic: Relaxing the update procedure. In the algorithm described
in section 6, there are two different situations in which the tentative value V (x) is
recomputed for a Considered point x:

• V (x) is first computed using the entire NF(x) at the moment when x is added
to Considered;



356 JAMES A. SETHIAN AND ALEXANDER VLADIMIRSKY

• V (x) is then recalculated from at most two simplexes every time the newly
Accepted mesh point x̄ belongs to NF(x).

If the boundary condition for the PDE is nearly constant (i.e., if q2 ≤ q1 + h/f1,
where h is the diameter of the triangulated mesh), Lemma 7.3 shows that the AF will
also approximate the level set throughout the execution of the algorithm. On the other
hand, Lemma 3.4 shows that the optimal trajectory for x intersects a level set at some
point x̃ such that ‖x̃− x‖ ≤ d1Υ, where d1 is the distance from x to that level set.
This means that if AF were exactly the level set, the initial evaluation of V (x) would
capture all the necessary information about all the potential characteristic directions
for x; thus, the further reevaluations of V (x) would not be necessary. Since AF
is only approximating the level set, capturing all the necessary directions requires
“widening” the set NF(x). Carefully combining Lemmas 7.3 and 3.4, and assuming
U ≈ u on AF , we can show that all the characteristic directions are still covered if
NF(x) is taken to be two times “wider”:

N̂F(x) = {xjxk ∈ AF | ∃x̃ on xjxk s.t. ‖x̃− x‖ ≤ 2hΥ(x)} .
This still leads to the total of roughly 2Υ evaluations of Vs for each mesh point, but
it is no longer necessary to search for all Considered x such that x̄ ∈ NF(x) each
time a new x̄ is Accepted.13

Furthermore, an additional update relaxation can be used with the Eulerian
discretization-based methods if the boundary condition for the PDE is nearly con-
stant. In the initial computation of V (x) it is often not necessary to consider the
entire NF(x): we can stop as soon as we find xjxk ∈ NF(x) such that Vxj ,xk(x)
satisfies the upwinding conditions (see section 8.2.2). The viscosity solution u of the
Hamilton–Jacobi PDE is Lipschitz-continuous, and therefore ∇u exists almost every-
where. As shown in [46], if u is differentiable at the point x and the vehicle’s speed
profile Sf (x) is strictly convex, then there exists a unique optimizing control a(x).
Thus, away from the shocks, there should not be multiple simplexes in NF(x) pro-
ducing updates which satisfy the upwinding criteria.

For a fixed grid X, the numerical evidence suggests that the “relaxation” signifi-
cantly improves efficiency of the program. As the grid is refined, the numerical solu-
tion obtained by the “relaxed” scheme converges to the viscosity solution—sometimes
slower, but often (depending on the type of anisotropy) even faster than the solution
computed by the “full-update” scheme. However, the asymptotic order of accuracy of
the “relaxed” and “full-update” schemes seems to be the same in all of our numerical
experiments (e.g., see section 9.4.1).

9.4. Numerical experiments. In this section we consider several test prob-
lems, each of which can be described by a non-Eikonal (anisotropic) Hamilton–Jacobi
PDE. In each case, the speed function is assumed to be known from the characteriza-
tion of a particular application domain. For example, in the optimal-trajectory test
problem, f(x,a) reflects the assumptions about the speed of the controlled vehicle,
while in the seismic imaging test problem, the front-expansion speed F is derived
using the assumptions about the elliptical nature of the “impulse-response surface”
for the anisotropic medium.

9.4.1. Geodesic distances on manifolds. The first test problem is to find the
geodesic distance on a manifold z = g(x, y). As described in [21] and [36], this can

13The numerical experiments indicate that a much smaller “widening” of NF is sufficient in prac-
tice.



ORDERED UPWIND METHODS FOR STATIC HJ PDEs 357

be accomplished by approximating the manifold with a triangulated mesh and then
solving the distance equation ‖∇u‖ = 1 on that mesh. Since the latter equation is
Eikonal, the Fast Marching Method can be used to solve it efficiently. However, if one
desires to formulate the problem in the x − y plane instead of the intrinsic manifold
coordinates, then the corresponding equation for u is not Eikonal. Indeed, in the
x − y plane, the manifold’s geodesic distance function u has to satisfy (65) with the
speed function F defined as

F (x, y, ω) =

√
1 + g2

y cos
2(ω) + g2

x sin2(ω)− gxgy sin(2ω)

1 + g2
x + g2

y

,(72)

where ω is the angle between ∇u(x, y) and the positive direction of the x-axis. The
degree of anisotropy in this equation is substantial, since the dependence of F upon ω
can be pronounced when ∇g is relatively large.14

As shown in section 8.1, u can also be considered as a value function for the
corresponding min-time optimal-trajectory problem and must, therefore, satisfy (22).
The vehicle’s speed function f(x, y,a) can be defined by applying (67) to the speed of
front propagation F (x, y, ω). However, it is even easier to obtain f from the control-
theoretic considerations. If the vehicle moving with speed f(x, y,a) in the x-y plane
is just a shadow of another vehicle moving with a unit speed on the manifold, then
this vehicle’s speed profile is just an orthogonal projection of a unit circle from the
manifold’s tangent plane onto the x-y plane, i.e.,

f(x, y,a) = (1 + (∇g(x, y) · a)2)− 1
2 ,(73)

where a is a vector of unit length and f is the control-theoretic speed of motion in
the direction a (see section 3.1 and section 8.1 for details).

As an example, we consider the manifold g(x, y) = .9 sin(2πx) sin(2πy) and com-
pute the geodesic distance on it from the origin. The anisotropy coefficient for this
problem is Υ = F2

F1
=
√
100 + 324π2/10 ≈ 5.7. Since the analytical solution is not

available, we use the results of the tested method on the mesh with 385 × 385 mesh
points as an estimate of the “true” value function. This estimate is used to perform
the convergence analysis on coarser regular meshes in the x-y plane for the following:

M1: iterative solution to the first-order semi-Lagrangian scheme (25),
M2: OUM based on the first-order semi-Lagrangian scheme (section 6),
M3: same as M2, but with the “relaxed update” (section 9.3),
M4: OUM based on the first-order finite-differences scheme (section 8).

See Figure 5 for the level sets of the value function and for the table of error estimates.

9.4.2. First arrivals in inhomogeneous anisotropic medium. Finally, we
include an example of the first arrival travel times computation with applications
to seismic imaging. We start with a computational domain which suggests mate-
rial layering under a sinusoidal profile. The computational domain is the square
[−a, a]× [−a, a], with layer shapes

C(x) = A sin
(mπx

a
+ β

)
,(74)

where A is the amplitude of the sinusoidal profile, m is the number of periods, and
β is the phase offset. The domain is split into n layers by the curves yi(x) = C(x)+bi,
where i = 1, . . . , (n− 1).

14The algorithm presented in [21] using the manifold-approximating mesh is certainly more effi-
cient for this problem; here, it serves as a convenient test problem for the general anisotropic OUMs.
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L∞ Error 252 492 972 1932

M1 0.15474 0.05902 0.02619 0.00866
M2 0.36131 0.25581 0.13021 0.04195
M3 0.37647 0.25679 0.13070 0.04327
M4 0.36052 0.25940 0.13042 0.04174

L2 Error 252 492 972 1932

M1 0.05503 0.02281 0.01073 0.00381
M2 0.13918 0.09901 0.04876 0.01416
M3 0.14022 0.09848 0.04766 0.01374
M4 0.13749 0.09659 0.04626 0.01374

Fig. 5. The geodesic distance from the origin on the surface z = .9 sin(2πx) sin(2πy) computed
on the square [−.5, .5] × [−.5, .5] in the x-y plane. The error estimates were produced on refined
meshes taking the corresponding method on a 3852 mesh to be the true solution (hence the seemingly
higher-than-first-order rate at the end).

In each layer, the anisotropic speed profile Sf is given at every point (x, y) by
an ellipse with the bigger axis (of length 2F2) tangential to the curve C(x) and the
smaller axis (of length 2F1) normal to the curve. F1 and F2 are constants in each
layer. Thus, the ellipse’s orientation and shape depend on (x, y).

This leads to an anisotropic Hamilton–Jacobi equation of the form

‖∇u(x, y)‖F = 1, u(0, 0) = 0,(75)

where the front propagation speed at every point (x, y) is given by the formula

F (x, y, ux, uy) = F2

(
(1 + q2)u2

x + (1 + p2)u2
y − 2pquxuy

(1 + p2 + q2)(u2
x + u2

y)

)1/2

,(76)

with

[
p
q

]
=

√
(F2

F1
)2 − 1√

1 +
(
dC
dx (x)

)2
[

dC
dx (x)
−1

]
.

Formula (76) is derived using the the elliptical shape of Sf (x, y) and applying for-
mula (66) of section 8.1.

These calculations are performed using the OUMs with the control-theoretic and
finite-difference formulas for computing an update-from-a-single-simplex. Both meth-
ods produce numerical solutions converging to the value function of the corresponding
min-time optimal trajectory problem.

The equi-arrival curves shown in Figure 6 are obtained on a 193 × 193 regular
mesh using the following parameter values:

a = .5, A = .1225, m = 2, β = 0, and layer offsets bi = (−.25, 0, 0.25).

The max/min speed pair (F2, F1) for each layer is given in the figures. We note that
in one of these examples the global anisotropy coefficient Υ = 3

.2 = 15.
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Fig. 6. Seismic imaging test problem: equi-arrival curves in an inhomogeneous, multilayer
medium.

Remark 9.1. Since the speed function F is discontinuous across the layer bound-
aries, the standard viscosity solution results for the Hamilton–Jacobi–Bellman equa-
tion [10, 9] are not directly applicable. Thus, our proof of convergence in section 7
is not valid in this case either. Nevertheless, the produced numerical solutions seem
to converge to the true value function of the corresponding control problem. This is
not surprising since our methods are based on approximating Bellman’s optimality
principle, which is valid for a value function u under much more general assumptions
about the speed (or the cost) of motion.

9.5. Conclusions. The methods presented in this paper are applicable for the
static Hamilton–Jacobi–Bellman PDEs with convex Hamiltonian and finite speed
function bounded away from zero (see [46] for additional background information
and details of the proofs). We are currently working on extending these OUMs to a
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wider class of problems including treatment of nonconvex Hamiltonians, discontinu-
ous speed functions, degenerate speed profiles (i.e., f1 = 0), and stochastic control.
We also note that parallelizable single-pass methods based on the same upwinding
techniques may be built extending the ideas behind Dial’s algorithm for the shortest
path on the network.

We believe that similar decoupling techniques hold much promise for the nonlinear
problems for which the notion of “information propagation” is well defined.

Appendix. We present a proof of the causality property for the semi-Lagrangian
discretization of the Eikonal equation on an unstructured mesh with acute simplexes.
We begin by restating the discretization formula (25) for the n-dimensional simplex s
with the vertices at x,x1, . . . ,xn. If x̃ is a point on the x1 . . .xn face of the simplex,
we will use ζ = (ζ1, . . . , ζn) for its barycentric coordinates:

ζi ∈ [0, 1] for all i,

n∑
i=1

ζi = 1,

n∑
i=1

ζixi = x̃.

Using Ξ to denote the set of all possible barycentric coordinates, we can write the
isotropic version of the upwinding update formula (25):

Vs(x) = min
ζ∈Ξ

{
τ(ζ)

f(x)
+

n∑
i=1

ζiU(xi)

}
,(77)

where τ(ζ) = ‖x̃ − x‖. Define the unit directional vectors Pi = x−xi

‖x−xi‖ . To justify

using Dijkstra-like decoupling with this discretization, we prove the following version
of Property (4.1).

Property A.1 (Causality). If (Pj ·Pk) ≥ 0 for all j and k, and if ζ = (ζ1, . . . , ζn)
is the minimizer in formula (77), then “ζi > 0” implies “Vs > U(xi).”

Proof. Suppose ζi > 0 for all i ∈ {1, . . . , n}. (If that is not the case, the same
argument can be repeated for the lower-dimensional simplex on which all barycentric
coordinates are positive.)

Noting that ∂τ
∂ζi

(ζ) = (x−xi)·(x−x̃)
τ(ζ) , we can write the Kuhn–Tucker optimality

conditions for ζ as follows:

(x− xi) · (x− x̃)
τ(ζ)f(x)

+ U(xi) = λ for all i ∈ {1, . . . , n},(78)

where λ is the Lagrange multiplier. We note that

λ− U(xi) =
‖x− xi‖

∑n
j=1 ζj‖x− xj‖(Pi · Pj)

τ(ζ)f(x)
> 0,(79)

by the acuteness of simplex s and since ζi > 0. Next, we note that, multiplying (78)
by ζi and summing over all i’s,

λ = λ

(
n∑
i=1

ζi

)
=

(
∑n

i=1 ζi(x− xi)) · (x− x̃)
τ(ζ)f(x)

+
n∑
i=1

ζiU(xi) =
τ(ζ)

f(x)
+

n∑
i=1

ζiU(xi) = Vs.

(80)

Thus, Vs > U(xi) follows from (79).
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We note that the proof holds on an arbitrary “acute” unstructured mesh in Rn

and on manifolds. The “splitting section” techniques developed for the Fast March-
ing Method can also be used to implement Dijkstra-like decoupling of the above
discretization on meshes with obtuse simplexes; see [21, 38] for details.

Finally, to explore the connection between semi-Lagrangian and finite-difference
schemes, we further consider a column vector w, with the entries wi = (Vs−U(xi))/
‖x− xi‖. Using formula (79) and a matrix P whose rows are Pi’s, we see that

w=
1

τ(ζ)f(x)
P (x−x̃) ⇒ P−1w=

x− x̃
τ(ζ)f(x)

⇒ wT
(
PPT

)−1
w=

‖x− x̃‖2
(τ(ζ)f(x))

2 =
1

f2(x)
.

The latter is a quadratic equation in Vs and coincides with the particular first-order
finite-difference upwind formula chosen in [38] for the isotropic front-propagation prob-
lems.

Furthermore, the analogous correspondence can be demonstrated for the first-
order schemes in the anisotropic case. Starting from the general first-order semi-
Lagrangian formula

Vs(x) = min
ζ∈Ξ

{
τ(ζ)

f(x, x̃−x
τ(ζ) )

+

n∑
i=1

ζiU(xi)

}
,(81)

where τ(ζ), x̃, Pi, and wi are defined as above, we note that

0 = min
ζ∈Ξ

{
τ(ζ)

f(x, x̃−x
τ(ζ) )

+

n∑
i=1

ζi (U(xi)−Vs(x))

}

= max
ζ∈Ξ

{
n∑
i=1

ζi (Vs(x)−U(xi))− τ(ζ)

f(x, x̃−x
τ(ζ) )

}
.

Moreover, since

n∑
i=1

ζi (Vs(x)− U(xi)) =

n∑
i=1

(ζi‖x− xi‖)wi

=

n∑
i=1

(
ζi(x− xi)

TP−1
)
wi = (x− x̃)T (P−1w),

we have

max
ζ∈Ξ

{
τ(ζ)

f(x, x̃−x
τ(ζ) )

[((
− x̃− x

τ(ζ)

)
· P−1w

‖P−1w‖
)
‖P−1w‖f

(
x,
x̃− x
τ(ζ)

)
− 1

]}
= 0.

Since both functions τ and f are strictly positive, the above is equivalent to

max
ζ∈Ξ

{[(
− x̃− x

τ(ζ)

)
· P−1w

‖P−1w‖
]
‖P−1w‖f

(
x,
x̃− x
τ(ζ)

)
− 1

}
= 0

or, more conveniently,

‖P−1w‖max
ζ∈Ξ

{[(
− x̃− x

τ(ζ)

)
· P−1w

‖P−1w‖
]

f

(
x,
x̃− x
τ(ζ)

)}
= 1.(82)
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Let n = P−1w
‖P−1w‖ . We note that, as ζ varies, a = x̃−x

τ(ζ) covers all directions within this

simplex; moreover, the ζ minimizing (81) will also be the maximizer for (82). If all the
ζi’s are positive, then the corresponding a yields a local maximum of the expression
(−a · n)f(x,a). As discussed in section 8.1, such a local maximum is unique if Sf is
convex; thus, by the formula (66), equation (82) is equivalent to

‖P−1w‖F
(
x,

P−1w

‖P−1w‖
)

= 1.

Finally, the square of this expression is a variant of the finite-difference formula (69)
obtained for the first-order Eulerian discretization in section 8.2.1. The upwinding
criterion required for the latter scheme is equivalent to verifying that all ζi’s are
positive.

As of right now, we are unaware of any such connections between the higher-order
semi-Lagrangian and Eulerian schemes for the Eikonal or general Hamilton–Jacobi–
Bellman equations.
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A HYBRID COLLOCATION METHOD FOR VOLTERRA INTEGRAL
EQUATIONS WITH WEAKLY SINGULAR KERNELS∗
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Abstract. The commonly used graded piecewise polynomial collocation method for weakly
singular Volterra integral equations may cause serious round-off error problems due to its use of
extremely nonuniform partitions and the sensitivity of such time-dependent equations to round-off
errors. The singularity preserving (nonpolynomial) collocation method is known to have only local
convergence. To overcome the shortcoming of these well-known methods, we introduce a hybrid collo-
cation method for solving Volterra integral equations of the second kind with weakly singular kernels.
In this hybrid method we combine a singularity preserving (nonpolynomial) collocation method used
near the singular point of the derivative of the solution and a graded piecewise polynomial collocation
method used for the rest of the domain. We prove the optimal order of global convergence for this
method. The convergence analysis of this method is based on a singularity expansion of the exact
solution of the equations. We prove that the solutions of such equations can be decomposed into
two parts, with one part being a linear combination of some known singular functions which reflect
the singularity of the solutions and the other part being a smooth function. A numerical example is
presented to demonstrate the effectiveness of the proposed method and to compare it to the graded
collocation method.

Key words. Volterra integral equations, hybrid collocation methods, weakly singular kernels
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PII. S0036142901385593

1. Introduction. We propose in this paper a hybrid collocation method for
solving Volterra integral equations of the second kind with weakly singular kernels.
By using the singularity expansion of the exact solution, we analyze this method and
prove that it has an optimal order of global convergence. Specifically, for given kernels
K,M ∈ C(I×I) with I := [0, 1] and a given parameter α ∈ (0, 1), we define a Volterra
integral operator Tα : C(I)→ C(I) by

(Tαy)(t) =

∫ t

0

Gα(t, s)y(s)ds, t ∈ I,

where

Gα(t, s) := (t− s)α−1K(t, s) +M(t, s) for 0 ≤ s ≤ t, 0 ≤ t ≤ 1,

and consider the Volterra integral equation of the second kind

y(t)− (Tαy)(t) = f(t), t ∈ I,(1.1)
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where f ∈ C(I) is a given function and y ∈ C(I) is the unknown function to be
determined. The kernel M is of practical importance because it occurs in the appli-
cations to aeroelastic modeling problems [7], where a class of neutral delay equations
are converted to integral equations in the form of (1.1). Other related references
include [4, 11].

Since 0 < α < 1, the kernel Gα has a singularity along the diagonal. When
(1.1) is solved by a numerical method such as a collocation method or a product-
integration method using the piecewise polynomial approximation, the accuracy of
the approximate solution depends on the order of piecewise polynomials used in the
approximation as well as the degree of smoothness of the exact solution. For instance,
when y ∈ Cr(I) and the approximate subspaces are chosen to be piecewise polynomials
of order r, the optimal order r of convergence for the approximate solution yh to y is
achieved, that is,

‖y − yh‖∞ = O(N−r),(1.2)

where N is the number of subintervals in the uniform partition associated with the
piecewise polynomial spaces. However, the solution of (1.1) exhibits, in general, sin-
gularities at the zero in its derivatives even if the forcing term f is a smooth function
and the numerical methods mentioned above may not even yield first order accuracy
(see, e.g., [2, 5]). In other words, the use of piecewise polynomials of high order does
not produce high order convergence for the numerical method.

There have been many attempts to overcome the difficulties caused by the sin-
gularity of the solution of (1.1). One of the most commonly used methods [3, 5, 6,
9, 10, 14, 15, 16] is the graded collocation (GC) method using piecewise polynomials
with a graded mesh on interval I according to the behavior of the exact solution near
the singular point, which was first introduced by Rice in [13]. Specifically, the GC
method partitions I by the following knots:

ti =

(
i

N

) r
α

, i = 0, 1, . . . , N,(1.3)

which ensures that the GC method retains the optimal error estimate (1.2). However,
as pointed out in [2, 10], the main disadvantage of the GC method is that subintervals
near the singular point in the graded mesh have very small length and thus may
cause serious round-off error problems for small α and high order polynomials. Since
Volterra equations are time-dependent equations, the numerical solutions of these
equations are very sensitive to round-off errors.

Another approach for solving (1.1) is to include some nonpolynomial singular
functions which reflect the singularity of the exact solution as part of the basis for
the finite dimensional subspace in the collocation method (see [2]). We call it the
nonpolynomial collocation (NPC) method. For this method, only a local convergence
result (in [2]) has been seen so far. It does not seem that an optimal order of global
convergence can be proved for this method. The idea of including some known singular
functions in the usual finite element spaces or piecewise polynomial spaces has been
explored in [8] to successfully construct Galerkin methods of high convergence order
for Fredholm integral equations of the second kind with weakly singular kernels. This
idea leads us to the consideration of the present method.

To treat the problems discussed above for the existing methods, we propose a
hybrid collocation (HC) method for solving (1.1) which combines the strength of both
the GC and NPC methods. In this method, we introduce a graded mesh different from
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(1.3) that avoids using small subintervals near the zero and uses the nonpolynomial
function approximation only in the first subinterval. Specifically, the length of the
first subinterval in the HC method is the same as in a quasi-uniform partition, that
is, there exist positive constants c1, c2 such that

c1
N
≤ t1 ≤ c2

N
,

and a graded partition is used only on [t1, 1] so that the instability problem appearing
in the GC method can be avoided. We compensate the use of a large subinterval for the
first interval in the partition by employing nonpolynomial functions ti+jα, i+jα < r,
which characterize the singularity of the exact solution y of (1.1), as trial functions
in the first subinterval [t0, t1]. The primary purpose of this paper is to prove that
this method provides an optimal order of global convergence by taking the strength of
both the GC method and the NPC method, while avoiding the problems from which
both these methods have suffered.

To prepare for the analysis of this method, we derive a singularity expansion of
the exact solution of (1.1). In other words, we decompose the exact solution into
two parts, one being a linear combination of singular functions ti+jα which reflect the
singularity of the exact solution and the other being a smooth function. This subject
has been well studied in [5]. We will make use of the results presented in [5] and
construct further a form of expansion that is useful for the development of the HC
method.

We organize this paper in five sections. In section 2, we derive the singularity
expansion of the exact solution of (1.1). Section 3 is devoted to a study of hybrid
interpolation operators which serve as a base for the development of the HC method.
In section 4, we describe the HC method which combines the NPC method used near
the singular point based on the singularity expansion obtained in section 2 and a GC
method elsewhere. We prove the optimal order of global convergence of this method.
Furthermore, we present a theoretical result which gives a comparison of the compu-
tational cost of the HC method and the GC method, and the length of the smallest
subintervals used in both methods. Our theory shows that the HC method is better
than the GC method. Finally in section 5, we provide a numerical example to demon-
strate the effectiveness of the HC method. We compare the numerical performance
of the HC method with that of the GC method. The numerical results confirm the
theory presented in section 4.

2. Singularity expansions. In this section we establish a preliminary result on
the singularity decomposition for the solution of (1.1). Singularity of the solution of
(1.1) when the kernel M is zero has been systematically studied in [5]. In the next
theorem, we make use of the results in [5] and derive the singularity expansion crucial
for the development of the HC method for the general case when M �= 0.

Theorem 2.1. Let r be a nonnegative integer. Suppose that K, M ∈ Cr(I × I)
and f has the form

f(t) =
∑

j+iα<m

fijt
j+iα + fm(t), t ∈ I,(2.1)

where fij are constants and fm ∈ Cm[0, 1] for some fixed integer m with 0 ≤ m ≤ r.
Let y denote the solution of (1.1). Then there exist constants cij such that

y(t) =
∑

j+iα<m

cijt
j+iα + vm(t), t ∈ I,(2.2)
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where vm ∈ Cm(I).
Proof. When M ≡ 0 formula (2.2) follows from Theorem 1.3.15 of [5] with

some modification. The modification is necessary to treat the series in the expansion
appearing in Theorem 1.3.15 of [5] so that we have form (2.2).

The general case where the kernel M is not zero will be proved by induction on
m. The case when m = 0 is obvious. We assume that the theorem holds for m = k
and proceed to the case m = k + 1. By the induction hypothesis, the solution y of
(1.1) has a representation

y(t) =
∑

j+iα<k

cijt
j+iα + vk(t), t ∈ I,(2.3)

where vk ∈ Ck(I). For t ∈ I, we let

x(t) :=

∫ t

0

M(t, s)y(s)ds.

Substituting (2.3) into the expression of function x gives

x(t) =

∫ t

0

M(t, s)

 ∑
j+iα<k

cijs
j+iα + vk(s)

 ds, t ∈ I.

To simplify the expression of x, we denote

wk+1(t) =

∫ t

0

M(t, s)vk(s)ds and mij(t) =

∫ 1

0

M(t, st)sj+iαds.

A simplification with a change of variables leads to the following formula:

x(t) =
∑

j+iα<k+1

ci,j−1mi,j−1(t)t
j+iα + wk+1(t), t ∈ I.

It is easily seen that wk+1, mij ∈ Ck+1(I). Applying the Taylor theorem to the
functions mij , we obtain that

x(t) =
∑

j+iα<k+1

dijt
j+iα + uk+1(t), t ∈ I,

where dij are constants and uk+1 is a function in Ck+1(I). Let f̃ := f −x and rewrite
(1.1) as

y(t) +

∫ t

0

(t− s)α−1K(t, s)y(s)ds = f̃(t), t ∈ I.

Note that f̃ has the form (2.1) with m = k + 1. By the first part of this proof,
we conclude the result of the theorem for the case m = k + 1, which advances the
induction hypothesis and completes the proof.
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3. Nonpolynomial interpolation operators. Motivated by the singularity
expansion of the solution of (1.1), in the next section we will develop the HC method
for solving (1.1). To prepare for this development, we define a hybrid interpolation
operator and study the bound of this operator.

We first define a nonpolynomial finite dimensional subspaces of C(I). As usual,
we denote by N0 the set of nonnegative integers. For 0 < α < 1 and a positive integer
r we introduce an index set by setting

Wα,r := {i+ jα : i, j ∈ N0, i+ jα < r}.
Let � denote the cardinality of the set Wα,r. Clearly, Wα,r contains the first r non-
negative integers i = 0, 1, . . . , r − 1. For notational convenience, we write

Wα,r = {νj : j = 0, 1, . . . , �− 1}
with the convention that νj = j for j = 0, 1, . . . , r−1. Associated with this index set,
we define a finite dimensional space Vr of nonpolynomial functions by

Vr := span{tνj : j = 0, 1, . . . , �− 1}.
We remark that Theorem 2.1 ensures the solution y of (1.1) has the decomposition

y = u+ v, u ∈ Cr(I), and v ∈ Vr.
Also, we denote by Pr the space of polynomials of degree ≤ r − 1. Because the set
Wα,r contains the integers i = 0, 1, . . . , r − 1, it is clear that Pr ⊂ Vr. In addition,
space Vr contains nonpolynomial functions t

νj , j = r, r+ 1, . . . , �− 1, that reflect the
singularity of the derivative of the solution of (1.1).

We next describe a finite dimensional space whose elements are piecewise in Vr.
For a given positive integer N , we divide the interval I into N subintervals, that is,
0 = t0 < t1 < · · · < tN = 1. For a subinterval J of I and a function f ∈ C(I), we use
f |J for the restriction of f on J and, moreover, for V ⊆ C(I) we let

V |J := {v|J : v ∈ V }.
Let hi = ti − ti−1 and h = max1≤i≤N hi . We define a space of functions piecewise in
V by

(V )h := {v : v|[ti−1,ti] ∈ V |[ti−1,ti], i = 1, 2, . . . , N},
and, in particular, we let Vr,h := (Vr)h and Sr,h := (Pr)h. Clearly, we have that
Vr ⊆ Vr,h and Sr,h ⊆ Vr,h.

We now define interpolation operators Ph,1 from C(I) to Sr,h and Ph,2 from C(I)
to Vr,h, respectively. To this end, we choose � points τj in I such that 0 < τ1 < τ2 <
· · · < τ� < 1. The interpolation points on interval [tk−1, tk] are obtained by setting
tkj := tk−1 + τjhk, k = 1, 2, . . . , N , j = 1, 2, . . . , �. The interpolation operators
Ph,1 : C(I)→ Sr,h and Ph,2 : C(I)→ Vr,h are defined as follows. For f ∈ C(I)

(Ph,1f)(tij) = f(tij), j = 1, 2, . . . , r, i = 1, 2, . . . , N,

and

(Ph,2f)(tij) = f(tij), j = 1, 2, . . . , �, i = 1, 2, . . . , N.
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Note that for the definition of Ph,1 we use only the first r points τj , j = 1, 2, . . . , r. It
is known (see [2, 5]) that the operators Ph,i for i = 1, 2 are uniquely defined.

For a function u that is continuous on [ti−1, ti], i = 1, 2, . . . , N , with possible
discontinuities at ti, define its maximum norm on [tm, tn] with 0 ≤ m < n ≤ N by

‖u‖[tm,tn] = max
m≤i≤n

max
ti−1≤t≤ti

|u(t)|.

We will simply use ‖u‖ when [tm, tn] = I.
Next we show that the norm of the restriction of Ph,2f on [t0, t1] is bounded by a

constant independent of the choice of t1. For this purpose, we define, for i = 1, 2, . . . , �,
the Lagrange functions

L1i|[t0,t1] ∈ Vr|[t0,t1]
and

L1i(t) = 0, t ∈ [t1, 1]
such that

L1i(t1j) = δij , j = 1, 2, . . . , �.

It is easily verified that

(Ph,2f)(t) =

�∑
j=1

f(t1j)L1j(t), t ∈ [t0, t1].(3.1)

Lemma 3.1. There exists a positive constant c such that for all t1 ∈ (0, 1) and
i = 1, 2, . . . , �

‖L1i‖ = ‖L1i‖[t0,t1] ≤ c.

Proof . For i = 1, 2, . . . , �, we write

L1i(t) =

�∑
p=1

aipt
νp , t ∈ [t0, t1].

For t ∈ [t0, t1], there exists a τ ∈ I such that t = t0 + h1τ . For i = 1, 2, . . . , � and
p = 1, 2, . . . , � we set bip := h

νp
1 aip. Using these notations, we have that

L1i(t) =

�∑
p=1

bipτ
νp , t ∈ [t0, t1].(3.2)

By the definition of L1i we observe that

�∑
p=1

bipτ
νp
j = δij , j = 1, 2, . . . , �.(3.3)

We introduce an � × � matrix D by setting D := [djp : j, p = 1, 2, . . . , �], where
djp := τ

νp
j and a vector bi by bi = [bip : p = 1, 2, . . . , �]T . It is easy to verify that

the matrix D is invertible and since all entries djp are independent of the choice of t1
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we conclude that ‖D−1‖∞ is bounded by a constant independent of the choice of t1
where the norm used here is the matrix norm induced from the vector norm ‖ · ‖∞.
Thus, it follows from (3.3) that

‖bi‖∞ ≤ ‖D−1‖∞.

Hence from (3.2) we confirm the result of this lemma with the constant

c := max
0≤τ≤1

(
�∑

p=1

τνp

)
‖D−1‖∞.

The following lemma, which provides a bound of the norm of Ph,2f on [t0, t1], is
a direct consequence of Lemma 3.1.

Lemma 3.2. There exists a positive constant c such that for all t1 ∈ (0, 1) and
for any f ∈ C(I)

‖Ph,2f‖[t0,t1] ≤ c‖f‖[t0,t1].

The next proposition presents order of convergence for the interpolation Ph,2f to
a function f having form (2.1).

Proposition 3.3. There exists a positive constant c such that for all t1 ∈ (0, 1)
and for f = u+ v, where u ∈ Cr(I) and v ∈ Vr,

‖f − Ph,2f‖[t0,t1] ≤ chr1‖u(r)‖[t0,t1].

Proof. For all functions f having the form f = u+v, where u ∈ Cr(I) and v ∈ Vr,
recalling that Ph,2v = v for v ∈ Vr we have that

f − Ph,2f = u+ v − Ph,2(u+ v) = u− Ph,2u.

Noting that

Ph,2Ph,1 = Ph,1

we conclude that

f − Ph,2f = (I − Ph,1)u+ Ph,2Ph,1u− Ph,2u = (I − Ph,2)(I − Ph,1)u.

It follows from Lemma 3.2 that there exists a positive constant c such that for all
t1 ∈ (0, 1) and all such f

‖f − Ph,2f‖[t0,t1] ≤ c‖(I − Ph,1)u‖[t0,t1] ≤ chr1‖u(r)‖[t0,t1],

where the last inequality follows from a standard error estimate for polynomial inter-
polations.

We next define a hybrid interpolation which has a global convergence. To this
end, we describe a graded partition of I in terms of parameters α and r. Specifically,
for q := r

α we let i0 be an integer such that[(
N

i0

)q]
= N,
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where [a] denotes the largest integer less than or equal to a, and set N ′ := N − i0+1.
The partition on I is given by

t0 = 0, ti =

(
i0 + i− 1

N

)q
, i = 1, 2, . . . , N ′.(3.4)

Note that tN ′ = 1 and the integer i0 satisfies the condition that

N1−1/q ≤ i0 ≤ N(N − 1)−1/q.(3.5)

We remark that as far as stability is concerned this partition is better than the par-
tition (1.3) used in a standard GC method. This point will be made clearer in the
next section.

Associated with the graded partition (3.4), we define the hybrid interpolation
operator Qh by

(Qhf)|[0,t1] = (Ph,2f)|[0,t1] and (Qhf)|[t1,1] = (Ph,1f)|[t1,1].(3.6)

That is, on the first subinterval we use singularity preserving (nonpolynomial) in-
terpolation and on the rest of intervals we use the standard piecewise polynomial
interpolation. The operator Qh will be used in the next section for the development
of a hybrid collocation method. To prepare for this development, we present an ex-
pression of projection Qh in terms of the Lagrange basis functions. To this end, we
define the Lagrange polynomial basis Li ∈ Pr, i = 1, 2, . . . , r, such that

Li(τj) = δij , j = 1, 2, . . . , r,

and for k = 2, 3, . . . , N ′ we define the Lagrange piecewise polynomial basis functions
by setting

Lki(t) =

{
Li

(
t−tk−1

hk

)
, t ∈ [tk−1, tk],

0, otherwise.

Thus, for all k = 2, 3 . . . , N ′ there hold the relations that

‖Lki‖ = ‖Li‖, i = 1, 2, . . . , r,(3.7)

and we have that

(Ph,1f)(t) =

N ′∑
k=2

r∑
j=1

f(tkj)Lkj(t), t ∈ [t1, 1].

To present projection Qh, we introduce a notation

rk :=

{
�, k = 1,
r, k = 2, 3, . . . , N ′.(3.8)

Consequently, we have that

(Qhf)(t) =

N ′∑
k=1

rk∑
j=1

f(tkj)Lkj(t), t ∈ I.(3.9)
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In the next proposition, we establish a global convergence result for the interpo-
lation projection Qh.

Proposition 3.4. Let Qh be the hybrid interpolation operator defined in (3.6)
associated with the partition (3.4). Suppose that f has a decomposition f = u + v,
where u ∈ Cr(I) and v ∈ Vr. Then there exists a positive constant c independent of
N such that for all such functions f

‖f −Qhf‖ ≤ cN−r.

Proof. Note that

‖f −Qhf‖ = max
{‖f −Qhf‖[0,t1], ‖f −Qhf‖[t1,1]} .

Employing Proposition 3.3 we conclude that there exists a positive constant c such that

‖f −Qhf‖[0,t1] = ‖f − Ph,2f‖[0,t1] ≤ chr1‖u(r)‖[0,t1].

Noting that by the definition of partition (3.4),

h1 = t1 =

(
i0
N

)q
≤
(
N(N − 1)−1/q

N

)q
=

1

N − 1
≤ 2

N
,

we obtain that

‖f −Qhf‖[0,t1] ≤ c
1

Nr
.

We next estimate the error ‖f − Qhf‖[t1,1] following a well-known argument by
Rice [13]. Since f = u+ v with u ∈ Cr(I) and v ∈ Vr, we have that

|f (r)(t)| ≤ ctα−r for t ∈ [t1, 1],

and the function tα−r is decreasing in t. For i = 2, 3, . . . , N ′, we find that

hi = [(i+ i0 − 1)q − (i+ i0 − 2)q]N−q = (i+i0−2)q
{[
1 + (i+ i0 − 2)−1

]q − 1
}
N−q.

By the mean value theorem, there exists θ with 0 < θ < (i+ i0 − 2)−1 such that

hi = q(i+ i0 − 2)q−1(1 + θ)q−1N−q ≤ c(i+ i0 − 2)q−1N−q.(3.10)

Thus, there exists a positive constant c such that for i = 2, 3, . . . , N ′

‖f −Qhf‖[ti−1,ti] = ‖f − Ph,2f‖[ti−1,ti] ≤ chri ‖f (r)‖[ti−1,ti]

≤ c(i+ i0 − 2)(q−1)rN−qr
(
i+ i0 − 2

N

)q(α−r)
= c

1

Nr
,

which completes the proof of this proposition.

4. A hybrid collocation method. In this section, we use the hybrid inter-
polation operator Qh introduced in the last section to develop a hybrid collocation
method for solving (1.1). We prove that this method has an optimal order of global
convergence. Notice that the singularity in the derivative of the exact solution of (1.1)
occurs only at the left end point of the interval I. This fact suggests that we use a
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singularity preserving collocation method near the left end point and use a standard
piecewise polynomial collocation method with a graded partition elsewhere.

We now describe the hybrid collocation method for (1.1). We seek yh such that

yh|[0,t1] ∈ Vr,h|[0,t1], yh|[t1,1] ∈ Sr,h|[t1,1],
and

yh −QhTαyh = Qhf,(4.1)

where Qh is the hybrid interpolation operator defined by (3.6) associated with the
graded partition (3.4).

To analyze the order of convergence for the hybrid collocation method (4.1), we
define an integral operator Tα,1 by

(Tα,1y)(t) := (Tαy)(t) for t ∈ [0, t1](4.2)

and

(Tα,1y)(t) :=

∫ t

t1

Gα(t, s)y(s)ds for t ∈ [t1, 1].

The study of the error ‖y − yh‖ demands a bound on the errors

ekj := y(tkj)− yh(tkj), j = 1, 2, . . . , rk,

where rk is defined by (3.8). To this end, we introduce vectors

ek := [ekj : j = 1, 2, . . . , rk]
T for k = 1, 2, . . . , N ′.

We also need vectors

εk := [εkj : j = 1, 2, . . . , rk]
T for k = 1, 2, . . . , N ′,

where

εkj := (Tα,1(y −Qhy))(tkj) + ((Tα − Tα,1)(y − yh))(tkj).(4.3)

Note that when k = 1, it becomes that

ε1j = (Tα(y −Qhy))(t1j).
We will bound the vectors ek by εk.

Next, we derive a linear system that gives a recursive formula for the vector ek.
Toward this goal, for k = 1, 2, . . . , N ′ and j = 1, 2, . . . , rk we evaluate (1.1) and (4.1)
at tkj to obtain that

y(tkj)− (Tαy)(tkj) = f(tkj)(4.4)

and

yh(tkj)− (Tαyh)(tkj) = f(tkj),(4.5)

respectively. Subtracting (4.5) from (4.4) yields

ekj = (Tα,1(y − yh))(tkj) + ((Tα − Tα,1)(y − yh))(tkj).(4.6)
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Noticing that Qh is a projection and yh = Qhyh, we have that

y − yh = y −Qhy +Qh(y − yh).(4.7)

Substituting (4.7) into the first term in the right-hand side of (4.6) and recalling the
definition of εkj , we obtain that

ekj = (Tα,1Qh(y − yh))(tkj) + εkj for k = 1, 2, . . . , N ′, j = 1, 2, . . . , rk.(4.8)

We are required to study the first term in the right-hand side of (4.8). In (3.9),
we replace f by y − yh and conclude that

(Qh(y − yh))(t) =
N ′∑
i=1

ri∑
p=1

eipLip(t), t ∈ I.

Applying the operator Tα,1 to both sides of this equation with evaluating at t = tkj
yields

(Tα,1Qh(y − yh))(tkj) =
N ′∑
i=1

ri∑
p=1

eip(Tα,1Lip)(tkj).

We next make use of the property of the Lagrange basis functions Lip to simplify the
right-hand side of the equation above. For notational convenience, we define

akjp :=

∫ tkj

tk−1

Gα(tkj , s)Lkp(s)ds

and

dkijp :=

∫ ti

ti−1

Gα(tkj , s)Lip(s)ds.

Noting that Lip vanishes outside the interval [ti−1, ti], an elementary computation
leads to the formula that

(Tα,1Qh(y − yh))(tkj) =
rk∑
p=1

akjpekp +

k−1∑
i=2

r∑
p=1

dkijpeip,

where we have used the relation that ri = r for i = 2, 3, . . . , k − 1. Substituting this
equation into the right-hand side of (4.8) yields

ekj =

rk∑
p=1

akjpekp +

k−1∑
i=2

r∑
p=1

dkijpeip + εkj , j = 1, 2, . . . , rk.(4.9)

By introducing an rk × rk matrix
Ak := [akjp : j, p = 1, 2, . . . , rk](4.10)

and r × r matrices
Dki := [dkijp : j, p = 1, 2, . . . , r], i = 2, 3, . . . , k − 1,(4.11)
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we write (4.9) in matrix form as

ek = Akek +

k−1∑
i=2

Dkiei + εk, k = 1, 2, . . . , N ′.(4.12)

The matrices Ak and Dki are all dependent on the mesh sizes hi, and we next
study such a dependence. Recalling the transformations s = tk−1 + hkτ when s ∈
[tk−1, tk] and τ ∈ [0, 1] and tkj = tk−1 + hkτj and using the notations

K̃(t, τ) := K(t, tk−1+hkτ), M̃(t, τ) :=M(t, tk−1+hkτ), L̃kp(τ) := Lkp(tk−1+hkτ),

ãkjp :=

∫ τj

0

[
(τj − τ)α−1K̃(tkj , τ) + h1−α

k M̃(tkj , τ)
]
L̃kp(τ)dτ,

and

d̃kijp :=

∫ 1

0

[(
tk−1 − ti−1 + hkτj

hi
− τ
)α−1

K̃(tkj , τ) + h1−α
i M̃(tkj , τ)

]
L̃ip(τ)dτ,

by changes of variables we have that

akjp = hαk ã
k
jp and dkijp = hαi d̃

ki
jp.

By introducing new matrices

Ãk := [ãkjp : j, p = 1, 2, . . . , rk] and D̃ki := [d̃kijp : j, p = 1, 2, . . . , r], i = 2, 3, . . . , k−1,
we observe that

Ãk = h−αk Ak and D̃ki = h−αk Dki.

Hence, (4.12) becomes

ek = hαk Ãkek +

k−1∑
i=2

hαi D̃kiei + εk, k = 1, 2, . . . , N ′.(4.13)

Since both K̃ and M̃ are continuous functions on I × I, by using Lemma 3.1 and
(3.7) we observe that there exists a positive constant c1 such that for k = 1, 2, . . . , N ′

and j, p = 1, 2, . . . , rk

|ãkjp| ≤ c1

∫ τj

0

[
(τj − τ)α−1 + 1

]
dτ ≤ c1

(
1 +

1

α

)
(4.14)

and

|d̃kijp| ≤ c1

∫ 1

0

(
tk−1 − ti−1 + hkτj

hi
− τ
)α−1

dτ, i = 2, 3, . . . , k − 1.(4.15)

Estimate (4.14) implies that there exists a positive constant c2 := c1�
(
1 + 1

α

)
for all

k = 1, 2, . . . , N ′,

‖Ãk‖∞ ≤ c2.
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Let h := max{hi : 1 ≤ i ≤ N ′} and choose h < c
−1/α
2 . It follows that for such an h

the matrix I − hαk Ãk is invertible and there exists a positive constant c such that

‖(I − hαk Ãk)
−1‖ ≤ c.(4.16)

Thus, from (4.13) we conclude that

ek = (I − hαk Ãk)
−1

[
k−1∑
i=2

hαi D̃kiei + εk

]
.(4.17)

We next use estimate (4.15) to study the bound of the entries of matrices D̃ki.
Noting that hi < hi+1 < · · · < hk−1, we have that

tk−1 − ti−1

hi
=
hi + · · ·+ hk−1

hi
≥ k − i

and conclude that

|d̃kijp| ≤ c1

∫ 1

0

(k − i− τ)α−1dτ.(4.18)

It can be verified from a direct computation that there exists a positive constant c
such that for all i = 2, 3, . . . , k − 1∫ 1

0

(k − i− τ)α−1dτ ≤ c(k − i)α−1.

Using this estimate in inequality (4.18) yields for i = 2, 3, . . . , k − 1 and j, p =
1, 2, . . . , rk that

|d̃kijp| ≤ c(k − i)α−1

and thus

‖D̃ki‖∞ ≤ c(k − i)α−1.(4.19)

Combining estimates (4.16) and (4.19) with (4.17) gives

‖ek‖∞ ≤ c

k−1∑
i=2

hαi (k − i)α−1‖ei‖∞ + c‖εk‖∞.

Recalling from (3.10) that there exists a positive constant c such that

hi ≤ c(i+ i0 − 2)q−1N−q,

since i+ i0 − 2 ≤ 2N we conclude that there exists a positive constant c such that

hi ≤ cN−1.

Therefore, we have that

‖ek‖∞ ≤ c

(
1

N

)α k−1∑
i=2

(k − i)α−1‖ei‖∞ + c‖εk‖∞.(4.20)
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We next use inequality (4.20) to obtain the error estimate of the hybrid collocation
method (4.1). For this purpose, we recall a discrete Gronwall-type inequality (cf. [5]).

Lemma 4.1. Let 0 < α < 1 and {zi : i = 1, 2, . . . , n} be a sequence of positive
numbers and n ≤ N . Let ρ and β be two positive numbers such that for all k =
1, 2, . . . , n

zk ≤
(
1

N

)α
β

k−1∑
i=1

(k − i)α−1zi + ρ.

Then there exists a positive constant c depending only on α and β such that k =
1, 2, . . . , n,

zk ≤ cρ.

We are now ready to prove the main result of this paper, which gives an optimal
order of global convergence for the hybrid collocation method.

Theorem 4.2. Let y be the exact solution of (1.1), let N be a positive integer,
and let Qh be the hybrid interpolation operator defined by (3.6) associated with the
graded partition (3.4). Suppose that the forcing function f in (1.1) has the form (2.1).
Then, for sufficiently large N , (4.1) has a unique solution yh and there exists a positive
constant c independent of N such that

‖y − yh‖ ≤ cN−r.

Proof. It follows from Theorem 2.1 that the solution of (1.1) has the form y = u+v,
where u ∈ Cr(I) and v ∈ Vr. This allows us to use Proposition 3.4 to prove the result.
We first estimate the error on [t0, t1]. From (4.3) there exists a constant c such that

‖ε1‖∞ ≤ ‖Tα(y −Qhy)‖[t0,t1] ≤ c‖y −Qhy‖[t0,t1].
It follows from (4.20) and Proposition 3.4 that

‖e1‖∞ ≤ c‖y −Qhy‖[t0,t1] ≤ cN−r.

Using Lemma 3.1 and the above estimate we obtain that

‖Qh(y − yh)‖[t0,t1] ≤ c‖e1‖∞ ≤ cN−r,

which with Proposition 3.4 gives that

‖y − yh‖[t0,t1] ≤ ‖Qh(y − yh)‖[t0,t1] + ‖Qhy − y‖[t0,t1] ≤ cN−r.(4.21)

Next we estimate the error on [t1, 1]. Using (4.3) we have that for k = 2, 3, . . . , N ′

‖εk‖∞ ≤ ‖Tα,1(y −Qhy)‖[t1,1] + ‖(Tα − Tα,1)(y − yh)‖[t1,1].
Now, by using Proposition 3.4 and estimate (4.21) we conclude that there exists a
positive constant c such that

‖εk‖∞ ≤ c(‖y −Qhy‖[t1,1] + ‖y − yh‖[t0,t1]) ≤ cN−r.

Combining the above estimate with (4.20) we obtain that

‖ek‖∞ ≤ cN−α
k−1∑
i=2

(k − i)α−1‖ei‖∞ + cN−r.
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Using Lemma 4.1 with z1 = 0 and zi = ‖ei‖∞ for i = 2, 3, . . . N ′, we conclude that
there exists a positive constant c such that for all k = 2, 3, . . . , N ′

‖ek‖∞ ≤ cN−r.

Now, by the uniform boundedness (3.7) of ‖Lij‖ for i = 2, 3, . . . , N ′ there exists a
positive constant c such that

‖Qh(y − yh)‖[t1,1] ≤ cmax{‖ek‖∞ : k = 2, 3, . . . , N ′} ≤ cN−r.

It follows that there exists a positive constant c such that

‖y − yh‖[t1,1] ≤ ‖Qh(y − yh)‖+ ‖Qhy − y‖ ≤ cN−r,

which concludes the proof of the theorem.
We may also use the compactness of operator Tα and the uniform boundedness

of Qh to prove Theorem 4.2 (see, for example, [1]). In fact, such a proof is more
concise. We choose the current proof, for it provides guidance for the construction of
a numerical algorithm in our numerical experiments.

In the next proposition, we compare the graded collocation (GC) method with
the hybrid collocation (HC) method. To this end, we let NGC and NHC denote the
number of subintervals used in the GC method and the HC method, and we let LGC
and LHC denote the length of the smallest subinterval used in the GC method and
the HC method, respectively. We also consider the ratios of the largest subinterval
over the smallest subinterval for the partitions that associate with the GC method
and the HC method, which are denoted by RGC and RHC . Such a ratio is a good
measure for the stability of the corresponding collocation method.

Proposition 4.3. There hold the estimates that

NGC −NHC ≥ N
q
√
N
− 1,

LGC =
1

Nq
, LHC ≥

q
√
N

N2
,

and

RGC ≥ q(N − 1)q−1, RHC ≤ qN
q
√
N
.

Proof. Since NGC = N and NHC = N − i0 + 1 ≤ N −N1−1/q + 1, we have that

NGC −NHC ≥ N − (N −N1−1/q + 1) =
N
q
√
N
− 1.

The smallest interval used in the GC method is [0, N−q] and thus LGC = 1
Nq .

For the HC method, it is easily verified that LHC = min{h1, h2}, where h1 =
(
i0
N

)q
and h2 =

(
i0+1
N

)q − ( i0N )q. Recalling that i0 satisfies that condition N1− 1
q ≤ i0 ≤

N(N − 1)−
1
q , we derive that

h1 ≥
(
N1− 1

q

N

)q
=

1

N
≥

q
√
N

N2
.
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On the other hand, there exists a constant θ with 0 < θ < 1/i0 such that

h2 = qiq−1
0 (1 + θ)q−1N−q.

Thus

h2 ≥ qiq−1
0 N−q ≥ qN

1
q−2 ≥

q
√
N

N2
.

This concludes the second estimate in this proposition. The third estimate can be
similarly obtained.

We remark that it follows from Proposition 4.3 that the HC method requires less
computational cost than the GC method even though they have the same order of
convergence. For example, when α = 1

2 , r = 3, and N = 100, the HC method uses 54
subintervals while the GC method uses 100 subintervals.

Another important point made in the last proposition is that the HC method is
more stable than the GC method since the length of the smallest subinterval used in
the HC method is larger than the length of the smallest subinterval used in the GC
method. Notice that the length of the smallest interval used in the HC method is not
as sensitive to r and α as that in the GC method. For instance, when N = 1000, α =
1
2 , and r = 3, the length of the smallest interval used in the GC method is h1 = 10−24

while the length of the smallest interval used the HC method is 4.217 × 10−5. In
addition, we see from the proposition that for the GC method RGC grows in the
order O(Nq−1) while for the HC method RHC grows slower than O(N). When p is
large, which is the case when α is small or r is large, RGC is extremely large. This
may cause serious instability problems. The result in the proposition shows that the
HC method is much more stable than the GC method.

5. Numerical experiments. In this section, we report results of numerical
experiments which confirm the theoretical analysis for the HC method presented in
the last section and demonstrate the effectiveness of the method.

In (1.1) we choose K(s, t) = M(s, t) = 1, α = 1/2 and choose f such that the
equation has the exact solution

y(t) =
√
t2 + t cos t+ sin t, t ∈ I.

Note that the first derivative of this solution has a singularity at t = 0.
The purpose of these numerical experiments is to compare the numerical perfor-

mance of the HC method with the GC method. For both of the methods we use
piecewise polynomials of degree 2, that is, r = 3, and, in addition, for the HC method
we use

V3 = span{1, t, t2, t 1
2 , t

3
2 , t

5
2 }

on the first interval.
Tables 5.1 and 5.2 are given to compare the numerical performance of the two

methods, where “order of conv.” stands for the order of convergence. The weakly
singular integrals that appear in these methods are computed by a numerical inte-
gration scheme presented in [12] specifically designed for weakly singular integrals of
this type.

The HC method and the GC method have the same orders of convergence. The
computed orders of convergence are consistent with the theoretical order, which is r =
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Table 5.1
Numerical performance of the HC method.

N ‖y − yh‖ Order of conv. NHC LHC
20 3.666e-4 - 8 7.5419e-02
40 4.680e-5 2.9698 19 2.7681e-02
60 1.408e-5 2.9616 30 1.9022e-02
80 5.983e-6 2.9759 42 1.3423e-02
100 3.069e-6 2.9916 54 1.0779e-02

Table 5.2
Numerical performance of the GC method.

N ‖y − yh‖ Order of conv. NGC LGC
20 1.993e-4 - 20 1.5625e-08
40 3.446e-5 2.9720 40 2.4414e-10
60 1.240e-5 2.9576 60 2.1433e-11
80 6.011e-6 2.9776 80 3.8147e-12
100 3.430e-6 2.9896 100 1.0000e-12

3 for both methods. In terms of convergence both methods give satisfactory numerical
performance. However, the HC method uses much fewer subintervals. Therefore, it
requires less computational cost than the GC method. Also, the length of the smallest
subinterval used in the HC method is significantly larger than that in the GC method.
When N is large and α is small, for the GC method, the length of the first interval
is extremely small, which may cause serious round-off errors. The HC method has a
rather uniform partition, which avoids the problem of having small subintervals. In
these two aspects, the HC method has performed better than the GC method.

Acknowledgment. The authors are grateful to two referees for their suggestions
that improve the presentation of this paper.
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Abstract. In [J. D. Benamou and Y. Brenier, Numer. Math., 84 (2000), pp. 375–393], a
computational fluid dynamic approach was introduced for computing the optimal map occurring in
the Monge–Kantorovich problem. Though the described augmented Lagrangian method involves a
Hilbertian framework, the discussion was purely formal. Taking advantage of the recent progress in
optimal transport theory [L. A. Caffarelli, Comm. Pure Appl. Math., 45 (1992), pp. 1141–1151],
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(2001), pp. 589–608] and despite the lack of coercivity of the Hilbertian problem, we establish an
existence result. Then, under a reasonable assumption of positivity for the density, we prove the
existence of saddle-points for both Lagrangians defined in Benamou and Brenier, and finally prove
the convergence of the numerical method.

Key words. optimal transport, augmented Lagrangian method, Wasserstein distance
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Introduction. Given two nonnegative density functions ρ0 and ρT on R
d satis-

fying the compatibility condition∫
Rd

ρ0(x)dx =

∫
Rd

ρT (x)dx,(0.1)

a map M is said to transport ρ0 to ρT if, for any bounded subset A of R
d,∫

A

ρT (x)dx =

∫
M(A)

ρ0(x)dx.(0.2)

Then the Monge–Kantorovich problem (MKP) consists of finding a map M trans-
porting ρ0 to ρT and minimizing the cost∫

Rd

|M(x)− x|2ρ0(x)dx.(0.3)

The problem of the existence and the characterization of the optimal map has been
solved in [2] by Brenier, who showed that the optimal map is the gradient of a convex
potential. This result has then been extended to the cases of more general cost
functions in [8] and more general geometries in [10]. From a numerical point of view,
the computation of the optimal map seems to be a challenging problem (see [1] for
a brief review of existing methods). In their work [1], Benamou and Brenier used
an artificial (time) variable to linearize the constraints (0.2). Then an augmented
numerical resolution of the resulting problem was presented. Although the optimal
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http://www.siam.org/journals/sinum/41-1/38606.html
†INRIA Rocquencourt, Action OTTO, Domaine de Voluceau, Rocquencourt-B.P. 105, 78153 Le

Chesnay Cedex, France (kevin.guittet@inria.fr).

382



ON THE TIME-CONTINUOUS MASS TRANSPORT PROBLEM 383

mass transport problem is naturally set up in the frame of probability measures and
continuous test functions, the augmented method used in [1] is largely of Hilbertian
nature. In order to prove the convergence of the method, it is therefore natural to
study the optimal mass transport problem from a Hilbertian point of view. This
article presents a step-by-step justification of the numerical method in the required
Hilbertian framework and finally provides a convergence proof. As in [1], we will
consider only the case of the torus, which considerably simplifies the analysis. Now
we define the time-continuous MKP (TCMKP) as follows.

Let T
d be the d-dimensional unit cube with periodic boundary. Define Q =

[0;T ]× T
d. In this study, we note

H(Q; div) = {f ∈ L2(Q)1+d s.t. ∇t,x.f ∈ L2(Q)},(0.4)

V (Q) = {f ∈ L2(Q)1+d s.t. ‖∇t,x.f‖L2(Q) = 0}.(0.5)

Given two densities (ρ0, ρT ) in L2(Td) satisfying the compatibility condition (0.1),
the TCMKP is to minimize

K(ρ,m) =

∫ T

0

∫
Td

|m|2
2ρ

dxdt,(0.6)

over all pairs (ρ,m) in V (Q) satisfying the boundary conditions

ρ(0, .) = ρ0 in L2(Td),

ρ(T, .) = ρT in L2(Td).
(0.7)

We denote by E(ρ0, ρT ) this minimum.
Remark 0.1. The link between the MKP and the TCMKP may be unclear. This

link is used as an important tool in the proof of the main theorem of section 1, to
which we refer for more explanation.

In this paper, our aim is to derive a rigorous Hilbertian theory for the TCMKP,
and to prove the convergence of the augmented Lagrangian method used in [1]. Thus
section 1 deals with the well-posedness of the Hilbertian problem. The formal exis-
tence result proved in [1] is made rigorous in the Hilbertian framework, and the link
between the optimal cost E(ρ0, ρT ) and the Wasserstein distance between ρ0 and ρT
is recalled. In section 2, we look at the Lagrangian formulation of the TCMKP and
prove an abstract existence result of a saddle-point. Since this Lagrangian L is the
starting point of the numerical method, we expect this result to be an important step
when looking for a convergence result. Next the purpose of section 3 is to get more
information on the saddle-point. Specifically, we show that the Lagrange multiplier of
the mass conservation constraint is linked to the optimal pair (ρ∗,m∗). Then we recall
the second Lagrangian L introduced in [1] and use the saddle-points of L to charac-
terize the saddle-points of L. We therefore get an existence result for a saddle-point
of L. Finally, section 4 presents a convergence result for the numerical algorithm.
This result may be unexpected since some of the classical assumptions required for
convergence are not fulfilled.

1. Well-posedness of the Hilbertian problem. In this section, the main
result is the existence of a minimizer of the TCMKP and the characterization of the
optimal cost E(ρ0, ρT ). Those results are summarized in the following theorem.
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Theorem 1.1. For any nonnegative (ρ0, ρT ) in (L2(Td))2 satisfying (0.1), we
have

E(ρ0, ρ1) =
1

2T
d2
Wass(ρ0, ρ1).(1.1)

Moreover, there exists a minimizer (ρ∗,m∗) such that

‖ρ∗‖L∞([0;T ];Lp(Td)) ≤Mp,(1.2)

‖m∗‖L∞([0;T ];Lp(Td)) ≤Mp

√
d

T
,(1.3)

where Mp = max(‖ρ0‖Lp(Td), ‖ρT ‖Lp(Td)) for any p ∈ ]1;∞].
Sketch of the proof. First, we give a precise definition for the kinetic energy

K(ρ,m) defined in (0.6). A first inequality is then derived using the nonlinear inter-
polation between ρ0 and ρ1 introduced by McCann in [9]. The proof of the converse
inequality is based on a formal argument of Benamou and Brenier. A minimizing
sequence is carefully lifted and mollified, so that this argument actually holds.

The rigorous definition of the kinetic energy follows from the observation that for
positive ρ

|m|2
2ρ

= sup
a+

|b|2
2 ≤0

[aρ+ b.m].(1.4)

Then K(ρ,m) can be defined through the following equality:

K(ρ,m) = sup

∫
Q

aρ+ b.m,(1.5)

where (a, b) ∈ L2(Q)× L2(Q)d are subject to the constraint that for all nonnegative
f ∈ L∞(Q) ∫ T

0

∫
Td

f

(
a+
|b|2
2

)
dx ≤ 0.(1.6)

We denote by K̃ the set of all pairs (a, b) ∈ L2(Q)1+d satisfying (1.6). It is easy
to see that K̃ is a closed convex set in L2(Q)1+d. Moreover, for any fixed pair
(a, b) ∈ K̃, the application (ρ,m) → ∫

Q
aρ+ b.m is convex and continuous, and then

lower semicontinuous. Then the upper envelope K of those functions is still convex
and l.s.c. This property of K will prove to be useful in what follows.

Remark 1.2. Such a characterization of the kinetic energy has been used by
Brenier in [3]. The test functions were taken in C0(Q), so that the interior of K̃ was
not empty. This property allowed Brenier to use a duality theorem of Rockafellar to
get the existence of a minimizer. However, this minimizer was found in the set of
Radon measures. Since we expect more regularity for our minimizer, our definition
of K̃ is slightly different, and this set turns out to be of empty interior.

In order to get the first inequality, we use the interpolation defined by McCann
in [9]. Specifically, we have the following lemma.

Lemma 1.3. Let (ρ0, ρT ) be two nonnegative densities in L2(Td). Then there
exists some (ρ∗,m∗) ∈ V (Q) satisfying (0.7), (1.2), and (1.3) and such that

K(ρ∗,m∗) ≤ 1

2T
d2
Wass(ρ0, ρT ).(1.7)
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Proof. Denote by ∇xφ the optimal transport (which is known to be the gradient
of a convex potential) from ρ0 to ρT . It means that (∇xφ)�ρ0 = ρT . Then, following
McCann, we can use this transport to define the nonlinear interpolation between ρ0

and ρT :

ρ̄t =
1

T
((T − t)Id+ t∇xφ)�ρ0.(1.8)

For any p ∈ ]1;∞], the Lp-norm of ρ̄t is displacement convex, which means in partic-
ular that

‖ρ̄t‖Lp(Td) ≤ max
(‖ρ0‖Lp(Td), ‖ρT ‖Lp(Td)

)
.(1.9)

Now define the characteristics associated with ∇xφ,

X(t, x) =
1

T
((T − t)Id+ t∇xφ)(x) = ∇xφt(x),(1.10)

and the velocity field v(t,X(t, x)) = 1
T (∇xφ(x)− x) on X(t, {x ∈ T

d|ρ0(x) > 0}),

v(t, y) = 0 elsewhere.
(1.11)

Then define m̄(t, x) = ρ̄(t, x)v(t, x). Assuming some regularity, this construction
ensures that (ρ̄, m̄) ∈ V (Q) and

K(ρ̄, m̄) =
1

2T
d2
Wass(ρ0, ρT ).(1.12)

Moreover, since ∇xφ is the optimal transport on the torus, we get that for any x ∈ T
d,

‖∇xφ(x)−x‖ ≤ d. As a consequence, we have the following estimate for any p ∈ ]1;∞]:

‖m̄‖L∞([0;T ];Lp(Td)) ≤
√
d

T
max

(‖ρ0‖Lp(Td), ‖ρT ‖Lp(Td)

)
.(1.13)

Now, regularizing the boundary densities and using the regularity theory for the MKP,
it is possible to build a weakly converging sequence in H(Q,div). Denote the limit
by (ρ∗,m∗). By construction, (ρ∗,m∗) is in V (Q) and satisfies (0.7). Moreover, K is
convex and l.s.c, and it follows that

E(ρ0, ρ1) ≤ K(ρ∗,m∗) ≤ 1

2T
d2
Wass(ρ0, ρT ).(1.14)

Finally, (1.2) and (1.3) follow simply from (1.9) and (1.13). This achieves the proof
of Lemma 1.3.

Now we have to get the converse inequality. Let (ρn,mn)n∈N be a minimizing
sequence for the TCMKP. For any n in N

∗, we define
ρ
(1)
n = ρn +

1

n
,

m
(1)
n = mn.

(1.15)

By construction, we have (ρ
(1)
n ,m

(1)
n ) ∈ V (Q) and

∀(t, x) ∈ Q, ρ(1)
n (t, x) ≥ 1

n
.(1.16)
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Moreover, the definition of K leads to

K(ρ(1)
n ,m(1)

n ) ≤ K(ρn,mn).(1.17)

Now we want to build a smooth “outer” (in the sense that the time-boundary data
are not satisfied, but only carefully approximated) minimizing sequence. This reg-
ularization will be necessary in order to define a smooth velocity field and some
characteristics, which will then allow us to apply Benamou and Brenier’s argument.
We therefore define f in C(R× T

d) as follows:
f(t, x) = (0, x) if t < 0,

f(t, x) = (t, x) if t ∈ [0;T ],

f(t, x) = (T, x) if t > T.

(1.18)

Define ρ∗n = ρ
(1)
n ◦ f and m∗n = χ[0;T ][m

(1)
n ◦ f ]. We have (ρ∗n,m∗n) ∈ V (Q). This

extension of the functions allows a good convergence of the time-boundary values.
Fix n ∈ N

∗. For any k in N
∗ we define

gk(t, x) =

(
− T

k
+

(
1 +

2

k

)
t, x

)
.(1.19)

The sequence (ρkn,m
k
n) is then defined as follows:

ρkn(t, x) = ξT
k
∗ [ρ∗n ◦ gk],

mk
n(t, x) =

(
1 +

2

k

)
ξT

k
∗ [m∗n ◦ gk],

(1.20)

where ξ is a positive mollifier with support contained in the unit ball of R
d+1. It is

easy to see that for any k in N
∗, (ρkn,m

k
n) is in V (Q). Moreover, the pair (ρkn,m

k
n)

satisfies the following properties,

ρkn ∈ C∞(Q),

mk
n ∈ C∞(Q)d

∀(t, x) ∈ Q,
1

n
≤ ρkn(t, x),

(1.21)

and some subsequence (still labeled by k) satisfies
limk→∞ ‖(ρkn,mk

n)− (ρ(1)
n ,m

(1)
n )‖H(Q;div) = 0,

limk→∞ ‖ρkn(0, .)− ρn0‖L2(Td) = 0,

limk→∞ ‖ρkn(T, .)− ρnT ‖L2(Td) = 0.

(1.22)

Moreover, the sequence (1/ρkn)k∈N converges weakly* in L∞(Td) towards 1/ρ(1)
n . This,

together with (1.22), ensures the convergence ofK(ρkn,m
k
n) towardsK(ρ

(1)
n ,m

(1)
n ). We
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then get that there exists a kn in N such that

K(ρknn ,mkn
n ) ≤ K(ρ(1)

n ,m(1)
n ) +

1

n
,(1.23)

‖ρknn (0, .)− ρn0‖L2(Td) ≤
1

n
,(1.24)

‖ρknn (T, .)− ρnT ‖L2(Td) ≤
1

n
.(1.25)

Define (ρ
(2)
n ,m

(2)
n ) = (ρknn ,mkn

n ). By construction, we have
(ρ

(2)
n ,m

(2)
n ) ∈ C∞(Q)d+1

∀(t, x) ∈ Q, ρ(2)
n ≥

1

n
.

(1.26)

Moreover, (1.23) implies that

K(ρ(2)
n ,m(2)

n ) ≤ K(ρ(1)
n ,m(1)

n ) +
1

n
.(1.27)

Hence (ρ
(2)
n ,m

(2)
n ) is an “outer” minimizing sequence. It is now possible to use Ben-

amou and Brenier’s argument to get the required inequality. We therefore define the
velocity field

v(2)
n =

m
(2)
n

ρ
(2)
n

.(1.28)

v
(2)
n is in C∞(Q)d. We are now able to define the characteristics. We look at the
differential system  ∂tX(t, x) = v

(2)
n (t,X(t, x)),

X(0, x) = x.

(1.29)

Since v
(2)
n is a C∞ function, this system is well defined, and the solution is uniquely

defined on [0;T ]. Now we recall the computations in [1] to show that the “optimal
displacement” between X(0, .) and X(T, .) follows straight lines. Indeed, we have

T

∫
Td

∫ T

0

ρ(2)
n (t, x)|v(2)

n (t, x)|2dxdt = T

∫
Td

∫ T

0

ρ(2)
n (0, x)|v(2)

n (t,X(t, x))|2dxdt

= T

∫
Td

∫ T

0

ρ(2)
n (0, x)|∂tX(t, x)|2dxdt

≥
∫

Td

ρ(2)
n (0, x)|X(T, x)−X(0, x)|2dx

=

∫
Td

ρ(2)
n (0, x)|X(T, x)− x|2dx.
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It is then sufficient to consider the MKP between the densities ρ
(2)
n (0, .) and ρ

(2)
n (T, .).

From [6], we get the existence of a convex function φn such that ∇xφn minimizes∫
Td

ρ(2)
n (0, x)|M(x)− x|2dx(1.30)

in the set of application M pushing ρ
(2)
n (0, .) forward to ρ

(2)
n (T, .). This minimum is

the definition of the Wasserstein distance between ρ
(2)
n (0, .) and ρ

(2)
n (T, .). We then

get that

d2
Wass(ρ

(2)
n (0, .), ρ(2)

n (T, .)) ≤ 2T K(ρ(2)
n ,m(2)

n ).(1.31)

Summarizing (1.17), (1.27), (1.31), we get

1

2T
d2
Wass(ρ

(2)
n (0, .), ρ(2)

n (T, .)) ≤ K(ρ(2)
n ,m(2)

n )

≤ K(ρ(1)
n ,m(1)

n ) +
1

n

≤ K(ρn,mn) +
1

n
.

The Wasserstein distance is continuous with respect to the L2 distance on the torus

(thanks to its finite diameter). Hence we get that d2
Wass(ρ

(2)
n (0, .), ρ

(2)
n (T, .)) converges

to d2
Wass(ρ0, ρT ) as n goes to infinity. Passing to the limit in the previous inequality,

we get

1

2T
d2
Wass(ρ0, ρT ) ≤ E(ρ0, ρT ).(1.32)

This, together with (1.14), achieves the proof of Theorem 1.1.

2. Existence of a saddle-point for the Lagrangian. From now on, we will
assume that the optimal density ρ∗ satisfies the following assumption:

∃α1 > 0 s.t. ∀(t, x) ∈ Q, ρ∗(x, t) ≥ α1.(2.1)

Notice that this assumption is always satisfied for strictly positive smooth boundary
data. Indeed, when ρ0 and ρ1 are of class Cα,l(Td), the regularity theory developed
for the optimal mass transport problem by Caffarelli in the case of convex bounded
domains (see [4], [5]) and recently applied by Cordero-Erausquin [6] in the case of the
flat torus T

d = R
d/Z

d ensures that φ is of class Cα,l+2(Td). Then the Monge–Ampère
equation

ρ∗(t,∇xφt(x)) det(∇2
xφt(x)) = ρ0(x)(2.2)

holds, and ρ∗ is smooth. Moreover, we have (1 − t)d ≤ det(∇2
xφt(x)) ≤ C for a

constant C depending only on ρ0 and ρ1. This implies that the optimal density ρ∗ is
bounded from below away from zero, and (2.1) is proved. However, the existence of
the first saddle-point defined in [1] may be obtained without the regularity assumption
on the boundary densities.
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Theorem 2.1. Assume that the solution (ρ∗,m∗) of the TCMKP satisfies (2.1).
Then there exists a λ∗ ∈ L2

0(Q) such that (ρ∗,m∗, λ∗) is a saddle-point of the La-
grangian L, defined as follows:

L(ρ,m, λ) = K(ρ,m) +

∫ T

0

∫
Td

(∂tρ+∇x.m)λ dxdt.(2.3)

The proof of this theorem relies mainly on an application of the Hahn–Banach
theorem. The two convex sets we want to separate are defined as follows:

S =

(K(ρ,m)−K(ρ∗,m∗) + s, ∂tρ+∇x.m)
∣∣∣∣∣∣
(ρ,m) ∈ H(Q; div),
(0.7) holds,
s ≥ 0,


T =

{
(−t, 0) ∈ R× L2

0(Q), t > 0
}
.

The next three lemmas show that S and T satisfy the required assumptions for the
Hahn–Banach theorem.

Lemma 2.2. S and T are convex.
Proof. The convexity of T is obvious. Let (r1, ψ1) and (r2, ψ2) be in S. There

exists (ρ1,m1, s1) and (ρ2,m2, s2) such that

(K(ρi,mi)−K(ρ∗,m∗) + si, ∂tρ+∇x.m) = (ri, ψi).(2.4)

From the convexity of K, we get

K

(
1

2
(ρ1 + ρ2,m1 +m2)

)
≤ 1

2
(K(ρ1,m1) +K(ρ2,m2)).(2.5)

Let s3 =
1
2 (s1 + s2) +

1
2 (K(ρ1,m1) +K(ρ2,m2))−K( 12 (ρ1 + ρ2,m1 +m2)). We have

s3 ≥ 0. Define then

(ρ3,m3) =
1

2
(ρ1 + ρ2,m1 +m2),

ψ3 =
1

2
(ψ1 + ψ2),

r3 =
1

2
(r1 + r2).

From the linearity of the divergence operator, we get ψ3 = ∇t,x.(ρ3,m3). Then we
have that s3 ≥ 0 and ψ3 ∈ H(Q; div) such that

(K(ρ3,m3)−K(ρ∗,m∗) + s3, ∂tρ+∇x.m) = (r3, ψ3).

Hence (r3, ψ3) is in S. This proves the convexity of S.
Lemma 2.3. S ∩ T = ∅.
Proof. Let (r, ψ) be in S ∩ T . We have ψ = 0. Let (ρ,m, s) such that

(K(ρ,m)−K(ρ∗,m∗) + s, ∂tρ+∇x.m) = (r, 0).(2.6)

Using the definition of (ρ∗,m∗), we have r ≥ s. Hence r ≥ 0. But we should have
r < 0 since (r, ψ) is in T . This is a contradiction. We conclude that S ∩T = ∅.
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Lemma 2.4. The interior of S is not empty.
Proof. Let s0 > 0. As we will show, (s0, 0) is an interior point of S. Let

0 < ε < 1/2. Take (r, g) in a neighborhood of (s0, 0), that is, such that

|r − s0|+ ‖g‖L2 < ε.(2.7)

We want to prove that (r, g) is in S for ε small enough. We are therefore looking for
a (ρ,m, s) such that  K(ρ,m)−K(ρ∗,m∗) + s = r,

∇t,x.(ρ,m) = g.

One of the difficulties comes from the fact that ρ has to satisfy some positivity prop-
erty. In order to control the L∞-norm of the new density, we integrate the mass
production induced by g. We then define h(t) =

∫ t
0

∫
Td g(u, x)dxdu. Since g is in

L2
0(Q), we have h(T ) = 0. This condition is necessary to allow the recovery of the
boundary conditions for ρ. Our strategy is then to split ρ into two parts. The first
part has to stay close to the optimal density, while the second has to track the mass
production. We therefore define ρ2(t, x) = θα1+h(t) for some θ. Then we must have
the following equality:

∇x.m(t, x) = g(t, x)−
∫

Td

g(t, y)dy.(2.8)

For almost every t in [0;T ], we solve the system
∆x(ψt) = g(t, x)−

∫
Td

g(t, y)dy,

ψt ∈ H1(Td) ∩ L2
0(T

d),

under periodic boundary conditions. We then take m̃(t, x) = ∇xψt(x). By construc-
tion, we have

‖m̃(t, .)‖L2(Td) ≤ C‖g(t, .)‖L2(Td).(2.9)

Integrating in t, we get ‖m̃‖L2(Q) ≤ C‖g‖L2(Q).
Remark 2.5. This construction does not take care of the measurability of the

resulting function m̃, which could be easily stated. Anyway, the bound (2.9) allows
some regularization process . . .

Now we consider K(ρ∗+h(t),m∗+m̃). We want to prove that this action is close
to the minimum. Therefore, we define

(ρ1,m1) = (ρ
∗ − θα1,m

∗),(2.10)

(ρ2,m2) = (h(t) + θα1, m̃).(2.11)

The inequality K((ρ1,m1) + (ρ2,m2)) ≤ K(ρ1,m1) + K(ρ2,m2) follows from the
convexity and the homogeneity property of K.

K(ρ1,m1) =

∫
Td

∫ T

0

|m∗|2
2(ρ∗ − θα1)

dxdt

=

∫
Td

∫ T

0

|m∗|2
2ρ∗

ρ∗

ρ∗ − θα1
dxdt.
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But we have α1 ≤ ρ∗, so that ρ∗ − θα1 ≥ (1− θ)ρ∗. Hence we have

K(ρ1,m1) ≤ 1

1− θ
K(ρ∗,m∗).

Finally, we get

K(ρ1,m1)−K(ρ∗,m∗) ≤ θ

1− θ
K(ρ∗,m∗).(2.12)

Now we have to estimate K(ρ2,m2). We have

ρ2(t, x) =

∫ t

0

∫
Td

g(u, x)dxdu+ θα1

=

∫ T

0

∫
Td

g(u, x)χ[0;t]dxdu+ θα1.

(2.13)

Then for all (t, x) ∈ Q

θα1 − ‖g‖L2(Q)

√
t ≤ ρ2(t, x) ≤ θα1 + ‖g‖L2(Q)

√
t.

Hence for ‖g‖L2(Q) ≤ 1√
T
θα1 we have

∀(t, x) ∈ Q, ρ2(t, x) ≥ 0.

Moreover, taking 2ε
√
T ≤ α1θ, we get

K(ρ2,m2) ≤
∫ T

0

∫
Td

1

θα1
|m2|2

≤ 1

θα1
‖m2‖2L2(Q)

≤ C

θα1
‖g‖2L2(Q).

Finally, we get

K(ρ,m)−K(ρ∗,m∗) ≤ θ

1− θ
K(ρ∗,m∗) +

C

θα1
‖g‖2L2(Q)

≤ θ

1− θ
K(ρ∗,m∗) +

C

θα1
ε2

≤ 4ε

√
T

α1
K(ρ∗,m∗) +

C

2
√
T
ε when taking θ = 2ε

√
T

α1
.

We want K(ρ,m)−K(ρ∗,m∗) ≤ r. It is sufficient to take a small ε, since r is of the
same order as s0. It is then possible to take s = r − (K(ρ,m)−K(ρ∗,m∗)), and we
finally get (ρ,m, s) such that

(K(ρ,m)−K(ρ∗,m∗) + s, ∂tρ+∇x.m) = (r, g).(2.14)
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We deduce that the interior of S is not empty.
It is now possible to finish the proof of the theorem. From the Hahn–Banach

theorem, there exists a nonzero linear form separating S and T . We then have
(α0, φ0) ∈ R× L2

0 such that

∀(ρ,m, s, t), α0(K(ρ,m)−K(ρ∗,m∗) + s) + 〈∇t,x.(ρ,m), φ0〉 ≥ −α0t.(2.15)

First we take (ρ,m) = (ρ∗,m∗). We have

∀(s, t), s ≥ 0, t > 0, α0s ≥ α0t.

We deduce that α0 is nonnegative. Assume now that α0 = 0. Then (2.15) becomes

∀(ρ,m, s), 〈∇t,x.(ρ,m), φ0〉 ≥ 0.(2.16)

Let ψ be the solution in L2
0 of the following system:

∆ψ = −φ0,

∂tψ(0, .) = ρ0,

∂tψ(T, .) = ρT ,

with periodic boundary conditions in space.
We define (ρ,m) = ∇t,xψ. We then get ‖φ0‖2L2 ≤ 0, and therefore φ0 = 0, which

is a contradiction. We deduce that α0 > 0. Finally, define λ∗ = φ0

α0
. We have to check

that the triplet (ρ∗,m∗, λ∗) is indeed a saddle-point of L. Taking s = 0 and letting t
go to 0, we get

∀(ρ,m) ∈ H(Q; div), L(ρ∗,m∗, λ∗) ≤ L(ρ,m, λ∗).(2.17)

Moreover, we have ∇t,x.(ρ∗,m∗) = 0, and therefore

∀λ ∈ L2
0, L(ρ∗,m∗, λ) ≤ L(ρ∗,m∗, λ∗).(2.18)

Hence, the triplet (ρ∗,m∗, λ∗) is a saddle-point of L, and Theorem 2.1 is proved.

3. More on the saddle-point. Now we prove some properties of the saddle-
point. Indeed, we have

K(ρ∗,m∗) = sup
(a,b)∈K̃

∫
[0;T ]

∫
Td

aρ∗ + b.m∗dxdt.(3.1)

As a consequence of the uniform boundedness of the velocity fields in the proof of
Lemma 1.3, we see that the optimal pair (a∗, b∗) is actually reached and bounded in
L∞(Q). Indeed, this pair is given by the following equalities:

a∗ = −|m
∗|2

2ρ∗2
,

b∗ =
m∗

ρ∗
.

(3.2)
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Let (ρ̃, m̃) in C∞(Q)1+d and δ in R. Assume furthermore that

ρ̃(0, .) = 0, ρ̃(T, .) = 0.(3.3)

Then the pair (ρ = ρ∗ + ρ̃,m = m∗ + m̃) satisfies

0 ≤ δ

∫
[0;T ]

∫
Td

(a∗ρ̃+ b∗.m̃) + λ∗∇t,x.(ρ̃, m̃)dxdt+O(δ2).(3.4)

Letting δ go to 0 and then using the density of C∞(Q)1+d in H(Q; div), we get that
for any (ρ̃, m̃) in H(Q; div) satisfying (3.3)∫

Td

(a∗ρ̃+ b∗.m̃) + λ∗∇t,x.(ρ̃, m̃)dxdt = 0.(3.5)

We recall now that any function u in L2(Q)1+d can be uniquely (and continuously)
decomposed in L2(Q)1+d as a sum u = u1 + u2 such that

u1 = ∇t,xφ for some φ ∈ H1(Q),

u2 satisfies

 ∇t,x.u2 = 0 in L2(Q),

u2.n = 0 on ∂Q.

(3.6)

We then write (a∗, b∗) = ∇φ∗ + v∗. Inserting into (3.5) and integrating by part, we
get that for all (ρ̃, m̃) in H(Q; div) satisfying (3.3)∫

[0;T ]

∫
Td

(λ∗ − φ∗)∇t,x.(ρ̃, m̃)dxdt+
∫

[0;T ]

∫
Td

v∗.(ρ̃, m̃)dxdt = 0.(3.7)

Hence we get that if ∇t,x.(ρ̃, m̃) = 0,∫
[0;T ]

∫
Td

v∗.(ρ̃, m̃)dxdt = 0.(3.8)

Integrating by parts the product 〈v∗,∇t,xφ〉 for any φ in H1(Q) and using the defini-
tion of v∗, we get 0. Then using the decomposition property of L2(Q)1+d for any v in
L2(Q)1+d, we conclude that v∗ = 0. Then inserting into (3.7) and using the definition
of a saddle-point, we see that (ρ∗,m∗, φ∗) is a saddle-point of L.

As in [1], we are now ready to define a new Lagrangian L. We also take the same
notations 

µ = (ρ,m),
q = (a, b),

F (q) =

{
0 if q ∈ K̃,
+∞ else,

G(φ) =

∫
Td

[φ(0, .)ρ0 − φ(T, .)ρT ],

〈µ, q〉 =
∫

[0;T ]

∫
Td

µ.q dxdt

to get that for all (µ, q, φ) ∈ L2(Q)d+1×L2(Q)d+1×H1(Q) (from now on, this space
will be denoted by E(Q))

L(µ, q, φ) = −F (q)−G(φ) + 〈µ, q −∇t,xφ〉.(3.9)
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We now have the following theorem.
Theorem 3.1. (µ∗, q∗, φ∗) is a saddle-point of L in E(Q). Moreover, any saddle-

point of L in E(Q) is of the form (µ̃, q∗, φ∗ + C̃), where C̃ is a constant, and µ̃ is a
solution of the time-continuous mass transport problem.

Proof. Let µ be in L2(Q)1+d. We have 〈µ, q∗ − ∇t,xφ∗〉 = 0 = 〈µ, q∗ − ∇t,xφ∗〉.
Hence we have

L(µ∗, q∗, φ∗) ≤ L(µ, q∗, φ∗).
Let (q, φ) be in K̃ ×H1(Q). First we observe that a simple integration by parts gives
〈µ∗,∇t,xφ〉 = −G(φ), since µ∗ is in V (Q) and satisfies (0.7). Then we have

L(µ∗, q, φ) = 〈µ∗, q −∇t,xφ〉 −G(φ)

= 〈µ∗, q〉
≤ 〈µ∗, q∗〉
≤ 〈µ∗, q∗ −∇t,xφ∗〉 −G(φ∗)
≤ L(µ∗, q∗, φ∗).

Then, summarizing these inequalities, we get that for any (µ, q, φ) in L2(Q)1+d ×
L2(Q)1+d ×H1(Q) we have

L(µ∗, q, φ) ≤ L(µ∗, q∗, φ∗) ≤ L(µ, q∗, φ∗),(3.10)

which means that (µ∗, q∗, φ∗) is a saddle-point of L.
Let (µ̃, q̃, φ̃) in L2(Q)1+d × L2(Q)1+d ×H1(Q) be another saddle-point of L. We

have q̃ ∈ K̃. Assume next that q̃ �= ∇t,xφ̃, and define µn = n(∇t,xφ̃ − q̃). From the
definition of a saddle-point, we get that

L(µ̃, q̃, φ̃) ≤ 〈µn, q̃ −∇t,xφ̃〉 −G(φ̃)

≤ −n‖q̃ −∇t,xφ̃‖2L2(Q) −G(φ̃).

We obtain a contradiction by letting n go to infinity. Then q̃ is a gradient. Using the
decomposition property if L2(Q)1+d, we write µ̃ = µ∗+µ̄+∇t,xφ̄. From the definition
of a saddle-point, we know that for any (q, φ) in L2(Q)1+d ×H1(Q) we have

L(µ̃, q, φ) ≤ L(µ̃, q̃, φ̃).(3.11)

Assume that there exists some φ1 such that 〈µ̃,∇t,xφ1〉 + G(φ1) < 0. Then taking
(q, φ) = (0, nφ1) in (3.11), we get

−n (〈µ̃,∇t,xφ1〉+G(φ1)) ≤ L(µ̃, q̃, φ̃).(3.12)

Letting n go to infinity, we obtain a contradiction. Hence we see that for all φ in
H1(Q), 〈µ̃,∇t,xφ〉 + G(φ) = 0. In particular, this has to be true with φ̄. Using our
decomposition of µ̃, we get

0 = 〈µ∗ + µ̄+∇t,xφ̄, φ̄〉+G(φ̄)

= 〈µ∗,∇t,xφ̄〉+G(φ̄) + 〈µ̄,∇t,xφ̄〉+ ‖∇t,xφ̄‖2L2(Q).

Integrating by parts and using the properties of µ∗ and µ̄, we deduce that∇t,xφ̄ is null.
Hence we see that µ̃ is in fact in V (Q) and satisfies the boundary conditions (0.7).
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Fig. 3.1. Geometrical intuition.

We now have to prove that q̃ = q∗. From the fact that both pairs have to define
saddle-points, we get

〈µ̃, q∗ − q̃〉 = 0,(3.13)

〈µ∗, q∗ − q̃〉 = 0,(3.14)

〈µ∗, q∗〉 = 〈µ̃, q̃〉.(3.15)

The identity q̃ = q∗ follows quite obviously from (3.14). Indeed, the set K̃ is strictly
convex, and the L∞ bounds on q∗ ensure that we have some kind of uniform strict
convexity. Specifically, we have the following result.

Lemma 3.2. Let q̃ be in L2(Q) such that 〈µ∗, q∗ − q̃〉 = 0. Then q̃ = q∗ a.e. on
Q.

Proof. Since q∗ is bounded in L∞(Q), we can have uniform estimates on the
strict convexity of K̃. The geometric intuition is easily understood when looking at
Figure 3.1.

Let ε > 0. There exists some δ > 0 such that for any (t, x) in Q

‖q∗ − q̃‖ > ε⇒ µ∗.(q∗ − q̃) < −δ‖µ∗‖.(3.16)

Let Aε = {(t, x) ∈ Q s.t. ‖q∗ − q̃‖ > ε}. We have
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0 = 〈µ∗, q∗ − q〉
≤
∫
Aε

µ∗.(q∗ − q)dtdx

≤ −δ
∫
Aε

‖µ∗‖
≤ −δα1|Aε|.

Then we get that |Aε| = 0. This achieves the proof of the lemma.
Finally, since (µ̃, q̃, φ̃) is a saddle-point of L, we have

〈µ̃, q̃〉 = K(ρ̃, m̃).(3.17)

Then we get from (3.15) (and from the fact that µ̃ is in V (Q) and satisfies (0.7))
that µ̃ is a solution of the time-continuous mass transport problem. This achieves the
proof of Theorem 3.1.

This theorem answers a question that was left open in [1] on the existence of
the saddle-point for L in the infinite-dimensional case. Moreover, we give a precise
functional background for searching this saddle-point.

Remark 3.3. In Theorem 3.1, the variable µ is taken in L2(Q)1+d rather than
in H(Q; div). This will remove a constraint when the question turns to the effective
search for the saddle-point.

4. On the algorithm of [1]. In [1], the authors defined an augmented La-
grangian as a preliminary for their numerical method. To get some more coercivity,
they perturbed the functional F . Here, since we have already made an assumption of
boundedness away from zero on the saddle-point, such a perturbation is not necessary.
We then define on E(Q) the augmented Lagrangian

Lr(µ, q, φ) = F (q) +G(φ) + 〈µ,∇t,xφ− q〉
+

r

2
〈∇t,xφ− q,∇t,xφ− q〉,(4.1)

where r is a positive parameter.
Remark 4.1. We can change the signs since we proved the existence of a saddle-

point of L. In this formulation, the constraint is to get q as a gradient. This constraint
has been augmented, instead of the old constraint that µ is in V (Q) and satisfies (0.7).

It is a classical result (see [7]) that if (µ, q, φ) is a saddle-point of Lr, it is also
a saddle-point of L (and conversely). Benamou and Brenier then used a numerical
algorithm ALG2 to solve the problem. We recall here this algorithm and refer to
[1] for more explanation on the steps and some numerical results. Here we are now
concerned with the convergence of the method in the continuous case.

Algorithm ALG2.
• (φn−1, qn−1, µn) are given.
• Step A. Find φn in H1(Q) ∩ L2

0(Q) such that

Lr(φ
n, qn−1, µn) ≤ Lr(φ, q

n−1, µn) ∀φ.(4.2)

• Step B. Find qn in L2(Q)1+d such that

Lr(φ
n, qn, µn) ≤ Lr(φ

n, q, µn) ∀q.(4.3)
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• Step C. Do

µn+1 = µn + δ(∇t,xφn − qn)(4.4)

(where r > 0 is the parameter of the augmented Lagrangian).
• Go back to Step A.

Remark 4.2. In Step A, the minimization is performed over H1(Q) ∩ L2
0(Q) in

order to have a unique solution. Moreover, it is a way to fix the additive constant
from Theorem 3.1.

The convergence of the sequence constructed by ALG2 is proved in [7] under some
quite general assumptions, which are unfortunately not fully satisfied here. However,
their proof can be adapted in order to deal with the problem under consideration.

Theorem 4.3. Assume that

0 < δ < δM =
1 +
√
5

2
r.(4.5)

Then the sequence constructed by ALG2 satisfies the following convergence properties:

φn → φ∗ strongly in H1(Q),(4.6)

qn → q∗ strongly in L2(Q)1+d,(4.7)

µn+1 − µn → 0 strongly in L2(Q)1+d,(4.8)

µn is bounded in L2(Q)1+d.(4.9)

Moreover, if µ̃ is a (weak) cluster point of (µn) in L2(Q)1+d, then (µ̃, q∗, φ∗) is a
saddle-point of Lr on E(Q).

Proof. The proof of the convergence of ALG2 in [7] requires some uniform convex-
ity properties for F , which are not satisfied here. However, due to the particular form
of our function F , the first part of their proof simplifies (since any term containing
F vanishes). Hence a simple rewriting of their (intricate) calculations leads to (|f |
denotes the L2-norm of f)

(|µ̄n|2 + δr|q̄n−1|2)− (|µ̄n+1|2 + δr|q̄n|2) ≥ δ(2r − δ)|∇t,xφ̄n − q̄n|2

+ δr|q̄n − q̄n−1|2 − δ|r − δ|
(
1

α
|∇t,xφ̄n−1 − q̄n−1|2 + α|q̄n − q̄n−1|2

)
,

(4.10)

where µ̄n = µn − µ∗, q̄n = qn − q∗, φ̄n = φn − φ∗, and α > 0 is a parameter.
If 0 < δ ≤ r, taking α = 1 and observing that |r − δ| = r − δ, we get

vn−1 − vn ≥ δr|∇t,xφ̄n − q̄n|2 + δ2|q̄n − q̄n−1|2,(4.11)

with vn = (|µ̄n+1|2+δr|q̄n|2+δ(r−δ)|∇t,xφ̄n−q̄n|2). If r < δ < δM , taking α = 1+
√

5
2 ,

we have

wn−1 − wn ≥ δMδ

r
(δM − δ)|∇t,xφ̄n − q̄n|2 + δ(δM − δ)|q̄n − q̄n−1|2,(4.12)
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with wn = (|µ̄n+1|2 + δr|q̄n|2 + δr
δM
(δ − r)|∇t,xφ̄n − q̄n|2).

In (4.11) and (4.12), the right-hand sides are nonnegative. Then the sequences
(vn) and (wn) are decreasing. Hence we have that (µn) and (qn) are uniformly
bounded in L2(Q)1+d. Moreover, we see from the right-hand sides that

∑∞
n=1 |∇t,xφ̄n−

q̄n|2 and ∑∞n=1 |q̄n − q̄n−1|2 are finite. It implies that ∇t,xφ̄
n − q̄n → 0 strongly in L2(Q)1+d,

(q̄n) is a Cauchy sequence in L2(Q)1+d.
(4.13)

We then have that (qn) converges strongly in L2(Q)1+d to some q̃. Hence we have that
(∇t,xφn) also converges strongly to q̃ in L2(Q)1+d. Since φn is in L2

0(Q), we see then

that the sequence (φn) converges strongly in H1(Q) ∩ L2
0(Q) to some φ̃. Moreover,

the sequence (µn) is bounded in L2(Q)1+d. We can then extract a subsequence (still
denoted by n) weakly converging in L2(Q)1+d to some µ̃. We now have to prove that
q̃ = q∗ and φ̃ = φ∗.

Step A means that for any φ in H1(Q)

0 ≤ G(φ)−G(φn) + 〈µn,∇t,xφ−∇t,xφn〉
+ r〈∇t,xφn − qn−1,∇t,xφ−∇t,xφn〉.(4.14)

Step B means that for any q in L2(Q)1+d

0 ≤ F (q)− 〈µn, q − qn〉+ r〈qn −∇t,xφn, q − qn〉.(4.15)

Taking φ = φ∗ in (4.14) and q = q∗ in (4.15), and letting n tend to infinity, we get

0 ≤ G(φ∗)−G(φ̃) + 〈µ̃,∇t,xφ∗ −∇t,xφ̃〉,(4.16)

0 ≤ −〈µ̃, q∗ − q̃〉.(4.17)

Then, adding the two inequalities and using that ∇t,xφ̃ = q̃ and ∇t,xφ∗ = q∗, we get

G(φ̃) ≤ G(φ∗).(4.18)

Moreover, since (µ∗, q∗, φ∗) is a saddle-point of Lr, we have

G(φ∗) ≤ G(φ̃).(4.19)

We deduce that G(φ∗) = G(φ̃). We recall now that for any φ in H1(Q), we have
G(φ) + 〈µ∗,∇t,xφ〉 = 0. Using this equality with φ∗ and φ̃, we get

〈µ∗, q∗〉 = 〈µ∗, q̃〉.(4.20)

We now recall Lemma 3.2 to get q̃ = q∗. Hence φ̃ = φ∗. To end the proof of
Theorem 4.3, it remains to show that (µ̃, q∗, φ∗) is a saddle-point of Lr. Letting n go
to infinity in (4.14) and (4.15) and adding the resulting inequalities, we get that for
any (q, φ) in L2(Q)1+d ×H1(Q),

G(φ∗) ≤ F (q) +G(φ) + 〈µ̃,∇t,xφ− q〉.(4.21)

We conclude that (µ̃, q∗, φ∗) is a saddle-point of L and then also a saddle-point of Lr.
This achieves the proof of Theorem 4.3.
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COMPUTATION OF PERIODIC SOLUTION BIFURCATIONS IN
ODES USING BORDERED SYSTEMS∗
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Abstract. We consider numerical methods for the computation and continuation of the three
generic secondary periodic solution bifurcations in autonomous ODEs, namely the fold, the period-
doubling (or flip) bifurcation, and the torus (or Neimark–Sacker) bifurcation. In the fold and flip
cases we append one scalar equation to the standard periodic BVP that defines the periodic solution;
in the torus case four scalar equations are appended. Evaluation of these scalar equations and their
derivatives requires the solution of linear BVPs, whose sparsity structure (after discretization) is
identical to that of the linearization of the periodic BVP. Therefore the calculations can be done
using existing numerical linear algebra techniques, such as those implemented in the software auto
and colsys.

Key words. bifurcations, periodic solutions, continuation, boundary value problems

AMS subject classifications. 65P30, 65L10, 37M20, 37G15
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1. Introduction. We consider parameterized ODEs of the form

dx

dt
≡ x′ = f(x, α),(1.1)

where x ∈ Rn is the state variable, where α ∈ Rm represents parameters, and where
f(x, α) ∈ Rn is a (usually nonlinear) smooth function of x and α. Examples of sys-
tems of the form (1.1) are ubiquitous in mathematical models in physics, engineering,
chemistry, economics, finance, etc.

The simplest solutions of (1.1) are the equilibria, that is, solutions of the equation

f(x, α) = 0.

An equilibrium (x0, α0) is asymptotically stable if all eigenvalues of the Jacobian ma-
trix fx(x0, α0) have a strictly negative real part; it is unstable if there is at least one
eigenvalue with a strictly positive real part. In generic one-parameter problems, i.e.,
when m = 1, eigenvalues on the imaginary axis appear in two ways: as a simple
zero eigenvalue, or as a conjugate pair ±iω, ω > 0, of purely imaginary eigenvalues.
The first singularity corresponds generically to a limit point bifurcation, where two
solutions coalesce and annihilate each other under parameter variation. The second
singularity corresponds generically to a Hopf bifurcation, from which a family of pe-
riodic solutions emerges. Early papers on the numerical computation of bifurcations
of equilibria are [16], [22], and [20].
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Periodic solutions are solutions for which x(T ) = x(0) for some number T > 0.
The minimal such T is called the period. In generic one-parameter problems, periodic
solutions can bifurcate in several ways that can be characterized by the properties of
the monodromy matrix. The monodromy matrix is the linearized T -shift along orbits
of (1.1), evaluated at the point x(0) on the periodic solution. The eigenvalues of this
matrix are called the Floquet multipliers of the periodic solution [14], [17].

A periodic solution always has a multiplier equal to 1. If this multiplier has ge-
ometric multiplicity 1, then we call the periodic solution regular. The corresponding
eigenvector of the monodromy matrix is the tangent vector to the periodic solu-
tion at the point where the monodromy matrix is computed. If all other multipliers
are strictly inside the unit circle in the complex plane, then the periodic solution is
asymptotically stable. If at least one multiplier has modulus greater than 1, then
the periodic solution is unstable. In all other cases, one should take into account
higher-order derivatives of the T -shift to decide whether or not the periodic orbit is
stable.

Three singularities, determined by the monodromy matrix, can occur along a
one-parameter family (“curve” or “branch”) of periodic solutions, namely (1) a fold
singularity, when the multiplier 1 has algebraic multiplicity equal to or greater than
2; (2) a flip singularity, when there is a multiplier equal to −1; (3) a Neimark–Sacker
singularity, when there is a conjugate pair of complex multipliers with modulus 1.

Under some genericity conditions, each of these singularities implies a certain
bifurcation scenario. These conditions always include some spectral conditions on
the critical multipliers, i.e., multiplicity restrictions and the absence of other critical
multipliers. Furthermore, there are nondegeneracy conditions that can be formulated
in terms of the system at the critical parameter values, and transversality conditions
that are determined by the system’s dependence on the parameter (see [17]). We shall
list all relevant genericity conditions in the following sections.

Generically, the first critical case (fold) corresponds to a point on the periodic
solution family where the curve turns quadratically with respect to the free parameter.
This phenomenon is called a limit point (fold) bifurcation: Two periodic solutions
collide and disappear when the parameter passes the critical value. The second case
(flip) indicates generically a period-doubling of the periodic solution; i.e., there are
nearby periodic solutions of approximately double period. It is also called the flip
bifurcation. Finally, the third case (Neimark–Sacker) corresponds generically to a
bifurcation of an invariant torus, on which the flow contains periodic or quasi-periodic
motions. This phenomenon is often called the Neimark–Sacker bifurcation. There
is some ambiguity in calling a bifurcation by the same name as the corresponding
singularity. However, this is a common practice in the applied literature.

The aim of this paper is to formulate the computation and continuation of the
three generic periodic solution bifurcation curves as minimally extended BVPs to
which standard numerical approximation methods as well as convergence theory ap-
ply. Fully extended BVPs for continuing periodic solution bifurcations have been
implemented in auto [6] (see also [7], [15]). The latter approach doubles the number
of function components in the case of the period-doubling and fold bifurcations, and
triples it in the case of the torus bifurcation. Fully extended BVPs also yield a more
complicated Jacobian sparsity structure (after discretization) than that correspond-
ing to the underlying periodic BVP. There are efficient solution techniques for such
sparse linear systems; see, for example, [10]. However, these are not very easy to
implement and they are specific for each bifurcation. By contrast, the minimal BVPs
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presented in this paper for the period-doubling and fold bifurcations have the same
number of function components as the periodic solution problem. In the torus case
the number of BVP function components is only doubled, but the resulting system
is overdetermined. The most important numerical advantage is that only one type of
sparse system needs to be solved, namely the one corresponding to the underlying pe-
riodic BVP. Conceptually, the approach used in this paper is similar to the bordering
technique for equilibrium bifurcations [5], [12], [13], [17].

The paper is organized as follows. Section 2 is devoted to the computation of one-
parameter families of periodic solutions to (1.1). Classical results on the regularity of
BVPs defining families of periodic solutions are proved here for completeness. Sections
3 and 4 present the main results of the paper. Here we construct functionals that
vanish at bifurcation points of periodic solutions and we prove that they are well-
defined and regular. As is usual, only some of the nondegeneracy conditions that
appear in bifurcation analysis are necessary for regularity. Section 5 deals with various
computational issues, including efficient computation of the defining systems and their
derivatives. A numerical example is given in section 6.

2. Computation and continuation of periodic solutions. Numerical con-
tinuation is a technique to compute solution curves to an underdetermined system
of equations. Details can be found, for example, in [1], [3], [12], and [16]. It is a
basic ingredient of the numerical bifurcation algorithms implemented in auto [6] and
content [18]. In this case only one parameter is free, so for practical purposes the
parameter vector reduces to a scalar. In this paper we restrict our discussion to issues
that are specific to the case of periodic orbits.

To compute a periodic solution of period T of (1.1), one first fixes the period by
rescaling time. Then (1.1) becomes

x′(t) = Tf(x(t), α),(2.1)

and we look for solutions of period 1, that is,

x(0) = x(1).(2.2)

The period T is one of the unknowns of the problem. In a continuation context, we as-
sume that a solution (xk−1(·), Tk−1, αk−1) is known, and we want to find (xk(·), Tk, αk),
which we denote by (x(·), T, α). Equations (2.1) and (2.2) together do not fix the so-
lution completely, since any solution can be translated freely in time; that is, if x(t)
is a solution, then so is x(t+ σ) for any σ. To fix the solution it is necessary to add
a “phase condition.” In auto [6] and content [18] the integral constraint∫ 1

0

x∗(τ)x′k−1(τ) dτ = 0(2.3)

is used to fix the phase. (We use “∗” to denote transpose.)
The periodic solution is now determined by (2.1), (2.2), (2.3), which together

form a BVP with an integral constraint.
In our continuation context, the periodic orbit x(t) and the scalars T and α vary

along the solution family. In the setting of Keller’s pseudoarclength continuation
method [16] the continuation equation is∫ 1

0

(x(τ)− xk−1(τ))
∗ẋk−1(τ) dτ + (T − Tk−1)Ṫk−1 + (α− αk−1)α̇k−1 = ∆s,(2.4)
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where the derivatives are taken with respect to arclength in the function space, and
should not be confused with the time derivatives in, for example, (2.3).

A widely used method to discretize the above BVP is the method of orthogonal
collocation with piecewise polynomials. It is used in colsys [2], as well as in auto
and content. The method is known for its high accuracy [4], and it is particularly
suitable for difficult problems, due to its known optimal mesh adaptation techniques
[21]. The numerical continuation of the discretized equations leads to structured,
sparse linear systems [9]. To describe these systems it is convenient to formulate the
BVP in terms of operators on function spaces.

Denote by Ck([a, b],Rn) the space of k times continuously differentiable functions
defined on [a, b] and with values in Rn. Let D be the differentiation operator acting
from C1([a, b],Rn) to C0([a, b],Rn). Any n × n matrix M(t) smoothly depending on
t ∈ [a, b] defines an operator from C1([a, b],Rn) into itself by the matrix multiplication
(Mψ)(t) = M(t)ψ(t). The Dirac evaluation operator at the point t is denoted δt.

For a given φ ∈ C0([0, 1],Rn) we denote by Intφ the linear functional from
C0([0, 1],Rn) into R defined by

Intφ(v) = 〈φ, v〉 =
∫ 1

0

φ∗(τ)v(τ) dτ.

Suppose we want to compute a periodic solution of (1.1); i.e., we want to solve
the system (2.1), (2.2), (2.3), and (2.4) for (x(t), T, α) by a Newton-like method. The
Fréchet derivative operator corresponding to this problem has the form


D − Tfx(x(t), α) − f(x(t), α) − Tfα(x(t), α)

δ0 − δ1 0 0
Intx′

k−1
(·) 0 0

Intẋk−1(·) Ṫk−1 α̇k−1

 .(2.5)

The discrete version of these linear operators is a square matrix that has a large
matrix corresponding to D − Tfx(x(t), α) in the upper left corner, bordered on the
right by two extra columns and at the bottom by n + 2 extra rows. The big matrix
in the upper left corner is a block band matrix. Systems of this form are solved in
auto by a specially adapted elimination algorithm that computes the multipliers as
a by-product [9].

Consider the fundamental variational equation

X ′ − Tfx(x(t), α)X = 0(2.6)

and the adjoint equation

X ′ + Tf∗x(x(t), α)X = 0.(2.7)

Denote by Φ(t) the fundamental matrix solution of (2.6), for which Φ(0) = I, where
I = In×n is the n-dimensional identity matrix. Then Φ(1) is the monodromy matrix
of the periodic solution. The eigenvalues of Φ(1) are the Floquet multipliers, and
there is always at least one multiplier that is equal to 1. A corresponding eigenvector
is x′(0). For a regular periodic solution the multiplier 1 has geometric multiplicity 1.
Similarly, denote by Ψ(t) the fundamental matrix solution to (2.7) for which Ψ(0) = I.
One has Ψ(t) = [(Φ(t))−1]∗.



PERIODIC SOLUTION BIFURCATIONS 405

If v(t) is a vector solution to (2.6) with initial values v(0) = v0 and w(t) is a
vector solution to (2.7) with initial values w(0) = w0, then the inner product satisfies
w∗(t)v(t) = w∗0v0; i.e., it is independent of time t.

The left and right eigenvectors of the monodromy matrix Φ(1) for a geometri-
cally simple eigenvalue 1 will be denoted p0, q0, respectively. It is easily seen that
p0 (respectively, q0) is also the right (respectively, left) eigenvector of Ψ(1) for the
eigenvalue 1. Furthermore, q0 is a scalar multiple of x′(0).

We now state some basic facts about the linear operator (2.5) when linearized
about a regular periodic solution (x(t), T, α).

Proposition 1. If (x(t), T, α) is a regular periodic solution of (2.1), then the
operator [

D − Tfx(x(t), α)
δ1 − δ0

]
: C1([0, 1],Rn)→ C0([0, 1],Rn)×Rn(2.8)

has a one-dimensional kernel spanned by Φq0. Its range has codimension 1; if ζ ∈
C0([0, 1],Rn), r ∈ Rn, then (ζ, r)∗ is in the range if and only if 〈Ψp0, ζ〉 = p∗0r. In
particular, if r = 0, then (ζ, 0)∗ is in the range if and only if 〈Ψp0, ζ〉 = 0.

Proof. First, let v(t) be in the kernel of (2.8). Then v must have the form
v(t) = Φ(t)v0 for a vector v0. Since 0 = (δ1 − δ0)v = v(1) − v(0) = (Φ(1)− I)v0, we
infer that v0 must be a right eigenvector of Φ(1) for the eigenvalue 1.

Next, let ζ ∈ C0([0, 1],Rn), r ∈ Rn, be given. If (ζ, r)∗ is in the range of (2.8),
then there must exist a v ∈ C1([0, 1],Rn) for which

v′(t)− Tfx(x(t), α)v(t) = ζ(t).

The general solution of this linear differential equation is

v(t) = Φ(t)

[
v0 +

∫ t

0

Ψ∗(τ)ζ(τ) dτ

]
,

where v0 = v(0) is an initial vector. Also, we must have v(1)− v(0) = r, that is,

(Φ(1)− I)v0 +Φ(1)

∫ 1

0

Ψ∗(τ)ζ(τ) dτ = r.

Such a vector v0 can be found if and only if

p∗0

(
Φ(1)

∫ 1

0

Ψ∗(τ)ζ(τ) dτ − r

)
= 0,

that is, if

p∗0

∫ 1

0

Ψ∗(τ)ζ(τ) dτ − p∗0r = 0,

from which the second result follows.
Corollary 1. If (x(t), T, α) is a regular periodic solution of (2.1), then the

operator D − Tfx(x(t), α)
δ1 − δ0
Intφ

 : C1([0, 1],Rn) → C0([0, 1],Rn)×Rn ×R(2.9)
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is one-to-one if and only if 〈φ,Φq0〉 �= 0.
Proposition 2. If (x(t), T, α) is a regular periodic solution of (2.1), then the

operator [
D + Tf∗x(x(t), α)

δ1 − δ0

]
: C1([0, 1],Rn) → C0([0, 1],Rn)×Rn

has a one-dimensional kernel spanned by Ψp0. Its range has codimension 1; if ζ ∈
C0([0, 1],Rn), r ∈ Rn, then (ζ, r)∗ is in the range if and only if 〈Φq0, ζ〉 = q∗0r. In
particular, if r = 0, then (ζ, 0)∗ is in the range if and only if 〈Φq0, ζ〉 = 0.

Proof. The proof is similar to the proof of Proposition 1.
Corollary 2. If (x(t), T, α) is a regular periodic solution of (2.1), then the

operator D + Tf∗x(x(t), α)
δ1 − δ0
Intψ

 : C1([0, 1],Rn) → C0([0, 1],Rn)×Rn ×R(2.10)

is one-to-one if and only if 〈ψ,Ψp0〉 �= 0.
Proposition 3. Let (x(t), T, α) be a regular periodic solution of (2.1), and let

φ0, ψ0 ∈ C0([0, 1],Rn) be such that 〈φ0,Φq0〉 �= 0, 〈ψ0,Ψp0〉 �= 0. Then the operator D − Tfx(x(t), α) ψ0

δ1 − δ0 0
Intφ0 0

 : C1([0, 1],Rn)×R → C0([0, 1],Rn)×Rn ×R

is one-to-one and onto.
Proof. To prove that the operator is one-to-one, suppose that D − Tfx(x(t), α) ψ0

δ1 − δ0 0
Intφ0

0

( v
G

)
=

 0
0
0


for v ∈ C1([0, 1],Rn), G ∈ R. In particular, it follows that[

D − Tfx(x(t), α)
δ0 − δ1

]
v =

( −Gψ0

0

)
.

Since 〈ψ0,Ψp0〉 �= 0, it follows from the last statement in Proposition 1 that G = 0.
By Corollary 1 and the assumption that 〈φ0,Φq0〉 �= 0, it follows that v = 0 as well.

To prove that the operator is onto we consider the equation D − Tfx(x(t), α) ψ0

δ1 − δ0 0
Intφ0

0

( v
G

)
=

 ζ
r
s

 ,(2.11)

where ζ ∈ C0([0, 1],Rn), r ∈ Rn, s ∈ R. In particular, the first two equations can be
written [

D − Tfx(x(t), α)
δ1 − δ0

]
v =

(
ζ −Gψ0

r

)
.(2.12)

By Proposition 1 this equation is solvable for v, say, v = vp, if

〈Ψp0, ζ −Gψ0〉 = p∗0r,
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that is, if we choose

G = Gp ≡ 〈Ψp0, ζ〉 − p∗0r
〈Ψp0, ψ0〉 ,

where, by assumption, the denominator does not vanish. Now

v(t) = vp(t) + cΦ(t)q0

is also a solution of (2.12) for any constant c. The third equation in (2.11) can now
be written as ∫ 1

0

φ∗0(τ)[vp(τ) + cΦ(τ)q0]dτ = s.

By the assumption that 〈φ0,Φq0〉 �= 0 it follows that the third equation is satisfied if
we take

c =
s− ∫ 1

0
φ∗0(τ)vp(τ)dτ∫ 1

0
φ∗0(τ)Φ(τ)q0 dτ

.

Proposition 4. Let (x(t), T, α) be a regular periodic solution of (2.1), and let
φ0, ψ0 ∈ C0([0, 1],Rn) be such that 〈φ0,Φq0〉 �= 0, 〈ψ0,Ψp0〉 �= 0. Then the operator D + Tf∗x(x(t), α) φ0

δ1 − δ0 0
Intψ0 0

 : C1([0, 1],Rn)×R → C0([0, 1],Rn)×Rn ×R

is one-to-one and onto.
Proof. The proof is similar to the proof of Proposition 3.

3. Test functionals for bifurcations of periodic solutions. For the fold and
Hopf singularities of equilibria, several test functions, and corresponding minimally
extended defining systems, are discussed in [12] and incorporated in content [11]. To
obtain similar systems for the case of periodic orbits, we define simple singularities of
periodic solutions, specifically the limit point, the period-doubling bifurcation, and the
torus bifurcation, and we then construct functionals that vanish at these singularities.

3.1. A test functional for the fold bifurcation. Let (x(t), T, α) define a
periodic solution of (1.1); i.e., it satisfies (2.1), (2.2), and (2.3). We say that the
solution has a simple fold singularity if the monodromy matrix Φ(1) has an eigenvalue
+1 with algebraic multiplicity 2 and geometric multiplicity 1, while there are no other
critical multipliers.1

Let p0 and q0 denote the corresponding left and right eigenvectors, which satisfy

(Φ(1)− I)q0 = 0, (Ψ(1)− I)p0 = 0,

(Φ(1)− I)∗p0 = 0, (Ψ(1)− I)∗q0 = 0,

with

p∗0p0 = q∗0q0 = 1.

1A geometrically double eigenvalue +1 corresponds to a higher degeneracy. Recall that by
definition a regular periodic solution has a geometrically simple multiplier +1.
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At a simple fold, where the multiplier 1 has algebraic multiplicity 2, we also have
generalized eigenvectors p1 and q1 satisfying

(Φ(1)− I)q1 = q0, (Ψ(1)− I)p1 = p0,

where q1 and p1 can be chosen so that

q∗1q0 = p∗1p0 = 0.

Note that in the multiplicity-2 case we also have p∗0q0 = p∗1(Ψ(1)− I)∗q0 = 0.
Proposition 5. If (x(t), T, α) is a regular periodic solution of (2.1), then the

operator  D − Tfx(x(t), α) − f(x(t), α)
δ1 − δ0 0

Intf(x(·),α) 0

(3.1)

from C1([0, 1],Rn)×R into C0([0, 1],Rn)×Rn ×R is one-to-one if the multiplier 1
has algebraic multiplicity 1. If the multiplier 1 has algebraic multiplicity 2, i.e., at a
simple fold, then the operator has a one-dimensional kernel, spanned by the vector(

v
1

)
∈ C1([0, 1],Rn)×R,(3.2)

where v(t) = c0
T Φ(t)(c2q0 − (q1 − tq0)), where c2 is determined by the condition that

q∗0

∫ 1

0

Φ∗(τ)Φ(τ)[c2q0 − (q1 − τq0)] dτ = 0,

and where c0 is determined by the condition that x
′(0) = c0q0.

Proof. Consider the homogeneous equations D − Tfx(x(t), α) − f(x(t), α)
δ1 − δ0 0

Intf(x(·),α) 0

( v
S

)
=

 0
0
0

 .(3.3)

From the first equation in (3.3) we have

v(t) = Φ(t)

[
v0 + S

∫ t

0

Ψ∗(τ)f(x(τ), α) dτ

]
= Φ(t)

[
v0 +

S
T

∫ t

0

Ψ∗(τ)x′(τ) dτ

]

= Φ(t)

[
v0 +

S
T

∫ t

0

Ψ∗(τ)Φ(τ) dτ x′(0)
]

= Φ(t)
[
v0 +

St
T x′(0)

]
,

where we used the facts that Ψ∗(τ)Φ(τ) = I and x′(t) = Φ(t)x′(0). Above, v0 = v(0)
is an initial vector. By the second equation in (3.3) we have

0 = v(1)− v(0) = (Φ(1)− I)v0 +
S

T
x′(0),

that is,

(Φ(1)− I)v0 = −S

T
x′(0).



PERIODIC SOLUTION BIFURCATIONS 409

Now (Φ(1) − I)x′(0) = 0, so that x′(0) = c0q0, for some c0 ∈ R, c0 �= 0. Thus we
must solve

(Φ(1)− I)v0 = −c0 S
T
q0,(3.4)

where q0 spans the kernel of Φ(1)− I.
If the multiplier 1 has algebraic multiplicity 1, then we must have S = 0, v0 = c1q0,

and hence v(t) = c1Φ(t)q0. By the third equation in (3.3)

0 =

∫ 1

0

f∗(x(τ), α)v(τ) dτ =
1

T

∫ 1

0

x′∗(τ)v(τ) dτ =
1

T

∫ 1

0

[
Φ(τ)x′(0)

]∗
c1Φ(τ)q0 dτ

or

c0c1 q∗0

(∫ 1

0

Φ∗(τ)Φ(τ) dτ

)
q0 = 0,

from which it follows that c1 = 0. Thus v(t) ≡ 0. It follows that the operator (3.1) is
one-to-one.

At a simple fold the multiplier 1 has algebraic multiplicity 2. In this case (3.4) is
also solvable if S is nonzero, namely

v0 = −c0 S
T
q1 + c2q0,

where c2 ∈ R is arbitrary. The third equation in (3.3) then implies

0 =

∫ 1

0

x′∗(τ)v(τ) dτ

=

∫ 1

0

x′∗(τ)Φ(τ)[v0 +
Sτ
T x′(0)] dτ

=

∫ 1

0

x′∗(τ)Φ(τ)[−c0 ST q1 + c2q0 +
Sτ
T c0q0] dτ

=

∫ 1

0

[Φ(τ)x′(0)]∗Φ(τ)[−c0 ST q1 + c2q0 +
Sτ
T c0q0] dτ

= c0q
∗
0

∫ 1

0

Φ∗(τ)Φ(τ)[−c0 ST q1 + c2q0 +
Sτ
T c0q0] dτ,

from which it follows that

c2 =
c0Sq

∗
0

∫ 1

0
Φ∗(τ)Φ(τ)[q1 − τq0] dτ

T q∗0
∫ 1

0
Φ∗(τ)Φ(τ) dτ q0

.

Proposition 6. Let (x(t), T, α) be a regular periodic solution of (2.1) and con-
sider the operator

M1 =

 D − Tfx(x(t), α) − f(x(t), α)
δ1 − δ0 0

Intf(x(·),α) 0

(3.5)

from C1([0, 1],Rn)×R into C0([0, 1],Rn)×Rn ×R. If the multiplier 1 has algebraic
multiplicity 1, then M1 is onto. If it has algebraic multiplicity 2, i.e., at a simple fold,
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then the range of M1 has codimension 1 and the vector Ψp0

−p0

0

 ∈ C0([0, 1],Rn)×Rn ×R(3.6)

is complementary to the range space.
Proof. Consider a vector (ξ, η, ω)∗ in C0([0, 1],Rn) ×Rn ×R. This vector is in

the range of M1 if and only if there exist (v, S)∗ in C1([0, 1],Rn)×R such that

M1

(
v
S

)
=

 ξ
η
ω

 .(3.7)

The first equation in (3.7) implies that

v(t) = Φ(t)

[
v(0) +

∫ t

0

Ψ∗(τ)(ξ(τ) + Sf(x(τ), α)) dτ

]
.

The second equation in (3.7) then implies

η = v(1)− v(0) = (Φ(1)− I)v(0) + Φ(1)

∫ 1

0

Ψ∗(τ)(ξ(τ) + Sf(x(τ), α)) dτ.

Now∫ 1

0

Ψ∗(τ)f(x(τ), α)dτ =
1

T

∫ 1

0

Ψ∗(τ)x′(τ) dτ =
1

T

∫ 1

0

Ψ∗(τ)c0Φ(τ)q0 dτ =
c0
T

q0.

So

η = (Φ(1)− I)v(0) +
Sc0
T

q0 +Φ(1)

∫ 1

0

Ψ∗(τ)ξ(τ) dτ.(3.8)

If 1 is an algebraically simple eigenvalue of Φ(1), then q0 is not in the range of
(Φ(1) − I). For given ξ and η, (3.8) can be solved for v(0) and S. Moreover, the
solution is unique up to the addition of a scalar multiple of q0 to v(0). Since∫ 1

0

(x′(τ))∗Φ(τ)q0 dτ = c0

∫ 1

0

(Φ(τ)q0)
∗Φ(τ)q0 dτ �= 0,

the scalar is determined uniquely by the third equation in (3.7).
If 1 is an algebraically double eigenvalue of Φ(1), i.e., at a fold point, then (3.8)

is solvable if and only if

p∗0η = p∗0

∫ 1

0

Ψ∗(τ)ξ(τ) dτ.

If so, the third equation in (3.7) again determines the solution uniquely.
Proposition 7. If (x(t), T, α) is a regular periodic solution of (2.1), then the

operator  D + Tf∗x(x(t), α) − f(x(t), α)
δ1 − δ0 0

Intf(x(·),α) 0

(3.9)
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from C1([0, 1],Rn) × R → C0([0, 1],Rn) × Rn × R is one-to-one if the multiplier 1
has algebraic multiplicity 1. If the multiplier 1 has algebraic multiplicity 2, i.e., at a
simple fold, then the operator has a one-dimensional kernel, spanned by (Ψ∗p0, 0)

∗ ∈
C1([0, 1],Rn)×R.

Proof. Consider the homogeneous equations D + Tf∗x(x(t), α) − f(x(t), α)
δ1 − δ0 0

Intf(x(·),α) 0

( w
R

)
=

 0
0
0

 .(3.10)

From the first equation in (3.10) we have

w(t) = Ψ(t)

[
w0 +

R

T

∫ t

0

Φ∗(τ)x′(τ) dτ

]
,

where w0 = w(0) is an initial vector. The second equation in (3.10) implies

0 = w(1)− w(0) = (Ψ(1)− I)w0 +
R

T
Ψ(1)

∫ 1

0

Φ∗(τ)x′(τ) dτ

or

(Ψ(1)− I)w0 = −R

T
Ψ(1)

∫ 1

0

Φ∗(τ)Φ(τ) dτ x′(0).

Given R, this equation is solvable for w0 if

−Rq∗0Ψ(1)
∫ 1

0

Φ∗(τ)Φ(τ) dτ x′(0) = 0,

that is, recalling that x′(0) = c0q0, c0 �= 0, and q∗0Ψ(1) = q∗0 if

c0Rq∗0

∫ 1

0

Φ∗(τ)Φ(τ) dτ q0 = 0.

It follows that R = 0, independently of the algebraic multiplicity of the eigenvalue 1.
Thus w(t) = Ψ(t)w0, where (Ψ(1)− I)w0 = 0, so that w0 = c3p0 for some c3 ∈ R.

From the third equation in (3.10) it follows that

0 =

∫ 1

0

w∗(τ)x′(τ) dτ =

∫ 1

0

[c3Ψ(τ)p0]
∗Φ(τ)x′(0) dτ

= c0 c3 p∗0

∫ 1

0

Ψ∗(τ)Φ(τ) dτ q0 = c0 c3 p∗0q0.

If the multiplier 1 has algebraic multiplicity 1, then p∗0q0 �= 0. In this case c3 = 0 and
hence w(t) ≡ 0; that is, the operator (3.9) is one-to-one.

If the multiplier 1 has algebraic multiplicity 2, then p∗0q0 = 0, and we can choose
c3 �= 0. In this case w0 �= 0; hence w(t) �≡ 0. It follows that the operator (3.9) has a
one-dimensional kernel.

Proposition 8. If (x(t), T, α) is a regular periodic solution of (2.1), then the
operator

M2 =

 D + Tf∗x(x(t), α) − f(x(t), α)
δ1 − δ0 0

Intf(x(·),α) 0

(3.11)
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from C1([0, 1],Rn) × R → C0([0, 1],Rn) × Rn × R is onto if the multiplier 1 has
algebraic multiplicity 1. If the multiplier 1 has algebraic multiplicity 2, i.e., at a simple
fold, then the range has codimension 1, and the vector (0, 0, 1)∗ ∈ C0([0, 1],Rn)×Rn×
R is complementary to the range space.

Proof. Consider a vector (ξ, η, ω)∗ in C0([0, 1],Rn) ×Rn ×R. This vector is in
the range of M2 if and only if there exist (w,R)∗ in C1([0, 1],Rn)×R such that

M2

(
w
R

)
=

 ξ
η
ω

 .(3.12)

The first equation in (3.12) implies that

w(t) = Ψ(t)

[
w(0) +

∫ t

0

Φ∗(τ)(ξ(τ) +Rc0Φ(τ)q0) dτ

]
.

The second equation in (3.12) then implies

η = w(1)− w(0) = (Ψ(1)− I)w(0) + Ψ(1)

∫ 1

0

Φ∗(τ)(ξ(τ) +Rc0Φ(τ)q0)dτ.

We thus obtain the equation

(Ψ(1)− I)w(0) = η −Rc0Ψ(1)

∫ 1

0

Φ∗(τ)Φ(τ)q0 dτ −Ψ(1)

∫ 1

0

Φ∗(τ)ξ(τ) dτ.

This equation is solvable for w(0) if and only if

q∗0η = Rc0q
∗
0

∫ 1

0

Φ∗(τ)Φ(τ)q0 dτ + q∗0

∫ 1

0

Φ∗(τ)ξ(τ)dτ.

The latter equation is solvable uniquely for R, so the previous one is solvable for w(0)
and defines it up to the addition of a scalar multiple of p0.

Now suppose that (w,R)∗ solve the first two equations in (3.12), where w(0) =
w0 + rp0 and r is arbitrary. The third equation in (3.12) then requires

c0q
∗
0(w0 + rp0) = ω + two integral terms which are linear in ξ(t) and R.

If the eigenvalue 1 of Φ(1) has algebraic multiplicity 1, then this equation has a unique
solution in r and thus M2 is one-to-one and onto. If the eigenvalue has algebraic
multiplicity 2, then the range of M2 has codimension at most 1. If we set ξ(t) ≡ 0,
η = 0, ω = 1, then necessarily R = 0, ω = 0 as well, and thus the third equation
in (3.12) cannot be solved. So the range of M2 has codimension 1, and (0, 0, 1)∗ is a
vector complementary to the range.

Proposition 9. Let (x(t), T, α) be a regular periodic solution of (2.1) that has a
simple fold singularity; i.e., Φ(1) has eigenvalue 1 with algebraic multiplicity 2. Then
there exist v01, w01, v11, w11 ∈ C0([0, 1],Rn), w02, v12 ∈ Rn, w03, v02, v13, w12 ∈ R
such that

N1 =


D − Tfx(x(t), α) − f(x(t), α) w01

δ1 − δ0 0 w02

Intf(x(·),α) 0 w03

Intv01 v02 0
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and

N2 =


D + Tf∗x(x(t), α) − f(x(·), α) v11

δ1 − δ0 0 v12

Intf(x(·),α) 0 v13

Intw11 w12 0


from C1([0, 1],Rn)×Rn×R to C0([0, 1],Rn)×Rn×R×R are one-to-one and onto.

For any such choice of the bordering elements we define v, w ∈ C1([0, 1],Rn) and
S,G,H,R ∈ R by the equations

N1

 v
S
G

 =


0
0
0
1

(3.13)

and

N2

 w
R
H

 =


0
0
0
−1

 .(3.14)

Then in a neighborhood of (x(t), T, α), G = 0 if and only if H = 0. Moreover, this
happens if and only if the regular periodic solution has a simple fold singularity.

Proof. We choose (
v01(t)
v02

)
=

(
v(t)
1

)
,

where v is given in the statement of Proposition 5. Further we set w01(t)
w02

w03

 =

 Ψ∗(t)p0

0
0

 .

By Propositions 5 and 6, N1 is one-to-one and onto. We further set(
w11(t)
w12

)
=

(
Ψ∗(t)p0

0

)
,

 v11(t)
v12

v13

 =

 0
0
1

 .

By Propositions 7 and 8, N2 is one-to-one and onto. The last statement in the
proposition is proved by standard arguments.

3.2. A test functional for the period-doubling bifurcation. By definition,
at a simple flip singularity there is an algebraically simple Floquet multiplier equal
to −1 and no other multipliers with unit modulus, except for an algebraically simple
multiplier +1. The left and right eigenvectors of the monodromy matrix Φ(1) for the
eigenvalue −1 will be denoted by p2 and q2, respectively. They are also the right and
left eigenvector, respectively, of Ψ(1) for the eigenvalue −1.
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Proposition 10. If (x(t), T, α) corresponds to a simple flip singularity, then the
operator [

D − Tfx(x(t), α)
δ0 + δ1

]
: C1([0, 1],Rn)→ C0([0, 1],Rn)×Rn

has a one-dimensional kernel spanned by Φq2. Its range has codimension 1; if ζ ∈
C0([0, 1],Rn), r ∈ Rn, then (ζ, r)∗ is in the range if and only if 〈Ψp2, ζ〉 = −p∗2r. In
particular, if r = 0, then (ζ, 0)∗ is in the range if and only if 〈Ψp2, ζ〉 = 0.

Proof. The proof is similar to the proof of Proposition 1.
Corollary 3. If (x(t), T, α) corresponds to a simple flip singularity, then the

operator D − Tfx(x(t), α)
δ0 + δ1
Intφ

 : C1([0, 1],Rn) → C0([0, 1],Rn)×Rn ×R(3.15)

is one-to-one if and only if 〈φ,Φq2〉 �= 0.
Proposition 11. If (x(t), T, α) corresponds to a simple flip singularity, then the

operator [
D + Tf∗x(x(t), α)

δ0 + δ1

]
: C1([0, 1],Rn) → C0([0, 1],Rn)×Rn

has a one-dimensional kernel spanned by Ψp2. Its range has codimension 1; if ζ ∈
C0([0, 1],Rn), r ∈ Rn, then (ζ, r)∗ is in the range if and only if 〈Φq2, ζ〉 = −q∗2r. In
particular, if r = 0, then (ζ, 0)∗ is in the range if and only if 〈Φq2, ζ〉 = 0.

Proof. The proof is similar to the proof of Proposition 2.
Corollary 4. If (x(t), T, α) corresponds to a simple flip singularity, then the

operator D + Tf∗x(x(t), α)
δ0 + δ1
Intψ

 : C1([0, 1],Rn) → C0([0, 1],Rn)×Rn ×R(3.16)

is one-to-one if and only if 〈ψ,Ψp2〉 �= 0.
Proposition 12. Let (x(t), T, α) correspond to a simple flip singularity, and let

φ0, ψ0 ∈ C0([0, 1],Rn) be such that 〈φ0,Φq2〉 �= 0, 〈ψ0,Ψp2〉 �= 0. Then the operator D − Tfx(x(t), α) ψ0

δ0 + δ1 0
Intφ0 0

 : C1([0, 1],Rn)×R → C0([0, 1],Rn)×Rn ×R

is one-to-one and onto.
Proof. The proof is similar to the proof of Proposition 3.
Proposition 13. Let (x(t), T, α) correspond to a simple flip singularity, and let

φ0, ψ0 ∈ C0([0, 1],Rn) be such that 〈φ0,Φq2〉 �= 0, 〈ψ0,Ψp2〉 �= 0. Then the operator D + Tf∗x(x(t), α) φ0

δ0 + δ1 0
Intψ0

0

 : C1([0, 1],Rn)×R → C0([0, 1],Rn)×Rn ×R

is one-to-one and onto.
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Proof. The proof is similar to the proof of Proposition 4.
Proposition 14. Let (x(t), T, α) be a periodic solution close to a simple flip

singularity, and let φ0, ψ0 ∈ C0([0, 1],Rn) be such that 〈φ0,Φq2〉 �= 0, 〈ψ0,Ψp2〉 �=
0, so that the operators M3 and M4 (defined below) from C1([0, 1],Rn) × R into
C0([0, 1],Rn) × Rn × R are both one-to-one and onto. Let v, w ∈ C1([0, 1],Rn), G,
H ∈ R be defined by the equations

M3

(
v
G

)
≡
 D − Tfx(x(t), α) ψ0

δ0 + δ1 0
Intφ0 0

( v
G

)
=

 0
0
1

 ,(3.17)

M4

(
w
H

)
≡
 D + Tf∗x(x(t), α) φ0

δ0 + δ1 0
Intψ0 0

( w
H

)
=

 0
0
−1

 .(3.18)

Then G = H. Furthermore, G = 0 if and only if the periodic solution corresponds to
a simple flip singularity. If so, then v(0) is the right eigenvector of the monodromy
matrix for the eigenvalue −1.

Proof. Multiplying the first equation in (3.17) on the left with w∗(t), integrating
over the interval [0, 1], and using the last equation in (3.18) we obtain∫ 1

0

w∗v′(τ) dτ − T

∫ 1

0

w∗(τ)fx(x(τ), α)v(τ) dτ −G = 0.

Integrating the first term by parts, using the second equations in (3.17) and (3.18),
we obtain

−
∫ 1

0

v∗(τ)w′(τ) dτ − T

∫ 1

0

v∗(τ)f∗x(x(τ), α)w(τ) dτ −G = 0.

Using the first equation in (3.18) we get

−〈v, (−Hφ0)〉 −G = 0.

Using the third equation in (3.17) we obtain G = H. The other statements in the
proposition are now obvious.

3.3. A test functional for the torus bifurcation. We say that a periodic
solution has a simple Neimark–Sacker singularity if the monodromy matrix Φ(1) has
a conjugate pair of simple complex multipliers with modulus 1 (i.e., e±iθ, 0 < θ < π)
and no other multipliers with unit modulus, except an algebraically simple eigenvalue
+1. Furthermore, let p1, p2 ∈ Rn (respectively, q1, q2 ∈ Rn) be such that p1 +
ip2 (respectively, q1 + iq2) is a left (respectively, right) complex eigenvector of the
monodromy matrix Φ(1). Thus

(p1 + ip2)
HΦ(1) = eiθ(p1 + ip2)

H ,

Φ(1)(q1 + iq2) = eiθ(q1 + iq2),

Ψ(1)(p1 + ip2) = eiθ(p1 + ip2),

(q1 + iq2)
HΨ(1) = eiθ(q1 + iq2)

H ,

where (p1 + ip2)
H = p∗1 − ip∗2, (q1 + iq2)

H = q∗1 − iq∗2 .
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In this section it is convenient to extend the definition of x(t),Φ(t), and Ψ(t) to
the interval [0, 2] by periodicity with period 1 and to redefine

Intφ(v) = 〈φ, v〉 =
∫ 2

0

φ∗(τ)v(τ) dτ.

We start with the following result.
Proposition 15. Let (x(t), T, α) define a periodic solution; i.e., it satisfies

(2.1), (2.2), and (2.3). Let (x(t), T, α) correspond to a simple Neimark–Sacker singu-
larity with multipliers e±iθ, 0 < θ < π. Let κ = cos θ and consider the operator[

D − Tfx(x(t), α)
δ0 − 2κδ1 + δ2

]
: C1([0, 2],Rn) → C0([0, 2],Rn)×Rn.(3.19)

Then we have the following:
(i) The operator (3.19) has a two-dimensional kernel spanned by Φ(t)q1 and

Φ(t)q2.
(ii) The operator (3.19) has a range with codim 2. The vectors(

Ψp1

0

)
,

(
Ψp2

0

)
∈ C0([0, 2],Rn)×Rn

span a two-dimensional subspace that is complementary to the range of (3.19).
Proof. Let v be in the kernel of (3.19). Then v must have the form v(t) = Φ(t)v0

with v0 ∈ Rn. We further have

0 = (δ0 − 2κδ1 + δ2)v = v(0)− 2κv(1) + v(2) = (Φ(1)− eiθI)(Φ(1)− e−iθI)v0.

We infer that it is necessary and sufficient that v0 is in the span of q1, q2.
As a first step in the proof of (ii) we consider ζ ∈ C0([0, 2],Rn), r ∈ Rn, and we

give a necessary and sufficient condition in order that (ζ, r)∗ be in the range of (3.19).
First, there must exist a v ∈ C1([0, 2],Rn) for which

v′(t)− Tfx(x(t), α)v(t) = ζ(t).

The general solution of this linear differential equation is

v(t) = Φ(t)

[
v0 +

∫ t

0

Ψ∗(τ)ζ(τ) dτ

]
,

where v0 = v(0) is an initial vector. Also, we must have v(0) − 2κv(1) + v(2) = r,
that is,

(Φ(1)−eiθI)(Φ(1)−e−iθI)v0−2κΦ(1)
∫ 1

0

Ψ∗(τ)ζ(τ) dτ +Φ(1)2
∫ 2

0

Ψ∗(τ)ζ(τ)dτ = r.

This is an equation for v0 which is solvable if and only if

−2κpHΦ(1)
∫ 1

0

Ψ∗(τ)ζ(τ) dτ + pHΦ(1)2
∫ 2

0

Ψ∗(τ)ζ(τ) dτ = pHr

or, equivalently,

−2κeiθ
∫ 1

0

pHΨ∗(τ)ζ(τ) dτ + e2iθ

∫ 2

0

pHΨ∗(τ)ζ(τ) dτ = pHr.
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If we define the linear functional L by setting

L(ζ) = −2κeiθ
∫ 1

0

pHΨ∗(τ)ζ(τ) dτ + e2iθ

∫ 2

0

pHΨ∗(τ)ζ(τ) dτ,(3.20)

then we infer that (ζ, r)∗ is in the range of (3.19) if and only if L(ζ) = pHr.
As a second step in the proof of (ii) we compute L(Ψp1) and L(Ψp2). We have

L(Ψp1) = −2 cos θeiθ
∫ 1

0

pHΨ∗(τ)Ψ(τ)p1 dτ + e2iθ

∫ 2

0

pHΨ∗(τ)Ψ(τ)p1 dτ

= eiθ(−2 cos θ+cos θ+i sin θ)

∫ 1

0

pHΨ∗(τ)Ψ(τ)p1 dτ+e2iθ

∫ 1

0

pHΨ∗(1+τ)Ψ(1+τ)p1 dτ.

Now we note that

Ψ(1 + τ)p1 = Ψ(τ)Ψ(1)p1 = Ψ(τ)(cos θp1 − sin θp2)

and

pHΨ∗(1 + τ) = [Ψ(τ)Ψ(1)p]H = [eiθΨ(τ)p]H = e−iθpHΨ∗(τ).

Hence

L(Ψp1) = i sin θeiθ
∫ 1

0

pHΨ∗(τ)Ψ(τ)p dτ = (− sin θ + i cos θ) sin θ

∫ 1

0

‖Ψ(τ)p‖2 dτ.

By a similar argument we find that

L(Ψp2) = (cos θ + i sin θ) sin θ

∫ 1

0

‖Ψ(τ)p‖2dτ.

As a third step in the proof of (ii) we show that the range of (3.19) has codimension
2 by proving that every (ξ, r)∗ can be written in a unique way as(

ξ
r

)
=

(
ξ0
r0

)
+ α

(
0
p1

)
+ β

(
0
p2

)
,(3.21)

with (ξ0, r0)
∗ in the range of (3.19) and α, β ∈ R.

Obviously ξ0 = ξ, and r0 has to satisfy the conditions

pHr0 = L(ξ), r0 = r − αp1 − βp2.

These conditions imply(
p∗1p1 p∗1p2

p∗2p1 p∗2p2

)(
α
β

)
=

(
p∗1r − Re [L(ξ)]
p∗2r + Im [L(ξ)]

)
.

This nonsingular linear system defines α, β in a unique way. Next, r0 is defined by
the requirement r0 = r − αp1 − βp2, and with this choice we have pHr0 = L(ξ).

As the fourth and last step to prove (ii) we will show that(
Ψp1

0

)
,

(
Ψp2

0

)
,
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and we will also span a two-dimensional space complementary to the range of (3.19).
To this end we decompose(

Ψp1

0

)
=

(
Ψp1

r1

)
+ α1

(
0
p1

)
+ β1

(
0
p2

)
,

(
Ψp2

0

)
=

(
Ψp2

r2

)
+ α2

(
0
p1

)
+ β2

(
0
p2

)
in the decomposition of (3.21). Then α1, β1, α2, β2 are defined by the matrix equation(

p∗1p1 p∗1p2

p∗2p1 p∗2p2

)(
α1 α2

β1 β2

)
=

( −Re [L(Ψp1)] −Re [L(Ψp2)]
Im [L(Ψp1)] Im [L(Ψp2)]

)
.

The proof of (ii) is complete if we show that(
α1 α2

β1 β2

)
is a nonsingular matrix or, equivalently, that( −Re [L(Ψp1)] −Re [L(Ψp2)]

Im [L(Ψp1)] Im [L(Ψp2)]

)
is nonsingular. By the second step this matrix is equal to(

sin θ − cos θ
cos θ sin θ

)
sin θ

∫ 1

0

‖Ψ(τ)p‖2dτ.(3.22)

Since sin θ �= 0 in (3.22) the proof is complete.
Proposition 16. Let (x(t), T, α) define a periodic solution; that is, it satis-

fies (2.1), (2.2), and (2.3). Let (x(t), T, α) correspond to a simple Neimark–Sacker
singularity with multipliers e±iθ, 0 < θ < π. Set κ = cos θ and consider the operator[

D + Tf∗x(x(t), α)
δ0 − 2κδ1 + δ2

]
: C1([0, 2],Rn) → C0([0, 2],Rn)×Rn.(3.23)

Then we have the following:
(i) The operator (3.23) has a two-dimensional kernel spanned by Ψ(t)p1 and

Ψ(t)p2.
(ii) The operator (3.23) has a range of codimension 2. The vectors(

Φq1
0

)
,

(
Φq2
0

)
∈ C0([0, 2],Rn)×Rn

span a two-dimensional subspace that is complementary to the range of (3.23).
Proof. The proof is similar to the proof of the preceding proposition.
Corollary 5. Let (x(t), T, α) correspond to a simple Neimark–Sacker singular-

ity of a periodic solution. If κ = cos θ, then the operators
D − Tfx(x(t), α) Ψp1 Ψp2

δ0 − 2κδ1 + δ2 0 0
IntΦ(·)q1 0 0
IntΦ(·)q2 0 0

 : C1([0, 2],Rn)×R2 → C0([0, 2],Rn)×Rn×R2
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and
D + Tf∗x(x(t), α) Φq1 Φq2
δ0 − 2κδ1 + δ2 0 0

IntΨ(·)p1 0 0
IntΨ(·)p2 0 0

 : C1([0, 2],Rn)×R2 → C0([0, 2],Rn)×Rn×R2

are both one-to-one and onto.
Proof. The proof is standard.
Proposition 17. Let (x(t), T, α) be close to a simple Neimark–Sacker singularity

of periodic solutions and κ close to the value cos θ at the singular point. Furthermore,
let (ψ0, ψ1) span a space sufficiently close to the span of (Ψp1,Ψp2), and let (φ0, φ1)
span a space sufficiently close to (Φq1,Φq2), so that the operators

M5 =


D − Tfx(x(t), α) ψ0 ψ1

δ0 − 2κδ1 + δ2 0 0
Intφ0

0 0
Intφ1 0 0

 : C1([0, 2],Rn)×R2 → C0([0, 2],Rn)×Rn×R2

and

M6 =


D + Tf∗x(x(t), α) φ0 φ1

δ0 − 2κδ1 + δ2 0 0
Intψ0

0 0
Intψ1 0 0

 : C1([0, 2],Rn)×R2 → C0([0, 2],Rn)×Rn×R2

are both one-to-one and onto. Let v1, v2, w1, w2 ∈ C1([0, 2],Rn), G,H ∈ R2×2 be
defined by the equations

M5

 v1 v2

G11 G12

G21 G22

 =


0 0
0 0
1 0
0 1

 ,(3.24)

M6

 w1 w2

H11 H21

H12 H22

 =


0 0
0 0
−1 0
0 −1

 .(3.25)

If (x(t), T, α) is a periodic solution, then G = 0 if and only if H = 0. Moreover, this
happens if and only if (x(t), T, α) corresponds to a simple Neimark–Sacker singularity
of periodic solutions with the multipliers e±iθ, where κ = cos(θ).

Proof. The proof is standard.

4. Regularity of the defining systems. In this section we prove that, under
natural nondegeneracy and transversality conditions, the test functionals constructed
in the previous section are regular (with respect to the arclength parameter along the
periodic solution family). This implies regularity of defining systems consisting of the
periodic BVP (2.1), (2.2), (2.3), and the condition for the corresponding functional
to vanish, for the two-parameter continuation of the bifurcation.
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4.1. Regularity at a fold bifurcation. To prove the regularity of the test
functional G for the simple fold singularity in Proposition 9, we proceed as in the case
of the fold singularity of equilibria [12], [3].

The computation of periodic orbits is based on the equation

F (X,α) = 0,(4.1)

where X ≡ (x(·), T ) ∈ C1([0, 1],R)×R, and F (X) ∈ C0([0, 1],R)×Rn ×R is given
by

F (X) ≡


x′(t)− Tf(x(t), α)

x(1)− x(0)∫ 1

0

x∗(τ)x′k−1(τ) dτ


(see (2.1), (2.2), and (2.3)). The Fréchet derivative FX(X,α) of this operator (with
xk−1 substituted by x upon differentiation) is M1 as defined in (3.1). By Proposi-
tions 5 and 6, if the periodic orbit has a simple fold singularity, then FX is singular.
Moreover, the left and right singular vectors are then Ψp0

−p0

0


and (

v
1

)
,

given in (3.2) and (3.6), respectively. By definition, a simple fold point is nondegen-
erate if  Ψp0

−p0

0

∗ FXX ( v
1

)(
v
1

)
�= 0.(4.2)

Let α be a scalar parameter in (1.1). A nondegenerate fold point is called regular if
[FX Fα] is onto at the singularity. This is the usual transversality condition for the
limit point bifurcation, which can be equivalently expressed as Ψp0

−p0

0

∗ Fα �= 0.(4.3)

Let s denote arclength along the family of periodic orbits. We think of X and α as
functions of s so that (4.1) is an identity in s. By (3.13) this also defines G as a
function of s. Suppose that a fold singularity occurs at s = s0. We will prove that
Gs(s0) �= 0 near a regular fold point, i.e., a simple fold singularity where both (4.2)
and (4.3) hold.

Taking derivatives of (3.13) with respect to s we find

N1

 vs
Ss
Gs

 =

 (FXXXs + FXααs)

(
v
S

)
0

 .(4.4)
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In this expression (
v
S

)
is a right singular vector of FX . Furthermore, at the fold singularity αs = 0. Since
FXXs + Fααs ≡ 0 it follows that Xs is also a right singular vector of FX . Now by
(4.4) we have Gs(s0) �= 0 if and only if

FXX

(
v
1

)(
v
1

)
is not in the range of M1; under our assumptions this is equivalent to (4.2).

4.2. Regularity at a period-doubling bifurcation. We have seen that lo-
cally, near a simple flip singularity, the system consisting of (2.1), (2.2), (2.3), and
G = 0 (where G is given by (3.17)) defines the set of simple flips in (x(·), T, α)-space
if the conditions 〈φ0,Φq2〉 �= 0, 〈ψ0,Ψp2〉 �= 0 hold. We will now prove that this is
a regular system if an appropriate transversality condition for the period-doubling
bifurcation holds.

Let s denote arclength along the family of periodic orbits so that (x(s)(t), T (s),
α(s)) is a solution of (2.1), (2.2), and (2.3) for all s near the bifurcation value s0. The
simplicity of the flip singularity implies that −1 is the algebraically simple eigenvalue
of Φ(s0)(1) so that it can be continued smoothly, together with its left and right
eigenvectors, for nearby values of s. Specifically, we denote by λ(s) an eigenvalue of
Φ(s)(1), with left and right eigenvectors p(s), q(s), that is,

Φ(s)(1)q(s) = λ(s)q(s), p∗(s)Φ(s)(1) = λ(s)p∗(s),
Ψ(s)(1)p(s) = λ−1(s)p(s), q∗(s)Ψ(s)(1) = λ−1(s)q∗(s),
p(s0) = p2, q(s0) = q2,
λ(s0) = −1.

(4.5)

The simplicity condition implies that

p∗(s)q(s) �= 0

for all s sufficiently close to s0. By standard arguments, (4.5) implies

p∗(s)q(s)λs(s) = p∗(s)Φs(s)(1)q(s).(4.6)

To get an explicit formula for Φs(s0)(1) we start from the observation that

(D − T (s)fx(x(s), α(s)))Φ = 0.

Taking derivatives, and using somewhat simplied notation, we obtain

(D − Tfx)Φs = (Tfx)sΦ.

Multiplying on the right by an arbitrary vector ξ ∈ Rn, we have

(D − Tfx)Φsξ = (Tfx)sΦξ.

This is a linear differential equation for Φsξ with solution

Φs(s)(t)ξ = Φ(s)(t)

[
ζ +

∫ t

0

Ψ∗(s)(τ)(Tfx)s(s)(τ)Φ(s)(τ)ξ dτ

]
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for some ζ ∈ Rn. For t = 0 this reduces to

Φs(s)(0)ξ = Φ(s)(0)ζ.

Since Φ(s)(0) = I, Φs(s)(0) = 0, this implies that ζ = 0, so that

Φs(s)(t)ξ = Φ(s)(t)

∫ t

0

Ψ∗(s)(τ)(Tfx)s(s)(τ)Φ(s)(τ)ξ dτ(4.7)

for all ξ ∈ Rn. From (4.6) we get

p∗(s)q(s)λs(s) = λ(s)p∗(s)
∫ 1

0

Ψ∗(τ)(Tfx)s(s)(τ)Φ(s)(τ)q(s) dτ.(4.8)

The natural transversality condition for the period-doubling bifurcation is λs(s0) �= 0.
We now show that this is equivalent to Gs(s0) �= 0, thus establishing regularity.

Proposition 18. The conditions λs(s0) �= 0 and Gs(s0) �= 0 are equivalent near
a simple flip singularity.

Proof. The equations (3.17) are to be considered as identities in s; by taking
derivatives we obtain

(D − Tfx)vs = (Tfx)sv − ψ0Gs,(4.9)

(δ0 + δ1)vs = 0,(4.10)

Intφ0vs = 0.

The solution of (3.17) at s = s0 is given by G(s0) = 0, v(s0)(t) = Φ(s0)(t)q2. Now,
at s = s0 (4.9) is a linear differential equation for vs(s0)(t) with solution

vs(s0)(t) = Φ(s0)(t)

[
ζ +

∫ t

0

Ψ∗(s0)(τ)((Tfx)s(s0)(τ)v(s0)(τ)− ψ0Gs(s0)) dτ

]
for some vector ζ ∈ Rn. Using (4.10) we find

0 = (I+Φ(s0)(1))ζ+Φ(s0)(1)

∫ 1

0

Ψ∗(s0)(τ)((Tfx)s(s0)(τ)Φ(s0)(τ)q2−ψ0Gs(s0)) dτ.

This equation in ζ has a solution if and only if

p∗(s0)Φ(s0)(1)

∫ 1

0

Ψ∗(s0)(τ)((Tfx)s(s0)(τ)Φ(s0)(τ)q2 − ψ0Gs(s0)) dτ = 0,

that is,

p∗2

∫ 1

0

Ψ∗(s0)(τ)(Tfx)s(s0)(τ)Φ(s0)(τ)q2 dτ = 〈ψ0,Ψp2〉Gs(s0).

By (4.8) this implies

−(p∗2q2)λs(s0) = 〈ψ0,Ψp2〉Gs(s0).

Since p∗2q2 and 〈ψ0,Ψp2〉 are nonzero, this completes the proof.
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4.3. Regularity at a torus bifurcation. Again, let s denote arclength along
the family of periodic orbits so that (x(s)(t), T (s), α(s)) is a solution of (2.1), (2.2),
and (2.3) for all s near the critical value s0 corresponding to a simple Neimark–Sacker
singularity. Thus Φ(s0)(1) has algebraically simple eigenvalues e±iθ. Let λ(s) =
λ1(s)+iλ2(s), p(s) = p1(s)+ip2(s), q(s) = q1(s)+iq2(s) be the smooth continuations
of the critical multiplier eiθ and the corresponding left and right eigenvectors. The
natural transversality condition for the torus bifurcation is the requirement that λ(s)
crosses the unit circle in the complex plane at nonzero velocity, i.e.,

λ1(s0)λ1s(s0) + λ2(s0)λ2s(s0) �= 0.(4.11)

Proposition 19. The system consisting of (2.1), (2.2), (2.3), and the conditions

G11 = 0,
G12 = 0,
G21 = 0,
G22 = 0,

(4.12)

where the Gij are defined in Proposition 17, together form a regular defining sys-
tem for periodic solutions having a simple Neimark–Sacker singularity if the natural
transversality condition (4.11) is satisfied.

Proof. To prove that the system (2.1), (2.2), (2.3), (4.12) is a regular defining
system (i.e., has full linear rank), we consider the implicit solution (x(s)(t), T (s), α(s))
of (2.1), (2.2), (2.3). So G11, G12, G21, G22 are functions of s, κ only, and we have to
prove that 

G11s G11κ

G12s G12κ

G21s G21κ

G22s G22κ


has rank 2. Assume that c1, c2 ∈ R are such that

c1Gijs + c2Gijκ = 0, (i, j = 1, 2).(4.13)

We start by noting that pH(s)q(s) �= 0 in a neighborhood of s = s0. By standard
arguments

(pHq)λs = pHΦs(1)q,(4.14)

where for simplicity of notation we have suppressed the dependence on s. To get an
expression for Φs(1) we start from the identity

(D − Tfx)Φ ≡ 0.

Taking derivatives with respect to s and multiplying with any vector ζ ∈ Rn we find

(D − Tfx)Φsζ = (Tfx)sΦζ.

The solution of this linear differential equation in Φsζ is

Φsζ(t) = Φ(s)(t)

[
ξ +

∫ t

0

Ψ∗(s)(τ)(Tfx)s(s)(τ)Φ(s)(τ)ζ dτ

]
,
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where ξ is determined by the initial conditions. Since for t = 0 we have Φ(0) =
I,Φs(0) = 0, it follows that ξ = 0. Choosing ζ = q we obtain from (4.14) that

(pHq)λs = λpH
∫ 1

0

Ψ∗(s)(τ)(Tfx)s(s)(τ)Φ(s)(τ)q dτ.(4.15)

From (3.24) we infer that

M5

 v1s v2s

G11s G12s

G21s G22s

 =


(Tfx)sv1 (Tfx)sv2

0 0
0 0
0 0

 ,(4.16)

M5

 v1κ v2κ

G11κ G12κ

G21κ G22κ

 =


0 0

2v1(1) 2v2(1)
0 0
0 0

 .(4.17)

Combining (4.13), (4.16), and (4.17) we obtain

M5

 c1v1s + c2v1κ c1v2s + c2v2κ

0 0
0 0

 =


c1(Tfx)sv1 c1(Tfx)sv2

2c2v1(1) 2c2v2(1)
0 0
0 0

 .

Hence (
c1(Tfx)sv1

2c2v1(1)

)
,

(
c1(Tfx)sv2

2c2v2(1)

)
are both in the range of (3.19). As an essential step in the proof of Proposition 15 it
was shown that this implies

c1L((Tfx)sv1) = 2c2p
Hv1(1),

c1L((Tfx)sv2) = 2c2p
Hv2(1),

where the linear operator L is defined in (3.20). Since v1, v2 are in the kernel of (3.19)
we have

v1(τ) = Φ(τ)v1(0), v2(τ) = Φ(τ)v2(0).

Combining the last four formulae we find

c1L((Tfx)sΦq) = 2c2p
HΦ(1)q = 2c2e

iθ(pHq).(4.18)

Now,

L((Tfx)sΦq) = −2κeiθ
∫ 1

0

pHΨ∗(τ)(Tfx)sΦ(τ)q dτ + e2iθ

∫ 2

0

pHΨ∗(τ)(Tfx)sΦ(τ)q dτ

= eiθ(cos θ + i sin θ − 2 cos θ)

∫ 1

0

pHΨ∗(τ)(Tfx)sΦ(τ)q dτ

+ e2iθ

∫ 1

0

pHΨ∗(1 + τ)(Tfx)sΦ(1 + τ)q dτ.
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Also,

pHΨ∗(1 + τ) = (Ψ(1 + τ)p)H = (Ψ(τ)Ψ(1)p)H = pHΦ−1(1)Ψ∗(τ) = e−iθpHΨ∗(τ)

and

Φ(1 + τ)q = Φ(τ)Φ(1)q = eiθΦ(τ)q.

Hence

L((Tfx)sΦq) = eiθ2i sin θ

∫ 1

0

pHΨ∗(τ)(Tfx)sΦ(τ)q dτ.

By (4.15) this implies

L((Tfx)sΦq) = 2i sin θ(pHq)λs.

Using (4.18) we further obtain

2ic1 sin θ(pHq)λs = 2c2e
iθ(pHq).

Dividing by 2(pHq) we obtain

(− sin θλ2s + i sin θλ1s)c1 = (cos θ + i sin θ)c2.

Taking real and imaginary parts of this complex equality we find( − sin θλ2s − cos θ
sin θλ1s − sin θ

)(
c1
c2

)
=

(
0
0

)
.

The determinant of the 2× 2 matrix in this expression is equal to

sin θ(cos θλ1s + sin θλ2s) = sin θ(λ1λ1s + λ2λ2s).

By (4.11) and sin θ �= 0 this implies that c1 = c2 = 0, which completes the
proof.

5. Computational issues. In this section we discuss computational issues re-
lated to the implementation of our defining systems, namely the computation of
the derivatives of the test functionals with respect to the unknowns of the system,
x(t), α, T , as well as the problem of adapting the defining systems along the bifurcation
branch. We also explicitly show the BVPs that must be solved.

5.1. Fold bifurcation. Proposition 9 implies that locally, near a simple fold
singularity of periodic solutions, the system consisting of (2.1), (2.2), (2.3), and

G = 0

defines the set of simple folds in (x(·), T, α)-space; here G is defined by (3.13). Under
natural nondegeneracy and transversality conditions, the regularity of this system was
proved in section 4.1.

We need the derivatives of G with respect to the unknowns of the system, i.e.,
with respect to x(·), α, T .
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Denoting by z any component of α or T we infer from (3.13) that

N1

 vz
Sz
Gz

 =


[Tfx(x(t), α]zv + [f(x(t), α)]zS

0
−Int[f(x(·),α)]zv

0

 .

Numerically we solve a discretized version of this equation, say

Nd
1

 vz
Sz
Gz

 =


([Tfx(x(t), α]zv + [f(x(t), α)]zS)d

0
−(Int[f(x(·),α)]zv)d

0

 ,(5.1)

where Nd
1 is the discretized version of N1, i.e., a large square matrix with a structure

that can be efficiently factorized, for example, as in auto [9].
Note that a large number of linear systems having the same structured matrix

Nd
1 must be solved. Moreover, all right-hand sides are known before the factorization.

Thus the solution can be done in a single factorization process, without storing the
factors.

(Nd
1 )
T has a block structure that is very similar to Nd

1 . If an efficient solution
strategy for (Nd

1 )
T is also developed, then it is possible to avoid solving (5.1) for all

relevant z. Instead, a single system with (Nd
1 )
T is to be solved. In transposed form

it is given by

(w∗1 , w
∗
2 , w3, w4)N

d
1 = (0, 0, 1).(5.2)

Combining (5.1) and (5.2) we find

Gz = w∗1([Tfx(x(t), α]zv + [f(x(t), α)]zS)d − w3(Int[f(x(·),α)]zv)d.

Notice that (3.13) is equivalent to the system

v′(t)− Tfx(x(t), α)v(t)− Sf(x(t), α) +Gw01(t) = 0,
v(1)− v(0) +Gw02 = 0,∫ 1

0

v∗(τ)f(x(τ), α) dτ +Gw03 = 0,∫ 1

0

v∗(τ)v01(τ) dτ + Sv02 = 1,

(5.3)

while (3.14) can be explicitly written as

w′(t) + Tf∗x(x(t), α)w(t)−Rf(x(t), α) +Hv11(t) = 0,
w(1)− w(0) +Hv12 = 0,∫ 1

0

w∗(τ)f(x(τ), α) dτ +Hv13 = 0,∫ 1

0

w∗(τ)w11(τ) dτ +Rw12 = −1.

(5.4)

Discretizations of these systems, for example by orthogonal collocation, result in lin-
earized Newton systems having the same sparsity as the linear systems arising from
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(2.5). They can therefore be solved using the same numerical linear algebra algo-
rithms.

In practice we need to adapt the auxiliary variables (i.e., w01, w02, w03, v01, v02, v11,
v12, v13, w11, and w12) along a computed branch of fold bifurcations of periodic or-
bits. For the bordering rows in N1 and N2, the natural choice is to take the kernel
vectors of M1 and M2, respectively, at a previously computed solution point. These
kernel vectors are obtained as a by-product of solving (5.3) and (5.4). For the column
bordering of N1 we need a vector that is not in the range of M1. By Proposition 6, a
possible choice is  w01

w02

w03

 =

 Ψp0

0
0

 ,

which by Proposition 7 can be derived from the solution of (5.4). Finally, a bordering
column for N2 is given in Proposition 8: v11

v12

v13

 =

 0
0
1

 .

Therefore, problems (5.3) and (5.4) actually take the following simplified forms:

v′(t)− Tfx(x(t), α)v(t)− Sf(x(t), α) +Gw01(t) = 0,
v(1)− v(0) = 0,∫ 1

0

v∗(τ)f(x(τ), α) dτ = 0,∫ 1

0

v∗(τ)v01(τ) dτ + S = 1

and 

w′(t) + Tf∗x(x(t), α)w(t)−Rf(x(t), α) = 0,
w(1)− w(0) = 0,∫ 1

0

w∗(τ)f(x(τ), α) dτ +H = 0,∫ 1

0

w∗(τ)w11(τ) dτ = −1.

5.2. Period-doubling. By Proposition 14, simple flips are determined by (2.1),
(2.2), (2.3), and the condition G = 0, where G is given by (3.17), assuming the
conditions 〈φ0,Φq2〉 �= 0, 〈ψ0,Ψp2〉 �= 0 hold. To solve such systems numerically,
we need the derivatives of G with respect to the unknowns of the system, i.e., with
respect to x(t), α, T . These can be approximated by finite differences, using (3.17).
As in the fold case, they can be obtained exactly by solving an “adjoint problem” to
(3.17). In this case the adjoint problem is (3.18).

Proposition 20. Let z denote a component of the problem parameter vector α,
or let z denote the period T , on both of which the quantity G in (3.17) depends. Let v
and w be obtained from (3.17) and (3.18), respectively. Then the derivative of G with
respect to z can be written as

Gz = −
∫ 1

0

w∗(τ)[Tfx(x(τ), α)]zv(τ) dτ,
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while the linear part of the variation of G with respect to x → x+ δx is given by

δG = −
∫ 1

0

w∗(τ)Tfxx(x(τ), α))v(τ)(δx)(τ) dτ.

Proof. By differentiating (3.17) we obtain

M1

(
vz
Gz

)
=

 [Tfx(x(t), α)]zv
0
0

 .(5.5)

Multiplying the first equation in (5.5) from the left with w∗, integrating over the
interval [0, 1], and using the third equation in (3.18) we get∫ 1

0

w∗(τ)v′z(τ) dτ −
∫ 1

0

w∗(τ)Tfx(x(τ), α)vz(τ) dτ −Gz

=

∫ 1

0

w∗(τ)[Tfx(x(τ), α)]zv(τ) dτ.

Integrating the first term in this expression by parts, and using the second equations
in (3.18) and (5.5), we obtain

−
∫ 1

0

v∗z(τ)w
′(τ) dτ −

∫ 1

0

v∗z(τ)Tf∗x(x(τ), α)w(τ) dτ −Gz

=

∫ 1

0

w∗(τ)[Tfx(x(τ), α)]zv(τ) dτ.

Using the first equation in (3.18) we get

−
∫ 1

0

v∗z(τ)(−φ0(τ)H) dτ −Gz =

∫ 1

0

w∗(τ)[Tfx(x(τ), α)]zv(τ) dτ.

By the last equation in (5.5) the first part of the proposition follows.
The linear parts of the variations of G and v under variation of x satisfy

M1

(
δv
δG

)
=

 Tfxx(x(t), α)v δx
0
0

 .

Similar to the derivation above, this implies the second part of the proposition.
Notice that (3.17) is equivalent to the system

v′(t)− Tfx(x(t), α)v(t) +Gψ0(t) = 0,

v(0) + v(1) = 0,∫ 1

0

φ∗0(τ)v(τ) dτ = 1,

(5.6)

while (3.18) can be explicitly written as
w′(t) + Tf∗x(x(t), α)w(t) +Hφ0(t) = 0,

w(0) + w(1) = 0,∫ 1

0

ψ∗0(τ)w(τ) dτ = −1.
(5.7)
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Discretizations of these systems, for example by orthogonal collocation, result in lin-
earized Newton systems having the same sparsity as the linear systems arising from
(2.5). They can therefore be solved using the same numerical linear algebra algo-
rithms.

The natural choice for starting values of φ0, ψ0 is

φ0(t) = Φ(t)q2, ψ0(t) = Ψ(t)p2.

In a continuation context, it is necessary to regularly update φ0 and ψ0. Specif-
ically, v obtained from (3.17) can be used to update φ0, and w obtained from (3.18)
can be used to update ψ0. Indeed, after convergence to a period-doubling bifurcation,
v spans the kernel of (

D − Tfx(x(t), α)
δ0 + δ1

)
,

and, similarly, w spans the kernel of(
D + Tf∗x(x(t), α)

δ0 + δ1

)
.

5.3. Torus bifurcation. We have proved in Proposition 17 that the matrix
equation G = 0 can be used to continue numerically curves of periodic solutions
having Neimark–Sacker singularities, in particular, torus bifurcation points. Some
issues require further attention.

First of all, we mention that the BVP for G is defined on the interval [0, 2] and
that 3-point boundary conditions are involved (at t = 0, 1, and 2).

To solve the system (2.1), (2.2), (2.3), (4.12) efficiently by a Newton-like method,
one needs the derivatives Gijz, where z is T or a component of α. From (3.24) we
infer that

M5

 v1z v2z

G11z G12z

G21z G22z

 =


[Tfx(x(t), α]zv1 [Tfx(x(t), α)]zv2

0 0
0 0
0 0

 .

One also needs the derivatives with respect to κ; for this we find

M5

 v1κ v2κ

G11κ G12κ

G21κ G22κ

 =


0 0

2v1(1) 2v2(1)
0 0
0 0

 .

Numerically we solve the discretized versions of these equations, say

Md
5

 v1z v2z

G11z G12z

G21z G22z

 =


[Tfx(x(t), α]zv1 [Tfx(x(t), α)]zv2

0 0
0 0
0 0

 .(5.8)

One also needs the derivatives with respect to κ; for this we find

Md
5

 v1κ v2κ

G11κ G12κ

G21κ G22κ

 =


0 0

2v1(1) 2v2(1)
0 0
0 0

 ,(5.9)
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where Md
5 is the discretized version of M5, i.e., a large square matrix of the same

structure as that factored efficiently in auto.
We again note that a large number of linear systems with the same structured

matrix Md
5 has to be solved. All right-hand sides are known when the factorization

is done. Thus the solution of all systems can be done during a single factorization
process of Md

5 without storing the factors.
(Md

5 )
∗ has a block structure that is very similar to that of Md

5 . If an efficient
solution strategy for (Md

5 )
∗ is also developed, then it is possible to avoid solving (5.8)

for all relevant z and (5.9). Instead, a single system with (Md
5 )
∗ is to be solved. In

transposed form it is given by

(
w1∗

1 w2∗
1 G11 G12

w1∗
2 w2∗

2 G21 G22

)
Md

5 =

(
0 0 1 0
0 0 0 1

)
.(5.10)

Combining (5.8) and (5.10) we find

(
G11z G12z

G21z G22z

)
=

(
w1∗

1 [Tfx(x(t), α)]zv1 w1∗
1 [Tfx(x(t), α)]zv2

w1∗
2 [Tfx(x(t), α)]zv1 w1∗

2 [Tfx(x(t), α)]zv2

)

if z is T or one of the components of x, α. For κ we find

(
G11κ G12κ

G21κ G22κ

)
=

(
2w2∗

1 v1(1) 2w2∗
1 v2(1)

2w2∗
2 v1(1) 2w2∗

2 v2(1)

)
.

Next notice that (3.24) is equivalent to the system



v′1 − Tfx(x(t), α)v1 +G11ψ0 +G21ψ1 = 0,
v′2 − Tfx(x(t), α)v2 +G12ψ0 +G22ψ1 = 0,

v1(0)− 2κv1(1) + v1(2) = 0,
v2(0)− 2κv2(1) + v2(2) = 0,∫ 2

0

φ∗0(τ)v1(τ) dτ = 1,∫ 2

0

φ∗1(τ)v2(τ) dτ = 0,∫ 2

0

φ∗0(τ)v1(τ) dτ = 0,∫ 2

0

φ∗1(τ)v2(τ) dτ = 1,

(5.11)
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while (3.25) can be explicitly written as

w′1 + Tf∗x(x(t), α)w1 +H11φ0 +H21φ1 = 0,
w′2 + Tf∗x(x(t), α)w2 +H12φ0 +H22φ1 = 0,

w1(0)− 2κw1(1) + w1(2) = 0,
w2(0)− 2κw2(1) + w2(2) = 0,∫ 2

0

ψ∗0(τ)w1(τ) dτ = −1,∫ 2

0

ψ∗1(τ)w2(τ) dτ = 0,∫ 2

0

ψ∗0(τ)w1(τ) dτ = 0,∫ 2

0

ψ∗1(τ)w2(τ) dτ = −1.

(5.12)

Discretizations of these systems, for example by orthogonal collocation, result in lin-
earized Newton systems having the same sparsity as the linear systems arising from
(2.5). They can therefore be solved using the same numerical linear algebra algo-
rithms.

In a continuation context, the vector-functions φ0, φ1, ψ0, ψ1 should be updated.
This can be done by solving both (5.11) and (5.12). Indeed, v1, v2 span the two-
dimensional space in which φ0, φ1 should be chosen and w1, w2 similarly span the
space in which ψ0, ψ1 should be chosen (some orthogonalization and scaling may be
appropriate).

Finally, recall that we compute the Neimark–Sacker points by using essentially an
overdetermined system. This necessitates some changes in the elimination strategy
when solving the linear systems.

6. Numerical example. In this section we illustrate our new techniques on a
test example, a simple feedback control system of Lur’e type: ẋ1 = x2,

ẋ2 = x3,
ẋ3 = −αx3 − βx2 − x1 + x2

1,
(6.1)

where α and β are positive parameters. It is well known (see, for example [17, sec-
tion 5.4]) that the equilibrium x1 = x2 = x3 = 0 of (6.1) has a supercritical Hopf
bifurcation at

α0 =
1

β
,

generating a stable periodic solution that exists for α < α0. This periodic solution
has a supercritical period-doubling bifurcation at α1 ≈ 0.630302.

The discretized continuation problem (2.1), (2.2), and (2.3) for the periodic solu-
tion has been programmed in the matlab Continuation Toolbox [19]. The method
of orthogonal collocation with piecewise polynomials is used, similar to the one im-
plemented in auto. It is characterized by the number NTST of mesh points and the
number NCOL of collocation points. At each computed point on the solution curve, a
discrete version of (5.6) is set up and solved. This gives a value of the test function
G to detect a flip singularity. A constant bordering function ψ0 is used, while the
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Fig. 1. Test function G(α) and µ1(α) + 1 for β = 1.
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Fig. 2. Solutions v(t) at different α-values for β = 1.

computed approximation to v is used to update the bordering function φ0. Figures 1
and 2 are produced with NTST=10 and NCOL=4.

Figure 1 shows the behavior of G as a function of α for β = 1. For this value
of β, Hopf bifurcation occurs at α0 = 1. In the same figure, the function µ1 + 1 is
plotted, where µ1 is a nontrivial Floquet multiplier of the periodic solution for which
µ1(α1) = −1. The multipliers are computed via a specially adapted elimination
algorithm from auto. As can be seen, G vanishes together with µ1 + 1. Moreover,
close examination of numerical data gives the above bifurcation value α1 with seven
correct decimal places.
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Fig. 3. Cycle and period-doubling branches.

Figure 2 shows a family of computed profiles v(t) along the solution curve. The
dashed solution corresponds to the bifurcation parameter value α1. Finally, Figure 3
shows the two-parameter continuation of the period-doubling bifurcation curve, which
corresponds to a close curve. The continuation is started at one of the PD points in
the one-parameter path of periodic solutions discussed above.

We now briefly address the important issue of comparing our new method for
continuing period-doubling bifurcations to the algorithm based on a fully extended
system, i.e., (2.1), (2.2), and (2.3), augmented by

v′(t)− Tfx(x(t), α)v(t) = 0,

v(0) + v(1) = 0,∫ 1

0

φ∗0(τ)v(τ) dτ = 1,

as implemented in auto. The corresponding discretized system is nearly twice the
size as the discretized minimally extended system composed of (2.1), (2.2), (2.3), and
G = 0, where G is to be computed from (5.6). However, for the minimally extended
system one has to solve the extra BVP (5.7) in order to calculate the Jacobian matrix
of the discretized bordered system. For comparison, both methods were implemented
in a similar fashion, using the standard sparse matrix solver in the Continuation
Toolbox [19], and tested using different choices for the number of mesh points and
the number of collocation points. Table 1 shows the execution times required by
the two methods for computing the same number (300) of solution points along the
period-doubling curve shown in Figure 3. Computations were done on a 350 Mhz PC.

Clearly the bordered system of this paper is faster, and its advantage widens as
the number of mesh points and the number of collocation points increases. In the
computations we used an adaptive step length, and the bordered system actually
resulted in larger steps than the fully extended system. Details of the implementation
and more extensive comparisons will be reported elsewhere.
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Table 1

NTST NCOL Minimally extended system Fully extended system
10 4 101,8 s 122,3 s
10 5 134,9 s 159,4 s
20 4 269,9 s 358,6 s
20 5 371,9 s 558,2 s
30 4 529,8 s 808,0 s
30 5 751,0 s 1260,3 s
40 4 886,0 s 1528,8 s
40 5 1376,8 s 2528,6 s
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Abstract. We consider a nonconforming streamline diffusion finite element method for solving
convection-diffusion problems. The loss of the Galerkin orthogonality of the streamline diffusion
method when applied to nonconforming finite element approximations results in an additional error
term which cannot be estimated uniformly with respect to the perturbation parameter for the stan-
dard piecewise linear or rotated bilinear elements. Therefore, starting from the Crouzeix–Raviart
element, we construct a modified nonconforming first order finite element space on shape regular tri-
angular meshes satisfying a patch test of higher order. A rigorous error analysis of this Pmod

1 element
applied to a streamline diffusion discretization is given. The numerical tests show the robustness
and the high accuracy of the new method.
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1. Introduction. We consider the convection-diffusion equation

−ε∆u+ b · ∇u+ c u = f in Ω, u = ub on ∂Ω,(1.1)

where Ω ⊂ R
2 is a bounded domain with a polygonal boundary ∂Ω, ε ∈ (0, 1) is

constant, b ∈W 1,∞(Ω)2, c ∈ L∞(Ω), f ∈ L2(Ω), and ub ∈ H3/2(∂Ω). We assume that

c− 1

2
div b ≥ c0 ,(1.2)

where c0 is a positive constant. This assumption guarantees that (1.1) admits a unique
solution for all positive values of the parameter ε.

In the convection dominated case, in which ε � 1, the standard Galerkin finite
element method produces unphysical oscillations if the local mesh size is not small
enough. Among several possible remedies for this undesirable behavior, the stream-
line diffusion method [8], [15] attracted considerable attention over the last decade,
in particular because of its structural simplicity, generality, and the quality of the
numerical solution. Summarizing the existing literature we come to the conclusion
that in the case of conforming finite element approximations the convergence proper-
ties of the streamline diffusion methods are well understood; see, e.g., [6], [10], [14],
[15], [18]. Particularly, using piecewise polynomial approximations of degree k in the
convection dominated regime (ε ≤ h), one can prove the error estimate

|||u− uh||| ≤ C hk+1/2 ‖u‖k+1,Ω ,(1.3)
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where ||| · ||| denotes the streamline diffusion norm defined in section 3.
The situation changes dramatically if nonconforming finite element approxima-

tions are used. Finite element methods of nonconforming type are attractive in
computational fluid dynamics since they easily fulfill the Babuška–Brezzi condition.
Moreover, because of their edge-oriented degrees of freedom they result in cheap local
communication when implementing the method on a MIMD-machine (cf. [5], [9], [16]).
Unfortunately, compared to conforming approximations much less is known about the
convergence properties of streamline diffusion-type methods for nonconforming finite
element approximations.

It has been shown in [12] that special care is necessary to prove the error es-
timate (1.3) in the nonconforming case. Indeed, when considering nonconforming
approximation spaces we lose the continuity property over inner element edges, and
the coercivity of the corresponding bilinear form depends on the type of discretization
for the convective term. Our assumptions guarantee that the bilinear form with the
so-called skew-symmetric discretization of the convective term (cf. the bilinear form
askewh in section 3) is always coercive in contrast to the convective form (cf. the bilinear
form aconv

h in subsection 4.1). On the other hand, the skew-symmetric form leads to
an additional term in the consistency error which is difficult to estimate uniformly
in ε. In [11], [12] these difficulties have been overcome by adding some special jump
terms and thus modifying the standard streamline diffusion finite element method.
However, a drawback of these jump terms is that they decrease the sparsity of the
stiffness matrix and that they are difficult to implement. So we would like to avoid the
jump terms, but then the coercivity of the convective bilinear form is open in general.
Recently, it has been discovered in [17] that this coercivity can be guaranteed for
the nonconforming rotated bilinear element on rectangular meshes if |b|1,∞,Ω is small
compared to c0. Unfortunately, a similar result is not true for the nonconforming
linear triangular Crouzeix–Raviart element [4], not even on three-directional meshes.
However, also in cases when the convective bilinear form is coercive, the optimal or-
der O(hk+1/2) cannot be shown in general. For example, in [17] a superconvergence
property on uniform meshes was necessary to prove an ε-uniform convergence result
of optimal order O(h3/2). Thus, summarizing the known results we see that in gen-
eral, without using jump terms and on general meshes, we cannot guarantee the same
optimal convergence results as in the conforming case.

Particularly, our numerical experiences show that, in the convection dominated
regime, it is often not possible to obtain an acceptable accuracy using the mentioned
Crouzeix–Raviart element combined with the standard streamline diffusion discretiza-
tion. In fact, this method is—even for smooth functions—not ε-uniformly convergent.
Therefore, the aim of this paper is to develop a first order nonconforming method on
general triangular meshes which guarantees the same optimal convergence properties
as in the conforming case but does not employ any modifications (such as the above
jump terms) of the standard streamline diffusion method. Let us mention that our
ideas are not restricted to the first order of accuracy and that an extension to higher
order methods is straightforward.

Our method is based on using the standard streamline diffusion discretization with
the skew-symmetric form of the convective term and on introducing a new noncon-
forming finite element space. The theoretical analysis presented in this paper shows
that the optimal convergence order known from the conforming finite element method
can be recovered if the nonconforming space satisfies a patch test of order 3 since then
a better estimate of the consistency error can be obtained. We shall construct such
a space by enriching the Crouzeix–Raviart space by suitable nonconforming bubble
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functions and by restricting the enlarged space to its subspace of functions satisfying
the patch test of order 3. The finite element space obtained in such a way contains
modified Crouzeix–Raviart functions and therefore we call this new element the Pmod

1

element. This new element not only guarantees the optimal convergence order but
also leads to very robust discretizations and much more accurate results than the
Crouzeix–Raviart element. In addition, the iterative solver used to compute the dis-
crete solution converges much faster than for the Crouzeix–Raviart element. Let us
also mention that the Pmod

1 element satisfies a discrete Korn inequality (cf. [13]),
which is not true for most first order nonconforming finite elements, including the
Crouzeix–Raviart element.

The enrichment of the Crouzeix–Raviart space by bubble functions may resemble
the techniques where the bubble functions are used to recover various stabilized meth-
ods and to find a reasonable rule for the choice of the stabilizing parameters (cf., e.g.,
[1], [2]). However, our approach is completely different since we start from a stabilized
method and the bubble functions are added not to replace the stabilization but to
provide an additional stability. In addition, the bubble functions are coupled with
the Crouzeix–Raviart functions so that they cannot be eliminated from the discrete
problem.

The paper is organized in the following way. Section 2 introduces various nota-
tion which will be used in the subsequent sections. In section 3, we recall the weak
formulation of (1.1) and describe a nonconforming streamline diffusion finite element
discretization. Then the error analysis is presented in section 4. Section 5 is de-
voted to the construction of the Pmod

1 element. Section 6 shows that the piecewise
linear part of a Pmod

1 discrete solution asymptotically behaves in the same way as
the discrete solution itself, which is useful for postprocessing. Finally, in section 7,
we present numerical results which demonstrate the good behavior of discretizations
employing the Pmod

1 element.

2. Notation. We assume that we are given a family {Th} of triangulations of the
domain Ω parametrized by a positive parameter h→ 0. Each triangulation Th consists
of a finite number of closed triangular elements K such that hK ≡ diam(K) ≤ h,

Ω =
⋃
K∈Th K, and any two different elements K, K̃ ∈ Th are either disjoint or

possess either a common vertex or a common edge. In order to prevent the elements
from degenerating when h tends to zero, we assume that the family of triangulations
is regular; i.e., there exists a constant C independent of h such that

hK
�K
≤ C ∀ K ∈ Th, h > 0 ,

where �K is the maximum diameter of circles inscribed into K.
We denote by Eh the set of edges E of Th. The set of inner edges will be denoted

by E ih and the set of boundary edges by Ebh. Further, we denote by hE the length of
the edge E and by SE the union of the elements adjacent to E (i.e., SE consists of
one or two elements). For any edge E, we choose a fixed unit normal vector nE to
E. If E ∈ Ebh, then nE coincides with the outer normal vector to ∂Ω. Consider any

E ∈ E ih, and let K, K̃ be the two elements possessing the edge E denoted in such a

way that nE points into K̃. If v is a function belonging to the space

H1,h(Ω) = {v ∈ L2(Ω) ; v|K ∈ H1(K) ∀ K ∈ Th} ,
then we define the jump of v across E by

[|v|]E = (v|K)|E − (v|
K̃
)|E .(2.1)



THE Pmod1 ELEMENT 439

If E ∈ Ebh, then we set [|v|]E = v|E , which is the jump defined by (2.1) with v extended
by zero outside Ω.

To formulate a streamline diffusion method for (1.1), we need finite element func-
tions which are piecewise H2. We assume this regularity with respect to subdivisions
of the elements of the triangulation only, which allows more flexibility in the construc-
tion of finite element spaces approximating H1

0 (Ω) (cf. Remark 5.1). The subdivisions

can be defined using a triangulation Ĝ of the standard reference element K̂, and we
assume that the set Ĝ is invariant under affine regular mappings of K̂ onto K̂. Then,
for any element K ∈ Th, we can introduce a subdivision

GK = {FK(Ĝ) ; Ĝ ∈ Ĝ} ,

where FK : K̂ → K is any affine regular mapping which maps K̂ onto K. In view of
the invariance of the triangulation Ĝ, the set GK is independent of the choice of FK .
The space of piecewise H2 functions with respect to the above subdivision of Th will
be denoted by

H2,h

Ĝ (Ω) =
{
v ∈ L2(Ω) ; v|G ∈ H2(G) ∀ G ∈ GK , K ∈ Th

}
.

In the following sections, we shall also need the spaces

Ṽconf
h = {vh ∈ C(Ω) ; vh|K ∈ P1(K) ∀ K ∈ Th} , Vconf

h = Ṽconf
h ∩H1

0 (Ω) ,

Vnc
h =

{
vh ∈ L2(Ω) ; vh|K ∈ P1(K) ∀ K ∈ Th ,

∫
E

[|vh|]E dσ = 0 ∀ E ∈ Eh
}
,

and we shall denote by ih : H2(Ω)→ Ṽconf
h the Lagrange interpolation operator.

Throughout the paper we use standard notation Lp(Ω), W k,p(Ω), Hk(Ω) =
W k,2(Ω), C(Ω), etc. for the usual function spaces; see, e.g., [3]. The norm and
seminorm in the Sobolev space W k,p(Ω) will be denoted by ‖ · ‖k,p,Ω and | · |k,p,Ω,
respectively, and we set ‖ · ‖k,Ω = ‖ · ‖k,2,Ω and | · |k,Ω = | · |k,2,Ω. For the space

H1,h(Ω), we define an analogue of | · |1,Ω by

|v|1,h =

( ∑
K∈Th

|v|21,K
)1/2

, v ∈ H1,h(Ω) .

The inner product in the space L2(G) will be denoted by (·, ·)G, and we set (·, ·) =
(·, ·)Ω. Finally, we denote by C a generic constant independent of h and ε.

3. Weak formulation and discrete problem. Denoting by ũb ∈ H2(Ω) an
extension of ub, a natural weak formulation of the convection-diffusion equation (1.1)
reads as follows:

Find u ∈ H1(Ω) such that u− ũb ∈ H1
0 (Ω) and

a(u, v) = (f, v) ∀ v ∈ H1
0 (Ω) ,

where

a(u, v) = ε (∇u,∇v) + (b · ∇u, v) + (c u, v) .

This weak formulation has a unique solution.
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We intend to approximate the space H1
0 (Ω) by a nonconforming finite element

space Vh and at this stage we assume only that

Vconf
h ⊂ Vh ⊂ H1,h(Ω) ∩H2,h

Ĝ (Ω) .(3.1)

The inclusion Vconf
h ⊂ Vh ensures first order approximation properties of Vh with

respect to | · |1,h when h→ 0.
A finite element discretization of (1.1) could be simply obtained by using the

bilinear forms

adh(u, v) = ε
∑
K∈Th

(∇u,∇v)K , ach(u, v) =
∑
K∈Th

(b · ∇u, v)K , u, v ∈ H1,h(Ω) ,

instead of the first two terms in a(u, v) and by replacing the space H1
0 (Ω) in the weak

formulation by the finite element space Vh. However, the bilinear form corresponding
to the discrete problem generally would not be coercive and therefore, before passing
from the weak formulation to the discrete problem, we first apply integration by parts
to the convective term (b · ∇u, v) to obtain

(b · ∇u, v) = 1

2
[(b · ∇u, v)− (b · ∇v, u)− (div b, u v)] , u ∈ H1(Ω), v ∈ H1

0 (Ω) .

Thus, a discrete analogue of the second term in the bilinear form a also is

ash(u, v) =
1

2

∑
K∈Th

[(b · ∇u, v)K − (b · ∇v, u)K − (div b, u v)K ] , u, v ∈ H1,h(Ω) .

This bilinear form is skew-symmetric if div b = 0. That gives rise to the notation
askewh below. For u ∈ H2,h

Ĝ (Ω) and v ∈ H1,h(Ω), we define a streamline diffusion term

by

asdh (u, v) =
∑
K∈Th

∑
G∈GK

(−ε∆u+ b · ∇u+ c u, δK b · ∇v)G ,

where δK ≥ 0 is a control parameter. Now, denoting

askewh (u, v) = adh(u, v) + ash(u, v) + (c u, v) + asdh (u, v) ,

lh(v) = (f, v) +
∑
K∈Th

(f, δK b · ∇v)K ,

the streamline diffusion finite element method investigated in this paper reads as
follows:

Find uh ∈ H1,h(Ω) such that uh − ihũb ∈ Vh and

askewh (uh, vh) = lh(vh) ∀ vh ∈ Vh .(3.2)

A natural norm for investigating the properties of the problem (3.2) is the stream-
line diffusion norm

|||v||| =
( ∑
K∈Th

{ε |v|21,K + c0 ‖v‖20,K + δK ‖b · ∇v‖20,K}
)1/2

.
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Using standard arguments (cf. [3, Chapter III]), we deduce that there exist constants
µ1, µ2 independent of h such that

‖∆ vh‖0,G ≤ µ1 h
−1
K |vh|1,G ∀ vh ∈ Vh, G ∈ GK , K ∈ Th ,(3.3)

|vh|1,K ≤ µ2 h
−1
K ‖vh‖0,K ∀ vh ∈ Vh, K ∈ Th .(3.4)

Assuming that the control parameter δK satisfies

0 ≤ δK ≤ min

{
c0

2 ‖c‖20,∞,K
,
h2
K

2 ε µ2
1

}
,(3.5)

one can prove (cf. [12]) that the bilinear form askewh is coercive, i.e.,

askewh (vh, vh) ≥ 1

2
|||vh|||2 ∀ vh ∈ Vh .(3.6)

This implies that the discrete problem (3.2) has a unique solution and that this
solution does not depend on the choice of the extension ũb of ub (cf. also Remark 5.2).

Remark 3.1. We admit δK = 0 in (3.5) since the streamline diffusion stabiliza-
tion is important in convection dominated regions only.

4. Error analysis. If the weak solution of (1.1) satisfies u ∈ H2(Ω), then it
fulfills (1.1) almost everywhere in Ω. Multiplying (1.1) by vh ∈ Vh and integrating
by parts, we infer that

askewh (u, vh) = lh(vh) + rdh(u, vh) + rsh(u, vh) ∀ vh ∈ Vh ,(4.1)

where the consistency errors rdh and rsh are given by

rdh(u, vh) = ε
∑
K∈Th

∫
∂K

∂u

∂n∂K
vh dσ = ε

∑
E∈Eh

∫
E

∂u

∂nE
[|vh|]E dσ ,

rsh(u, vh) = −
1

2

∑
K∈Th

∫
∂K

(b · n∂K)u vh dσ = −1
2

∑
E∈Eh

∫
E

(b · nE)u [|vh|]E dσ

with n∂K denoting the unit outer normal vector to the boundary ofK. For estimating
the consistency errors, we shall use the following lemma.

Lemma 4.1. For any edge E ∈ Eh and any integer k ≥ 0, letMk
E be the projection

operator from L2(E) onto Pk(E) defined by∫
E

qMk
E v dσ =

∫
E

q v dσ ∀ q ∈ Pk(E), v ∈ L2(E) .

Then there exists a constant C independent of E and h such that∣∣∣∣∫
E

ϕ (v −Mk
E v) dσ

∣∣∣∣ ≤ C hk+1
E |ϕ|1,K |v|k+1,K(4.2)

for all K ∈ Th, E ⊂ ∂K, ϕ ∈ H1(K), and v ∈ Hk+1(K).
Proof. See [4, Lemma 3].
Now we are in a position to prove a convergence result for the discrete prob-

lem (3.2).



442 PETR KNOBLOCH AND LUTZ TOBISKA

Theorem 4.2. Let the assumptions (3.1) and (3.5) be fulfilled, and let the space
Vh satisfy the patch test of order k + 1, i.e.,∫

E

[|vh|]E q dσ = 0 ∀ vh ∈ Vh, q ∈ Pk(E), E ∈ Eh ,(4.3)

where k ≥ 0 is a given integer. Let the weak solution of (1.1) belong to Hm(Ω), let
m = max{2, k + 1}, and let b ∈W k+1,∞(Ω)2. Then the discrete solution uh satisfies

|||u− uh||| ≤ C h
( ∑
K∈Th

γK |u|22,K
)1/2

+ C hk

( ∑
E∈Eh

γE ‖u‖2m,SE

)1/2

,(4.4)

where

γK = ε+ h2
K + δK + (max{ε, δK})−1 h2

K , γE = min

{
h2
E

ε
, 1

}
.

Proof. Denoting w = ihu− u and wh = ihu− uh, we have wh ∈ Vh and it follows
from (3.2) and (4.1) that

askewh (wh, vh) = askewh (w, vh) + rdh(u, vh) + rsh(u, vh) ∀ vh ∈ Vh .(4.5)

Integrating by parts, we obtain for any vh ∈ Vh

ash(w, vh) = −ach(vh, w)− (div b, w vh) + nsh(w, vh) ,

where

nsh(w, vh) =
1

2

∑
E∈Eh

∫
E

(b · nE)w [|vh|]E dσ .

Hence denoting

ah(w, vh) = adh(w, vh)− ach(vh, w) + (c− div b, w vh) + asdh (w, vh) ,

we have

askewh (w, vh) = ah(w, vh) + nsh(w, vh) .(4.6)

Combining (4.5), (4.6), (3.6), and the triangular inequality, we infer that

1

2
|||u− uh||| ≤ 1

2
|||w|||+ sup

vh∈Vh

ah(w, vh)

|||vh|||

+ sup
vh∈Vh

nsh(w, vh)

|||vh||| + sup
vh∈Vh

rdh(u, vh)

|||vh||| + sup
vh∈Vh

rsh(u, vh)

|||vh||| .

The first two terms on the right-hand side are well known from the conforming analysis
of the problem (3.2) (cf., e.g., [15]) and can be estimated by

1

2
|||w|||+ sup

vh∈Vh

ah(w, vh)

|||vh||| ≤ C h
( ∑
K∈Th

γK |u|22,K
)1/2

.(4.7)
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The remaining three terms are purely nonconforming terms. The estimation of
rdh(u, vh) is the easiest one: In view of (4.3), we have for any E ∈ Eh∫

E

∂u

∂nE
[|vh|]E dσ =

∫
E

(
∂u

∂nE
−M0

E

∂u

∂nE

)
[|vh|]E dσ,

and hence, applying (4.2), we deduce that

rdh(u, vh) ≤ C hε1/2 |u|2,Ω |||vh||| .

To estimate rsh(u, vh), we apply (4.3) and Lemma 4.1, and we obtain∫
E

(b · nE)u [|vh|]E dσ =

∫
E

[(b · nE)u−Mk
E((b · nE)u)] [|vh|]E dσ

≤ C hk+1
E ‖u‖k+1,SE

|vh|1,SE
,

where the norms over SE are considered to be defined elementwise. Using (3.4), we
derive∫

E

(b · nE)u [|vh|]E dσ ≤ C hkE ‖u‖k+1,SE
γ

1/2
E (ε |vh|21,SE

+ c0 ‖vh‖20,SE
)1/2 ,

which implies that

rsh(u, vh) ≤ C hk
( ∑
E∈Eh

γE ‖u‖2k+1,SE

)1/2

|||vh||| .

The term nsh(w, vh) can be estimated analogously. The only difference is that we also
use the estimate ‖w‖k+1,SE

≤ C hE |u|2,SE
+min{1, k} ‖u‖k+1,SE

. So, we get

nsh(w, vh) ≤ C hmax{1,k}
( ∑
E∈Eh

γE ‖u‖2m,SE

)1/2

|||vh||| .(4.8)

As we see, for k = 0, the consistency error rsh(u, vh) behaves worse than the term
nsh(w, vh) and does not allow any ε-uniform convergence. Summing up all the esti-
mates, we obtain the theorem.

Remark 4.1. The above estimate together with the condition (3.5) suggests set-
ting

δK =

{
κK hK if hK > ε,

0 if hK ≤ ε,

where κK is bounded independently of h and satisfies

0 < κ0 ≤ κK ≤ min

{
c0

2 ‖c‖20,∞,K hK
,
hK
2 ε µ2

1

}
.

Then (max{ε, δK})−1 h2
K ≤ (min{1, κ0})−1 hK , and hence γK ≤ C (ε+ hK).
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Let us consider the convection dominated case ε ≤ h, and let δK be defined as in
Remark 4.1, which implies that γK ≤ C h. Since the sum over edges in (4.4) stems

from the nonconformity only, we obtain for Vh = Vconf
h the well-known estimate

|||u− uh||| ≤ C h3/2 |u|2,Ω ,
where the constant C is independent of u, h, and ε. Therefore, the estimate is called
ε-uniform. It is known that this estimate is optimal on general meshes.

For a general nonconforming space Vh satisfying the assumptions of Theorem 4.2,
the estimate (4.4) leads to the ε-uniform estimate

|||u− uh||| ≤ C h3/2 |u|2,Ω + C hk‖u‖max{2,k+1},Ω .(4.9)

Thus, if we use the space Vh = Vnc
h , which satisfies (4.3) for k = 0 only, the ε-

uniform convergence order is 0. Numerical experiments really confirm this pessimistic
prediction (see section 7), which suggests that it is generally a property of the method
and not a consequence of an inaccurate estimation. On the other hand, the estimate
(4.9) shows that the optimal ε-uniform convergence order 3/2 can be recovered if the
space Vh satisfies the patch test of order 3, i.e., k = 2. This is an unusual requirement
for a nonconforming first order finite element space, but we shall show in section 5
that such spaces can easily be constructed.

4.1. Remarks on the convective discretization. In numerical computations,
one also often considers the discrete problem (3.2) with askewh replaced by the convec-
tive bilinear form aconv

h defined by

aconv
h (u, v) = adh(u, v) + ach(u, v) + (c u, v) + asdh (u, v) .(4.10)

Note that a result similar to (3.6) does not hold for this bilinear form. Indeed,

aconv
h (vh, vh) ≥ 1

2
|||vh|||2 + 1

2

∑
E∈Eh

∫
E

(b · nE) [|v2
h|]E dσ ∀ vh ∈ Vh ,

where the additional term is of order O(‖vh‖20,Ω/h) in general (cf. [17]). Of course,
the coercivity is not necessary to prove the unique solvability and to establish error
estimates. It would be sufficient if an inf-sup condition were satisfied, precisely, if the
constants

αh = inf
wh∈V nc

h

sup
vh∈V nc

h

aconv
h (wh, vh)

|||vh||| |||wh|||(4.11)

could be bounded from below by some positive constant independent of h or at least
with a known dependence on h. Unfortunately, this is an open problem.

Let us consider the discrete problem (3.2) with askewh replaced by aconv
h . We again

set w = ihu− u and wh = ihu− uh. To estimate the error u− uh = wh−w it suffices
to investigate wh since w can be estimated by (4.7). Since there is no consistency
error induced by the convective term, we obtain

αh |||wh||| ≤ sup
vh∈Vh

ah(w, vh)

|||vh||| + 2 sup
vh∈Vh

nsh(w, vh)

|||vh||| + sup
vh∈Vh

rdh(u, vh)

|||vh||| .

Hence αh |||wh||| can be estimated by the right-hand side of (4.4). However, for k = 0,
we can apply (4.8) and hence, for δK defined as in Remark 4.1, we always get at least

|||u− ihu|||+ αh |||ihu− uh||| ≤ C h |u|2,Ω .
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Moreover, for Vh = Vnc
h and u ∈ H3(Ω), we have the estimate∫

E

(b · nE)w [|vh|]E dσ ≤ C h3
E ‖u‖3,SE

|vh|1,SE
(4.12)

so that in the convection dominated case ε ≤ h we even obtain

|||u− ihu|||+ αh |||ihu− uh||| ≤ C h3/2 ‖u‖3,Ω .
Let us mention how to prove (4.12). We denote by jh the piecewise quadratic

Lagrange interpolation operator and, for any edge E ∈ Eh, we set bE =M0
E b. Then

we have for any E ∈ Eh∫
E

(b · nE)w [|vh|]E dσ =

∫
E

((b− bE) · nE)w [|vh|]E dσ(4.13)

+

∫
E

(bE · nE) (jhu− u) [|vh|]E dσ +

∫
E

(bE · nE) (ihu− jhu) [|vh|]E dσ .

The last term on the right-hand side vanishes since ihu− jhu is even on E and [|vh|]E
is odd on E. Using Lemma 4.1, we derive for any z ∈ H1(Ω)∫

E

z [|vh|]E dσ =

∫
E

(z −M0
E z) [|vh|]E dσ ≤ C hE |z|1,SE

|vh|1,SE
.

This implies that the first two terms on the right-hand side of (4.13) can be estimated
by C h3

E (|u|2,SE
+ |u|3,SE

) |vh|1,SE
, which proves (4.12).

The above considerations suggest that, in some cases, the bilinear form aconv
h may

lead to better results than askewh , particularly in the case that αh ≥ α0 > 0 could be
verified.

5. Definition of the Pmod
1 element. We have seen above that it is desirable

to construct nonconforming first order finite element spaces satisfying the patch test
of a higher order than usual. In this section, we present a possible way of constructing
such spaces. The idea is to enrich the space Vnc

h by suitable supplementary functions
and then to restrict the enlarged space to its subspace of functions satisfying the patch
test of a given order. Our basic requirement is that this procedure must not destroy
the edge-oriented structure of the space Vnc

h . This construction will lead to a new
finite element space containing as a subspace modified functions from Vnc

h . Therefore,
we denote the new space Vmod

h , and we call the corresponding finite element the Pmod
1

element.
We introduce the Pmod

1 element by describing the respective shape functions on

the standard reference triangle K̂. It turns out that independently of the required
order of the patch test it suffices to enrich the space P1(K̂) corresponding to Vnc

h by

three functions b̂1, b̂2, and b̂3 associated, respectively, with the edges Ê1, Ê2, and Ê3

of the element K̂. This gives the space

Pmod
1 (K̂) = P1(K̂)⊕ span{b̂1, b̂2, b̂3} .

We assume for i ∈ {1, 2, 3} that
b̂i ∈ H1(K̂) , b̂i|∂K̂\Êi

= 0 ,(5.1)

b̂i|Êi
is odd with respect to the midpoint of Êi,(5.2) ∫

Êi

[(1− 2 λ̂i+1) + b̂i] q̂ dσ̂ = 0 ∀ q̂ ∈ P1(Êi) ,(5.3)
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bE1

bE2

bE3

Fig. 5.1. Function λ̂22 λ̂3 − λ̂2 λ̂
2
3.

where λ̂i is the barycentric coordinate on K̂ with respect to the vertex of K̂ opposite
the edge Êi. (We set λ̂4 ≡ λ̂1.) In addition, because of the streamline diffusion

method, we suppose that on the triangulation Ĝ of K̂

b̂i|
Ĝ
∈ H2(Ĝ) ∀ Ĝ ∈ Ĝ .(5.4)

Note that to verify (5.3), it suffices to prove its validity for q̂ = λ̂i+1|Êi
. A simple

example of b̂i satisfying the assumptions (5.1)–(5.4) is the function (cf. Figure 5.1)

b̂i = 10 (λ̂2
i+1 λ̂i+2 − λ̂i+1 λ̂

2
i+2) ,(5.5)

where the indices are to be considered modulo 3.
For any element K ∈ Th, we introduce a regular affine mapping FK : K̂ → K

such that FK(K̂) = K and, using this mapping, we transform the shape functions

from K̂ onto K. In this way, we obtain the spaces

Pmod
1 (K) = P1(K)⊕ span{bK,E |K}E∈Eh, E⊂∂K ,

where

bK,E =

{
b̂i ◦ F−1

K in K,

0 in Ω \K
for E = FK(Êi), i = 1, 2, 3. For each element K, we introduce six local nodal
functionals

IK,E(v) =
1

hE

∫
E

v dσ , JK,E(v) =
3

hE

∫
E

v (2λE − 1) dσ , E ∈ Eh, E ⊂ ∂K ,

where λE ∈ P1(E) equals 1 at one endpoint of E and 0 at the other endpoint of E.
It is easy to verify that these functionals are unisolvent with the space Pmod

1 (K). Of
course, we could also use other local nodal functionals. However, we prefer the above
functionals since they lead to dual basis functions having nice properties.

Now, the finite element space Vmod
h approximating the space H1

0 (Ω) is defined in
a standard way: It consists of all functions which belong to the space Pmod

1 (K) on any
element K ∈ Th, which are continuous on all inner edges in the sense of the equality of
nodal functionals and for which all nodal functionals associated with boundary edges
vanish. This means that

Vmod
h =

{
vh ∈ L2(Ω) ; vh|K ∈ Pmod

1 (K) ∀ K ∈ Th ,∫
E

[|vh|]E q dσ = 0 ∀ q ∈ P1(E), E ∈ Eh
}
.
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For any inner edge E ∈ E ih, we define global nodal functionals

IE(v) = IK,E(v) , JE(v) = JK,E(v) ,

where K is any element adjacent to E. (Note that, for v ∈ Vmod
h , the choice of K has

no influence on the values of IK,E(v) and JK,E(v).) We denote by {ψE , χE}E∈Ei
h

a

basis of Vmod
h which is dual to the functionals IE , JE ; i.e., for any E,E

′ ∈ E ih, we have

IE(ψE′) = δE,E′ , JE(ψE′) = 0 , IE(χE′) = 0 , JE(χE′) = δE,E′ ,

where δE,E′ = 1 for E = E′ and δE,E′ = 0 for E �= E′. To establish formulas for ψE
and χE , we denote by K, K̃ the two elements adjacent to E; by E, E1, E2 the edges
of K; by E, E3, E4 the edges of K̃; and by ζE the standard basis function of Vnc

h

associated with the edge E (i.e., ζE is piecewise linear, equals 1 on E, and vanishes
at the midpoints of all edges different from E). Then

ψE = ζE + βE,1 bK,E1 + βE,2 bK,E2 + βE,3 bK̃,E3
+ βE,4 bK̃,E4

,(5.6)

χE = βE,5 bK,E + βE,6 bK̃,E ,(5.7)

where the coefficients βE,1, . . . , βE,6 are uniquely determined and equal 1 or −1. If

the functions b̂1, b̂2, b̂3 are chosen in a suitable way (e.g., b̂i = b̂1 ◦ F̂i, where F̂i is an
affine transformation of K̂ onto K̂), then χE ∈ H1

0 (Ω), and hence the functions χE
generate a conforming subspace of Vmod

h . (This is also the case for the functions χE
presented in subsection 5.2 below.) The functions ψE are always purely nonconforming
functions since they have jumps across the edges E1, . . . , E4, and they can be viewed
as modified basis functions of Vnc

h . In addition, from (5.6) and (5.7), it follows that,
for any vh ∈ Vmod

h and any E ∈ Eh, the jump [|vh|]E is odd with respect to the
midpoint of E. Therefore, ∫

E

[|vh|]E q dσ = 0(5.8)

for any even function q ∈ L1(E). Particularly, (5.8) holds for any q ∈ P2(E) vanishing
at the endpoints of E. This together with the definition of Vmod

h implies that (5.8)
holds for any q ∈ P2(E); i.e., the space Vmod

h satisfies the patch test of order 3.

Moreover, if (5.3) holds for any q̂ ∈ Pk(Êi) with some k > 1, then it is easy to show
that the basis functions ψE and χE satisfy the patch test of order k+1. Consequently,
the whole space Vmod

h then satisfies the patch test of order at least k + 1.
Let us mention that, denoting

Bh = span{bK,E}K∈Th, E∈Eh, E⊂∂K ,(5.9)

the space Vmod
h can also be written as

Vmod
h =

{
vh ∈ Vnc

h ⊕ Bh ;

∫
E

[|vh|]E q dσ = 0 ∀ q ∈ P2(E), E ∈ Eh
}
.

Therefore, the space Vmod
h can be regarded as the space Vnc

h enriched by the non-
conforming bubble functions bK,E and then restricted to the subspace of functions
satisfying the patch test of order 3.
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5.1. Properties of the modified method. As we required at the beginning,
the space Vmod

h is an edge-oriented nonconforming finite element space possessing
first order approximation properties with respect to | · |1,h. The supports of the basis
functions ψE , χE are contained in the supports of the basis functions ζE of Vnc

h , and
hence the space Vmod

h can be implemented using the same data structures as the space
Vnc
h . In addition, owing to (5.4), the space Vmod

h consists of piecewise continuous
functions which are continuous in the midpoints of inner edges and vanish in the
midpoints of boundary edges. This is a further feature common with the space Vnc

h .
However, as we have shown above, there is an immense difference in the behavior

of the solutions to the discrete problem (3.2) for these two spaces: Whereas no ε-
uniform convergence can be shown for the space Vnc

h , the space Vmod
h guarantees the

ε-uniform estimate (cf. (4.9))

|||u− uh||| ≤ C hmin{l,3/2} ‖u‖l+1,Ω , l = 1, 2 .(5.10)

Thus, for u ∈ H3(Ω), we get the optimal ε-uniform convergence order 3/2. Moreover,
numerical tests indicate that discretizations using the space Vmod

h are much more
accurate than those ones using the space Vnc

h (cf. section 7).
The price we pay for the ε-uniform estimate (5.10) is that dim Vmod

h = 2 dim Vnc
h

and that, consequently, the stiffness matrix corresponding to Vmod
h is generally four

times larger than the one corresponding to Vnc
h . However, this does not mean that

using the space Vmod
h is more expensive than using the space Vnc

h since typically a
prescribed accuracy can be attained with the space Vmod

h on much coarser meshes
than with the space Vnc

h .
The number of nonzero entries of the stiffness matrix corresponding to the space

Vmod
h can be reduced to about 80% by using functions b̂1, b̂2, b̂3 with disjoint interiors

of their supports (cf. Remark 5.1 below). In this case, the functions χE can be easily
eliminated from the discrete problem by static condensation. That halves the number
of unknowns and reduces the number of nonzero entries to about 65%.

The dimension of the space Vmod
h is asymptotically the same as for the noncon-

forming piecewise quadratic element [7]. Since this element has second order approx-
imation properties with respect to | · |1,h one would expect a faster convergence than

for the Pmod
1 element. However, the element of [7] satisfies the patch test of order 2

only, and hence the corresponding consistency error tends to zero with the ε-uniform
convergence order 1 (cf. the second term in (4.4)). Consequently, the ε-uniform con-
vergence order of the discrete solution is at most 1 in the convection dominated case,
whereas we have 3/2 for the Pmod

1 element. Note also that the Pmod
1 element is more

suitable for a parallel implementation than the element of [7].

Remark 5.1. Functions b̂1, b̂2, b̂3 with disjoint interiors of their supports men-
tioned above can be obtained in the following way. We divide the reference triangle K̂
into three subtriangles by connecting the barycenter of K̂ with the vertices of K̂ and
denote by K̂i the subtriangle adjacent to the edge Êi, i = 1, 2, 3. Then we require that
b̂i vanishes outside the subtriangle K̂i. On K̂i, the function b̂i can be defined, e.g., by
(5.5), where λ̂i+1 and λ̂i+2 are now considered as barycentric coordinates on K̂i with

respect to the endpoints of Êi. If we set Ĝ = {K̂1, K̂2, K̂3}, then all the assumptions
on b̂i made above are satisfied. Note that generally b̂i �∈ H2(K̂) so that the assumption
that finite element functions are piecewise H2 only with respect to a subdivision of Th
really has a practical importance.

Remark 5.2. In the discrete problem (3.2), inhomogenous Dirichlet boundary
conditions are represented by the condition uh − ihũb ∈ Vh. This is equivalent to
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uh − ũbh ∈ Vh, where ũbh ∈ H1,h(Ω) is any function satisfying ũbh − ihũb ∈ Vh.
Now let us consider the Pmod

1 element. If we extend the definitions of the global nodal
functionals IE, JE and the basis functions ψE, χE to boundary edges, then

ihũb =
∑
E∈Eh

IE(ihũb)ψE + JE(ihũb)χE .

Thus, the inhomogenous Dirichlet boundary conditions can be implemented by setting

ũbh =
∑
E∈Eb

h

IE(ihũb)ψE + JE(ihũb)χE .

It is easy to see that then ũbh does not depend on the choice of the extension ũb of ub.

5.2. Simple representation of the basis functions ψE and χE. Let us
close this section by returning to the example of b̂i given in (5.5) and rewriting the

formulas (5.6), (5.7) for this particular case. We denote by K and K̃ the two elements

adjacent to an edge E ∈ E ih and by λ1, λ2 and λ̃1, λ̃2 the barycentric coordinates on

K and K̃ with respect to the endpoints of E. Further, we respectively denote by λ3

and λ̃3 the remaining barycentric coordinates on K and K̃. Then

ψE =


1− 2λ3 − 10 (λ2

1 λ3 − λ1 λ
2
3)− 10 (λ2

2 λ3 − λ2 λ
2
3) in K,

1− 2 λ̃3 − 10 (λ̃2
1 λ̃3 − λ̃1 λ̃

2
3)− 10 (λ̃2

2 λ̃3 − λ̃2 λ̃
2
3) in K̃ \ E,

0 in Ω \ {K ∪ K̃},
and, after dividing by 10,

χE =


λ2

1 λ2 − λ1 λ
2
2 in K,

λ̃2
1 λ̃2 − λ̃1 λ̃

2
2 in K̃ \ E,

0 in Ω \ {K ∪ K̃}.
These basis functions were used in the numerical calculations presented in section 7.

6. Convergence of the piecewise linear part ulin
h of uh. Let us consider

the discrete problem (3.2) with Vh = Vmod
h . Then the discrete solution uh belongs to

Ṽnc
h ⊕ Bh, where

Ṽnc
h =

{
vh ∈ L2(Ω) ; vh|K ∈ P1(K) ∀ K ∈ Th ,

∫
E

[|vh|]E dσ = 0 ∀ E ∈ E ih
}

and Bh was defined in (5.9). Thus, uh can be uniquely decomposed into its piecewise

linear part ulin
h ∈ Ṽnc

h and its bubble part ubub
h ∈ Bh, i.e.,

uh = ulin
h + ubub

h .

We shall show that ulin
h converges to the weak solution with the same convergence

order as uh. First, let us prove the following orthogonality result.
Lemma 6.1. The spaces Ṽnc

h and Bh are orthogonal with respect to the H
1
0 (Ω)

inner product, i.e.,∑
K∈Th

(∇vh,∇bh)K = 0 ∀ vh ∈ Ṽnc
h , bh ∈ Bh .(6.1)
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Consequently,

|vh|21,h + |bh|21,h = |vh + bh|21,h ∀ vh ∈ Ṽnc
h , bh ∈ Bh .(6.2)

Moreover, for any element K ∈ Th and any a ∈ R
2, we have

‖a · ∇vh‖20,K + ‖a · ∇bh‖20,K = ‖a · ∇(vh + bh)‖20,K ∀ vh ∈ Ṽnc
h , bh ∈ Bh .(6.3)

Proof. For any vh ∈ Ṽnc
h , bh ∈ Bh, i, j ∈ {1, 2}, and K ∈ Th, we derive∫

K

∂vh
∂xi

∂bh
∂xj

dx = −
∫
K

∂2vh
∂xi ∂xj

bh dx+

∫
∂K

∂(vh|K)
∂xi

(n∂K)j bh|K dσ = 0 .

Hence we obtain (6.1) and also

(a · ∇vh,a · ∇bh)K = 0 ∀ vh ∈ Ṽnc
h , bh ∈ Bh, K ∈ Th, a ∈ R

2 .

The validity of (6.2) and (6.3) is then obvious.
With respect to the L2(Ω) norm, an analogous orthogonality result is generally not

available. Nevertheless, transforming the functions vh, bh onto the reference element
and using the equivalence of norms on finite-dimensional spaces, we can prove that

‖vh‖0,Ω + ‖bh‖0,Ω ≤ C ‖vh + bh‖0,Ω ∀ vh ∈ Ṽnc
h , bh ∈ Bh .(6.4)

Let the weak solution of (1.1) belong to H2(Ω). Then it follows from (6.2) that

|ulin
h − ihu|1,h ≤ |uh − ihu|1,h,(6.5)

and hence, with respect to | · |1,h, the function ulin
h approximates the piecewise linear

interpolate of u at least as well as uh. Moreover, we obtain the following result.
Theorem 6.2. Let u ∈ H2(Ω). Then

|u− ulin
h |1,h ≤ |u− uh|1,h + 2 |u− ihu|1,Ω ,(6.6)

‖u− ulin
h ‖0,Ω≤ C ‖u− uh‖0,Ω + C ‖u− ihu‖0,Ω ,(6.7)

|||u− ulin
h ||| ≤ C

(
1 + max

K∈Th
δ
1/2
K

)
(|||u− uh|||+ |||u− ihu|||) .(6.8)

Proof. Inequality (6.6) is a direct consequence of (6.5). Analogously, using (6.4),
we get (6.7). To prove (6.8), let us consider any K ∈ Th and any a ∈ R

2. Applying
(6.3), we deduce that

‖b · ∇(ihu− ulin
h )‖0,K ≤ ‖(b− a) · ∇(ihu− ulin

h )‖0,K + ‖a · ∇(ihu− uh)‖0,Ω
≤ ‖b− a‖0,∞,K (|ihu− ulin

h |1,K + |ihu− uh|1,K) + ‖b · ∇(ihu− uh)‖0,K .
Since infa∈R2 ‖b− a‖0,∞,K ≤ C hK |b|1,∞,K , it follows from (3.4) that

‖b · ∇(ihu− ulin
h )‖0,K ≤ C (‖ihu− ulin

h ‖0,K + ‖ihu− uh‖0,K) + ‖b · ∇(ihu− uh)‖0,K .
Now, using (6.6), (6.7), and the triangular inequality, we obtain (6.8).

The above estimates show that ulin
h converges to the weak solution with the same

convergence orders as uh and that the estimate of Theorem 4.2 remains valid for ulin
h .

Therefore, it is possible and for practical reasons sensible to consider the piecewise
linear part of uh as a discrete solution of (1.1).
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7. Numerical results. In this section, we present numerical results computed
using either the discretization (3.2) or a discretization obtained from (3.2) by replacing
askewh by aconv

h defined in (4.10). We used the Pnc
1 element (Vh = Vnc

h ) and the

Pmod
1 element (Vh = Vmod

h ) defined using b̂i given in (5.5). (We considered the basis
functions presented in subsection 5.2.) For the Pmod

1 element, we obtained almost
identical results for aconv

h and askewh , and therefore we show only results obtained for
the following three discretizations: aconv

h /Pnc
1 , askewh /Pnc

1 , and askewh /Pmod
1 .

The bilinear forms askewh and aconv
h were computed exactly, whereas the right-hand

side lh was evaluated using a quadrature formula which is exact for piecewise cubic
f . The arising linear systems were solved applying the GMRES method with ILU
preconditioning. The computations were terminated if the ratio of the norms of the
residuum and the right-hand side was smaller than 10−8.

Fig. 7.1. Type of triangulations used in numerical computations.

All presented computational results were obtained for Ω = (0, 1)2 discretized using
Friedrichs–Keller triangulations of the type depicted in Figure 7.1. We present results
obtained for h

.
= 7.07 · 10−2, h

.
= 3.54 · 10−2, h

.
= 1.77 · 10−2, and h

.
= 8.84 · 10−3,

which corresponds to 800, 3200, 12800, and 51200 elements, respectively. The errors
of the discrete solutions were measured in the norms ‖ · ‖0,Ω, | · |1,h, ||| · ||| and in
the discrete L∞ norm ‖ · ‖0,∞,h which is defined as the maximum of the errors in the
midpoints of edges. The evaluation of ‖ · ‖0,Ω (resp., | · |1,h) was exact for piecewise
quadratic (resp., cubic) functions. For the Pmod

1 element, we give the errors of the
piecewise linear part ulin

h of uh. (See section 6.) The convergence orders were always
computed using values from triangulations with h

.
= 1.77 · 10−2 and h

.
= 8.84 · 10−3.

The three discretizations were used to solve the convection-diffusion equation
(1.1) for three types of solutions specified in Examples 7.1–7.3 below. The parameter
δK was defined as in Remark 4.1 with κK = 1, κK = 0.25, and κK = 0.2, respectively.
Examples 7.1 and 7.2 are the same as in [11] and [12].

Example 7.1 (smooth polynomial solution). Let b = (3, 2), c = 2, and ub = 0.
For a given ε > 0, the right-hand side f is chosen such that

u(x, y) = 100x2 (1− x)2 y (1− y) (1− 2 y)

is the exact solution of (1.1); see Figure 7.2.
For ε = 1, we observed optimal convergence orders for all three discretizations,

and the errors of the discrete solutions were very similar. To investigate whether the
methods are ε-uniform, i.e., whether an estimate of the type

|||u− uh||| ≤ C hν ‖u‖
holds with C and ν independent of ε, we considered ε = hα for various values of α.
Tables 7.1–7.3 show results obtained for α = 4. We remark that the values of h
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Fig. 7.2. Exact solution of Example 7.1.

and ε are rounded in all the tables. The solutions of the discretization aconv
h /Pnc

1

converge with the optimal order 3/2 in the streamline diffusion norm ||| · |||, which is
in correspondence with subsection 4.1. Note, however, that on unstructured meshes
this optimal convergence order was not observed, which indicates that the constants
αh in (4.11) generally cannot be bounded from below by some α0 > 0 independent
of h. The influence of the consistency error rsh with respect to ε can clearly be seen
from Table 7.2: the solution of (3.2) with the Pnc

1 element does not converge in ||| · |||,
which is in agreement with Theorem 4.2. Table 7.3 shows that the Pmod

1 element leads
to best possible convergence orders which can be expected from a first order finite
element space. Particularly, we observe the convergence order 3/2 in the streamline

Table 7.1
Example 7.1; errors for aconv

h with the Pnc
1 element and ε = h4.

h ε ‖ · ‖0,Ω | · |1,h ||| · ||| ‖ · ‖0,∞,h

7.07−2 2.50−5 1.49−2 1.40+0 1.43−1 6.87−2
3.54−2 1.56−6 5.86−3 1.09+0 5.10−2 3.88−2
1.77−2 9.77−8 2.07−3 7.57−1 1.80−2 2.20−2
8.84−3 6.10−9 6.94−4 4.98−1 6.36−3 1.20−2
conv. order 1.58 0.60 1.50 0.88

Table 7.2
Example 7.1; errors for askewh with the Pnc

1 element and ε = h4.

h ε ‖ · ‖0,Ω | · |1,h ||| · ||| ‖ · ‖0,∞,h

7.07−2 2.50−5 4.56−1 4.29+1 7.79−1 1.89+0
3.54−2 1.56−6 4.32−1 8.66+1 7.43−1 1.71+0
1.77−2 9.77−8 4.27−1 1.78+2 7.09−1 1.47+0
8.84−3 6.10−9 4.37−1 3.72+2 6.86−1 1.53+0
conv. order −0.03 −1.06 0.05 −0.06

Table 7.3
Example 7.1; errors for askewh with the Pmod

1 element and ε = h4.

h ε ‖ · ‖0,Ω | · |1,h ||| · ||| ‖ · ‖0,∞,h

7.07−2 2.50−5 2.19−3 2.14−1 1.48−1 7.76−3
3.54−2 1.56−6 5.53−4 1.07−1 5.24−2 2.03−3
1.77−2 9.77−8 1.40−4 5.37−2 1.85−2 5.12−4
8.84−3 6.10−9 3.53−5 2.69−2 6.56−3 1.28−4
conv. order 1.99 1.00 1.50 2.00
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Table 7.4
Example 7.1; comparison between aconv

h with Pnc
1 and askewh with Pmod

1 for h
.
= 8.84 · 10−3.

‖ · ‖0,Ω | · |1,h ||| · ||| ‖ · ‖0,∞,hε
Pnc
1 Pmod

1 Pnc
1 Pmod

1 Pnc
1 Pmod

1 Pnc
1 Pmod

1

1−04 4.14−5 3.61−5 2.94−2 2.69−2 6.29−3 6.56−3 1.90−4 1.27−4
1−06 4.83−4 3.52−5 3.46−1 2.69−2 6.33−3 6.56−3 8.31−3 1.28−4
1−08 6.93−4 3.53−5 4.98−1 2.69−2 6.36−3 6.56−3 1.20−2 1.28−4
1−10 6.96−4 3.53−5 5.00−1 2.69−2 6.36−3 6.56−3 1.20−2 1.28−4

diffusion norm, which is again in agreement with our theory in section 4. The conver-
gence orders are better than for aconv

h /Pnc
1 and askewh /Pnc

1 , and the discrete solutions
obtained using the Pmod

1 element are in all cases more accurate than P nc
1 solutions.

Table 7.4 shows results obtained for various values of ε on a fixed triangulation. The
errors for askewh /Pmod

1 are almost independent of ε in all norms, whereas the errors for
aconv
h /Pnc

1 increase when ε decreases.
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Fig. 7.3. Exact solution of Example 7.2.

Example 7.2 (layers at the outflow part of the boundary). Let b = (2, 3) and
c = 1. For a given ε > 0, the right-hand side f and the boundary condition ub are
chosen such that

u(x, y) = x y2−y2 exp

(
2 (x− 1)

ε

)
−x exp

(
3 (y − 1)

ε

)
+exp

(
2 (x− 1) + 3 (y − 1)

ε

)
is the exact solution of (1.1). This function has boundary layers at x = 1 and y = 1;
see Figure 7.3.

All three discretizations gave identical errors in ||| · ||| with convergence order 1.00
and in | · |1,h with convergence order 0.50. The reduction of the convergence order

Table 7.5
Example 7.2; comparison between all three discretizations for ε = 10−8.

‖ · ‖0,Ω ‖ · ‖0,∞,h

h aconv
h askewh askewh aconv

h askewh askewh

Pnc
1 Pnc

1 Pmod
1 Pnc

1 Pnc
1 Pmod

1

7.07−2 1.32+0 7.54−1 8.72−2 9.21+0 3.65+0 6.08−1
3.54−2 1.92+0 8.23−1 6.22−2 1.89+1 4.74+0 6.37−1
1.77−2 2.74+0 8.70−1 4.42−2 3.84+1 5.72+0 6.52−1
8.84−3 3.89+0 8.98−1 3.13−2 7.72+1 6.50+0 6.60−1
order −0.50 −0.05 0.50 −1.01 −0.18 −0.02
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Table 7.6
Example 7.2; errors for aconv

h with the Pnc
1 element and ε = 10−8.

h ‖ · ‖∗0,Ω | · |∗1,h ||| · |||∗ ‖ · ‖∗0,∞,h

7.07−2 2.53−2 2.83+0 2.99−2 1.93−1
3.54−2 9.20−4 2.03−1 2.87−3 9.07−3
1.77−2 9.75−5 4.02−2 9.62−4 2.93−4
8.84−3 2.42−5 1.99−2 3.39−4 7.14−5
order 2.01 1.01 1.50 2.04

Table 7.7
Example 7.2; errors for askewh with the Pnc

1 element and ε = 10−8.

h ‖ · ‖∗0,Ω | · |∗1,h ||| · |||∗ ‖ · ‖∗0,∞,h

7.07−2 3.09−1 3.47+1 3.36−1 1.31+0
3.54−2 3.13−1 6.98+1 3.22−1 1.33+0
1.77−2 3.14−1 1.40+2 3.19−1 1.31+0
8.84−3 3.15−1 2.80+2 3.18−1 1.31+0
order 0.00 −1.00 0.00 0.00

Table 7.8
Example 7.2; errors for askewh with the Pmod

1 element and ε = 10−8.

h ‖ · ‖∗0,Ω | · |∗1,h ||| · |||∗ ‖ · ‖∗0,∞,h

7.07−2 1.69−3 3.54−2 1.48−2 1.74−2
3.54−2 4.05−5 8.80−3 2.78−3 4.37−4
1.77−2 8.63−6 4.37−3 9.79−4 2.93−5
8.84−3 2.16−6 2.19−3 3.46−4 7.37−6
order 2.00 1.00 1.50 1.99

is caused by the interpolation error in the boundary layer region since the thickness
of the layers is smaller than h for all triangulations used. The errors in ‖ · ‖0,Ω and
‖ · ‖0,∞,h are shown in Table 7.5. The errors for aconv

h /Pnc
1 increase for decreasing h

and the errors for askewh /Pnc
1 do not change significantly. For askewh /Pmod

1 , the discrete
solution converges in ‖ · ‖0,Ω with order 0.50. Since the boundary layer is not resolved
by the mesh, no convergence is observed in the maximum norm.

The streamline diffusion method with conforming finite element approximations
is known to approximate solutions with layers on nonlayer-adapted meshes at least
outside the layers very precisely. Tables 7.6–7.8 show the behavior of the discrete so-
lutions outside the boundary layers in the domain Ω∗ = (0, 0.8)2. The discretizations
aconv
h /Pnc

1 and askewh /Pmod
1 give optimal convergence orders, but askewh /Pmod

1 is about
10 times more accurate than aconv

h /Pnc
1 in all norms except for ||| · |||. Table 7.7 shows

that the discretization askewh /Pnc
1 is completely useless.

Example 7.3 (inner and boundary layers). We set b = (1/2,
√
3/2), c = 0,

f = 0, and

ub(x, y) =

{
0 for x ≥ 1/2 or y = 1,

1 else.

For ε→ 0, the solution u of (1.1) tends to the function

u0(x, y) =

{
0 for y ≤ √3 (x− 1/2),

1 else,
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Fig. 7.4. Solution of Example 7.3 for h
.
= 3.54 · 10−2.

which is the solution of the hyperbolic limit of (1.1). Thus, for small ε, the solution u
has an inner layer along the line y =

√
3 (x − 1/2) and boundary layers along y = 1

and x = 1, y >
√
3/2. We consider ε = 10−6 below.

This example does not fit into the theory presented in this paper, particularly
since ub �∈ H3/2(∂Ω). However, it is a challenging test case which can indicate the
quality of numerical methods for solving (1.1).
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Fig. 7.5. Example 7.3; errors larger than
0.01 for h

.
= 1.77 · 10−2.

Fig. 7.6. Example 7.3; region of errors
larger than 0.1 for h

.
= 8.84 · 10−3.

Figures 7.4–7.6 show results computed using the discrete problem (3.2) with the
Pmod

1 element. Instead of showing the discontinuous solution uh directly, we present a

corresponding conforming function ũh ∈ Ṽconf
h such that the value of ũh at any inner

vertex is equal to the arithmetic mean value of the values of uh at the midpoints of
edges connected with this vertex. The errors of ũh in Figures 7.5 and 7.6 were com-
puted using the limit solution u0. We see that inner and boundary layers are detected
very well and that the method behaves in a robust way, although the assumptions
made in section 1 are not satisfied.

We can conclude that in all numerical tests we have performed, the Pmod
1 element

always led to optimal convergence orders and behaved very robustly with respect to
ε. The accuracy of solutions obtained using the Pmod

1 element was always better than
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for the Pnc
1 element and, moreover, the iterative solver used to compute the discrete

solutions converged much faster for the Pmod
1 element than for discretizations using

the Pnc
1 element. Thus, the Pmod

1 element not only improves the stability of the
discrete solution but also the convergence properties of the solver.
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Abstract. In this article we consider the numerical approximation to the time-dependent vis-
coelasticity equations with an Oldroyd B constitutive equation. The approximation is stabilized by
using a streamline upwind Petrov–Galerkin (SUPG) approximation for the constitutive equation. We
analyze both the semidiscrete and fully discrete numerical approximations. For both discretizations
we prove the existence of, and derive a priori error estimates for, the numerical approximations.
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1. Introduction. Accurate numerical simulations of time-dependent viscoelas-
tic flows are important to the understanding of many phenomena in non-Newtonian
fluid mechanics, particularly those associated with flow instabilities. Aside from [3],
previous numerical analysis in this area has been for steady-state flows.

In the case of Newtonian fluid flow, the assumption that the extra stress ten-
sor is proportional to the deformation tensor allows the stress to be eliminated from
the modeling equations, giving the Navier–Stokes equations. In viscoelasticity, as-
suming an Oldroyd B-type fluid, the stress is defined by a (hyperbolic) differential
constitutive equation. Very different from computational fluid dynamics simulations,
in viscoelasticity, because of a “slow flow” assumption, the nonlinearity in the mo-
mentum equation is often neglected. The difficulty in performing accurate numerical
computations arises from the hyperbolic character of the constitutive equation, which
does not contain a dissipative (stabilizing) term for the stress. Care must be used in
discretizing the constitutive equation to avoid the introduction of spurious oscillations
into the approximation.

The first error analysis for the steady-state finite element (FE) approximation of
viscoelastic fluid was presented by Baranger and Sandri [2]. In [2] a discontinuous
FE formulation was used for the discretization of the constitutive equation, with
the approximation for the stress being discontinuous. Motivated by implementation
considerations, Najib and Sandri in [12] modified the discretization in [2] to obtain a
decoupled system of two equations, showed the algorithm was convergent, and derived
a priori error estimates. In [14], Sandri presented an analysis of an FE approximation
to this problem, wherein the constitutive equation was discretized using a streamline
upwind Petrov–Galerkin (SUPG) method. For the constitutive equation discretized
using the method of characteristics, Baranger and Machmoum in [1] analyzed this
approach and gave error estimates for the approximations.

For the analysis of the time-dependent problem, Baranger and Wardi [3] studied
a discontinuous Galerkin (DG) approximation to inertialess flow in R

2, using tech-
niques similar to those used for the steady-state problem. With the Hood–Taylor
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FE pair used to approximate the velocity and pressure and a discontinuous linear
approximation for the stress, they showed, under the assumption ∆t ≤ C1h

3/2, that
the discrete H1 and L2 errors for the velocity and stress, respectively, were bounded
by C(∆t + h3/2).

In this paper we analyze the SUPG approximation to the time-dependent equa-

tions in R
d́, d́ = 2, 3. For the fully discrete analysis we extend the approach used in

[11] for compressible Navier–Stokes equations to non-Newtonian flow. For ν denot-
ing the SUPG coefficient, and assuming Hood–Taylor FE pair approximation for the
velocity and pressure, and a continuous FE approximation for the viscoelastic stress,

under the assumption ∆t, ν ≤ C1h
d́/2, we obtain that the discrete H1 and L2 errors

for the velocity and stress, respectively, are bounded by C(∆t + ν + h2).
This paper is organized as follows. A description of the modeling equations is

presented in section 2. Section 3 contains a description of the mathematical nota-
tion and several lemmas used in the analysis. The semidiscrete and fully discrete
approximations are then presented and analyzed in sections 4 and 5, respectively.

2. The Oldroyd B model and the approximating system. In this section
we describe the modeling equations for viscoelastic fluid flow (see also [2]).

2.1. The problem. Consider a fluid flowing in a bounded, connected domain

Ω ∈ Rd́. The boundary of Ω, ∂Ω is assumed to be Lipschitzian. The vector n
represents the outward unit normal to ∂Ω. The velocity vector is denoted by u,
pressure by p, total stress by T, and extra stress by τ . For ease of notation, we use
the convention of summation on repeated indices and denote differentiation with a
comma. For example, ∂u

∂xi
is written u,i. Then for a tensor τ and a vector w, ∇ · τ

denotes τij,j , and w · ∇ denotes the operator wi
∂
∂xi

. The deformation tensor, D(u),
and the vorticity tensor, W (u), are given by

D(u) =
1

2

(∇u+ (∇u)T ) , W (u) =
1

2

(∇u− (∇u)T ) .
The Oldroyd model can be described using an objective derivative [2], denoted by

∂̂σ/∂t, where

∂̂σ

∂t
:=
∂σ

∂t
+ u · ∇σ + ga(σ,∇u), a ∈ [−1, 1],

and

ga(σ,∇u) := σW (u)−W (u)σ − a(D(u)σ + σD(u))
=

1− a
2

(
σ∇u+ (∇u)Tσ)− 1 + a

2

(
(∇u)σ + σ(∇u)T ) .

Oldroyd’s model for stress employs a decomposition of the extra stress into two parts:
a Newtonian part and a viscoelastic part. Thus τ = τN + τV . The Newtonian part is
given by τN = 2(1 − α)D(u). The (1 − α) represents that part of the total viscosity
which is considered Newtonian. Hence α ∈ (0, 1) represents the proportion of the total
viscosity that is considered to be viscoelastic in nature. For example, if a polymer is
immersed within a Newtonian carrier fluid, α is related to the percentage of polymer
in the mix. The constitutive law is (see [2])

τV + λ
∂̂τV
∂t
− 2αD(u) = 0,(2.1)
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where λ is the Weissenberg number, which is a dimensionless constant defined as the
product of the relaxation time and a characteristic strain rate [4]. For notational sim-
plicity, the subscript V is dropped, and τ will be used below to denote the viscoelastic
component of the extra stress.

The momentum balance for the fluid is given by

Re

(
du

dt

)
= −∇p+∇ · (2(1− α)D(u) + τ) + f ,(2.2)

where Re is the Reynolds number, f the body forces acting on the fluid, and du/dt is
the material derivative. Recall that

Re =
LV ρ

µ
, L = characteristic length scale,

V = characteristic velocity scale,

ρ = fluid density,

µ = fluid viscosity.

In addition to (2.1) and (2.2) we also have the incompressibility condition

∇ · u = 0 in Ω.

To fully specify the problem, appropriate boundary conditions must also be given.
The simplest such condition is the homogeneous Dirichlet condition for velocity. In
this case, there is no inflow boundary, and, thus, no boundary condition is required
for stress. Summarizing, the modeling equations are

Re

(
∂u

∂t
+ u · ∇u

)
+∇p− 2(1− α)∇ ·D(u)−∇ · τ = f in Ω,(2.3)

τ + λ

(
∂τ

∂t
+ u · ∇τ + ga(τ,∇u)

)
− 2αD(u) = 0 in Ω,(2.4)

∇ · u = 0 in Ω,(2.5)

u = 0 on ∂Ω,(2.6)

u(0,x) = u0(x) in Ω,(2.7)

τ(0,x) = τ0(x) in Ω.(2.8)

In [8], Guillope and Saut proved the following for the “slow-flow” model of (2.3)–(2.8)
(i.e., the u · ∇u term in (2.3) is ignored):

1. local existence, in time, of a unique, regular solution, and
2. under a small data assumption on f , f ′,u0, τ0, the global existence (in time)

of a unique solution for u and τ .
In contrast to the Navier–Stokes equations, well-posedness for general models in vis-
coelasticity is still not well understood. Results which are known fall into one of three
types [13]:

1. for initial value problems, solutions have been shown to exist locally in time,
2. global existence (in time) of solutions if the initial conditions are small per-

turbations of the rest state, and
3. for steady-state problems, existence of solutions which are small perturbations

of the analogous Newtonian case.
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2.2. The variational formulation. In this section, we develop the variational
formulation of (2.3)–(2.6). The following notation will be used. The L2(Ω) norm and
inner product will be denoted by ‖·‖ and (·, ·). Likewise, the Lp(Ω) norms and the
Sobolev W k

p (Ω) norms are denoted by ‖·‖Lp and ‖·‖Wk
p
, respectively. For the semi-

norm in W k
p (Ω) we use | · |Wk

p
. Hk is used to represent the Sobelev space W k

2 , and

‖·‖k denotes the norm in Hk. The following function spaces are used in the analysis:

Velocity space : X := H1
0 (Ω) :=

{
u ∈ H1(Ω) : u = 0 on ∂Ω

}
,

Stress space : S :=
{
τ = (τij) : τij = τji; τij ∈ L2(Ω); 1 ≤ i, j ≤ 3

}
∩{τ = (τij) : u · ∇τ ∈ L2(Ω),∀u ∈ X} ,

Pressure space : Q := L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω

q dx = 0

}
,

Divergence-free space : Z :=

{
v ∈ X :

∫
Ω

q(∇ · v) dx = 0, ∀ q ∈ Q
}
.

The variational formulation of (2.3)–(2.6) proceeds in the usual manner. Taking the
inner product of (2.3), (2.4), and (2.5) with a velocity test function, a stress test
function, and a pressure test function, respectively, we obtain

(2.9)

Re

(
∂u

∂t
+ u · ∇u,v

)
− (p,∇ · v) + (2(1− α)D(u) + τ,D(v)) = (f ,v) ∀ v ∈ X,(

τ + λ

(
∂τ

∂t
+ u · ∇τ + ga(τ,∇u)

)
− 2αD(u), ψ

)
= 0 ∀ ψ ∈ S,(2.10)

(∇ · u, q) = 0 ∀ q ∈ Q.(2.11)

The space Z is the space of weakly divergence-free functions. Note that the condition

(∇ · u, q) = 0 ∀ q ∈ Q, u ∈ X,
is equivalent in a “distributional” sense to

(u,∇q) = 0 ∀ q ∈ Q, u ∈ X,(2.12)

where in (2.12), (·, ·) denotes the duality pairing between H−1 and H1
0 functions.

In addition, note that the velocity and pressure spaces X and Q satisfy the inf-sup
condition

inf
q∈Q

sup
v∈X

(q,∇ · v)
‖q‖ ‖v‖1

≥ β > 0.(2.13)

Since the inf-sup condition (2.13) holds, an equivalent variational formulation to (2.9)–
(2.11) is the following: Find (u, τ) : [0, T ] → X × S such that

Re

(
∂u

∂t
+ u · ∇u,v

)
+ (2(1− α)D(u) + τ,D(v)) = (f ,v) ∀ v ∈ Z,(2.14) (

τ + λ

(
∂τ

∂t
+ u · ∇τ + ga(τ,∇u)

)
− 2αD(u), ψ

)
= 0 ∀ ψ ∈ S.(2.15)

Before discussion of the numerical approximation of (2.14), (2.15), we summarize
the mathematical notation and interpolation properties used in the analysis.
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3. Mathematical notation. In this section the mathematical framework and
approximation properties are summarized.

Let Ω ⊂ R
d́(d́ = 2, 3) be a polygonal domain, and let Th be a triangulation of Ω

made of triangles (in R
2) or tetrahedrals (in R

3). Thus, the computational domain is
defined by

Ω =
⋃
K, K ∈ Th.

We assume that there exist constants c1, c2 such that

c1h ≤ hK ≤ c2ρK ,

where hK is the diameter of triangle (tetrahedral) K, ρK is the diameter of the
greatest ball (sphere) included in K, and h = maxK∈Th

hK . Let Pk(A) denote the
space of polynomials on A of degree no greater than k. Then we define the FE spaces
as follows:

Xh :=
{
v ∈ X ∩ C(Ω̄)d́ : v|K ∈ Pk(K) ∀K ∈ Th

}
,

Sh :=
{
σ ∈ S ∩ C(Ω̄)d́×d́ : σ|K ∈ Pm(K) ∀K ∈ Th

}
,

Qh :=
{
q ∈ Q ∩ C(Ω̄) : q|K ∈ Pq(K) ∀K ∈ Th

}
,

Zh := {v ∈ Xh : (q,∇ · v) = 0 ∀q ∈ Qh} ,

where C(Ω̄)d́ denotes a vector valued function with d́ components continuous on Ω̄.
Analogous to the continuous spaces, we assume that Xh and Qh satisfy the discrete
inf-sup condition

inf
q∈Qh

sup
v∈Xh

(q,∇ · v)
‖q‖ ‖v‖1

≥ β > 0.(3.1)

We summarize several properties of FE spaces and Sobolev’s spaces which we will

use in our subsequent analysis. For (u, p) ∈ Hk+1(Ω)d́ ×Hq+1(Ω) we have (see [7])
that there exists (U ,P) ∈ Zh ×Qh such that

‖u− U‖ ≤ CIhk+1|u|Wk+1
2
,(3.2)

‖u− U‖W 1
2
≤ CIhk|u|Wk+1

2
,(3.3)

‖p− P‖ ≤ CIhq+1|p|W q+1
2
.(3.4)

Let T ∈ Sh be a P1 continuous interpolant of τ . For τ ∈ Hm+1(Ω)d́×d́ we have
that

‖τ − T ‖ + h|τ − T |W 1
2
≤ CIhm+1‖τ‖Wm+1

2
,(3.5)

‖τ − T ‖L4 + h|τ − T |W 1
4
≤ CIhm+1−d́/4‖τ‖Wm+1

2
.(3.6)

From [5], we have the following results.
Lemma 3.1. Let {Th}, 0 < h ≤ 1, denote a quasi-uniform family of subdi-

visions of a polyhedral domain Ω ⊂ R
d́. Let (K̂, P,N) be a reference finite ele-

ment such that P ⊂ W l
p(K̂) ∩ Wm

q (K̂), where 1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞, and
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0 ≤ m ≤ l. For K ∈ Th, let (K,PK , NK) be the affine equivalent element, and
Vh = {v : v is measurable and v|K ∈ PK∀K ∈ Th}. Then there exists C = C(l, p, q)
such that [ ∑

K∈Th

‖v‖p
W l

p(K)

]1/p

≤ C hm−l+min(0, d́
p− d́

q )

[ ∑
K∈Th

‖v‖qWm
q (K)

]1/q

(3.7)

for all v ∈ Vh.
Lemma 3.2. Let Ih denote the interpolant of v. Then for all v ∈Wm

p (Ω)∩Cr(Ω)
and 0 ≤ s ≤ min{m, r + 1},

‖v − Ih‖s,∞ ≤ C hm−s−d́/p |v|Wm
p
.(3.8)

When v(x, t) is defined on the entire time interval (0, T ), we define

‖v‖∞,k := sup
0<t<T

‖v(·, t)‖k,

‖v‖0,k :=
(∫ T

0

‖v(·, t)‖2k dt
)1/2

.

For the analysis of the fully discrete approximation, we use ∆t to denote the step
size for t so that tn = n∆t, n = 0, 1, 2, . . . , N , and define

fn := f(n∆t) and dtf :=
f(tn)− f(tn−1)

∆t
.(3.9)

We also use the following additional norms:

|‖v‖|∞,k := max
1≤n≤N

‖vn‖k ,

|‖v‖|0,k :=
[
N∑
n=1

∆t ‖vn‖2k
]1/2

.

4. Semidiscrete approximation. In this section we present the analysis of a
semidiscrete approximation to (2.14), (2.15). We begin by introducing some notation
specific to the semidiscrete approximation and cite some lemmas used in the analysis.

For σu := σ + νhu · ∇σ we define

A(w, (u, τ), (v, ψ)) := (τ, ψw)− 2α(D(u), ψw) + 2α(τ,D(v))(4.1)

+ α(1− α)(∇u,∇v),
B(u,v, τ, σ) := (u · ∇τ, σv) +

1

2
(∇ · u τ, σ),(4.2)

c(w,u,v) := (w · ∇u,v),(4.3)

c̃(w,u,v) :=
1

2
(c(w,u,v)− c(w,v,u)) .(4.4)

Lemma 4.1 (see [10]). For u,v,w ∈ X, there exists a constant C1 such that

|c̃(u,v,w)| ≤ C1 ‖u‖1/2 ‖∇u‖1/2 ‖∇v‖1/2 ‖∇w‖1/2 .(4.5)
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Note the following:
(i) c̃(u,v,w) = c(u,v,w) when ∇ · u = 0 in Ω, and u = 0 on ∂Ω.
(ii) c̃(u,v,v) = 0, even when ∇ · u �= 0.
(iii) For u ∈ X, from the Poincaré–Friedrichs inequality we have that there exists

a constant CPF = C(Ω) such that ‖u‖2 ≤ C2
PF ‖∇u‖2 .

The operators A(·, (·, ·), (·, ·)) : X× (X×H1(Ω)n×n)× (X×H1(Ω)n×n)→ R and
B(·, ·, ·, ·) : X ×X ×H1(Ω)n×n ×H1(Ω)n×n → R are the same as those used in [2],
[14]. When u = v, we omit the second variable in B(·, ·, ·, ·).

Lemma 4.2. We have that

B(u, τ, τ) = νh(u · ∇τ,u · ∇τ).(4.6)

Proof. On integrating (u · ∇τ, σ) by parts we have

B(u,v, τ, σ) := − (u · ∇σ, τ) + ν h (u · ∇τ,v · ∇σ) − 1

2
(∇ · uσ, τ).(4.7)

Setting v = u, σ = τ , and combining (4.2) and (4.7), the stated result follows.
Lemma 4.3. For w ∈ X, (u, τ) ∈ X × S and h sufficiently small, we have

A(w, (u, τ), (u, τ)) + λB(w, τ, τ) ≥ CA(‖τ‖2 + ‖u‖21).

Proof. Using the definitions of A and B, we obtain

A(w, (u, τ), (u, τ)) + λB(w, τ, τ) = ‖τ‖2 + (τ, νhw · ∇τ) − 2α(D(u), τ)

− 2α(D(u), νhw · ∇τ) + 2α(τ,D(u)) + α(1− α)‖∇u‖2
+λνh‖w · ∇τ‖2

≥ ‖τ‖2 + α(1− α)‖∇u‖2 + λνh ‖w · ∇τ‖2 − 1

2
‖τ‖2

− 1

2
ν2h2 ‖w · ∇τ‖2 − 1

2
α(1− α)‖∇u‖2 − αν2h2

2(1− α)‖w · ∇τ‖
2

≥ 1

2
‖τ‖2 + α(1− α)

2
‖∇u‖2 +

(
λνh − ν2h2

2
− αν2h2

2(1− α)
)
‖w · ∇τ‖2(4.8)

≥ CA
(‖τ‖2 + ‖u‖21)

for h sufficiently small, using (iii).
Now we define the semidiscrete approximation of (2.14), (2.15) as

Find (uh, τh) : [0, T ] → Xh × Sh such that

(4.9)

Re (uh t,v) +Re c̃(uh,uh,v) + (1− α)(∇uh,∇v) + (τh, D(v)) = (f ,v) ∀ v ∈ Zh,
(4.10)

λ (τh t, σ) + λB(uh, τh, σ) + λ(ga(τh,∇uh), σuh
) + (τh, σuh

)− 2α(D(uh), σuh
) = 0

∀ σ ∈ Sh.

4.1. Analysis of the semidiscrete approximation. In this section, we show
that, under suitable conditions, a unique solution to the discretized system exists.
Fixed point theory is used to establish the desired result. The proof is established
using the following four steps:
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1. Define an iterative map in such a way that a fixed point of the map is a
solution to (4.9), (4.10).

2. Show that the map is well defined and bounded on bounded sets.
3. Show that there exists an invariant ball on which the map is a contraction.
4. Apply Schauder’s fixed point theorem to establish the existence and unique-

ness of the discrete approximation.
Theorem 4.4. Assume that the system (2.3)–(2.8) (and thus (2.14)–(2.15)) has

a solution (u, τ,p) ∈ L2(0, T ;Hk+1)×L∞(0, T ;Hm+1)×L2(0, T ;Hq+1). In addition

assume that k,m ≥ d́/2, and

‖∇u‖∞, ‖τ‖∞, ‖∇τ‖∞, ‖u‖k+1, ‖τ‖m+1, ‖p‖q+1 ≤ D0 ∀t ∈ [0, T ].(4.11)

Then for D0 and h sufficiently small, there exists a unique solution to (4.9)–(4.10)
satisfying ∫ T

0

(‖u− uh‖2 + ‖∇(u− uh)‖2
)
dt ≤ Chmin{k,m,q+1},(4.12)

sup
0≤t≤T

‖τ − τh‖ ≤ Chmin{k,m,q+1}.(4.13)

Proof. Step 1. The iterative map. A mapping ξ : L2(0, T ;Zh) × L∞(0, T ;Sh) →
L2(0, T ;Zh)× L∞(0, T ;Sh) is defined via (u2, τ2) = ξ(u1, τ1), where (u2, τ2) satisfies

(4.14)

Re (u2 t,v) + Re c̃(u1,u2,v) + (1− α)(∇u2,∇v) + (τ2, D(v)) = (f ,v) ∀ v ∈ Zh,
(4.15)

λ(τ2 t, σ) + λB(u1, τ2, σ) + (τ2, σu1
)− 2α(D(uh), σu1

) = −λ(ga(τ1,∇u1), σu1
)

∀ σ ∈ Sh.

Thus, given an initial guess (uh, τh) ≈ (u1, τ1), solving (4.14), (4.15) for (u2, τ2) gives
a new approximation to the solution. Also, it is clear that a fixed point of (4.14),
(4.15) is a solution to the approximating system (4.9), (4.10) (i.e., ξ(u1, τ1) = (u1, τ1)
implies that (u1, τ1) is a solution to (4.9), (4.10)).
Step 2. Show that ξ is well defined and bounded on bounded sets. Note that

(4.14), (4.15) corresponds to a first order system of ODEs for the FEM (finite element
method) coefficients cu2 and cτ2 of u2 and τ2, respectively. That is, (4.14), (4.15) is
equivalent to [

A11 0
0 A22

] [
cu2

cτ2

]′
= F(t, cu2

, cτ2),

where

F(t, cu2
, cτ2) =

[
(f ,v) −Re c̃(u1,u2,v) − (1− α)(∇u2,∇v) − (τ2, D(v))

−λ(ga(τh,∇uh), σu1) − λB(u1, τ2, σ) − (τ2, σu1) + 2α(D(uh), σu1)

]
,

and A11 and A22 are “mass” (invertible) matrices.
Note that F : [0, T ] × R

dim(cu2 ) × R
dim(cτ2 ) → R

dim(cu2 ) × R
dim(cτ2 ) is a linear

function with respect to the FEM coefficients cu2 , cτ2 . Thus, for f(t) a continuous
function of t, we have that F is Lipschitz continuous. Then, from ODE theory (see
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[6]), we are guaranteed that there exists a unique local solution for (cu2
, cτ2), and

hence for (u2, τ2).
Next, to establish the existence of (u2, τ2) on [0, T ], we show that it remains

bounded in the appropriate norms on that interval.
Multiplying (4.14) through by 2α and adding the result to (4.15), (u2, τ2) is

equivalently determined via

2αRe(u2 t,v) + 2αRec̃(u1,u2,v) +A(u1, (u2, τ2), (v, σ)) + λ(τ2 t, σ) + λB(u1, τ2, σ)

= 2α(f ,v)− λ(ga(τ1,∇u1), σu1) ∀ (v, σ) ∈ Zh × Sh.(4.16)

Choosing v = u2, σ = τ2 in (4.16) and using (ii) and (4.8) implies

αRe ‖u2‖2t +
λ

2
‖τ2‖2t +

1

2
‖τ2‖2 + α(1− α)

2
‖∇u2‖2

+

(
λνh − ν2h2

(
1

2
+

α

2(1− α)
))
‖u1 · ∇τ2‖2

≤ 2α‖f‖−1‖u2‖1 + λ‖ga(τ1,∇u1)‖ (‖τ2‖ + νh ‖u1 · ∇τ2‖)
≤ 2(1 + C2

PF )

(1− α) ‖f‖2−1 +
α2(1− α)

2
‖∇u2‖2 + λ2‖ga(τ1,∇u1)‖2

+
1

2
‖τ2‖2 +

ν2h2

2
‖u1 · ∇τ2‖2.(4.17)

Thus for c1 = min{αRe, λ/2} and the restriction νh ≤ 2λ(1− α)/(2− α),
d

dt

(‖u2‖2 + ‖τ2‖2
) ≤ 2(1 + C2

PF )

c1(1− α) ‖f‖
2
−1 +

λ2

c1
‖ga(τ1,∇u1)‖2.

Hence for 0 ≤ t ≤ T ,

‖u2‖2(t) + ‖τ2‖2(t) ≤ ‖u2‖2(0) + ‖τ2‖2(0) + 2(1 + C2
PF )

c1(1− α) ‖f‖
2
0,−1

+
λ2 d́2

c1
‖τ1‖2∞,∞ ‖∇u1‖20,0.(4.18)

By the equivalence of norm in finite dimensional spaces (and u2(0) = u1(0), τ2(0) =
τ1(0)), we therefore have that (u2, τ2) ∈ L2(0, T ;Zh)× L∞(0, T ;Sh).

Note that (4.18) also establishes that the mapping ξ is bounded on bounded sets.
Step 3. Existence of an invariant ball for ξ. We begin by defining an invariant

ball. Let R = c∗hmin{k,m,q+1} for 0 < c∗ < 1, and define the ball Bh as

Bh :=

{
(v, σ) ∈ L2(0, T ;Zh)× L∞(0, T ;Sh) :

∫ T

0

‖u− v‖2 + ‖∇(u− v)‖2 dt ≤ R2, sup
0≤t≤T

‖τ − σ‖ ≤ R
}
.(4.19)

The exact solution (u, p, τ) of (2.9)–(2.11) satisfies

2αRe (ut,v) + 2αRe c̃(u,u,v) + A(u1, (u, τ), (v, σ)) + λ (τt, σ) + λB(u,u1, τ, σ)

= 2α(p,∇ · v) + 2α(f ,v)− λ(ga(τ,∇u), σu1
) ∀ (v, σ) ∈ Z × S.(4.20)
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Subtracting (4.16) from (4.20) implies that

2αRe ((u− u2)t,v) + 2αRe c̃(u,u,v) − 2αRe c̃(u1,u2,v)

+A(u1, (u− u2, τ − τ2), (v, σ))
+λ ((τ − τ2)t, σ) + λB(u1, (τ − τ2), σ)

= 2α(p,∇ · v) − λ ((ga(τ,∇u), σu1)− (ga(τ1,∇u1), σu1))

−λB(u,u1, τ, σ) + λB(u1, τ, σ) ∀ (v, σ) ∈ Zh × Sh.(4.21)

Let

Λ := u− U , E := U − u2,(4.22)

Γ := τ − T , F := T − τ2,(4.23)

and εu := Λ + E = u− u2, ετ := Γ + F = τ − τ2.(4.24)

Rewriting (4.21) using these definitions, along with the choice σ = F , v = E, we
obtain

2αRe (Et, E) + 2αRe c̃(u,u, E) − 2αRe c̃(u1,u2, E) + A(u1, (E,F ), (E,F ))

+λ (Ft, F ) + λB(u1, F, F )

= −2αRe (Λt, E) − A(u1, (Λ,Γ), (E,F )) − λ (Γt, F ) − λB(u1,Γ, F )

+ 2α(p,∇ · E) − λ ((ga(τ,∇u), Fu1)− (ga(τ1,∇u1), Fu1))

−λB(u,u1, τ, F ) + λB(u1, τ, F ).(4.25)

We now proceed to bound E in terms of F, u, and u1. For the c̃ terms we have

c̃(u,u, E) − c̃(u1,u2, E) = c̃(u− u1,u, E) + c̃(u1,u− u2, E)

= c̃(u− u1,u, E) + c̃(u1, E + Λ, E)

= c̃(u− u1,u, E) + c̃(u1,Λ, E) (using (4)).(4.26)

We estimate the first term on the right-hand side (rhs) of (4.26) by

|c̃(u− u1,u, E)| ≤ C1 ‖u− u1‖1/2‖∇(u− u1)‖1/2‖∇u‖‖∇E‖ (using (4.5))

≤ ε1‖∇E‖2 +
C2

1

4ε1
‖u− u1‖‖∇(u− u1)‖‖∇u‖2.(4.27)

For the second term on the rhs of (4.26),

|c̃(u1,Λ, E)| ≤ | − c̃((u− u1),Λ, E)| + |c̃(u,Λ, E)|
≤ C1 ‖u− u1‖1/2‖∇(u− u1)‖1/2‖∇Λ‖‖∇E‖ + C2‖u‖∞‖∇Λ‖‖∇E‖
≤ ε3‖∇E‖2 +

C2
1

4ε3
‖u− u1‖21‖∇Λ‖2 + ε4‖∇E‖2 +

C2
2

4ε4
‖u‖2∞‖∇Λ‖2.(4.28)

In view of the estimates (4.8) and (4.6), we proceed next to consider the terms
on the rhs of (4.25):

(Λt, E) ≤ ‖Λt‖‖E‖ ≤ ε5‖∇E‖2 +
C2
PF

4ε5
‖Λt‖2,(4.29)

(Γt, F ) ≤ ‖Γt‖‖F‖ ≤ ε6‖F‖2 +
1

4ε6
‖Γt‖2.(4.30)
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For the pressure term we have

2α |(p,∇ · E)| = 2α |((p− P),∇ · E)| ≤ 2α ‖p− P‖‖∇ · E‖
≤ 2αd́1/2 ‖p− P‖‖∇E‖

≤ α
2d́

ε7
‖p− P‖2 + ε7‖∇E‖2.(4.31)

Writing out the A term on the rhs of (4.25), we have the terms

A(u1, (Λ,Γ), (E,F )) = (Γ, Fu1
)− 2α(D(Λ), Fu1

)+ 2α(Γ, D(E))+α(1−α)(∇Λ,∇E).
(4.32)
For the first term in A we obtain

(Γ, Fu1) = (Γ, F ) + (Γ, νhu1 · ∇F )
= ‖Γ‖ ‖F‖ + ‖Γ‖ νh ‖u1 · ∇F‖
= ε8‖F‖2 +

1

4ε8
‖Γ‖2 + ν2h2 ‖u1 · ∇F‖2 +

1

4
‖Γ‖2.(4.33)

Similarly,

2α (D(Λ), Fu1) ≤ ε9‖F‖2 +
α2

ε9
‖D(Λ)‖2 + ν2h2 ‖u1 · ∇F‖2 + α2‖D(Λ)‖2,(4.34)

2α (Γ, D(E)) ≤ ε10‖∇E‖2 +
α2

4ε10
‖Γ‖2,(4.35)

(4.36)

α(1− α) (∇Γ,∇E) ≤ ε11‖∇E‖2 +
α2(1− α)2

4ε11
‖∇Γ‖2.

Bounding the ga(·, ·) terms on the rhs of (4.25) is more involved. We rewrite the
difference as the sum of three terms and then bound each of the terms individually.

We have that

(ga(τ,∇u)− ga(τ1,∇u1), Fu1) = (ga(τ − τ1,∇u), Fu1) + (ga(τ1,∇(u− u1)), Fu1)

= (ga(τ − τ1,∇u), Fu1
) + (ga(τ1 − τ,∇(u− u1)), Fu1

)

+ (ga(τ,∇(u− u1)), Fu1) .(4.37)

For the first term on the rhs of (4.37) we have

(ga(τ − τ1,∇u), Fu1) ≤ 4‖(τ − τ1)∇u‖‖F‖+ 4‖(τ − τ1)∇u‖‖νhu1 · ∇F‖
≤ 4d́‖∇u‖∞‖(τ − τ1)‖‖F‖+ 4d́‖∇u‖∞‖(τ − τ1)‖‖νhu1 · ∇F‖

≤ ε12‖F‖2 + 4d́2

ε12
‖∇u‖2∞‖(τ − τ1)‖2 + ν2h2‖νhu1 · ∇F‖2

+4d́2‖∇u‖2∞‖(τ − τ1)‖2.(4.38)

For the second term we have

(ga(τ − τ1,∇(u − u1)), Fu1
) ≤ 4‖(τ − τ1)∇(u− u1)‖‖F‖

+4‖(τ − τ1)∇(u− u1)‖‖νhu1 · ∇F‖
≤ ε13‖F‖2 + 4

ε13
‖(τ − τ1)∇(u− u1)‖2 + ν2h2‖νhu1 · ∇F‖2

+4‖(τ − τ1)∇(u− u1)‖2.(4.39)
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Note that

‖(τ − τ1)∇(u− u1)‖ ≤ ‖(τ − τ1)‖L4 ‖∇(u− u1)‖L4 ,

and, using (3.7),

‖τ1 − T ‖L4 ≤ CIh−d́/4‖τ1 − T ‖
≤ CIh−d́/4‖τ1 − τ‖ + CIh

−d́/4‖τ − T ‖.
Thus,

‖τ − τ1‖L4 ≤ ‖τ − T ‖L4 + ‖T − τ1‖L4

≤ ‖τ − T ‖L4 + Ch−d́/4‖τ1 − τ‖ + Ch−d́/4‖τ − T ‖
≤ 2CIh

m+1−d́/4‖τ‖m+1 + CIh
−d́/4‖τ1 − τ‖.(4.40)

Similarly,

‖∇(u− u1)‖L4 ≤ ‖∇(u− U)‖L4 + Ch−d́/4‖u− u1‖1 + Ch−d́/4‖u− U‖1
≤ 2CIh

k−d́/4‖u‖k+1 + CIh
−d́/4‖u− u1‖1.(4.41)

Combining (4.40), (4.41) with (4.39) yields

|(ga(τ − τ1,∇(u− u1)), Fu1)| ≤ ε13‖F‖2 + ν2h2‖u1 · ∇F‖2

+

(
4

ε13
+ 4

)(
2CIh

m+1−d́/4‖τ‖m+1 + CIh
−d́/4‖τ1 − τ‖

)2

×
(
2CIh

k−d́/4‖u‖k+1 + CIh
−d́/4‖u− u1‖1

)2

.(4.42)

For the third ga(·, ·) terms on the rhs of (4.37) we have

|(ga(τ,∇(u− u1)), Fu1)| ≤ 4‖τ ∇(u− u1)‖ ‖F‖ + 4‖τ ∇(u− u1)‖ ‖νhu1 · ∇F‖
≤ 4d́ ‖τ‖∞‖∇(u− u1)‖ ‖F‖ + 4d́ ‖τ‖∞‖∇(u− u1)‖ ‖νhu1 · ∇F‖

≤ ε14‖F‖ + 4d́2

ε14
‖τ‖2∞‖∇(u− u1)‖2 + ν2h2 ‖u1 · ∇F‖2

+ 4d́2‖τ‖2∞‖∇(u− u1)‖2.(4.43)

What remains is to estimate the three B terms on the rhs of (4.25). We begin by
rewriting the terms in a more convenient form:

−B(u1,Γ, F ) − B(u,u1, τ, F ) + B(u1, τ, F ) = B(u1, T , F ) − B(u,u1, τ, F )

= −B(u− u1,u1, T , F ) − B(u,u1,Γ, F )

= B(u− u1,u1,Γ, F ) − B(u− u1,u1, τ, F )

−B(u,u1,Γ, F ).(4.44)

For the first B term in (4.44) we have

B(u− u1,u1,Γ, F ) = ((u− u1) · ∇Γ, F ) + ((u− u1) · ∇Γ, νhu1 · ∇F )
+

1

2
(∇ · (u− u1) Γ, F )
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≤ ‖(u− u1) · ∇Γ‖‖F‖ + ‖(u− u1) · ∇Γ‖‖νhu1 · ∇F‖
+

1

2
‖∇ · (u− u1) Γ‖‖F‖

≤ ε15‖F‖2 +

(
1

4ε15
+

1

4

)
‖(u− u1) · ∇Γ‖2 + ν2h2‖u1 · ∇F‖2

+ ε16‖F‖2 +
1

16ε16
‖∇ · (u− u1)Γ‖2.(4.45)

For Iu the interpolant of u we have, using (3.7), (3.8),

‖u− u1‖∞ ≤ ‖u− Iu‖∞ + ‖Iu − u1‖∞
≤ Cnhk+1−d́/2‖u‖k+1 + Cvh

−d́/2‖Iu − u1‖
≤ Cnhk+1−d́/2‖u‖k+1 + Cvh

−d́/2‖Iu − u‖ + Cvh
−d́/2‖u− u1‖

≤ Cnvhk+1−d́/2‖u‖k+1 + Cvh
−d́/2‖u− u1‖.(4.46)

Using this estimate, we obtain that

‖(u− u1) · ∇Γ‖ ≤ d́‖u− u1‖∞‖∇Γ‖
≤ d́ (Cnvhk+1−d́/2‖u‖k+1 + Cvh

−d́/2‖u− u1‖)‖∇Γ‖.(4.47)

Also,

‖∇ · (u− u1) Γ‖ ≤ d́3/2‖∇(u− u1)‖‖Γ‖∞
≤ Cvid́3/2hm+1−d́/2 ‖u− u1‖1‖τ‖m+1.(4.48)

Combining (4.45), (4.47), and (4.48), we have

B(u−u1,u1,Γ, F ) ≤ (ε15 + ε16)‖F‖2 + ν2h2‖u1 · ∇F‖2

+

(
1

4ε15
+

1

4

)
d́2 (Cnvh

k+1−d́/2‖u‖k+1 + Cvh
−d́/2‖u− u1‖)2‖∇Γ‖2

+
1

16ε16
(Cvid́

3/2hm+1−d́/2 ‖u− u1‖1‖τ‖m+1)
2.(4.49)

For the second B term on the rhs of (4.44) we have

B(u− u1,u1, τ, F ) = ((u− u1) · ∇τ, F ) + ((u− u1) · ∇τ, νhu1 · ∇F )
+

1

2
(∇ · (u− u1) τ, F )

≤ ‖(u− u1) · ∇τ‖ ‖F‖ + ‖(u− u1) · ∇τ‖ ‖νhu1 · ∇F‖
+

1

2
‖∇ · (u− u1) τ‖ ‖F‖

≤ ε17‖F‖2 +
1

4ε17
‖(u− u1) · ∇τ‖2 + ν2h2 ‖u1 · ∇F‖2

+
1

4
‖(u− u1) · ∇τ‖2

+ ε18‖F‖2 +
1

16ε18
‖∇ · (u− u1) τ‖2

≤ (ε17 + ε18)‖F‖2 + ν2h2 ‖u1 · ∇F‖2

+ d́3
(

1

4ε17
+

1

4

)
‖∇τ‖2∞‖u− u1‖2 + d́3

16ε18
‖τ‖2∞‖∇(u− u1)‖2.(4.50)
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For the third B term on the rhs of (4.44) we have

B(u,u1,Γ, F ) = (u · ∇Γ, F ) + (u · ∇Γ, νhu1 · ∇F ) + 1

2
(∇ · uΓ, F )

≤ ‖u · ∇Γ‖ ‖F‖ + ‖u · ∇Γ‖ νh ‖u1 · ∇F‖ + 1

2
‖∇ · uΓ‖ ‖F‖

≤ (ε19 + ε20)‖F‖2 + ν2h2 ‖u1 · ∇F‖2

+ d́

(
1

4ε19
+

1

4

)
‖u‖2∞‖∇Γ‖2 +

d́2

16ε20
‖∇u‖2∞‖Γ‖2.(4.51)

Returning to (4.25) and putting everything back together, we obtain

αRe
d

dt
‖E‖2 + λ

2

d

dt
‖F‖2 + 1

2
‖F‖2 + α(1− α)

2
‖∇E‖2

+

(
λνh− 1

2
ν2h2 − αν2h2

2(1− α)
)
‖u1 · ∇F‖2 − 2α(ε1 + ε3 + ε4)‖∇E‖2

− 2α
C2

1

4ε1
‖∇u‖2‖u− u1‖21 − 2α

C2
1

4ε3
‖u− u1‖21‖∇Λ‖2 − 2α

C2
2

4ε4
‖u‖2∞‖∇Λ‖2

≤ 2αRe
C2
PF

4ε5
‖Λt‖2 + 2αε5‖∇E‖2 + 1

4ε6
‖Γ‖2 + ε6‖F‖2

+ ε8‖F‖2 +
1

4ε8
‖Γ‖2 +

1

4
‖Γ‖2 + ν2h2‖u1 · ∇F‖2

+
1

4
‖Γ‖2 + ν2h2‖u1 · ∇F‖2 +

α2

2ε9
‖∇Λ‖2 + ε9‖F‖2 +

α2

2
‖∇Λ‖2

+ ν2h2‖u1 · ∇F‖2 +
α2

4ε10
‖Γ‖2 + ε10‖∇E‖2 +

α2(1− α)2
4ε11

‖∇Γ‖2

+ ε11‖∇E‖2 + λ

4ε6
‖Γt‖2 + λε6‖F‖2 + +

α2

ε7
d́‖p− P‖2 + ε7‖∇E‖2

+ λ
4d́2

ε12
‖∇u‖2∞‖τ − τ1‖2 + λ4d́2 ‖∇u‖2∞‖τ − τ1‖2 + λε12‖F‖2

+ λν2h2‖u1 · ∇F‖2

+ λ

(
4

ε13
+ 4

)(
2CIh

m+1−d́/4‖τ‖m+1 + CIh
−d́/4‖τ1 − τ‖

)2

×
(
2CIh

k−d́/4‖u‖k+1 + CIh
−d́/4‖u− u1‖1

)2

+ λε13‖F‖2 + λν2h2‖u1 · ∇F‖2 + λ4d́2
(

1

ε14
+ 1

)
‖τ‖2∞‖u− u1‖2

+ λε14‖F‖2 + λν2h2‖u1 · ∇F‖2

+ λ

(
1

4ε15
+

1

4

)
d́2
(
Cnvh

k+1−d́/2‖u‖k+1 + Cvh
−d́/2‖u− u1‖

)2

‖∇Γ‖2

+ λ
1

16 ε16

(
Cvid́

3/2hm+1−d́/2 ‖u− u1‖1‖τ‖m+1

)2

+ λ (ε15 + ε16)‖F‖2

+ λ ν2h2‖u1 · ∇F‖2 + λ (ε17 + ε18)‖F‖2 + λ ν2h2 ‖u1 · ∇F‖2

+ λ d́3
(

1

4ε17
+

1

4

)
‖∇τ‖∞ ‖u− u1‖ + λ

d́3

16ε18
‖τ‖∞‖∇(u− u1)‖2

+ λ (ε19 + ε20)‖F‖2 + λ ν2h2 ‖u1 · ∇F‖2
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+ λ d́

(
1

4ε19
+

1

4

)
‖u‖2∞‖∇Γ‖2 + λ

d́2

16ε20
‖∇u‖2∞‖Γ‖2.(4.52)

We rewrite (4.52), collecting the terms involving E, ∇E, F , and ∇F on the lhs. The
remaining terms are collected on the rhs and grouped as terms “controlled” by the
ball, terms controlled by interpolation approximation, and terms controlled by both
the ball and interpolation approximation. The resulting inequality is

αRe
d

dt
‖E‖2 + λ

2

d

dt
‖F‖2 +

(
α(1− α)

2
− 2α(ε1 + ε3 + ε4 + ε5)− (ε7 + ε10 + ε11)

)
‖∇E‖2

+

(
1

2
− (ε6 + ε8 + ε9)− λ(ε6 + ε12 + ε13 + ε14 + ε15 + ε16 + ε17

+ ε18 + ε19 + ε20)

)
‖F‖2

+

(
λνh− ν2h2

(
7

2
− α

2(1− α) + 6λ

))
‖u1 · ∇F‖2

≤ ‖u− u1‖2
{
λ4d́2

(
1

ε14
+ 1

)
‖τ‖2∞ + λd́3

(
1

4ε17
+

1

4

)
‖∇τ‖2∞

}
+ ‖τ − τ1‖2

{
λ
4d́2

ε12
‖∇u‖2∞ + 4λd́2‖∇u‖2∞

}

+ ‖u− u1‖21
{
2α
C2

1

4ε1
‖∇u‖2 + λ d́3

16ε18
‖τ‖2∞

}

+ ‖u− u1‖21‖τ − τ1‖2
{
λ

(
4

ε13
+ 4

)
C2
I 4h

−d́
}

+ ‖Γ‖2
{
1

4
+

1

4ε6
+
α2

4ε10
+ λ

d́2

16ε20
‖∇u‖2∞

}
+ ‖Γt‖2

{
λ

4ε6

}
+ ‖∇Γ‖2

{
α2(1− α)2

4ε11
+ 2C2

nvh
2k+2−d́‖u‖2k+1 + λd́

(
1

4ε19
+

1

4

)
‖u‖2∞

}
+ ‖Λt‖2

{
2αRe

C2
PF

4ε5

}
+ ‖∇Λ‖2

{
2α
C2

2

4ε4
‖u‖2∞ +

α2

2ε9
+
α2

2

}
+ ‖p− P‖2

{
d́
α2

ε7

}
+ λ

(
4

ε13
+ 4

)
C2
I 64h

2m+2k+2−d́‖τ‖2m+1‖u‖2k+1

+ ‖u− u1‖2
{
2λ

(
1

4ε15
+

1

4

)
d́2C2

vh
−d́‖∇Γ‖2

}
+ ‖u− u1‖21

{
2α
C2

1

4ε3
‖∇Λ‖2

}
+ ‖τ − τ1‖2

{
λ

(
4

ε13
+ 4

)
C2
I 16h

2k−d́‖u‖2k+1

}
+ ‖u− u1‖21

{
λ

(
4

ε13
+ 4

)
C2
I 16h

2m+2−d́‖τ‖2m+1

+
1

16ε16
C2
vid́

3h2m+2−d́‖τ‖2m+1

}
.(4.53)
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With our assumptions that 0 < α < 1 and λ > 0, we can choose values for the
εi’s, and νh sufficiently small, such that the lhs of (4.53) is bounded below by

αRe
d

dt
‖E‖2 + λ

2

d

dt
‖F‖2 + 1

4
‖F‖2 + α(1− α)

4
‖∇E‖2 + λνh

2
‖u1 · ∇F‖2.(4.54)

Let Di, i = 1, . . . , 6, denote constants dependent upon u, p, τ , their derivatives,
and T . (Recall the definition of c∗, R in (4.19), and D0 in Theorem 4.4.) As usual,
Cj , j = 4, . . . , 10, denote constants independent of the solution u, p, τ and the mesh
parameter h.

Using (4.54) and integrating (4.53), we obtain

‖E‖2(t) + ‖F‖2(t) +

∫ t

0

‖∇E‖2(s) ds ≤ R2C4D0

+R4C5h
−d́

+D1h
2m+2 + D2h

2m+2

+C6D0h
2m + D3h

2k+2m+2−d́

+D4h
2k+2 + C7D0h

2k

+C8D0h
2q+2 + D5h

2k+2m+2−d́

+R2C9D0h
2m−d́

+R2D6h
2k

+R2C6D0h
2k−d́

+R2C7D0h
2m+2−d́.(4.55)

Now, in view of (4.24), we have that for h, D0, and c
∗ sufficiently small

‖τ − τ2‖2(t) ≤ 2‖F‖2(t) + 2‖Γ‖2(t)
≤ cR2 + C10D0

(
h2m + h2k

)
+ 2D0h

2m+2

≤ c̃R2,(4.56)

where 0 < c̃ < 1. Similarly, for h sufficiently small

‖u− u2‖2(t) ≤ 2‖E‖2(t) + 2‖Λ‖2(t)
≤ cR2 + C10D0

(
h2m + h2k

)
+ 2D0h

2k+2;(4.57)

hence ∫ T

0

‖u− u2‖2(t) dt ≤ c̃
2
R2.(4.58)

Also, for h sufficiently small∫ T

0

‖∇(u− u2)‖2(t) dt ≤ 2

∫ T

0

‖∇E‖2(t) dt + 2

∫ T

0

‖∇Λ‖2(t) dt

≤ c1R2 + 2D0Th
2k

≤ c̃
2
R2.(4.59)

Combining (4.56)–(4.59), we have for h sufficiently small that ξ is a strict con-
traction on the ball defined in (4.19).
Step 4. A direct application of Schauder’s fixed point theorem now establishes

the uniqueness of the approximation and the stated error estimates.
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5. Fully discrete approximation. In this section we analyze a fully discrete
approximation to (2.14), (2.15).

We assume that the fluid flow satisfies the following properties:

‖u‖∞, ‖τ‖∞, ‖∇u‖∞, ‖∇τ‖∞ ≤M(5.1)

for all t ∈ [0, T ].
Note that it follows from (5.1) and inverse estimates that

‖Un‖∞, ‖∇Un‖∞ ≤ M̃ ≈M.(5.2)

Below, for simplicity, we take M̃ =M .
To simplify the notation, the following definition is used in the analysis.
Definition 5.1.

b(u, τ, ψ) := (u · ∇τ, ψ).(5.3)

To obtain the fully discretized approximation, the time derivatives are replaced by
backward differences, and the nonlinear terms are lagged. As we are assuming “slow
flow,” i.e., Re ≡ O(1), we use a conforming FE method to discretize the momentum
equation. For the constitutive equation for stress, we use a SUPG discretization to
control the production of spurious oscillations in the approximation. The discrete
approximating system of equations is then the following.
Approximating system. For n = 1, 2, . . . , N, find unh ∈ Zh, τnh ∈ Sh such that
Re (dtu

n
h,v) +Re c

(
un−1
h ,unh,v

)
+ (1− α) (∇unh,∇v) + (τnh , D(v)) = (fn,v) ,

v ∈ Zh,(5.4)

1

λ
(τnh , σ̃) + (dtτ

n
h , σ) + b

(
un−1
h , τnh , σ̃

)− λ (D(unh), σ̃) = − (ga(τn−1
h ,∇un−1

h ), σ̃
)
,

σ ∈ Sh,(5.5)

where σ̃ := σ+νσnu , σ
n
u := un−1

h ·∇σ, ν is a small positive constant, and λ := (2α)/λ.
The parameter ν > 0 is used to suppress the production of spurious oscillations

in the approximation. Note that for ν = 0 the discretization of the constitutive
equation is a conforming Galerkin method. The goal in choosing ν is to keep it as
small as possible, but large enough to control the generation of catastrophic spurious
oscillations in the approximate stress.

To ensure computability of the algorithm, we begin by showing that (5.4)–(5.5)
is uniquely solvable for uh and τh at each time step n. We use the following induction
hypothesis:

(IH1)
∥∥un−1

h

∥∥
∞ ,
∥∥τn−1
h

∥∥
∞ ≤ K.

Lemma 5.2. Assume (IH1) is true. For sufficiently small step size ∆t, there
exists a unique solution (unh, τ

n
h ) ∈ Zh × Sh satisfying (5.4)–(5.5).

Proof. For notational simplicity, in this proof we drop the subscript h from the
variables. Choosing v = unh, σ = τnh , multiplying (5.4) by λ, and adding to (5.5), we
obtain

(5.6)

a(un, τn;un, τn)

= λ (fn,un) + λ
Re

∆t

(
un−1,un

)− (ga (τn−1,∇un−1
)
, τ̃n
)
+

1

∆t

(
τn−1, τn

)
,
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where the bilinear form a(u, τ ;v, σ) is defined as

a(u, τ ;v, σ)

:= λ
Re

∆t
(u,v) + λ Re c(un−1,u,v) + λ(1− α) (∇u,∇v) + 1

λ
(τ, σ̃) +

1

∆t
(τ, σ)

+ b
(
un−1, τ, σ

)
+ b

(
un−1, τ, νun−1 · ∇σ)− λ (D(u), νun−1 · ∇σ) .

We now estimate the terms in a(un, τn;un, τn). We have∣∣c(un−1,u,u)
∣∣ = ∣∣(un−1 · ∇u,u)∣∣ ≤ d́ 1

2

∥∥un−1
∥∥
∞ ‖∇u‖ ‖u‖

≤ ε1 ‖∇u‖2 + d́K
2

4ε1
‖u‖2 ,∣∣b(un−1, τ, τ)

∣∣ = ∣∣(un−1 · ∇τ , τ)∣∣ ≤ ∥∥un−1 · ∇τ∥∥ ‖τ‖
≤ ε2

∥∥un−1 · ∇τ∥∥2
+

1

4ε2
‖τ‖2 ,

b(un−1, τ, νun−1 · ∇τ) = ν ∥∥un−1 · ∇τ∥∥2
,∣∣(D(u), νun−1 · ∇τ)∣∣ ≤ ‖D(u)‖∥∥νun−1 · ∇τ∥∥

≤ ε3 ‖D(u)‖2 + ν2

4ε3

∥∥un−1 · ∇τ∥∥2

≤ ε3 ‖∇u‖2 + ν2

4ε3

∥∥un−1 · ∇τ∥∥2
.

Applying these inequalities to the bilinear form a(·, · ; ·, ·) yields

a(un, τn;un, τn) ≥ λ Re
(

1

∆t
− d́K

2

4ε1

)
‖un‖2 + λ ((1− α)−Re ε1 − ε3) ‖∇u‖2

+

(
1

λ
+

1

∆t
− 1

4ε2

)
‖τn‖2 +

(
ν − ε2 − ν2

4ε3

)∥∥un−1 · ∇τn∥∥2
.

Choosing ε1 = (1−α)
4 Re , ε2 = ν

3 , ε3 = (1−α)
4 , ν ≤ 2(1−α)

3 , and ∆t ≤ min{ 1−α
Re d́K2

, ν}, it
follows that the bilinear form a(·, · ; ·, ·) is positive. Hence, (5.6) has at most one
solution. Since (5.6) is a finite dimensional linear system, the uniqueness of the
solution implies the existence of the solution.

The discrete Gronwall’s lemma plays an important role in the following analysis.
Lemma 5.3 (discrete Gronwall’s lemma; see [9]). Let ∆t, H, and an, bn, cn, γn

(for integers n ≥ 0) be nonnegative numbers such that

al + ∆t

l∑
n=0

bn ≤ ∆t

l∑
n=0

γn an + ∆t

l∑
n=0

cn + H for l ≥ 0.

Suppose that ∆t γn < 1∀n, and set σn = (1−∆t γn)
−1. Then

al + ∆t

l∑
n=0

bn ≤ exp

(
∆t

l∑
n=0

σn γn

){
∆t

l∑
n=0

cn + H

}
for l ≥ 0.(5.7)
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5.1. Analysis of the fully discrete approximation. In this section we ana-
lyze the error between the finite element approximation given by (5.4), (5.5) and the
true solution. A priori error estimates for the approximation are given in Theorem 5.4.

Theorem 5.4. Assume that the system (2.3)–(2.8) (and thus, (2.14)–(2.15)) has
a solution (u, τ,p) ∈ C2(0, T ;Hk+1)×C2(0, T ;Hm+1)×C(0, T ;Hq+1). In addition,

assume that ∆t, ν ≤ c hd́/2, and

‖u‖∞, ‖∇u‖∞, ‖τ‖∞, ‖∇τ‖∞ ≤M ∀t ∈ [0, T ].(5.8)

Then, the finite element approximation (5.4)–(5.5) is convergent to the solution of
(2.14)–(2.15) on the interval (0, T ) as ∆t, h → 0. In addition, the approximation
(uh, τh) satisfies the following error estimates:

|‖uh − u‖|∞,0 + |‖τh − τ‖|∞,0 ≤ F(∆t, ν, h),(5.9)

|‖uh − u‖|0,1 + |‖τh − τ‖|0,0 ≤ F(∆t, ν, h),(5.10)

where

F(∆t, ν, h) = C
(
hk |‖u‖|0,k+1 + h

k+1 |‖ut‖|0,k+1

)
+C

(
hm |‖τ‖|0,m+1 + h

m+1 |‖τt‖|0,m+1

)
+ C hq+1 |‖p‖|0,q+1 + C

(
hk+1 |‖u‖|∞,k+1 + h

m+1 |‖τ‖|∞,m+1

)
+C |∆t|

(
‖ut‖0,1 + ‖utt‖0,0 + ‖τt‖0,1 + ‖τtt‖0,0

)
+ C ν

(
|‖τt‖|0,1 + |‖τt‖|∞,0

)
.

In order to establish the estimates (5.9)–(5.10), we begin by introducing the fol-
lowing notation. Let un = u(tn), τ

n = τ(tn) represent the solution of (2.14)–(2.15),
and unh, τ

n
h denote the solution of (5.4)–(5.5).

Define Λn,En,Γn,Fn, εu, ετ as

Λn = un − Un, En = Un − unh,

Γn = τn − T n, Fn = T n − τnh ,
εu = u− unh, ετ = τ − τnh .

The proof of Theorem 5.4 is established in three steps:
1. Prove a lemma, assuming two induction hypotheses.
2. Show that the induction hypotheses are true.
3. Prove the error estimates given in (5.9), (5.10).
Step 1. We prove the following lemma.
Lemma 5.5. Under the induction hypothesis (IH1) and the additional assumption

(IH2)
l−1∑
n=1

∆t ‖∇En‖∞ ≤ 1,

we have that ∥∥El∥∥2
+
∥∥Fl∥∥2 ≤ G(∆t, h, ν),(5.11)
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where

G(∆t, h, ν) = C
(
h2k |‖u‖|20,k+1 + h

2k+2 |‖ut‖|20,k+1

)
+C

(
h2m |‖τ‖|20,m+1 + h

2m+2 |‖τt‖|20,m+1

)
+ C h2q+2 |‖p‖|20,q+1 + C |∆t|2

(
‖ut‖20,1 + ‖utt‖20,0 + ‖τt‖20,1 + ‖τtt‖20,0

)
+ C ν2

(
|‖τt‖|20,1 + |‖τt‖|2∞,0

)
.

Proof of Lemma 5.5. From (2.14)–(2.15), it is clear that the true solution (u, τ)
satisfies

Re (dtu
n,v) +Re c

(
un−1
h ,un,v

)
+ (1− α) (∇un,∇v) + (τn, D(v))

= (fn,v) + (pn,∇ · v) +R1(v) ∀ v ∈ Zh,(5.12)

(dtτ
n, σ) + b

(
un−1
h , τn, σ̃

)− λ̂ (D(un), σ̃) + 1

λ
(τn, σ̃)

= − (ga (τn−1
h ,∇un−1

h

)
, σ̃
)
+R2(σ) ∀σ ∈ Sh,(5.13)

where λ̂ := (2α)/λ,

R1(v) := Re (dtu
n,v)−Re (unt ,v) +Re c(u

n−1
h ,un,v)−Re c(un,un,v),

and

R2(σ) := (dtτ
n, σ)− (τnt , σ)− ν

(
τnt ,u

n−1
h · ∇σ)+ b(un−1

h , τn, σ̃)

− b(un, τn, σ̃) + (ga (τn−1
h ,∇un−1

h

)
, σ̃
)− (ga (τ

n,∇un), σ̃) .

Subtracting (5.4)–(5.5) from (5.12)–(5.13), we obtain the following equations for εu
and ετ :

Re (dtεu,v) +Re c(u
n−1
h , εu,v) + (1− α) (∇εu,∇v) + (ετ , D(v))

= (pn,∇ · v) +R1(v) ∀ v ∈ Zh,(5.14)

(dtετ , σ) + b(u
n−1
h , ετ , σ̃)− λ̂ (D(εu), σ̃) + 1

λ
(ετ , σ̃) = R2(σ) ∀ σ ∈ Sh.(5.15)

Substituting εu = En + Λn, ετ = Fn + Γn, v = En, σ = Fn into (5.14)–(5.15), we
obtain

(5.16)

Re (dtE
n,En) +Re c(un−1

h ,En,En) + (1− α) (∇En,∇En) + (Fn, D(En)) = F1(E
n),

(dtF
n,Fn) + b(un−1

h ,Fn, F̃n)− λ̂(D(En), F̃n) + 1

λ
(Fn, F̃n) = F2(F

n),(5.17)

where

F1(E
n) = (pn,∇ ·En) +R1(E

n)−Re (dtΛ
n,En)−Re c(un−1

h ,Λn,En)

− (1− α) (∇Λn,∇En)− (Γn, D(En)) ,

F2(F
n) = R2(F

n)− (dtΓ
n,Fn)− b(un−1

h ,Γn, F̃n) + λ̂(D(Λn), F̃n)− 1

λ
(Γn, F̃n).
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Multiplying (5.16) by λ̂ and adding to (5.17), we obtain the single equation

Re λ̂ (dtE
n,En) + Re λ̂ c(un−1

h ,En,En) + (1− α)λ̂ (∇En,∇En) + (dtF
n,Fn)

+ b(un−1
h ,Fn, F̃n)− λ̂ (D(En), νun−1

h · ∇Fn)+ 1

λ
(Fn, F̃n)

= λ̂F1(E
n) + F2(F

n).(5.18)

Note that

(dtE
n,En) =

1

∆t

[
(En,En)− (En−1,En

)]
≥ 1

∆t

[
‖En‖2 − ‖En‖∥∥En−1

∥∥]
≥ 1

2∆t

[
‖En‖2 − ∥∥En−1

∥∥2
]
,

and similarly, (dtF
n,Fn) ≥ 1

2∆t [‖Fn‖2 − ‖Fn−1‖2]. Thus, we have

Re λ̂

2∆t

[
‖En‖2 − ∥∥En−1

∥∥2
]
+

1

2∆t

[
‖Fn‖2 − ∥∥Fn−1

∥∥2
]
+ (1− α)λ̂ ‖∇En‖2

+ ν
∥∥un−1

h · ∇Fn∥∥2
+

1

λ
‖Fn‖2

≤ −Re λ̂ c(un−1
h ,En,En)− b(un−1

h ,Fn,Fn) + λ̂
(
D(En), νun−1

h · ∇Fn)
− 1

λ

(
Fn, νun−1

h · ∇Fn)+ λ̂F1(E
n) + F2(F

n).(5.19)

Multiplying (5.19) by ∆t and summing from n = 1 to l yields

Re λ̂

2

[∥∥El∥∥2 − ∥∥E0
∥∥2
]
+

1

2

[∥∥Fl∥∥2 − ∥∥F0
∥∥2
]
+ (1− α)λ̂

l∑
n=1

∆t ‖∇En‖2

+ ν

l∑
n=1

∆t
∥∥un−1

h · ∇Fn∥∥2
+

1

λ

l∑
n=1

∆t ‖Fn‖2

≤ ∆t

l∑
n=1

[
−Re λ̂ c(un−1

h ,En,En)− b(un−1
h ,Fn,Fn)

+ λ̂
(
D(En), νun−1

h · ∇Fn)− 1

λ

(
Fn, νun−1

h · ∇Fn)]
+ λ̂∆t

l∑
n=1

F1(E
n) + ∆t

l∑
n=1

F2(F
n).(5.20)

We now estimate each term on the rhs of (5.20). For c(un−1
h ,En,En) we have that∣∣c(un−1

h ,En,En)
∣∣ ≤ ∣∣(un−1

h · ∇En,En)∣∣
≤ ∥∥un−1

h · ∇En∥∥ ‖En‖
≤ ∥∥un−1

h

∥∥
∞ d́

1
2 ‖∇En‖ ‖En‖

≤ ε1 ‖∇En‖2 + d́K
2

4ε1
‖En‖2 , using (IH1).(5.21)
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Note that for v = 0 on ∂Ω, applying Green’s theorem, we have

b(v, τ, σ) = −b(v, σ, τ)− (∇ · v τ , σ) ,(5.22)

which implies

b(v, τ, τ) = −1
2
(∇ · v τ , τ) .(5.23)

Using (5.23),

∣∣b(un−1
h ,Fn,Fn)

∣∣ = 1

2

∣∣(∇ · un−1
h Fn,Fn

)∣∣
=

1

2

∣∣(∇ · (un−1
h − Un−1)Fn,Fn

)
+
(∇ · Un−1 Fn,Fn

)∣∣
≤ 1

2

∥∥∇ ·En−1
∥∥
∞ ‖Fn‖

2
+

1

2

∥∥∇ · Un−1
∥∥
∞ ‖Fn‖

2

≤ 1

2

∥∥∇ ·En−1
∥∥
∞ ‖Fn‖

2
+

1

2
M ‖Fn‖2 , using (5.2).

Next, ∣∣(D(En), νun−1
h · ∇Fn)∣∣ ≤ ‖D(En)‖∥∥νun−1

h · ∇Fn∥∥
≤ ‖∇En‖∥∥νun−1

h · ∇Fn∥∥
≤ ε2 ‖∇En‖2 + ν2

4ε2

∥∥un−1
h · ∇Fn∥∥2

.

Also, ∣∣(Fn, νun−1
h · ∇Fn)∣∣ = ν ∣∣(Fn,un−1

h · ∇Fn)∣∣
≤ ν ‖Fn‖∥∥un−1

h · ∇Fn∥∥
≤ ‖Fn‖2 + ν

2

4

∥∥un−1
h · ∇Fn∥∥2

.

Thus, for the first summation on the rhs of (5.20), we have

∆t

l∑
n=1

[
−Re λ̂ c(un−1

h ,En,En)− b(un−1
h ,Fn,Fn) + λ̂

(
D(En), νun−1

h · ∇Fn)
− 1

λ

(
Fn, νun−1

h · ∇Fn) ]
≤ ∆t

l∑
n=1

(Re λ̂ε1 + λ̂ε2) ‖∇En‖2 +∆t

l∑
n=1

Re λ̂d́K2

4ε1
‖En‖2

+ ∆t

l∑
n=1

(
λ̂ν2

4ε2
+

ν2

λ4ε3

)∥∥un−1
h · ∇Fn∥∥2

+ ∆t

l∑
n=1

(
1

2
M +

1

2

∥∥∇ ·En−1
∥∥
∞ +

ε3
λ

)
‖Fn‖2 .(5.24)
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Next we consider F1(E
n):

|(pn,∇ ·En)| = |(pn − Pn,∇ ·En)|
≤ ‖pn − Pn‖ d́ 1

2 ‖∇En‖

≤ ε4 ‖∇En‖2 + d́

4ε4
‖pn − Pn‖2 ,(5.25)

|(dtΛn,En)| ≤ ‖En‖ ‖dtΛn‖
≤ ‖En‖2 + 1

4
‖dtΛn‖2 ,∣∣c(un−1

h ,Λn,En)
∣∣ ≤ ‖En‖∥∥un−1

h · ∇Λn
∥∥

≤ ‖En‖∥∥un−1
h

∥∥
∞ d́

1
2 ‖∇Λn‖

≤ ‖En‖2 + K
2d́

4
‖∇Λn‖2 , using (IH1),(5.26)

|(∇Λn,∇En)| ≤ ‖∇En‖ ‖∇Λn‖
≤ ε5 ‖∇En‖2 + 1

4ε5
‖∇Λn‖2 ,(5.27)

|(Γn, D(En))| ≤ ‖D(En)‖ ‖Γn‖
≤ ‖∇En‖ ‖Γn‖
≤ ε6 ‖∇En‖2 + 1

4ε6
‖Γn‖2 .(5.28)

For the R1(E
n) terms we have

|(dtun,En)− (unt ,E
n)| ≤ ‖En‖2 + 1

4
‖dtun − unt ‖2 ,(5.29) ∣∣c(un−1

h ,un,En)− c(un,un,En)∣∣
= |c(un−1

h − Un−1,un,En) + c(Un−1 − un−1,un,En)

+ c(un−1 − un,un,En)|
≤ ‖En−1 · ∇un‖ ‖En‖

+ ‖Λn−1 · ∇un‖ ‖En‖+ ‖(un − un−1) · ∇un‖ ‖En‖
≤ d́M‖En−1‖ ‖En‖+ d́M‖Λn−1‖ ‖En‖+ d́M‖(un − un−1)‖ ‖En‖

≤ d́M
2

∥∥En−1
∥∥2

+

(
d́M

2
+ 2

)
‖En‖2 + d́

2M2

4

∥∥Λn−1
∥∥2

+
d́2M2

4
∆t

∫ tn

tn−1

‖ut‖2 dt.(5.30)

Combining (5.25)–(5.30), we have the following estimate for F1(E
n):

|λ̂F1(E
n)| ≤ λ̂(ε4 + ε5 + ε6) ‖∇En‖2 + λ̂ Re

(
d́M

2
+ 5

)
‖En‖2

+ λ̂ Re
d́M

2

∥∥En−1
∥∥2

+ λ̂
d́

4ε4
‖(pn − Pn)‖2 + λ̂ Re d́

2M2

4

∥∥Λn−1
∥∥2

+ λ̂

(
Re K2d́

4
+

(1− α)
4ε5

)
‖∇Λn‖2 +Re1

4
‖dtΛn‖2 + λ̂ 1

4ε6
‖Γn‖2

+ λ̂ Re
1

4
‖dtun − unt ‖2 + λ̂ Re

d́2M2

4
∆t

∫ tn

tn−1

‖ut‖2 dt.(5.31)
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Next we consider the terms in F2(F
n):

|(dtΓn,Fn)| ≤ ‖Fn‖2 + 1

4
‖dtΓn‖2 ,(5.32)

|b(un−1
h ,Γn, F̃n)| = ∣∣b(un−1

h ,Γn,Fn) + b(un−1
h ,Γn, νFnu)

∣∣
≤ ∥∥un−1

h · ∇Γn∥∥ ‖Fn‖+ ∥∥un−1
h · ∇Γn∥∥ ‖νFnu‖

≤ d́ 1
2

∥∥un−1
h

∥∥
∞ ‖∇Γn‖ ‖Fn‖+ d́

1
2

∥∥un−1
h

∥∥
∞ ‖∇Γn‖ ‖νFnu‖

≤ ‖Fn‖2 + ν2 ‖Fnu‖2 +
d́K2

2
‖∇Γn‖2 ,(5.33)

|(D(Λn)F̃n)| = |(D(Λn),Fn) + (D(Λn), νFnu)|
≤ ‖Fn‖2 + ν2 ‖Fnu‖2 +

1

2
‖∇Λn‖2 ,(5.34)

|(ΓnF̃n)| = |(Γn,Fn) + ν (Γn, νFnu)|
≤ ‖Fn‖2 + ν2 ‖Fnu‖2 +

1

2
‖Γn‖2 .(5.35)

For the terms making up R2(F
n) we have

|(dtτn,Fn)− (τnt ,F
n)| ≤ ‖Fn‖2 + 1

4
‖dtτn − τnt ‖2 ,(5.36)

|(τnt , νFnu)| =
∣∣(τnt , νun−1

h · ∇Fn)∣∣
=
∣∣b(νun−1

h ,Fn, τnt )
∣∣

≤ ∣∣b(νun−1
h , τnt ,F

n)
∣∣+ ∣∣(∇ · un−1

h νFn, τnt
)∣∣ (using (5.22))

≤ ν ∥∥un−1
h · ∇τnt

∥∥ ‖Fn‖+ ∣∣(∇ · (un−1
h − Un−1) νFn, τnt

)∣∣
+
∣∣(∇ · Un−1 νFn, τnt

)∣∣
≤ ν ∥∥un−1

h

∥∥
∞ d́

1
2 ‖∇τnt ‖ ‖Fn‖+ ν

∥∥∇ · (un−1
h − Un−1)

∥∥
∞ ‖Fn‖ ‖τnt ‖

+
∥∥∇ · Un−1

∥∥
∞ ν ‖Fn‖ ‖τnt ‖

≤ (2 + ∥∥∇En−1
∥∥
∞
) ‖Fn‖2 + ν2

4
d́2
(
M2 +

∥∥∇En−1
∥∥
∞
) ‖τnt ‖2

+
ν2

4
K2d́ ‖∇τnt ‖2 (using (5.2) and (IH1)),(5.37)

|b(un−1
h ,τn, F̃n)− b(un, τn, F̃n)| = |((un−1

h − un) · ∇τnF̃n)|
≤ ∥∥(un−1

h − un) · ∇τn∥∥ ‖F̃n‖
≤ 1

2
‖F̃n‖2 + 1

2
d́3 ‖∇τn‖2∞

∥∥un−1
h − un

∥∥2

≤ ‖Fn‖2 + ν2 ‖Fnu‖2 +
1

2
d́3M2

∥∥−En−1 −Λn−1 + un−1 − un
∥∥2

≤ ‖Fn‖2 + ν2 ‖Fnu‖2 +
3

2
d́3M2

∥∥En−1
∥∥2

+
3

2
d́3M2

∥∥Λn−1
∥∥2

+
3

2
d́3M2∆t

∫ tn

tn−1

‖ut‖2 dt.(5.38)
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In order to estimate the ga terms in F2(·), note that
ga
(
τn−1
h ,∇un−1

h

)− ga (τn,∇un)
= ga

(
τn−1
h ,∇(un−1

h − Un−1)
)
+ ga

(
τn−1
h ,∇(Un−1 − un−1)

)
+ ga

(
τn−1
h ,∇(un−1 − un)

)
+ ga

(
τn−1
h − T n−1,∇un)

+ ga
(T n−1 − τn−1,∇un)+ ga (τn−1 − τn,∇un)

= −ga
(
τn−1
h ,∇En−1

)− ga (τn−1
h ,∇Λn−1

)− ga (τn−1
h ,∇(un − un−1)

)
− ga

(
Fn−1,∇un)− ga (Γn−1,∇un)− ga (τn − τn−1,∇un) .(5.39)

Bounding each of the terms on the rhs of (5.39), we obtain

|(ga
(
τn−1
h ,∇En−1

)
F̃n)| ≤ ∥∥ga (τn−1

h ,∇En−1
)∥∥ ‖F̃n‖

≤ 4d́
∥∥τn−1
h

∥∥
∞
∥∥∇En−1

∥∥ ‖F̃n‖
≤ ε7

∥∥∇En−1
∥∥2

+
8d́2K2

ε7
‖Fn‖2 + 8d́2K2

ε7
ν2 ‖Fnu‖2 ,(5.40)

|(ga
(
τn−1
h ,∇Λn−1

)
F̃n)| ≤ 8d́2K2

∥∥∇Λn−1
∥∥2

+ ‖Fn‖2 + ν2 ‖Fnu‖2 ,(5.41)

|(ga
(
τn−1
h ,∇(un − un−1)

)
F̃n)| ≤ 8d́2K2∆t

∫ tn

tn−1

‖∇ut‖2 dt+ ‖Fn‖2 + ν2 ‖Fnu‖2 ,

(5.42)

|(ga
(
Fn−1,∇un)F̃n)| ≤ 8d́2M2

∥∥Fn−1
∥∥2

+ ‖Fn‖2 + ν2 ‖Fnu‖2 ,(5.43)

|(ga
(
Γn−1,∇un)F̃n)| ≤ 8d́2M2

∥∥Γn−1
∥∥2

+ ‖Fn‖2 + ν2 ‖Fnu‖2 ,(5.44)

|(ga
(
τn − τn−1,∇un)F̃n)| ≤ 8d́2M2∆t

∫ tn

tn−1

‖τt‖2 dt+ ‖Fn‖2 + ν2 ‖Fnu‖2 .(5.45)

Combining the estimates in (5.32)–(5.38), (5.40)–(5.45), we obtain the following esti-
mate for F2(F

n):

|F2(F
n)| ≤ ε7

∥∥∇En−1
∥∥2

+ ν2 ‖Fnu‖2
(
7 +

8d́2K2

ε7
+ λ̂+

1

λ

)

+ ‖Fn‖2
(
11 +

8d́2K2

ε7
+
∥∥∇En−1

∥∥
∞ + λ̂+

1

λ

)

+
∥∥En−1

∥∥2
(
3

2
d́3M2

)
+
∥∥Fn−1

∥∥2
(
8d́2M2

)
+ ‖∇Λn‖2

(
λ̂

2

)
+ ‖∇Γn‖2

(
d́K2

2

)
+ ‖Γn‖2

(
1

2λ

)
+ ‖dtΓn‖2

(
1

4

)
+
∥∥∇Λn−1

∥∥2
(8d́2K2) +

∥∥Λn−1
∥∥2
(
3

2
d́3M2

)
+
∥∥Γn−1

∥∥2
(8d́2M2)
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+
1

4
‖dtτn − τnt ‖2 +

ν2

4
d́2
(
M2 +

∥∥∇En−1
∥∥
∞
) ‖τnt ‖2

+
ν2

4
K2d́ ‖∇τnt ‖2

+
3

2
d́3M2∆t

∫ tn

tn−1

‖ut‖2 dt+ 8d́2M2∆t

∫ tn

tn−1

‖τt‖2 dt

+ 8d́2K2∆t

∫ tn

tn−1

‖∇ut‖2 dt.(5.46)

With the choices ε1 = (1−α)

12 Re λ̂
, ε2 = ε4 = ε5 = ε6 = ε7 = (1−α)

12λ̂
,u0

h = U0(⇒ E0 =

0), τ0
h = T 0(⇒ F0 = 0), substituting (5.24), (5.31), (5.46) into (5.20) yields

Re λ̂

2

∥∥El∥∥2
+

1

2

∥∥Fl∥∥2
+

(1− α)
2

λ̂

l∑
n=1

∆t ‖∇En‖2

+

[
ν − ν2

(
3λ̂2 + 96d́2K2λ̂

(1− α) + 7 + λ̂+
5

4λ

)]
l∑

n=1

∆t ‖Fnu‖2

≤ C1

l∑
n=1

∆t ‖En‖2 + C2

l∑
n=1

∆t ‖Fn‖2 + C3

l∑
n=1

∆t
∥∥∇En−1

∥∥
∞ ‖Fn‖

2

+ C4

l∑
n=1

∆t ‖Λn‖2 + C5

l∑
n=1

∆t ‖∇Λn‖2

+
1

4

l∑
n=1

∆t ‖dtΛn‖2 + C6

l∑
n=1

∆t ‖Γn‖2 +Reλ̂
4

l∑
n=1

∆t ‖dtun − unt ‖2

+

(
d́K2

2

)
l∑

n=1

∆t ‖∇Γn‖2 + 1

4

l∑
n=1

∆t ‖dtΓn‖2 + 1

4

l∑
n=1

∆t ‖dtτn − τnt ‖2

+
ν2

4

l∑
n=1

∆td́2
(
M2 +

∥∥∇En−1
∥∥
∞
) ‖τnt ‖2 + l∑

n=1

∆t ‖pn − Pn‖2

+ |∆t|2 d́
(
Re d́M2 λ̂

4
‖ut‖20,0 +

3

2
d́2M2 ‖ut‖20,0

+ 8d́M2 ‖τt‖20,0 + 8d́K2 ‖ut‖20,1
)
+
ν2

4
K2d́ |‖∇τt‖|20,0 .(5.47)

We now apply the interpolation properties of the approximating spaces to estimate
the terms on the rhs of (5.47). Using elements of order k for velocity, elements of
order m for stress, and elements of order q for pressure, we have

l∑
n=1

∆t ‖∇Λn‖2 +
l∑

n=1

∆t ‖∇Γn‖2

≤ C
(
h2k

l∑
n=1

∆t ‖un‖2k+1 + h
2m

l∑
n=1

∆t ‖τn‖2m+1

)
≤ C

(
h2k |‖u‖|20,k+1 + h

2m |‖τ‖|20,m+1

)
,(5.48)
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l∑
n=1

∆t ‖Λn‖2 +
l∑

n=1

∆t ‖Γn‖2 +
l∑

n=1

∆t ‖p− Pn‖2

≤ C
(
h2k+2

l∑
n=1

∆t ‖un‖2k+1 + h
2m+2

l∑
n=1

∆t ‖τn‖2m+1 + h
2q+2

l∑
n=1

∆t ‖pn‖2q+1

)
≤ C

(
h2k+2 |‖u‖|20,k+1 + h

2m+2 |‖τ‖|20,m+1 + h
2q+2 |‖p‖|20,q+1

)
,

(5.49)

l∑
n=1

∆t ‖dtΛn‖2 =
l∑

n=1

∆t

∥∥∥∥∥ 1

∆t

∫ tn

tn−1

1
∂Λ

∂t
dt

∥∥∥∥∥
2

≤
l∑

n=1

∆t

(
1

∆t

)2 ∫
Ω

(∫ tn

tn−1

1 dt

)(∫ tn

tn−1

(
∂Λ

∂t

)2

dt

)
dx

≤ Ch2k+2 ‖ut‖20,k+1 ,(5.50)

and similarly,

l∑
n=1

∆t ‖dtΓn‖2 ≤ Ch2m+2 ‖τt‖20,m+1 .(5.51)

Note that dtu
n − unt may be expressed as

dtu
n − unt =

1

2∆t

∫ tn

tn−1

utt(·, t)(tn−1 − t) dt.

Also,(
1

2∆t

∫ tn

tn−1

utt(·, t)(tn−1 − t) dt
)2

≤ 1

4 |∆t|2
∫ tn

tn−1

u2
tt(·, t) dt

∫ tn

tn−1

(tn−1 − t)2 dt

=
1

12
∆t

∫ tn

tn−1

u2
tt(·, t) dt.

Therefore it follows that

l∑
n=1

∆t ‖dtun − unt ‖2 ≤
l∑

n=1

∆t

∫
Ω

1

12
∆t

∫ tn

tn−1

u2
tt(·, t) dt dx

=
1

12
|∆t|2 ‖utt‖20,0 .(5.52)

Similarly, for dtτ
n − τnt we have

l∑
n=1

∆t ‖dtτn − τnt ‖2 ≤
1

12
|∆t|2 ‖τtt‖20,0 .(5.53)

In view of (5.48)–(5.53), our induction hypotheses (IH1), (IH2), and with ν chosen
such that

ν ≤ 1

2

(
3λ̂2 + 96d́2K2λ̂

(1− α) + 7 + λ̂+
5

4λ

)−1

,(5.54)
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from (5.47) we obtain

Re λ̂

2

∥∥El∥∥2
+

1

2

∥∥Fl∥∥2
+

(1− α)
2

λ̂

l∑
n=1

∆t ‖∇En‖2 + ν
2

l∑
n=1

∆t ‖Fnu‖2

≤ C
l∑

n=1

∆t
(
‖En‖2 + ‖Fn‖2

)
+ C

l∑
n=1

∆t
∥∥∇En−1

∥∥
∞ ‖Fn‖

2

+ Cν2
(
|‖τt‖|20,1 + |‖τt‖|2∞,0

)
+ C |∆t|2

(
‖ut‖20,1 + ‖utt‖20,0 + ‖τt‖20,0 + ‖τtt‖20,0

)
+ Ch2k+2 |‖u‖|20,k+1

+ Ch2m+2 |‖τ‖|20,m+1 + Ch
2q+2 |‖p‖|20,q+1 + Ch

2k |‖u‖|20,k+1

+ Ch2k+2 ‖ut‖20,k+1 + Ch
2m |‖τ‖|20,m+1 + Ch

2m+2 ‖τt‖20,m+1 ,(5.55)

where the C’s denote constants independent of l,∆t, h, ν. Applying Gronwall’s lemma
and (IH2) to (5.55), the estimate given in (5.11) follows.
Step 2. We show that the induction hypotheses (IH1) and (IH2) are true.
Verification of (IH1). Assume that (IH1) holds true for n = 1, 2, . . . , l − 1. By

interpolation properties, inverse estimates, and (5.11), we have that∥∥ulh∥∥∞ ≤ ∥∥ulh − ul
∥∥
∞ +

∥∥ul∥∥∞
≤ ∥∥El∥∥∞ +

∥∥Λl∥∥∞ +M

≤ Ch− d́
2

∥∥El∥∥
0
+ Ch−

d́
2

∥∥Λl∥∥
0
+M

≤ C
(
|∆t|h− d́

2 + νh−
d́
2 + hk−

d́
2 + hm−

d́
2 + hq+1− d́

2 + hk+1− d́
2

)
+M.(5.56)

Note that the expression C(|∆t|h− d́
2 + νh−

d́
2 + hk−

d́
2 + hm−

d́
2 + hq+1− d́

2 + hk+1− d́
2 ) is

independent of l. Hence, if we set k,m ≥ d́
2 , q ≥ d́

2 − 1, and choose h,∆t, ν such that

hk−
d́
2 , hm−

d́
2 , hq+1− d́

2 ≤ 1

C
, ∆t, ν ≤ h

d́
2

C
,(5.57)

then from (5.56) ∥∥ulh∥∥∞ ≤M + 6.

Similarly it follows that
∥∥τ lh∥∥∞ ≤M + 6.

Verification of (IH2). Assume that (IH2) is true for n = 1, 2, . . . , l− 1. Equations
(5.11) and (5.55) imply

l∑
n=1

∆t ‖∇En‖20 ≤ C
(
h2k + h2m + h2q+2 + |∆t|2 + ν2

)
.(5.58)

Applying the inverse estimate and using the inequality

l∑
n=1

an ≤
√
l

(
l∑

n=1

a2n

) 1
2

,
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from (5.58) we obtain

l∑
n=1

∆t ‖∇En‖∞ ≤ Ch−
d́
2

l∑
n=1

∆t ‖∇En‖

≤ Ch− d́
2

√
∆t
√
l

(
l∑

n=1

∆t ‖∇En‖2
) 1

2

≤ C̃
(
∆t h−

d́
2 + νh−

d́
2 + hk−

d́
2 + hm−

d́
2 + hq+1− d́

2

)
,

where C̃ = C
√
T is a constant independent of l, h,∆t, and ν. Hence when

ν,∆t ≤ h
d́
2

5C̃
(5.59)

and

hk−
d́
2 , hm−

d́
2 , hq+1− d́

2 ≤ 1

5C̃
,

(IH2) holds.

Step 3. We derive the error estimates in (5.9) and (5.10).

Proof of Theorem 5.4. Using estimates (5.11) and (approximation properties), we
have

|‖u− uh‖|2∞,0 + |‖τ − τh‖|2∞,0 ≤ |‖E‖|2∞,0 + |‖Λ‖|2∞,0 + |‖F‖|2∞,0 + |‖Γ‖|2∞,0
≤ G(∆t, h, ν) + C

(
h2k+2 |‖u‖|2∞,k+1 + h

2m+2 |‖τ‖|2∞,m+1

)
.

Note the restrictions on ν from (5.54), (5.57), (5.59), and on ∆t from (3.1), (5.57),
(5.59). Hence, we obtain the stated estimate (5.9).

To establish (5.10), from (5.11), (5.55) we have

|‖∇E‖|20,0 +∆t |‖Fu‖|20,0 ≤ C(T + 1)G(∆t, h, ν)(5.60)

and

|‖E‖|20,0 + |‖F‖|20,0 ≤ T G(∆t, h, ν).(5.61)

Hence

|‖E‖|21,0 + |‖F‖|20,0 ≤ C̃G(∆t, h, ν).(5.62)

We conclude this analysis with some comments on the sensitivity of the error
bounds to the physical parameters in the modeling equations. From (5.47) we note
that the constants C1, C2, C3 involve the terms K2,M2, Re, λ̄(= λ/2α), λ−1. Thus,
in view of the exponential multiplicative factor in the discrete Gronwall’s lemma, we
have that the generic constants C in (5.9), (5.10), (5.11) depend exponentially on
these terms.
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Abstract. We develop efficient moving mesh algorithms for one- and two-dimensional hyperbolic
systems of conservation laws. The algorithms are formed by two independent parts: PDE evolution
and mesh-redistribution. The first part can be any appropriate high-resolution scheme, and the
second part is based on an iterative procedure. In each iteration, meshes are first redistributed by an
equidistribution principle, and then on the resulting new grids the underlying numerical solutions are
updated by a conservative-interpolation formula proposed in this work. The iteration for the mesh-
redistribution at a given time step is complete when the meshes governed by a nonlinear equation
reach the equilibrium state. The main idea of the proposed method is to keep the mass-conservation
of the underlying numerical solution at each redistribution step. In one dimension, we can show
that the underlying numerical approximation obtained in the mesh-redistribution part satisfies the
desired TVD property, which guarantees that the numerical solution at any time level is TVD,
provided that the PDE solver in the first part satisfies such a property. Several test problems in one
and two dimensions are computed using the proposed moving mesh algorithm. The computations
demonstrate that our methods are efficient for solving problems with shock discontinuities, obtaining
the same resolution with a much smaller number of grid points than the uniform mesh approach.

Key words. adaptive mesh method, hyperbolic conservation laws, finite volume method

AMS subject classifications. 65M93, 35L64, 76N10
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1. Introduction. Adaptive mesh methods have important applications for a va-
riety of physical and engineering areas such as solid and fluid dynamics, combustion,
heat transfer, material science, etc. The physical phenomena in these areas develop
dynamically singular or nearly singular solutions in fairly localized regions, such as
shock waves, boundary layers, detonation waves, etc. The numerical investigation of
these physical problems may require extremely fine meshes over a small portion of the
physical domain to resolve the large solution variations. In multidimensions, develop-
ing effective and robust adaptive grid methods for these problems becomes necessary.
Successful implementation of the adaptive strategy can increase the accuracy of the
numerical approximations and also decrease the computational cost. In the past two
decades, there has been important progress in developing mesh methods for PDEs,
including the variational approach of Winslow [36], Brackbill [5], and Brackbill and
Saltzman [6]; finite element methods by Miller and Miller [25] and Davis and Flaherty
[11]; the moving mesh PDEs of Cao, Huang, and Russell [7], Stockie, Mackenzie, and
Russell [33], Li and Petzold [23], and Ceniceros and Hou [8]; and moving mesh meth-
ods based on harmonic mapping of Dvinsky [12] and Li, Tang, and Zhang [21, 22].
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Harten and Hyman [14] began the earliest study in this direction, by moving
the grid at an adaptive speed in each time step to improve the resolution of shocks
and contact discontinuities. After their work, many other moving mesh methods for
hyperbolic problems have been proposed in the literature, including those of Azarenok
and collaborators [1, 2, 3], Fazio and LeVeque [13], Liu, Ji, and Liao [24], Saleri and
Steinberg [29], and Stockie, Mackenzie, and Russell [33]. However, many existing
moving mesh methods for hyperbolic problems are designed for one space dimension.
In one dimension, it is generally possible to compute on a very fine grid, and so the
need for moving mesh methods may not be clear. Multidimensional moving mesh
methods are often difficult to use in fluid dynamics problems, since the grid will
typically suffer large distortions and possible tangling. It is therefore useful to design a
simple and robust moving mesh algorithm for hyperbolic problems in multidimensions.

The main objective of this paper is to develop one- and two-dimensional (1D
and 2D) moving mesh methods for hyperbolic systems of conservation laws. Fol-
lowing Li, Tang, and Zhang [21] we propose a moving mesh method containing two
separate parts: PDE time-evolution and mesh-redistribution. The first part can be
any suitable high-resolution method such as the wave-propagation algorithm, central
schemes, and ENO methods. Once numerical solutions are obtained at the given time
level, the mesh will be redistributed using an iteration procedure. At each iteration,
the grid is moved according to a variational principle, and the underlying numeri-
cal solution on the new grid will be updated using some simple methods (such as
conventional interpolation). It is noted that the direct use of conventional interpo-
lation is unsatisfactory for hyperbolic problems, since many physical properties such
as mass-conservation and TVD (in one dimension) may be destroyed. In order to
preserve these physical properties, we propose to use conservative-interpolation in the
solution-updating step. The idea of using conservative-interpolation is new and is
shown to work successfully for hyperbolic problems. This approach also preserves the
total mass of the numerical solutions, and by the well-known Lax–Wendroff theory
the numerical solutions converge to the weak solution of the underlying hyperbolic
system.

The paper is organized as follows. In section 2, we briefly review some theory of
the variational approach for moving mesh methods, which is relevant to the mesh-
redistribution part of our algorithm. In section 3, we propose a 1D moving mesh
algorithm for solving hyperbolic systems of conservation laws, which will be extended
to a 2D algorithm in section 4. Numerical experiments are carried out in sections 5
and 6, where several 1D and 2D examples are considered.

2. Mesh generation based on the variational approach. Let �x = (x1, x2, . . . ,

xd) and �ξ = (ξ1, ξ2, . . . , ξd) denote the physical and computational coordinates, respec-
tively. Here d ≥ 1 denotes the number of spatial dimensions. A one-to-one coordinate
transformation from the computational (or logical) domain Ωc to the physical domain
Ωp is denoted by

�x = �x(�ξ), �ξ ∈ Ωc.(2.1)

Its inversion is denoted by

�ξ = �ξ(�x), �x ∈ Ωp.(2.2)
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In the variational approach, the mesh map is provided by the minimizer of a functional
of the following form:

E(�ξ) =
1

2

∑
k

∫
Ωp

∇ξTk G−1
k ∇ξkd�x,(2.3)

where ∇ := (∂x1 , ∂x2 , . . . , ∂xd
)T and Gk are given symmetric positive definite matrices

called monitor functions. In general, monitor functions depend on the underlying
solution to be adapted. More terms can be added to the functional (2.3) to control
other aspects of the mesh such as orthogonality and mesh alignment with a given
vector field [5, 6].

The variational mesh is determined by the Euler–Lagrange equation of the above
functional:

∇ · (G−1
k ∇ξk

)
= 0, 1 ≤ k ≤ d.(2.4)

One of the simplest choices of monitor functions is Gk = ωI, 1 ≤ k ≤ d, where I is
the identity matrix and ω is a positive weight function, e.g., ω =

√
1 + |∇u|2. Here

u is the solution of the underlying PDE. In this case, we obtain Winslow’s variable
diffusion method [36]:

∇ ·
(
1

ω
∇ξk

)
= 0, 1 ≤ k ≤ d.(2.5)

By using the above equations, a map between the physical domain Ωp and the logical
domain Ωc can be computed. Typically, the map transforms a uniform mesh in the
logical domain, clustering grid points in those regions of the physical domain where
the solution has the largest gradients.

2.1. 1D case. Although the main objective of this work is to provide an effec-
tive moving mesh algorithm for 2D conservation laws, it is easier to illustrate the
basic moving mesh ideas by starting with some 1D discussions. Let x and ξ denote
the physical and computational coordinates, respectively, which are (without loss of
generality) assumed to be in [a, b] and [0, 1], respectively. A one-to-one coordinate
transformation between these domains is denoted by

x = x(ξ), ξ ∈ [0, 1],
x(0) = a, x(1) = b.

(2.6)

The 1D Euler–Lagrange equation has the form

(ω−1ξx)x = 0.(2.7)

Using the above equation, we can obtain the conventional 1D equidistribution princi-
ple: ωxξ = constant, or equivalently,

(ωxξ)ξ = 0.(2.8)

Both (2.7) and (2.8) have the same form, and therefore solving either of them will
yield the desired mesh map x = x(ξ). However, the situation is different in the 2D
case, where we will choose to solve equations of the form (2.8), as will be described
in the next subsection.
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2.2. 2D case. We will consider the Winslow’s variable diffusion method (2.5).
The extension to the general Euler–Lagrange equation (2.4) is straightforward. Let
(x, y) = (x(ξ, η), y(ξ, η)) be the mesh map in two dimensions. Then (2.5) becomes

(ω−1ξx)x + (ω−1ξy)y = 0,

(ω−1ηx)x + (ω−1ηy)y = 0.
(2.9)

In practice, the physical domain Ωp may have a very complex geometry, and as a result,
solving the elliptic system (2.9) directly on structured grids is unrealistic. Therefore
we usually solve the corresponding mesh generation equations on the computational
domain Ωc by interchanging the dependent and independent variables in (2.9):

xξ
J

[(
xη

1

Jω
xη + yη

1

Jω
yη

)
ξ

−
(
xξ

1

Jω
xη + yξ

1

Jω
yη

)
η

]

+
xη
J

[
−
(
xη

1

Jω
xξ + yη

1

Jω
yξ

)
ξ

+

(
xξ

1

Jω
xξ + yξ

1

Jω
yξ

)
η

]
= 0,

yξ
J

[(
xη

1

Jω
xη + yη

1

Jω
yη

)
ξ

−
(
xξ

1

Jω
xη + yξ

1

Jω
yη

)
η

]

+
yη
J

[
−
(
xη

1

Jω
xξ + yη

1

Jω
yξ

)
ξ

+

(
xξ

1

Jω
xξ + yξ

1

Jω
yξ

)
η

]
= 0.

(2.10)

Note that system (2.10) is more complicated than the Euler–Lagrange equation (2.9),
which requires more computational effort in obtaining numerical approximations. An
alternative approach, as observed by Ceniceros and Hou [8], is to consider a functional
defined in the computational domain,

Ẽ[x, y] =
1

2

∫
Ωc

(
∇̃TxG1∇̃x+ ∇̃T yG2∇̃y

)
dξdη,(2.11)

to replace the conventional functional (2.3), where Gk are monitor functions, and

∇̃ = (∂ξ, ∂η)
T . The corresponding Euler–Lagrange equation is

∂ξ(G1∂ξx) + ∂η(G1∂ηx) = 0,

∂ξ(G2∂ξy) + ∂η(G2∂ηy) = 0.
(2.12)

In particular, with the choice G = ωI we have

∇̃ · (ω∇̃x) = 0, ∇̃ · (ω∇̃y) = 0.(2.13)

The monitor functions will be chosen based on the properties of the physical solutions.

A typical choice used in [8] is ω =
√
1 + α1|u|2 + α2|∇̃u|2 or ω =

√
1 + α1|u|2 + α2|∇u|2,

where α1, α2 are some nonnegative constants.

3. 1D algorithm. For convenience, we assume that a fixed uniform mesh on
the computational domain is given by ξj = j/(J + 1), 0 ≤ j ≤ J + 1. We denote the
cell average of the solution u(x) over the interval [xj , xj+1] as

uj+ 1
2
=

1

∆xj+ 1
2

∫ xj+1

xj

u(x) dx,
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where ∆xj+ 1
2
= xj+1 − xj . In practice, the monitor function ω is always associated

with the underlying solution u or/and its derivatives, but without loss of generality
we assume that ω = ω(u). For monitor functions involving first or second derivatives,
central differencing will be used to approximate these derivatives.

3.1. Mesh-redistribution. In order to solve the mesh-redistribution equation
(2.8), we introduce an artificial time τ and solve

xτ = (ωxξ)ξ, 0 < ξ < 1,(3.1)

subject to boundary conditions x(0, τ) = a and x(1, τ) = b. We discretize (3.1) on
the uniform mesh in Ωc:

x̃j = xj +
∆τ

∆ξ2
[
ω(uj+ 1

2
)(xj+1 − xj)− ω(uj− 1

2
)(xj − xj−1)

]
, 1 ≤ j ≤ J,(3.2)

where ∆ξ = 1/(J + 1) is the step size in Ωc. Solving (3.2) with boundary conditions
x0 = a and xJ+1 = b leads to a new grid in the physical domain Ωp. Some advantages
of using the approach (3.1) and (3.2) to solve the mesh redistribution equation (2.8)
will be seen from Lemma 3.1 and Theorem 3.1.

3.2. Solution-updating on new grids. After obtaining the new grid {x̃j},
we need to update u at the grid point x̃j+ 1

2
= (x̃j + x̃j+1)/2 based on the knowl-

edge of {xj+ 1
2
, x̃j+ 1

2
, uj+ 1

2
}. The traditional way to do this is using the conventional

interpolation

ũj+ 1
2
= uk+ 1

2
+
uk+ 1

2
− uk− 1

2

xk+ 1
2
− xk− 1

2

(x̃j+ 1
2
− xk+ 1

2
) if x̃j+ 1

2
∈ [xk− 1

2
, xk+ 1

2
].(3.3)

Since the monitor function ω is dependent on the underlying solution u, the grid
redistribution equations (3.2)–(3.3) form a nonlinear system. It is therefore natural
to make several iterations to solve (3.2)–(3.3) in order to gain better control of the
grid distribution near those regions where the solution u has a large gradient. In
solving hyperbolic conservation laws with strong discontinuities (e.g., shocks), iter-
ation techniques based on (3.2)–(3.3) have been employed, and it is found that the
results for the solution and the mesh are not satisfactory. The main problem is that
the linear interpolation (3.3) cannot preserve conservation of mass, which, by the
Lax–Wendroff theory, is an essential requirement for a good numerical scheme for
hyperbolic conservation laws.

In the following we will introduce a new method to update u, noting that mass-
conservation is an essential requirement for hyperbolic conservation laws. To begin
with, assume that the difference between x̃j+ 1

2
and xj+ 1

2
is small. Let ũj+ 1

2
and

uj+ 1
2
be cell averages of the solution u(x) over the intervals [x̃j , x̃j+1] and [xj , xj+1],

respectively. We will derive a formula for ũj+ 1
2
using the perturbation method. If
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x̃ = x− c(x) with a small displacement c(x), i.e., |c(x)| 
 1, then we have∫ x̃j+1

x̃j

ũ(x̃) dx̃ =

∫ xj+1

xj

u(x− c(x))(1− c′(x)) dx

≈
∫ xj+1

xj

(u(x)− c(x)ux(x))(1− c′(x)) dx

≈
∫ xj+1

xj

(u(x)− (cu)x) dx

=

∫ xj+1

xj

u(x) dx− ((cu)j+1 − (cu)j),(3.4)

where we have neglected higher-order terms, and (cu)j denotes the value of cu at
the jth cell interface. The following almost conservative-interpolation formula follows
from (3.4):

∆x̃j+ 1
2
ũj+ 1

2
= ∆xj+ 1

2
uj+ 1

2
− ((cu)j+1 − (cu)j

)
,(3.5)

where ∆x̃j+ 1
2
= x̃j+1 − x̃j and cj = xj − x̃j . Note that the above solution-updating

method guarantees the conservation of mass in the following sense:∑
j

∆x̃j+ 1
2
ũj+ 1

2
=
∑
j

∆xj+ 1
2
uj+ 1

2
.(3.6)

The linear flux cu in (3.5) will be approximated by some upwinding numerical flux;
see (3.11) below.

If the function u is suitably smooth, then it can be shown that the size of the
moving speed c(x) is small. It is known that the first and second derivatives of
the parabolic-type equation (3.1) are bounded, provided that the initial data and
the monitor function satisfy some regularity requirements. By the definition of c(x),
we have

c(x) = x− x̃ = −(xτ )∆τ = O(∆τ),
c′(x) = 1− x̃x = 1− x̃ξ

xξ
= −xξτ

xξ
∆τ = O(∆τ),

which indicate that the moving speed in each cell is indeed very small.

3.3. Solution procedure. Our solution procedure is based on two independent
parts: a mesh-redistribution algorithm and a solution algorithm. The first part will
be based on an iteration procedure using (3.2) and (3.5). The second part will be
independent of the first, and it can be any of the standard codes for solving the given
PDEs, such as ENO schemes [31, 39], central schemes [17, 27], relaxation schemes
[16, 26, 34], BGK schemes [38, 35], and several other types of high-resolution methods
(see, e.g., [20, 15, 18]). The solution procedure can be illustrated by the following
flowchart.

Algorithm 0.
Step 1. Given a uniform (fixed) partition of the logical domain Ωc, use the equidistri-

bution principle (2.8) to generate an initial partition x
[0]
j := xj of the physical

domain Ωp. Then compute the grid values u
[0]

j+ 1
2

based on the cell average for

the initial data u(x, 0).
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Step 2. Move grid {x[ν]
j } to {x[ν+1]

j } based on scheme (3.2), and compute {u[ν+1]

j+ 1
2

}
on the new grid based on scheme (3.5) for ν ≥ 0. Repeat the updating
procedure for a fixed number of iterations or until ‖x[ν+1] − x[ν]‖ ≤ ε. The
mesh-redistribution scheme (3.2) can be also replaced by the Gauss–Seidel
iteration procedure (3.32), as discussed at the end of this section.

Step 3. Evolve the underlying PDEs using a high-resolution finite volume method

on the mesh {x[ν+1]
j } to obtain the numerical approximations un+1

j+ 1
2

at the

time level tn+1.

Step 4. If tn+1 ≤ T , then let u
[0]

j+ 1
2

:= un+1
j+ 1

2

and x
[0]
j := x

[ν+1]
j and go to Step 2.

3.3.1. Some discussions on Step 2. A new mesh x
[ν+1]
j is obtained using

(3.2):

x
[ν+1]
j = αj+ 1

2
x

[ν]
j+1 + (1− αj+ 1

2
− αj− 1

2
)x

[ν]
j + αj− 1

2
x

[ν]
j−1(3.7)

where

αj+ 1
2
=

∆τ

∆ξ2
ω(u

[ν]

j+ 1
2

).

The above equation is solved subject to the following stability condition:

max
j
αj+ 1

2
≤ 1

2
.(3.8)

Next, numerical solutions are updated on the new grids {x[ν+1]
j } (at the same time

level) using (3.5),

u
[ν+1]

j+ 1
2

= β
[ν]
j u

[ν]

j+ 1
2

− γ[ν]
j ((ĉu)

[ν]
j+1 − (ĉu)

[ν]
j ),(3.9)

where

γ
[ν]
j = (x

[ν+1]
j+1 − x[ν+1]

j )−1, β
[ν]
j = γ

[ν]
j · (x[ν]

j+1 − x[ν]
j ),(3.10)

and the numerical flux ĉuj is defined by

(ĉu)j =
cj
2
(uj+ 1

2
+ uj− 1

2
)− |cj |

2
(uj+ 1

2
− uj− 1

2
).(3.11)

The wave speed cj above is defined by c
[ν]
j = x

[ν]
j − x[ν+1]

j .
Remark 3.1. In our numerical computation, the first-order numerical flux (ĉu)j

defined by (3.11) will be replaced by a second-order one as the following:

(ĉu)j =
cj
2
(u+
j + u−j )−

|cj |
2
(u+
j − u−j ),(3.12)

where u+
j and u−j will be defined by (3.19) below.

Remark 3.2. In practice, it is common to use some temporal or spatial smoothing
on the monitor function to obtain smoother meshes. One of the reasons for using
smoothing is to avoid very singular mesh and/or large approximation errors near
those regions where the solution has a large gradient. In this work, we apply the
following low pass filter to smooth the monitor:

ωj+ 1
2
← 1

4
(ωj+ 3

2
+ 2ωj+ 1

2
+ ωj− 1

2
),(3.13)

where ωj+ 1
2
= ω(uj+ 1

2
).
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3.3.2. Some discussions on Step 3. This step is independent of Step 2, and, as
a result, it can be done using any efficient modern numerical technique for hyperbolic
conservation laws. As an example, we consider a second-order finite volume approach
to solving the 1D scalar hyperbolic conservation laws

ut + f(u)x = 0, t > 0,(3.14)

with compactly supported initial condition

u(x, 0) = u0(x), u0 ∈ L∞ ∩BV.(3.15)

Integrating (3.14) over the control volume [tn, tn+1)× [xj , xj+1] leads to the following
(explicit) finite volume method:

un+1
j+ 1

2

= unj+ 1
2
− tn+1 − tn
xj+1 − xj

(
f̂nj+1 − f̂nj

)
,(3.16)

where f̂nj is some appropriate numerical flux satisfying

f̂nj = f̂(un,−j , un,+j ), f̂(u, u) = f(u).(3.17)

An example of such a numerical flux is the Lax–Friedrichs flux:

f̂(a, b) =
1

2

[
f(a) + f(b)−max

u
{|fu|} (b− a)

]
.(3.18)

In (3.17), un,±j are defined by

un,±j = unj± 1
2
+

1

2
(xj − xj±1)S̃j± 1

2
,(3.19)

where S̃j+ 1
2
is an approximation of the slope ux at xj+ 1

2
, defined by

S̃j+ 1
2
=
(
sign(S̃+

j+ 1
2

) + sign(S̃−
j+ 1

2

)
) |S̃+

j+ 1
2

S̃−
j+ 1

2

|
|S̃+
j+ 1

2

|+ |S̃−
j+ 1

2

| ,(3.20)

with

S̃+
j+ 1

2

=
un
j+ 3

2

− un
j+ 1

2

xj+ 3
2
− xj+ 1

2

, S̃−
j+ 1

2

=
un
j+ 1

2

− un
j− 1

2

xj+ 1
2
− xj− 1

2

.

The MUSCL (monotone upstream-centered scheme for conservation laws)-type finite
volume method (3.16)–(3.18), which is of second-order accuracy in smooth regions,
will be applied in the 1D numerical experiments.

3.4. Some theoretical results on the adaptive mesh solutions. In one
dimension, some good theoretical guarantees for the numerical grids can be obtained.
In the following, we prove some theoretical results for the mesh-redistribution equation
(3.7) and the solution-updating equation (3.9). We first demonstrate that the new
mesh x[ν+1] generated by (3.7) keeps the monotonic order of x[ν].

Lemma 3.1. Assume x
[ν]
j+1 > x

[ν]
j for 0 ≤ j ≤ J . If the new mesh x[ν+1] is

obtained using (3.7), with αj+ 1
2
satisfying the stability condition (3.8), then x

[ν+1]
j−1 <

x
[ν]
j < x

[ν+1]
j+1 for 1 ≤ j ≤ J , and x[ν+1]

j+1 > x
[ν+1]
j for 0 ≤ j ≤ J .
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Proof. Using the stability condition (3.8) gives 1− αj+ 1
2
− αj− 1

2
≥ 0. Moreover,

αj± 1
2
are all positive. Therefore, it follows from (3.7) and the assumption x

[ν]
j+1 > x

[ν]
j

that x
[ν+1]
j−1 < x

[ν]
j < x

[ν+1]
j+1 . We now rewrite (3.7) into the following form:

x
[ν+1]
j = αj+ 1

2
∆x

[ν]

j+ 1
2

+ x
[ν]
j − αj− 1

2
∆x

[ν]

j− 1
2

,(3.21)

where ∆xj+ 1
2
= xj+1 − xj . It follows from the above equation that

∆x
[ν+1]

j− 1
2

= αj+ 1
2
∆x

[ν]

j+ 1
2

+ (1− 2αj− 1
2
)∆x

[ν]

j− 1
2

+ αj− 3
2
∆x

[ν]

j− 3
2

.

Since the first and last coefficients of the right-hand side are positive and the second

one is nonnegative (due to the stability condition (3.8)), the assumption x
[ν]
j+1 > x

[ν]
j

yields ∆x
[ν+1]

j− 1
2

> 0. This shows that x
[ν+1]
j+1 > x

[ν+1]
j for 0 ≤ j ≤ J .

Remark 3.3. A consequence of Lemma 3.1 is that x
[ν+1]
j ∈ (x

[ν]
j−1, x

[ν]
j+1), which

implies that the speed of mesh moving is finite. This is important in better controlling
grid distribution near the regions of large gradients in the solution.

Next, we provide a necessary condition under which the updated solution u
[ν+1]

j+ 1
2

satisfies the TVD property.
Lemma 3.2. Assume that the initial data u[0] is compactly supported and that

the stability condition (3.8) is satisfied. If x
[ν+1]
j−1 ≤ x[ν]

j ≤ x[ν+1]
j+1 and x

[ν+1]
j+1 > x

[ν+1]
j ,

then the solution-updating scheme (3.9)–(3.11) satisfies

TV(u[ν+1]) ≤ TV(u[ν]),

where the total variation is defined by

TV(u) :=
∑
j

∣∣uj+ 1
2
− uj− 1

2

∣∣.
Proof. For ease of notation we denote x̃ = x[ν+1], x = x[ν], ũ = u[ν+1], u = u[ν].

Note that cj+1− cj = ∆xj+ 1
2
−∆x̃j+ 1

2
. This fact, together with the scheme (3.9) and

the numerical flux (3.11), gives

∆x̃j+ 1
2
ũj+ 1

2
=
(
cj+1 − cj +∆x̃j+ 1

2

)
uj+ 1

2
+

1

2

(|cj+1| − cj+1

)
uj+ 3

2

+
1

2

(
cj − |cj | − cj+1 − |cj+1|

)
uj+ 1

2
+

1

2

(|cj |+ cj)uj− 1
2

= ∆x̃j+ 1
2
uj+ 1

2
+mj+1uj+ 3

2
−mj+1uj+ 1

2
−Mjuj+ 1

2
+Mjuj− 1

2
,

where Mj = max(0, cj) and mj = −min(0, cj). Note that both Mj and mj are
nonnegative. It follows from the above result that

ũj+ 1
2
= uj+ 1

2
+
mj+1

∆x̃j+ 1
2

∆uj+1 − Mj

∆x̃j+ 1
2

∆uj ,(3.22)

where ∆uj = uj+ 1
2
− uj− 1

2
. It follows from (3.22) that

∆ũj = ∆uj +
mj+1

∆x̃j+ 1
2

∆uj+1 −
(

Mj

∆x̃j+ 1
2

+
mj

∆x̃j− 1
2

)
∆uj +

Mj−1

∆x̃j− 1
2

∆uj−1,



496 HUAZHONG TANG AND TAO TANG

which gives

(3.23)∑
j

|∆ũj | ≤
∑
j

mj

∆x̃j− 1
2

|∆uj |+
∑
j

∣∣∣∣∣1− Mj

∆x̃j+ 1
2

− mj

∆x̃j− 1
2

∣∣∣∣∣ |∆uj |∑
j

Mj

∆x̃j+ 1
2

|∆uj |.

It can be verified using the definition of cj that the condition x̃j−1 ≤ xj ≤ x̃j+1 is
equivalent to −∆x̃j− 1

2
≤ cj ≤ ∆x̃j+ 1

2
. This fact, together with the observation that

Mj = 0 when cj ≤ 0 and mj = 0 when cj ≥ 0, yields

1− Mj

∆x̃j+ 1
2

− mj

∆x̃j− 1
2

≥ 0.(3.24)

It follows from (3.23) and (3.24) that TV(ũ) ≤ TV(u).
With the two ingredients above, the following TVD property for Step 2 of Algo-

rithm 0 is established.
Theorem 3.1. Assume that the initial data u[0] is compactly supported and

that the stability condition (3.8) is satisfied. Then the iterated mesh and solution
{x[ν+1], u[ν+1]} generated by (3.7)–(3.11) satisfies TV(u[ν+1]) ≤ TV(u[ν]).

Remark 3.4. If the PDE solver in Step 3 of Algorithm 0 is TVB (i.e., TV-
bounded) (or TVD), then the above theorem guarantees the TVB (or TVD) property
of the moving mesh solution at any time level. It can be also proved similarly that
the l∞- and the l1-stabilities are also preserved.

Theorem 3.2. Assume that the initial function u0 in (3.15) is compactly sup-
ported and that the stability condition (3.8) is satisfied. Then the moving mesh solution
generated by Algorithm 0, with (3.7)–(3.11) for Step 2 and (3.16) for Step 3, is a weak
solution of the conservation law (3.14).

Proof. Without loss of generality we assume that only one iteration is used in Step
2 of Algorithm 0. Then, given {xnj , unj+ 1

2

}, the solution {xn+1
j , un+1

j+ 1
2

} is computed by

the following operator-splitting-type algorithm:

Unj+ 1
2
= unj+ 1

2
− ∆tn

∆xn
j+ 1

2

(
fnj+1 − fnj

)
,(3.25)

xn+1
j = xnj +

∆τ

∆ξ2

[
ω(Unj+ 1

2
)(xnj+1 − xnj )− ω(Unj− 1

2
)(xnj − xnj−1)

]
,(3.26)

∆xn+1
j+ 1

2

un+1
j+ 1

2

= ∆xnj+ 1
2
Unj+ 1

2
− ((cUn)j+1 − (cUn)j),(3.27)

where cj = x
n
j −xn+1

j and the numerical flux fnj satisfies the consistency requirement.
Multiplying the first equation above by a test function φ ∈ C∞0 (R× (0, T ]) gives

∆xnj+ 1
2
Unj+ 1

2
φ(xnj , tn) = ∆xnj+ 1

2
unj+ 1

2
φ(xnj , tn)−∆tn

(
fnj+1 − fnj

)
φ(xnj , tn),

which, together with the interpolation step (3.27), gives

∆xn+1
j+ 1

2

un+1
j+ 1

2

φ(xnj , tn) + ((cUn)j+1 − (cUn)j)φ(x
n
j , tn)

= ∆xnj+ 1
2
unj+ 1

2
φ(xnj , tn)−∆tn

(
fnj+1 − fnj

)
φ(xnj , tn).(3.28)
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Standard summation by parts yields

∑
j

N∑
n=0

[
∆xn+1

j+ 1
2

un+1
j+ 1

2

−∆xnj+ 1
2
unj+ 1

2

]
φ(xnj , tn)

= −
∑
j

N∑
n=0

((cUn)j+1 − (cUn)j)φ(x
n
j , tn)−

N∑
n=0

∑
j

∆tn
(
fnj+1 − fnj

)
φ(xnj , tn)

and then

−
∑
j

∆x0
j+ 1

2
u0
j+ 1

2
φ(x0

j , 0)−
∑
j

N∑
n=1

[φ(xnj , tn)− φ(xn−1
j , tn−1)]∆x

n
j+ 1

2
unj+ 1

2
(3.29)

=
∑
j

N∑
n=0

[φ(xnj , tn)− φ(xnj−1, tn)](x
n
j − xn+1

j )Unj

+

N∑
n=0

∑
j

∆tn
[
φ(xnj , tn)− φ(xnj−1, tn)

]
fnj ,

where we have used the fact φ(x, tN ) = 0 with tN = T . We can show that ∆x0
j+ 1

2

→ 0

as J → ∞. Without loss of generality, assume that the monitor function is the one
associated with the equidistribution principle, i.e., ω(u) =

√
1 + u2

x. Then

L =
√
1 + u2

x(x
0
j , 0)∆x

0
j+ 1

2
, 0 ≤ j ≤ J − 1,(3.30)

is a constant independent of j. It follows from the definition of L that

L ≤ (1 + |ux(x0
j , 0)|

)
∆x0

j+ 1
2
, 0 ≤ j ≤ J − 1,

which gives

JL ≤ the size of u0’s support + TV(u0).

This, together with the definition (3.30), leads to

∆x0
j+ 1

2
≤ const. J−1 → 0 as J →∞.(3.31)

Moreover, since {xnj }, with n ≥ 1, are obtained by solving a parabolic equation, we
have ∆xn

j+ 1
2

∼ O(∆ξ)→ 0 for n ≥ 1. Taking limits on both sides of (3.29) leads to

−
∫
u(x, 0)φ(x, 0)dx−

∫ ∫
(φxxt + φt)udxdt = −

∫ ∫
φxxtudxdt+

∫ ∫
φxf(u)dxdt,

provided that the numerical solution is convergent to u almost everywhere, where
for the second term on the LHS (left-hand side) of (3.29) we have used the fact
φ(x, t)t = φtxt+φt, and for the first term on the RHS (right-hand side) we have used
the fact that cj = x

n
j − xnj ∼ xtdt. The above result leads to∫ ∫
(φtu+ φxf(u))dxdt+

∫
u(x, 0)φ(x, 0)dx = 0,

which indicates that the moving mesh solution is indeed a weak solution of the un-
derlying conservation law.
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3.5. Grid-motion with Gauss–Seidel iteration. In practice, we also use the
following Gauss–Seidel-type iteration to solve the mesh moving equation (2.8):

ω(u
[ν]

j+ 1
2

)(x
[ν]
j+1 − x[ν+1]

j )− ω(u[ν]

j− 1
2

)(x
[ν+1]
j − x[ν+1]

j−1 ) = 0.(3.32)

It can also be demonstrated that the new mesh x[ν+1] generated by (3.32) keeps the
monotonic order of x[ν].

Lemma 3.3. Assume x
[ν]
j+1 > x

[ν]
j for 0 ≤ j ≤ J . If the new mesh x[ν+1]

is obtained by using the Gauss–Seidel iterative scheme (3.32), with positive monitor

function ω, then x
[ν+1]
j > x

[ν+1]
j−1 for 1 ≤ j ≤ J + 1. Moreover, x

[ν]
j > x

[ν+1]
j−1 for

1 ≤ j ≤ J + 1.
Proof. We again denote x̃ = x[ν+1], x = x[ν]. It follows from (3.32) that

−αjxj+1 + x̃j − βj x̃j−1 = 0,(3.33)

where αj > 0, βj > 0 (due to the positivity assumption of the monitor function), and
αj + βj = 1. It follows from the above equation that

x̃j − xj+1 − βj(x̃j−1 − xj) = βj(xj − xj+1) ≤ 0,

which gives that

x̃j − xj+1 ≤
(

j∏
k=1

βk

)
(x̃0 − x1) =

(
j∏

k=1

βk

)
(x0 − x1) < 0.

The above result yields x̃j < xj+1, which, together with (3.32), also leads to x̃j >
x̃j−1.

If we can further show that x
[ν]
j ≤ x[ν+1]

j+1 for the Gauss–Seidel iteration (3.32),
then based on Lemma 3.2 the solution-updating scheme (3.9) together with the mesh-
redistribution scheme (3.32) will also satisfy the TVD property, i.e., TV(u[ν+1]) ≤
TV(u[ν]). However, it seems unlikely that x

[ν]
j ≤ x[ν+1]

j+1 holds for (3.32) in general sit-
uations. On the other hand, the combination of (3.9) and (3.32) has been employed
in our numerical experiments, and the numerical results are quite satisfactory. There-
fore, both (3.7) and (3.32) can be used in Step 2 of Algorithm 0 to redistribute grid
points. In most test problems considered in this work, the grid updating procedure at
each time step takes five full Gauss–Seidel iterations, although the difference between
solutions with three and five iterations is very small.

4. 2D algorithm. One of the advantages of the adaptive mesh methods de-
scribed in the last section is that they can be naturally extended to two dimensions.
In the following, we briefly discuss this extension, together with the boundary point
redistribution technique which is necessary for 2D mesh redistribution.

4.1. A conservative solution-updating method. In two dimensions, the log-
ical domain Ω̄c = {(ξ, η)|0 ≤ ξ ≤ 1, 0 ≤ η ≤ 1} is covered by the square mesh:{

(ξj , ηk)
∣∣∣ ξj = j

(Jx + 1)
, ηk =

k

(Jy + 1)
; 0 ≤ j ≤ Jx + 1, 0 ≤ k ≤ Jy + 1

}
.

Correspondingly, the numerical approximations to x = x(ξ, η) and y = y(ξ, η) are
denoted by xj,k = x(ξj , ηk) and yj,k = y(ξj , ηk). As in the 1D case, we will derive a
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A

j,k

j,k+1
j+1,k+1

j+1,k

j+1/2, k+1/2

Fig. 4.1. A control volume.

conservative scheme to evaluate approximate values at new grid points. Let Aj+ 1
2 ,k+

1
2

be a control volume as shown in Figure 4.1. Let Ãj+ 1
2 ,k+

1
2
denote the quadrangle of

the finite control volume with four vertices (x̃j+p,k+q, ỹj+p,k+q), 0 ≤ p, q ≤ 1, which
is of setup similar to Figure 4.1.

Assume that ũj+ 1
2 ,k+

1
2
and uj+ 1

2 ,k+
1
2
are cell averages of u(x, , y) over Ãj+ 1

2 ,k+
1
2

and Aj+ 1
2 ,k+

1
2
, respectively. As in the 1D case, we use the perturbation method

to evaluate the numerical approximation on the resulting new grids (x̃j,k, ỹj,k). If
(x̃, ỹ) = (x − cx(x, y), y − cy(x, y)), where we assume that the speeds (cx, cy) have
small amplitude, then we have∫

Ã
j+ 1

2
,k+ 1

2

ũ(x̃, ỹ) dx̃dỹ

=

∫
A

j+ 1
2
,k+ 1

2

u(x− cx, y − cy) det
(
∂(x̃, ỹ)

∂(x, y)

)
dxdy

≈
∫
A

j+ 1
2
,k+ 1

2

(u(x, y)− cxux − cyuy)(1− cxx − cyy) dxdy

≈
∫
A

j+ 1
2
,k+ 1

2

[u(x, y)− cxux − cyuy − cxxu− cyyu]dxdy

=

∫
A

j+ 1
2
,k+ 1

2

[u(x, y)− (cxu)x − (cyu)y]dxdy

=

∫
A

j+ 1
2
,k+ 1

2

u(x, y) dxdy −
[
(cnu)j+1,k+ 1

2
+ (cnu)j,k+ 1

2

]
(4.1)

−
[
(cnu)j+ 1

2 ,k+1 + (cnu)j+ 1
2 ,k

]
,

where we have neglected higher-order terms, cn := c
xnx+ c

yny with (nx, ny) the unit
normal, and (cnu)j,k+ 1

2
and (cnu)j+ 1

2 ,k
denote the values of cnu at the correspond-

ing surfaces of the control volume Aj+ 1
2 ,k+

1
2
. From (4.1), we obtain a conservative-

interpolation:

|Ãj+ 1
2 ,k+

1
2
|ũj+ 1

2 ,k+
1
2
= |Aj+ 1

2 ,k+
1
2
|uj+ 1

2 ,k+
1
2

−
[
(cnu)j+1,k+ 1

2
+ (cnu)j,k+ 1

2

]
−
[
(cnu)j+ 1

2 ,k+1 + (cnu)j+ 1
2 ,k

]
,(4.2)
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where |Ã| and |A| denote the areas of the control volumes Ã and A, respectively. It
can be verified that the above solution-updating scheme satisfies mass-conservation:∑

j,k

|Ãj+ 1
2 ,k+

1
2
|ũj+ 1

2 ,k+
1
2
=
∑
j,k

|Aj+ 1
2 ,k+

1
2
|uj+ 1

2 ,k+
1
2
.(4.3)

4.2. Solution procedure. The solution procedure of our adaptive mesh strat-
egy for two-dimensional hyperbolic problems is almost the same as that of Algorithm 0
provided in section 3.3. Some details of the steps used for our 2D algorithm are given
below.
Step i. Give an initial partition �z

[0]
j,k =

(
x

[0]
j,k, y

[0]
j,k

)
:= (xj,k, yj,k) of the physical do-

main Ωp and a uniform (fixed) partition of the logical domain Ωc, and com-

pute grid values u
[0]

j+ 1
2 ,k+

1
2

by cell averaging the initial data u(x, y, 0) over the

control volume Aj+ 1
2 ,k+

1
2
.

Step ii. For ν = 0, 1, 2, . . . , do the following:

(a) Move grid �z
[ν]
j,k = {(x[ν]

j,k, y
[ν]
j,k)} to �z[ν+1]

j,k = {(x[ν+1]
j,k , y

[ν+1]
j,k )} by solving

�zτ = (ω�zξ)ξ + (ω�zη)η with the conventional explicit scheme. This step can
be also done by solving (ω�zξ)ξ + (ω�zη)η = 0 with the following Gauss–Seidel
iteration:

αj+ 1
2 ,k

(
�z
[ν]
j+1,k − �z[ν+1]

j,k

)− αj− 1
2 ,k

(
�z
[ν+1]
j,k − �z[ν+1]

j−1,k

)
+ βj,k+ 1

2

(
�z
[ν]
j,k+1 − �z[ν+1]

j,k

)− βj,k− 1
2

(
�z
[ν+1]
j,k − �z[ν+1]

j,k−1

)
= 0(4.4)

for 1 ≤ j ≤ Jx and 1 ≤ k ≤ Jy, where

αj± 1
2 ,k

= ω
(
u

[ν]

j± 1
2 ,k

)
= ω

(
1
2 (u

[ν]

j± 1
2 ,k+

1
2

+ u
[ν]

j± 1
2 ,k− 1

2

)
)
,

βj,k± 1
2
= ω

(
u

[ν]

j,k± 1
2

)
= ω

(
1
2 (u

[ν]

j+ 1
2 ,k± 1

2

+ u
[ν]

j− 1
2 ,k± 1

2

)
)
.

(b) Compute {u[ν+1]

j+ 1
2 ,k+

1
2

} on the new grid using the conservative-interpolation

(4.2). The approximations for cx, cy, etc. are direct extensions of those defined
for the 1D case.
(c) Repeat the updating procedure (a) and (b) for a fixed number of iterations
(say, three or five) or until ‖�z[ν+1] − �z[ν]‖ ≤ ε.

Step iii. Evolve the underlying PDEs using 2D high-resolution finite volume meth-

ods on the mesh {(x[ν+1]
j,k , y

[ν+1]
j,k )} to obtain the numerical approximations

un+1
j+ 1

2 ,k+
1
2

at the time level tn+1.

Step iv. If tn+1 ≤ T , then let u[0]

j+ 1
2 ,k+

1
2

:= un+1
j+ 1

2 ,k+
1
2

and (x
[0]
j,k, y

[0]
j,k) := (x

[ν+1]
j,k , y

[ν+1]
j,k ),

and go to Step ii.

4.3. Boundary redistribution. In many flow situations, discontinuities may
initially exist in boundaries or move to boundaries at a later time. As a consequence,
boundary point redistribution should be made in order to improve the quality of the
solution near boundaries. A simple redistribution strategy is proposed as follows.
(For convenience, our attention is restricted to the case in which the physical domain
Ωp is rectangular.) Assume that a new set of grid points {x̃j,k, ỹj,k} is obtained in
Ωp by solving the moving mesh equation (4.4). Then the speeds of the internal grid
point (xj,k, yj,k) are given by

(c1, c2)j,k := (x̃− x, ỹ − y)j,k for 1 ≤ j ≤ Jx, 1 ≤ j ≤ Jy.
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We assume that the points of the left and bottom boundaries are moving with the
same speed as the tangential component of the speed for the internal points adjacent
to those boundary points, namely,

(c1, c2)0,k = (0, c21,k), 1 ≤ j ≤ Jy,
(c1, c2)j,0 = (c1j,1, 0), 1 ≤ j ≤ Jx.

Thus new boundary points (x̃0,k, ỹ0,k) and (x̃j,0, ỹj,0) are defined by

(x̃, ỹ)0,k = (x, y)0,k + (c1, c2)0,k, 1 ≤ k ≤ Jy,
(x̃, ỹ)j,0 = (x, y)j,0 + (c1, c2)j,0, 1 ≤ j ≤ Jx.

The redistribution for other boundaries can be carried out in a similar way. Numerical
experiments show that the above procedure for moving the boundary points is useful
in improving the solution resolution.

5. Numerical experiments for 1D problems. In this section, we first imple-
ment our adaptive mesh methods presented in the last section for several 1D model
problems. One of the main advantages of Algorithm 0 is that the solution algorithm
(i.e., PDE solver) and the mesh redistribution algorithm are independent of each other.
Several solution schemes, such as the MUSCL-type finite volume method (3.16)–
(3.18), the second-order MUSCL-type gas-kinetic approach [38], and the second-order
central scheme [27], have been employed to evolve the underlying PDEs in Step 3 of
Algorithm 0. The results obtained by the three methods are in good agreement.

5.1. 1D example. Three examples will be considered in this subsection. All of
them have been used by several authors to test various numerical schemes.

Example 5.1. Burgers’ equation. This example is the inviscid Burgers’ equation

ut +

(
u2

2

)
x

= 0, 0 ≤ x ≤ 2π,(5.1)

subject to the 2π-periodic initial data

u(x, 0) = 0.5 + sin(x), x ∈ [0, 2π).
The solution propagates to the right, steepening until the critical time tc = 1,

at which a shock forms. Figure 5.1 shows the solutions at t = 2, when the shock
is well developed. Also shown in Figure 5.1 is the trajectory of the grid points up
to t = 2, obtained with J = 30 and J = 50. The ability of the adaptive mesh
method to capture and follow the moving shock is clearly demonstrated in this figure.
Some details in this example are the following: the monitor function used in the
computation is ω =

√
1 + 0.2|uξ|2; the number of Gauss–Seidel iterations used is 5;

the scheme for evolving Burgers’ equation is a (formally) second-order MUSCL finite
volume scheme (with the Lax–Friedrichs flux) together with a second-order Runge–
Kutta discretization; the CFL number used is 0.3.

In Table 5.1, L1-error and convergence rate are listed for t = 0.9 and t = 0.999. It
is observed that a second-order rate of convergence can be obtained for the adaptive
mesh method.

Example 5.2. Nonconvex conservation laws. Here we apply the adaptive mesh
algorithm to the Riemann problem of a scalar hyperbolic conservation law with a
nonlinear nonconvex flux:

ut + f(u)x = 0, f(u) =
1

4
(u2 − 1)(u2 − 4).(5.2)
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Fig. 5.1. Example 5.1. Left: numerical (“o”) and exact solutions (solid line) at t = 2. Right:
trajectory of the mesh for 0 ≤ t ≤ 2. Top: J = 30; and bottom: J = 50.

Table 5.1
Example 5.1: L1-error and convergence order at t = 0.9 and t = 0.999.

J 40 80 160 320

t = 0.9 4.73e-2 (–) 1.48e-2 (1.68) 3.76e-3 (1.98) 7.90e-4 (2.25)

t = 0.999 5.84e-2 (–) 1.85e-2 (1.67) 5.23e-3 (1.82) 1.33e-3 (1.98)

The initial data are u(x, 0) = −2sign(x).
The problem was also considered in [17]. In contrast with Burgers’ equation,

the flux function for this problem is nonconvex, which leads to difficulties with some
numerical schemes and so serves as a good test problem. The numerical solution at
t = 1.2 is shown for an adaptive mesh in Figure 5.2, with J = 30 and 50. Some details
in this example are the following: the monitor function used in the computation is ω =√
1 + |uξ|2; the number of Gauss–Seidel iterations is 5; the scheme for evolving (5.2)

is a (formally) second-order MUSCL finite volume scheme (with the Lax–Friedrichs
flux) together with a second-order Runge–Kutta discretization. It is seen that the
numerical solution gives sharp shock profiles.

Example 5.3. Euler equations of gas dynamics. In this example, we test our



ADAPTIVE MESH METHODS FOR CONSERVATION LAWS 503

u

-2

-1

0

1

2

-1 -0.5 0 0.5 1 t 0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1

u

-2

-1

0

1

2

-1 -0.5 0 0.5 1 t 0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1

Fig. 5.2. Example 5.2. Left: numerical (“o”) and exact solutions (solid line) at t = 1.2. Right:
trajectory of the mesh for 0 ≤ t ≤ 1.2. Top: J = 30; and bottom: J = 50.

adaptive mesh algorithm with the one-dimensional Euler equations of gas dynamics, ρ
ρu
E


t

+

 ρu
ρu2 + p
u(E + p)


x

= 0,(5.3)

where ρ, u, p, and E are density, velocity, pressure, and total energy, respectively.
The above system is closed by the equation of state, p = (γ − 1)(E − ρu2/2). The
initial data are chosen as

(ρ, ρu,E) =

{
(1, 0, 2.5) if x < 0.5,
(0.125, 0, 0.25) if x > 0.5.

This is a well known test problem proposed by Sod [32]. The monitor function
employed for this computation is G = ωI with

ω =

√
1 + α1

(
uξ

maxξ |uξ|
)2

+ α2

(
sξ

maxξ |sξ|
)2

,(5.4)

where s = p/ργ , and the parameters αi (i = 1, 2) are some nonnegative constants.
The above monitor function was suggested by Stockie, Mackenzie, and Russell [33],
who also discussed several other choices for the monitor function. The numerical
results are obtained with J = 100, α1 = 20, α2 = 100 and are presented in Figure 5.3.
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Fig. 5.3. Example 5.3: adaptive mesh solution at t = 0.2. (a) density, (b) velocity, (c) pressure,
and (d) internal energy. “o” and solid lines denote numerical and exact solutions, respectively.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 5.4. Example 5.3: trajectory of the grid points.

It is found that the contact and shock discontinuities are well resolved, although quite
a number of grid points are also moved to the rarefaction wave region. This can also
be observed from the mesh contour plotted in Figure 5.4.
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6. Numerical experiment for 2D problems. In this section, we will test our
adaptive mesh algorithm presented in section 3.3 for some 2D problems, including
2D Riemann problems, a double-Mach reflection problem, and flow past a circular
cylinder.

6.1. 2D grid generation. We begin by testing Step 2 of Algorithm 0, i.e.,
testing the mesh distribution part with given functions.

Example 6.1. 2D grid generation. We consider grid generation in the physical
domain [−1, 1]× [−1, 1] for the following functions:

u(x, y) = exp(−8(4x2 + 9y2 − 1)2),(6.1)

u(x, y) = exp(−100(y − x2 + 0.5)2),(6.2)

u(x, y) = 50exp(−2500(x2 + y2)),(6.3)

u(x, y) =

{
1 if |x| ≤ |y|,
0 otherwise.

(6.4)

The monitor function is taken as G = ωI with ω =
√
1 + αu2, with α = 100. Grid

generations based on the above functions have been investigated by many authors;
see e.g., [7, 21, 28]. Our results plotted in Figure 6.1 can be favorably compared with
published results. Our results indicate that Step 2 of Algorithm 0 for two dimensions
performs well for functions with large gradients or singularities.
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Fig. 6.1. Example 6.1: the adaptive meshes for (a) function (6.1), (b) function (6.2), (c) func-
tion (6.3), and (d) function (6.4).
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6.2. 2D examples for Euler equations of gas dynamics. In this subsec-
tion we consider some well known test examples in two dimensions, including three
Riemann problems and a double-Mach reflection problem.

Example 6.2. 2D Riemann problem I: Shock waves. Two-dimensional Euler
equations of gas dynamics can be written as

ρ
ρu
ρv
E


t

+


ρu

ρu2 + p
ρuv

u(E + p)


x

+


ρv
ρuv

ρv2 + p
v(E + p)


y

= 0,(6.5)

where ρ, (u, v), p, and E are the density, velocity, pressure, and total energy, respec-
tively. For an ideal gas, the equation of state, p = (γ − 1)(E − ρ(u2 + v2)/2), is
provided. The initial data are chosen as

(ρ, u, v, p) =


(1.1, 0.0, 0.0, 1.1) if x > 0.5, y > 0.5,
(0.5065, 0.8939, 0.0, 0.35) if x < 0.5, y > 0.5,
(1.1, 0.8939, 0.8939, 1.1) if x < 0.5, y < 0.5,
(0.5065, 0.0, 0.8939, 0.35) if x > 0.5, y < 0.5,

which corresponds to the case of left forward shock, right backward shock, upper
backward shock, and lower forward shock. We refer the readers to [19, 30] for details.

In [19], Lax and Liu computed 2D Riemann problems with various initial data
using positive schemes. The problem considered here corresponds to Configuration 4
discussed in their paper. We use our adaptive mesh algorithm with (Jx, Jy) = (50, 50)
and (Jx, Jy) = (100, 100) to compute this Riemann problem and display the mesh and
density at t = 0.25 in Figure 6.2. It is found that our results with Jx = Jy = 100 give
sharper shock resolution than that of the positive schemes with (Jx, Jy) = (400, 400)
(see [19, p. 333]). The monitor function used in this computation is G = ωI, with

ω =
√
1 + 2(ρ2ξ + ρ

2
η)x.

Example 6.3. 2D Riemann problem II: Contact discontinuities. We reconsider
Configurations 6 and 7 in Lax and Liu’s paper [19], whose solutions contain contact
discontinuities. The first configuration has initial data

(ρ, u, v, p) =


(1, 0.75, −0.5, 1) if x > 0.5, y > 0.5,
(2, 0.75, 0.5, 1) if x < 0.5, y > 0.5,
(1, −0.75, 0.5, 1) if x < 0.5, y < 0.5,
(3, −0.75, −0.5, 1) if x > 0.5, y < 0.5,

and the second configuration has initial data

(ρ, u, v, p) =


(1, 0.1, 0.1, 1) if x > 0.5, y > 0.5,
(0.5197, −0.6259, 0.1, 0.4) if x < 0.5, y > 0.5,
(0.8, 0.1, 0.1, 0.4) if x < 0.5, y < 0.5,
(0.5197, 0.1, −0.6259, 0.4) if x > 0.5, y < 0.5.

The adaptive mesh results for Configuration 6 at t = 0.3 and for Configuration 7
at t = 0.25 are displayed in Figure 6.3. The number of grid points are (Jx, Jy) =
(100, 100). It can be observed that the adaptive mesh results with Jx = Jy = 100 for
Configuration 7 are comparable with those obtained by using the positive schemes
with Jx = Jy = 400 (see [19, p. 334]). However, this seems not to be the case for the
results for Configuration 6. Although the resolution can be improved by using more
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Fig. 6.2. Example 6.2. The contours of the mesh (left) and the density (right). Top: Jx =
Jy = 50; and bottom: Jx = Jy = 100. 30 equally spaced contour lines are used for the density.

grid points, it is quite clear from this computation and Example 6.2 that the treatment
of contact discontinuities is less effective than the treatment of shocks. It is expected
that the monitor functions used in this paper are suitable for shock discontinuities
but may be less appropriate for contact discontinuities. Therefore, it requires further
investigation to obtain more effective monitor functions for contact discontinuities.

For this computation, the monitor function can be chosen as G = ωI, with ω =√
1 + α(ρ2ξ + ρ

2
η). It is found that in both cases if the parameter α is chosen in the

range [0.1, 1], then the efficiency and effectiveness of the adaptive mesh approach seem
satisfactory. The results in Figure 6.3 are obtained using α = 0.1 (for Configuration 6)
and α = 0.9 (for Configuration 7).

Example 6.4. The double-Mach reflection problem. This problem was studied
extensively in Woodward and Colella [37] and later by many others. We use exactly
the same setup as in [37], i.e., the same initial and boundary conditions and same so-
lution domain Ωp = [0, 4]× [0, 1]. Initially a right-moving Mach 10 shock is positioned
at x = 1

6 , y = 0 and makes a 60o angle with the x-axis. More precisely, the initial
data are

U =

{
UL for y ≥ h(x, 0),
UR otherwise,



508 HUAZHONG TANG AND TAO TANG

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 6.3. Adaptive mesh results for Example 6.3 with 100×100 grid points. Top: Configuration
6; bottom: Configuration 7. Left: the adaptive mesh; Right: density. 19 equally spaced contour lines
are used for the density.

where the state on the left, the state on the right, and the shock strength are, respec-
tively,

UL = (8, 57.1597, −33.0012, 563.544)T ,
UR = (1.4, 0.0 0.0, 2.5)T , h(x, t) =

√
3(x− 1/6)− 20t.

As in [37], only the results in [0, 3]×[0, 1] are displayed. In Figure 6.4, the adaptive
meshes with (Jx, Jy) = (80, 20), (160, 40), and (320, 80) are displayed, while the cor-
responding contours of density are displayed in Figure 6.5. By comparing the density
plots, it is found that the adaptive computation results with (Jx, Jy) = (320, 80) have
similar resolution to the results obtained by the second-order discontinuous Galerkin
method with (Jx, Jy) = (960, 240) (see [10, p. 214]) and by the second-order central
scheme with (Jx, Jy) = (960, 240) (see [10, p. 67]). Moreover, the adaptive results
with (Jx, Jy) = (160, 40) have slightly better resolution than the results of fifth-order
weighted ENO and the fourth-order ENO with 480×119 grids [10, p. 406]. Of course,
this is not too surprising, since these published results are computed using uniform
meshes.
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Fig. 6.4. 2D double-Mach reflection at t = 0.2: the contours of meshes. From top to bottom:
(Jx, Jy) = (80, 20), (160, 40), and (320, 80).

We also show a blow up portion around the double-Mach region in Figure 6.6. In
our computations, we used 640 × 160 and 960 × 240 grid points. The corresponding
mesh contours in the blow up region are shown in Figure 6.7. The smallest ∆x and
∆y in these runs are listed in Tables 6.1 and 6.2. It is seen that ratios between the
largest and smallest mesh sizes in the adaptive grids are quite large (≥ 20), which is
a desired feature of the adaptive grid methods. The fine details of the complicated
structure in this region were previously obtained by Cockburn and Shu [9], who used
high-order discontinuous Galerkin (RKDG) methods with 960× 240 and 1920× 480
grid points. Although the moving mesh algorithm gives a good resolution in this blow
up portion, it is observed that, even with approximately the same number of grid
points (960 × 240), the third-order RKDG results [10, p. 216] have a slightly better
resolution of the complex structure. The monitor function used for this example is
taken as G = ωI, with ω =

√
1 + 0.125(ρ2ξ + ρ

2
η).
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Fig. 6.5. 2D double-Mach reflection at t = 0.2: the contours of density. From top to bottom:
(Jx, Jy) = (80, 20), (160, 40), and (320, 80). 30 equally spaced contour lines are used.

6.3. Example of a nonconvex physical domain. So far, the numerical ex-
amples in two dimensions have been restricted to rectangular domains. In the final
example, we consider a test problem whose domain is not even convex. In this case,
as long as the domain can be smoothly transformed to a rectangle, the adaptive mesh
algorithm can be handily applied.

Example 6.5. Flow past a cylinder. This example is concerned with the supersonic
flow past a cylinder with unit radius, which is positioned at the origin on an x-y plane.
The problem is initialized by a Mach 3 free-stream moving toward the cylinder from
the left. Since the physical domain Ωp is nonconvex, we first transform Ωp to a square

domain Ω̂c = [0, 1]× [0, 1] by using the following mapping:

x = −(Rx − (Rx − 1)x̂) cos(θ(2ŷ − 1)),
y = (Ry − (Ry − 1)x̂) sin(θ(2ŷ − 1)),

(6.6)



ADAPTIVE MESH METHODS FOR CONSERVATION LAWS 511

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
0

0.1

0.2

0.3

0.4

0.5

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9
0

0.1

0.2

0.3

0.4

0.5

Fig. 6.6. Double-Mach reflection problem: density ρ in blowup region around the double-Mach
stems. Top: (Jx, Jy) = (640, 160); bottom: (Jx, Jy) = (960, 240). 45 equally spaced contour lines
are used.

with Rx = 3, Ry = 5, and θ = 5π/12. A reflective boundary condition is imposed
at the surface of the cylinder, i.e., x̂ = 1; inflow boundary condition is applied at
x̂ = 0; and outflow boundary conditions are applied at ŷ = 0 and 1. We then solve
the problem in Ω̂c using the adaptive mesh algorithm, with a logical domain Ωc as
before. This procedure will lead to numerical solution in Ω̂c, and the mapping (6.6)
finally gives the numerical approximation in the physical domain Ωp.

We present an illustration of the mesh in the physical space and the pressure
contour in Figure 6.8, by using 30×40, 60×80, and 120×160 grid points. The monitor
function used for this example is taken as G = ωI with ω =

√
1 + 0.125(ρ2ξ + ρ

2
η).

As can be seen from these figures, the advantages of the adaptive mesh methods
are quite obvious. The shock location computed by our adaptive mesh algorithm is
approximately 0.703 (the distance between the shock curve and the surface of the
cylinder), which is in good agreement with the experimental results reported in [4].
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Fig. 6.7. Double-Mach reflection problem: the adaptive mesh in blowup region around the
double-Mach stems. Top: (Jx, Jy) = (640, 160); bottom: (Jx, Jy) = (960, 240).

Table 6.1
The smallest mesh size for the double-Mach reflection problem with 640 × 160 grid points.

min{∆x} max{∆x} max{∆x}/min{∆x}

∆x 6.5e-04 2.0e-02 30.8

∆y 4.8e-04 1.0e-02 20.8√
∆x2 + ∆y2 8.2e-04 2.0e-02 24.4

Acknowledgments. The authors thank Professors Chi-Wang Shu and Eitan
Tadmor for numerous discussions during the preparation of this work. We also thank
the referees for many helpful suggestions.
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Table 6.2
The smallest mesh sizes for the double-Mach reflection problem with 960 × 240 grid points.

min{∆x} max{∆x} max{∆x}/min{∆x}

∆x 4.3e-04 1.1e-02 25.6

∆y 3.1e-04 5.9e-03 19.0√
∆x2 + ∆y2 5.3e-04 1.2e-02 22.6
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Fig. 6.8. Example 6.5. Top: adaptive mesh; bottom: pressure. From left to right: 30 × 40,
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Abstract. Hyperbolic equations with unbounded coefficients and even generalized functions
(in particular, Dirac-delta functions) occur both naturally and artificially and must be treated in
numerical schemes. An abstract operator method is proposed for studying these equations. For finite
difference schemes approximating several one-dimensional initial-boundary value problems conver-
gence rate estimates in special discrete energetic Sobolev’s norms, compatible with the smoothness
of the solutions, are obtained.

Key words. concentrated mass, difference scheme, Sobolev spaces, generalized solution, rate of
convergence
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1. Introduction. The study of properties of numerical schemes for discretizing
of hyperbolic equations is of great interest in applied mathematics. Numerous works
have been concerned with classical schemes for these equations in homogeneous whole
space (especially studies of stability and dispersion relations). Other works have stud-
ied the approximations of waves at plane boundaries or interfaces. Here we analyze
the convergence of difference schemes for hyperbolic equations in the case when the
coefficients are discontinuous or change sharply; an important application is in the
situation where these are unbounded functions and even generalized functions (in
particular, Dirac-delta functions).

The solutions of hyperbolic problems with nonsmooth or discontinuous data (co-
efficients, initial and boundary functions) are weak solutions, i.e., functions from
Sobolev space [20, 21]. Since such solutions do not possess continuous partial deriva-
tives, one cannot use the classical Taylor technique to establish the convergence of
discrete approximations. The role of Taylor’s formula is often taken by the Bramble–
Hilbert lemma and its generalizations [4, 12, 17].

The theory of convergence rate estimates compatible with the smoothness of the
differential problem solutions was formulated in the 80s by Samarskii, Lazarov, and
Makarov (see, e.g., [12]). This concept has been systematically developed in the
monographs [4] and [17], where a key role in the analysis is played by the Bramble–
Hilbert lemma. Further, results for hyperbolic problems have been obtained in [4,
5, 6]. In all these works, problems with variable coefficients including discontinuous
coefficients have been considered.
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The basic mechanical system corresponding to the hyperbolic problem considered
in the present paper is that of forced oscillations of a string with concentrated mass
at the ends or in interior points of the string. Our aim is to treat these problems
as a second order abstract evolution equation (2.1) with self-adjoint positive linear
operators A, B defined in a Hilbert space H, and then to use energy methods from the
theory of operators on a Hilbert space. Discrete analysis of appropriate subspaces of
the Sobolev spaces are used with alternative inner products that are equivalent to the
Sobolev inner product and yet that allow the discrete operators to be self-adjoint on
the space involved. The second important idea of our method consists of constructing
special integral representations of the truncation error of the difference schemes. The
use of the Bramble–Hilbert lemma for truncation error estimates involves all partial
derivatives of the solution up to the corresponding order, although only some of them
could have discontinuity on the interface. Therefore, the present approach gives more
precise results than does the Bramble–Hilbert lemma.

The remainder of this paper is organized as follows. Energy estimates for the
solutions of an abstract Cauchy problem for a second order evolution equation and
for an operator-difference scheme can be found in the next section. Section 3 is devoted
to the derivation of convergence rate estimates in special discrete Sobolev norms of
difference scheme approximations to wave equations with discontinuous coefficients
and dynamical conditions of conjugation, i.e., in which the time derivative of the
solution is involved. In sections 4 and 5 we treat hyperbolic second order equations
with dynamical boundary conditions and elliptic equations with dynamical conditions
of conjugation. Analogous results for parabolic equations are obtained in [9, 10].
Results concerning finite difference schemes on uniform meshes for the equation of a
vibrating string with concentrated mass are reported in [11].

In this article we consider one-dimensional problems. The approach presented
in this paper will be applied to similar two-dimensional problems in a forthcoming
paper. The method proposed here can be developed for evolution problems modeling
vibrations of beam-mass systems, i.e., problems of the type (2.1) in which A is a
fourth order elliptic operator. Also, the method works for interface problems in which
the Dirac-delta functions appear in the lowest coefficients [7], or on the right-hand
side of the equation.

Convergence to classical solutions for parabolic and hyperbolic equations with
dynamical boundary conditions or dynamical conditions of conjugations are studied
in [1, 2, 3, 21].

2. Preliminary results. Let H be a real separable Hilbert space with scalar
product (·, ·) and norm ‖ ·‖, and let S be an unbounded self-adjoint positively defined
linear operator on a domain D(S) which is dense in H. The bilinear form (u, v)S =
(Su, v), u, v ∈ D(S), satisfies the axioms of the scalar product. Let the Hilbert space

HS ⊂ H be the completion of D(S) in the norm ‖u‖S = (u, u)
1/2
S . Then the scalar

product (u, v) is continuously extended on H∗S×HS , where H∗S is a space which is dual
to HS , and the operator S is extended to the map S : HS → H∗S . There exists the
unbounded self-adjoint positive linear operator S1/2 (see [13, 15]) and D(S1/2) = HS ,
(u, v)S = (Su, v) = (S1/2u, S1/2v). We also introduce the space L2(a, b;H) and the
function u = u(t) mapping the segment (a, b) ⊂ R in H with the scalar product

(u, v)L2(a,b;H) =
∫ b
a
(u(t), v(t))dt (see [13]).

Let A and B be unbounded self-adjoint positive linear operators that do not
depend on t and are defined in the Hilbert space H. We suppose that D(A) is dense
in H and HA ⊂ HB . In the general case, A and B are noncommutative. Let us
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consider the abstract Cauchy problem (see [22])

Bu′′ +Au = f(t), 0 < t < T, u(0) = u0, u′(0) = u1,(2.1)

where u0 ∈ H0, u1 ∈ HB , f(t) ∈ L2(0, T ;HB−1) are given and u(t) ∈ HA is the
unknown function. Letting f(t) = g′(t) in (2.1), we get the Cauchy problem

Bu′′ +Au = g′(t), 0 < t < T, u(0) = u0, u′(0) = u1.(2.2)

The following lemma holds.
Lemma 2.1. The a priori estimate for the solution of the problem (2.1) is valid

max
t∈[0,T ]

[‖u(t)‖2A + ‖u′(t)‖2B
] ≤ C

[
‖u0‖2A + ‖u1‖2B +

∫ T

0

‖f(t)‖2B−1dt

]
.

At the less strong assumptions, u0 ∈ HB, Bu1 ∈ HA−1 , and f ∈ L2(0, T ;HA−1), the
estimate

max
t∈[0,T ]

‖u(t)‖2B ≤ C

[
‖u0‖2B + ‖Bu1‖2A−1 +

∫ T

0

‖f(t)‖2A−1dt

]
holds true. For the solution of the problem (2.2), if u0 ∈ HB, Bu1 ∈ HA−1 , and
g ∈ L2(0, T ;HB−1), the estimate

max
t∈[0,T ]

‖u(t)‖2B ≤ C

[
‖u0‖2B + ‖Bu1 − g(0)‖2A−1 +

∫ T

0

‖g(t)‖2B−1dt

]
holds true.

Proof . The proof can be found by using the energy method and Grönwall’s
lemma.

Similar results are true for operator-difference schemes. Let Hh be a finite-
dimensional real Hilbert space with scalar product (·, ·)h and norm ‖ · ‖h. Also,
let Ah and Bh be constant self-adjoint positively defined in Hh linear operators, i.e.,

Ah 	= Ah(t), Ah = A∗h ≥ d1Eh, Bh 	= Bh(t), Bh = B∗h ≥ d2Eh,

where d1, d2 = const > 0 and Eh is the identity operator in Hh. As in the previous
case, we assume that the operators Ah and Bh in the general case are noncommutative.
By HSh

, where Sh = S∗h > 0, we denote the space HSh
= Hh with scalar product and

norm

(v, w)Sh
= (Shv, w)h, ‖v‖Sh

= (Shv, v)
1/2
h .

Let ωτ be a uniform mesh on (0, T ) with step τ = T/m, ω−τ = ωτ ∪ {0}, and
ω̄τ = ωτ ∪ {0, T}. Further we shall make use of standard notations of the difference
schemes [17]: v = v(t), v̂ = v(t+ τ), v̌ = v(t− τ), vt = (v̂ − v)/τ , vt̄ = (v − v̌)/τ .

Let us consider the simplest three-layer operator-difference scheme with weights

Bhvtt̄ +Ahv
(σ) = φ(t), t ∈ ωτ , v(0) = v0, vt(0) = v1,(2.3)

where σ ≥ 1/4 is the weight parameter; v(σ) = σv̂ + (1− 2σ)v + σv̌; v0, v1 are given
elements of Hh; and φ(t) and v(t) are given unknown mesh functions with values in
Hh. We also study the scheme

Bhvtt̄ +Ahv
(σ) = ψt̄, t ∈ ωτ , v(0) = v0, vt(0) = v1,(2.4)
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where ψ(t) is a given mesh function with values in Hh. The following analogue of
Lemma 2.1 holds.

Lemma 2.2. For the solution of the problem (2.3) the a priori estimates are valid:

max
t∈ω−

τ

[∥∥∥∥ (v̂ + v)

2

∥∥∥∥2

Ah

+ ‖vt‖2Bh

]
≤ C

[
‖v0‖2Ah

+ ‖v1‖2Bh
+ τ2‖v1‖2Ah

+ τ
∑
t∈ωτ

‖φ‖2
B−1

h

]
,

max
t∈ω−

τ

∥∥∥∥ (v̂ + v)

2

∥∥∥∥2

Bh

≤ C

[
‖v0‖2Bh

+ ‖Bhv1‖2A−1
h

+ τ2‖v1‖2Bh
+ τ

∑
t∈ωτ

‖φ‖2
A−1

h

]
.

For the solution of problem (4) the a priori estimate holds:

max
t∈ω−

τ

∥∥∥∥ (v̂ + v)

2

∥∥∥∥2

Bh

≤ C

‖v0‖2Bh
+ ‖Bhv1 − ψ(0)‖2

A−1
h

+ τ2‖v1‖2Bh
+ τ

∑
t∈ω−

τ

‖ψ‖2
B−1

h

 .

Proof . The proof is analogous to the proof of Lemma 2.1.

3. Equation of string vibrations with concentrated mass. Let us consider
the first initial-boundary value problem (IBVP) for the equation of vibrating string
with concentrated mass at the interior point x = ξ (see [19]):

(3.1)[
c(x) +Kδ(x− ξ)

]∂2u

∂t2
− ∂

∂x

(
a(x)

∂u

∂x

)
= f(x, t), (x, t) ∈ Q = (0, 1)× (0, T ),

u(0, t) = 0, u(1, t) = 0, 0 < t < T,(3.2)

u(x, 0) = u0(x),
∂u(x, 0)

∂t
= u1(x), x ∈ (0, 1),(3.3)

where K > 0, 0 < c1 ≤ a(x) ≤ c2, 0 < c3 ≤ c(x) ≤ c4, and δ(x) is the Dirac
distribution [22]. It follows from (3.1) that the solution for this problem satisfies for
(x, t) ∈ Q1 = (0, ξ)× (0, T ) and (x, t) ∈ Q2 = (ξ, 1)× (0, T ) the differential equation

c(x)
∂2u

∂t2
− ∂

∂x

(
a(x)

∂u

∂x

)
= f(x, t),

and for x = ξ the conditions of conjugation

[u]x=ξ ≡ u(ξ + 0, t)− u(ξ − 0, t) = 0,
[
a
∂u

∂x

]
x=ξ

= K
∂2u(ξ, t)

∂t2
.

It is easy to see that the IBVP (3.1)–(3.3) can be reduced to the form (2.1), letting
H = L2(0, 1), Au = − ∂

∂x (a(x)
∂u
∂x ), and Bu =

[
c(x) +Kδ(x− ξ)

]
u(x, t). Then

‖w‖2A =

∫ 1

0

a(x)[w′(x)]2dx � ‖w‖2W 1
2 (0,1), w ∈

◦
W 1

2 (0, 1),
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‖w‖2B =

∫ 1

0

c(x)w2(x)dx+Kw2(ξ) � ‖w‖2L2(0,1)
+ w2(ξ).

In such a way HA =
◦
W 1

2 (0, 1), HA−1 = W−1
2 (0, 1), HB is the space of all w ∈ L2(0, 1)

with finite norm ‖w‖B , and HB−1 is the space of all Schwarz distributions on (0, 1)
with finite norm

‖w‖B−1 = sup
u∈HB

|(u,w)|
‖u‖B .

Further, we assume that the function c(x) is continuous on [0, 1] and a(x) has finite
jump in the point x = ξ.

3.1. The functional spaces W̃ k
2 (0, 1) and W̃ k

2 (Q). By L̃2(0, 1) = W̃ 0
2 (0, 1)

we denote the subspace of functions w(x) ∈ L2(0, 1) with scalar product and norm

(u,w)L̃2(0,1)
=

∫ 1

0

u(x)w(x)dx+ u(ξ)w(ξ), ‖w‖L̃2(0,1)
= (u,w)

1/2

L̃2(0,1)
.

Further, we let W̃ 1
2 (0, 1) =

◦
W 1

2 (0, 1) and W̃ k
2 (0, 1) =

◦
W 1

2 (0, 1) ∩W k
2 (0, ξ) ∩W k

2 (ξ, 1),
k = 2, 3, . . . .

We define also the spaces W̃ k
2 (Q) (k = 0, 1, 2, . . . ) as subsets of functions w ∈

L2(Q) for which

w(0, t) = w(1, t) = 0,

∂iw

∂ti
∈ L2(0, T ; L̃2(0, 1)), i = 0, 1, . . . , k,

∂iw

∂x∂ti−1
∈ L2(Q), i = 1, 2, . . . , k,

∂iw

∂xj∂ti−j
∈ L2(Q1) ∩ L2(Q2), 2 ≤ j ≤ k, i = j, . . . , k,

and norms defined as usual

‖w‖2
W̃k

2 (Q)
=

k∑
i=0

(∥∥∥∂iw(ξ, ·)
∂ti

∥∥∥2

L2(0,T )
+

∥∥∥∂iw

∂ti

∥∥∥2

L2(Q)

)

+
k∑
i=1

∥∥∥ ∂iw

∂x∂ti−1

∥∥∥2

L2(Q)
+

k∑
j=2

k∑
i=j

(∥∥∥ ∂iw

∂xj∂ti−j

∥∥∥2

L2(Q1)
+

∥∥∥ ∂iw

∂xj∂ti−j

∥∥∥2

L2(Q2)

)
.

Differentiating (3.1) with respect to x and t and applying Lemma 2.1, we easily
obtain the following assertion.

Lemma 3.1. (i) Let a ∈W 2
2 (0, ξ)∩W 2

2 (ξ, 1), c ∈W 2
2 (0, 1), f ∈W 2

2 (Q1)∩W 2
2 (Q2),

f(0, t) = f(1, t) = 0, [f ]x=ξ = 0, u0 ∈ W̃ 3
2 (0, 1), u1 ∈ W̃ 2

2 (0, 1), and the compatibility
conditions hold

Utt(0) = Utt(1) = 0, [Utt]x=ξ = 0, [au′0]x=ξ = K lim
x→ξ

Utt(x),
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where

Utt(x) =
a(x)u′′0(x) + a′(x)u′0(x) + f(x, 0)

c(x)
, ′ ≡ d

dx
.

Then the problem (3.1)–(3.3) has unique solution u ∈ W̃ 3
2 (Q).

(ii) Let a ∈ W 3
2 (0, ξ) ∩W 3

2 (ξ, 1), c ∈ W 3
2 (0, 1), f ∈ W 3

2 (Q1) ∩W 3
2 (Q2), f(0, t) =

f(1, t) = 0, [f ]x=ξ = 0, u0 ∈ W̃ 4
2 (0, 1), u1 ∈ W̃ 3

2 (0, 1), and in addition to the last
compatibility conditions, the following hold:

Uttt(0) = Uttt(1) = 0, [Uttt]x=ξ = 0, [au′1]x=ξ = K lim
x→ξ

Uttt(x),

where

Uttt(x) =

(
a(x)u′′1(x) + a′(x)u′1(x) +

∂f(x, 0)

∂t

)
/c(x).

Then problem (3.1)–(3.3) has unique solution u ∈ W̃ 4
2 (Q).

3.2. The difference scheme. Let ωh = {x1, x2, . . . , xn−1} be a nonuniform
mesh in (0, 1), chosen so that ξ is a grid point. Define ω−h = ωh∪{x0}, ω+

h = ωh∪{xn},
ω̄h = ωh ∪ {x0, xn}, x0 = 0, xn = 1, and hi = xi − xi−1. Also, let

vx =
(v+ − v)

h+
, vx̄ =

(v − v−)
h

, vx̂ =
(v+ − v)

h̄
,

v = v(x), v± = v(x±), x = xi, x± = xi±1, h̄ =
(h+ h+)

2
.

We assume that the following condition is fulfilled:

1

c0
≤ h+

h
≤ c0, c0 = const ≥ 1.

We approximate the problem (3.1)–(3.3) on the mesh ω̄h × ω̄τ by the weighted
difference scheme with averaged right-hand side

(c+Kδh)vtt̄ − (ãv
(σ)
x̄ )x̂ = T 2

xT
2
t f, (x, t) ∈ ωh × ωτ ,(3.4)

v(0, t) = 0, v(1, t) = 0, t ∈ ω̄τ , v(x, 0) = u0(x), x ∈ ωh,(3.5)

(c+Kδh)vt(x, 0) = T 2
x (cu1) +Kδhu1 + 0.5τT 2

x

[
T̃ 2
t f(x, 0) + (au′0(x))

′
]
, x ∈ ωh,

(3.6)

where σ ≥ 1/4, ã(x) =
[
a(x) + a(x− h)

]
/2 if x 	= ξ, ξ+, ã(ξ) =

[
a(ξ − 0) + a(ξ−)

]
/2,

ã(ξ+) =
[
a(ξ+) + a(ξ + 0)

]
/2,

δh = δh(x− ξ) =

{
0, x ∈ ωh \ {ξ},
1/h̄, x = ξ,
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is the discrete Dirac-function, and

Ttf(x, t) = T−t f
(
x, t+

τ

2

)
= T+

t f
(
x, t− τ

2

)
=

1

τ

∫ t+τ/2

t−τ/2
f(x, t′)dt′,

T̃ 2
t f(x, 0) =

2

τ

∫ τ

0

(
1− t′

τ

)
f(x, t′)dt′,

T−x f(x, t) =
1

h

∫ x

x−
f(x′, t)dx′, T+

x f(x, t) =
1

h+

∫ x+

x

f(x′, t)dx′,

T 2
xf(x, t) =

1

h̄

∫ x+

x−
κ(x, x′)f(x′, t)dx′, κ(x, x′) =

{
1 + (x′ − x)/h, x− < x′ < x,
1− (x′ − x)/h+, x < x′ < x+,

are Steklov averaged operators [4, 10, 12, 17]. Note that these operators are commu-
tative and map derivatives into finite differences, for example,

T 2
x

∂2u

∂x2
= ux̄x̂, T−t

∂u

∂t
= ut̄.

Let Hh be the set of mesh functions defined on the mesh ω̄h and zero at x = 0
and x = 1. We define the scalar products

(v, w)h =
∑
x∈ωh

v(x)w(x)h̄, (v, w]h� =
∑
x∈ω+

h

v(x)w(x)h,

and the corresponding norms

‖w‖h = ‖w‖L2,h
= (w,w)

1/2
h , ‖w]|h� = (w,w]

1/2
h� .

The difference scheme (3.4)–(3.6) can be written in the form (2.3), setting Ahv =
−(ãvx̄)x̂ and Bhv = (c+Kδh)v. For w ∈ Hh we have

‖w‖2Ah
= (Ahw,w)h =

∑
x∈ω+

h

ã(x)w2
x̄(x)h = ‖wx̄]|2h�,

‖w‖2Bh
= (Bhw,w)h =

∑
x∈ωh

c(x)w2(x)h̄+Kw2(ξ) � ‖w‖2B0h
,

and

‖w‖2
B−1

h
= (B−1

h w,w)h =
∑

x∈ωh\{ξ}

w2(x)

c(x)
h̄+

h̄2(ξ)

K + h̄c(ξ)
w2(ξ) = ‖w‖2

B−1
0h

,

where B0hw = (1 + δh)w.
We define the following norms of Sobolev type:

‖w‖2
L̃2,h

= ‖w‖2B0h
= ‖w‖2L2,h

+ w2(ξ), ‖w‖2
W̃ 1

2,h

= ‖wx̄]|2h� + ‖w‖2h,

‖v‖(0)hτ = max
t∈ω−

τ

∥∥∥∥ (v(·, t+ τ) + v(·, t))
2

∥∥∥∥
L̃2,h

,

‖v‖(1)hτ = max
t∈ω−

τ

[∥∥∥∥ (v(·, t+ τ) + v(·, t))
2

∥∥∥∥2

W̃ 1
2,h

+ ‖vt(·, t)‖2L̃2,h

]1/2

.
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3.3. Convergence of the difference scheme in the norm ‖ · ‖(0)
hτ . Let u be

the solution of the problem (3.1)–(3.3) and v the solution of (3.4)–(3.6). The error
z = u− v satisfies the problem

(c+Kδh)ztt̄ − (ãz
(σ)
x̄ )x̂ = ϕx̂ + ηtt̄, (x, t) ∈ ωh × ωτ ,(3.7)

z(0, t) = 0, z(1, t) = 0, t ∈ ω̄τ , z(x, 0) = 0, x ∈ ωh,(3.8)

(c+Kδh)zt(x, 0) = ηt(x, 0) + χx̂(x), x ∈ ωh,(3.9)

where it is denoted

ϕ = T−x T 2
t

(
a
∂u

∂x

)
− ãu

(σ)
x̄ − h2

6
(cu)x̄tt̄, η = cu− T 2

x (cu) +
(h2

6
(cu)x̄

)
x̂
,

χ =

{
τ

2
T−x

[
a
(
T̃ 2
t

∂u

∂x
− du0

dx

)]
− h2

6
(cu)x̄t

}∣∣∣∣
t=0

.

From Lemma 2.2, using the inequality

‖ϕx̂‖A−1
h

= max
w∈Hh

|(ϕx̂, w)h|
‖w‖Ah

= max
w∈Hh

| − (ϕ,wx̄]h�|
‖w‖Ah

≤ max
w∈Hh

‖ϕ]|h�‖wx̄]|h�
‖w‖Ah

≤ 1

c1
‖ϕ]|h�,

(3.10)

we immediately get the following a priori estimate for the solution of problem (3.7)–
(3.9):

‖z‖(0)hτ ≤ C

‖χ]|2h� + τ2‖χx̂‖2B−1
0h

+ τ
∑
t∈ωτ

‖ϕ(·, t)]|2h� + τ
∑
t∈ω̄−

τ

‖ηt(·, t)‖2B−1
0h

1/2

.

(3.11)

Therefore, in order to estimate the rate of convergence of the difference scheme (3.4)–

(3.6) in the norm ‖ · ‖(0)hτ , it is sufficient to estimate the right-hand side of (3.11).
We let

ϕ = ϕ1 + ϕ2 + ϕ3 + ϕ4 + ϕ5, where ϕ1 = T−x T 2
t

(
a
∂u

∂x

)
− (T−x a)

(
T−x T 2

t

∂u

∂x

)
,

ϕ2 = [(T−x a)− ã]
(
T−x T 2

t

∂u

∂x

)
, ϕ3 = ã

[(
T−x T 2

t

∂u

∂x

)
−

(
T−x

∂u

∂x

)]
,

ϕ4 = −στ2ã
(
T−x T 2

t

∂3u

∂x∂t2

)
, ϕ5 = −h2

6

(
T−x T 2

t

∂3(cu)

∂x∂t2

)
.

Using the integral representation

ϕ1(x, t) =
1

2h2τ

∫ t+τ

t−τ

∫ x

x−

∫ x

x−

∫ x′

x′′

∫ x′′

x′

(
1−|t

′ − t|
τ

)
a′(y′)

∂2u(y′′, t′)
∂x2

dy′′dy′dx′′dx′dt′,
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ϕ2(x, t) =

(−1
2h

∫ x

x−

∫ x

x′

∫ x′′

x′
a′′(x′′′)dx′′′dx′′dx′

)

·
[
1

hτ

∫ x

x−

∫ t+τ

t−τ

(
1− |t

′ − t|
τ

)∂u(x′, t′)
∂x

dx′dt′
]
,

ϕ3(x, t) =
a(x) + a(x−)

2hτ

∫ x

x−

∫ t+τ

t−τ

∫ t′

t

∫ t′′

t

(
1− |t

′ − t|
τ

)∂3u(x′, t′′′)
∂x∂t2

dt′′′dt′′dt′dx′,

ϕ4(x, t) = −στ2 a(x) + a(x−)
2hτ

∫ x

x−

∫ t+τ

t−τ

(
1− |t

′ − t|
τ

)∂3u(x′, t′)
∂x∂t2

dt′dx′,

ϕ5(x, t) = − h2

6hτ

∫ x

x−

∫ t+τ

t−τ

(
1− |t

′ − t|
τ

)∂3(cu)(x′, t′)
∂x∂t2

dt′dx′,

we immediately get by summing over the grid,{
τ
∑
t∈ωτ

‖ϕ(·, t)]|2h�
}1/2

≤ C(h2
max + τ2)

(
‖a‖W 2

2 (0,ξ) + ‖a‖W 2
2 (ξ,1) + ‖c‖W 2

2 (0,1)

)

×
(∥∥∥ ∂3u

∂x∂t2

∥∥∥
L2(Q)

+
∥∥∥∂2u

∂x2

∥∥∥
L2(Q1)

+
∥∥∥∂2u

∂x2

∥∥∥
L2(Q2)

+
∥∥∥∂u

∂x

∥∥∥
L2(Q)

)
.(3.12)

The integral formula

ηt(x, t) =
1

h̄τ

∫ t

t−τ

∫ x

x−

∫ x

x′

∫ x′′

x

(
1 +

x′ − x

h

)∂3(cu)(x′′′, t′)
∂x2∂t

dx′′′dx′′dx′dt′

+
1

h̄τ

∫ t

t−τ

∫ x+

x

∫ x

x′

∫ x′′

x

(
1− x′ − x

h+

)∂3(cu)(x′′′, t′)
∂x2∂t

dx′′′dx′′dx′dt′(3.13)

+
h

6h̄τ

∫ t

t−τ

∫ x

x−

∫ x

x′

∂3(cu)(x′′, t′)
∂x2∂t

dx′′dx′dt′

+
h+

6h̄τ

∫ t

t−τ

∫ x+

x

∫ x′

x

∂3(cu)(x′′, t′)
∂x2∂t

dx′′dx′dt′

implies τ
∑
t∈ω−

τ

‖ηt(·, t)‖2B−1
0h


1/2

≤ Ch2
max‖c‖W 2

2 (0,1)

×
(∥∥∥ ∂3u

∂x2∂t

∥∥∥
L2(Q1)

+
∥∥∥ ∂3u

∂x2∂t

∥∥∥
L2(Q2)

+
∥∥∥ ∂2u

∂x∂t

∥∥∥
L2(Q)

)
,(3.14)
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and the representation

χ(x) =
1

h

∫ x

x−

∫ τ

0

∫ t′

0

(
1− t′

τ

)
a(x′)

∂2u(x′, t′′)
∂x∂t

dt′′dt′dx′(3.15)

− h

6τ

∫ x

x−

∫ τ

0

∂2(cu)(x′, t′)
∂x∂t

dt′dx′

implies

‖χ]|h� ≤ Cτ3/2
(
‖a‖W 1

2 (0,ξ) + ‖a‖W 1
2 (ξ,1)

)∥∥∥ ∂2u

∂x∂t

∥∥∥
L2(Qτ )

+ Ch2
maxτ

−1/2‖c‖W 1
2 (0,1)

∥∥∥ ∂2u

∂x∂t

∥∥∥
L2(Qτ )

,

where Qτ = (0, 1)× (0, τ). Hence, using the inequality (see [14])

‖g‖L2(0,ε) ≤ C
√
ε‖g‖W 1

2 (0,1), 0 < ε < 1,(3.16)

we get

‖χ]|h� ≤ C(h2
max + τ2)(‖a‖W 1

2 (0,ξ) + ‖a‖W 1
2 (ξ,1) + ‖c‖W 1

2 (0,1))

×
(∥∥∥ ∂3u

∂x∂t2

∥∥∥
L2(Q)

+
∥∥∥ ∂2u

∂x∂t

∥∥∥
L2(Q)

)
.(3.17)

Exploiting (3.15) again, we obtain

τ‖χ‖B−1
0h
≤ C(h2

max + τ2)(‖a‖W 2
2 (0,ξ) + ‖a‖W 2

2 (ξ,1) + ‖c‖W 2
2 (0,1))

×
(∥∥∥ ∂3u

∂x2∂t

∥∥∥
L2(Q1)

+
∥∥∥ ∂3u

∂x2∂t

∥∥∥
L2(Q2)

+
∥∥∥ ∂3u

∂x∂t2

∥∥∥
L2(Q)

+
∥∥∥ ∂2u

∂x∂t

∥∥∥
L2(Q)

)
.(3.18)

Now from (3.11), (3.12), (3.14), (3.17), and (3.18) we get the desired convergence
rate estimate of the difference scheme (3.4)–(3.6) as follows.

Theorem 3.2. Let the assumptions of part (i) of Lemma 3.1 hold. Then

‖z‖(0)hτ ≤ C(h2
max + τ2)(‖a‖W 2

2 (0,ξ) + ‖a‖W 2
2 (ξ,1) + ‖c‖W 2

2 (0,1))‖u‖W̃ 3
2 (Q)

.(3.19)

Therefore, although the difference scheme on the nonuniform mesh has first order

of approximation in the space, the rate of convergence in the “weak” norm ‖ · ‖(0)hτ is
second order with respect to hmax.

3.4. Approximation and convergence in the norm ‖ · ‖(1)
hτ . Following [18],

we approximate (3.1) as follows:

(c+Kδh)vtt̄ +

(
h2

6
(cv)x̄tt̄

)
x̂

− (ãv
(σ)
x̄ )x̂ − h+ − h

6

(
axv

(σ)
x̄x̂ − ax̄x̂v

(σ)
x̄

)
= T 2

xT
−
t f,

(3.20)
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(x, t) ∈ ωh × ωτ .

In the expressions ax(ξ−) and ax̄x̂(ξ−), the value a(ξ) must be changed by a(ξ − 0),
and in the expressions ax(ξ) and ax̄x̂(ξ+), the value a(ξ) must be replaced by a(ξ+0).
We approximate the boundary and the first initial condition as above, by (3.5). The
second initial conditions we approximate letting

(c+Kδh)vt(x, 0) = T 2
x (cu1)−

(h2

6
(cu1)x̄

)
x̂
+Kδhu1 + 0.5τT 2

x

[
f(x, 0) + (au′0)

′],
(3.21)

x ∈ ωh.

As compared with (3.4)–(3.6), the scheme (3.20), (3.5), (3.21) has second order
local approximation in the space variable. It can be written in the form

(Bh +Bh1)vtt̄ + (Ah +Ah1)v
(σ) = f̃(t),

where Bh1v = (h
2

6 (cv)x̄)x̂ and Ah1v = −h+−h
6

(
axvx̄x̂ − ax̄x̂vx̄

)
are “small” nonself-

adjoint operators in Hh.
For the grid ω̄h we additionally suppose h+ = h at x = ξ.
The error z = u − v, where u is the solution of the problem (3.1)–(3.3) and v

is the solution of the difference problem (3.20), (3.5), (3.21), satisfies the difference
scheme

(c+Kδh)ztt̄ +
(h2

6
(cz)x̄tt̄

)
x̂
− (ãz

(σ)
x̄ )x̂ − h+ − h

6

(
axz

(σ)
x̄x̂ − ax̄x̂z

(σ)
x̄

)
= φ,(3.22)

(x, t) ∈ ωh × ωτ ,

with homogeneous boundary and first initial condition (3.8). The second initial con-
dition takes the form

(c+Kδh)zt(x, 0) = ζ, x ∈ ωh.(3.23)

In (3.22) and (3.23)

φ = φ1 + φ2 = T 2
t

[
c
∂2u

∂t2
− T 2

x

(
c
∂2u

∂t2

)
+

(h2

6

(
c
∂2u

∂t2

)
x̄

)
x̂

]

−
[
(ãu

(σ)
x̄ )x̂ +

h+ − h

6

(
axu

(σ)
x̄x̂ − ax̄x̂u

(σ)
x̄

)− T 2
xT

2
t

∂

∂x

(
a
∂u

∂x

)]
,

ζ = ζ1 + ζ2 + ζ3 =

[
cu1 − T 2

x (cu1) +
(h2

6
(cu1)x̄

)
x̂

]

+
τ

2
(c+Kδh)

(
T̃ 2
t

∂2u

∂t2
− ∂2u

∂t2

)∣∣∣∣
t=0

+
τ

2

[
c
∂2u

∂t2
− T 2

x

(
c
∂2u

∂t2

)]∣∣∣∣
t=0

.
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Using the energy method and Grönwall’s lemma, one easily obtains the following
result.

Lemma 3.3. If c ∈ C1[0, 1] and a ∈ C1[0, ξ]∩C1[ξ, 1], then the difference scheme

(3.22), (3.8), (3.23) is stable in the norm ‖ · ‖(1)hτ and the following a priori esti-
mate holds:

‖z‖(1)hτ ≤ C

{
‖ζ‖2

B−1
0h

+ τ2‖(B−1
0h ζ)x̄]|2h� +

∑
t∈ωτ

‖φ(·, t)‖2
B−1

0h

}1/2

.(3.24)

Therefore, in order to estimate the rate of convergence of the difference scheme

(3.20), (3.5), (3.21) in the norm ‖ · ‖(1)hτ , it is sufficient to estimate the right-hand side
of (3.24).

Using the identity

φ1 = ηtt̄

and the integral representation (3.13), we get the estimate{
τ
∑
t∈ωτ

‖φ1(·, t)‖2B−1
0h

}1/2

≤ Ch2
max‖c‖W 2

2 (0,1)

(∥∥∥ ∂4u

∂x2∂t2

∥∥∥
L2(Q1)

+
∥∥∥ ∂4u

∂x2∂t2

∥∥∥
L2(Q2)

+
∥∥∥ ∂3u

∂x∂t2

∥∥∥
L2(Q)

)
.(3.25)

For x 	= ξ the addendum φ2 can be expanded as follows:

φ2 = φ20 + φ21 + φ22 + φ23 + φ24 + φ25 + φ26 + φ27 + φ28 + φ29

= −1
2

(
T 2
x

∂2(au)

∂x2
− T 2

xT
2
t

∂2(au)

∂x2

)
− 1

2

(
a+

h+ − h

3
ax

)(
T 2
x

∂2u

∂x2
− T 2

xT
2
t

∂2u

∂x2

)

− 1

2

(
a− T 2

xa+
h+ − h

3
ax

)
T 2
xT

2
t

∂2u

∂x2
− 1

2

[(
T 2
xa

)(
T 2
xT

2
t

∂2u

∂x2

)
− T 2

xT
2
t

(
a
∂2u

∂x2

)]

+
1

2

(
T 2
xa
′′)(u+ h+ − h

3
ux̄−T 2

t u−
h+ − h

3
T 2
t ux̄

)
+
1

2

(
T 2
xa
′′)T 2

t

(
u−T 2

xu+
h+ − h

3
ux̄

)

+
1

2

[(
T 2
xa
′′)(T 2

xT
2
t u

)− T 2
xT

2
t

(
a′′u

)]− στ2

2
T 2
xT

2
t

∂4(au)

∂x2∂t2

− στ2

2

(
a+

h+ − h

3
ax

)
T 2
xT

2
t

∂4u

∂x2∂t2
+

στ2

2

(
T 2
xa

)[(
T 2
t

∂2u

∂t2

)
+

h+ − h

3

(
T 2
t

∂2u

∂t2

)
x̄

]
.

The integral representation

φ20(x, t) = − 1

2h̄τ

∫ x+

x−

∫ t

t−τ

∫ t

t′

∫ t′′

t

κ(x, x′)
(
1− |t

′ − t|
τ

)∂4(au)(x′, t′′′)
∂x2∂t2

dt′′′dt′′dt′dx′,
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x 	= ξ,

implies the estimate

{
τ
∑
t∈ωτ

∑
x∈ωh, x<ξ

φ2
20(x, t)h̄

}1/2

≤ Cτ2‖a‖W 2
2 (0,ξ)

(∥∥∥ ∂4u

∂x2∂t2

∥∥∥
L2(Q1)

+
∥∥∥ ∂3u

∂x∂t2

∥∥∥
L2(Q1)

)
.

(3.26)

In a similar way, we obtain{
τ
∑
t∈ωτ

∑
x∈ωh, x<ξ

φ2
21(x, t)h̄

}1/2

≤ Cτ2‖a‖W 1
2 (0,ξ)

∥∥∥ ∂4u

∂x2∂t2

∥∥∥
L2(Q1)

.(3.27)

Using a known estimate for an expression of the form a−T 2
xa+

h+−h
3 ax (see [8]),

we find {
τ
∑
t∈ωτ

∑
x∈ωh, x<ξ

φ2
22(x, t)h̄

}1/2

≤ Ch2
max‖a‖W 3

2 (0,ξ)

∥∥∥∂2u

∂x2

∥∥∥
L2(Q1)

.(3.28)

The addendum φ25 can be estimated in a similar way:{
τ
∑
t∈ωτ

∑
x∈ωh, x<ξ

φ2
25(x, t)h̄

}1/2

≤ Ch2
max‖a‖W 3

2 (0,ξ)

∥∥∥∂2u

∂x2

∥∥∥
L2(Q1)

.(3.29)

Using the integral representation

φ23(x, t) = − 1

4h̄2τ

∫ x+

x−

∫ x+

x−

∫ t+τ

t−τ
κ(x, x′)κ(x, x′′)

(
1− |t

′ − t|
τ

)

×
(∫ x′

x′′
a′(x′′′)dx′′′

)(∫ x′′

x′

∂3u(x′′′, t′)
∂x3

dx′′′
)
dt′dx′′dx′, x 	= ξ,

and the embedding W 2
2 (0, ξ) ⊂ C1[0, ξ], we get{

τ
∑
t∈ωτ

∑
x∈ωh, x<ξ

φ2
23(x, t)h̄

}1/2

≤ Ch2
max‖a‖W 2

2 (0,ξ)

∥∥∥∂3u

∂x3

∥∥∥
L2(Q1)

.(3.30)

In a similar way we obtain

{
τ
∑
t∈ωτ

∑
x∈ωh, x<ξ

φ2
26(x, t)h̄

}1/2

≤ Ch2
max‖a‖W 3

2 (0,ξ)

(∥∥∥∂2u

∂x2

∥∥∥
L2(Q1)

+
∥∥∥∂u

∂x

∥∥∥
L2(Q1)

)
.

(3.31)

The obvious inequality

|φ24| ≤ C‖a′′‖C[0,ξ] max
x∈[0,ξ]

|u− T 2
t u|



CONVERGENCE FOR HYPERBOLIC PROBLEMS 529

and the embedding W 3
2 (0, ξ) ⊂ C2[0, ξ] imply{

τ
∑
t∈ωτ

∑
x∈ωh, x<ξ

φ2
24(x, t)h̄

}1/2

≤ Cτ2‖a‖W 3
2 (0,ξ)

∥∥∥ ∂3u

∂x∂t2

∥∥∥
L2(Q1)

.(3.32)

In a similar way we get

{
τ
∑
t∈ωτ

∑
x∈ωh, x<ξ

φ2
29(x, t)h̄

}1/2

≤ Cτ2‖a‖W 2
2 (0,ξ)

(∥∥∥ ∂3u

∂x∂t2

∥∥∥
L2(Q1)

+
∥∥∥∂2u

∂t2

∥∥∥
L2(Q1)

)
.

(3.33)

From the integral representation

φ27(x, t) = −στ

2h̄

∫ x+

x−

∫ t+τ

t−τ
κ(x, x′)

(
1− |t

′ − t|
τ

)∂4(au)(x′, t′)
∂x2∂t2

dt′dx′

follows the estimate

{
τ
∑
t∈ωτ

∑
x∈ωh, x<ξ

φ2
27(x, t)h̄

}1/2

≤ Cτ2‖a‖W 2
2 (0,ξ)

(∥∥∥ ∂4u

∂x2∂t2

∥∥∥
L2(Q1)

+
∥∥∥ ∂3u

∂x∂t2

∥∥∥
L2(Q1)

)
.

(3.34)

In a similar way we estimate φ28:{
τ
∑
t∈ωτ

∑
x∈ωh, x<ξ

φ2
28(x, t)h̄

}1/2

≤ Cτ2‖a‖W 1
2 (0,ξ)

∥∥∥ ∂4u

∂x2∂t2

∥∥∥
L2(Q1)

.(3.35)

For x = ξ we set

φ2 = φ2,10 + φ2,11 + φ2,12 = −[(ãux̄)x̂ − T 2
t (ãux̄)x̂]

−
[
T 2
t (ãux̄)x̂ − T 2

xTt2−
∂

∂x

(
a
∂u

∂x

)]
− στ2(ãux̄)x̂tt̄.

The integral representations

h̄φ2,10(ξ, t) =
a(ξ − 0) + a(ξ − h)

2hτ

∫ ξ

ξ−

∫ t+τ

t−τ

∫ t

t′

∫ t′′

t

(
1−|t

′ − t|
τ

)∂3u(x′, t′′′)
∂x∂t2

dt′′′dt′′dt′dx′

−a(ξ + 0) + a(ξ + h)

2hτ

∫ ξ+

ξ

∫ t+τ

t−τ

∫ t

t′

∫ t′′

t

(
1− |t

′ − t|
τ

)∂3u(x′, t′′′)
∂x∂t2

dt′′′dt′′dt′dx′,

h̄φ2,11(ξ, t) =
1

2hτ

∫ ξ

ξ−

∫ ξ

x′

∫ x′′

x′

∫ t+τ

t−τ

(
1− |t

′ − t|
τ

)(
a′′(x′′′)

∂u(x′′, t′)
∂x

−a′(x′′)∂
2u(x′′′, t′)

∂x2

)
dx′′′dx′′dx′dt′
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− 1

2hτ

ξ+∫
ξ

ξ+∫
x′

x′′∫
x′

t+τ∫
t−τ

(
1−|t

′ − t|
τ

)(
a′′(x′′′)

∂u(x′′, t′)
∂x

−a′(x′′)∂
2u(x′′′, t′)

∂x2

)
dx′′′dx′′dx′dt′,

and

h̄φ2,12(ξ, t) = στ
a(ξ − 0) + a(ξ − h)

2h

∫ ξ

ξ−

∫ t+τ

t−τ

(
1− |t

′ − t|
τ

)∂3u(x′, t′)
∂x∂t2

dt′dx′

− στ
a(ξ + 0) + a(ξ + h)

2h

∫ ξ+

ξ

∫ t+τ

t−τ

(
1− |t

′ − t|
τ

)∂3u(x′, t′)
∂x∂t2

dt′dx′

imply{
τ
∑
t∈ωτ

φ2
2(ξ, t)h̄

2

}1/2

≤ C(h2
max+τ2)

[
‖a‖W 3

2 (0,ξ)

(∥∥∥ ∂4u

∂x2∂t2

∥∥∥
L2(Q1)

+
∥∥∥ ∂3u

∂x∂t2

∥∥∥
L2(Q1)

+
∥∥∥∂3u

∂x3

∥∥∥
L2(Q1)

+
∥∥∥∂2u

∂x2

∥∥∥
L2(Q1)

+
∥∥∥∂u

∂x

∥∥∥
L2(Q1)

)
+ ‖a‖W 1

2 (ξ,1)

(∥∥∥ ∂4u

∂2x∂t2

∥∥∥
L2(Q2)

+
∥∥∥ ∂3u

∂x∂t2

∥∥∥
L2(Q2)

+
∥∥∥∂3u

∂x3

∥∥∥
L2(Q1)

+
∥∥∥∂2u

∂x2

∥∥∥
L2(Q1)

+
∥∥∥∂u

∂x

∥∥∥
L2(Q1)

)]
.(3.36)

From (3.26)–(3.35), similar estimates for x > ξ, and (3.36), we finally obtain an
estimate for φ2:{

τ
∑
t∈ωτ

‖φ2(·, t)‖2B−1
0h

}1/2

≤ C(h2
max + τ)

(‖a‖W 3
2 (0,ξ) + ‖a‖W 3

2 (ξ,1)

)‖u‖
W̃ 4

2 (Q)
.(3.37)

It remains to estimate the expression ζ. The addendum ζ1 has a form similar to
η, ηt, and ηtt̄ = φ1. Therefore,

‖ζ1‖B−1
0h
≤ Ch2

max‖c‖W 2
2 (0,1)(‖u′′1‖L2(0,ξ) + ‖u′′1‖L2(ξ,1) + ‖u′1‖L2(0,1)),

from which, applying the trace theorem, we get

‖ζ1‖B−1
0h
≤ Ch2

max‖c‖W 2
2 (0,1)

(∥∥∥ ∂4u

∂x2∂t2

∥∥∥
L2(Q1)

+
∥∥∥ ∂3u

∂x2∂t

∥∥∥
L2(Q1)

+
∥∥∥ ∂4u

∂x2∂t2

∥∥∥
L2(Q2)

+
∥∥∥ ∂3u

∂x2∂t

∥∥∥
L2(Q2)

+
∥∥∥ ∂3u

∂x∂t2

∥∥∥
L2(Q)

+
∥∥∥ ∂2u

∂x∂t

∥∥∥
L2(Q)

)
.(3.38)

Also, we have

τ‖(B−1
0h ζ1)x̄]| ≤ Chmaxτ‖c‖W 2

2 (0,1)

(∥∥∥ ∂4u

∂x2∂t2

∥∥∥
L2(Q1)

+
∥∥∥ ∂3u

∂x2∂t

∥∥∥
L2(Q1)

+
∥∥∥ ∂4u

∂x2∂t2

∥∥∥
L2(Q2)

+
∥∥∥ ∂3u

∂x2∂t

∥∥∥
L2(Q2)

+
∥∥∥ ∂3u

∂x∂t2

∥∥∥
L2(Q)

+
∥∥∥ ∂2u

∂x∂t

∥∥∥
L2(Q)

)
.(3.39)
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From the integral representation

B−1
h ζ2(x) =

1

h̄

∫ x+

x−

∫ τ

0

∫ t′

0

κ(x, x′)
(
1− t′

τ

)∂3u(x′, t′′)
∂t3

dt′′dt′dx′

+
1

h̄

∫ x+

x−

∫ x

x′

∫ τ

0

∫ t′

0

κ(x, x′)
(
1− t′

τ

)∂4u(x′′, t′′)
∂x∂t3

dt′′dt′dx′′dx′, x 	= ξ,

B−1
h ζ2(ξ) =

∫ τ

0

∫ t′

0

(
1− t′

τ

)∂3u(ξ, t′′)
∂t3

dt′′dt′,

and

(B−1
h ζ2)x =

1

h

∫ x

x−

∫ τ

0

∫ t′

0

(
1− t′

τ

)∂4u(x′, t′′)
∂x∂t3

dt′′dt′dx′,

applying (3.16), we find

‖ζ2‖B−1
0h
≤ C(h2

max + τ2)

(∥∥∥∂4u

∂t4

∥∥∥
L2(Q)

+
∥∥∥∂3u

∂t3

∥∥∥
L2(Q)

+
∥∥∥ ∂4u

∂x∂t3

∥∥∥
L2(Q)

+
∥∥∥∂4u(ξ, ·)

∂t4

∥∥∥
L2(0,T )

+
∥∥∥∂3u(ξ, ·)

∂t3

∥∥∥
L2(0,T )

)
(3.40)

and

τ‖(B−1
0h ζ2)x̄]| ≤ Cτ5/2

∥∥∥ ∂4u

∂x∂t3

∥∥∥
L2(Q)

.(3.41)

Next, using the integral formula

ζ3(x) =
τ

2h̄

∫ x+

x−

∫ x

x′
κ(x, x′)

∂

∂x

(
c
∂2u

∂t2

)∣∣∣∣
(x′′,0)

dx′′dx′

and the trace theorem, we obtain the estimate

‖ζ3‖B−1
0h
≤ C(h2

max + τ2)‖c‖W 2
2 (0,1)

(∥∥∥ ∂4u

∂x∂t3

∥∥∥
L2(Q)

+
∥∥∥ ∂3u

∂x∂t2

∥∥∥
L2(Q)

+
∥∥∥∂3u

∂t3

∥∥∥
L2(Q)

+
∥∥∥∂2u

∂t2

∥∥∥
L2(Q)

)
(3.42)

and

τ‖(B−1
0h ζ3)x̄]| ≤ Cτ2‖c‖W 2

2 (0,1)

(∥∥∥ ∂4u

∂x∂t3

∥∥∥
L2(Q)

+
∥∥∥ ∂3u

∂x∂t2

∥∥∥
L2(Q)

+
∥∥∥∂3u

∂t3

∥∥∥
L2(Q)

+
∥∥∥∂2u

∂t2

∥∥∥
L2(Q)

)
.(3.43)
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Finally, from (3.25), (3.37), and (3.38)–(3.43) we get the required convergence
rate estimate of the scheme (3.20), (3.5), (3.21).

Theorem 3.4. Let the assumptions of part (ii) of Lemma 3.1 hold. Then

‖z‖(1)hτ ≤ C(h2
max + τ)(‖a‖W 3

2 (0,ξ) + ‖a‖W 3
2 (ξ,1) + ‖c‖W 2

2 (0,1) + 1)‖u‖
W̃ 4

2 (Q)
.(3.44)

Remark . Analogous results hold for the IBVP where the mass is concentrated at
several points ξi ∈ (0, 1), i = 1, 2, . . . , L. In such cases Bu = [c(x) +

∑L
i=1 Kiδ(x −

ξi)]u(x, t) and ‖w‖2B � ‖w‖2L2(0,1)
+

∑L
i=1 w2(ξi).

4. Problem with dynamical boundary condition. Let us consider the initial-
boundary value problem of string vibrations with dynamical boundary condition at
x = 0 (see [19]):

c(x)
∂2u

∂t2
− ∂

∂x

(
a(x)

∂u

∂x

)
= f(x, t), x ∈ (0, 1), 0 < t < T,(4.1)

K
∂2u(0, t)

∂t2
= a(0)

∂u(0, t)

∂x
, u(1, t) = 0, 0 < t < T,(4.2)

u(x, 0) = u0(x),
∂u(x, 0)

∂t
= u1(x), x ∈ (0, 1),(4.3)

where, as in section 3, K > 0, 0 < c1 ≤ a(x) ≤ c2, and 0 < c3 ≤ c(x) ≤ c4.
The problem (4.1)–(4.3) can be reduced to a problem of the form (3.1)–(3.3)

using even extension of the input data: c(x) = c(−x), a(x) = a(−x), u0(x) = u0(−x),
u1(x) = u1(−x), and f(x, t) = f(−x, t) for x ∈ (−1, 0). It easily follows that the
solution u(x, t) can also be extended by even fashion on (−1, 0)× (0, T ) and satisfies
the problem

[
c(x) + 2Kδ(x)

]∂2u

∂t2
− ∂

∂x

(
a(x)

∂u

∂x

)
= f(x, t), x ∈ (−1, 1), 0 < t < T,(4.4)

u(−1, t) = 0, u(1, t) = 0, 0 < t < T,(4.5)

u(x, 0) = u0(x),
∂u(x, 0)

∂t
= u1(x), x ∈ (−1, 1).(4.6)

The problem (4.4)–(4.6) can be written in the form (2.1) if one letsH = L2(−1, 1),

Au = − ∂

∂x

(
a(x)

∂u

∂x

)
, and Bu =

[
c(x) + 2Kδ(x)

]
u(x, t).

If w(x) is an even function on the segment (−1, 1), then

‖w‖2A =

∫ 1

−1

a(x)[w′(x)]2dx = 2

∫ 1

0

a(x)[w′(x)]2dx,

‖w‖2B =

∫ 1

−1

c(x)w2(x)dx+ 2Kw2(0) = 2

∫ 1

0

c(x)w2(x)dx+ 2Kw2(0).
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Further, we assume that the functions c(x) and a(x) are continuous on [0, 1].

By L̂2(0, 1) = Ŵ 0
2 (0, 1) we denote the subspace of functions w(x) ∈ L2(0, 1)

equipped with scalar product and norm

(u,w)L̂2(0,1)
=

∫ 1

0

u(x)w(x)dx+ u(0)w(0), ‖w‖L̂2(0,1)
= (u,w)

1/2

L̂2(0,1)
.

We let Ŵ 1
2 (0, 1) =

{
w ∈ W 1

2 (0, 1) : w(1) = 0
}
and Ŵ k

2 (0, 1) = Ŵ 1
2 (0, 1) ∩W k

2 (0, 1),
k = 2, 3, . . . .

We also define the space Ŵ k
2 (Q) (k = 0, 1, 2, . . . ) as the space of functions w ∈

W k
2 (Q) for which

∂iw

∂ti
∈ L2(0, T ; L̂2(0, 1)), i = 0, 1, . . . , k,

and the norm is defined as follows:

‖w‖2
Ŵk

2 (Q)
= ‖w‖2Wk

2 (Q) +

k∑
i=0

∥∥∥∂iw(ξ, ·)
∂ti

∥∥∥2

L2(0,T )
.

The following analogue of Lemma 3.1 holds true.
Lemma 4.1. (i) Let a, c ∈ W 2

2 (0, 1), f ∈ W 2
2 (Q), f(1, t) = 0, u0 ∈ Ŵ 3

2 (0, 1),

u1 ∈ Ŵ 2
2 (0, 1), and the compatibility conditions

Utt(1) = 0, a(0)u′0(0) = KUtt(0)

hold, where Utt(x) is defined as in Lemma 3.1. Then the problem (4.1)–(4.3) has a

unique solution u ∈ Ŵ 3
2 (Q).

(ii) Let a, c ∈ W 3
2 (0, 1), f ∈ W 3

2 (Q), f(1, t) = 0, u0 ∈ Ŵ 4
2 (0, 1), u1 ∈ Ŵ 3

2 (0, 1),
and the compatibility conditions

Uttt(1) = 0, a(0)u′0(0) = KUttt(0)

hold, where Uttt(x) is defined as in Lemma 3.1. Then the problem (4.1)–(4.3) has a

unique solution u ∈ Ŵ 4
2 (Q).

On the segment [0, 1] we introduce the nonuniform mesh ω̄h. Let Ĥh be the space
of mesh functions, equal to zero at x = 1. We will use the following scalar product

[v, w)h =
h1

2
v(0)w(0) +

∑
x∈ωh

v(x)w(x)h̄,

and the corresponding norm |[w‖h = |[w‖L2,h
= [w,w)

1/2
h . We also define the mesh

norms

|[w‖2
L̂2,h

= |[w‖2L2,h
+ w2(0), |[w‖2

Ŵ 1
2,h

= ‖wx̄]|2h� + |[w‖2h,

|[v‖(0)hτ = max
t∈ω−

τ

∣∣∣∣∣
[
(v(·, t+ τ) + v(·, t))

2

∥∥∥∥
L̂2,h

,
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|[v‖(1)hτ = max
t∈ω−

τ

∣∣∣∣∣
[
(v(·, t+ τ) + v(·, t))

2

∥∥∥∥2

Ŵ 1
2,h

+ |[vt(·, t)‖2L̂2,h

]1/2

.

We approximate the problem (4.1)–(4.3) by the difference scheme

(c+ 2Kδh)vtt̄ − (ãv
(σ)
x̄ )x̂ = T 2

xT
2
t f, (x, t) ∈ ω−h × ωτ ,(4.7)

v(1, t) = 0, t ∈ ω̄τ , v(x, 0) = u0(x), x ∈ ω−h ,(4.8)

(c+ 2Kδh)vt(x, 0) = T 2
x (cu1) + δh

(
2Ku1 + τau′0

)
+

τ

2
T 2
x

[
T̃ 2
t f(x, 0) + (au′0)

′
]
,

(4.9)

x ∈ ω−h ,

where σ ≥ 1/4, δh(0) = 1/h1,

(ãvx̄)x̂|x=0 =
2

h1
(ãvx̄)

∣∣∣
x=x1

and T 2
xf(0, t) =

2

h1

∫ x1

0

(
1− x′

h1

)
f(x′, t)dx′.

We also consider the higher order difference scheme

(c+ 2Kδh)vtt̄ +
(h2

6
(cv)x̄tt̄

)
x̂
− (ãv

(σ)
x̄ )x̂ − θ

h+ − h

6

(
axv

(σ)
x̄x̂ − ax̄x̂v

(σ)
x̄

)
= T 2

xT
2
t f,

(4.10)

(x, t) ∈ ω−h × ωτ , θ(0) = 0, θ(x) = 1 for x ∈ ωh,

(c+ 2Kδh)vt(x, 0) = T 2
x (cu1)−

(h2

6
(cu1)x̄

)
x̂
+ δh

(
2Ku1 + τau′0

)
+

τ

2
T 2
x

[
f(x, 0)+(au′0)

′],
(4.11)

x ∈ ω−h ,

where the boundary condition at x = 1 and the first initial condition are approximated
by (4.8).

Using results obtained in section 3, we immediately obtain the following result.
Theorem 4.2. If the assumptions of part (i) of Lemma 4.1 hold, then the differ-

ence scheme (4.7)–(4.9) converges and the following error bound holds:

|[u− v‖(0)hτ ≤ C(h2
max + τ2)(‖a‖W 2

2 (0,1) + ‖c‖W 2
2 (0,1))‖u‖Ŵ 3

2 (Q)
.

If the assumptions of part (ii) of Lemma 4.1 hold, then the difference scheme
(4.10), (4.8), (4.11) converges and the following error bound holds:

|[u− v‖(1)hτ ≤ C(h2
max + τ2)

(‖a‖W 3
2 (0,1) + ‖c‖W 2

2 (0,1) + 1
)‖u‖

Ŵ 4
2 (Q)

.
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5. Weakly hyperbolic equation. We consider the initial-boundary value prob-
lem

δ(x− ξ)
∂2u

∂t2
− ∂

∂x

(
a(x)

∂u

∂x

)
= f(x, t), x ∈ (0, 1), 0 < t < T,(5.1)

u(0, t) = 0, u(1, t) = 0, 0 < t < T,(5.2)

u(ξ, 0) = u0 = const,
∂u(ξ, 0)

∂t
= u1 = const,(5.3)

where 0 < c1 ≤ a(x) ≤ c2 and δ(x) is the Dirac-distribution. From (5.1) it follows
that the solution at (x, t) ∈ Q1 and (x, t) ∈ Q2 satisfies the equation

− ∂

∂x

(
a(x)

∂u

∂x

)
= f(x, t),

and at x = ξ the conjugation conditions

[u]x=ξ ≡ u(ξ + 0, t)− u(ξ − 0, t) = 0,
[
a
∂u

∂x

]
x=ξ

=
∂2u(ξ, t)

∂t2
.

Therefore, at fixed t, the equation is elliptic on (0, ξ) and (ξ, 1), and its hyperbolic
character is exhibited only in the point x = ξ.

The problem (5.1)–(5.3) also has the form (2.1), where Au = − ∂
∂x (a(x)

∂u
∂x ) and

Bu = δ(x−ξ)u(x, t). The operator A is positively definite in the spaceHA =
◦
W 1

2 (0, 1).
The operator B is nonnegative in HA, and

‖w‖B = |w(ξ)|.

It is easy to see that in this case the second estimate of Lemma 2.1 in which the
operator B−1 doesn’t participate is valid.

Retaining the notations from section 3, we approximate the problem (5.1)–(5.3)
by the weighted difference scheme with averaged right-hand side

δhvtt̄ − (ãv
(σ)
x̄ )x̂ = T 2

xT
2
t f, (x, t) ∈ ωh × ωτ ,(5.4)

v(0, t) = 0, v(1, t) = 0, t ∈ ω̄τ ,(5.5)

v(ξ, 0) = u0, vt(ξ, 0) = u1 +
τ

2

[
a
∂u

∂x

]
(ξ,0)

.(5.6)

At t = 0 the problem (5.1)–(5.3) disintegrates in two second order ordinary differential
equations

−(aU ′)′ = f(x, 0), 0 < x < ξ, U(0) = 0, U(ξ) = u0

and

−(aU ′)′ = f(x, 0), ξ < x < 1, U(ξ) = u0, U(1) = 0,
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where U(x) = u(x, 0), the solution of which can be derived explicitly. Therefore, we
have an effective way to calculate the approximation of the initial boundary condi-
tion (5.6):[
a
∂u

∂x

]
(ξ,0)

= [aU ′]|x=ξ =
∫ 1

0

f(x, 0)dx−
(∫ ξ

0

dx

a(x)

)−1(
u0 +

∫ ξ

0

∫ x

0

f(x′, 0)
a(x)

dx′dx
)

−
(∫ 1

ξ

dx

a(x)

)−1(
u0 +

∫ 1

ξ

∫ 1

x

f(x′, 0)
a(x)

dx′dx
)
.

The error z = u− v satisfies the condition

δhztt̄ − (ãz
(σ)
x̄ )x̂ = ϕx̂, (x, t) ∈ ωh × ωτ ,(5.7)

z(0, t) = 0, z(1, t) = 0, t ∈ ω̄τ ,(5.8)

z(ξ, 0) = 0, zt(ξ, 0) = µ,(5.9)

where (see section 3.3)

ϕ = ϕ1 + ϕ2 + ϕ3 + ϕ4 = ãux̄ − T−x T 2
t

(
a
∂u

∂x

)
and µ =

τ

2

(
T̃ 2
t

∂2u

∂t2
− ∂2u

∂t2

)∣∣∣∣
(ξ,0)

.

The difference scheme (5.7)–(5.9) takes the form (2.3), where Ahv = −(ãvx̄)x̂ is a
positive linear operator in Hh and Bhv = δhv is a nonnegative linear operator in Hh.
Also

‖w‖Ah
=

 ∑
x∈ω+

h

ãw2
x̄h̄


1/2

� ‖wx̄]|h�, ‖w‖Bh
= |w(ξ)|.

We also need the norm

|v|(0)hτ = max
t∈ω−

τ

∣∣∣v(ξ, t) + v(ξ, t+ τ)

2

∣∣∣.
From Lemma 2.2, using (3.10), we get the a priori estimate

|z|(0)hτ ≤ C

[
‖µ‖2Bh

+ τ
∑
t∈ωτ

‖ϕ(·, t)]|2h�
]1/2

.(5.10)

Since ϕ = ϕ at c(x, t) = 0, we obtain the estimate of ϕ immediately from (3.12).
Using the integral representation

µ =

∫ τ

0

∫ t′

0

(
1− t′

τ

)∂3u(ξ, t′′)
∂t3

dt′′dt′

and (3.16), we get

‖µ‖Bh
= |µ| ≤ Cτ2

(∥∥∥∂4u(ξ, ·)
∂t4

∥∥∥
L2(0,T )

+
∥∥∥∂3u(ξ, ·)

∂t3

∥∥∥
L2(0,T )

)
.(5.11)
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Thus from (5.10), (3.12), and (5.11) we get the following convergence rate estimate
for the difference scheme (5.4)–(5.6):

|z|(0)hτ ≤ C(h2
max + τ2)(‖a‖W 2

2 (0,ξ) + ‖a‖W 2
2 (ξ,1) + 1)

(∥∥∥∂4u(ξ, ·)
∂t4

∥∥∥
L2(0,T )

+
∥∥∥∂3u(ξ, ·)

∂t3

∥∥∥
L2(0,T )

+
∥∥∥ ∂3u

∂x∂t2

∥∥∥
L2(Q)

+
∥∥∥∂2u

∂x2

∥∥∥
L2(Q1)

+
∥∥∥∂2u

∂x2

∥∥∥
L2(Q2)

+
∥∥∥∂u

∂x

∥∥∥
L2(Q)

)
.

(5.12)

The estimate (5.12) guarantees the convergence only at x = ξ. However, with its
help the error can be estimated in all nodes of the mesh ωh × ωτ . In fact, z(σ) at
0 ≤ x ≤ ξ satisfies the conditions

−(z(σ)
x̄ )x̂ = ϕx̂, z(σ)(0, t) = 0, z(σ)(ξ, t) 	= 0.

Applying the maximum principle [16], we get

max
x∈ωh∩[0,ξ]

|z(σ)(x, t)| ≤ C
(
‖ϕ(·, t)]|h� + |z(σ)(ξ, t)|

)
.(5.13)

A similar a priori estimate also holds for ξ ≤ x ≤ 1. At σ = 1/4 from (3.12), (3.16),
(5.12), and (5.13) follows the convergence rate estimate

max
(x,t)∈ωh×ωτ

|z(1/4)(x, t)| ≤ C(h2
max + τ2)(‖a‖W 2

2 (0,ξ) + ‖a‖W 2
2 (ξ,1) + 1)‖u‖

W̃ 4
2 (Q)

.
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SIAM J. NUMER. ANAL. c© 2003 Society for Industrial and Applied Mathematics
Vol. 41, No. 2, pp. 539–562

Abstract. We study the convergence of two coupled numerical schemes, which are a discretiza-
tion of a so-called elliptic-hyperbolic system. Only weak convergence properties are proved on the
discrete diffusion of the elliptic problem, and an adaptation of the H-convergence method gives a
convergence property of the elliptic part of the scheme. The limit of the approximate solution is then
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1. Introduction. Numerical simulation takes an important place in oil recovery
engineering. In many cases, the engineer should represent at the same time the
thermodynamical evolution of the hydrocarbon components during the pressure drop
due to the extraction of oil and the mass transfers in the oil reservoir. In this paper, we
focus on the consequences of a mobility contrast between an injected fluid (generally
water) and the oil in place, in a very simple case: oil and water are assumed to be
incompressible immiscible fluid phases with a common pressure, and the reservoir
is supposed to be a horizontal homogeneous isotropic domain. Following [3], the
conservation equations for such a two-phase flow in this particular case, using Darcy’s
law, can be written as

∂s

∂t
− div(γ(s)λ(s)∇u)

= (f̄)+γ(s̄)− (f̄)−γ(s),
∂(1− s)
∂t

− div((1− γ(s))λ(s)∇u)
= (f̄)+(1− γ(s̄))− (f̄)−(1− γ(s))


in Ω,(1)

with the boundary conditions

u = 0 on ∂Ω× R+,
s = ŝ on {(x, t) ∈ ∂Ω× R+,∇u(x, t) · n∂Ω(x) ≥ 0}.(2)

In (1) and (2), the domain Ω represents the porous medium, u represents the common
pressure of the two phases, s represents the saturation of the water phase, γ(s) is a
nondecreasing function which is called the “fractional flow,” with γ(0) = 0 and γ(1) =
1, the positive function λ(s) is the “total mobility” of the two phases (the sum of the
mobility of water and the mobility of oil), the function f̄(x, t) represents the rates at
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the wells, s̄(x, t) is the saturation of the injected fluids (the injected rate corresponds
to the positive part of the function f̄ , the produced rate corresponds to the negative
part, and the repartition of the production between water and oil is determined by the
saturation in the reservoir), and the function ŝ(x, t) is the saturation of incoming fluids
at the boundary. We denote, for all real value z, z+ = max(z, 0) and z− = max(−z, 0).

The existence of a solution to (1) is an open problem if the function λ is not
reduced to a constant. A number of numerical schemes for this problem have already
been discussed in the literature. Nevertheless, their convergence has only recently
been studied in the only case of a constant function λ: the convergence of a numerical
scheme involving a finite volume method for the computation of the saturation s and a
standard finite element for the computation of the pressure u is proved in [7], whereas
a convergence proof for a finite volume method for the discretization of both equations
is presented in [21] and a convergence proof for a mixed finite element/finite volume
scheme is given in [15].

The objective of this paper is the study of the convergence properties of finite
volume methods in the case where the function λ is not a constant function. This
problem appears to be very close to the study of the convergence, when ε −→ 0 of
the solution of the problem

∂sε
∂t
− div(γ(sε)λ(sε)∇uε)− ε∆sε

= (f̄)+γ(s̄)− (f̄)−γ(sε),
∂(1− sε)
∂t

− div((1− γ(sε))λ(sε)∇uε) + ε∆sε

= (f̄)+(1− γ(s̄))− (f̄)−(1− γ(sε))


in Ω,(3)

where the additional term ε∆sε stands for a diffusive term, which is similar to the
diffusion added by the upstream weighted numerical schemes. Such a diffusive term is
slightly different from that which comes from the introduction of a capillary pressure
term, yielding some degeneration similar to that of the porous media equation (see
[1], [2], [4], [11], and [5] for the existence of a solution of the continuous problem and
see [10] for the proof of the convergence of a finite volume scheme).

In order to make clear the tools that appear, we shall consider a steady-state
version of (1) (see (50) below). The main result of this paper is the proof that, using
a coupled finite volume scheme for the approximation of this system of equations,
the approximate pressure converges in L2(Ω) to the solution of an elliptic problem
whose coefficients are obtained by the same method as the classical H-convergence
proof (following [17], [14], or [19]), whereas the approximate saturation converges only
in a weak sense (namely, in L∞(Ω) for the weak � topology [13]). The use, in the
discrete setting, of a notion similar to H-convergence is natural: indeed, the existence
of a limit as ε −→ 0 to the family of pressures (uε)ε>0, the solution to the sum of
a steady version of the equations (3), immediately results from H-convergence (see
section 2). Note that an extension of the H-convergence background to a discrete
setting has been performed; see [16] and mainly [12] for the proof of the existence
of an “H-limit” to a subsequence of a sequence of discrete elliptic operators, using
regular structured grids and finite differences. The objective here is to study the
limit of a sequence of finite volume approximations on general meshes, whereas the
discrete diffusion results from the coupling of the two discrete conservation equations.
The fact that the two unknowns are computed in the same grids makes different, in
the general case, the notion of continuous and discrete H-limits, which suggests to
distinguish the vocabulary devoted to both notions.



H-CONVERGENCE AND NUMERICAL SCHEMES 541

It is also interesting to notice that the question of the independence of these limit
coefficients on the way that some diffusion is added in (1) is not known. It is, however,
clear that the limit (u, s) of the numerical scheme or of the parabolic regularization
(namely (3)) is a solution of (1) if a strong convergence result can be proved for the
saturation. This sufficient condition seems to be necessary for a large class of data:
for example, it is already necessary in the case of a constant function λ when the
function γ is genuinely nonlinear.

This paper is organized as follows:
• In section 2, a short review of the concept of H-convergence is made, and

some examples of application of this notion are given.
• In section 3, results are recalled on finite volume methods for elliptic problems.
• In section 4, an adaptation of H-convergence to the study of the convergence

of numerical schemes for elliptic problems is made.
• The convergence study of the coupled scheme for the two-phase flow problem

is done in section 5.
• Some concluding remarks give guidelines for further works.

2. Some results of H-convergence. The notion of H-convergence is used for
the physical description of effective properties, at the macroscopic level, of heteroge-
neous materials in which some diffusive phenomena occur. The assumption which is
then made is that the scale of the heterogeneities is small compared to the macro-
scopic scale. Let us take the example of the Dirichlet problem, which models, for
example, the steady flow of a monophasic incompressible fluid in a heterogeneous
porous medium, using Darcy’s law. We assume that the pressure of the fluid is con-
stant at the boundary of the domain and that some volumic source terms represent
the injection and the production of fluid throughout some wells. The question of the
existence of an “effective” permeability field, which could allow the computation of
an accurate approximate solution using only a coarse discretization (which means a
discretization at the macroscopic scale), is of major interest for the industrial applica-
tions; this question can, in some cases, be handled using the notion of H-convergence.

2.1. Notations for the Dirichlet problem. Let Ω be an open bounded subset
of R

N , with N ∈ N∗, and let α and β be two real numbers, with 0 < α ≤ β. We
denote by M(α, β,Ω) the set of measurable functions M : Ω −→ L(RN ,RN ) such
that, for a.e. x ∈ Ω and for all (ξ, χ) ∈ (RN )2, α|ξ|2 ≤ M(x)ξ · ξ ≤ β|ξ|2, and
M(x)ξ ·χ = ξ ·M(x)χ. In the particular case where there exists a function µ ∈ L∞(Ω)
such that, for a.e. x ∈ Ω, M(x) = µ(x)IN , where IN denotes the identity application
from R

N to R
N , we then denote M = µ. In this case, we say that M represents an

isotropic field; otherwise, we say that the field M is anisotropic.
For a given source term b ∈ H−1(Ω) and a given M ∈ M(α, β,Ω), we denote by

F(b,M) the unique solution u of

u ∈ H1
0 (Ω) and

∫
Ω

M(x)∇u(x) · ∇v̄(x)dx = b(v̄) ∀v̄ ∈ H1
0 (Ω).

2.2. The H-convergence theorem. The following result, given in [17] (in
which it was called G-convergence, in reference to some works of de Giorgi), has
been extended in [19] to some more general configurations.

Theorem 1 (H-convergence). Let Ω be an open bounded subset of R
N , with

N ∈ N∗. Let two real numbers α and β be such that 0 < α ≤ β. Let (Mn)n∈N be a
sequence of elements of Mn ∈M(α, β,Ω).
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Then there exists a subsequence of (Mn)n∈N, again denoted (Mn)n∈N, and a func-
tion M ∈M(α, β,Ω) such that

• for all b ∈ H−1(Ω), F(b,Mn) weakly converges to F(b,M) in H1
0 (Ω) as n −→

∞;
• for all b ∈ H−1(Ω), Mn∇F(b,Mn) weakly converges to M∇F(b,M) in

(L2(Ω))N as n −→∞.
We then say that the sequence (Mn)n∈N H-converges to M , called the H-limit of

the sequence.
We now give some examples of H-convergence results.

2.3. The one-dimensional case. In the case N = 1, let us suppose that Ω =
(0, 1). The sequence (Mn)n∈N such that for all n ∈ N, Mn ∈ M(α, β,Ω) is then a
sequence of functions belonging to L∞(Ω) and 1/Mn(x) ∈ [1/β, 1/α] for a.e. x ∈ Ω.

For a given f ∈ L2(Ω), we denote by f̂ the continuous function defined, for all

x ∈ (0, 1), by f̂(x) =
∫
(0,x)

f(s)ds. We then have, for all x ∈ Ω,

F(f,Mn)(x) =

∫
(0,x)

(1/Mn(t))dt∫
(0,1)

(1/Mn(t))dt

∫
(0,1)

f̂(t)

Mn(t)
dt−

∫
(0,x)

f̂(t)

Mn(t)
dt.

Up to a subsequence, we can suppose that the sequence (1/Mn)n∈N converges to a
function 1/M for the weak � topology of L∞(Ω). We then get that, for all x ∈ Ω,

lim
n−→∞F(f,Mn)(x) =

∫
(0,x)

(1/M(t))dt∫
(0,1)

(1/M(t))dt

∫
(0,1)

f̂(t)

M(t)
dt−

∫
(0,x)

f̂(t)

M(t)
dt,

which proves that M is the H-limit of this subsequence. Unfortunately, such a rela-
tion between the limit for the weak � topology of L∞(Ω) and the H-limit cannot be
obtained in the general case N > 1.

2.4. Two-dimensional examples. Let µr > 0 and µb > 0 be two real values,
respectively, defining the permeability of two materials, respectively called “red” and
“black.” We first define the so-called checkerboard problem, settingM1 : R

2 −→ R by
(x1, x2)→ µr if Int(x1)+Int(x2) ∈ 2Z (denoting for all z ∈ R by Int(z) the largest rela-
tive integer value lower than z), else (x1, x2)→ µb (for example, Int(0.5)+Int(0.5) = 0
and M1(0.5, 0.5) = µr, Int(1.5)+Int(−1.5) = 1 − 2 = −1 and M1(1.5,−1.5) = µb;
see Figure 1). Then we define, for all n ∈ N∗, Mn : R

2 −→ R by Mn(x1, x2) =
M1(nx1, nx2). It can then be shown that, in all open domain Ω of R

2, the sequence
(Mn)n∈N H-converges to the constant function (x1, x2)→ √

µrµb. In this case, the H-
limit of a sequence of isotropic heterogeneous fields is an isotropic homogeneous field.
Another example involving two materials is the multilayer case, obtained with defin-
ing M1 : R

2 −→ R by (x1, x2)→ µr if Int(x1) ∈ 2Z, else (x1, x2)→ µb (for example,
Int(0.5) = 0 and M1(0.5, 10) = µr, Int(1.5) = 1 and M1(1.5,−4) = µb; see Figure 2).
We again define the sequence (Mn)n∈N, by Mn : R

2 −→ R, (x1, x2) �→M1(nx1, nx2),
for all n ∈ N∗. Then it can be proved that the sequence (Mn)n∈N H-converges, in all
open domain Ω of R

2, to the constant field, the value of which is the linear function
defined by (1, 0) → ( 2µrµb

µr+µb
, 0) and (0, 1) → (0, µr+µb

2 ). We can remark that 2µrµb

µr+µb

is the harmonic average of µr and µb, that is, the invert of the average value of the
inverts of µr and µb (this is exactly the value obtained by H-convergence in the one-
dimensional case), whereas µr+µb

2 is the arithmetic average of µr and µb. In this
two-dimensional case, the H-limit of a sequence of isotropic heterogeneous fields is an
anisotropic homogeneous field.
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Fig. 1. The checkerboard case.

Fig. 2. The multilayer case.

Note that in the two above examples the limit of (Mn)n∈N for the weak � topology
of L∞(Ω) is the constant function (x1, x2) → µr+µb

2 . Using the notion of nonlinear
weak � convergence (see [9]), the limit of (Mn)n∈N in terms of Young’s measure is the
constant field of probability measure 1

2δµr
+ 1

2δµb
, equivalently given by the function

µ ∈ L∞(Ω × (0, 1)) such that, for a.e. x ∈ Ω and s ∈ (0, 1
2 ), µ(x, s) = µr, and for

a.e. x ∈ Ω and s ∈ ( 1
2 , 1), µ(x, s) = µb. Thus we see that the notion of nonlinear

weak � convergence does not account for the spatial structure of the heterogeneity
and justifies the attempts of finding some more suitable generalized limit (see, for
example, [20]).

3. Finite volume meshes and schemes.

3.1. Admissible meshes. We first introduce the notion of admissible discretiza-
tion [9] which is useful to define a finite volume scheme.

Definition 1 (admissible discretization). Let Ω be an open bounded polygonal
subset of R

N , with N ∈ N∗ (in general, we have N = 2 or N = 3). We denote
∂Ω = Ω \ Ω. An admissible finite volume discretization of Ω, denoted by D, is given
by D = (T , E ,P), where we have the following:

• T is a finite family of nonempty open polygonal convex disjoint subsets of
Ω (the “control volumes”) such that Ω = ∪K∈TK. We then denote, for all
K ∈ T , by ∂K = K \K the boundary of K and mK > 0 the N -dimensional
Lebesgue measure of K (it is the area of K in the two-dimensional case and
the volume in the three-dimensional case).

• E is a finite family of disjoint subsets of Ω (the “edges” of the mesh) such that,
for all σ ∈ E, there exists a hyperplane E of R

N and K ∈ T with σ = ∂K∩E
and σ is a nonempty open subset of E. We then denote mσ > 0 the (N − 1)-
dimensional measure of σ. We assume that, for all K ∈ T , there exists a
subset EK of E such that ∂K = ∪σ∈EKσ. It then results from the previous
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hypotheses that, for all σ ∈ E, either σ ⊂ ∂Ω or there exists (K,L) ∈ T 2 with
K �= L such that K ∩ L = σ; we denote in the latter case σ = K|L.

• P is a family of points of Ω indexed by T , denoted by P = (xK)K∈T . This
family is such that, for all K ∈ T , xK ∈ K. For all σ ∈ E such that there
exists (K,L) ∈ T 2 with σ = K|L, it is assumed that the straight line (xK , xL)
going through xK and xL is orthogonal to K|L. For all K ∈ T and all σ ∈ EK ,
let yσ be the orthogonal projection of xK on σ. We suppose that yσ ∈ σ.

The following notations are used. The size of the discretization is defined by

size(D) = sup{diam(K),K ∈ T }.
For all K ∈ T and σ ∈ EK , we denote by nK,σ the unit vector normal to σ outward
to K. We define a subset of K associated with the edge σ by

DK,σ = {txK + (1− t)y, t ∈ (0, 1), y ∈ σ}
(the letter “D” stands for “diamond”) and denote by dK,σ the euclidean distance
between xK and σ. We then define

τK,σ =
mσ

dK,σ
.

The set of interior (resp., boundary) edges is denoted by Eint (resp., Eext), that is,
Eint = {σ ∈ E ; σ �⊂ ∂Ω} (resp., Eext = {σ ∈ E ; σ ⊂ ∂Ω}).
3.2. Discrete functional properties.
Definition 2. Let Ω be an open bounded polygonal subset of R

N , with N ∈ N∗.
Let D = (T , E ,P) be an admissible finite volume discretization of Ω in the sense of
Definition 1. We denote by HD(Ω) ⊂ L2(Ω) the space of functions which admit a
constant value in each K ∈ T . For all u ∈ HD(Ω) and for all K ∈ T , we denote by
uK the constant value of u in K and we define (uσ)σ∈E by

uσ = 0 ∀σ ∈ Eext(4)

and

τK,σ(uσ − uK) + τL,σ(uσ − uL) = 0 ∀σ ∈ Eint, σ = K|L.(5)

We now give a definition of an approximate gradient of the functions of HD(Ω). We
define a function, denoted GD : HD(Ω) −→ (L2(Ω))N , u −→ GDu with

GDu(x) =
N

dK,σ
(uσ − uK)nK,σ, for a.e. x ∈ DK,σ ∀K ∈ T , ∀σ ∈ EK .(6)

Let two real numbers α and β be such that 0 < α ≤ β. We denote by MD(α, β) ⊂
L∞(Ω) the set of functions µ such that for all σ ∈ E there exists a constant value,
denoted µσ ∈ [α, β], such that

µ(x) = µσ ∀x ∈ DK,σ, where K is such that σ ∈ EK .
The function which takes the constant value 1 on Ω is denoted by 1. For (u, v) ∈
(HD(Ω))2 and ϕ ∈ C0(Ω), we denote by

[u, v]D,µ,ϕ =
∑
K∈T

ϕ(xK)
∑
σ∈EK

µστK,σ(uσ − uK)(vσ − vK).(7)



H-CONVERGENCE AND NUMERICAL SCHEMES 545

We define the following norm in HD(Ω) (see Lemma 1) by

|u|D = ([u, u]D,1,1)
1/2
.

Remark 1. For all edges σ such that σ = K|L, the function GDu is constant on
DK,σ ∪DL,σ.

We have the following properties.
Lemma 1 (discrete Poincaré inequality). Let Ω be an open bounded polygonal

subset of R
N , with N ∈ N∗. Let D = (T , E ,P) be an admissible finite volume dis-

cretization of Ω in the sense of Definition 1. Then for all u ∈ HD(Ω) (cf. Definition 2)
one has

‖u‖L2(Ω) ≤ diam(Ω) |u|D.(8)

The proof of Lemma 1 is given in [9].
Lemma 2 (relative compactness in L2(Ω)). Let Ω be an open bounded polygonal

subset of R
N , with N ∈ N∗. We consider a sequence (Dn, un)n∈N such that, for all

n ∈ N, Dn is an admissible finite volume discretization of Ω in the sense of Definition 1
and un ∈ HDn(Ω) (cf. Definition 2). Let us assume that

lim
n−→∞ size(Dn) = 0

and that there exists C > 0 such that, for all n ∈ N, |un|Dn ≤ C.
Then there exists a subsequence of (Dn, un)n∈N, again denoted (Dn, un)n∈N, and

u ∈ H1
0 (Ω) such that un tends to u in L

2(Ω) as n −→∞, GDnun weakly tends to ∇u
in (L2(Ω))N as n −→∞, and∫

Ω

ϕ(x)(∇u(x))2dx ≤ lim inf
n−→∞ [un, un]Dn,1,ϕ ∀ϕ ∈ C0(Ω,R+).(9)

Proof. The proof of the existence of a subsequence of (Dn, un)n∈N, again denoted
(Dn, un)n∈N, and u ∈ H1

0 (Ω) such that un tends to u in L2(Ω) as n −→ ∞ is given
in [9]. The proof of (9) is given in [10]. Therefore, we have only to prove that, up
to a subsequence, GDnun weakly tends to ∇u in (L2(Ω))N as n −→∞. Since for all
K ∈ T and σ ∈ EK the measure of DK,σ is equal to mσdK,σ/N , we have(‖GDnun‖(L2(Ω))N

)2
= N (|un|Dn)

2 ≤ NC2.(10)

Thus there exists a subsequence of (Dn, un)n∈N, again denoted (Dn, un)n∈N, and ḡ ∈
(L2(Ω))N such that GDn

un converges weakly to ḡ in (L2(Ω))N as n −→ ∞. It now
remains to prove that ḡ = ∇u. Let ϕ ∈ (C∞c (Ω))N . Let G0 be defined by

G0 =

∫
Ω

∇u(x) · ϕ(x)dx = −
∫

Ω

u(x)divϕ(x)dx.

For a given n ∈ N, we consider the expression

G0,n = −
∫

Ω

undivϕ(x)dx.

We then have limn−→∞G0,n = G0. Since we have (omitting indexes n in discrete
terms)

G0,n = −
∑
K∈T

uK

∫
K

divϕ(x)dx =
∑
K∈T

∑
σ∈EK

(uσ − uK)

∫
σ

ϕ(x) · nK,σdγ(x)
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(in which dγ(x) is the N − 1-dimensional measure), we get

G0,n =
∑
K∈T

∑
σ∈EK

N

dK,σ
(uσ − uK)

∫
DK,σ

ϕσ · nK,σdx,

in which we denote

ϕσ =
1

mσ

∫
σ

ϕ(x)dγ(x) ∀σ ∈ E .

If we now set

G1,n =

∫
Ω

GDnun(x) · ϕ(x)dx,

we have, on the one hand, limn−→∞G1,n =
∫
Ω
ḡ(x) · ϕ(x)dx and, on the other hand,

G1,n =
∑
K∈T

∑
σ∈EK

N

dK,σ
(uσ − uK)

∫
DK,σ

ϕ(x) · nK,σdx.

Therefore, denoting C0,ϕ > 0 a value such that |ϕ(x)− ϕ(y)| ≤ C0,ϕ|x− y|, we have

|G1,n −G0,n| ≤ C0,ϕsize(Dn)
∑
K∈T

∑
σ∈EK

mσ|uσ − uK |,

and thanks to the Cauchy–Schwarz inequality,

(G1,n −G0,n)
2 ≤ C2

0,ϕsize(Dn)2NmΩ

∑
K∈T

∑
σ∈EK

τK,σ(uσ − uK)2

≤ C2
0,ϕsize(Dn)2NmΩC,

where mΩ denotes the measure of Ω which verifies NmΩ =
∑
K∈T

∑
σ∈EK mσdK,σ.

This proves that limn−→∞G0,n = limn−→∞G1,n, and therefore∫
Ω

ḡ(x) · ϕ(x)dx =

∫
Ω

∇u(x) · ϕ(x)dx.

Since the above equation is true for all ϕ ∈ (C∞c (Ω))N , we then deduce that ḡ(x) =
∇u(x), for a.e. x ∈ Ω. Thanks to the uniqueness of this limit, this proves that all of
the sequence (Dn, un)n∈N such that un tends to u in L2(Ω) as n −→ ∞ verifies that
GDnun weakly tends to ∇u in (L2(Ω))N as n −→∞.

Remark 2. In the preceding proof, the convergence of GDnun, as n −→∞, can-
not be in (L2(Ω))N, except if it converges to 0, since we get lim infn ‖GDnun‖(L2(Ω))N ≥√
N‖∇ū‖(L2(Ω))N from (10) and (9) with ϕ = 1 (see also Remark 7 for a more general

case).

3.3. Finite volume scheme. We now give a finite volume scheme for a Dirichlet
problem on Ω. Let D = (T , E ,P) be an admissible discretization of Ω in the sense
of Definition 1. Let two real numbers α and β be such that 0 < α ≤ β and let
µ ∈MD(α, β). For a given f ∈ L2(Ω), let u ∈ HD(Ω) (cf. Definition 2) be such that

−
∑
σ∈EK

µστK,σ(uσ − uK) =

∫
K

f(x)dx ∀K ∈ T(11)
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(the existence and uniqueness of a u ∈ HD(Ω) solution of (11) results from the in-
equality µσ ≥ α for all σ ∈ E and from (8); see [9]). Since, for all v ∈ HD(Ω),∑
K∈T

∑
σ∈EK µστK,σ(uσ − uK)vσ = 0 thanks to (4)–(5), (11) is equivalent to

u ∈ HD(Ω) and [u, v]D,µ,1 =

∫
Ω

f(x)v(x)dx ∀v ∈ HD(Ω).(12)

Using the results of Lemma 2 for the points concerning the approximate gradient,
we then have the following results, given in [9].

Lemma 3 (finite volume method). Let Ω be an open bounded polygonal subset of
R
N , with N ∈ N∗. Let D = (T , E ,P) be an admissible finite volume discretization of

Ω in the sense of Definition 1. Let two real numbers α and β be such that 0 < α ≤ β
and let µ ∈MD(α, β). Let f ∈ L2(Ω).

Then there exists one and only one u ∈ HD(Ω) (cf. Definition 2) given by (11).
We then denote u = FD(f, µ). Moreover,

α|u|D ≤ diam(Ω) ‖f‖L2(Ω).(13)

In the case µ = 1, we have the following convergence results: FD(f, 1) converges
to F(f, 1) in L2(Ω) as size(D) −→ 0, GDFD(f, 1) weakly converges to ∇F(f, 1) as
size(D) −→ 0 in (L2(Ω))N , and∫

Ω

ϕ(x)(∇F(f, 1)(x))2dx = lim
size(D)−→0

[FD(f, 1), FD(f, 1)]D,1,ϕ

∀ϕ ∈ C0(Ω).
(14)

4. Adaptation of H-convergence to numerical schemes.

4.1. The Hd-convergence theorem and relations with H-convergence.
The following theorem (proved in sections 4.2 and 4.3 below) expresses a discrete
version of Theorem 1.

Theorem 2 (Hd-convergence). Let Ω be an open bounded polygonal subset of R
N ,

with N ∈ N∗. Let two real numbers α and β be such that 0 < α ≤ β. Let (Dn, µn)n∈N

be a sequence such that, for all n ∈ N, Dn is an admissible discretization of Ω in the
sense of Definition 1, and µn ∈MDn(α, β). We assume that limn−→∞ size(Dn) = 0.

Then there exist a subsequence of (Dn, µn)n∈N, again denoted (Dn, µn)n∈N, and
a unique measurable function M ∈ M(α, β,Ω) (this set is defined in section 2) such
that

• for all f ∈ L2(Ω), FDn(f, µn) converges to F(f,M) in L2(Ω) as n −→∞ and
GDn

FDn(f, µn) weakly converges to ∇F(f,M) in (L2(Ω))N as n −→∞ (the
functions FD(f, µ), denoting the discrete solution of a finite volume scheme
for an elliptic problem with the homogeneous Dirichlet boundary condition,
the right-hand side f , and a discrete diffusion field µ, and GDFD(f, µ), de-
noting a discrete gradient of this numerical solution, are defined in section 3
and the function F(f,M), denoting the solution of an elliptic problem with
the homogeneous Dirichlet boundary condition, the right-hand side f , and a
diffusion matrix field M , is defined in section 2);

• for all f ∈ L2(Ω), µnGDnFDn(f, µn) weakly converges to M∇F(f,M) in
(L2(Ω))N as n −→∞.
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We then say that the sequence (Dn, µn)n∈N Hd-converges toM , called the Hd-limit
of the sequence.

Some comments can be made on the relation between Hd-convergence and H-con-
vergence. Let us first study the one-dimensional case. We take again the case and
the notations of section 2.3. Let Ω = (0, 1), α, and β be such that 0 < α ≤ β. In
order to define an admissible discretization of Ω, let p ∈ N∗ and let (yk)k=0,...,p and
(xk)k=1,...,p be real values such that

y0 = 0 < x1 < y1 < x2 . . . < yk−1 < xk < yk . . . < yp−1 < xp < yp = 1.

Then the discretization D = (T , E ,P) defined by T = {(yk−1, yk), k = 1, . . . , p},
E = {{yk}, k = 0, . . . , p}, and P = {xk, k = 1, . . . , p} is an admissible discretization
of Ω in the sense of Definition 1. Let f ∈ L2(Ω) and µ ∈ MD(α, β) be given (recall
that the function µ takes constant values in (0, x1), . . . , (xk, xk+1),. . . , (xp, 1)). We

again define the function f̂ by f̂(x) =
∫
(0,x)

f(t)dt for all x ∈ Ω, and we introduce the

function f̂D defined by f̂D(x) = 0 = f̂(y0) for all x ∈ (0, x1), by f̂D(x) = f̂(yk) for all

x ∈ (xk, xk+1), and by f̂D(x) = f̂(1) for all x ∈ (xp, 1). Some calculations show that
the solution of the finite volume scheme (11) is defined by

FD(f, µ)(x) =

∫
(0,xk)

(1/µ(t))dt∫
(0,1)

(1/µ(t))dt

∫
(0,1)

f̂D(t)

µ(t)
dt−

∫
(0,xk)

f̂D(t)

µ(t)
dt

∀x ∈ (yk−1, yk), ∀k = 1, . . . , p.

(15)

Let (Dn, µn)n∈N be a sequence such that, for all n ∈ N, Dn is an admissible
discretization of Ω in the sense of Definition 1, and µn ∈ MDn(α, β). We assume
that limn−→∞ size(Dn) = 0. Up to a subsequence, we can suppose that the sequence
(1/µn)n∈N converges to a function 1/M for the weak � topology of L∞(Ω). Since the

sequence (f̂Dn)n∈N strongly converges to the continuous function f̂ as n −→ ∞, we
get, using (15) in which we let D = Dn and µ = µn, that the limit of the sequence
(FDn(f, µn))n∈N is exactly the function F(f,M) defined, for all x ∈ Ω, by

F(f,M)(x) =

∫
(0,x)

(1/M(t))dt∫
(0,1)

(1/M(t))dt

∫
(0,1)

f̂(t)

M(t)
dt−

∫
(0,x)

f̂(t)

M(t)
dt.

This proves that the Hd-limit of (Dn, µn)n∈N is the function M , and therefore
coincides, when using the finite volume scheme (11), with the H-limit of (µn)n∈N; the
use of some convergence for the weak � topology of L∞(Ω) is again sufficient to pass
to the limit.

Remark 3. Note that the coincidence of the discrete and the continuous H-limits
is not true for all the one-dimensional numerical schemes which can be associated
with the same function µ. Indeed, assume, in order to simplify, that yk − yk−1 = h,
for k = 1, . . . , p (with h = 1/p), xk = (yk + yk−1)/2, for k = 1, . . . , p, and that
the function µ takes constant values in (0, x1), . . . , (xk, xk+1), . . . , (xp, 1) which are
µr and µb in alternance. If we discretize the Dirichlet problem with this function µ
as the diffusion coefficient and the piecewise linear finite element scheme with nodes
located at the points (yk)k=0,...,p, we obtain an approximate solution which is exactly
the same as the one which is obtained by the same method (piecewise linear finite
element) and a constant value of µ as the diffusion coefficient, namely the arithmetic
average of µr and µb. Then, this approximate solution converges, as h −→ 0, towards
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Fig. 3. Case of the discrepancy between the H- and Hd-limits.

the solution of the Dirichlet problem whose diffusion is this arithmetic average of µr
and µb. However, the H-limit as h −→ 0 of the continuous operators is given by the
harmonic average of µr and µb.

However, in the case N > 1 and even in the isotropic case, the obtention of
the Hd-limit by passing to the limit for the weak � topology of L∞(Ω) is no longer
possible. Indeed, let us consider the sequence of admissible discretizations Dn of
Ω = (0, 1)×(0, 1), where the control volumes are some (k/n, (k+1)/n)×(l/n, (l+1)/n),
for integer values k and l between 0 and n−1 (see Figure 3). Assume that the function
µn is defined by the value µr > 0 on the vertical edges {k/n}× (l/n, (l+1)/n) and by
the value µb > 0 on the horizontal edges (k/n, (k+ 1)/n)× {l/n}. Then the function
µn ∈MDn

(α, β) (with α = min(µr, µb) and β = max(µr, µb)) corresponds to the first
two-dimensional example of section 2.4 (recall that the function µn is constant on
subsets which, in this case, are the squares of lengthside equal to 1/(n

√
2), tilted with

an angle of measure π/4 with respect to the grid. As seen in section 2, the H-limit
of (µn)n∈N is the field with constant value

√
µrµb. We then remark that for a given

f ∈ L2(Ω) the discrete values solutions of the finite volume scheme (11) are identical to
those obtained from (11), written in the case where Ω̃ = (0, 1/

√
µr)× (0, 1/

√
µb), the

grid is given by the subsets (k/(n
√
µr), (k+1)/(n

√
µr))× (l/(n

√
µb), (l+1)/(n

√
µb)),

µ = 1, and the right-hand side f̃ = f(·√µr, ·√µb). Thanks to Lemma 3 which states
the convergence of the finite volume scheme for µ = 1 we then get that uDn

converges
to u = ũ(·/√µr, ·/√µb) with ũ = FΩ̃(f̃ , 1), denoting here by FΩ̃ the function F
obtained when the Dirichlet problem is solved in the domain Ω̃. An easy change of
variable proves that u = F(f,M), where M is the constant field, the value of which
is the linear application defined by (1, 0)→ (µr, 0) and (0, 1)→ (0, µb). This field M ,
which is homogeneous anisotropic and differs from the H-limit of (µn)n∈N, is therefore
the Hd-limit of (Dn, µn)n∈N.

The physical reason for this discrepancy is the fact that in this example the
heterogeneous behavior and the grid are at the same scale: note that this occurs when
solving the coupled two-phase flow in porous media problem using a coupled scheme
on the same grid (see section 5). On the contrary, in the cases where it is possible to
let the size of the mesh tend to zero faster than the size of the heterogeneities, the
obtained H- and Hd-limits are equal.

Remark 4. Similar results to Theorem 2 can be obtained within the finite element
framework, leading to the same distinction between the resulting Hd-limit and the H-
limit (see Remark 3 for an example in the one-dimensional case).

Remark 5. Exactly in the same manner as for the continuous case, it is possible
to show the local character of Hd-convergence in the sense of Theorem 2 and the
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independence of the Hd-limit on the boundary conditions (see [16] for such results
within the finite difference setting).

4.2. Existence of limit operators. The first step leading to the proof of Theo-
rem 2 is given by the results of the following lemma, which are similar to the continuous
ones (see [14], [19]).

Lemma 4. Let Ω be an open bounded polygonal subset of R
N , with N ∈ N∗. Let

two real numbers α and β be such that 0 < α ≤ β. Let (Dn, µn)n∈N be a sequence such
that, for all n ∈ N, Dn is an admissible discretization of Ω in the sense of Definition 1,
and µn ∈MDn(α, β). We assume that limn−→∞ size(Dn) = 0.

Then there exists a subsequence of (Dn, µn)n∈N, again denoted (Dn, µn)n∈N, that
verifies that there exists an invertible continuous linear application F : H−1(Ω) −→
H1

0 (Ω) and a continuous linear application G : H−1(Ω) −→ (L2(Ω))N such that
• for all f ∈L2(Ω), the sequence (FDn(f,µn))n∈N converges to F (f) in L2(Ω) and
the sequence (GDnFDn(f, µn))n∈N weakly converges to ∇F (f) in (L2(Ω))N ;

• for all f ∈ L2(Ω), the sequence (µnGDn
FDn(f, µn))n∈N weakly converges to

G(f) in (L2(Ω))N ;
• the following relation holds:∫

Ω

G(b)(x) · ∇v̄(x)dx = b(v̄) ∀v̄ ∈ H1
0 (Ω), ∀b ∈ H−1(Ω).(16)

Proof. Let us assume the hypotheses of the lemma. Let f ∈ L2(Ω). Thanks to
(13), for all n ∈ N, denoting un = FDn

(f, µn), we have

α|un|Dn ≤ diam(Ω) ‖f‖L2(Ω).(17)

This shows that the hypotheses of Lemma 2 are satisfied. Therefore, there exists a
subsequence of (Dn, µn)n∈N, again denoted (Dn, µn)n∈N, and u ∈ H1

0 (Ω) such that the
sequence (FDn(f, µn))n∈N converges to u in L2(Ω). We again denote un = FDn(f, µn).

Let us introduce the functions w̄ ∈ H1
0 (Ω) defined by w̄ = F(f, 1) and, for all

n ∈ N, wn = FDn
(f, 1). For n ∈ N, we deduce from (12) that∫

Ω

f(x)un(x)dx = [un, un]Dn,µn,1 ≥ α (|un|Dn
)
2

(18)

and, thanks to the Cauchy–Schwarz inequality,∫
Ω

f(x)un(x)dx = [wn, un]Dn,1,1 ≤ |wn|Dn
|un|Dn

.(19)

Therefore (18) and (19) yield

α|un|Dn ≤ |wn|Dn .

Passing to the limit on n −→∞ in the above equation gives, using (14),

α lim sup
n−→∞

|un|Dn ≤ ‖∇w̄‖(L2(Ω))N ,

which gives, since ‖f‖H−1(Ω) = ‖∇w̄‖(L2(Ω))N ,

α lim sup
n−→∞

|un|Dn ≤ ‖f‖H−1(Ω).(20)
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Thanks to (9), we get

α‖u‖H1
0 (Ω) ≤ ‖f‖H−1(Ω).(21)

Turning to the study of the sequence gn = µnGDnFDn(f, µn) for n ∈ N, we have (in
a similar way as the case µn = 1 handled in Lemma 2),(‖gn‖(L2(Ω))N

)2 ≤ Nβ2 (|un|Dn
)
2
,

which yields, using (20),

lim sup
n−→∞

‖gn‖(L2(Ω))N ≤
√
Nβ

α
‖f‖H−1(Ω).(22)

Thus there exists a subsequence of (Dn, µn)n∈N, again denoted (Dn, µn)n∈N and ḡ ∈
(L2(Ω))N , such that gn = µnGDn

FDn
(f, µn) converges weakly to ḡ as n −→ ∞ in

(L2(Ω))N . Passing to the limit in (22), we then get

‖ḡ‖(L2(Ω))N ≤
√
Nβ

α
‖f‖H−1(Ω).(23)

We then consider a sequence (fm)m∈N of functions of L2(Ω) which is dense in H−1(Ω).
We can then extract a subsequence (using the classical diagonal process), again
denoted (Dn, µn)n∈N, such that for all m ∈ N the sequence (F (fm,Dn, µn))n∈N

converges to some function denoted F (fm) ∈ H1
0 (Ω) in L2(Ω) and the sequence

(µnGDn
F (fm,Dn, µn))n∈N converges to some function denoted G(fm) ∈ (L2(Ω)N )

weakly in (L2(Ω)N ). The linear functions F (resp., G) can then be prolonged by
continuity, thanks to (21) (resp., (23)) to a continuous linear function, again denoted
F : H−1(Ω) −→ H1

0 (Ω) (resp., G : H−1(Ω) −→ (L2(Ω))N ).
Let us now prove (16). Let f ∈ L2(Ω). We set u = F (f) and ḡ = G(f). Let

ϕ ∈ C∞c (Ω). For a given n ∈ N, we denote Dn = (Tn, En,Pn), un = FDn(f, µn).
Omitting the indexes n in the discrete expressions, we set, for all K ∈ T and σ ∈ EK ,

RK,σ =
1

dK,σ
(ϕ(yσ)− ϕ(xK))− N

mσdK,σ

∫
DK,σ

∇ϕ(x) · nK,σdx.

Then there exists Cϕ > 0 which depends only on ϕ such that |RK,σ| ≤ size(Dn)Cϕ.
Setting

Tn =
∑
K∈Tn

∑
σ∈EK

µστK,σ(uσ − uK)(ϕ(yσ)− ϕ(xK)),

we then get limn−→∞
∣∣Tn − ∫Ω gn(x) · ∇ϕ(x)dx∣∣ = 0 which yields

lim
n−→∞Tn =

∫
Ω

ḡ(x) · ∇ϕ(x)dx.(24)

Since, using (11), we have

Tn =
∑
K∈Tn

∫
K

f(x)dx ϕ(xK),(25)
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we also get limn−→∞ Tn =
∫
Ω
f(x)ϕ(x)dx. We thus get∫

Ω

ḡ(x) · ∇ϕ(x)dx =

∫
Ω

f(x)ϕ(x)dx ∀ϕ ∈ C∞c (Ω).(26)

Using (26) and the density of C∞c (Ω) in H1
0 (Ω), we conclude (16).

Let us show that F is invertible. We consider the bilinear form a :
(
H−1(Ω)

)2 −→
R defined by

∀(b, b′) ∈ (H−1(Ω)
)2
, a(b, b′) = b(F (b′)).

Let again f ∈ L2(Ω). We introduce the functions u, w̄ ∈ H1
0 (Ω) defined by u = F (f),

w̄ = F(f, 1), and, for all n ∈ N, un = FDn(f, µn) and wn = FDn(f, 1). We have

a(f, f) =

∫
Ω

f(x)F (f)(x)dx = lim
n−→∞

∫
Ω

f(x)un(x)dx.

We can write, on the one hand,∫
Ω

f(x)un(x)dx = [un, un]Dn,µn,1,

which yields ∫
Ω

f(x)un(x)dx ≥ α (|un|Dn
)
2
.(27)

We have, on the other hand,∫
Ω

f(x)wn(x)dx = [un, wn]Dn,µn,1

and ∫
Ω

f(x)wn(x)dx = (|wn|Dn)
2
.

This yields

(|wn|Dn
)
2
= [un, wn]Dn,µn,1.

Since

([un, wn]Dn,µn,1)
2 ≤ [un, un]Dn,µn,1 [wn, wn]Dn,µn,1

≤ β2[un, un]Dn,1,1 [wn, wn]Dn,1,1,

we therefore get

(|wn|Dn)
2 ≤ β|un|Dn |wn|Dn .(28)

From (27) and (28) we deduce∫
Ω

f(x)un(x)dx ≥ α

β2
(|wn|Dn)

2
.(29)
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Letting n −→∞ in (29) gives

a(f, f) ≥ α

β2

∫
Ω

(∇w̄(x))2dx,(30)

which shows that

a(f, f) ≥ α

β2

(‖f‖H−1(Ω)

)2
.(31)

By continuity of a, this property is available on H−1(Ω), which shows the coercivity
of a. Let v̄ ∈ H1

0 (Ω). The problem, find b ∈ H−1(Ω) such that for all b′ ∈ H−1(Ω),
a(b′, b) = b′(v̄), has a unique solution b, thanks to Lax–Milgram’s theorem. It then
satisfies F (b) = v̄.

Remark 6. The previous lemma could be stated using sequences (FDn(f, µn))n∈N

and (GDnFDn(f, µn))n∈N with f ∈ H−1(Ω) (see [6] for the definition of the finite
volume scheme in this case).

4.3. Proof of Theorem 2. We assume the hypotheses of Theorem 2, which are
the same as those of Lemma 4. Therefore, let (Dn, µn)n∈N denote a subsequence of
(Dn, µn)n∈N, and let F : H−1(Ω) −→ H1

0 (Ω) and G : H−1(Ω) −→ (L2(Ω)N ) denote
the linear continuous functions verifying the conclusions of Lemma 4. It suffices
now to prove that there exists a function M : Ω −→ L(RN ,RN ) such that for a.e.
x ∈ Ω, G(b)(x) = M(x)∇F (b)(x), for all b ∈ H−1(Ω), and for all (ξ, χ) ∈ (RN )2,
α|ξ|2 ≤ M(x)ξ · ξ ≤ β|ξ|2, and M(x)ξ · χ = ξ · M(x)χ. Let f, g ∈ L2(Ω). We
set u = F (f) and v̄ = F (g). Let ϕ ∈ C∞c (Ω). For a given n ∈ N, we denote
Dn = (Tn, En,Pn), un = FDn(f, µn), vn = FDn(g, µn), and we consider the expression

An = [un, vn]Dn,µn,ϕ.(32)

We get An = Bn − Cn, where Bn and Cn are defined by (omitting indexes n in the
right-hand sides)

Bn =
∑
K∈T

∑
σ∈EK

µστK,σ(uσ − uK)(ϕ(yσ)vσ − ϕ(xK)vK)

and

Cn =
∑
K∈T

∑
σ∈EK

vσµστK,σ(uσ − uK)(ϕ(yσ)− ϕ(xK)).

Since Bn =
∑
K∈T

∫
K
f(x)dx ϕ(xK)vK , we then get

lim
n−→∞Bn =

∫
Ω

f(x)ϕ(x)v̄(x)dx.

Let ṽ ∈ C∞c (Ω) be a function which is meant to tend to v̄ in H1
0 (Ω). We set

B̃n =
∑
K∈T

∑
σ∈EK

µστK,σ(uσ − uK)(ϕ(yσ)ṽ(yσ)− ϕ(xK)ṽ(xK))

and we again have B̃n =
∑
K∈T

∫
K
f(x)dx ϕ(xK)ṽ(xK), which yields

lim
n−→∞ B̃n =

∫
Ω

f(x)ϕ(x)ṽ(x)dx.
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Using (24), we have

lim
n−→∞ B̃n =

∫
Ω

G(f)(x) · ∇(ϕ(x)ṽ(x))dx.

We thus get ∫
Ω

f(x)ϕ(x)ṽ(x)dx =

∫
Ω

G(f)(x) · ∇(ϕ(x)ṽ(x))dx.(33)

In (33), we let ṽ −→ v̄ in H1
0 (Ω). It gives

∫
Ω

f(x)ϕ(x)v̄(x)dx =

∫
Ω

G(f)(x) · ∇(ϕ(x)v̄(x))dx,(34)

and therefore

lim
n−→∞Bn =

∫
Ω

G(f)(x) · ∇(ϕ(x)v̄(x))dx.(35)

We now study Cn. Let v̂n be the function defined by

v̂n(x) = vσ ∀x ∈ DK,σ, ∀K ∈ T , ∀σ ∈ EK .(36)

Since |vn|Dn remains bounded, it is easy to see that v̂n − vn converges to 0 in L2(Ω).
We set

Ĉn =

∫
Ω

v̂n(x) µnGDn
FDn

(f, µn)(x) · ∇ϕ(x)dx.

We easily get, thanks to the Cauchy–Schwarz inequality,

|Cn − Ĉn| ≤ C(ϕ, β)size(Dn) |un|Dn
‖v̂n‖L2(Ω),

which shows that

lim
n−→∞Cn = lim

n−→∞ Ĉn =

∫
Ω

v̄(x) G(f)(x) · ∇ϕ(x)dx.(37)

We thus get, gathering (35) and (37), recalling that v̄ = F (g),

lim
n−→∞An =

∫
Ω

ϕ(x) G(f)(x) · ∇F (g)(x)dx.(38)

Note that the preceding proof ((32)–(38)) also gives a discrete version of a compen-
sated compactness lemma; see Remark 7 below. We can now exchange the roles of f
and g in (38). We thus get

lim
n−→∞An =

∫
Ω

ϕ(x) G(g)(x) · ∇F (f)(x)dx.(39)

This yields∫
Ω

ϕ(x)G(f)(x) · ∇F (g)(x)dx =

∫
Ω

ϕ(x)G(g)(x) · ∇F (f)(x)dx.(40)
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In order to prove the existence of M as it is given in Theorem 2, we now proceed
exactly as in the continuous setting. Since (40) is true for all ϕ ∈ C∞c (Ω), we get

G(f)(x) · ∇F (g)(x) = G(g)(x) · ∇F (f)(x), for a.e. x ∈ Ω.(41)

Since (41) is true for all f and g in L2(Ω), by continuity of F and G, we get

G(b)(x) · ∇F (b′)(x) = G(b′)(x) · ∇F (b)(x)
∀b, b′ ∈ H−1(Ω), for a.e. x ∈ Ω.

(42)

Since F is invertible, we can choose some bi ∈ H−1(Ω) such that, in an open set ω such
that ω ⊂ Ω, F (bi)(x) = x ·ei and then ∇F (bi)(x) = ei (where ei is the ith unit vector
of R

N ), for i = 1, . . . , N . Thus, for a.e. x ∈ ω, we can define M(x) ∈ L(RN ,RN ) by
M�(x)ei = G(bi)(x), for i = 1, . . . , N , where M� is the adjoint operator of M . We
thus get

G(b)(x) =M(x)∇F (b)(x) ∀b ∈ H−1(Ω) for a.e. x ∈ ω.
Taking b = bi and b′ = bj in (42) proves that M(x) is symmetric in ω. Since ω is
arbitrary, we then obtain M a.e. in Ω such that

G(b)(x) =M(x)∇F (b)(x) ∀b ∈ H−1(Ω) for a.e. x ∈ Ω.(43)

The uniqueness of M is a direct consequence of the invertibility of F . We now prove
that M ∈ M(α, β,Ω). Letting f = g in (32), and taking ϕ ≥ 0, we get, using (38),
that

lim
n−→∞[un, un]Dn,µn,ϕ =

∫
Ω

ϕ(x)M(x)∇u(x) · ∇u(x)dx.

Since

lim
n−→∞[un, un]Dn,µn,ϕ ≥ α lim inf

n−→∞ [un, un]Dn,1,ϕ

≥ α
∫

Ω

ϕ(x)(∇u(x))2dx,(44)

we get, for a.e. x ∈ Ω, M(x)∇F (f)(x) · ∇F (f)(x) ≥ α(∇F (f)(x))2. By density
and invertibility of F , since f can be arbitrarily chosen, this proves that, for a.e.
x ∈ Ω and for all ξ ∈ R

N , M(x)ξ · ξ ≥ α(ξ)2. Let ϕ ∈ C∞c (Ω,R+), and let (f, g) ∈
(L2(Ω))N , u = F (f), and w̄ = F(f, 1). For n ∈ N, we define un = FDn(f, µn) and
wn = FDn(g, 1). We define Dn by

Dn = [un, wn]Dn,µn,ϕ.(45)

We study Dn in the same manner as An. Since wn converges to w̄ in L2(Ω), we get

lim
n−→∞Dn =

∫
Ω

ϕ(x)M(x)∇u(x).∇w̄(x)dx.

On the other hand, we have

(Dn)
2 ≤ [un, un]Dn,µn,ϕ [wn, wn]Dn,µn,ϕ,(46)

and therefore

(Dn)
2 ≤ β [un, un]Dn,µn,ϕ [wn, wn]Dn,1,ϕ.(47)
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We thus get

lim
n−→∞(Dn)

2 ≤ β
∫

Ω

ϕ(x)M(x)∇u(x).∇u(x)dx
∫

Ω

ϕ(x)(∇w̄(x))2dx,

which gives (∫
Ω

ϕ(x)M(x)∇u(x).∇w̄(x)dx

)2

≤ β
∫

Ω

ϕ(x)M(x)∇u(x).∇u(x)dx
∫

Ω

ϕ(x)(∇w̄(x))2dx.

(48)

Since g can be arbitrarily chosen, it is therefore possible to let w̄ −→ u (in H1
0 (Ω)) in

(48). We thus get∫
Ω

ϕ(x)M(x)∇u(x).∇u(x)dx ≤ β
∫

Ω

ϕ(x)(∇u(x))2dx,(49)

which yields, for a.e. x ∈ Ω, M(x)∇u(x) · ∇u(x) ≤ β(∇u(x))2. By density and
invertibility of F , since f can be arbitrarily chosen, we get that, for a.e. x ∈ Ω and
for all ξ ∈ R

N , M(x)ξ · ξ ≤ βξ2.
This concludes the proof of Theorem 2.

Remark 7. Note that, as in the continuous setting (see [14] and [19]) and as in
the finite difference framework (see [12] and [16]), an important step of the above proof
(from (32) to (38)) consists of passing to the limit in some nonlinear terms. Indeed,
the same proof as above also yields the following discrete version of a compensated
compactness lemma (namely a discrete simplified “div-curl” lemma).

Lemma 5 (discrete compensated compactness lemma). Let Ω be an open bounded
polygonal subset of R

N , with N ∈ N∗. Let (Dn)n∈N be a sequence of admissible
discretizations of Ω in the sense of Definition 1 such that limn−→∞ size(Dn) = 0. Let
us suppose that for all n ∈ N there exists Wn, Xn ∈ VDn ⊂ (L2(Ω))N such that

• Wn −→W weakly in (L2(Ω))N as n −→∞;
• Xn −→ X weakly in (L2(Ω))N as n −→∞;
• divDn

Wn weakly converges in L
2(Ω) as n −→∞;

• there exists un ∈ HDn(Ω) such that Xn = GDnun.

Then limn−→∞〈Wn, Gn〉Dn
=
∫
Ω
W (x) ·X(x)dx.

In the preceding lemma, we denote, for any admissible discretization D of Ω in
the sense of Definition 1, by VD the subset of (L2(Ω))N of functions W verifying that
there exists a family of real values (wK,σ)K∈T ,σ∈EK such that

W (x) = NwK,σnK,σ, for a.e. x ∈ DK,σ ∀K ∈ T , ∀σ ∈ EK ,

and wK,σ + wL,σ = 0 for all σ = K|L.
For all W ∈ VD, we denote by divDW the piecewise constant function, whose

value in K ∈ T is
∑
σ∈EK mσwK,σ. We then get GDu ∈ VD for all u ∈ HD(Ω). For

(W,X) ∈ (VD)2, we then define 〈W,X〉D = 1
N

∫
Ω
W (x) · X(x)dx. It is interesting

to notice that, under the hypotheses of the lemma, neither the sequence (Wn)n∈N nor
(Xn)n∈N converges in (L2(Ω))N , except if the limit is 0. Note also that, contrary to
the classical compensated compactness lemma, the sequence which converges in the
distribution sense to W ·X is not (Wn ·Xn)n∈N, but it is

1
N (Wn ·Xn)n∈N.
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5. Application to a coupled problem.

5.1. A continuous system of equations. We now study the steady-state ver-
sion of the evolution problem (1). We thus get the following system:

−div(λ(s)∇u) = f̄
−div(γ(s)λ(s)∇u) = (f̄)+γ(s̄)− (f̄)−γ(s)

}
in Ω,(50)

with the boundary conditions

u = 0 on ∂Ω,
s = ŝ on {x ∈ ∂Ω,∇u(x) · n∂Ω(x) ≥ 0}.(51)

We refer to the introduction for the physical meaning of the quantities appearing in
(50) and (51). The following assumptions (denoted in the following Hypotheses (H))
are made on the data:

• the domain Ω is an open polygonal connected subset of R
N , with N = 2 or

N = 3;
• γ ∈ C0([0, 1], [0, 1]) is a nondecreasing Lipschitz continuous function with
γ(0) = 0 and γ(1) = 1, and Lipschitz constant Lγ > 0;

• there exists two real numbers α and β, with 0 < α ≤ β, such that λ ∈
C0([0, 1], [α, β]) (recall that λ is the “total mobility”) verifies that γλ (the
mobility of the phase 1, also denoted below k1) is nondecreasing and (1−γ)λ
(the mobility of the phase 2) is nonincreasing;

• f̄ ∈ L2(Ω) represents the rates at the wells;
• s̄ ∈ L∞(Ω) is such that 0 ≤ s̄ ≤ 1 a.e. in Ω;
• ŝ ∈ L∞(∂Ω) is such that 0 ≤ ŝ ≤ 1 a.e. in ∂Ω (for the N − 1-dimensional

Lebesgue measure).

5.2. Finite volume coupled scheme. Let us assume Hypotheses (H). Let D
be an admissible discretization of Ω in the sense of Definition 1. We set

f̄K =

∫
K

f̄(x)dx, s̄K =
1

mK

∫
K

s̄(x)dx ∀K ∈ T ,

ŝσ =
1

mσ

∫
σ

ŝ(x)dx ∀σ ∈ Eext.

(52)

We introduce the set LD(Ω, [0, 1]) of the functions of L∞(Ω) whose value on each
K ∈ T is a constant value belonging to [0, 1]. For all s ∈ LD(Ω, [0, 1]) and K ∈ T ,
we denote sK ∈ [0, 1] the constant value of s in K. For all u ∈ HD(Ω) and s ∈
LD(Ω, [0, 1]), the upstream evaluation of the saturation at the edges σ ∈ E is defined
by the functions sσ(u, s, ŝ) such that

sσ(u, s, ŝ) = sK if uK ≥ uL
sσ(u, s, ŝ) = sL if uK < uL

}
∀σ ∈ Eint, σ = K|L,

sσ(u, s, ŝ) = sK if uK ≥ 0
sσ(u, s, ŝ) = ŝσ if uK < 0

}
∀σ ∈ Eext, σ ∈ EK ,

(53)

and the functions µ(u, s, ŝ) ∈MD(α, β) by

µσ(u, s, ŝ) = λ(sσ(u, s, ŝ)) ∀σ ∈ E .(54)

We consider the following scheme (classical in petroleum engineering), a solution of
which is some (u, s) ∈ HD(Ω)× LD(Ω, [0, 1]):

u = F (f̄ ,D, µ(u, s, ŝ)),(55)
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−
∑
σ∈EK

γ(sσ(u, s, ŝ)) µσ(u, s, ŝ) τK,σ (uσ−uK) = γ(s̄K)(f̄K)+−γ(sK)(f̄K)− ∀K ∈ T .

(56)
Remark 8. Note that the function λ is also evaluated in (54) using an upstream

weighted scheme. This corresponds to the industrial scheme classically used in reser-
voir simulation, in which the mobility of each phase is upstream weighted. However, it
would be natural to use a centered approximation in (54) and use an upstream weighted
scheme for γ in the left-hand side of (56), but in such a case the convergence results
given in Theorem 4 should be weakened.

5.2.1. Existence of a solution to the coupled scheme.
Lemma 6. Let us assume Hypotheses (H). Let D be an admissible discretization

of Ω in the sense of Definition 1. Then there exists at least one solution (u, s) ∈
HD(Ω)× LD(Ω, [0, 1]) to scheme (52)–(56).

Proof. We prove the existence of a solution of (52)–(56) using Brouwer’s fixed
point theorem. For all K ∈ T , let us define f̄K , s̄K , ŝK by (52). We denote by

E = {u ∈ HD(Ω), α|u|D ≤ diam(Ω) ‖f̄‖L2(Ω)}.

We define the application A : E × LD(Ω, [0, 1]) −→ E × LD(Ω, [0, 1]) by A(u, s) =
(u′, s′), with u′ = F (f̄ ,D, µ(u, s, ŝ)), and for a real value k > 0 which will be chosen
later we define (s′K)K∈T by

s′K = sK +
k

mK

 ∑
σ∈EK

γ(sσ(u
′, s, ŝ)) µσ(u, s, ŝ) τK,σ (u′σ − u′K)

+ γ(s̄K)(f̄K)+ − γ(sK)(f̄K)−


∀K ∈ T .

(57)

Since λ ≥ α, one has, using (13), that u′ ∈ E. Then, in order to prove that A(u, s) ∈
E × LD(Ω, [0, 1]), we have only to prove that we can choose k > 0 such that, for all
K ∈ T , 0 ≤ s′K ≤ 1 (the operator A is then defined with this value of k). Using (13),
we get

|u′σ − u′K | ≤
diam(Ω) ‖f‖L2(Ω)

α inf
K∈T ,σ∈EK

τK,σ

1/2

∀K ∈ T ,∀σ ∈ EK .(58)

Denoting by Mdu the right-hand side of inequality (58), we then take k > 0 such that

k ≤ inf
K∈T

mK

Lγ

(
βMdu

∑
σ∈EK

τK,σ + |f̄K |
)(59)

(recall that Lγ is a Lipschitz constant for γ). With such a choice for k, we can now
prove that for all K ∈ T , s′K ∈ [0, 1]. Indeed, for K ∈ T , let us multiply (11) (in
which we set µ = µ(u, s, ŝ) and f = f̄) by γ(sK) and substract the result from (57).
We then get

s′K = sK +
k

mK

(∑
σ∈EK

TK,σ(sσ(u
′, s, ŝ)− sK) + TK(s̄K − sK)

)
,
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where we define the nonnegative values TK,σ and TK by TK,σ =
γ(sσ(u

′, s, ŝ))− γ(sK)

sσ(u′, s, ŝ)− sK µσ(u, s, ŝ)τK,σ(u
′
σ − u′K)+ if sσ(u

′, s, ŝ) �= sK ,
TK,σ = Lγµσ(u, s, ŝ)τK,σ(u

′
σ − u′K)+ if sσ(u

′, s, ŝ) = sK

and  TK =
γ(s̄K)− γ(sK)

s̄K − sK (f̄K)− if s̄K �= sK ,
TK = Lγ (f̄K)− if s̄K = sK .

Then, for k > 0 verifying (59), we have

0 ≤ 1− k

mK

(∑
σ∈EK

TK,σ + TK

)
,

which ensures that s′K is a convex combination of (sK)K∈T , (ŝσ)σ∈Eext, and (s̄K)K∈T .

This proves that 0 ≤ s′K ≤ 1.

Since A is continuous, we can apply Brouwer’s fixed point theorem. This gives
the existence of (u, s) ∈ E ×LD(Ω, [0, 1]) such that A(u, s) = (u, s), which proves the
existence of a solution to (52)–(56).

5.2.2. Convergence of the scheme. We have the following result, which ap-
pears to be very weak compared to the initial ambition of approximating problem
(50).

Theorem 3. Let us assume Hypotheses (H). Let (Dn)n∈N be a sequence such that,
for all n ∈ N, Dn is an admissible discretization of Ω in the sense of Definition 1,
and limn−→∞ size(Dn) = 0.

Then there exists a subsequence of (Dn)n∈N, again denoted (Dn)n∈N, such that,
denoting for all n ∈ N, (un, sn, µn) ∈ HDn(Ω)×LDn(Ω, [0, 1])×MDn(α, β) the solution
given by the scheme (52)–(56) with D = Dn, we have that

• the sequence (Dn, µn)n∈N Hd-converges in the sense of Theorem 2 to a mea-
surable function M ∈ M(α, β,Ω), which implies that un converges to ū =
F(f̄ ,M) in L2(Ω) as n −→∞;

• there exists a function s ∈ L∞(Ω), with 0 ≤ s ≤ 1 a.e. such that the sequence
(sn)n∈N converges to s for the weak � topology of L

∞(Ω) and there exists a
function γ̄ ∈ L∞(Ω), with 0 ≤ γ̄ ≤ 1 a.e. such that the sequence (γ(sn))n∈N

converges to γ̄ for the weak � topology of L∞(Ω);

The first item of the conclusion of Theorem 3 is a direct consequence of Theo-
rem 2. The second item is a consequence of the sequential weak � compactness of
the closed balls of L∞. Note that, since the way to handle the convergence of (56)
does not seem to be clear, no relation is given in the previous theorem between the
limit of (γ(sn)λ(sn))n∈N, which is a possibly degenerate diffusion if we consider the
second equation of (50) as an elliptic equation on u, and the Hd-limit of (Dn, µn)n∈N.
Such a relation can be found in the following particular case, where there exists a
nondecreasing Lipschitz continuous function k1 : [0, 1] −→ R, with k1(0) = 0 and
k1(1) > 0, and a real Λ ∈ (0, 1) such that
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γ(s) =
k1(s)

k1(s) + Λ(k1(1)− k1(s)) ,

λ(s) = k1(s) + Λ(k1(1)− k1(s)) ∀s ∈ [0, 1].

(60)

Note that we can take in this case β = k1(1) and α = Λk1(1). This particular case
corresponds to a mobility of the second phase defined by the function Λ (k1(1)−k1(.))
(this can be acceptable in some physical situations; recall that k1 is the mobility of
the first phase). We can then give the following result, which is more complete than
Theorem 3 (as previously mentioned, the following theorem does not give the limit
of the scheme as a solution of (50) since we could obtain such a result only within a
strong convergence property for (sn)n∈N).

Theorem 4. Let us assume Hypotheses (H) in the particular case (60). Let
(Dn)n∈N be a sequence such that, for all n ∈ N, Dn is an admissible discretization of
Ω in the sense of Definition 1, and limn−→∞ size(Dn) = 0.

Then there exists a subsequence of (Dn)n∈N, again denoted (Dn)n∈N, such that,
denoting for all n ∈ N, (un, sn, µn) ∈ HDn(Ω)× LDn(Ω, [0, 1])×MDn(Λk1(1), k1(1))
the solution given by the scheme (52)–(56) with D = Dn, we have, in addition to the
conclusions of Theorem 3, the existence of a function γ̄ ∈ L∞(Ω), with 0 ≤ γ̄ ≤ 1 a.e.
such that the sequence (γ(sn))n∈N converges to γ̄ for the weak � topology of L

∞(Ω)
and ∫

Ω

1

1− Λ
(M(x)− Λk1(1)IN )∇u(x) · ∇v̄(x)dx

=

∫
Ω

(γ(s̄(x))(f̄(x))+ − γ̄(x)(f̄(x))−) v̄(x)dx ∀v̄ ∈ H1
0 (Ω).

(61)

Note that k1(·) = λ(·)γ(·) = 1
1−Λ (λ(·)− Λk1(1)).

Proof. We have only to prove (61). Let us assume the hypotheses of Theorem 4.
Let ϕ ∈ C∞c (Ω). We define, for n ∈ N and omitting indexes n in the right-hand sides,

Dn =
∑
K∈T

∑
σ∈EK

µστK,σ(uσ − uK)(ϕ(yσ)− ϕ(xK))

and

En =
∑
K∈T

∑
σ∈EK

τK,σ(uσ − uK)(ϕ(yσ)− ϕ(xK)).

We have, using the results of Theorem 2,

lim
n−→∞Dn =

∫
Ω

M(x)∇u(x) · ∇ϕ(x)dx.

On the other hand, we have

lim
n−→∞En =

∫
Ω

∇u(x) · ∇ϕ(x)dx.

Since we assume the particular case (60), we get that∑
K∈T

∑
σ∈EK

γ(sσ(u, s, ŝ)) µσ(u, s, ŝ) τK,σ(uσ − uK)(ϕ(yσ)− ϕ(xK))

=
1

1− Λ
(Dn − Λk1(1)En).
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Using the fact that
∑
K∈T γ(sK)(f̄K)−ϕ(xK) −→ ∫

Ω
γ̄(x)(f̄(x))−ϕ(x)dx as n −→∞

(thanks to the L∞ weak � convergence of γ(sn) to γ̄), we thus get (61) with ϕ ∈
C∞c (Ω). Then we obtain (61) using a classical result of density.

6. Concluding remarks. The notion of Hd-convergence, developed in this pa-
per, gives a useful tool for studying the convergence of a discrete finite volume scheme,
used for the approximation of a two-phase flow in a porous medium. The proof of
the Hd-convergence theorem mimics that of the H-convergence theorem; however,
although the methods are similar, the limits can be different. This discrete tool is
therefore adapted to the case of a coupled discretization: the discrete pressure field
is the solution of a discrete scheme for an elliptic equation, the coefficients of which
result from another discrete scheme in the same grid.

This tool thus helps to get the limit problem of which the limit of the approximate
pressure is the solution. A weak limit also exists for the saturation since the discrete
values are bounded, as well as the continuous ones. Unfortunately, we are not able to
link the Hd-limit of the sequence of discrete total mobilities and a convenient limit of
the sequence of saturations.

Finally, the time-dependent problem must now be studied. Following [18] in which
the G-convergence notion is adapted to general parabolic time-dependent operators,
it is then possible to develop a discrete H-convergence in the case of a two-phase flow
in compressible porous media (see [8]).

REFERENCES

[1] H.W. Alt, S. Luckhaus, and A. Visintin, On nonstationary flow through porous media, Ann.
Mat. Pura. Appl. (4), 136 (1984), pp. 303–316.

[2] H.W. Alt and E. Di Benedetto, Nonsteady flow of water and oil through inhomogeneous
porous media, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 12 (1985), pp. 335–392.

[3] K. Aziz and A. Settari, Petroleum Reservoir Simulation, Applied Science, London, 1979.
[4] J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal.,

147 (1999), pp. 269–361.
[5] Z. Chen, Degenerate two-phase incompressible flow, J. Differential Equations, 171 (2001), pp.

203–232.
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Abstract. The Lifshitz–Slyozov–Wagner theory of coarsening (Ostwald ripening) describes
the late stages of the growth by diffusional mass transfer of the grains of a new phase from a
supersaturated solution. It results in a nonlinear transport equation with a nonlocal nonlinearity
for the volume distribution function of the grains. A time explicit finite volume numerical scheme
is proposed to solve this equation in self-similar variables and is shown to converge under a CFL
condition. Numerical simulations are also presented.
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1. Introduction. The theory of coarsening (Ostwald ripening) in alloys de-
scribes the late stages of the formation and growth of grains of a new phase from
a supersaturated solution. During these stages, no new grains can form, and the de-
termining process is the growth of the grains by diffusional mass exchange [13, 25].
More precisely, the grains of the new phase that are larger than some critical size
grow at the expense of smaller ones, the critical size varying in time as a function
of the degree of supersaturation. A mean-field approach for this process has been
formulated by Lifshitz and Slyozov [13] and Wagner [25]. For very dilute solutions at
large times, the variation in the degree of supersaturation may be neglected, and the
time evolution of the volume distribution function f of the grains is given by

∂tf + ∂x (V f) = 0, (t, x) ∈ R
2
+,(1.1)

with the constraint (total volume conservation)∫ ∞
0

x f(t, x) dx = const., t ∈ R+.(1.2)

Here x ∈ R+ := (0,+∞) is the volume of the grains, t ∈ R+ is the time variable,
and V = V(t, x) denotes the rate of growth of the grains, which is determined by
the mechanism of mass transfer between the grains, e.g., volume diffusion [13, 25] or
grain-boundary diffusion [22]. In general, one has V(t, x) = k(x)u(t)− q(x), where k
and q are computed from the modeling of the mechanism of mass transfer between
the grains [13, 22, 25]. For instance, in the model considered in [13], where the mass
transfer is driven by diffusion, V is explicitly computable and k(x) = 3 x1/3, q(x) = 3,
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x ∈ R+. The function u is then determined by requiring that the solution f to (1.1)
comply with (1.2), that is,

u(t)

∫ ∞
0

k(x) f(t, x) dx =

∫ ∞
0

q(x) f(t, x) dx, t ∈ R+.(1.3)

The main purpose of this work is to present a numerical scheme for solving (1.1)–
(1.2) and to study the properties and the convergence of this scheme when the func-
tions k and q determining the rate of growth of the grains V are given by

k(x) = xα and q(x) = 1, x ∈ R+,(1.4)

for some α ∈ (0, 1). (Recall that α = 1/3 is the case considered in [13].) We will not,
however, study (1.1)–(1.2) directly but will first perform a couple of transformations
to obtain an equivalent formulation more suitable for our purposes. As in [17], we
first introduce the number F (t, x) of grains of size larger than x at time t, that is,

F (t, x) =

∫ ∞
x

f(t, x′) dx′, (t, x) ∈ R
2
+.(1.5)

The constraint (1.2) then straightforwardly translates to the conservation of the L1-
norm of F (t) throughout time evolution, and F solves

∂tF + V ∂xF = 0,

∫ ∞
0

F (t, x) dx = const., (t, x) ∈ R
2
+.(1.6)

The second transformation we shall perform is related to the large time behavior of
solutions to (1.1)–(1.2) and is motivated by the following fact: formal asymptotic
expansions performed in [13] for α = 1/3 indicate that the pair (f, u) approaches a
self-similar form as time increases to infinity with the following scaling:

f(t, x) ∼ t−2 f∞
(x
t

)
and u(t) ∼ u∞ t−α.

Observing that convergence to a self-similar profile translates to convergence to a
steady state in self-similar variables, we introduce F (t, x) = (1 + t)−1 G (ln (1 + t), x/(1 + t)) ,

u(t) = (1 + t)−α v (ln (1 + t)) ,
(t, x) ∈ R

2
+.(1.7)

It then follows from (1.6) that (G, v) satisfies

∂tG+W ∂xG = G,

∫ ∞
0

G(t, x) = const.,(1.8)

where W(t, x) = xα v(t) − 1 − x, (t, x) ∈ R
2
+. In this paper, we will focus on this

alternative formulation of the Lifshitz–Slyozov–Wagner (LSW) equation (1.1)–(1.2).
We investigate the properties and the convergence of a numerical scheme for (1.8)
built upon an explicit Euler discretization with respect to the time variable t and a
finite volume discretization with respect to the volume variable x. Finally, numeri-
cal simulations will be presented, allowing us to check the numerical convergence of
the scheme and to compare the large time behavior of our approximation with that
expected for the solution to (1.8).
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Let us provide some comments about the behavior of our numerical scheme, re-
ferring to section 5 for a more complete discussion. Unlike what was conjectured by
Lifshitz and Slyozov [13], the large time behavior of solutions to (1.8) is complex and
very sensitive to perturbations. In particular, according to the analysis in [14, 20], the
behavior for large times of solutions to (1.8) with compactly supported initial data
changes drastically in the presence of a small diffusion (say, an additional term η ∂2

xG
on the right-hand side of (1.8) with η > 0). Since our numerical scheme is a classical
upwind method, a small numerical diffusion comes into play during the simulations.
It is then unlikely that our scheme reproduces the correct large time behavior for com-
pactly supported initial data, and this is exactly what we observe in the numerical
simulations. On the other hand, our scheme gives the correct limit for noncompactly
supported initial data. In order to capture the expected behavior for large times for
arbitrary initial data, it seems that a less diffusive numerical scheme is needed. One
possibility is to use a higher-order scheme, and this is the approach developed by
Carrillo and Goudon in [2], where a WENO (weight essentially nonoscillatory)-type
scheme is used to numerically compute the solutions to (1.8). (The main focus of
[2] is actually the variant of (1.8) described in Remark 1.1 below.) The numerical
simulations reported in [2] show that such a scheme gives the expected behavior for
intermediate times, providing better results than our scheme. Still, for larger times,
some numerical diffusion effects also come into play and drive the numerical solution
away from the theoretical predictions. Another approach relies on a nonlinear and
antidissipative scheme [5]. It has been recently considered by Lagoutière and seems
to successfully compute the correct behavior, even for large times [8]. Let us point
out, however, that no convergence proof seems to be available for these schemes.

Before describing our results more precisely, let us recall that the LSW equation
(1.1)–(1.2) has been the object of several studies recently; existence and uniqueness
of weak solutions have been proved in [10, 17, 19] for the initial value problem (1.1)–
(1.2) under various assumptions on the functions k and q determining the growth
rate of the grains V and the initial data. Also, the large time asymptotics have been
investigated in [1, 16] by analytical means and in [2, 6] by numerical simulations.

Remark 1.1. A different version of the LSW equation (originally introduced in
[13]), in which the constraint (1.2) is replaced by

u(t) +A

∫ ∞
0

x f(t, x) dx = Q, t ∈ R+,(1.9)

is actually the main concern of [2, 18]. In (1.9), Q is the total initial supersaturation
and A is a physical constant [13]. Still, the large time behavior of solutions to (1.1),
(1.9) is expected to be the same as that of (1.1), (1.2), provided that u(t) defined by
(1.9) converges to zero, which is true for initial data with a sufficiently wide support
[2, 18]. Let us also mention that the well-posedness of the initial value problem (1.1),
(1.9) has been studied in [3, 9, 17].

We now briefly outline the contents of the paper. In the next section, we introduce
the numerical approximation of (1.8) and state the convergence result, which we prove
in sections 3 and 4. Two points are worth mentioning here. First, it readily follows
from (1.5) and the nonnegativity of f that x �→ F (t, x) is nonincreasing and so is x �→
G(t, x) by (1.8). At the discrete level, our approximation ofG also enjoys this property.
Secondly, since the definition of v involves the inverse of a moment of G (recall the
definition (1.3) of u), an important step of the convergence proof is the derivation
of a uniform L∞-estimate on the approximations of v. For compactly supported
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initial data, such a bound has been obtained by estimating the time evolution of the
support of the solution [10, 17], but this method does not seem to work here because
of the (small) viscosity induced by the numerical approximation. We therefore use a
different approach and obtain a new L∞-bound in terms of the first moment of G.
Since the proof of this estimate is quite technical at the discrete level, we also provide
a (formal) proof for (1.1)–(1.2) in the appendix, hoping to clarify the underlying idea.
The final section (section 5) is devoted to some numerical simulations performed with
the numerical scheme presented in section 2.

2. Main results. Before describing our numerical scheme and stating a conver-
gence result, we first introduce some notation and assumptions and recall previous
results on (1.8). As already mentioned, we focus on the approximation of the initial
value problem

∂tG+ ∂x (W G) = S, (t, x) ∈ R
2
+,(2.1)

α v(t)

∫ ∞
0

xα−1 G(t, x) dx = G(t, 0), t ∈ R+,(2.2)

G(0, x) = G0(x), x ∈ R+,(2.3)

where α ∈ (0, 1) is fixed,

W(t, x) = xα v(t)− 1− x, (t, x) ∈ R
2
+,(2.4)

S(t, x) = α xα−1 v(t) G(t, x), (t, x) ∈ R
2
+,

and we assume that the initial datum G0 satisfies

G0 ∈W 1,1(R+)∩L1(R+, xdx) is a nonnegative and nonincreasing function
and G0 
≡ 0.

(2.5)

Here and below, the notation L1(R+, xdx) stands for the space of the Lebesgue mea-
surable real-valued functions on R+ which are integrable with respect to the measure
xdx.

Observe that (2.1) is nothing but ∂tG+W ∂xG = G written in conservative form.
Next, as a consequence of [10, Theorem 2] and Proposition A.1, there are at least a
pair of nonnegative functions (G, v) satisfying

G ∈ C([0, T ];L1(R+)) ∩ C1(0, T ;L1(R+,min{x, 1}dx)), v ∈ L∞(0, T )

for each T ∈ R+ and (2.1), (2.2), (2.3) withW given by (2.4). In addition, x �→ G(t, x)
is a nonincreasing function for each t ≥ 0 and∫ ∞

0

G(t, x) dx =

∫ ∞
0

G0(x) dx, t ≥ 0,(2.6)

the identity (2.6) being actually equivalent to (2.2). Furthermore, the uniqueness of
the pair (G, v) follows from [18] if G0 is compactly supported, and from [19] in the
general case. (Only the case α = 1/3 is actually considered in [18, 19], but their
proofs extend to α ∈ (0, 1).) Let us finally point out that the integrability assumption
G0 ∈ L1(R+;xdx) is not needed for the existence of a solution to (2.1), (2.2), (2.3). It
can probably be dispensed with herein also but allows us to avoid many technicalities
in the proof of the L∞-bound for v and its approximations.

Next, let h ∈ (0, 1) denote the mesh size and set

x−1/2 = 0, xi = xi−1/2 +
h

2
, xi+1/2 = xi−1/2 + h,(2.7)
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and Λhi = [xi−1/2, xi+1/2) for i ≥ 0. Since x ranges in the unbounded domain R+,
the numerical solution will actually be computed on the bounded domain [0, xIh+1/2),

where Ih is a large integer depending on h. We shall of course require that h Ih → +∞
as h→ 0. We then define the approximation G0,h of the initial datum G0 as usual by

G0,h =

Ih∑
i=0

G0,h
i 1Λh

i
with G0,h

i =
1

h

∫
Λh

i

G0(x) dx,(2.8)

and recall that

‖G0,h‖L1 ≤ ‖G0‖L1 and lim
h→0
‖G0,h −G0‖L1 = 0.(2.9)

Here and below, 1E denotes the characteristic function of the subset E of R+.
Finally, let T ∈ R+ be some final time and N the number of time iterations, and

set

∆t =
T

N
, tn = n ∆t, 0 ≤ n ≤ N.

The data h, ∆t, and Ih have to fulfill the following conditions: we first require
that the domain of computation approach [0,+∞) and the discrete initial data be
close enough to G0, that is,

lim
h→0

h Ih = +∞, ‖G0,h‖L1 ≥ 1

2
‖G0‖L1 .(2.10)

We also impose the following CFL condition:

10
∆t

h

(
h Ih

) ≤ 1.(2.11)

Observe that the above constraints are satisfied when Ih ∼ h−1−ϑ for some ϑ > 0
and when ∆t h−1−ϑ is sufficiently small.

Denoting by Gn,h
i an approximation of the mean value of G(tn) on Λhi for i ∈

{0, . . . , Ih}, and by vn an approximation of v(tn), the numerical scheme to be studied
in this paper reads

Gn+1,h
i = Gn,h

i − ∆t

h

(
Fn,hi+1/2 − Fn,hi−1/2

)
+∆t Sn,hi , 0 ≤ i ≤ Ih,(2.12)

Gn,h
−1 = Gn,h

Ih+1
= 0,(2.13)

h vn+1

 Ih∑
i=0

ahi Gn+1,h
i

 = Gn+1,h
0 ,(2.14)

for n ∈ {0, . . . , N − 1}, with initial data (G0,h
i )0≤i≤Ih defined in (2.8) and v0 given by

(2.14) with n = −1. In (2.12) the approximate flux Fn,hi+1/2 is given by

Fn,hi+1/2 = νn+(xi+1/2) G
n,h
i − νn−(xi+1/2) G

n,h
i+1, −1 ≤ i ≤ Ih,(2.15)

with

νn(x) = xα vn − 1− x, x ∈ R+,(2.16)
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νn+(x) = max {0, νn(x)}, νn−(x) = max {0,−νn(x)}, and the source term Sn,hi is given
by

Sn,hi = ahi vn Gn,h
i , with ahi =

α

h

∫
Λh

i

xα−1 dx, 0 ≤ i ≤ Ih.(2.17)

Remark 2.1. Note that the boundary condition Gn,h
Ih+1

= 0 in (2.13) is needed
only when νn(xIh+1/2) < 0.

Before stating some properties on the scheme (2.12)–(2.17), let us briefly com-
ment on its derivation, which relies obviously on an explicit Euler scheme for the time
variable and on a finite volume approach for the volume variable (see, e.g., [7, 12]).
Concerning the latter, the formula (2.15) comes from the approximation by a clas-
sical upwind scheme of the fluxes W(tn, xi+1/2) and W(tn, xi−1/2) arising from the

integration of (2.1) over the cell Λhi . As for (2.14), it is a discrete version of (2.2),
which guarantees the conservation of the L1-norm of Gh; see (2.20) below.

Under the conditions (2.10), (2.11) and if hIh is large enough, the solution (Gn,h
i )

to the scheme (2.12)–(2.17) enjoys properties similar to those of G, which we gather
in Proposition 2.2 below.

Proposition 2.2. There is a positive constant x depending only on α, G0, and
T such that, if

h Ih ≥ x(2.18)

and the conditions (2.10), (2.11) are fulfilled, the solution (Gn,h
i ) to the scheme (2.12)–

(2.17) satisfies the following:
• nonnegativity and monotonicity:

0 ≤ Gn,h
i+1 ≤ Gn,h

i ≤ Gn,h
0 , 0 ≤ i ≤ Ih − 1,(2.19)

• conservation of the total volume:

Ih∑
i=0

h Gn,h
i =

Ih∑
i=0

h G0,h
i(2.20)

for n ∈ {0, . . . , N}.
We next define the numerical approximation (Gh, vh) of (G, v) by

Gh(t, x) =

Ih∑
i=0

Gn,h
i 1Λh

i
(x), vh(t) = vn, x ∈ R+,(2.21)

for t ∈ [tn, tn+1) and n ∈ {0, . . . , N − 1}, and

Gh(T, x) =

Ih∑
i=0

GN,h
i 1Λh

i
(x), vh(T ) = vN , x ∈ R+.(2.22)

We may now state our main result.
Theorem 2.3. Assume that the conditions (2.10), (2.11), and (2.18) are fulfilled

and that G0 satisfies (2.5). Then

Gh −→ G in L∞(0, T ;L1(R+)),(2.23)

vh
∗
⇀ v in L∞(0, T ),(2.24)
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where (G, v) is the weak solution to (2.1), (2.2), (2.3) on [0, T ] with initial datum G0.
More precisely, (G, v) is a pair of nonnegative functions satisfying G ∈ C([0, T ];L1(R+)) ∩ L∞

(
0, T ;W 1,1(R+; (1 + x)dx)

)
,

v ∈ L∞(0, T )
(2.25)

and ∫ ∞
0

(G(t)−G0) ϕ dx =

∫ t

0

∫ ∞
0

(G(s)−W(s) ∂xG(s)) ϕ dxds(2.26)

for each t ∈ [0, T ] and ϕ ∈ L∞(R+), where v and W are given by (2.2) and (2.4),
respectively. Equivalently, G satisfies (2.6). In addition, x �→ G(t, x) is nonincreasing
for each t ∈ [0, T ].

Observe that each term in (2.26) makes sense since, by (2.25),W and ∂xG belong
to L∞((0, T )× R+, (1 + x)−1dtdx) and L∞(0, T ;L1(R+, (1 + x)dx)), respectively.

Let us finally explain the main steps of the proof of Theorem 2.3. Similarly to
the existence proof in [10], the proof of Theorem 2.3 relies on estimates of Gh and
its discrete gradient in L∞(0, T ;L1(R+, (1 + x)dx)) and on an L∞(0, T )-estimate on
vh. On the continuous equation (2.1), (2.2), (2.3), these bounds are obtained as
follows: uniform estimates for G in L1(R+) and L∞(R+) are straightforward conse-
quences of (2.6) and (2.1), respectively. The main new observation then is that an
upper bound on v can be obtained from (2.2) and the previous estimates in terms of
the L1(R+;xdx)-norm of G (Lemma 3.1). Inserting this estimate into (2.1) yields a
uniform estimate for G in L1(R+;xdx), and thus an upper bound for v in L∞(0, T )
(Lemma 3.2). The equation satisfied by ∂xG then reveals an L1(R+)-weak compact-
ness estimate on ∂xG, which, in turn, implies some time equicontinuity on G (see
Lemmas 3.5 and 3.7 and (4.12) below). From these estimates, one deduces that G lies
in compact subsets of C([0, T ];L1(R+)) and L1(0, T ;W 1,1(R+)). At the discrete level,
we perform the same steps for (Gh, vh), which is possible thanks to the conditions
(2.10), (2.11), and (2.18).

3. Properties of (Gn,h
i ). This section is devoted to the proof of Proposition 2.2

and the uniform bounds satisfied by (Gn,h
i ). The parameters h, ∆t, and Ih being fixed

such that (2.10), (2.11), and (2.18) are fulfilled, we omit the superscript h throughout
this section. Also, owing to (2.10), we may assume without loss of generality that
h ∈ (0, 1) and xI+1/2 ≥ 2.

Lemma 3.1. Let n ∈ {0, . . . , N} be such that

I∑
i=0

h Gn
i =

I∑
i=0

h G0
i and Gn

i ≥ 0 for i ∈ {0, . . . , I}.(3.1)

Then there is a positive constant C1 depending only on α and ‖G0‖L1 such that

0 ≤ vn ≤ C1 Gn
0

1 +

(
I∑

i=�+1

h xi−1/2 Gn
i

)1−α ,(3.2)

where & ∈ {0, . . . , I/2} denotes the integer such that 1 ∈ Λ�.
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Proof. We infer from (2.10), (3.1), and the Hölder inequality that

‖G0‖L1

2
≤

I∑
i=0

h G0
i =

I∑
i=0

h Gn
i

≤
(

I∑
i=0

h xα−1
i+1/2 Gn

i

)1/(2−α) ( I∑
i=0

h xi+1/2 Gn
i

)(1−α)/(2−α)

,

(‖G0‖L1

2

)2−α
≤
(
1

α

I∑
i=0

h ai G
n
i

) (
I∑
i=0

h xi+1/2 Gn
i

)1−α

.

Multiplying both sides of the above inequality by vn and using (2.14) yields

(‖G0‖L1

2

)2−α
vn ≤ Gn

0

α

(
I∑
i=0

h xi+1/2 Gn
i

)1−α

.

Since xi+1/2 ≤ x�+1/2 ≤ 2 for 0 ≤ i ≤ &, and xi+1/2 ≤ 2 xi−1/2 for i ≥ & + 1, we
deduce from (2.9) and (3.1) that

I∑
i=0

h xi+1/2 Gn
i ≤ 2

�∑
i=0

h Gn
i + 2

I∑
i=�+1

h xi−1/2 Gn
i

≤ 2 ‖G0‖L1 + 2

I∑
i=�+1

h xi−1/2 Gn
i .

Combining the previous two inequalities, we end up with

vn ≤
(

2

‖G0‖L1

)2−α
21−α Gn

0

α

‖G0‖1−αL1 +

(
I∑

i=�+1

h xi−1/2 Gn
i

)1−α
≤ C1 Gn

0

1 +

(
I∑

i=�+1

h xi−1/2 Gn
i

)1−α ,

whence (3.2).

Lemma 3.2. Let n ∈ {0, . . . , N − 1} be such that (3.1) holds true and

νn+(xI+1/2) = 0.(3.3)

Then

I∑
i=0

h Gn+1
i =

I∑
i=0

h G0
i ,(3.4)

0 ≤ Gn+1
i ≤ (1 + ∆t) sup

j
{Gn

j }, 0 ≤ i ≤ I,(3.5)
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I∑
i=�+1

h xi−1/2 Gn+1
i ≤

(
1 + C2

(
1 + sup

i
{Gn

i }
)

∆t

) I∑
i=�+1

h xi−1/2 Gn
i

+ C2

(
1 +

(
sup
i
{Gn

i }
)(1+α)/α

)
∆t,(3.6)

where C2 is a positive constant depending only on α and ‖G0‖L1 .

Proof. We first check (3.4). For n ∈ {0, . . . , N − 1}, it follows from (2.12), (2.13),
(2.14), and (2.15) that

I∑
i=0

hGn+1
i =

I∑
i=0

hGn
i −∆t

I+1∑
i=1

Fni−1/2 +∆t

I∑
i=0

Fni−1/2 + h∆t vn
I∑
i=0

ai G
n
i

=

I∑
i=0

hGn
i −∆tGn

0 −∆t νn+(xI+1/2) G
n
I + h∆t vn

I∑
i=0

ai G
n
i

=

I∑
i=0

hGn
i −∆t νn+(xI+1/2) G

n
I ,

whence (3.4) by (3.3). Before completing the proof of Lemma 3.2, we provide an
alternative formulation of (2.12). By (2.15) we have

Fni+1/2 − Fni−1/2 = νn+(xi+1/2) G
n
i − νn−(xi+1/2) G

n
i+1

− νn+(xi−1/2) G
n
i−1 + νn−(xi−1/2) G

n
i

= (νn(xi+1/2)− νn(xi−1/2)) G
n
i

+ νn−(xi+1/2) (G
n
i −Gn

i+1) + νn+(xi−1/2) (G
n
i −Gn

i−1).

Since

νn(xi−1/2)− νn(xi+1/2) + h ai v
n = h,(3.7)

we insert the above formula for Fni+1/2 − Fni−1/2 into (2.12) and obtain

Gn+1
i = (1 +∆t) Gn

i +
∆t

h
νn−(xi+1/2) (G

n
i+1 −Gn

i )

+
∆t

h
νn+(xi−1/2)(G

n
i−1 −Gn

i ).(3.8)

Now, since νn+(xI+1/2) = 0 by (3.3) and xI+1/2 ≥ 1, we have vn ≤ 2 x1−α
I+1/2, and

(2.11) ensures that

∣∣νn(xi+1/2)
∣∣ ≤ xαi+1/2 vn + 1 + xi+1/2 ≤ 2 xI+1/2 + 2 xI+1/2 ≤ h

2 ∆t
(3.9)

for 0 ≤ i ≤ I. Owing to (3.9) and the nonnegativity (3.1) of (∆t Gn
i ), it follows from

(3.8) that Gn+1
i lies above a convex combination of Gn

i−1, G
n
i , and Gn

i+1, which are

nonnegative by (3.1), whence the nonnegativity of Gn+1
i for 0 ≤ i ≤ I. Similarly, we

infer from (3.8) and (3.9) that Gn+1
i /(1 + ∆t) is a convex combination of Gn

i−1, G
n
i ,

and Gn
i+1, from which we deduce (3.5).
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We next turn to (3.6). We infer from (2.13), (3.1), and (3.8) that

I∑
i=�+1

h xi−1/2

(
Gn+1
i − (1 + ∆t) Gn

i

)
= ∆t

I+1∑
i=�+2

xi−3/2 νn−(xi−1/2) G
n
i +∆t

I−1∑
i=�

xi+1/2 νn+(xi+1/2) G
n
i

− ∆t

I∑
i=�+1

xi−1/2

(
νn−(xi+1/2) + νn+(xi−1/2)

)
Gn
i

≤ ∆t

I∑
i=�+1

(xi−3/2 − xi−1/2) ν
n
−(xi−1/2) G

n
i

+ ∆t

I∑
i=�+1

xi−1/2

(
νn−(xi−1/2)− νn−(xi+1/2)

)
Gn
i

+ ∆t

I∑
i=�+1

(xi+1/2 − xi−1/2) ν
n
+(xi−1/2) G

n
i

+ ∆t

I∑
i=�+1

xi+1/2

(
νn+(xi+1/2)− νn+(xi−1/2)

)
Gn
i

+ ∆t x�+1/2 νn+(x�+1/2) G
n
�

≤ ∆t

I∑
i=�+1

h νn(xi−1/2) G
n
i

+ ∆t

I∑
i=�+1

xi−1/2

(
νn(xi−1/2)− νn(xi+1/2)

)
− Gn

i

+ ∆t

I∑
i=�+1

xi+1/2

(
νn(xi+1/2)− νn(xi−1/2)

)
+

Gn
i

+ ∆t x�+1/2 νn+(x�+1/2) G
n
� ,

the last inequality being a consequence of the subadditivity of r �→ r+ and r �→ r−.
Since h ∈ (0, 1), the choice of & guarantees that x�+1/2 ≤ 2 and xi+1/2 ≤ 2 xi−1/2 for
i ≥ &+ 1. Consequently, for i ≥ &+ 1,

xi−1/2

(
νn(xi−1/2)− νn(xi+1/2)

)
− ≤ vn xi−1/2

(
xαi−1/2 − xαi+1/2

)
−

≤ vn xi−1/2 α h xα−1
i−1/2

≤ h vn xαi−1/2,

xi+1/2

(
νn(xi+1/2)− νn(xi−1/2)

)
+
≤ 2 h vn xαi−1/2,

and νn(xi−1/2) ≤ vn xαi−1/2, while

x�+1/2 νn+(x�+1/2) ≤ vn x1+α
�+1/2 ≤ 4 vn.
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Therefore, since Gn
i ≥ 0 by (3.1),

I∑
i=�+1

h xi−1/2

(
Gn+1
i − (1 + ∆t) Gn

i

)
≤ ∆t vn

I∑
i=�+1

h xαi−1/2 Gn
i + 3 ∆t vn

I∑
i=�+1

h xαi−1/2 Gn
i + 4 ∆t vn Gn

�

≤ 4 ∆t vn

(
I∑

i=�+1

h Gn
i

)1−α ( I∑
i=�+1

h xi−1/2 Gn
i

)α
+ 4 ∆t vnGn

�

by the Hölder inequality. Using (3.1) once more yields

I∑
i=�+1

h xi−1/2

(
Gn+1
i − (1 + ∆t) Gn

i

)
≤ 4 ∆t ‖G0‖1−αL1 vn

(
I∑

i=�+1

h xi−1/2 Gn
i

)α
+ 4 ∆t vn Gn

� .(3.10)

Owing to (3.1), we may use Lemma 3.1 and insert (3.2) into (3.10) to obtain,
with the help of the Young inequality,

I∑
i=�+1

h xi−1/2

(
Gn+1
i − (1 + ∆t) Gn

i

)
≤ C ′1 ∆t Gn

0

(
I∑

i=�+1

h xi−1/2 Gn
i

)α
+ C ′1 ∆t Gn

0

I∑
i=�+1

h xi−1/2 Gn
i

+ C ′1 ∆t Gn
0 sup

i
{Gn

i }+ C ′1 ∆t Gn
0 sup

i
{Gn

i }
(

I∑
i=�+1

h xi−1/2 Gn
i

)1−α

≤ 2 C ′1 ∆t sup
i
{Gn

i }
(

I∑
i=�+1

h xi−1/2 Gn
i + 1 + sup

i
{Gn

i }1/α
)
,

with C ′1 = 4C1 max {1, ‖G0‖1−αL1 }, whence (3.6), and the proof of Lemma 3.2 is com-
plete.

We now introduce

K1 := 2 C1 ‖G0‖L∞ eT , K2 := C2

(
1 + ‖G0‖L∞ eT

)
,

K3 := C2

(
1 + ‖G0‖(1+α)/α

L∞ e(1+α)T/α
)
,

x :=

{
K1 eK2T

(
1 +

∫ ∞
0

x G0(x) dx+K3 T

)}1/(1−α)

.

Proposition 3.3. Assume that (2.18) holds true. For n ∈ {0, . . . , N}, we have

I∑
i=0

h Gn
i =

I∑
i=0

h G0
i ,(3.11)
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0 ≤ Gn
i ≤ (1 + ∆t)n ‖G0‖L∞ , 0 ≤ i ≤ I,(3.12)

I∑
i=�+1

h xi−1/2 Gn
i ≤ (1 +K2 ∆t)

n
∫ ∞

0

x G0(x) dx

+ K3 ∆t

n−1∑
j=0

(1 +K2 ∆t)
j
,(3.13)

0 ≤ vn ≤ K1

(
1 +

I∑
i=�+1

h xi−1/2 Gn
i

)
≤ x1−α

 .(3.14)

Proof. We proceed by induction on n ∈ {0, . . . , N} and first consider the case
n = 0. The assertion (3.11) is obvious in that case, while (3.12) and (3.13) readily
follow from (2.5) and (2.8). We then infer from Lemma 3.1, (3.12), (3.13), and the
Young inequality that

v0 ≤ 2 C1 G0
0

(
1 +

I∑
i=�+1

h xi−1/2 G0
i

)

≤ K1

(
1 +

I∑
i=�+1

h xi−1/2 G0
i

)

≤ K1 eK2T

(
1 +

∫ ∞
0

x G0(x) dx+K3 T

)
= x1−α

 ,

and we have checked that Proposition 3.3 is valid for n = 0. Consider now n ∈
{0, . . . , N − 1} such that the assertions (3.11)–(3.14) hold true. By (2.18) and (3.14),
we have

νn(xI+1/2) ≤ (h I)α vn − (h I) ≤ (h I)α
(
x1−α
 − (h I)1−α

) ≤ 0,

and thus νn+(xI+1/2) = 0. This fact, together with (3.11) and (3.12), allows us to use
Lemma 3.2 to conclude that (3.4)–(3.6) hold true. Then, (3.11) for n + 1 follows at
once from (3.4), while (3.12) for n + 1 is a consequence of (3.5) and (3.12) for n. In
addition, inserting (3.12) into (3.6) yields

I∑
i=�+1

h xi−1/2 Gn+1
i ≤ (1 +K2 ∆t)

I∑
i=�+1

h xi−1/2 Gn
i +K3 ∆t.

Taking into account (3.13) for n, we deduce (3.13) for n + 1. A straightforward
consequence of (3.13) for n+ 1 is that

I∑
i=�+1

h xi−1/2 Gn+1
i ≤ eK2 T

(∫ ∞
0

x G0(x) dx+K3 T

)
.(3.15)

Since (3.11) and (3.12) hold true for n+1 by the previous analysis, we are in a position
to apply Lemma 3.1 and conclude that

vn+1 ≤ C1 Gn+1
0

1 +

(
I∑

i=�+1

h xi−1/2 Gn+1
i

)1−α .
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Using the Young inequality and (3.12) for n+ 1, we are led to

vn+1 ≤ C1 ‖G0‖L∞ eT

(
2 +

I∑
i=�+1

h xi−1/2 Gn+1
i

)

≤ K1

(
1 +

I∑
i=�+1

h xi−1/2 Gn+1
i

)
,

whence the first inequality in (3.14) for n + 1. Combining this last inequality with
(3.15) finally entails that vn+1 ≤ x1−α

 , and the proof of Proposition 3.3 is
complete.

Summarizing the outcome of Proposition 3.3, we have proved that (Gn
i ) satisfies

the following estimate.
Corollary 3.4. There is a positive constant C3 depending only on α, G0, and

T such that

sup
i
{Gn

i }+ vn +

I∑
i=0

h (1 + xi−1/2) Gn
i ≤ C3

for n ∈ {0, . . . , N}.
Recalling that the solution G(t) to (2.1), (2.2), (2.3) is nonincreasing with respect

to the variable x for each t ≥ 0, we now show that this property is also enjoyed by
(Gn

i ).
Lemma 3.5. For n ∈ {0, . . . , N},

Gn
i+1 ≤ Gn

i , 0 ≤ i ≤ I,(3.16)

I∑
i=0

∣∣Gn
i+1 −Gn

i

∣∣ ≤ ‖∂xG0‖L1 eT .(3.17)

Proof. For n ∈ {0, . . . , N} and i ∈ {0, . . . , I}, we set gni+1/2 = (Gn
i+1−Gn

i )/h and

use (3.8) to compute gni+1/2:

h gn+1
i+1/2 = (1 +∆t) Gn

i+1 +∆t νn−(xi+3/2) g
n
i+3/2 −∆t νn+(xi+1/2) g

n
i+1/2

− (1 + ∆t) Gn
i −∆t νn−(xi+1/2) g

n
i+1/2 +∆t νn+(xi−1/2) g

n
i−1/2,

gn+1
i+1/2 =

(
1 + ∆t− ∆t

h

∣∣νn(xi+1/2)
∣∣) gni+1/2

+
∆t

h
νn−(xi+3/2) g

n
i+3/2 +

∆t

h
νn+(xi−1/2) g

n
i−1/2.(3.18)

Since r �→ r+ and r �→ r− are subadditive, we realize that

νn−(xi+3/2) + νn+(xi−1/2)− |νn(xi + 1/2)|
= νn−(xi+3/2)− νn−(xi+1/2) + νn+(xi−1/2)− νn+(xi+1/2)

≤ (νn(xi+3/2)− νn(xi+1/2)
)
− +

(
νn(xi−1/2)− νn(xi+1/2)

)
+

≤ ((xαi+3/2 − xαi+1/2) v
n − h

)
− +

(
(xαi−1/2 − xαi+1/2) v

n + h
)
+
.

Then,

νn−(xi+3/2) + νn+(xi−1/2)− |νn(xi+1/2)| ≤ 2h.(3.19)
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Introducing

λn2,i =
∆t

(1 + 3 ∆t)h
νn−(xi+3/2), λn3,i =

∆t

(1 + 3 ∆t)h
νn+(xi−1/2),

λn1,i =
1

(1 + 3 ∆t)

(
1 + ∆t− ∆t

h
|νn(xi+1/2)|

)
, λn4,i = 1−

3∑
j=1

λnj,i,

we clearly have λn2,i ≥ 0, λn3,i ≥ 0, while (3.9) ensures that λn1,i ≥ 0. In addition, it
follows from (3.19) that

1− λn4,i ≤
1

(1 + 3 ∆t)

(
1 + ∆t+

∆t

h
2 h

)
≤ 1,

whence λn4,i ≥ 0. Consequently, λnj,i ∈ [0, 1] for 1 ≤ j ≤ 4, and gn+1
i+1/2/(1 + 3∆t) is a

convex combination of gni+1/2, g
n
i+3/2, g

n
i−1/2, and 0.

Now, let Ψ : R → [0,+∞) be a nonnegative and convex function with Ψ(0) = 0
and such that

Ψ(λ r) ≤ λγ Ψ(r), (r, λ) ∈ [0,+∞)× [1,+∞),(3.20)

for some γ ≥ 1. The convexity of Ψ then entails that

I∑
i=0

Ψ

(
gn+1
i+1/2

(1 + 3 ∆t)

)
≤

I∑
i=0

(
λn1,i Ψ(gni+1/2) + λn2,i Ψ(gni+3/2) + λn3,i Ψ(gni−1/2)

)
.

Since νn+(x−1/2) = 0, we have λn3,0 = 0 and

(1 + 3 ∆t)

I∑
i=0

Ψ

(
gn+1
i+1/2

(1 + 3 ∆t)

)
≤

I∑
i=0

(
1 + ∆t− ∆t

h
|νn(xi+1/2)|

)
Ψ(gni+1/2)

+

I∑
i=1

∆t

h
νn−(xi+1/2) Ψ(gni+1/2)

+

I−1∑
i=0

∆t

h
νn+(xi+1/2) Ψ(gni+1/2)

≤ (1 + ∆t)

I∑
i=0

Ψ(gni+1/2).

Owing to (3.20), we end up with

I∑
i=0

Ψ(gn+1
i+1/2) =

I∑
i=0

Ψ

(
(1 + 3 ∆t) gn+1

i+1/2

(1 + 3 ∆t)

)

≤ (1 + 3 ∆t)γ−1 (1 + ∆t)

I∑
i=0

Ψ(gni+1/2).

The discrete Gronwall lemma yields

I∑
i=0

Ψ(gni+1/2) ≤ e(3(γ−1)+1)T
I∑
i=0

Ψ(g0
i+1/2).(3.21)
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We first take Ψ(r) = r+, which obviously satisfies (3.20) with γ = 1. The assertion
(3.16) then readily follows from (3.21) since g0

i+1/2 ≤ 0 for i ∈ {0, . . . , I} by (2.5) and

(2.8). Similarly, Ψ(r) = |r| satisfies (3.20) with γ = 1, and (3.17) is a straightforward
consequence of (3.21), taking into account that

I∑
i=0

h
∣∣∣g0
i+1/2

∣∣∣ ≤ ‖∂xG0‖L1 ,

and the proof of Lemma 3.5 is complete.
Remark 3.6. Note that Ψ(r) = rp satisfies (3.20) for p ∈ [1,∞) with γ = p. In

that case, (3.21) simply means that the discrete Lp-norm of (gni+1/2) remains finite if
it is initially finite.

At this point, note that Proposition 2.2 is a consequence of Proposition 3.3 and
Lemma 3.5.

We end this section with the time equicontinuity of (Gn
i ).

Lemma 3.7. For each R ≥ 1 there is a constant C4(R) depending only on α, G0,
T , and R such that, for n ∈ {0, . . . , N − 1},

�R∑
i=0

h
∣∣Gn+1

i −Gn
i

∣∣ ≤ C4(R) ∆t,(3.22)

where &R denotes the integer such that R ∈ Λ�R .
Proof. By Corollary 3.4, Lemma 3.5, and (3.8), we have for n ∈ {0, . . . , N − 1}

and i ∈ {0, . . . , &R}∣∣Gn+1
i −Gn

i

∣∣ ≤ ∆t

{
C3 + xαi+1/2 vn

Gn
i −Gn

i+1

h
+ xαi−1/2 vn

Gn
i−1 −Gn

i

h

}
≤ ∆t

{
C3 + (1 +R)α C1

(
Gn
i −Gn

i+1

h
+

Gn
i−1 −Gn

i

h

)}
.

We sum up the above inequalities for i ∈ {0, . . . , &R} and use (3.17) to conclude that
(3.22) holds true.

4. Convergence. As a consequence of the analysis of the previous section, the
sets {Gh}h and {vh}h enjoy the following compactness properties.

Lemma 4.1. There are a subsequence of (Gh, vh) (not relabeled) and a pair of
nonnegative functions G ∈ C([0, T ];L1(R+)) and v ∈ L∞(0, T ) such that

Gh −→ G in L∞(0, T ;L1(R+)),(4.1)

vh
∗
⇀ v in L∞(0, T ),(4.2)

and G ∈ L∞(0, T ;L1(R+, xdx)) satisfies (2.6).
Proof. We introduce the auxiliary function

Gh(t, x) =
Ih∑
i=0

{
Gn,h
i +

(t− tn)

∆t

(
Gn+1,h
i −Gn,h

i

)}
1Λh

i
(x), (t, x) ∈ [tn, tn+1]×R+,

for n ∈ {0, . . . , N − 1}. Clearly, Gh ∈ C([0, T ];L1(R+)), and it readily follows from
Lemma 3.7 that

sup
[0,T ]

∥∥Gh(t)− Gh(t)∥∥
L1(0,R)

≤ C4(R) ∆t(4.3)

for any R ≥ 1.
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We next fix R ≥ 1. On the one hand, it follows from Corollary 3.4 and (3.17)
that (Gh) is bounded in L∞(0, T ;BV (0, R)). On the other hand, an easy computation
shows that (3.22) implies∥∥Gh(t)− Gh(s)∥∥

L1(0,R)
≤ C4(R) |t− s|

for (s, t) ∈ [0, T ] × [0, T ]. Since BV (0, R) is compactly embedded in L1(0, R), a
classical compactness result [21, Theorem 5] entails that

(Gh) is relatively compact in C([0, T ];L1(0, R)),(4.4)

and (4.4) is valid for every R ≥ 1. Also, by Corollary 3.4, there is a constant C
depending only on α, G0, and T such that∫ ∞

0

(
Gh(t, x) + Gh(t, x)) x dx ≤ C, t ∈ [0, T ].(4.5)

Thanks to (4.5), we may improve the compactness (4.4) of (Gh) and conclude that
(Gh) is relatively compact in C([0, T ];L1(R+)). Consequently, there are a subsequence
of (Gh) (not relabeled) and a function G in C([0, T ];L1(R+)) such that

Gh −→ G in C([0, T ];L1(R+)).

Recalling (4.3) and (4.5), we readily conclude that (4.1) holds true and that G is a
nonnegative function in L∞(0, T ;L1(R+, xdx)). Moreover, the convergence (4.1) of
(Gh), (2.9), and (3.11) imply that G satisfies (2.6). The convergence (4.2) and the
nonnegativity of v are then straightforward consequences of Corollary 3.4 and the
nonnegativity of vh.

We next show that (3.11), (3.21), and the integrability of ∂xG0 guarantee that G
enjoys the regularity properties claimed in Theorem 2.3.

Lemma 4.2. We have ∂xG ∈ L∞(0, T ;L1(R+, (1 + x)dx)), and t �→ G(t, x) is
nonincreasing for each t ≥ 0.

Proof. For ϕ ∈ L∞(R+), we define the discrete gradient Dhϕ by

Dhϕ(x) :=
ϕ(x+ h)− ϕ(x)

h
, x ∈ R+.

We first observe that

DhG
h(t, x) =

Ih∑
i=0

(
Gn,h
i+1 −Gn,h

i

h

)
1Λh

i
(x), x ∈ R+,(4.6)

for t ∈ [tn, tn+1) and n ∈ {1, . . . , N} and recall that Lemma 3.5 and in particular

(3.21) provide some information on ((Gn,h
i+1−Gn,h

i )/h). It turns out that the available

information allows us to show the weak compactness of (DhG
h) in L1((0, T ) × R+).

Indeed, we first notice that

sup
t∈[0,T ]

∫ ∞
0

(1 + x)
∣∣DhG

h(t, x)
∣∣ dx ≤ C(4.7)

for some constant C depending only on α, G0, and T . Indeed, (4.7) readily follows
from (3.11), (3.16), and (3.17), thanks to the identity

Ih∑
i=0

xi+1/2

∣∣Gn,h
i+1 −Gn,h

i

∣∣ = Ih∑
i=0

h Gn,h
i .
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We next recall that, since ∂xG0 ∈ L1(R+), a refined version of the de la Vallée–Poussin
theorem [11, Proposition I.1.1] ensures that there is a nonnegative and convex function
Ψ0 ∈ C1([0,+∞)) ∩W 2,∞

loc (R+) satisfying

lim
r→+∞

Ψ0(r)

r
= +∞,(4.8)

with Ψ0(0) = 0, Ψ′0(0) ≥ 0, Ψ′0 a concave function on [0,+∞), and such that
Ψ0(|∂xG0|) ∈ L1(R+). (See also, e.g., [4, p. 38] for the construction of such a function
Ψ0 without the requirement that Ψ′0 be concave.) Thanks to the concavity of Ψ′0
and the nonnegativity of Ψ′0(0), we have Ψ′0(λr) ≤ λ Ψ′0(r) for r ≥ 0 and λ ≥ 1.
Integrating this inequality yields

Ψ0(λr) ≤ λ2 Ψ0(r), (r, λ) ∈ [0,+∞)× [1,+∞).(4.9)

Since Ψ0 is nondecreasing, the function Ψ defined by Ψ(r) = Ψ0(|r|) is a nonnegative
and convex function with Ψ(0) = 0, which satisfies (3.20) with γ = 2 by (4.9).
Consequently, we infer from (3.21) and (4.6) that

sup
t∈[0,T ]

∫ ∞
0

Ψ0

(∣∣DhG
h(t, x)

∣∣) dx ≤ e4T

∫ ∞
0

Ψ0

(∣∣DhG
h(0, x)

∣∣) dx.(4.10)

However,

∫ ∞
0

Ψ0

(∣∣DhG
h(0, x)

∣∣) dx = h

Ih∑
i=0

Ψ0

(∣∣∣∣∣G
0,h
i+1 −G0,h

i

h

∣∣∣∣∣
)
,(4.11)

and it follows from (2.5), (2.8), (4.9), the convexity of Ψ0, and the Jensen inequality
that

Ψ0

(∣∣∣∣∣G
0,h
i+1 −G0,h

i

h

∣∣∣∣∣
)

≤ Ψ0

(
1

h

∫
Λh

i

|∂xG0| dx+
1

h

∫
Λh

i+1

|∂xG0| dx
)

≤ 2

{
Ψ0

(
1

h

∫
Λh

i

|∂xG0| dx
)

+Ψ0

(
1

h

∫
Λh

i+1

|∂xG0| dx
)}

≤ 2

h

{∫
Λh

i

Ψ0 (|∂xG0|) dx+

∫
Λh

i+1

Ψ0 (|∂xG0|) dx

}
,

whence

h

Ih∑
i=0

Ψ0

(∣∣∣∣∣G
0,h
i+1 −G0,h

i

h

∣∣∣∣∣
)
≤ 4 ‖∂xG0‖L1 .

Inserting this estimate into (4.11), we deduce from (4.10) that

sup
t∈[0,T ]

∫ ∞
0

Ψ0

(∣∣DhG
h(t, x)

∣∣) dx ≤ C(4.12)
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for some constant C depending on α, G0, and T . Owing to (4.7), (4.8), and (4.12),
we are in a position to apply the Dunford–Pettis theorem and conclude that (DhG

h)
is relatively weakly sequentially compact in L1((0, T )× R+). We may thus extract a
subsequence of (DhG

h) (not relabeled) such that

DhGh ⇀ g in L1((0, T )× R+)(4.13)

for some function g ∈ L1((0, T ) × R+). Now, it follows from (4.7) and (4.13) that
g belongs to L∞(0, T ;L1(R+, (1 + x)dx)), while a classical computation entails that
g = ∂xG in the sense of distributions. In addition, DhG

h ≤ 0 by (3.16), whence
∂xG ≤ 0, and the proof of Lemma 4.2 is complete.

We are now in a position to complete the proof of Theorem 2.3.
Proof of Theorem 2.3. We first observe that Lemmas 4.1 and 4.2 ensure that

(G, v) enjoy the regularity properties (2.25).
We next consider ϕ ∈ C∞0 ([0, T )× [0,+∞)) with supp ϕ ⊂ [0, τ)× [0, R) for some

τ ∈ [0, T ) and R ∈ R+ and set

ϕn,hi =
1

h ∆t

∫ tn+1

tn

∫
Λh

i

ϕ(t, x) dxdt

for i ≥ 0 and n ∈ {0, . . . , N − 1}. We also assume that h and ∆t are sufficiently
small so that τ ≤ tN−2 and R ≤ xIh−1/2, and we denote by &hR the integer such that

R ∈ Λh
�h
R

. In the following we denote by Cϕ any nonnegative constant depending only

on α, G0, T , and ϕ.
We multiply (3.8) by ϕn,hi and sum up the resulting identities to obtain

Y h
1 = Y h

2 ,

where

Y h
1 :=

N−1∑
n=0

Ih∑
i=0

h (Gn+1,h
i −Gn,h

i ) ϕn,hi

and

Y h
2 := h ∆t

N−1∑
n=0

Ih∑
i=0

Gn,h
i ϕn,hi +∆t

N−1∑
n=0

Ih∑
i=0

νn−(xi+1/2)
(
Gn,h
i+1 −Gn,h

i

)
ϕn,hi

+ ∆t

N−1∑
n=0

Ih∑
i=0

νn+(xi−1/2)
(
Gn,h
i−1 −Gn,h

i

)
ϕn,hi .

We next introduce

Zh1 := −
∫ T

0

∫ ∞
0

Gh(t, x) ∂tϕ(t, x) dtdx−
∫ ∞

0

G0(x) ϕ(0, x) dx,

Zh2 :=

∫ T

0

∫ ∞
0

Gh(t, x) ϕ(t, x) dtdx−
∫ T

0

Gh(t, 0) ϕ(t, 0) dt

+

∫ T

0

∫ ∞
0

Gh(t, x) ∂x
(Wh ϕ

)
(t, x) dxdt,



APPROXIMATION OF THE LSW EQUATION 581

where

Wh(t, x) = xα vh(t)− 1− x, (t, x) ∈ [0, T ]× R+.

On the one hand, since ϕ is compactly supported, it follows at once from (4.1) and
(4.2) that

lim
h,∆t→0

Zh1 = −
∫ T

0

∫ ∞
0

G(t, x) ∂tϕ(t, x) dtdx−
∫ ∞

0

G0(x) ϕ(0, x) dx,(4.14)

and

lim
h,∆t→0

(
Zh2 +

∫ T

0

Gh(t, 0) ϕ(t, 0) dt

)

=

∫ T

0

∫ ∞
0

G(t, x) (ϕ+ ∂x (W ϕ)) (t, x) dxdt.(4.15)

On the other hand, we have∫ T

0

(
Gh(t, 0)−G(t, 0)

)
ϕ(t, 0) dt

=

∫ T

0

Ih∑
i=0

(
Gh(t, xi−1/2)−Gh(t, xi+1/2)

)
ϕ(t, 0) dt+

∫ ∞
0

∂xG(t, x) ϕ(t, 0) dxdt

=

∫ T

0

∫ ∞
0

(
∂xG(t, x)−DhG

h(t, x)
)
ϕ(t, 0) dxdt.

We then infer from (4.13) that the right-hand side of the above identity converges to
zero as h→ 0. Inserting this result into (4.15), we end up with

lim
h,∆t→0

Zh2 =−
∫ T

0

G(t, 0) ϕ(t, 0) dt

+

∫ T

0

∫ ∞
0

G(t, x) (ϕ+ ∂x (W ϕ)) (t, x) dxdt.(4.16)

Having identified the limits of (Zh1 ) and (Zh2 ) as h→ 0, we next aim at comparing
the terms Y h

k and Zhk , k = 1, 2, in order to show that Zh1 − Zh2 converges to zero as
(h,∆t)→ 0.

We first compute (Zh1 − Y h
1 ). Since Gh is constant on [tn, tn+1) × Λhi for i ≥ 0

and n ∈ {0, . . . , N − 1}, we have

Zh1 = −
N−1∑
n=0

∫ ∞
0

Gh(tn, x)
(
ϕ(tn+1, x)− ϕ(tn, x)

)
dx−

∫ ∞
0

G0(x) ϕ(0, x) dx

=
N−1∑
n=0

∫ ∞
0

(
Gh(tn+1, x)−Gh(tn, x)

)
ϕ(tn+1, x) dx

+

∫ ∞
0

(
Gh(0, x)−G0(x)

)
ϕ(0, x) dx,
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from which we deduce that

∣∣Zh1 − Y h
1

∣∣ ≤ N−1∑
n=0

�hR∑
i=0

∣∣Gn+1,h
i −Gn,h

i

∣∣ ∫ tn+1

tn

∫
Λh

i

|∂tϕ| dxdt

+ ‖Gh(0, .)−G0(.)‖L1 ‖ϕ‖L∞

≤ T ‖∂tϕ‖L∞ sup
0≤n≤N−1

�hR∑
i=0

h
∣∣Gn+1,h

i −Gn,h
i

∣∣
+ ‖Gh(0, .)−G0(.)‖L1 ‖ϕ‖L∞ .

We now use (2.9) and Lemma 3.7 to conclude that∣∣Zh1 − Y h
1

∣∣ ≤ Cϕ ∆t.(4.17)

We next turn to (Zh2 − Y h
2 ). Since Wh(tn, xi+1/2) = νn(xi+1/2), G

h is constant

on [tn, tn+1)× Λhi for i ≥ 0, and n ∈ {0, . . . , N − 1}, we have

Zh2 =

N−1∑
n=0

Ih∑
i=0

Gn,h
i

∫ tn+1

tn

∫
Λh

i

ϕ(t, x) dxdt−
N−1∑
n=0

Gn
0

∫ tn+1

tn
ϕ(t, 0) dt

+
N−1∑
n=0

Ih∑
i=0

Gn,h
i

∫ tn+1

tn

(
νn(xi+1/2) ϕ(t, xi+1/2)− νn(xi−1/2) ϕ(t, xi−1/2)

)
dt.

Since νn(x) = νn+(x) − νn−(x) and νn(x−1/2) = −1, a discrete integration by parts
yields

Zh2 =

N−1∑
n=0

Ih∑
i=0

Gn,h
i

∫ tn+1

tn

∫
Λh

i

ϕ(t, x) dxdt

+

N−1∑
n=0

Ih∑
i=0

νn+(xi−1/2)
(
Gn,h
i−1 −Gn,h

i

) ∫ tn+1

tn
ϕ(t, xi−1/2) dt

+

N−1∑
n=0

Ih∑
i=0

νn−(xi+1/2)
(
Gn,h
i+1 −Gn,h

i

) ∫ tn+1

tn
ϕ(t, xi+1/2) dt.

It is then easy to compute (Zh2 − Y h
2 ) and deduce from Corollary 3.4 that

∣∣Zh2 − Y h
2

∣∣ ≤ h ∆t

N−1∑
n=0

�hR∑
i=0

νn+(xi−1/2)
∣∣Gn,h

i−1 −Gn,h
i

∣∣ ‖∂xϕ‖L∞

+ h ∆t

N−1∑
n=0

�hR∑
i=0

νn−(xi+1/2)
∣∣Gn,h

i+1 −Gn,h
i

∣∣ ‖∂xϕ‖L∞

≤ Cϕ h sup
0≤n≤N−1

Ih∑
i=0

∣∣Gn,h
i+1 −Gn,h

i

∣∣,
whence ∣∣Zh2 − Y h

2

∣∣ ≤ Cϕ h(4.18)

by (3.17). Since Y h
1 = Y h

2 , we infer from (4.17) and (4.18) that (Zh1 −Zh2 ) converges to
zero as (h,∆t) → 0. This fact, together with (4.14) and (4.16), immediately ensures
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that G satisfies∫ T

0

∫ ∞
0

G(t, x) ∂tϕ(t, x) dtdx+

∫ ∞
0

G0(x) ϕ(0, x) dx

= −
∫ T

0

G(t, 0) ϕ(t, 0) dt+

∫ T

0

∫ ∞
0

G(t, x) (ϕ+ ∂x (W ϕ)) (t, x) dxdt.

Owing to the regularity of G, standard approximation arguments allow us to conclude
from the previous identity that G actually satisfies (2.26).

To conclude the proof, it remains to show that v is given by (2.2). The easiest
way to see it is to take ϕ ≡ 1 in (2.26), from which (2.2) readily follows, since we
already know that G satisfies (2.6). We may, however, prove it directly by passing to
the limit in (2.14). Indeed, consider ϕ ∈ C(0, T ). Arguing as in the proof of (4.16),
we realize that

lim
(h,∆t)→0

∫ T

0

(
Gh(t, 0)−G(t, 0)

)
ϕ(t) dt = 0.(4.19)

We next claim that

lim
(h,∆t)→0

sup
t∈[0,T ]

∫ ∞
0

xα−1
∣∣Gh(t, x)−G(t, x)

∣∣ dx = 0.(4.20)

Indeed, it follows from Corollary 3.4 and (2.25) that, for δ ∈ (0, 1) and t ∈ [0, T ],∫ ∞
0

xα−1
∣∣Gh(t, x)−G(t, x)

∣∣ dx ≤ δα

α

(‖Gh(t)‖L∞ + ‖G(t)‖L∞
)

+ δα−1

∫ ∞
δ

∣∣Gh(t, x)−G(t, x)
∣∣ dx

≤ C δα + δα−1 sup
s∈[0,T ]

∥∥Gh(s)−G(s)
∥∥
L1

for some constant C depending only on α, G0, T , and G. Thanks to (4.1), we may
pass to the limit as (h,∆t)→ 0 and obtain

lim sup
(h,∆t)→0

sup
t∈[0,T ]

∫ ∞
0

xα−1
∣∣Gh(t, x)−G(t, x)

∣∣ dx ≤ C δα.

As δ ∈ (0, 1) is arbitrary, we let δ → 0 to obtain the claim (4.20).
Now, owing to (4.2) and (4.20), it is straightforward to check that

lim
(h,∆t)→0

∫ T

0

∫ ∞
0

xα−1
(
vh(t) Gh(t, x)− v(t) G(t, x)

)
ϕ(t) dxdt = 0.(4.21)

Thanks to (4.19) and (4.21), we may pass to the limit in (2.14) and conclude that v
is given by (2.2).

5. Numerical simulations. In this section, we perform numerical experiments
with α = 1/3, which corresponds to the original model of Lifshitz and Slyozov [13].
Our aim is twofold: first, to study the numerical accuracy of the scheme analyzed in
the previous sections and second, to see its behavior for large times.

We first check the order of the scheme with the following explicit stationary
solution to (2.1)–(2.2):

GLS(x) :=
6(

1− (2x)1/3
)5/3 (

1 + (x/4)1/3
)4/3 exp

(
− (2x)1/3

1− (2x)1/3

)
(5.1)
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Table 1
Relative errors in the L1- and L∞-norms with respect to the number of grid points Ih.

Number of points Number of iterations L1 Error L∞ Error

200 221 1.4 10−3 1.5 10−3

400 443 7.5 10−4 7.5 10−4

800 887 4.0 10−4 3.8 10−4

1600 1776 2.0 10−4 2.0 10−4

for x ∈ [0, 1/2] and GLS(x) = 0 if x ≥ 1/2. Since GLS is compactly supported in
[0, 1/2], we take hIh = 1 and T = 1. We compute the relative errors at T = 1 in
the L1- and L∞-norms for different values of Ih, which are reported in Table 1. As
expected, the scheme is first-order; that is, the error is proportional to h.

We next turn to the large time behavior and first recall that, for (2.1)–(2.3), it
is much more complex that originally conjectured by Lifshitz and Slyozov in [13]. As
already mentioned, formal asymptotic expansions performed in [13] indicate that the
pair (G, v) converges towards a stationary solution (G∞, v∞) to (2.1)–(2.3), and it
was further conjectured in [13] (and also in [25], but for a different choice of functions
k and q) that the asymptotic profile (G∞, v∞) does not depend on the shape of the
initial data G0 but only on ‖G0‖L1 . More precisely, the conjecture in [13] states that
G∞ = a GLS (defined by (5.1) above), with a = ‖G0‖L1 ‖GLS‖−1

L1 , while v∞ = VLS :=

3/22/3. It was, however, noticed in [13] that (2.1)–(2.2) actually has a continuum
(GV )V≥VLS

of stationary solutions (withGVLS
= GLS) satisfying ‖GV ‖L1 = ‖GLS‖L1 ,

but it was argued that GV is “unstable” for V > VLS . This conjecture turns out to
be false, as noticed on the ground of physical arguments in [6, 15] and confirmed
by numerical simulations performed in [6]. More precisely, if the initial datum is
compactly supported, the asymptotic profile (G∞, v∞) is determined by the way in
which the initial datum vanishes at the edge of its support. Mathematical proofs
of these facts have subsequently been supplied in [1] for α = 1 by means of the
Laplace transform. Though a convergence proof is still lacking in the general case
α ∈ (0, 1), necessary conditions for convergence are provided in [16] when α = 1/3.
In addition, it is established in [16] that, if one can prove that v(t) converges to some
V > VLS as t→ +∞, then G(t) converges towards GV as t→ +∞. Analogous results
for the variant (1.1), (1.9) have subsequently been obtained in [18], still in the case
α = 1/3. It is also shown in [1, 16, 18] that there are initial data for which convergence
towards a stationary solution does not hold at all. In addition, several numerical
simulations have been performed in [2] with an accurate numerical method. The
results in [2] provide further numerical evidence that the solutions to (2.1)–(2.3) with
compactly supported initial data do not converge to the asymptotic profile (GLS , VLS)
conjectured in [13] but to the one determined by the way the initial datum vanishes
at the edge of its support; that is, (GV , V ) for some V > VLS . Still, it is expected
that the Lifshitz–Slyozov conjecture is valid for noncompactly supported initial data
(with a “smooth” behavior for large x), and the aim of our first computations is to
provide some numerical evidence of this fact. We thus choose

G0(x) = ‖GLS‖L1 exp(−x), x ∈ R+,(5.2)

and report in Figure 1 the time evolution of v, G, and g = −∂xG obtained by the
scheme (2.12)–(2.17). For this simulation, we take the number of grid points Ih = 1000
with h Ih = 10, and the final time is T = 30. Noticing that v(0) < VLS , we see that
the function v first increases rapidly towards VLS and then stabilizes to this value
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Fig. 1. Evolution of (a) v(t), (b) G(t, x), and (c) g(t, x) corresponding to the initial datum (5.2).
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Fig. 2. (a) Evolution of v(t), (b) zoom on the small variations of v(t) corresponding to the
initial datum (5.3).

as conjectured. As for G, its support decreases with time towards [0, 1/2], and G(t)
converges to the stationary solution GLS with a good accuracy.

We next investigate what happens to a similar initial datum but with v(0) > VLS .
More precisely, we take

G0(x) = 100 ‖GLS‖L1 exp(−100x), x ∈ R+,(5.3)

and observe that G0 has the same L1-norm as (5.2) but decreases faster for large x.
In this case, we take Ih = 1000 with h Ih = 1, and the final time is T = 100. We
observe that the behavior of v differs from that in the previous simulation. Indeed,
v(0) being greater than VLS , v first decreases with time but to a smaller value than
VLS , as shown in Figure 2. It then increases again towards VLS and finally stabilizes
to VLS . The evolution of G in that case is presented in Figure 3, which shows the
convergence of G to GLS .

Finally, following the previous discussion on the large time behavior for compactly
supported initial data, one may wonder what the behavior of our scheme in that case
might be. We have performed numerical simulations with G0(x) = (1 − x)+ and
observe that, in this case also, the numerical solution converges to (GLS , VLS), which is
definitely not the behavior predicted by the theory [16]. It is, however, not surprising,
as the numerical scheme induces some small diffusive effects, and diffusion is known
to significantly modify large time behavior. More precisely, it is conjectured that
solutions to a diffusive perturbation of (2.1)–(2.3) with a time-dependent diffusion
coefficient vanishing for large times should converge to (GLS , VLS) (see [14, 20, 23]
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Fig. 3. Evolution of G(t, x) at time t = 0, 1.07, 3.57, 100 corresponding to the initial datum (5.3).

and the references therein). The initial datum G0(x) = (1− x)+ being quite far from
its expected limit, the diffusive effects of the scheme become not negligible after some
time and thus induce a difference between the behavior of the numerical and the exact
solutions. In an attempt to quantify the time of appearance of diffusive effects, it is
interesting to look at the behavior of the scheme if the initial datum is one of the
stationary solutions (GV , V ) for some V > VLS . Given V > VLS , this solution GV is
given by

GV (x) :=
6
(
1− (x/x0)

1/3
)−λ0(

1− (x/x−)1/3
)λ− (

1− (x/x+)1/3
)λ+

,(5.4)

where λ−, λ0, λ+ satisfy

λ∗ =
3x

2/3
∗

3x
2/3
∗ − V

for ∗ ∈ {−, 0,+}

and x
1/3
− , x

1/3
0 , x

1/3
+ are solutions of the following equation:

X3 − V X + 1 = 0 with x− ≤ 0 ≤ x0 ≤ x+.

We choose V = 2 and G0 = G2 with Ih = 1000, h Ih = 1, and T = 50. The numerical
simulations are reported in Figure 4, and we observe that, for t ∈ [0, 5], the computed
solution remains close to G2. After that time, diffusive effects come into play and
the numerical solution evolves towards (GLS , VLS). In order to capture the expected
behavior for compactly supported initial data for larger times, one thus needs a less
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diffusive numerical scheme such as the one used in [2], to which we refer for a more
complete discussion on that issue.

Appendix. An L∞-estimate for u. We consider a nonnegative function
f0 ∈ L1(R+, (1 + x2)dx), f0 
≡ 0, and denote by f a weak solution to (1.1)–(1.2) (in
the sense of [10, Theorem 2]) with initial datum f0, the functions k and q being still
given by (1.4) with α ∈ (0, 1), so that V(t, x) = xα u(t) − 1. We have the following
result.

Proposition A.1. There is a constant C depending only on α and f0 such that,
for each t ≥ 0,

u(t) +

∫ ∞
0

x2 f(t, x) dx ≤ C exp (Ct).(A.1)

Proof. For λ ∈ [0, 2] and t ≥ 0, we set

Mλ(t) :=

∫ ∞
0

xλ f(t, x) dx.

Consider t ∈ R+. Since V(t, 0) = −1, we infer from (1.1) that M0(t) ≤M0(0) and

dM2

dt
(t) ≤ 2

∫ ∞
0

x V(t, x) f(t, x) dx ≤ 2 u(t) M1+α(t).(A.2)

We next infer from the Hölder inequality and (1.2) that

M1+α(t) ≤M1(t)
1−α M2(t)

α ≤ C M2(t)
α,

0 < M1(0) = M1(t) ≤Mα(t)
1/(2−α) M2(t)

(1−α)/(2−α).

As a consequence of the first inequality and (A.2), we deduce that

dM2

dt
(t) ≤ C u(t) M2(t)

α,(A.3)

while the second inequality and (1.3) yield

u(t) =
M0(t)

Mα(t)
≤ M0(0)

M1(0)2−α
M2(t)

1−α.(A.4)
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Combining (A.3) and (A.4), we end up with

dM2

dt
(t) ≤ C M2(t)

and use the Gronwall lemma to conclude that M2(t) ≤ C exp (Ct) for t ≥ 0. A similar
bound for u then follows by (A.4).

Remark A.2. Observe that (A.3) and (A.4) are the continuous analogues of (3.10)
and (3.2), respectively.
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Abstract. We study the computation of the orthogonal spline collocation solution of a linear
Dirichlet boundary value problem with a nonselfadjoint or an indefinite operator of the form Lu =∑

aij(x)uxixj +
∑

bi(x)uxi + c(x)u. We apply a preconditioned conjugate gradient method to the
normal system of collocation equations with a preconditioner associated with a separable operator,
and prove that the resulting algorithm has a convergence rate independent of the partition step size.
We solve a problem with the preconditioner using an efficient direct matrix decomposition algorithm.
On a uniform N×N partition, the cost of the algorithm for computing the collocation solution within
a tolerance ε is O(N2 lnN | ln ε|).

Key words. nonselfadjoint or indefinite elliptic boundary value problem, orthogonal spline
collocation, conjugate gradient method, preconditioner, matrix decomposition algorithm
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1. Introduction. On Ω = (0, 1) × (0, 1) with boundary ∂Ω, we consider the
Dirichlet boundary value problem (BVP)

Lu = f(x), x ∈ Ω, u(x) = 0, x ∈ ∂Ω,(1.1)

where x = (x1, x2) and

Lu =

2∑
i,j=1

aij(x)uxixj
+

2∑
i=1

bi(x)uxi + c(x)u.(1.2)

We assume that aij , ci, b, and f are sufficiently smooth, a12(x) = a21(x), x ∈ Ω, and
the aij satisfy the uniform ellipticity condition

ν

2∑
i=1

η2
i ≤

2∑
i,j=1

aij(x) ηi ηj , x ∈ Ω, η1, η2 ∈ R, ν > 0.(1.3)

In general, the operator L of (1.2) is nonselfadjoint and could be indefinite with
respect to the L2 inner product. The principal part of L is given in nondivergence
form rather than the divergence form

∑2
i,j=1 (aij(x)uxi

)xj
. While the divergence

form is natural for the standard finite element Galerkin method, the nondivergence
form is more appropriate for the orthogonal spline collocation (OSC) method since, in
this case, the implementation of the OSC method requires neither partial derivatives
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of the equation coefficients nor their approximations. Also, in comparison with finite
element methods, the OSC method requires no integrals or their approximations to
set up the corresponding linear system.

An analysis of OSC for the BVP (1.1)–(1.3) was given in [7], where optimal
order L2 and H1 error estimates and an optimal H2 error estimate were obtained.
The solution of the resulting linear system by banded Gaussian elimination requires
O(N4) operations onN×N partition [24, 25, 34]. The application of iterative methods
reduces this cost. Classical iterative methods, such as Jacobi, Gauss–Seidel, or SOR,
for the OSC solution of Poisson’s equation on a uniform partition were studied in
[23, 29, 37]. ADI methods for solving OSC problems with separable operators were
investigated in [5, 13, 19].

Since the operator in the BVP is nonseparable, nonselfadjoint, or indefinite, one
can attempt to solve the corresponding linear system by preconditioned BICGSTAB,
QMR, CGS, and GMRES methods described in [35]. On the other hand, the precon-
ditioned conjugate gradient (PCG) method is an effective method for solving a linear
system with a symmetric and positive-definite matrix. We solve the OSC problem by
a PCG method applied to a linear system of normal equations. This method is called
PCGNR (see section 5.2 in [4] and section 9.5 in [35]).

Preconditioning of a selfadjoint positive-definite operator by a spectrally equiva-
lent operator was suggested by Kantorovich [26]. This idea, used first by D’yakonov
[17, 18] for the finite difference solution of a BVP by Richardson’s method, was later
extended to the PCG method for the finite element and finite difference solutions of
nonselfadjoint or indefinite BVPs [10, 11, 20, 31]. Preconditioning for some nonsepa-
rable OSC problems was studied in [6, 27, 28, 38].

Before describing our approach to solving the OSC problem, let us discuss some
common techniques used in other discretization methods. Let Lh be a finite difference
or a finite element operator associated with a nonselfadjoint or indefinite BVP, and let
L∗h be the adjoint of Lh with respect to an appropriate inner product (·, ·)h. Two well-
known approaches for solving the equation Lhuh = fh are based on preconditioned
normal equations:

L∗hM
−2
h Lhuh = L∗hM

−2
h fh,(1.4)

M−1
h L∗hM

−1
h Lhuh = M−1

h L∗hM
−1
h fh,(1.5)

where a selfadjoint and positive-definite operatorMh is a preconditioner for Lh [10, 11,
20, 30, 31]. The operators L∗hM

−2
h Lh and M−1

h L∗hM
−1
h Lh are selfadjoint with respect

to (·, ·)h-inner product and Mh-inner product, respectively. Therefore, the equations
(1.4) and (1.5) can be solved by the CG method with the corresponding inner products.
Analyses of the CG solution of (1.4) and (1.5) are, respectively, related to L2-norm and
H1-norm analyses of a finite difference or a finite element discretization. The finite
element equation Lhuh = fh can also be solved by modern preconditioned domain
decomposition and multilevel methods (see, for example, [33, 36]). However, since
these methods are not well developed for OSC, in this article we consider the solution
of the OSC problem Lhuh = fh approximating BVP (1.1)–(1.2) based on the normal
equation

(M∗hMh)−1L∗hLhuh = (M∗hMh)−1L∗hfh,(1.6)

where a nonselfadjoint or indefinite OSC operator Mh is associated with a separable
operator L̃ which is “close” to L. Following an H2-norm analysis of [7], we show
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that M∗hMh and L∗hLh are spectrally equivalent with respect to (·, ·)h-inner product.
Since the operator (M∗hMh)−1L∗hLh is selfadjoint and positive-definite with respect to
M∗hMh-inner product, we solve (1.6) by the corresponding CG method. This method
is equivalent to solving the equation L∗hLhuh = L∗hfh by PCG with M∗hMh as a
preconditioner. At each iteration of PCG, a new matrix decomposition algorithm
allows us to solve the equation M∗hMhw = r in one step rather than in two separate
steps M∗hz = r and Mhw = z. On a uniform N × N partition, the total cost of our
PCG algorithm with a tolerance ε is O(N2 lnN | ln ε|). The approach presented in this
paper was used in [1] for the solution of a nonlinear OSC Dirichlet BVP by Newton’s
method.

An outline of this paper is as follows. Notation and auxiliary results are intro-
duced in section 2. We prove spectral equivalence of the OSC operators in section 3
and discuss the matrix-vector form of the OSC problem in section 4. In section 5,
we prove convergence of the PCG algorithm, and in section 6, we formulate matrix
decomposition algorithms for the solution of an equation with the preconditioner.
The implementation and the cost are discussed in section 7. In section 8, we present
results of our numerical tests, and finally, section 9 is devoted to our conclusions.

2. Preliminaries. For k = 1, 2, let πk = {xk,i}Nk
i=0 be a partition of the interval

[0, 1] such that

0 = xk,0 < xk,1 < · · · < xk,Nk
= 1,

and let hk,i = xk,i − xk,i−1 for i = 1, . . . , Nk. Let

hk = min
i
hk,i, hk = max

i
hk,i, h = max(h1, h2).

Throughout we assume that the partitions πh = π1 × π2 are regular; that is, there
exist positive constants σ1, σ2, and σ3, all independent of h, such that σ1h1 ≤ h1,
σ1h2 ≤ h2, and σ2 ≤ h1/h2 ≤ σ3.

For an integer r ≥ 3, let Pr be the set of all polynomials of degree ≤ r. For
k = 1, 2, let

V k = {v ∈ C1[0, 1] : v|[xk,i−1,xk,i] ∈ Pr, i = 1, . . . , Nk}
be the space of Hermite splines of degree r associated with the partition πk, and let
V 0
k = {v ∈ V k : v(0) = v(1) = 0}. It is easy to verify that the dimension of V 0

k is
Kk = (r − 1)Nk. Let V 0 = V 0

1 ⊗ V 0
2, where ⊗ denotes the tensor product of vector

spaces. Note that V 0 is the set of all functions that are finite linear combinations
of products v1(x1) v2(x2), where v1 ∈ V 0

1 and v2 ∈ V 0
2. The dimension of V 0 is

K = K1K2.
Let {ηl}r−1

l=1 and {ωl}r−1
l=1 be, respectively, the nodes and the weights of the (r−1)-

point Gauss quadrature rule on (0, 1). For k = 1, 2, let Gk consist of the points

ξk,i,l = xk,i−1 + hk,iηl, i = 1, . . . , Nk, l = 1, . . . , r − 1.(2.1)

Then G = G1 × G2 is the set of Gauss points in Ω associated with the partition πh.
Corollary 5.3 of [32] implies that any v ∈ V 0 is uniquely defined by its values on G.

For v and z defined on G, let

(v, z)h =

N1∑
i=1

h1,i

r−1∑
k=1

ωk

N2∑
j=1

h2,j

r−1∑
l=1

ωl (vz)(ξ1,i,k, ξ2,j,l)(2.2)
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and let ‖v‖h =
√

(v, v)h. Let ρ(x) be a continuous positive function on Ω, and let
ρmin = minx∈Ω ρ(x) and ρmax = maxx∈Ω ρ(x). We shall also use

(v, z)h,ρ = (ρv, z)h(2.3)

and ‖v‖h,ρ =
√

(v, v)h,ρ. We note that (·, ·)h,ρ and ‖ · ‖h,ρ are, respectively, an inner

product and a norm in V 0. It is easy to see that

ρmin‖v‖h ≤ ‖v‖h,ρ ≤ ρmax‖v‖h(2.4)

for any v defined on G.
Throughout, H l(Ω) denotes the Sobolev space with the standard norm ‖ · ‖Hl(Ω)

[12]. We write ∂lk = ∂l/∂xlk and ∂(i,j) = ∂i+j/(∂xi1∂x
j
2). In the following, C denotes

a generic positive constant independent of h.
The OSC problem for (1.1)–(1.2) consists of finding uh ∈ V 0 such that

Luh(ξ) = f(ξ), ξ ∈ G.(2.5)

The following result was proved in [7, Theorem 3.3].
Theorem 2.1. Let operator L of (1.2) be one-to-one from {v ∈ H2(Ω) : v =

0 on ∂Ω} to L2(Ω), and let h be sufficiently small. Then the OSC problem (2.5) has
a unique solution uh ∈ V 0. Moreover, if u ∈ Hr+1(Ω) is the solution of (1.1), then

‖u− uh‖H2(Ω) ≤ C hr−1 ‖u‖Hr+1(Ω).

3. Spectral equivalence of the OSC operators. The following is the key
result of this paper.

Theorem 3.1. Let the assumptions of Theorem 2.1 be satisfied. Then there are
positive constants γ1 and γ2 independent of h such that

γ1‖v‖H2(Ω) ≤ ‖Lv‖h,ρ ≤ γ2‖v‖H2(Ω), v ∈ V 0.(3.1)

Proof. We note that the inequality

C ‖v‖H2(Ω) ≤ ‖Lv‖h + ‖v‖L2(Ω), v ∈ V 0,

was proved in [7, (3.20)]. Also, it follows from Lemma 3.2 and (3.21) of [7] that

C ‖v‖L2(Ω) ≤ h ‖v‖H2(Ω) + ‖Lv‖h, v ∈ V 0.

Thus, for h sufficiently small, we have C‖v‖H2(Ω) ≤ ‖Lv‖h, v ∈ V 0, which, along with
the first inequality in (2.4), gives the first inequality in (3.1).

Using (1.2) and the boundedness of the coefficients of L, we obtain

‖Lv‖h ≤ C
∑

0≤i+j≤2

∥∥∥∂(i,j)v
∥∥∥
h
, v ∈ V 0.(3.2)

Applying the inverse inequality of Theorem 3.2.6 in [12], we have∥∥∥∂(i,j)v
∥∥∥
h
≤ C

∥∥∥∂(i,j)v
∥∥∥
L2(Ω)

, v ∈ V 0, 0 ≤ i+ j ≤ 2.(3.3)

Using the second inequality in (2.4), (3.2), (3.3), and the Cauchy–Schwarz inequality,
we obtain the second inequality in (3.1).
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We also consider the separable differential operator

L̃ = L̃1 + L̃2,(3.4)

where, for k = 1, 2,

L̃kv = ãk(xk) vxkxk
+ b̃k(xk) vxk

+ c̃k(xk) v,(3.5)

ãk, b̃k, and c̃k are sufficiently smooth, and

ãk(x) ≥ ν > 0, x ∈ Ω, k = 1, 2.

Lemma 3.1. Let the assumptions of Theorem 2.1 be satisfied and let the operator
L̃ be one-to-one from {v ∈ H2(Ω) : v = 0 on ∂Ω} to L2(Ω). Then there are positive
constants α and β, independent of h, such that

√
α ‖L̃v‖h,ρ ≤ ‖Lv‖h,ρ ≤

√
β ‖L̃v‖h,ρ, v ∈ V 0.(3.6)

Proof. Since L̃ is a special case of L, Theorem 3.1 implies that

γ̃1 ‖v‖H2(Ω) ≤ ‖L̃v‖h,ρ ≤ γ̃2 ‖v‖H2(Ω), v ∈ V 0,(3.7)

where the positive constants γ̃1 and γ̃2 are independent of h. Using (3.1) and (3.7),
we obtain (3.6) with

√
α = γ1/γ̃2 and

√
β = γ2/γ̃1.

If Lh and Mh are OSC operators from V 0 to V 0 associated with L of (1.2) and
L̃ of (3.4)–(3.5), respectively, then (3.6) shows that L∗hLh and M∗hMh are spectrally
equivalent with respect to the inner product (·, ·)h,ρ. This is equivalent to Lh and Mh

being uniformly L2-norm equivalent (see (1.15) in [30]). Consequently, our Lemma 3.1
is the OSC counterpart of Lemma 3.1 in [30] for continuous operators.

4. Matrix-vector form of the OSC problem. For k = 1, 2, let {φk,j}Kk
j=1 be

a basis for V 0
k. Then {φj(x)}Kj=1, where

φK2(j1−1)+j2(x) = φ1,j1(x1)φ2,j2(x2), jk = 1, . . . ,Kk, k = 1, 2,(4.1)

is a basis for V 0. Thus, for any v ∈ V 0, there exists a unique vector [v]H =
[v1, . . . , vK ]T ∈ RK such that

v(x) =

K∑
j=1

vj φj(x), x ∈ Ω.(4.2)

Let G = {ξi}Ki=1, where

ξ(i1−1)K2+i2 = (ξ1,i1 , ξ2,i2), ik = 1, . . . ,Kk, k = 1, 2,(4.3)

ξk,(i−1)(r−1)+l = ξk,i,l, i = 1, . . . , Nk, l = 1, . . . , r − 1,(4.4)

and ξk,i,l are given by (2.1). For any v defined on G, we introduce the vector [v]G =
[v(ξ1), . . . , v(ξK)]T ∈ RK .

For a matrix A, its (i, j) entry is denoted by (A)ij . Let ML be the matrix defined
by

(ML)ij = (Lφj)(ξi), i, j = 1, . . . ,K.(4.5)
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Then using (4.2) and (4.5), we have

[Lv]G = ML[v]H, v ∈ V 0.(4.6)

Let ρ(x) be a continuous positive function on Ω. We introduce

D = diag(ρ(ξ1), . . . , ρ(ξK)),(4.7)

W = W1 ⊗W2,(4.8)

where ⊗ denotes the matrix tensor product and, for k = 1, 2,

Wk = diag (hk,1, . . . , hk,Nk
)⊗ diag (ω1, . . . , ωr−1).(4.9)

From (2.3), (2.2), (4.3), (4.4), and (4.7)–(4.9), we have

(v, z)h,ρ = [v]TGWD[z]G.(4.10)

Using (4.6), the OSC problem (2.5) can be rewritten in the matrix-vector form

ML[uh]H = [f ]G.(4.11)

Multiplying this equation by MT

LWD on the left, we obtain

A.u = .f,(4.12)

where

A = MT

LWDML, .u = [uh]H, and .f = MT

LWD[f ]G.(4.13)

5. PCG algorithm. Let the operator L̃ be as in (3.4)–(3.5), and let

Ã = MT

L̃
W DML̃,(5.1)

where ML̃ is defined by

(ML̃)ij = (L̃φj)(ξi), i, j = 1, . . . ,K.(5.2)

It follows easily from (4.13) and (5.1) that A and Ã are symmetric.
Lemma 5.1. Let the assumptions of Lemma 3.1 be satisfied. Then the matrices

A of (4.13) and Ã of (5.1) are positive-definite. Moreover,

α.vT Ã.v ≤ .vTA.v ≤ β .vT Ã.v, .v ∈ RK ,(5.3)

where the positive constants α and β are the same as in (3.6).
Proof. Using (4.10), (4.6), and (4.13), we obtain, for v ∈ V 0,

‖Lv‖2h,ρ = (Lv,Lv)h,ρ = [Lv]TGWD[Lv]G = [v]THM
T

LWDML[v]H = [v]THA[v]H.(5.4)

Hence the first inequality in (3.1) and γ1 > 0 imply that A is positive-definite. Sim-
ilarly, we have ‖L̃v‖2h,ρ = [v]THÃ [v]H. Therefore, (5.3) follows from (3.6) and (5.4).

The second inequality in (5.3) and β > 0 imply that Ã is also positive-definite.
We solve (4.12) by the PCG method (see Algorithm 9.4.14 in [22]) with Ã as a

preconditioner.
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Theorem 5.1. Let the assumptions of Lemma 3.1 be satisfied. For an iterate .uk
generated by the PCG method, let uh,k ∈ V 0 be such that [uh,k]H = .uk. Then

‖f − Luh,k‖h,ρ ≤ 2δk‖f − Luh,0‖h,ρ, k = 0, 1, 2, . . . ,(5.5)

where δ = (
√
β/α− 1)/(

√
β/α+ 1) and α and β are the same as in (3.6).

Proof. Since A and Ã are symmetric positive-definite, (5.5) follows from (5.3),
Theorem 9.4.14 in [22], (5.4), and (2.5).

Corollary 5.1. With δ of Theorem 5.1, we have

‖uh − uh,k‖H2(Ω) ≤ Cδk‖uh − uh,0‖H2(Ω), k = 0, 1, 2, . . . .(5.6)

Proof. Inequality (5.6) follows from (5.5), (2.5), and (3.1).
Let r̃k = [f ]G −ML.uk, k = 0, 1, . . .. Then (2.5), (5.4), and (4.11) give ‖r̃k‖WD =

‖f − Luh,k‖h,ρ. Hence, if r̃k is required at each iteration and the iterations are
terminated when

‖f − Luh,k‖h,ρ ≤ ε‖f − Luh,0‖h,ρ,(5.7)

then the PCG method can be rewritten in the following form (cf. Algorithm 9.7 in
[35]).

Algorithm 5.1.
select .u0, r̃0 = [f ]G −ML.u0, .r0 = MT

LWDr̃0, solve Ã.p0 = .r0, ρ0 = .rT0 .p0,
for k = 0, 1, 2, . . . (as long as ‖r̃k‖WD > ε‖r̃0‖WD):

.wk = ML.pk, αk = ρk/(.w
T

kWD.wk), .uk+1 = .uk + αk.pk,
r̃k+1 = r̃k − αk .wk, .rk+1 = MT

LWDr̃k,

solve Ã.zk+1 = .rk+1, ρk+1 = .rTk+1.zk+1, .pk+1 = .zk+1 + (ρk+1/ρk).pk.

6. Preconditioning. At each iteration of Algorithm 5.1, a linear system

Ã.w = .r(6.1)

must be solved, where Ã is defined by (5.1)–(5.2). If b̃1 = 0 or b̃2 = 0, then (6.1) can
be solved by matrix decomposition algorithms which we describe assuming b̃1 = 0.

For k = 1, 2, let Ik be the identity matrix of order Kk, and let the matrices Ak
and Bk be defined by

(Ak)ij = (L̃kφk,j) (ξk,i), (Bk)ij = φk,j (ξk,i), i, j = 1, 2, . . . ,Kk,(6.2)

where L̃k is given by (3.5). It follows from (5.2), (3.4), (4.1), (4.3), and (6.2) that

ML̃ = A1 ⊗B2 +B1 ⊗A2.(6.3)

With ã1 of (3.5) for k = 1, let

D1 = diag(1/ã1(ξ1,1), . . . , 1/ã1(ξ1,K1
)).(6.4)

We introduce the K1 ×K1 matrices

G = BT

1W1D1A1, F = BT

1W1D1B1,(6.5)

where W1 is given by (4.9). It was proved in [8, Lemma 3.1] that F is symmetric
positive-definite and G is symmetric. Therefore, it follows from [21, Corollary 8.7.2]
that there exists a real diagonal matrix

Λ = diag(λ1, . . . , λK1)(6.6)
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and a real nonsingular matrix Z such that

ZTGZ = Λ, ZTFZ = I1.(6.7)

Now we discuss two approaches to solving (6.1). In the first, we take ρ = 1 in
(·, ·)h,ρ of (2.3) and obtain D = I by (4.7). Hence, by (5.1), the linear system (6.1)
becomes

MT

L̃
WML̃ .w = .r,

where the diagonal matrix W is defined by (4.8)–(4.9). Thus, the system in (6.1) can
be solved as follows.

Algorithm 6.1.
Step 1. Determine Λ and Z satisfying (6.7).
Step 2. Solve MT

L̃
.z = .r by a modification of Algorithm I in [8] (see below).

Step 3. Solve the diagonal system W.v = .z.
Step 4. Solve ML̃ .w = .v by Algorithm I in [8].
We note that the matrix decomposition Algorithm I of [8] is based on the decom-

position

(ZTBT

1W1D1 ⊗ I2)ML̃(Z ⊗ I2) = Λ⊗B2 + I1 ⊗A2,

which follows easily from (6.3), (6.5), and (6.7). By taking the transpose of both
sides, we also have

(ZT ⊗ I2)MT

L̃
(W1D1B1Z ⊗ I2) = Λ⊗BT

2 + I1 ⊗AT

2 .

Therefore, Step 2 is implemented in a way similar to Step 4 (see [8] for details).
In the second approach to solving (6.1), we take ρ (x1, x2) = 1/ã1(x1), (x1, x2) ∈

Ω, which, by (4.7), gives

D = D1 ⊗ I2,(6.8)

where D1 is given by (6.4). Then the system in (6.1) can be solved in one step by a
matrix decomposition algorithm which we describe in the following. Since Z ⊗ I2 is
nonsingular, the system in (6.1) is equivalent to

S.y = .d,(6.9)

where .y = (Z ⊗ I2)−1 .w, .d = (ZT ⊗ I2).r, and

S = (ZT ⊗ I2)Ã(Z ⊗ I2).(6.10)

Lemma 6.1. Assume that L̃ satisfies the assumptions in Lemma 3.1 and that h
is sufficiently small. Then S of (6.10) is a real block diagonal matrix with K2 ×K2

symmetric positive-definite diagonal blocks

Si = (A2 + λiB2)T W2 (A2 + λiB2), i = 1, . . . ,K1.(6.11)

Proof. Using (5.1), (6.3), (4.8), (6.8), (6.5), and G = GT , we obtain

Ã = (AT

1 ⊗BT

2 +BT

1 ⊗AT

2 )(W1D1 ⊗W2)(A1 ⊗B2 +B1 ⊗A2)(6.12)

= AT

1W1D1A1 ⊗BT

2W2B2 +G⊗BT

2W2A2

+G⊗AT

2W2B2 + F ⊗AT

2W2A2.
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The second equations in (6.5) and (6.7) give

B1ZZ
TBT

1W1D1 = I1.(6.13)

Using (6.13), the first equations in (6.7) and (6.5), and GT = G, we obtain

ZTAT

1W1D1A1Z = ZTAT

1W1D1B1ZZ
TBT

1W1D1A1Z = Λ2.(6.14)

Thus, (6.10), (6.12), (6.14), and (6.7) give

S = Λ2 ⊗BT

2W2B2 + Λ⊗BT

2W2A2 + Λ⊗AT

2W2B2 + I1 ⊗AT

2W2A2.(6.15)

It follows from (6.15) and (6.6) that S is real block diagonal with the diagonal blocks
given by (6.11).

We see from (6.11) that each matrix Si is symmetric and .vTSi.v ≥ 0 for any
.v ∈ RK2 . Since Z is nonsingular and Ã is positive-definite (see Lemma 5.1), it follows
from (6.10) that S is nonsingular. This implies that Si is nonsingular and hence
positive-definite.

For .v ∈ RK , let [.v]i = [v(i−1)K2+1, . . . , viK2 ]T ∈ RK2 , i = 1, . . . ,K1. Based on
(6.9) and Lemma 6.1, we can formulate the following matrix decomposition algorithm
for the solution of (6.1).

Algorithm 6.2.
Step 1. Determine Λ and Z satisfying (6.7).

Step 2. Compute .d = (ZT ⊗ I2).r.

Step 3. Solve Si[.y]i = [.d]i for i = 1, . . . ,K1.
Step 4. Compute .w = (Z ⊗ I2).y.

7. Implementation and cost. To discuss the implementation and cost, we
assume that the basis functions {φk,j}Kk

j=1 for V 0
k, k = 1, 2, are B-splines or Hermite-

type functions ordered in the standard way. Then matrices Ak and Bk, k = 1, 2, in
(6.2) are almost block diagonal and have the structure described in [3], depending on
the type of basis functions.

Step 1 of Algorithms 6.1 and 6.2 involves solving the symmetric generalized eigen-
problem (6.7). This can be done by one of the following three algorithms.

Algorithm 7.1.
Step 1. Compute G and F of (6.5).
Step 2. Compute band Cholesky factorization F = LLT .
Step 3. Compute full symmetric C = L−1GL−T .
Step 4. Use QR algorithm to compute the diagonal Λ and an orthogonal Q

such that QTCQ = Λ.
Step 5. Compute Z = L−TQ.
Algorithm 7.2.
Step 1. Compute G and F of (6.5).
Step 2. Compute band Cholesky factorization F = LLT .
Step 3. Use Crawford’s algorithm to compute C and X.
Step 4. Use band QR algorithm to compute the diagonal Λ and

an orthogonal Q such that QTCQ = Λ.
Step 4. Compute Z = XQ.
Algorithm 7.3.
Step 1. Compute full symmetric C = (W1D1)1/2A1B

−1
1 (W1D1)−1/2.

Step 2. Use QR algorithm to compute the diagonal Λ and an orthogonal Q
such that QTCQ = Λ.

Step 3. Compute Z = B−1
1 (W1D1)−1/2Q.
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Table 7.1
Costs of Algorithms 7.1–7.3.

Compute Algorithm 7.1 Algorithm 7.2 Algorithm 7.3
F , G O(K1) O(K1) –
L O(K1) O(K1) –
C (X for Alg. 7.2) O(K2

1 ) O(K2
1 ) O(K1)

Λ, Q 9K3
1 6K3

1 9K3
1

Z O(K2
1 ) 2K3

1 O(K2
1 )

total cost 9K3
1 + O(K2

1 ) 8K3
1 + O(K2

1 ) 9K3
1 + O(K2

1 )

Algorithm 7.1 is the standard Wilkinson’s algorithm (see Algorithm 8.7.1 in [21]).
Algorithm 7.2 is based on Crawford’s algorithm (see [2] and [14] for details). If
F = LLT is the band Cholesky factorization of F , Crawford’s algorithm computes
band symmetric C and X = L−TP , with P orthogonal, such that C = XTGX and C
is orthogonally similar to Λ. Algorithm 7.3 is based on Step 1 of Algorithm II of [8].
The algorithm uses the factorization F = LLT with L = BT

1 (W1D1)1/2. The costs of
Algorithms 7.1–7.3 are given in Table 7.1.

The implementation of Step 4 of Algorithm 6.1 and its cost of 4K2
1K2 are discussed

in [8]. The implementation of Step 2 of Algorithm 6.1 is similar and its cost is also
4K2

1K2.

Step 2 and Step 4 of Algorithm 6.2 involveK2 multiplications byK1×K1 matrices
ZT and Z, respectively, and hence each step requires 2K2

1K2 operations. EachK2×K2

matrix Si in (6.11) is symmetric, positive-definite, and block tridiagonal with r − 1
by r − 1 blocks. A linear system with Si can be solved by a direct block tridiagonal
solver (for example, by the routine BLKTRI from the package FISHPACK described
in [39]) at the cost O(K2). Therefore, the cost of Step 3 of Algorithm 6.2 is O(K1K2).
Since A2 and B2 are almost block diagonal, so is Si. Hence a linear system with Si
can also be solved by two calls to the routine COLROW [15, 16].

Of course, when Algorithms 6.1 and 6.2 are used in Algorithm 5.1 to solve a linear
system with the coefficient matrix Ã, the matrices Λ and Z are precomputed first. For
Algorithm 6.1, the remaining cost is 8K2

1K2 since this is the cost of all multiplications
by ZT and Z. For Algorithm 6.2, the remaining cost is half of that of Algorithm 6.1.

In a special case of r = 3, a uniform partition π1, constant coefficients ã1, c̃1
of L̃ in (3.5), and b̃1 = 0, the matrices Λ and Z in (6.7) are known in a closed
form. Moreover, it follows from Theorem 2.3 in [9] that matrix Z is given in terms
of sines and cosines. Therefore, all multiplications by ZT and Z in Algorithm 6.1
can be performed using FFTs with the cost O(K1K2 logK1). Thus, the total cost of
Algorithm 6.1 is O(K1K2 logK1). In this case, it follows from (5.6) that the cost of
our PCG Algorithm 5.1 with a tolerance ε on an N ×N partition is O(N2 lnN | ln ε|).

8. Numerical tests. Before considering our numerical tests, we present an ad-
ditional result which was used in the tests. Let â1(x), â2(x), and ĉ(x) be sufficiently
smooth functions on Ω, and for i = 1, 2, let âi(x) ≥ ν > 0, x ∈ Ω. Let

L̂v = (â1(x)vx1)x1 + (â2(x)vx2)x2 + ĉ(x)v.(8.1)

The operator L̂ is selfadjoint with respect to the standard L2-inner product, and it is
negative-definite if ĉ(x) ≤ 0, x ∈ Ω. We prove that L̂ is indefinite if

min
x∈Ω
{ĉ(x)} > 2π2 max

x∈Ω
{â1(x), â2(x)}.(8.2)
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Using Green’s formula and (8.2), we have, for v �= 0,∫
Ω

L̂v(x) v(x) dx = −
∫

Ω

(â1v
2
x1

+ â2v
2
x2

) dx+

∫
Ω

ĉv2 dx

≥ −max
x∈Ω
{â1(x), â2(x)}‖∇v‖2L2(Ω) + min

x∈Ω
{ĉ(x)}‖v‖2L2(Ω)

> max
x∈Ω
{â1(x), â2(x)}

(
2π2‖v‖2L2(Ω) − ‖∇v‖2L2(Ω)

)
,(8.3)

where ‖∇v‖2L2(Ω) =
∫
Ω

(v2
x1

+ v2
x2

)dx. It is easy to see that, for

vk,l(x) = 2 sin(kπx1) sin(lπx2), x ∈ Ω,

with integers k and l, we have

‖∇vk,l‖2L2(Ω) = π2(k2 + l2)‖vk,l‖2L2(Ω).(8.4)

Thus, from (8.3) and (8.4), we obtain
∫
Ω
L̂v1,1(x) v1,1(x) dx > 0.

On the other hand, by (8.4), we have∫
Ω

L̂vk,l(x) vk,l(x) dx ≤ −ν‖∇vk,l‖2L2(Ω) + max
x∈Ω
{ĉ(x)}‖vk,l‖2L2(Ω)

=

(
max
x∈Ω
{ĉ(x)} − νπ2(k2 + l2)

)
‖vk,l‖2L2(Ω).

Hence,
∫
Ω
L̂vk,l(x) vk,l(x) dx < 0 for sufficiently large k2 or l2. Thus, under the

condition (8.2), L̂ is indefinite.
Now we describe our numerical tests. The operator L in (1.2) was taken with the

coefficients

a11(x) = ex1x2 , a12(x) = α/(1 + x1 + x2), a22(x) = e−x1x2 ,

b1(x) = x2e
x1x2 + β1 cos[π(x1 + x2)], b2(x) = −x1e

−x1x2 + β2 sin(2πx1x2),(8.5)

c(x) = γ[1 + 1/(1 + x1 + x2)],

where α, β1, β2, and γ are parameters. In BVP (1.1), we set f(x) = Lu(x) for
u(x) = ex1+x2x1x2(1− x1)(1− x2).

We note that, for the coefficients given by (8.5) with α = β1 = β2 = 0, we have
b1 = (a11)x1 and b2 = (a22)x2 . Therefore, in this case, the operator L in (1.2) can be
written in the form of (8.1) with âi(x) = aii(x), i = 1, 2, and ĉ(x) = c(x). It follows
from (8.5) with γ ≥ 0 that

min
x∈Ω
{c(x)} = (4/3)γ, max

x∈Ω
{a11(x), a22(x)} = e.

Hence, if γ > (3/2)π2e ≈ 40.243, then the operator L is indefinite by (8.2).
In our numerical tests, we considered the case of r = 3, that is, V 0 is the space of

Hermite bicubic splines on a uniform N×N partition of Ω with the step size h = 1/N
(hence, K1 = K2 = 2N and K = 4N2). In this case, the standard basis for V 0

is defined as follows. For k = 1, 2, let vk,j , sk,j ∈ V k, j = 0, . . . , N , be the “value
function” and the “scaled slope function” associated with the node xk,j and defined
respectively by

vk,j(xk,i) = δij , [vk,j ]
′(xk,i) = 0, i = 0, . . . , N,
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Table 8.1
Iteration numbers for Algorithm 5.1. ε = 10−10 in the stopping condition (5.7). LP = Laplace

preconditioner, VCP = variable coefficient preconditioner. 1 = selfadjoint negative-definite L, 2 =
selfadjoint indefinite L, 3 = nonselfadjoint L, 4 = general L.

1 2 3 4
N LP VCP LP VCP LP VCP LP VCP
8 37 22 136 43 133 31 103 59

16 50 26 165 46 163 34 116 68
32 61 30 185 51 173 38 128 75
64 68 33 196 54 178 40 137 81

128 72 34 203 55 184 42 143 84

and

sk,j(xk,i) = 0, [sk,j ]
′(xk,i) = δij/h, i = 0, . . . , N,

where δij is the Kronecker delta. Then

{φk,1, . . . , φk,Kk
} = {sk,0, vk,1, sk,1, . . . , vk,Nk−1, sk,Nk−1, sk,Nk

}

is a basis for V 0
k, k = 1, 2, and basis functions for V 0 are given by (4.1).

The OSC problem (2.5) was solved by Algorithm 5.1 with the initial approxima-
tion .u0 = .0 and the stopping condition (5.7) with ε = 10−10. A linear system with a
preconditioner was solved by Algorithm 6.2. Since the partition is uniform, Step 1 of
Algorithm 6.2 need not be performed, and we used FFTs to implement Steps 2 and
4.

We tested convergence properties of Algorithm 5.1 with two choices of the pre-
conditioner Ã of (5.1)–(5.2), the first corresponding to L̃ = ∂2/∂x2

1 + ∂2/∂x2
2 and the

second to the variable coefficient operator L̃ of (3.4)–(3.5) with

ã1(x1) = a11(0.5, 0.5), b̃1(x1) = 0, c̃1(x1) = 0,

ã2(x2) = a22(0.5, x2), b̃2(x2) = b2(0.5, x2), c̃2(x2) = c(0.5, x2).
(8.6)

We refer to these two preconditioners as the Laplacian preconditioner and the variable
coefficient preconditioner, respectively. The following cases were tested:

1. selfadjoint negative-definite L (α = β1 = β2 = γ = 0);
2. selfadjoint indefinite L (α = β1 = β2 = 0 and γ = 100);
3. nonselfadjoint L (β2 = 100 and α = β1 = γ = 0);
4. general L (α = 0.5, β1 = 10, β2 = γ = 50).

The numerical results are shown in Table 8.1. We see that PCG with the variable
coefficient preconditioner requires fewer iterations than PCG with the Laplacian pre-
conditioner. Moreover, as N increases, the number of PCG iterations grows much
slower with the variable coefficient preconditioner than with the Laplacian precondi-
tioner.

In Figure 8.1, we present logarithmic plots of the relative residual curves. The
vertical axis represents the values of

log10 (‖f − Luh,k‖h,ρ/‖f‖h,ρ) .

For both the Laplacian and the variable coefficient preconditioners, we observe mono-
tone convergence. Curve LP1 shows that the Laplacian preconditioner works quite
well for the selfadjoint negative-definite problem, but the Laplacian preconditioner
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Fig. 8.1. Logarithmic plots of relative residual curves for Algorithm 5.1 (N = 128). LP# =
Laplacian preconditioner, VCP# = variable coefficient preconditioner. LP1, VCP1 = selfadjoint
negative-definite L; LP2, VCP2 = selfadjoint indefinite L; LP3, VCP3 = nonselfadjoint L; LP4,
VCP4 = general L.

is not so good for the indefinite, the nonselfadjoint, and the general problems (see
the plateaus of curves LP2–LP4). The variable coefficient preconditioner does well in
all cases (see curves VCP1–VCP4), although, for the general operator L, the curve
VCP4 has a plateau as well. We see that curves VCP1–VCP3 are nearly parallel for
large iteration numbers, which indicates that the convergence rates of the PCG with
the variable coefficient preconditioner are about the same for different types of L. We
observe the same behavior for the Laplacian preconditioner for the selfadjoint and the
general problems (see curves LP1, LP2, and LP4). We see from curves LP1 and VCP1
that the convergence of PCG for the selfadjoint negative-definite problem is almost
linear. We note that, for the first few iterations, the Laplacian preconditioner works
well in all cases; for the general problem, even better than the variable coefficient
preconditioner. However, for the larger iteration numbers, curve LP4 has a longer
plateau and a smaller slope than curve VCP4.

Next we tested convergence properties of OSC for the general L. Let uh be the
computed OSC solution, and let eh = u− uh. For any v defined on the partition πh,
let ‖v‖πh

= maxx∈πh
|v(x)|. We computed the maximal nodal errors ‖∂(i,j)eh‖πh

for
i, j = 0, 1 and the Sobolev norms ‖eh‖Hi(Ω) for i = 0, 1, 2, and determined approximate
convergence orders using

log2

(
‖∂(i,j)eh‖/‖∂(i,j)eh/2‖

)
,
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Table 8.2
Maximal nodal errors and convergence orders.

N eh (eh)x1 (eh)x2 (eh)x1x2

4 4.64E–04 5.79E–03 1.34E–02 5.14E–02
8 9.51E–05 2.29 9.13E–04 2.67 2.26E–03 2.57 9.10E–03 2.50

16 7.63E–07 6.96 6.38E–06 7.16 4.69E–05 5.59 3.79E–04 4.58
32 3.99E–08 4.26 4.47E–07 3.83 3.09E–06 3.92 3.50E–05 3.44
64 2.48E–09 4.01 2.73E–08 4.04 1.93E–07 4.00 3.17E–06 3.46

128 1.55E–10 4.00 1.68E–09 4.02 1.21E–08 4.00 3.21E–07 3.30

Table 8.3
Sobolev norm errors and convergence orders.

N L2 H1 H2

4 2.11E–04 2.19E–03 4.63E–02
8 3.56E–04 2.56 3.34E–04 2.72 9.31E–03 2.31

16 2.98E–07 6.90 1.63E–05 4.36 1.72E–03 2.44
32 1.83E–08 4.02 1.88E–06 3.11 3.94E–04 2.12
64 1.13E–09 4.02 2.31E–07 3.03 9.60E–05 2.04

128 7.01E–11 4.01 2.87E–08 3.01 2.38E–05 2.01

where ‖·‖ is ‖ · ‖πh
or ‖ · ‖Hi(Ω). From the results presented in Table 8.2, we observe the

expected order 4 for ‖eh‖πh
and the orders 4, 4, and 3 for ‖(eh)x1

‖πh
, ‖(eh)x2

‖πh
, and

‖(eh)x1x2
‖πh

, respectively. The last three orders indicate a superconvergence property
of OSC. The results in Table 8.3 demonstrate the expected optimal convergence orders
for the Sobolev norms.

9. Conclusions. We have shown that PCG is an efficient algorithm for solving
the OSC problem (2.5). The convergence analysis of this algorithm is carried out
using an H2 norm analysis of OSC. The convergence rate of PCG is independent of
the partition step size h. The approach allows us to use a preconditioner associated
with a nonselfadjoint or an indefinite separable operator L̃. A linear system with the
preconditioner can be solved very efficiently using a matrix decomposition algorithm.
On a uniform N × N partition, PCG with a tolerance ε requires O(N2 lnN | ln ε|)
operations to obtain the Hermite bicubic spline solution of the OSC problem.

Our future work will involve the construction of nonselfadjoint or indefinite OSC
domain decomposition and multilevel preconditioners for the OSC problem (2.5).

Acknowledgment. The authors wish to thank Graeme Fairweather for his as-
sistance during the preparation of this paper.
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1. Introduction. In this paper we shall be concerned with preservation of cer-
tain monotonicity properties for systems of ordinary differential equations (ODEs) in
R
m, m ≥ 1,

w′(t) = F (w(t)), w(0) = w0.(1.1)

Specifically we are interested in the discrete preservation of these properties by numer-
ical approximations wn ≈ w(tn), tn = n∆t, generated by linear multistep methods.
The multistep methods will be considered in combination with suitable starting pro-
cedures. Hence for a given problem (1.1) and step size ∆t, we can regard the sequence
{wn}n≥1 as being determined by the initial value w0 only, just as for the true solution
of (1.1).

There are a number of closely related monotonicity concepts. In this paper we
shall mainly consider the property

‖wn‖ ≤ ‖w0‖ for all n ≥ 1, w0 ∈ R
m,(1.2)

where ‖ · ‖ is a given seminorm, such as the total variation over the components;
see, for instance, (2.1). Related concepts, such as positivity and contractivity, are
considered in the next section. Note that for one-step methods, such as Runge–Kutta
methods, property (1.2) is equivalent to

‖wn‖ ≤ ‖wn−1‖ for all n ≥ 1 with arbitrary w0 ∈ R
m.(1.3)

The relevant monotonicity property should hold for the ODE system (1.1) itself,
of course. In the following we assume that there is a maximal step size ∆tFE > 0,
under which (1.3) holds for the forward Euler method,

‖v + ∆tF (v)‖ ≤ ‖v‖ for all 0 < ∆t ≤ ∆tFE, v ∈ R
m,(1.4)
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and we shall determine constants CLM such that the property is valid for a multistep
method with suitable starting procedure under the step size restriction

∆t ≤ CLM ∆tFE.(1.5)

In our analysis it is crucial to consider the linear multistep method in combination
with suitable starting procedures. If a linear k-step method is considered with arbi-
trary starting vectors w1, . . . , wk−1, in addition to w0, then a natural generalization
of (1.3) is

‖wn‖ ≤ max
0≤j≤k−1

‖wj‖ for all n ≥ k, w0, w1, . . . , wk−1 ∈ R
m.(1.6)

This is a common generalization for the purpose of analyzing multistep methods.
However, there is no direct analogy with the analysis of (1.1), where the solution is
determined by w0 only. More importantly, it turns out that the insistence on arbitrary
starting vectors severely limits the class of methods for which monotonicity can be
demonstrated; for example, the familiar backward differentiation formulae (BDF) and
Adams methods are then excluded. Consequently, relevant properties of many popular
methods used in practice have not been covered yet by theoretical results.

In section 2 some related monotonicity properties are briefly discussed, together
with existing results on multistep methods of the type (1.6) that were obtained in
[2, 4, 12, 13, 15, 17]. Then in section 3 we analyze the time-step restrictions for
(1.2) of both explicit and implicit two-step methods with various starting procedures.
Apart from the monotonicity property (1.2), we also consider related boundedness
properties ‖wn‖ ≤M‖w0‖ with constant M ≥ 1. In section 4 we extend our analysis
to linear multistep methods of higher order. Finally, in section 5 we provide some
numerical examples to illustrate our results.

2. Background.

2.1. Related monotonicity concepts. If the ODE system (1.1) is derived
from a spatial discretization of a one-dimensional partial differential equation (PDE),
then the components wj(t) of w(t) will approximate the PDE solution u(x, t) at grid
points x = xj or surrounding cells. In that case wn = (w

n
j ) contains the fully discrete

method-of-lines approximation to u(xj , tn). Consider for vectors v = (vj) the semi-
norm ‖v‖ = TV(v) given by

TV(v) =
∑
j

|vj − vj−1|.(2.1)

We note that this is a seminorm, and not a norm, because TV(v) may vanish for v �= 0;
viz. vj constant. For a pure initial-value PDE on an unbounded domain, the index j
will run over all integers; but in general, boundary or periodicity conditions will result
in a finite-dimensional ODE system. If (1.3) is valid, that is, TV(wn) ≤ TV(wn−1),
n ≥ 1, the scheme is called total variation diminishing (TVD). With property (1.2)
we have

TV(wn) ≤ M TV(w0), n ≥ 1,(2.2)

with constant M = 1. A scheme satisfying (2.2) with some M ≥ 1 is called total
variation bounded (TVB). Although this is formally weaker than TVD, conservative
schemes with this boundedness property are known to converge to the correct entropy
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solutions for hyperbolic conservation laws; see, for instance, [5] for details. If (2.2)
holds with M = 1, no spatial oscillations can be introduced during the time step-
ping; such spatial oscillations can be regarded as local overshoots and undershoots.
Moreover, the scheme will then also be monotonicity-preserving in the sense that if
the initial data w0

j is monotonically increasing or decreasing in j, then this will be
preserved over time [14].

Another property related to avoiding undershoots is positivity [2], where it is
required that

wn ≥ 0 whenever w0 ≥ 0.(2.3)

Here inequalities for vectors are to be interpreted componentwise. The corresponding
requirement on the forward Euler method then reads

v + ∆tF (v) ≥ 0 for all 0 < ∆t ≤ ∆tFE, v ≥ 0.(2.4)

Although we shall mainly focus on the relations (1.2), (1.4), results for positivity with
(2.3), (2.4) can be derived in the same way. Positivity is often a natural requirement
for general ODE systems, not necessarily semidiscrete PDEs, especially if the com-
ponents wj(t) represent physical quantities such as mass or chemical concentrations
that must be nonnegative by definition.

Further, related to (1.3) one can consider the contractivity property where the
difference ‖w̃n − wn‖ between any two sequences is required to be nonincreasing
with increasing n [10, 17]. If we are dealing with a genuine norm, this is a strong
stability requirement. Recently [4], methods satisfying (1.3) have also been called
strong stability-preserving, and there is a tradition in the computational gas dynamics
literature of referring to TVB, TVD, monotonicity preservation, and other nonlinear
conditions as nonlinear stability [11]. However, properties like TVD or positivity are
not directly related to the classical numerical concept of stability, which deals with
growth between two sequences, one of which is viewed as a perturbation of the other.
For linear problems we could well associate (1.3) with numerical stability, whereas for
general nonlinear problems it may be viewed as a (strong) boundedness property.

Finally, we note that the term monotonicity appears in the numerical analysis
literature for a variety of related concepts. For example, it is sometimes also used
for properties like maximum principles (minj w

0
j ≤ wnj ≤ maxj w

0
j ) or comparison

principles (w̃0 ≤ w0 implies w̃n ≤ wn). In this paper we restrict ourselves to (1.2)
and (2.3), but related properties could be studied in a similar way.

2.2. Monotonicity with arbitrary starting values. In this paper we mainly
consider explicit linear multistep methods

wn =

k∑
j=1

(
ajwn−j + bj∆tF (wn−j)

)
, n ≥ k,(2.5)

where starting vectors w0, w1, . . . , wk−1 are either given or computed by an appropri-
ate starting procedure. Consistency of the method implies that

k∑
j=1

aj = 1.(2.6)
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Assume for the moment that all aj , bj ≥ 0. By regarding the step (2.5) as a linear
combination of scaled forward Euler steps,

wn =

k∑
j=1

aj
(
wn−j + cj∆tF (wn−j)

)
, cj =

bj
aj

,(2.7)

it easily follows that

‖wn‖ ≤ max
1≤j≤k

‖wn−j‖(2.8)

will hold under (1.4) with the step size restriction

∆t ≤ KLM ∆tFE, KLM = min
1≤j≤k

(aj
bj

)
if aj , bj ≥ 0 for all j.(2.9)

By convention, terms of the form 0/0 should be omitted in the minimization, and if
some coefficient aj , bj is negative, we leave KLM undefined. Note that (2.8) can also
be formulated equivalently as (1.6).

This result, obtained with scaled forward Euler steps, is due to Shu [15], where
it was formulated with total variations. Related results for multistep methods were
derived by Bolley and Crouzeix [2] in terms of positivity for linear systems. Con-
tractivity for linear systems was studied by Spijker [17] and Lenferink [12, 13]. The
results in [2, 4, 13, 17] also cover implicit methods; we discuss implicit methods in
some detail in section 3.

However, these results exclude many schemes that are useful in practice, and also
may give unnecessary step size restrictions. This is due to the fact that (2.8) should
hold with arbitrary initial vectors w0, w1, . . . , wk−1. As a simple example, consider
the familiar BDF2 method applied to the trivial problem w′(t) = 0. Then

w2 =
4
3w1 − 13w0.

It is obvious that one cannot have w2 ≥ 0 for arbitrary w0, w1 ≥ 0. Likewise, it is not
always possible to have ‖w2‖ ≤ ‖w0‖ whenever ‖w1‖ ≤ ‖w0‖. On the other hand, it is
also clear that only the choice w1 = w0 makes sense for this trivial problem, in which
case the inequality ‖w2‖ ≤ ‖w0‖ trivially holds. For this reason we shall analyze the
monotonicity properties of multistep schemes with suitable starting procedures. As a
result, schemes like BDF2 can be included in the theory.

Remark 2.1. To arrive at (2.9), the assumption aj ≥ 0 is necessary to have a
convex combination of scaled forward Euler steps. The assumption bj ≥ 0 is then
needed to ensure that the scaled step sizes cj∆t are nonnegative. As noted in [15, 16],
the latter assumption can be avoided for discretizations of the conservation law

ut + f(u)x = 0,

by first applying the discretization in time followed by the spatial discretization (i.e.,
a transverse method-of-lines discretization), instead of starting with the semidiscrete
system w′ = F (w). The only modification to our previous treatment is that if some
bj < 0, then F (wn−j) in (2.5) should be replaced by F̃ (wn−j), where w′ = −F̃ (w) is
the semidiscretization of

ut − f(u)x = 0,



MONOTONICITY-PRESERVING LINEAR MULTISTEP METHODS 609

that is, of the equation with reversed time. Its realization in practice is simply a
reversal of the upwind direction in the spatial discretization. Along with (1.4), we
then also assume

‖v − ∆tF̃ (v)‖ ≤ ‖v‖ for all 0 < ∆t ≤ ∆tFE, v ∈ R
m,(2.10)

and this counteracts the negativity of aj/bj in (2.7). Instead of (2.9), this modification
will give the step size restriction

∆t ≤ K̃LM ∆tFE, K̃LM = min
1≤j≤k

(
aj
|bj |
)

if aj ≥ 0 for all j(2.11)

to achieve (2.8).

3. Two-step methods.

3.1. Reformulations. In this section we derive monotonicity results for two-
step methods, including some familiar implicit methods [1, 7]. The standard form is
written as

wn − b0∆tFn = a1wn−1 + a2wn−2 + b1∆tFn−1 + b2∆tFn−2, n ≥ 2,(3.1)

where Fn−j = F (wn−j). To obtain precise results, this recursion will be fully written
out to include the starting values. Let θ ≥ 0 be a parameter to be specified later.
Then the two-step recursion can be written in three-step form as

wn − b0∆tFn = (a1 − θ)wn−1 + (b1 + θb0)∆tFn−1 + (a2 + θa1)wn−2

+ (b2 + θb1)∆tFn−2 + θa2wn−3 + θb2∆tFn−3, n ≥ 3.

Continuing this way, by subtracting and adding θjwn−j and using (3.1), we arrive at

wn − b0∆tFn = (a1 − θ)wn−1 + (b1 + θb0)∆tFn−1

+

n−2∑
j=2

θj−2((a2 + θa1 − θ2)wn−j + (b2 + θb1 + θ2b0)∆tFn−j)

+ θn−3((a2 + θa1)w1 + (b2 + θb1)∆tF1 + θa2w0 + θb2∆tF0).

(3.2)

This formula is valid for all n ≥ 3, with empty sums naturally defined as zero. The
reformulation (3.2) will be the basis for our derivations. To bound the last term
in (3.2), together with w1, w2, appropriate starting procedures will be considered.
Further, we shall determine θ so as to obtain nonnegative coefficients

a1 − θ ≥ 0, a2 + θ(a1 − θ) ≥ 0, b1 + θb0 ≥ 0, b2 + θ(b1 + θb0) ≥ 0,(3.3)

with optimal ratio r(θ) given by

r1(θ) =
a1 − θ

b1 + θb0
, r2(θ) =

a2 + θ(a1 − θ)

b2 + θ(b1 + θb0)
, r(θ) = min(r1(θ), r2(θ)).(3.4)

As before, values 0/0 are ignored when taking the minimum.
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3.2. Explicit second-order two-step methods. The maximal size of the
threshold factor KLM in (2.9) for explicit k-step methods of order p has been ana-
lyzed by Lenferink [12]. For explicit methods of order p = 1, we have KLM ≤ 1, a
bound which is already attained by Euler’s method. For explicit methods with k ≥ 2,
Lenferink showed that

KLM ≤ k − p

k − 1 .(3.5)

HenceKLM > 0 is not possible for second-order explicit two-step methods. By allowing
b2 < 0, Shu [15] obtained an explicit two-step method with p = 2, K̃LM =

1
2 . However,

this result is applicable only to semidiscretizations of conservation laws. Moreover,
with b1 > 0, b2 < 0, both Fj and F̃j have to be calculated in the process, making the
scheme twice as expensive computationally as the standard form (3.1).

Here we consider the monotonicity property (1.2) for schemes (3.1), and opti-
mal threshold factors CLM will be derived for second-order explicit two-step methods
combined with suitable starting procedures. The main assumptions on the starting
procedures will be

‖w1‖ ≤ M ‖w0‖, ‖w2‖ = ‖a1w1 + b1∆tF1 + a2w0 + b2∆tF0‖ ≤ M ‖w0‖,
‖(a2 + θa1)w1 + (b2 + θb1)∆tF1 + θa2w0 + θb2∆tF0‖ ≤ (a2 + θ)M ‖w0‖

(3.6)

for a given step size ∆t > 0 and with M = 1. To derive weaker properties, such as
(2.2), constants M > 1 will also be allowed.

Lemma 3.1. Assume that (1.4) holds. Let θ ≥ 0 satisfy (3.3), and let r(θ) be
given by (3.4) with b0 = 0. Suppose that ∆t ≤ r(θ)∆tFE and (3.6) holds with M ≥ 1.
Then

‖wn‖ ≤ M ‖w0‖ for all n ≥ 1.(3.7)

Proof. From (3.2) and (3.3) we obtain

‖wn‖ ≤ (a1 − θ) ‖wn−1‖ +
n−2∑
j=2

θj−2
(
a2 + θa1 − θ2

) ‖wn−j‖+ θn−3(a2 + θ)M ‖w0‖.

By assumption, the lemma is valid for n = 1, 2. Since we have, in view of (2.6), the
relation

(a1 − θ) +

n−2∑
j=2

θj−2
(
a2 + θa1 − θ2

)
+ θn−3(a2 + θ) = 1, n ≥ 3,

the proof now follows easily by induction.
To apply this lemma to specific methods, we shall determine θ to obtain an

optimal constant

C∗LM = max{ r(θ) : θ satisfies (3.3) }.(3.8)

This will give a step size restriction ∆t ≤ C∗LM∆tFE, which is intrinsic for the specific
two-step method. The requirement (3.6) with M = 1 may give an additional restric-
tion, say ∆t ≤ C0

LM∆tFE, depending on the starting procedure and the coefficients of
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the multistep method. For the combined scheme we then obtain the monotonicity
property (1.2) under the step size restriction (1.5) with

CLM = min{C0
LM, C

∗
LM}.(3.9)

The above derivation will be applied to explicit second-order two-step methods,
which constitute a one-parameter family given by (3.1) with b0 = 0 and

a1 = 2− ξ, a2 = ξ − 1, b1 = 1 +
1
2ξ, b2 =

1
2ξ − 1.(3.10)

The methods in this class are zero-stable if and only if 0 < ξ ≤ 2, and we shall restrict
ourselves to these parameter values. Examples of practical interest are the two-step
Adams–Bashforth method (ξ = 1) and the extrapolated BDF2 method (ξ = 2

3 ).
With this class of second-order methods it follows, by a straightforward but somewhat
tedious calculation, that optimality in (3.8) is attained by setting b2+ θb1 = 0, which
gives

θ =
2− ξ

2 + ξ
, C∗LM =

2(1 + ξ)(2− ξ)

(2 + ξ)2
.(3.11)

To obtain a complete bound (3.9), various starting procedures will be considered next.
Remark 3.2. In the remainder of this section we shall focus primarily on condition

(3.6) with M = 1. For these results all coefficients in the occurring expressions will
be required to be nonnegative. Consequently, results on positivity (2.3) with (2.4)
can be derived under the same assumptions.

We shall also derive results with M > 1. These will only be qualitative. Precise
bounds for M can be obtained by using

max
∆t≤C∆tFE

‖v + γ∆tF (v)‖ ≤ max{1, |2γC − 1|} ‖v‖(3.12)

for arbitrary C > 0, γ ∈ R, and v ∈ R
m. This relation is an obvious consequence of

(1.4) if 0 ≤ γC ≤ 1. For values γC outside the interval [0, 1], it follows by using in
addition the implication ∆tFE ‖F (v)‖ ≤ 2 ‖v‖ from (1.4).

3.2.1. Starting with the forward Euler method. The natural candidate to
compute the starting vector w1 for an explicit two-step method of order p = 2 is the
forward Euler method

w1 = w0 + ∆tF0.

Of course, the forward Euler method itself is only first-order accurate; but because it
is applied only once, the accuracy of the combined scheme will still be of order two.

With this starting procedure the first condition in (3.6) holds with M = 1 for
∆t ≤ ∆tFE, of course. The second condition, ‖w2‖ ≤M‖w0‖, can be written as

‖(a1 − θ̃)w1 + b1∆tF1 + (a2 + θ̃)w0 + (b2 + θ̃)∆tF0‖ ≤M‖w0‖,

where an optimal θ̃ should be selected. With M = 1 it is easily seen that the optimal
value is θ̃ = 1

2 (2− ξ), under which the inequality holds for all step sizes

∆t ≤ 2− ξ

2 + ξ
∆tFE.(3.13)
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With larger step sizes we will have a bound with M > 1. We note that this step size
restriction for M = 1 is more stringent than ∆t ≤ C∗LM∆tFE for any ξ ∈ (0, 2). Finally,
with θ given by (3.11), the third condition in (3.6) reads

‖(a2 + θ)w0 + (a2 + θa1 + θb2)∆tF0‖ ≤ (a2 + θ)M ‖w0‖,
which can be written here as∥∥∥∥w0 +

1

2ξ
(3ξ − 2)∆tF0

∥∥∥∥ ≤ M ‖w0‖.

Hence M = 1 now requires

∆t ≤ 2ξ

3ξ − 2 ∆tFE, ξ ≥ 23 .(3.14)

If either the step size is allowed to be larger or 0 < ξ < 2
3 , then we obtain a bound with

M > 1 (see Remark 3.2), where it should be mentioned that we will have M ∼ ξ−1

for ξ ↓ 0. We note that for ξ ≥ 2
3 the restriction (3.14) is less stringent than (3.13).

The above results can be summarized as follows.
Theorem 3.3. Consider the explicit second-order two-step method (3.1), (3.10),

and let w1 be computed by the forward Euler method. Then the monotonicity property
(1.2) will hold under (1.4) with the restriction

∆t ≤ 2− ξ

2 + ξ
∆tFE ,

2
3 ≤ ξ ≤ 2 .

Under (1.4) with the weaker restriction

∆t ≤ 2(1 + ξ)(2− ξ)

(2 + ξ)2
∆tFE, 0 < ξ ≤ 2,

the boundedness property (3.7) will hold with M ≥ 1.
3.2.2. A modified two-step starting procedure. The use of the forward

Euler method as starting procedure for the second-order two-step methods (3.1),
(3.10) leads to a step size restriction for monotonicity that is more stringent than
∆t ≤ C∗LM∆tFE. Similar restrictions were obtained with standard two-stage Runge–
Kutta methods.

As an alternative starting procedure that can be used for semidiscrete conserva-
tion laws following Remark 2.1, we compute w1 with the forward Euler method but
use for the second step a modified scheme,

w1 = w0 + ∆tF0 , w2 = a1w1 + a2w0 + b1∆tF1 + αb2∆tF0 + (1− α)b2∆tF̃0,(3.15)

where F̃0 = F̃ (w0) and α ∈ [0, 1] is to be determined later. We assume F̃ satisfies
(2.10). We note that because F̃ is evaluated only once (for w0), the computational
costs will not increase significantly.

Consider the optimal θ value (3.11), for which b2 + θb1 = 0. With the modified
second step, it follows that (3.2) with b0 = 0 will change accordingly to

wn = (a1 − θ)wn−1 + b1∆tFn−1 +

n−1∑
j=2

θj−2(a2 + θa1 − θ2)wn−j

+ θn−2
(
θw1 + a2w0 + αb2∆tF0 + (1− α)b2∆tF̃0

)
.
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If the last term can be bounded by θn−2(a2 + θ)‖w0‖ and if ‖w1‖ ≤ ‖w0‖, the result
of Lemma 3.1 will remain valid with M = 1. With the forward Euler approximation
w1, we thus get the requirement

‖(a2 + θ)w0 + (αb2 + θ)∆tF0 + (1− α)b2∆tF̃0‖ ≤ (a2 + θ)‖w0‖(3.16)

for ∆t ≤ C0
LM∆tFE, where an optimal C

0
LM ∈ (0, 1] will be selected by a favorable choice

of the parameter α.
The contribution of F0 in this inequality is minimized by taking α = −θ/b2 =

1/b1. By using (2.10), it then follows that ‖w1‖ ≤ ‖w0‖ and (3.16) will be satisfied
for ∆t ≤ C0

LM∆tFE with

C0
LM = min

{
1,

2ξ

2− ξ

}
.

Taking CLM = min{C0
LM, C

∗
LM}, we can summarize this result as follows.

Theorem 3.4. Consider the explicit second-order two-step method (3.1), (3.10)
for n ≥ 3, and let w1, w2 be computed by (3.15) with α = 1/b1. Then the monotonicity
property (1.2) will hold under (1.4) and (2.10) with the step size restriction

∆t ≤ CLM ∆tFE, CLM =


2ξ
2−ξ if 0 < ξ <

1
1
2+
√
2
,

2(1+ξ)(2−ξ)
(2+ξ)2 if

1
1
2+
√
2
≤ ξ ≤ 2.

If the step size restriction in this theorem for ξ < 1/( 12 +
√
2) is not satisfied,

but still ∆t ≤ C∗LM∆tFE, then we will have, as with other starting procedures, the
boundedness property (3.7) with M > 1.

A somewhat related result was obtained in [9] for the extrapolated BDF2 method
(ξ = 2

3 ) in the so-called one-leg form. For that particular method it was demon-
strated that (1.2) holds for all ∆t ≤ C∗LM∆tFE, provided that an appropriate two-stage
Runge–Kutta starting method is used. Also it was observed in [9] that this implies
boundedness of ‖wn‖ for the standard multistep form (3.1) of the extrapolated BDF2
method if a special starting procedure is used. From the above we see that the bound-
edness property holds for any starting procedure and all 0 < ξ ≤ 2.

3.3. Implicit second-order two-step methods. In this section we consider
the implicit two-step methods of order 2. These methods form a two-parameter family
with coefficients

a1 = 2− ξ, a2 = ξ − 1, b0 = η, b1 = 1 +
1
2ξ − 2η, b2 = η +

1
2ξ − 1.(3.17)

As for the explicit methods (3.10), we need 0 < ξ ≤ 2 for zero-stability. The methods
are A-stable if and only if in addition η ≥ 1

2 . If η =
1
2 , these methods are reducible to

the trapezoidal rule, in the sense that if w1 is calculated by the trapezoidal rule, then
the whole sequence {wn} will satisfy the trapezoidal rule recurrence; see [3, 7]. Two
interesting subclasses in (3.17) are ξ = 2

3 , giving BDF2-type methods, and ξ = 1,
giving implicit two-step Adams methods.

In order to deal with implicit terms in (3.1), we shall use, in addition to (1.4),

‖v‖ ≤ ‖v − ∆tF (v)‖ for all ∆t > 0, v ∈ R
m.(3.18)
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This can be interpreted as a condition on the implicit Euler method: ‖v1‖ ≤ ‖v0‖ if
v1 = v0 + ∆tF (v1). It might appear that (3.18) should be imposed as an additional
assumption to (1.4), but it is in fact a simple consequence. From v1 = v0 + ∆tF (v1)
it follows that (

1 +
∆t

∆tFE

)
v1 = v0 +

∆t

∆tFE

(v1 + ∆tFEF (v1)) ,

(
1 +

∆t

∆tFE

)
‖v1‖ ≤ ‖v0‖+ ∆t

∆tFE

‖v1‖ ,

and hence ‖v1‖ ≤ ‖v0‖ for any ∆t > 0. Thus under (1.4), the implicit Euler method
gives the monotonicity property (1.2) without any step size restriction. However,
this is only a first-order method, and for practical applications higher accuracy is
often required. In the following we therefore concentrate on the class of second-order
methods (3.17).

It was shown by Lenferink [13], in terms of contractivity for linear systems, that
the threshold value KLM in (2.9) is bounded by 2 for all two-step methods of order
p > 1. The optimal KLM = 2 is attained by the trapezoidal rule. In view of the
results for explicit methods, one might hope that such severe restrictions could be
circumvented in our formulation (1.2) with suitable starting procedures. Using (3.18),
we can follow the derivation of Lemma 3.1, just as for explicit methods. Depending
on the starting procedure, according to (3.6), this will give monotonicity (1.2) or
boundedness (3.7) for ∆t ≤ r(θ)∆tFE. We now consider the factors C∗LM that are
obtained by optimal values for θ in (3.8).

Determination of the optimal factors C∗LM in analytical form is cumbersome, even
if we restrict ourselves to subclasses such as ξ = 2

3 and ξ = 1. On the other hand,
numerically it is easy to compute the optimal θ values in (3.8). The corresponding
threshold values C∗LM are given in Figure 3.1 for ξ =

2
3 , 1 as function of η. We note

that C∗LM =
1
2 for the familiar implicit BDF2 method (ξ = η = 2

3 ).

0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

0 0.5 1 1.5
0

0.5
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1.5

2

2.5
BDF2 Adams2

Fig. 3.1. Threshold values C∗
LM versus η ∈ [0, 1.5], with ξ = 2

3
(left) and ξ = 1 (right).

The results are rather disappointing. The largest numbers C∗LM = 2 are found
for the values η = 1

2 , and numerical verification shows that the same also holds with
other choices of ξ ∈ (0, 2]. With η = 1

2 the function r2 in (3.4) has a removable
singularity, which is related to the reducibility of the method, and this is the reason
why the curves for η < 1

2 and η > 1
2 are very different, even having a discontinuity

for the case ξ = 2
3 .
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Of course, for a complete bound, suitable starting procedures such as the implicit
Euler method should also be taken into account. However, the main result is that
we obtain restrictions that are hardly better than those for explicit methods, and
such restrictions have been confirmed in numerical experiments [8]. For practical
purposes this means that the implicit schemes are not competitive with the explicit
ones if monotonicity properties like (1.2) or (2.3) are crucial in an application. For
this reason we shall restrict ourselves in the following section to explicit methods.

Remark 3.5. For the class of BDF2-type methods, threshold values for mono-
tonicity were calculated analytically in [8] for linear, constant-coefficient problems
w′(t) = Aw(t). The curve in Figure 3.1 with ξ = 2

3 almost coincides with the linear
result for η � 0.9, but for larger η an extra condition sets in due to nonlinearity. For
linear systems the restrictions in (3.3) can be relaxed by allowing negative values for
b0 + θb1 and b2 + θ(b0 + θb1).

The essential difference between linear and nonlinear results is most easily illus-
trated by the simple one-step method

wn − η∆tFn = wn−1 + (1− η)∆tFn−1,(3.19)

with parameter η ≥ 0, whose stability function is given by

R(z) = (1− ηz)−1(1 + (1− η)z).

Let γ be the largest number such that R and all its derivatives are nonnegative on
[−γ, 0]. It has been shown in [2, 17] (in terms of positivity and contractivity) that the
monotonicity property (1.2) will hold under (1.4) for linear systems w′(t) = Aw(t),
provided that ∆t ≤ γ∆tFE. Thus for linear problems we get the restriction

∆t ≤ γ ∆tFE, γ =

{
(1− η)−1 if η < 1,
∞ if η ≥ 1.

On the other hand, for nonlinear problems the optimal condition is seen to be

∆t ≤ C ∆tFE, C =

 (1− η)−1 if η < 1,
∞ if η = 1,
0 if η > 1.

Note that for η > 1 the coefficient in front of Fn−1 becomes negative. For linear
problems this can be counteracted by the implicit term, but for general nonlinear
problems we need this coefficient to be nonnegative.

4. Higher-order methods. This section contains derivations of boundedness
results for various important higher-order explicit linear multistep methods: the ex-
trapolated BDF and explicit Adams methods of order three or greater. To study the
boundedness property (3.7), with M ≥ 1, it is not necessary to specify the start-
ing schemes: although the value of M may vary according to the choice of starting
procedure, the boundedness property itself is independent of this choice.

4.1. Reformulations. We begin with a reformulation for the explicit multi-
step schemes. This is similar to formula (3.2) for two-step schemes, but to obtain
proper step size restrictions different θj will be used in the various stages. To keep
the presentation concise we give the reformulation here in detail only for three-step
schemes. Consider (2.5) with k = 3. Then by subtracting and adding θ1 . . . θjwn−j ,



616 W. HUNDSDORFER, S. J. RUUTH, AND R. J. SPITERI

j = 1, 2, . . . , n− 3, substituting wn−j in terms of wn−j−1, . . . , wn−j−3, and collecting
terms, it follows that wn can be expressed as

wn =

n−3∑
j=1

(
αjwn−j + βj∆tFn−j

)
+

2∑
i=0

(
ρi,nwi + σi,n∆tFi

)
,(4.1)

where the coefficients αj , βj are given by

α1 = a1 − θ1, α2 = a2 + a1θ1 − θ1θ2, α3 = a3 + a2θ1 + a1θ1θ2 − θ1θ2θ3,

αj =

(
j−3∏
k=1

θk

)
(a3 + a2θj−2 + a1θj−2θj−1 − θj−2θj−1θj), j ≥ 4,

β1 = b1, β2 = b2 + b1θ1, β3 = b3 + b2θ1 + b1θ1θ2,

βj =

(
j−3∏
k=1

θk

)
(b3 + b2θj−2 + b1θj−2θj−1), j ≥ 4.

We shall take θi ≥ 0 such that

αj ≥ 0, βj ≥ 0 for all j ≥ 1,(4.2)

and we define

C∗LM = max
{θi}i≥1

min
j≥1

αj
βj

.(4.3)

Then it follows, similar to Lemma 3.1, that the boundedness property (3.7) will hold
with M ≥ 1 under the step size restriction ∆t ≤ C∗LM∆tFE. To obtain results on
monotonicity (1.2), that is, M = 1, it is also necessary to study the coefficients ρi,n,
σi,n of the remainder term in (4.1) and to include specific starting procedures.

For k-step methods with k ≥ 4 we can proceed similarly. In the above reformu-
lation (4.1) we get the same expressions for α1, α2, α3 and β1, β2, β3; the other
αj , βj will then involve more terms.

4.2. Boundedness and TVB. First we give the step size restrictions for bound-
edness and the related TVB property for the third-order extrapolated BDF3 scheme

wn =
18
11wn−1 − 9

11wn−2 +
2
11wn−3 +

18
11∆tFn−1 − 1811∆tFn−2 +

6
11∆tFn−3(4.4)

and the fourth-order extrapolated BDF4 scheme

wn =
48
25wn−1 − 3625wn−2 +

16
25wn−3 − 3

25wn−4

+
48
25∆tFn−1 − 7225∆tFn−2 +

48
25∆tFn−3 − 1225∆tFn−4.

(4.5)

Theorem 4.1. Assume that (1.4) holds. The extrapolated BDF3 (4.4) scheme
satisfies the boundedness property (3.7) with M ≥ 1, provided ∆t ≤ 7

18∆tFE. For the
extrapolated BDF4 (4.5) scheme the boundedness property will hold if ∆t ≤ 7

32∆tFE.
These values 7

18 ,
7
32 are optimal within (4.2), (4.3).

Proof. Consider (4.4). We first maximize α1/β1 over the constraint β2 ≥ 0 to get
θ1 = 1. This also maximizes α2/β2; so next we maximize α3/β3 over the constraints
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α2 ≥ 0, β3 ≥ 0 to get θ2 =
2
3 . Maximizing α4/β4 over the constraints α3 ≥ 0, β4 ≥ 0

gives θ3 =
1
2 . We can now set the remaining θj =

1
2 , j ≥ 4, because this choice is

admissible in the sense of (4.2) and does not contribute to the step size restriction;
indeed, 1

2 is the value that minimizes the factor (b3+b2θj−2+b1θj−2θj−1) in βj , j ≥ 4.
Since

min
j≥1

αj
βj

= min

{
α1

β1
,
α2

β2
,
α3

β3
,
α4

β4
,
α5

β5

}
=

α1

β1
=

7

18
,

and we first optimized over α1/β1, we see that C
∗
LM =

7
18 .

The result for the extrapolated BDF4 scheme follows in a similar manner, except
that an admissible value for θ3 is more difficult to find; for this we used a numerical
search. We remark that in both cases the constant M will depend on the choice of
starting procedure used.

Another popular class of methods is formed by the explicit k-step Adams methods
with order p = k. The third-order method is

wn = wn−1 +
23
12∆tF (wn−1)− 1612∆tF (wn−2) +

5
12∆tF (wn−3),(4.6)

and the coefficients aj , bj for the higher-order methods can be found in [6], for exam-
ple. For these methods the results are less favorable than for the extrapolated BDF
schemes.

Theorem 4.2. Assume that (1.4) holds. The explicit three-step Adams method
(4.6) satisfies the boundedness property (3.7) with M ≥ 1, provided ∆t ≤ 84

529∆tFE. For
the explicit Adams methods with k ≥ 4, no positive C∗LM value in (4.3) exists.

Proof. To have β2 ≥ 0 we need θ1 ≥ −b2/b1, and consequently
α1

β1
≤ 1 + b2/b1

b1
=

1

b21

(
b1 + b2).

If k = 3 we have b1 =
23
12 and b2 = − 16

12 , leading to C∗LM ≤ 84
529 . Moreover, it follows

by some simple calculations that this upper bound is attained by taking all θi =
16
23 .

To show that we cannot have C∗LM > 0 if k ≥ 4, note that the k-step explicit
Adams method may be written as

wn = wn−1 + ∆t

k−1∑
j=0

γj∇jFn−1,

where ∇j represent the usual backward differences and the γj are positive constants
given in [6, section III.1]. A straightforward calculation for k ≥ 4 shows that

b1 =

k−1∑
j=0

γj =
55
24 +

k−1∑
j=4

γj , b2 = −
k−1∑
j=0

jγj = −5924 −
k−1∑
j=4

jγj .

Therefore b1 + b2 ≤ −4
24 < 0, implying that α1/β1 < 0. Hence the scheme does not

possess a positive threshold value C∗LM.
Remark 4.3. Following the same lines, it is also straightforward to show that

none of the explicit Nyström methods [6] has a positive threshold value C∗LM.
The generation of monotonicity results for high-order multistep schemes such as

extrapolated BDF3 by means of optimized strong-stability-preserving Runge–Kutta
starting procedures [4, 18] is part of our current research.
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5. Numerical illustrations.

5.1. Linear positivity test. As a first numerical test we consider the positivity
property (2.3) for the linear advection problem ut + ux = 0, 0 ≤ x ≤ 1, with inflow
boundary condition u(0, t) = 0 and initial mass u(x, 0) concentrated at the inflow
boundary. The semidiscrete system is obtained with first-order upwind discretization
in space and constant mesh width ∆x = 1/m. The resulting linear ODE system in
R
m is

w′(t) = Aw(t) , A =
1

∆x


−1
1 −1

. . .
. . .

1 −1

 , w0 =


1
0
...
0

 .(5.1)

The dimension of the system is taken to be m = 100. For this system we determined
experimentally the largest Courant number ν = ∆t/∆x for which wn ≥ 0 is maintained
up to n = 1000. We note that with the forward Euler method this will hold up to
ν = 1. Further we note that, by changing wj(t) in (5.1) into 1−wj(t), identical results
can be obtained with the condition ‖wn‖∞ ≤ ‖w0‖∞.

First we consider the class of explicit two-step methods (3.10) with parameter
values ξ = j/20, j = 0, 1, . . . , 40. Along with the forward Euler method and the
modified two-step procedure (3.15), we also consider the exact starting value w1 =
exp(∆tA)w0. The results are plotted in Figure 5.1, in combination with the theoretical
values C∗LM from (3.11).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

Fig. 5.1. Positivity test for the explicit two-step methods (3.10). Courant numbers versus
ξ ∈ [0, 2], starting with exact solution values [dots], forward Euler [solid line], and the modified
two-step procedure (3.15) [dashed line]. The thick gray line is the C∗

LM-curve from (3.11).

The influence of the starting values as given in the Theorems 3.3, 3.4 does not
show up accurately in Figure 5.1. We note, however, that the test problem here is
linear, whereas the theoretical results were obtained for nonlinear problems.

In a similar manner the behavior of the implicit two-step Adams and BDF-type
methods has been tested. The results are shown in Figure 5.2. The starting value
w1 was computed with the implicit Euler method and with method (3.19), where the
parameter η is the same as in (3.17); taking an exact starting value for w1 did give
results close to the latter starting procedure. For ξ > 1

2 the results with implicit Euler
and (3.19) also almost coincide.

The Courant numbers in Figure 5.2 are close to the theoretical bound C∗LM in
Figure 3.1 for η � 0.9. In particular, the different behavior for η < 1

2 and η > 1
2 shows

up very clearly. Quantitatively, only the results with the BDF-type methods with η ≤
1
2 and the implicit Euler method as starting procedure are somewhat more favorable
than the bound C∗LM. The difference between the curves in Figure 3.1 for the larger η
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Fig. 5.2. Positivity test for the implicit two-step methods (3.17) with ξ = 2
3

[left] and ξ = 1

[right]. Courant numbers versus η ∈ [0, 3
2
], starting with implicit Euler [dashed lines] and method

(3.19) [solid lines].

values is due to the fact that the values C∗LM were obtained for nonlinear problems; see
Remark 3.5. As noted previously, the rather small Courant numbers allowed with the
implicit methods in practice mean that these implicit second-order two-step methods
are not competitive with the explicit ones for problems where monotonicity is crucial.

In Table 5.1 the experimental positivity results are presented for the k-step ex-
trapolated BDF schemes (eBDFk) and the k-step explicit Adams methods, which are
also known as the Adams–Bashforth methods (ABk), k = 3, 4. Here we also list the
theoretical bounds on the Courant numbers for these methods that were obtained in
section 4. The experimental bounds were found with exact starting values and with
high-order Runge–Kutta starting procedures, giving approximately the same values.

Table 5.1
Positivity test for higher-order methods. Experimental Courant numbers and theoretical bounds.

eBDF3 AB3 eBDF4 AB4

Theoretical 7
18

≈ 0.39 84
529

≈ 0.16 7
32

≈ 0.22 0

Experimental 0.43 0.23 0.30 0.11

5.2. Nonlinear accuracy test. To compare the explicit linear multistep meth-
ods for a nonlinear example, we consider the Burgers equation

ut + (u
2)x = 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ 14 ,

with periodic boundary conditions and initial profile u(x, 0) given by the block func-
tion which equals 0 for x ∈ (0, 1

2 ] and 1 for x ∈ ( 12 , 1]. For increasing time the solution
u(x, t) consists of a shock at x = t and a rarefaction wave between 1

2 ≤ x ≤ 1
2 + 2t;

see Figure 5.3.
Spatial discretization is performed with the flux-limited scheme of van Leer [19],

which combines a second-order upwind-biased discretization (in smooth solution re-
gions) with first-order upwind fluxes; see also [14, p. 180] and [8]. For this test, with
u ∈ [0, 1], it can be shown that the forward Euler method is TVD and positive for
Courant numbers ν = 2∆t/∆x ≤ 1

2 . However, to achieve a reasonable accuracy the
Courant number should be taken significantly smaller than 1

2 , because otherwise the
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Fig. 5.3. Solution of Burgers equation for 0 ≤ x ≤ 1 at t = 0 [dashed] and t = 1
4

[solid line].
The light gray lines indicate the time evolution.

rarefaction wave suffers from compression due to linear instability of the forward Eu-
ler method with the second-order discretization. For Courant numbers in the range
[ 12 , 1] the forward Euler method is no longer strictly TVD, but the oscillations are
quite small. This can be understood heuristically by the observation that with the
first-order upwind discretization the forward Euler method is TVD up to ν = 1,
and in nonsmooth regions, where monotonicity matters most, the flux-limited scheme
becomes close to first-order upwinding.

The same observations apply to the multistep methods used in this test; the
theoretical limits for monotonicity can be nearly doubled without introducing large
temporal errors. Still, the theoretical predictions based on the threshold values C∗LM

show up when compared with forward Euler. The choice of starting procedures did
have only minor significance; for the results presented here the first step was taken
with the forward Euler method. In this test the discrete L1-errors

∆x

m∑
j=1

|u(xj , tn)− wnj |, m∆x = 1,

were measured for different Courant numbers in the range [0, 1] at time tn =
1
4 . The

test was performed on a fixed grid with mesh width ∆x = 10−2. The results for
various second-order two-step methods (3.10) are shown in Figure 5.4.

The methods in Figure 5.4(a) are the extrapolated BDF2 scheme (eBDF2, ξ = 2
3 ),

the two-step Adams–Bashforth method (AB2, ξ = 1), and the second-order modified
two-step method (Sh2) of Shu [15],

wn =
4
5wn−1 +

1
5wn−2 +

8
5∆tF (wn−1)− 25∆tF̃ (wn−2),(5.2)

which is the modified form of (3.10), ξ = 6
5 , with threshold factor K̃LM = 1

2 ; see
Remark 2.1. This scheme is more expensive in CPU time, and in this test it does not
perform as well as the other two, of which the extrapolated BDF2 scheme has a slight
advantage over the explicit two-step Adams method.

In Figure 5.4(b) the results are given for the methods (3.10) with ξ = 1
5 ,

6
5 ,

9
5 . For

comparison, results for the forward Euler method are also included. As predicted by
the bound C∗LM of (3.11), the method with ξ = 9

5 can only be used with small Courant
numbers. The method with ξ = 1

5 does provide results for larger Courant numbers,
but its accuracy deteriorates for large ν. The results with ξ = 6

5 are intermediate,
where it should be noted that this method is competitive with the more expensive
modified method (5.2), which is based on the same parameter choice.

In Figure 5.4 we have also indicated the spatial errors of the flux-limited van
Leer discretization with ∆x = 10−2; that is, the L1 difference between a semidiscrete
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Fig. 5.4. Burgers equation, L1-errors versus Courant numbers ν for explicit two-step meth-
ods (3.10). (a) eBDF2[ξ = 2

3
], AB2[ξ = 1], and Sh2[ξ̃ = 6

5
]; (b) ξ = 1

5
, ξ = 6

5
, and ξ = 9

5
, together

with forward Euler results [dotted line]. The light dashed horizontal line indicates the spatial error.

solution and PDE solution at t = 1
4 on this spatial grid. The modified scheme (5.2)

gives larger errors for ν → 0. This is due to the use of F̃ , which introduces some extra
numerical dissipation, in particular at the bottom and top of the rarefaction wave.
With most of the methods the L1-errors show oscillations as a function of ν before
becoming unbounded. This is an onset of instability, due to spatial oscillations at the
top of the shock or rarefaction wave.

Method (3.10) with ξ = 1
5 could be used with relatively large Courant numbers

ν without becoming unstable, but for the larger values ν the results are no longer
accurate, due to compression of the rarefaction wave. With the forward Euler method
this compression is much more pronounced. Time-stepping methods with high order
will mostly be beneficial for smooth solutions. The present test is primarily intended
to show the relevance of monotonicity. This should also be kept in mind with the
results for the third-order methods below.

The fact that the starting procedures did not matter significantly in this test is
somewhat more surprising than with the previous linear example. In the derivation of
our theoretical results for nonlinear problems no relation at all was assumed between
terms like F (wn) and F (wn−1). For grid points xj adjacent to the shock the spatial
discretization becomes close to the first-order upwind scheme and elsewhere we will
have Fj(wn) = Fj(wn−1)+O(∆t). It is not clear, however, how such arguments could
be used in a rigorous mathematical fashion.

In the same way some three-step methods were tested. The results are shown
in Figure 5.5. Here we selected the extrapolated BDF3 scheme (eBDF3) and the
three-step Adams–Bashforth method (AB3). Also included are the results for the
second-order three-step method

wn =
3
4wn−1 +

1
4wn−3 +

3
2∆tF (wn−1)(5.3)

of Shu [15] with threshold value KLM =
1
2 , which is optimal among the three-step

methods of order 2; see also Lenferink [12]. In the figure this method is indicated as
Sh2,3. Since this is a second-order method, comparison with AB2 or eBDF2 is actually
more appropriate. As expected from the theoretical bounds, the eBDF3 scheme does
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Fig. 5.5. Burgers equation, L1-errors versus Courant numbers ν for the explicit three-step
methods eBDF3, AB3, and Sh2, 3. The light dashed horizontal line indicates the spatial error.

perform better than the AB3 method. Also with these three-step methods, starting
procedures turned out not to be very influential. Here a standard two-stage second-
order Runge–Kutta method was used.

In summary we can say that the theoretical step-size restrictions of section 3 for
the monotonicity property (1.2) are probably somewhat pessimistic, but the step-size
restrictions under which the more general boundedness property (3.7) could be proved
give a good indication of the applicability of the various methods.

6. Summary and conclusions. We have shown that inclusion of starting pro-
cedures in multistep schemes allows for statements on monotonicity (1.2) and bound-
edness (3.7) with classes of methods that are important in practice (such as the Adams
and BDF-type methods). We find that the standard second-order two-step methods
AB2 (second-order Adams–Bashforth),

wn = wn−1 +
3
2∆tF (wn−1)− 12∆tF (wn−2),

and eBDF2 (second-order extrapolated BDF),

wn =
4
3wn−1 − 13wn−2 +

4
3∆tF (wn−1)− 23∆tF (wn−2),

have more relaxed time-stepping restrictions than schemes with positive coefficients
when monotonicity-preservation is required. Similarly, the well-known higher-order
schemes AB3 (4.6), eBDF3 (4.4), and eBDF4 (4.5) have more relaxed time-stepping
restrictions than schemes with positive coefficients when related boundedness prop-
erties are required. Numerical tests confirm the results of these theoretical studies:
these standard methods performed better than specially constructed methods with
positive coefficients. We particularly recommend the well-known extrapolated BDF
schemes.

Finally we have found that implicit second-order two-step schemes are not com-
petitive with the explicit ones when monotonicity properties are crucial, generalizing
one of the results in [8] for the two-step BDF-type schemes. The restrictions on the
step sizes for monotonicity and boundedness with the implicit schemes were shown to
be only marginally better than for the explicit schemes, and in practical computations
this will not be enough to justify the increase in computational work with the implicit
schemes.
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Abstract. A P1-nonconforming quadrilateral finite element is introduced for second-order ellip-
tic problems in two dimensions. Unlike the usual quadrilateral nonconforming finite elements, which
contain quadratic polynomials or polynomials of degree greater than 2, our element consists of only
piecewise linear polynomials that are continuous at the midpoints of edges. One of the benefits of
using our element is convenience in using rectangular or quadrilateral meshes with the least degrees
of freedom among the nonconforming quadrilateral elements. An optimal rate of convergence is
obtained. Also a nonparametric reference scheme is introduced in order to systematically compute
stiffness and mass matrices on each quadrilateral. An extension of the P1-nonconforming element to
three dimensions is also given. Finally, several numerical results are reported to confirm the effective
nature of the proposed new element.
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1. Introduction. We are concerned with nonconforming finite element methods
for second-order elliptic problems. Nonconforming elements have been used effectively
especially in fluid and solid mechanics due to their stability. Recently, these elements
have attracted increasing attention from scientists and engineers in more wide areas,
as this type of element is potentially useful in parallel computing.

The use of finite elements for Stokes problems, which is fundamental in fluid me-
chanics, usually requires the discrete Babus̆ka–Brezzi condition (inf-sup condition) to
be satisfied by the velocity and pressure variables, generally set in the mixed finite ele-
ment formulation; for instance, the standard P1-P0 pair for triangular decompositions
or the Q1-P0 pair for quadrilateral decompositions of the computational domain lead
to checkerboard solutions for pressure. However, if the nonconforming elements in-
troduced in [3, 8, 15, 5] are used to approximate the velocity part instead of the usual
P1 or Q1 elements, the Babus̆ka–Brezzi condition is easily satisfied, and thus stable
solutions are obtained. Nonconforming finite element methods have been proved to be
effective for several parameter dependent elasticity problems in a stable fashion such
that the methods converge independently of the Lamé parameters, while standard
conforming methods fail to converge as the parameters tend to a locking limit; see
[2, 12, 13].

Moreover, in view of domain decomposition methods, the use of nonconforming
elements facilitates the exchange of information across each subdomain and provides
spectral radius estimates for the iterative domain decomposition operator [9].

The nonconforming simplicial finite element space of lowest degree introduced
by Crouzeix and Raviart [8] is identical to the corresponding conforming one (that
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is, P1 in both cases), and thus it is rather simple to understand. Although the tri-
angular meshes are popular to use, in many cases one wishes to use quadrilateral
meshes with appropriate elements instead, when the problem geometry is of quadri-
lateral nature, especially in three dimensions. Concerning rectangular nonconforming
elements, Han [11] introduced a rectangular element with local degrees of freedom
being five, and Rannacher and Turek [15] introduced the rotated Q1 nonconforming
elements of two types: the first set of local degrees of freedom consists of the four
values at the midpoints of the edges, while the second one is composed of the four
average values over the edges. Recently, new nonconforming elements, which use only
the four values at the midpoints of the edges as degrees of freedom, have been an-
nounced by Douglas et al. [9], who in a sense combined and improved the two types of
local degrees of freedom for rotated Q1 elements, using high-order polynomials with
the degrees of freedom still being four. These elements were successfully applied to
solve Navier–Stokes problems by Cai, Douglas, and Ye [5]. A recent observation by
Arnold, Boffi, and Falk [1] implies that where the rectangular elements are applied to
truly quadrilateral meshes, the optimality in convergence will be lost. Thus for the
truly quadrilateral case, an extra element should be added [4], with the local degrees
of freedom being five; the extra degrees of freedom can be eliminated easily at an
element level since they are essentially bubble functions.

The purpose of this paper is to introduce P1-nonconforming finite element spaces
on quadrilateral meshes which have the lowest degrees of freedom. The motivation for
our new element comes from the observation that any P1 function on a quadrilateral
can be uniquely determined at any three of the four midpoints of edges.

The degrees of freedom for our P1-nonconforming quadrilateral element are about
half of those for the other rectangular nonconforming elements, and about a third of
those for the P1 triangular nonconforming space on the mesh with each quadrilateral
being divided into two triangles. Indeed, our P1-nonconforming quadrilateral element
space turns out to be a subspace of P1-nonconforming triangular element spaces by
dividing each quadrilateral into two triangles.

In the Q1-conforming quadrilateral element case, it is convenient to use a fixed
reference rectangle and basis from which, corresponding to each quadrilateral, a bi-
linear transformation can be used to calculate stiffness and mass matrices by pulling
back to the reference rectangle without losing the order of convergence. However, as
mentioned above, such a reference system does not guarantee optimal convergence
any more with existing nonconforming quadrilateral elements with only four degrees
of freedom [1]. We present a nonparametric reference scheme in section 4, which pro-
vides an efficient way of calculating the stiffness and mass matrices from a reference
rectangle without losing the order of convergence.

As discussed earlier, one of the motivations for seeking the P1-nonconforming
quadrilateral element space is to try to use it for the approximation of the velocities
and the P0 space for the pressure as in [8, 11, 15, 4]. However, we remark that with
this combination the discrete inf-sup condition is not fulfilled, as there are only three
degrees of freedom for the normal components at the midpoints of a quadrilateral.
But the current element works well as a locking-free element for elasticity problems
[14].

The organization of the paper is as follows. In the next section we present two P1-
nonconforming element spaces on quadrilateral meshes. Then section 3 describes an
interpolation operator and also deals with a brief analysis of convergence in the cases of
Dirichlet and Robin problems. Then a nonparametric reference scheme is introduced
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in section 4. The analysis carried out in the current paper has a counterpart in three
dimensions: P1-nonconforming hexahedral finite elements will be briefly discussed in
section 5, detailed analyses being treated in a forthcoming paper. Finally, numerical
examples are illustrated in section 6.

2. The P1-nonconforming element on quadrilateral meshes.

2.1. The P1-nonconforming quadrilateral element. Let Ω be a simply
connected polygonal domain in R

2 with boundary Γ. Let (Th)h>0 be a regular
family of decompositions (or triangulations) of Ω into convex quadrilaterals, where
h = maxQ∈Th hQ with hQ = diam(Q). For the standard definition of regular decom-
position, we refer to [10]. Henceforth, in this paper, a quadrilateral will be implicitly
assumed to be convex.

For a general quadrilateral Q, denote by vj , 1 ≤ j ≤ 4, its four vertices and by

mj , 1 ≤ j ≤ 4, the midpoints of edges of Q such that mj =
vj−1+vj

2 , 1 ≤ j ≤ 4, with
the identification v0 = v4. Let P1(Q) = Span{1, x, y}. The following lemmas are
trivial but useful in what follows.

Lemma 2.1. If u ∈ P1(Q), then u(m1) + u(m3) = u(m2) + u(m4). Conversely,
if uj is a given value at mj, for 1 ≤ j ≤ 4, satisfying u1 + u3 = u2 + u4, then there is
a unique u ∈ P1(Q) such that u(mj) = uj , 1 ≤ j ≤ 4.

Proof. The first half is trivial:

u(m1) + u(m3) =
u(v4) + u(v1)

2
+
u(v2) + u(v3)

2

=
u(v1) + u(v2)

2
+
u(v3) + u(v4)

2
= u(m2) + u(m4).

For the latter half, suppose that u1 +u3 = u2 +u4 and then choose a u ∈ P1(Q) such
that u(mj) = uj , j = 1, 2, 3. Then by the first half of the lemma, u1+u3 = u2+u(m4),
which implies that u(m4) = u4, so that u(mj) = uj , 1 ≤ j ≤ 4. Uniqueness is obvi-
ous.

Lemma 2.2. For 1 ≤ j ≤ 4, let ϕ̂j ∈ P1(Q) be defined such that

ϕ̂j(mk) =

{
1, k = j, j + 1 mod 4,
0, otherwise.

Then Span{ϕ̂1, ϕ̂2, ϕ̂3, ϕ̂4} = P1(Q). Indeed, any three of ϕ̂1, ϕ̂2, ϕ̂3, ϕ̂4 span P1(Q).

Proof. Clearly Span{ϕ̂1, ϕ̂2, ϕ̂3, ϕ̂4} ⊂ P1(Q). To show the other direction of
inclusion, it suffices to show that P1(Q) ⊂ Span{ϕ̂1, ϕ̂2, ϕ̂3}; then rotational symmetry
would imply that any three of ϕ̂1, ϕ̂2, ϕ̂3, ϕ̂4 span P1(Q). Let u ∈ P1(Q) be arbitrary.
Set

ψ = u(m1)ϕ̂1 + [u(m2)− u(m1)]ϕ̂2 + [u(m3)− u(m2) + u(m1)]ϕ̂3.

Then it is immediate to see that ψ(mj) = u(mj), j = 1, 2, 3. Lemma 2.1 implies
that ψ(m4) = u(m4) and therefore ψ is identical to u. This proves that P1(Q) ⊂
Span{ϕ̂1, ϕ̂2, ϕ̂3}.

Given a decomposition Th of Ω into quadrilaterals, let NQ, NV , and NE denote
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Fig. 1. Values at the midpoints of the basis function ϕj associated with the vertex vj .

the numbers of quadrilaterals, vertices, and edges, respectively. Then set

Th = {Q1, Q2, . . . , QNQ
};

NQ⋃
j=1

Qj = Ω,

V = {v1, v2, . . . , vNV
} : the set of all vertices of Q ∈ Th,

E = {e1, e2, . . . , eNE
} : the set of all edges of Q ∈ Th,

M = {m1,m2, . . . ,mNE
} : the set of all midpoints of e ∈ E .

In particular, let N i
V , N

i
E , and N

i
M denote the numbers of interior vertices, edges, and

midpoints of Q ∈ Th, respectively. Our objective is to introduce a P1-nonconforming
finite element space associated with the quadrilateral decomposition Th.

Set

NCh = {vh : Ω→ R| vh|Q ∈ P1(Q) for all Q ∈ Th,
vh is continuous at every m ∈M \ Γ},

NCh0 = {vh ∈ NCh| vh(m) = 0 for all m ∈ Γ ∩M}.

For each vertex vj ∈ V, denote by E(j) the set of all edges e ∈ E such that one
of the endpoints is vj , and byM(j) the set of all midpoints m of edges in E(j). Let
ϕj ∈ NCh be such that

ϕj(m) =

{
1 if m ∈M(j),
0 if m ∈M \M(j).

(2.1)

An example of such a function ϕj is shown in Figure 1. Notice that ϕ̂k, 1 ≤ k ≤ 4,
given in Lemma 2.2 belong to the restriction of ϕj , j = 1, . . . , NV , to Q.

Remark 2.3. Obviously ϕj |Q(vj) < 2 for all Q ∈ Th, with vj being one of its
vertices; moreover, ϕj |Q(vj) = 3/2 if Q is a parallelogram. Therefore, if Th is decom-
posed into parallelograms, ϕj is continuous at vj for all j. However, ϕj may not be
continuous in general. Examples of basis functions in conforming and nonconforming
cases are depicted in Figure 3(b),(c) for a simple mesh given in Figure 3(a).
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Fig. 2. The midpoints mj , 1 ≤ j ≤ 4, form a parallelogram in the quadrilateral with vertices
vj , 1 ≤ j ≤ 4.

2.2. The dimension and basis for NCh
0 . We proceed to investigate in the

dimension of NCh0 ; that of NCh will be discussed in the next subsection. Implicitly
the following assumption will be imposed on the decomposition in the rest of this
article, especially for Dirichlet problems, in order to exclude pathological cases.

Assumption I. Each interior edge has at least one interior vertex as its endpoint.

There are cases in which Assumption I is violated. For instance, some decompo-
sitions Th of Ω may contain elements whose four vertices lie on the boundary of Ω;
in these cases, the reduced decomposition T ′h, obtained by eliminating such elements
from Th, fulfills Assumption I.

An upper bound of dim(NCh0 ) is given in the following lemma.

Lemma 2.4. dim(NCh0 ) ≤ N i
V .

Proof. For the degrees of freedom for NCh0 define d : NCh0 → R
Ni

E by

d(ϕ) := (d1(ϕ), . . . , dNi
E
(ϕ))t, ϕ ∈ NCh0 ,

with dj(ϕ) = ϕ(mj) for each interior midpoint mj , j = 1, . . . , N i
E . If ϕ ∈ NCh0

satisfies dj(ϕ) = 0 for all j = 1, . . . , N i
E , clearly ϕ = 0. This implies that {dj}N

i
E

j=1

spans (NCh0 )′, the dual of NCh0 . Note that, for any j = 1, . . . , N i
E , the component

dj of d is nontrivial, since for each mj ∈ M \ Γ there exists a function ϕ such that
ϕ(mj) �= 0, as defined in (2.1) by Assumption I.

Due to Lemma 2.1, for each Qj ∈ Th having mj1 ,mj2 ,mj3 , and mj4 as its mid-
points of edges as in Figure 2, one of the following linear restrictions should be
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A 

(a) An example of a mesh.

(b) The P1-nonconforming basis whose
values are equal to 1 at the midpoints of
edges which meet with the vertex A, and
0 at all the other midpoints.

(c) The Q1-conforming basis whose val-
ues are 1 at the vertex A, and 0 at all the
other vertices.

Fig. 3. Shapes of P1-nonconforming (b) and Q1-conforming (c) basis functions in the quadri-
lateral mesh shown in (a).

imposed:

dj1 + dj3 − dj2 − dj4 = 0 if mjk /∈ Γ, 1 ≤ k ≤ 4,

dj1 + dj3 − dj2 = 0 if mj1 ,mj2 ,mj3 /∈ Γ and mj4 ∈ Γ,
dj1 − dj2 = 0 if mj1 ,mj2 /∈ Γ and mj3 ,mj4 ∈ Γ,

which can be written formally as

Ajd = 0.(2.2)

Here, Aj = (Aj,1, . . . , Aj,Ni
E
) is a row vector in R

Ni
E with at most four nontrivial
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entries such that

Aj,j1 = Aj,j3 = −Aj,j2 = −Aj,j4 = 1 if mjk /∈ Γ, 1 ≤ k ≤ 4,

Aj,j1 = Aj,j3 = −Aj,j2 = 1 if mj1 ,mj2 ,mj3 /∈ Γ and mj4 ∈ Γ,
Aj,j1 = −Aj,j2 = 1 if mj1 ,mj2 /∈ Γ and mj3 ,mj4 ∈ Γ.

We therefore see that

dim(NCh0 ) = dim((NCh0 )′)
≤ dim{d = (d1, . . . , dNi

E
)t; Ajd = 0, j = 1, . . . , NQ}.(2.3)

We proceed to see whether Aj , j = 1, . . . , NQ, are linearly independent vectors or
not. For this, assume that for some proper subset J � {1, 2, . . . , NQ},∑

j∈J
cjAj = 0,(2.4)

with cj �= 0 for all j ∈ J . Set ΩJ =
⋃
j∈J Qj . Then there exist an interior midpoint

ml ∈ ∂ΩJ ∩M \ Γ and Qk ⊂ ΩJ for which ml is a midpoint of an edge of Qk, since
ΩJ � Ω. From the linear restriction concerning Qk, Akd = 0, we see that Ak has a
nonzero entry in the lth column; moreover, Ak is the unique vector that has a nonzero
value in the lth entry among all Aj , j ∈ J, since ml is at the boundary of ΩJ . Thus
(2.4) implies that ck = 0, which is a contradiction. Therefore, we have

any NQ − 1 elements from {A1, A2, . . . , ANQ
} are linearly independent in R

Ni
E .

Let A = (At1, . . . , A
t
NQ−1)

t be the (NQ − 1) × N i
E matrix whose jth row is Aj .

Then the collection of (2.2) for j = 1, . . . , NQ − 1 can be written formally in the
matrix form

Ad = 0,

with the rank of A being NQ − 1. Notice from (2.3) that

dim(NCh0 ) ≤ dim{d = (d1, . . . , dNi
E
)t; Ad = 0}.(2.5)

Let B be an (N i
E − (NQ − 1))×N i

E matrix such that Ā = (AB ) is invertible: such
a matrix exists as rank(A) = NQ − 1. Setting (ψ1, . . . , ψNi

E−(NQ−1))
t = Bd, we have

Ād = (0, . . . , 0, ψ1, . . . , ψNi
E−(NQ−1))

t ∈ R
Ni

E .

This implies that {ψj}N
i
E−(NQ−1)

j=1 spans {d = (d1, . . . , dNi
E
)t; Ad = 0}, since Ā is

invertible. Therefore, from (2.5), we see that

dim(NCh0 ) ≤ N i
E − (NQ − 1).

Recall Euler’s formula for a simply connected domain, NV −NE +NQ = 1, which is

equivalent to N i
V −N i

E+NQ = 1. The following lemma is thus obtained: dim(NCh0 ) ≤
N i
E − (NQ − 1) = N i

V .

The dimension and basis functions for NCh0 are given in the following theorem.
Theorem 2.5. Let ϕj be the function defined in (2.1) with interior vertex vj ∈

V \ Γ, j = 1, . . . , N i
V . Then {ϕ1, ϕ2, . . . , ϕNi

V
} forms a basis for NCh0 . Therefore,



P1-NONCONFORMING QUADRILATERAL ELEMENTS 631

dim(NCh0 ) = N i
V . That is, the degrees of freedom for NCh0 is equal to the number of

interior vertices in Th.
Proof. Suppose

∑Ni
V

j=1 cjϕj = 0. Choose a vertex vl located at the boundary Γ.
Since Ω is connected, there exists an interior vertex vk adjacent to vl ∈ Γ. Let m be
the midpoint of vlvk. Then we have

0 =

Ni
V∑

j=1

cjϕj(m) = ck.

The coefficients cj of the ϕj ’s corresponding to all the vertices adjacent to Γ will vanish
in this manner. Then, stripping out all the boundary elements, we continue the above
argument to the next layer to show again that all the coefficients cj of the ϕj ’s corre-
sponding to all the vertices adjacent to that boundary layer vanish. We can continue
the argument to show that all the coefficients vanish until the domain is exhausted.
Thus {ϕ1, ϕ2, . . . , ϕNi

V
} is linearly independent. Moreover, {ϕ1, ϕ2, . . . , ϕNi

V
} forms a

basis for NCh0 since dim(NCh0 ) ≤ N i
V by Lemma 2.4, and therefore dim(NCh0 ) = N i

V .
This completes the proof.

Remark 2.6. Let T̃h be the triangulation of Ω into triangles by dividing each
quadrilateral into two triangles. Consider the P1-nonconforming simplicial element

space ˜NCh0 on T̃h. We then observe that NCh0 ⊂ ˜NCh0 . Moreover,

dim(˜NCh0 ) = N i
E +NQ = N i

V + 2NQ − 1 = dim(NCh0 ) + 2NQ − 1.

2.3. The dimension and basis for NCh. The dimension and basis for NCh
is then obtained by the arguments in the previous subsection with slight modifications.
Indeed, we have the following result.

Lemma 2.7. dim(NCh) ≤ NE −NQ = NV − 1.
Proof. The arguments of the proof are essentially identical to those for Lemma 2.4

with minor modifications, but for the sake of the reader’s convenience we repeat most
of the arguments with proper modifications.

First, define d : NCh → R
NE by

d(ϕ) := (d1(ϕ), . . . , dNE
(ϕ))

t
, ϕ ∈ NCh,

with dj(ϕ) = ϕ(mj) for each midpoint mj , j = 1, . . . , NE . Then one sees that {dj}NE
j=1

spans (NCh)′, the dual of NCh.
For each Qj ∈ Th having mj1 ,mj2 ,mj3 , and mj4 as its midpoints of edges, the

following linear restriction should be imposed:

dj1 + dj3 − dj2 − dj4 = 0,

which can be written formally as

Ajd = 0,

where Aj = (Aj,1, . . . , Aj,NE
) is a row vector in R

NE with at most four nontrivial
entries such that

Aj,j1 = Aj,j3 = −Aj,j2 = −Aj,j4 = 1.
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Consequently,

dim(NCh) = dim((NCh)′) ≤ dim{d = (d1, . . . , dNE
)t; Ajd = 0, j = 1, . . . , NQ}.

Next, assume that for a subset J � {1, 2, . . . , NQ},∑
j∈J
cjAj = 0,(2.6)

with cj �= 0 for all j ∈ J . Set ΩJ =
⋃
j∈J Qj . Then there exist a midpoint ml ∈

∂ΩJ ∩M and Qk ⊂ ΩJ for which ml is a midpoint of an edge of Qk. From the linear
restriction concerning Qk, Akd = 0, we see that Ak has a nonzero entry in the lth
column; moreover, Ak is the unique vector that has a nonzero value in the lth entry
among all Aj , j ∈ J, sinceml is at the boundary of ΩJ . Thus (2.6) implies that ck = 0,
which is a contradiction. Therefore, we have

{A1, A2, . . . , ANQ
} are linearly independent in R

NE .

Then by an argument quite identical to the proof of Lemma 2.4, we see that

dim(NCh) ≤ NE −NQ.
Recall Euler’s formula for a simply connected domain, NV −NE+NQ = 1. The lemma

thus is obtained: dim(NCh) ≤ NE −NQ = NV − 1.

The dimension and a basis functions for NCh are given in the following theorem.
Theorem 2.8. Let ϕj be the function defined in (2.1) with each vertex vj ∈

V, j = 1, . . . , NV . Choose any vertex vj0 ∈ V. Then {ϕ1, ϕ2, . . . , ϕNV
} \ {ϕj0} forms

a basis for NCh. Moreover, dim(NCh) = NV − 1. That is, the degrees of freedom
for NCh is equal to the number of vertices in Th minus 1.

Proof. Without loss of generality, assume vj0 = vNV
. Suppose

∑NV −1
j=1 cjϕj = 0.

Let vk be any vertex adjacent to vNV
, and let m be the midpoint of vkvNV

. Then

0 =

NV −1∑
j=1

cjϕj(m) = ck,

since m ∈ E(j) only if j = NV or k. Therefore we see that ck1 = 0 for all k1 such
that vk1 is a vertex of an edge e ∈ E(NV ). From all such vk1 ’s, we then proceed
to show that that ck2 = 0 for all k2 such that vk2 is a vertex of an edge e ∈ E(k1).
Since Ω is connected, by a finite repetition of the argument, we can conclude that all
cj , j = 1, . . . , NV −1, are zeroes. Thus {ϕ1, ϕ2, . . . , ϕNV −1} is linear independent and
forms a basis for NCh since dim(NCh) ≤ NV − 1 by Lemma 2.7.

3. The interpolation operator and convergence analysis. In this section
we define an interpolation operator and analyze convergence. The case of Dirichlet
problems is considered and convergence results are obtained by using standard ar-
guments. The case of Neumann problems, which is analogous to that of Dirichlet
problems, is then discussed in brief.

We first consider the following Dirichlet problem:

−∇ · α∇u+ βu = f, Ω,(3.1a)

u = 0, Γ,(3.1b)
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with α = (αjk), αjk, β ∈ L∞(Ω), j, k = 1, 2, 0 < α∗|ξ|2 ≤ ξtα(x)ξ ≤ α∗|ξ|2 < ∞,
ξ ∈ R

2, β(x) ≥ 0, x ∈ Ω, and f ∈ H−1(Ω). The weak problem is given as usual: find
u ∈ H1

0 (Ω) such that

a(u, v) = 〈f, v〉 , v ∈ H1
0 (Ω),(3.2)

where a(u, v) = (α∇u,∇v) + (βu, v), with (·, ·) being the L2(Ω) inner product and
〈·, ·〉 the duality pairing between H−1(Ω) and H1

0 (Ω).
Our P1-nonconforming method for problem (3.1a) is stated as follows: find uh ∈

NCh0 such that

ah(uh, vh) = 〈f, vh〉 , vh ∈ NCh0 ,(3.3)

where

ah(u, v) =
∑
Q∈Th

aQ(u, v),

with aQ : H1(Q)×H1(Q)→ R being the restriction of a to Q.

For our convergence analysis, define the projection Πh : H
2(Ω) ∩H1

0 (Ω)→ NCh0
such that, for ϕ ∈ H2(Ω) ∩H1

0 (Ω),

Πhϕ(m) =
1

2
(ϕ(v1) + ϕ(v2)) for all m ∈M,

where v1 and v2 are the two vertices of the edge in Th whose midpoint is m. Notice
that Πh is well defined. Indeed, with Q ∈ Th, vj ,mj , 1 ≤ j ≤ 4, given as in Figure 2,
one has

Πhϕ(m1) + Πhϕ(m3) =
1

2
(ϕ(v1) + ϕ(v2) + ϕ(v3) + ϕ(v4)) = Πhϕ(m2) + Πhϕ(m4).

Thus by Lemma 2.1, Πhϕ ∈ P1(Q). Clearly Πhϕ is continuous at all midpoints of
edges of Th. Therefore Πhϕ ∈ NCh0 .

Since Πh preserves P1(Q) for all Q ∈ Th, standard interpolation approximation
results, not by using a reference element but by applying the Bramble–Hilbert lemma
to each actual element, lead to the finding that∑

Q∈Th
||ϕ−Πhϕ||L2(Q) + h

∑
Q∈Th

||ϕ−Πhϕ||H1(Q) ≤ Ch2||ϕ||H2(Ω),(3.4)

ϕ ∈ H2(Ω) ∩H1
0 (Ω).

(For instance, a slight modification to Exercise 3.1.2 in [6] using the result of [7] would
give the estimate.)

Also, letting γj = ∂Ω ∩ ∂Qj , γjk = ∂Qj ∩ ∂Qk, and denoting the midpoint of γj
and γjk by mj and mjk, respectively, define

Λh = {λ ∈ Πj,kP0(γjk)×ΠjP0(γj) |λjk + λkj = 0, where λjk = λ|γjk , λj = λ|γj},
where P0(S) denotes the set of constant functions on a set S. Then define the pro-
jection P0 : H

2(Ω)→ Λh so that if v ∈ H2(Ω),〈
α
∂vj
∂νj
− P0vj , z

〉
γ

= 0 for all z ∈ P0(γ), γ = γjk or γj ,(3.5)
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where vj = v|Qj
and νj is the unit outward normal to Qj . One then has∑

j

∥∥∥∥α∂vj∂νj − P0v

∥∥∥∥
L2(∂Qj)


2

≤ Ch 1
2 ||v||2.(3.6)

With the broken energy norm

||ϕ||h = ah(ϕ,ϕ) 1
2 ,

we are now in a position to state the usual second Strang lemma [16, 17, 6].
Lemma 3.1. Let u ∈ H1(Ω) and uh ∈ NCh0 be the solutions of (3.2) and (3.3),

respectively. Then,

‖u− uh‖h ≤ C
{

inf
v∈NCh

0

‖u− v‖h + sup
w∈NCh

0

|ah(u,w)− 〈f, w〉 |
‖w‖h

}
.

Notice that (3.4) implies that

inf
v∈NCh

0

‖u− v‖h ≤ C‖u‖2h.(3.7)

Next, for the consistency error term, by a simple calculation one has

ah(u,w)− 〈f, w〉 =
∑
j

〈
α
∂uj
∂νj
, w

〉
∂Qj\γj

.

Since a function w in NCh0 is linear on each γjk and continuous at the midpoints, the
following useful orthogonality holds:

〈P0uj , wj〉γjk + 〈P0uk, wk〉γkj
= 〈P0uj , wj − wk〉γjk = 0 for all w ∈ NCh0 .(3.8)

From the two orthogonalities (3.5) and (3.8),

ah(u,w)− 〈f, w〉 =
∑
j

〈
α
∂uj
∂νj
− P0uj , w −mj

〉
∂Qj\γj

,(3.9)

where mj is chosen to be the average of w on Qj . Due to (3.4), (3.6), and a trace
theorem, ∣∣∣∣∣∣

∑
j

〈
α
∂uj
∂νj
− P0uj , w −mj

〉
∂Qj

∣∣∣∣∣∣
≤ C||u||2h 1

2

∑
j

||w −mj ||L2(Qj)||∇(w −mj)||L2(Qj)

 1
2

≤ C||u||2h
∑

j

||∇w||2L2(Qj)

 1
2

≤ C||u||2||w||hh.(3.10)

Consequently, applying the estimates (3.7) and (3.10), combined with (3.9), in Lemma
3.1 gives the usual energy-norm error estimate. The use of a duality argument is
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Fig. 4. The nonparametric reference scheme: a general bilinear mapping B can be regarded as
the composition of a simple bilinear map S and an affine map A.

analogous to that in [9], and therefore we omit the details. To sum up, we have the
following theorem.

Theorem 3.2. Let u ∈ H1(Ω) and uh ∈ NCh0 be the solutions of (3.2) and
(3.3), respectively. Then we have

||u− uh||h ≤ Ch||u||H2(Ω).

Moreover, if Ω is convex and f ∈ L2(Ω), then we have

||u− uh||L2(Ω) ≤ Ch2||u||H2(Ω).

Remark 3.3. The case of Robin problems is similar to that of Dirichlet problems,
replacing the space H1

0 (Ω) and NCh0 H1(Ω) and NCh, as usual.
Remark 3.4. For the case of mixed boundary value problems, the dimension and

basis functions can be computed and constructed analogously. Indeed, the dimension
and basis functions are between those for the Dirichlet and Robin boundary problems.

4. A nonparametric reference scheme. In this section we introduce a non-
parametric reference scheme with which finite elements in general quadrilaterals can
be easily built from a fixed reference basis function space defined on a reference do-
main.

For given Q ∈ Th with vertices vj , 1 ≤ j ≤ 4, and midpoints of edges mj , 1 ≤ j ≤
4, as in Figure 4, there is a unique affine transformation A : R

2 → Q such that

A(1, 0) = m1, A(0, 1) = m2, A(−1, 0) = m3, A(0,−1) = m4,
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since the four midpoints of any quadrilateral form a parallelogram. In fact, A is given
by

A(x̂, ŷ) =
v1 + v2 + v3 + v4

4
+
v1 − v2 − v3 + v4

4
x̂+

v1 + v2 − v3 − v4
4

ŷ.

Denote Q̂ = A−1(Q) and let m̂j , 1 ≤ j ≤ 4, indicate the points (1, 0), (0, 1), (−1, 0),
(0,−1), respectively. Define ϕ̂j ∈ Span{1, x̂, ŷ}, 1 ≤ j ≤ 4, such that

ϕ̂j(m̂k) =

{
1, k = j, j + 1 mod 4,
0, otherwise.

Then, by Lemma 2.2, P1(Q) = Span{ϕ̂j ◦ A−1; 1 ≤ j ≤ 4, }. This enables us to
construct a basis function space by using this fixed reference basis function space
{ϕ̂j}4j=1, although Q̂ may vary.

A possible drawback due to the variance of Q̂ may come from difficulty in calcu-
lating the integrals of products of basis functions and their gradients on Q̂. However,

this will be overcome easily as follows. Let
◦
Q= [−1, 1]2 and denote its vertices by

◦
vj , 1 ≤ j ≤ 4, as in Figure 4. Then there is a unique bilinear transformation B :

◦
Q→ Q,

B(
◦
x,
◦
y) = v1 + (v2 − v1)1−

◦
x

2
+ (v4 − v1)1−

◦
y

2
+ (v3 + v1 − v2 − v4)1−

◦
x

2

1− ◦y
2
,

so that B(
◦
vj) = vj , 1 ≤ j ≤ 4. Indeed, S = A−1 ◦B is given by

S(
◦
x,
◦
y) = (

◦
x +d1

◦
x
◦
y,
◦
y +d2

◦
x
◦
y),

where

(d1, d2) = (v1 + v3 − v2 − v4)
(
v1 − v3 − v2 + v4
v1 − v3 + v2 − v4

)−1

.

Now, we can pull back the integrals on Q̂ to those on
◦
Q by a change of variables,

using the transformation S. For example, suppose ϕj = ϕ̂j ◦A−1, j = 1, 2, to be two
basis functions on Q. Then the integral on Q can be calculated as follows:∫

Q

β(x, y)ϕ1(x, y)ϕ2(x, y) dxdy

=

∫
◦
Q

β(B(
◦
x,
◦
y))ϕ̂1(S(

◦
x,
◦
y))ϕ̂2(S(

◦
x,
◦
y)) |detDB| d ◦x d ◦y.

5. The extension to three dimensions. We give only a brief remark to extend
the results in sections 2, 3, and 4, to three dimensions. For the sake of simplicity, let
R be a three-dimensional hexahedron, with mj , j = 1, . . . , 6, being the barycenters
of the six faces such that mj and mk are barycenters of opposite faces if j + k = 7.
Analogously to Lemma 2.1, if u ∈ P1(R), then

u(m1) + u(m6) = u(m2) + u(m5) = u(m3) + u(m4).

Conversely, if uj is a given value at mj , for 1 ≤ j ≤ 6, satisfying u1 + u6 = u2 +
u5 = u3 + u4, then there is a unique u ∈ P1(R) such that u(mj) = uj , 1 ≤ j ≤



P1-NONCONFORMING QUADRILATERAL ELEMENTS 637

Table 1
Degrees of freedom for Q1-conforming, P1-nonconforming, and other nonconforming elements.

Elements 42 82 162 322 642 1282 2562

Q1-conforming element 9 49 225 961 3969 16129 65025
P1-NC element 9 49 225 961 3969 16129 65025

Other NC elements 24 112 480 1984 8064 32512 130560

6. This fact therefore leads to the conclusion that the local degrees of freedom for
the three-dimensional nonconforming hexahedral element is four. Indeed, the space
Span{1, x, y, z} serves as the basis for the local nonconforming hexahedral element
space for each hexahedron.

Concerning the global basis, consider a standard decomposition Th of a three-
dimensional domain Ω into the union of hexahedrons Rj with vertices pk and barycen-
ters ml. At each vertex pk, the global basis function ϕk is then defined analogously
to the two-dimensional case: ϕk|Rj ∈ P1(Rj), ϕk(ml) = 1 if ml is the barycenter of a
face whose vertex contains pk; ϕk(ml) = 0 otherwise.

Then extensions of the rest of sections 2, 3, and 4 to three dimensions will be
valid with suitable modifications.

6. Numerical results. In this section we present several numerical results to
compare lowest-order quadrilateral elements which are either conforming or noncon-
forming. More precisely, six different elements are examined here including the P1-
nonconforming quadrilateral element and the standard Q1-conforming element. We
also test the two rotated Q1-nonconforming elements introduced by Rannacher and
Turek [15] with the degrees of freedom being the four midpoint values at the mid-
points of edges and the four average values over edges. In addition, comparisons are
made with the elements given by Douglas et al. [9], the local basis of which is of the
form Span{1, x, y, θl(x)− θl(y)}, l = 1, 2, where the θl is given by

θl(t) =

{
t2 − 5

3 t
4, l = 1,

t2 − 25
6 t

4 + 7
2 t

6, l = 2.

The following Dirichlet boundary problem is employed:{ −�u = f, Ω,
u = 0, ∂Ω,

with the domain Ω = [0, 1]2 and the exact solution u(x, y) = sin(2πx) sin(2πy)(x3 −
y4 + x2y3), the function f being generated.

In every figure the logarithmic errors with base 2 are plotted against the loga-
rithmic values of degrees of freedom again with base 2. With the uniform mesh as in
Figure 5(a), the numerical errors are given in Figure 6. Convergence behaves more
or less in optimal fashion for every element. Notice that the degrees of freedom for
P1-nonconforming and Q1-conforming are nearly half of those of other nonconforming
elements, as shown in Table 1.

We observed that the optimal convergence patterns break for nonconforming ele-
ments if the nonuniform mesh depicted in Figure 5(b) is used with the standard bilin-
ear reference scheme, since the nonconforming spaces do not contain the linear space
as explained in [1]. In Figure 7 we show the error behaviors for the P1-nonconforming
element method, using the nonparametric reference scheme introduced in section 4,
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Fig. 5. The uniform and nonuniform meshes on Ω.
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Fig. 6. L2(Ω) errors of uh and ∇uh (in logarithmic scale) on the uniform mesh.

and compare them with those for the Q1-conforming element method with the stan-
dard bilinear reference scheme applied. These two cases perform as well as we can
expect, and the convergence rates are drawn in Figure 7. Our nonparametric reference
scheme, which seems to be specific to the P1-nonconforming quadrilateral element,
does not work for the other known nonconforming quadrilateral elements mentioned
in the paper; hence it does not seem fair to report such results here, some of which
can be found in [14].

Several experiments were performed with the Robin problem. The errors, omitted
here, behave quite similarly to those for the case of Dirichlet problems, as discussed
above. Some reports can be found in [14].
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Abstract. We derive and study well-balanced schemes for quasi-monotone discrete kinetic
models. By means of a rigorous localization procedure, we reformulate the collision terms as non-
conservative products and solve the resulting Riemann problem, whose solution is self-similar. The
construction of an asymptotic preserving (AP) Godunov scheme is straightforward, and various com-
pactness properties are established within different scalings. Finally, some computational results are
supplied to show that this approach is realizable and efficient on concrete 2 × 2 models.
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1. Introduction. In this paper, we are interested in the numerical analysis of
the forthcoming one-dimensional system of semilinear equations,

∂tf
± ± ∂xf± = ∓G(f+, f−), x ∈ R, t > 0,(1.1)

in both rarefied and diffusive regimes, the latter being obtained through the transfor-
mation t → t/ε2, x → x/ε; see (3.4). The unknowns 0 ≤ f± are supposed to be at
least bounded variation (BV) functions [39] in the space variable.

One motivation comes from the study of classical Boltzmann models,

∂tf + 
ξ · ∇f = Q(f, f),(1.2)

where 0 ≤ f(t, x, ξ) stands for a density of particles moving with velocity 
ξ in the am-
bient space and Q(f, f) is a collision operator satisfying some structural assumptions;
see, e.g., [7, 38]. Such a model relaxes under certain variables scale

ε∂tf + 
ξ · ∇f = Q(f, f)

ε
, ε→ 0+,

towards the incompressible Navier–Stokes system [28], whereas for ε � 1, it describes
the flow of some cloudy bulk of rarefied molecules.

Coming back to our simplified model (3.4), we consider only particles moving
with velocity ±1. Therefore, the density f in (1.2) boils down to a two-component
vector satisfying the system (1.1), and the collision term takes a simple form [36]. In
order to ensure some stability properties, namely L1(R)-contraction [24, 33, 38], we
ask for the so-called quasimonotonicity of the right-hand side, which reads

G ∈ C1(R2), G(0, 0) = 0, ∂+G
def
=

∂G

∂f+
≥ 0, ∂−G

def
=

∂G

∂f−
< 0.(1.3)

∗Received by the editors December 10, 2001; accepted for publication (in revised form) October 21,
2002; published electronically May 6, 2003. This research was partially supported by the European
Union “Asymptotic methods in kinetic theory” TMR project ERBFMRXCT970157.

http://www.siam.org/journals/sinum/41-2/39939.html
†Istituto per le Applicazioni del Calcolo (sezione di Bari), Via G. Amendola 122-I, 70126 Bari,

Italy (l.gosse@area.ba.cnr.it).
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This matches essentially the standard hypotheses encountered in [8, 29, 30], with the
notable exception of [31], in which compactness results are established by means of
a different methodology. Our present objective is then to develop and study robust
numerical processes for (1.1), (3.4), stable and reliable on the whole range 0 ≤ ε ≤ 1.
We aim also at establishing rigorous compactness properties for these schemes in the
spirit of the former articles [8, 29].

Part of this program has already been reached by the authors of [17, 21, 22], who
introduced the notion of asymptotic preserving (AP) schemes relying on former works
devoted to semilinear hyperbolic relaxation; in the present context, we refer to [30] and
the quotations therein. Although the aforementioned schemes are computationally
competitive, they still lack rigorous stability results as the stiffness strengthens in the
diffusive limit; see, however, [19, 23]. On the other hand, the discretizations proposed
in [2, section 3.1] do not fully address the issue of stability as ε→ 0.

Thus we propose to work out this twofold objective making use of the so-called
well-balanced (WB) schemes [12, 15] (see also [4, 18, 26, 34]), built on a localization
procedure already used in [1, 10, 11]. It relies on a rather simple idea: to reformulate
the collision terms as a nonconservative (NC) product [25], in order to be able to solve
exactly self-similar Riemann problems inside a classical Godunov procedure [9].

The concentration process for the right-hand side is carried out within section 2
by means of uniform BV estimates and representation of weak-� limits of measures.
Then in section 3, we deduce in a rather straightforward way a Godunov scheme whose
building blocks are nonconservative Riemann problems. Such a scheme turns out to
be WB in the rarefied regime (see section 3.1) and AP in the diffusive limit ε → 0
(see sections 3.2, 3.3). We give several compactness results under very reasonable
CFL conditions of the type ∆t � max(εh, h2) (where h,∆t stand for the space/time
steps) by means of uniform BV bounds. Finally, we display some numerical results to
illustrate various estimates in section 4 on widely used discrete kinetic models such
as Carleman’s [6] or Ruijgrok and Wu’s [37].

2. A nonconservative reformulation for the kinetic model. In the present
section, we are about to follow the canvas of [10] in order to reformulate (1.1) as a
homogeneous but nonconservative weakly coupled 2× 2 system.

2.1. Uniform BV estimates. We consider the Cauchy problem for 1 ≥ ε > 0:

∂tf
± ± ∂xf± = ∓G(f+, f−)∂xaε, 0 ≤ f±(0, x) = f±0 (x) ∈ L1 ∩BV (R).(2.1)

We assume that aε is Lipschitz continuous for ε > 0; more precisely,

aε(x) =



jh for x ∈
]
jh,

(
j +

1

2
− ε

2

)
h

]
,

x

ε
+

(
j +

1

2

)
h

(
1− 1

ε

)
for x ∈

](
j +

1

2
− ε

2

)
h,

(
j +

1

2
+
ε

2

)
h

]
,

(j + 1)h for x ∈
](
j +

1

2
+
ε

2

)
h, (j + 1)h

]
.

(2.2)
This means that aε=1(x) = x, aε ∈ BVloc(R) uniformly in ε, ∂xaε ≥ 0, and moreover,
(1A stands for the characteristic function of a set A)

aε
ε→0−→

∑
j∈Z

jh1](j− 1
2 )h,(j+

1
2 )h]

, h > 0.
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From [24, 33], one deduces that the Cauchy problem for (2.1) is well posed for any
ε > 0 but becomes ambiguous in the limit ε→ 0 because a so-called nonconservative
product [25] appears on the right-hand side as ∂xa

ε concentrates into a Dirac comb.
Lemma 1. Let f±0 ∈ L1 ∩BV (R) have compact support; then the weak solutions

to (2.1) f± belong to BVloc(R
+
∗ × R) uniformly in ε.

Proof. We split the proof into several steps for the sake of clarity.
(i) From [33] and the fact that G is quasi-monotone and ∂xa

ε ≥ 0, one deduces a
L1(R) contraction principle for any value ε > 0: if f̃±0 ∈ L1 ∩BV (R),

∀t > 0, ∂t

∫
R

(|f+(t, x)− f̃+(t, x)|+ |f−(t, x)− f̃−(t, x)|)dx ≤ 0.(2.3)

As G(0, 0) = 0, the null solution trivially satisfies (2.1), and this ensures the L1

stability and the positivity-preserving property. As we assumed that either −∂−G (or
∂+G) is strictly positive, we can use the implicit function theorem to deduce that the
equation G(u, v) = 0 admits as a unique solution a smooth curve v = M(u), M ′ ≥
0, called the Maxwellian distribution. Therefore, using these curves as comparison
functions inside (2.3) gives a maximum principle. More precisely, as in [38], the
following domain,

[0, ‖f+
0 ‖L∞(R)]× [0,M(‖f+

0 ‖L∞(R))],

is positively invariant for (2.1). But since (2.1) isn’t translation invariant, (2.3) doesn’t
guarantee the uniform BV (R) stability.

(ii) Differentiating each equation in (2.1) with respect to time, multiplying by
(sgn(∂tf

+), sgn(∂tf
−))T , and integrating on x ∈ R, the same way one reaches

∀t > 0, ∂t

∫
R

(|∂tf+(t, x)|+ |∂tf−(t, x)|)dx ≤ 0.(2.4)

This implies that ∂tf
±(t, .) are bounded measures on R, and the same holds true for

G(f+, f−)∂xaε by the L∞ stability and (2.2); but by their very definition, one has
also

|∂xf±| − |G(f+, f−)∂xaε| ≤ |∂tf±| ≤ |∂xf±|+ |G(f+, f−)∂xaε|.(2.5)

So inside any interval a < 0 < b large enough, one gets out of (2.4), (2.5) for any
t > 0,∫ b

a

|∂xf+(t, x)|+ |∂xf−(t, x)|dx ≤
∫

R

|∂xf+
0 |+ |∂xf−0 |+ 4‖G(f+, f−)‖L∞

∫ b

a

|∂xaε|,

and this ensures the BVloc(R) stability for t > 0.
(iii) It remains to check the L1 modulus of continuity in the time variable. Thanks

to the BVloc bound, we deduce from (2.1) that on the same interval there holds for
t > s ≥ 0 (TV stands for the total variation in space):∫ b

a

|f±(t, x)−f±(s, x)|dx ≤ |t−s|
[
TV (f+

0 ) + TV (f−0 ) + 6‖G(f+, f−)‖L∞

∫ b

a

|∂xaε|
]
.

And this is enough to conclude the proof.
Of course, by the classical Helly’s compactness principle, we deduce that the

sequence of weak solutions to (2.1) is relatively compact in the strong topology of
L1
loc(R

+
∗ × R) as ε→ 0.
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2.2. Limiting values of the right-hand side. In order to shed complete light
on the limit system emanating from (2.1) as ε → 0, we must give a precise meaning
to the ambiguous product appearing on its right-hand side. This can be done within
the recent theory of nonconservative products [25], which can be applied thanks to
the uniform BV -bound established in the preceding section.

In order to reveal the nature of the limit for G(f+, f−)∂xaε in the weak-� topology
of measures, we pick up a test function ψ ∈ C0

c (R
+
∗ × R) that is continuous and

compactly supported and look at the behavior of the sequence

Iε =
∫

R
+
∗ ×R

G(f+, f−)∂xaεψ(t, x)dtdx, ε→ 0.

Proposition 1. Under the assumptions of Lemma 1, there holds as ε→ 0,

G(f+, f−)∂xaε
weak−� M

⇀∑
j∈Z

h

(∫ 1

0

G(f̄+
j+ 1

2

, f̄−
j+ 1

2

)(t, ξ)dξ

)
δ

(
x−

(
j +

1

2

)
h

)
,

where δ stands for the Dirac mass in x = 0 and the “microscopic profiles” f̄±
j+ 1

2

satisfy

the ordinary differential system

∂ξ f̄
±
j+ 1

2

= −hG(f̄+
j+ 1

2

, f̄−
j+ 1

2

), ξ ∈ [0, 1],(2.6)

with the initial data for t ∈ R
+ and x =

(
j + 1

2

)
h, j ∈ Z :

f̄+
j+ 1

2

(t, ξ = 0) = f+(t, x− 0), f̄−
j+ 1

2

(t, ξ = 1) = f+(t, x+ 0).(2.7)

We stress that the left/right values of f±(t, .) in (2.7) make sense, thanks to the
uniform BV-regularity.

Proof. We notice at once that, thanks to the definition (2.2) of aε, we have

Iε =
∫

R
+
∗

∑
j∈Z

∫ (j+ 1
2+ ε

2 )h

(j+ 1
2− ε

2 )h

G(f+, f−)
ε

ψ(t, x)dxdt.

Thus it is convenient to perform a rescaling of the space variable:

[0, 1] � ξ = 1

hε

(
x−

(
j +

1

2
− ε

2

)
h

)
, x =

(
j +

1

2
− ε

2

)
h+ ξhε

ε→0→
(
j +

1

2

)
h.

Inside any stripe
](
j + 1

2 − ε
2

)
h,
(
j + 1

2 +
ε
2

)
h
]
, the unknowns f± satisfy the following

semilinear boundary value problem for ξ ∈ [0, 1]:

εh∂tf
± ± ∂ξf± = ∓h.G(f+, f−), t > 0,

f+(t, ξ = 0) = f+
(
t,
(
j + 1

2 − ε
2

)
h
)
,

f−(t, ξ = 1) = f−
(
t,
(
j + 1

2 +
ε
2

)
h
)
,

f±(t = 0, ξ) = f±0 (ξ).

Its solution can be computed by the method of characteristics for t ∈ [τ0, τ0 + εh],

ξ̇±τ0 =
±1
εh , ξ+τ0(τ0) = 0, ξ−τ0(τ0) = 1;

ḟ± = ∓1
ε G(f

+, f−), f±(t) = f±(t, ξ±τ0(t)).
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One sees, therefore, that along ξ±τ0 , there holds

∂ξf
± = ḟ±

(
ξ̇±τ0
)−1

= −h.G(f+, f−).

Since the system is semilinear, ξ±τ0 realizes a diffeomophism from [τ0, τ0 + εh] onto
[0, 1] and has an inverse we note τ±; it satisfies

∀ξ ∈ [0, 1], τ+(0) = τ−(1) = τ0,
dτ±

dξ
= εh

ε→0→ 0.

This means in particular that for ξ ∈ [0, 1],

f±(t) = f±(t, ξ±τ0(t)) = f±(τ±(ξ), ξ) ε→0→ f±(τ0, ξ)

and keeps on satisfying the differential equation. It remains to rewrite

Iε =
∫

R
+
∗

∑
j∈Z

∫ 1

0

h.G(f+, f−)(t, ξ)ψ
((

j +
1

2
− ε

2

)
h+ ξhε

)
dξdt.

We can invoke Lebesgue’s dominated convergence theorem in order to pass to the
limit ε→ 0 in Iε, and we are done.

From now on, the meaning of the “distributions product” in

∂tf
± ± ∂xf± = ∓

∑
j∈Z

h.G(f+, f−)δ
(
x−

(
j − 1

2

)
h

)
(2.8)

is to be always understood as following from Proposition 1. In particular, this last
result provides a unique way to solve the Riemann problem for (2.8) with three simple
waves, two of them moving with velocity ±1 associated with the convection process,
and the static one rendering the action of the localized collision term. More precisely,
if we supply four constant states at time t = 0 separated by a discontinuity in x =(
j − 1

2

)
h f±L/R, the self-similar solution to (2.8) is given by



(f+
L , f

−
L ) for x− (j − 1

2

)
h < −t,

(f+
L , f̃

−) for −t < x− (j − 1
2

)
h < 0,

(f̃+, f−R ) for 0 < x− (j − 1
2

)
h < t,

(f+
R , f

−
R ) for x− (j − 1

2

)
h > t,

(2.9)

where, according to the notation of Proposition 1,

f̃+ = f̄+
j− 1

2

(t, ξ = 1) and f̃− = f̄−
j− 1

2

(t, ξ = 0).

Such a construction has already been successfully used inside a numerical processing of
the so-called hyperbolic heat equations in [13]. We also stress that it is but a particular
case of the “h-Riemann solvers” introduced in [1] within a different context.
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2.3. Uniqueness via L1(R) contraction. Thanks to the dissipative structure
of (2.1), it is straightforward to establish uniqueness for the singular problem (2.8) as
soon as it has been given a rigorous sense within the theory of distributions.

Proposition 2. Under the assumptions of Lemma 1, let f±0 , f̃
±
0 be two sets of

initial data for (2.8). The following holds for all t > 0:

‖f+(t, .)−f̃+(t, .)‖L1(R)+‖f−(t, .)−f̃−(t, .)‖L1(R) ≤ ‖f+
0 −f̃+

0 ‖L1(R)+‖f−0 −f̃−0 ‖L1(R).

In particular, the weak solution in the sense of Proposition 1 to (2.8), f±0 ∈ L1∩BV (R)
with compact support, is unique and belongs to L∞(R+;BV (R)) ∩ Lip(R+;L1(R)).

Proof. We proceed by approximation and come back to (2.1), for which the
contraction property (2.3) holds uniformly in ε. It remains to integrate it in time and
make use of the compactness results to conclude.

Remark 1. We would like to mention at this level that the present construction
provides an alternative route to the compactness results of [10] concerning the convex
scalar balance law whose right-hand side concentrates like (2.1), (2.2):

∂tu+ ∂xf(u) = k(x)g(u)∂xa
ε, 0 ≤ u(t = 0, x) = u0(x) ∈ L1 ∩BV (R).

Indeed, if it is assumed that 0 ≤ k ∈ C0
c (R), g

′ ≤ 0, and g(ū) = 0 for a ū > 0, then
the L1(R) contraction principle [24] holds uniformly in ε, and the interval

[0,max(ū, ‖u0‖L∞(R))]

is positively invariant since its endpoints give rise as initial data to sub-/supersolutions
of the associated homogeneous conservation law. Therefore, it is easy to follow the
lines of Lemma 1 to derive

∂t

(∫
R

|∂tu|(t, x)dx
)
≤ 0,

which gives in turn, as long as k has compact support,∫
R

|∂xf(u)|(t, x)dx ≤
∫

R

|∂xf(u0)|+ 2‖k(x)g(u)‖L∞

∫
Supp(k)

|∂xaε|,

together with a time Lipschitz-modulus of continuity. If, moreover, a nonresonance
assumption f ′ ≥ c > 0 holds, it turns out that this is enough to establish a uniform
BVloc(R

+
∗ × R) bound for u as ε → 0. Therefore we recover (part of) the conclusion

of Lemma 7 in [10].
We close this section by introducing S, the solution operator for (2.8) as follows.
Proposition 3. There exists a unique “nonconservative contraction semigroup”

S, whose domain is L1 ∩ BV (R) and such that any trajectory 0 < t �→ S(t)f±0 co-
incides with the unique weak solution to (2.8), f±(t = 0, .) = f±0 , in the sense of
distributions.

3. Derivation and convergence of well-balanced schemes. Roughly speak-
ing, we are about to develop and study Godunov schemes [9] for (1.1), relying on
solving elementary Riemann problems for (2.8) whose self-similar solution is given by
(2.9). More precisely, given a time-step ∆t > 0 and a mesh-size h > 0, we can define
a computational Cartesian grid. The cells read for all j, n ∈ Z× N,

Cj =

](
j − 1

2

)
h,

(
j +

1

2

)
h

]
, In = [n∆t, (n+ 1)∆t[.
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Let Ph be the standard L2 projector on piecewise-constant functions:

Ph : L1 ∩BV (R) → L1 ∩BV (R),

ϕ �→
(∫

Cj

ϕ(x)

h
dx

)
j∈Z

.

It remains to discretize the initial data as follows: we define a piecewise constant
approximation f±h (t = 0, .) by taking the pointwise values

∀j ∈ Z, f±j,0 = f±0 (jh),

and this makes sense thanks to the BV regularity of the considered functions. Our
well-balanced Godunov scheme therefore reads as

f±h (t, .) = S(t− n∆t) ◦ (Ph ◦ S(∆t))nf±h (t = 0, .),(3.1)

where n stands for the integer part of t/∆t. Therefore Riemann problems for (2.8)
are to be solved at the endpoints of each Cj , j ∈ Z.

3.1. The rarefied regime. We focus first on (1.1) in its hyperbolic scaling.
Using the divergence theorem, one sees that the Godunov scheme (3.1) generates the
following values as n ∈ N, j ∈ Z:

f+
j,n+1 = f+

j,n −
∆t

h
(f+

j,n − f+
j− 1

2 ,n
), f−j,n+1 = f−j,n +

∆t

h
(f−

j+ 1
2 ,n
− f−j,n).(3.2)

The values at the borders of each cell Cj are given by the generalized jump relations
(2.6), (2.7). Thus the upwind scheme (3.2) can be rewritten as

f+
j,n+1 = f+

j,n −
∆t

h
(f+

j,n − f+
j−1,n)−∆t

∫ 1

0

G(f̄+
j− 1

2

, f̄−
j− 1

2

)(n∆t, ξ)dξ,

f−j,n+1 = f−j,n +
∆t

h
(f−j+1,n − f−j,n) + ∆t

∫ 1

0

G(f̄+
j+ 1

2

, f̄−
j+ 1

2

)(n∆t, ξ)dξ.

(3.3)

This highlights the ability of this scheme to preserve exactly the steady-state curves
of (1.1) since, by their very definition, they satisfy the following (cf. (2.6), (2.7)) for
all j ∈ Z :

f+
j,0 − f+

j−1,0 = −h
∫ 1

0

G(f̄+
j− 1

2

, f̄−
j− 1

2

)(0, ξ)dξ,

f−j+1,0 − f−j,0 = −h
∫ 1

0

G(f̄+
j+ 1

2

, f̄−
j+ 1

2

)(0, ξ)dξ.

The following stability result is easily established.
Lemma 2. Let f±0 ∈ L1 ∩ BV (R); under the hyperbolic CFL condition ∆t ≤ h,

the approximate solutions f±h obtained from (3.1), (3.2) satisfy

TV (f+
h (t, .)) + TV (f−h (t, .)) ≤ exp

(
2
t

h
(exp(Lip(G)h)− 1)

)
[TV (f+

0 ) + TV (f−0 )],

where Lip(G) stands for the Lipschitz constant of G.
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Proof. We start from (3.3) and follow the proof of Lemma 10 in [10]: by the
classical theory of differential equations and a linearization of G, one gets the following
inequalities:

|f+
j,n+1 − f+

j−1,n+1| ≤ |f+
j,n − f+

j−1,n|
(
1− ∆t

h

)
+

∆t

h
(1 + (exp(Lip(G)h)− 1))|f+

j−1,n − f+
j−2,n|

+
∆t

h
(exp(Lip(G)h)− 1)|f−j+1,n − f−j,n|,

|f−j+1,n+1 − f−j,n+1| ≤ |f−j+1,n − f−j,n|
(
1− ∆t

h

)
+

∆t

h
(1 + (exp(Lip(G)h)− 1))|f−j+2,n − f−j+1,n|

+
∆t

h
(exp(Lip(G)h)− 1)|f+

j,n − f+
j−1,n|.

It remains to add these two inequalities, to sum on j ∈ Z to derive∑
j∈Z

(|f+
j,n+1 − f+

j−1,n+1|+ |f−j+1,n+1 − f−j,n+1|)

≤
(
1 +

2∆t

h
(exp(Lip(G)h)− 1)

)∑
j∈Z

(|f+
j,n − f+

j−1,n|+ |f−j+1,n − f−j,n|).

And this is enough to conclude, since BV (R) ⊂ L∞(R).
Remark 2. This proof is a direct adaptation to (1.1) of the one given for Lemma

10 in [10]. We mention here that there exists, however, a much quicker way to es-
tablish this former compactness result, relying on [27]. Indeed, one can consider any
nonhomogeneous scalar balance law endowed with a localized right-hand side,

∂tu+ ∂xf(u)− g(u)∂xa = 0, ∂ta = 0,

as an elementary but nonconservative 2×2 Temple system whose wave curves are the
level sets of the strong Riemann invariants (in the notation of [10]):

a and w(u, a) = φ−1 ◦ (φ(u)− a), φ′(u) =
f ′(u)
g(u)

.

Therefore Lemmas 3.1 and 3.2 in [27] imply that the Godunov scheme decreases the
total variation of w(t, .). This entails control on the u(t, .) variable in the case in
which

0 < c ≤ ∂uw(u, a) ≤ C < +∞,

and this is a consequence of the nonresonance assumption f ′(u) �= 0. Thus strong
L1
loc compactness for the scalar “well-balanced” scheme follows. It does not seem that

the same shortcut applies here in order to shrink the proof of Lemma 2.
By standard arguments, we can establish strong L1

loc compactness for f
±
h as h→ 0,

relying on the bound stated in Lemma 2.
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3.2. The diffusive regime: BV stability. We move now to the study of
numerical approximations to (1.1) in its diffusive scaling, that is to say,

∂tf
± ± 1

ε
∂xf

± = ∓ 1

ε2
G(f+, f−), 0 < ε < 1, x ∈ R, t > 0.(3.4)

In this perspective, the so-called hyperbolic heat equations treated in [13] correspond
to the special case G(f+, f−) = f+ − f−. We assume also that the Maxwellian
distribution is given by M(f) = f , that is to say,

f+ = f− ⇒ G(f+, f−) = 0.

In this setting and for any ε > 0, the previous technique relying on a localization of
the source term onto a Dirac comb still applies, but the differential system (2.6), (2.7)
in Proposition 1 has to be rescaled,

∀j ∈ Z, ∂ξ f̄
±
j+ 1

2

=
−h
ε
G(f̄+

j+ 1
2

, f̄−
j+ 1

2

),(3.5)

and the stability result given in Lemma 2 becomes obsolete because of both the
unrealistic restriction ∆t ≤ εh and the fact that Lip(G)/ε can be made arbitrarily
big. It is therefore of interest to consider the macroscopic variables, which read

ρ = f+ + f−, J =
f+ − f−

ε
,(3.6)

and within which the system (3.5) can be rewritten as

∂ξJ = 0, ∂ξρ = −2h
ε
G

(
1

2

(
ρ+ εJ

)
,
1

2

(
ρ− εJ)) def

= −2hA(ρ, J, εJ).(3.7)

Indeed, the precise form of A can be revealed, relying on the mean-value theorem:

A(ρ, J, εJ) =
1

ε
G
(ρ
2
,
ρ

2

)
︸ ︷︷ ︸

=0

+
J

2

(
∂+G− ∂−G

)(ρ+ θεJ

2
,
ρ− θεJ

2

)

for some θ ∈ [0, 1]. As ρ and J also realize the first two moments of the discrete kinetic
model (1.1), it can be expected that they satisfy the semilinear hyperbolic system

∂tρ+ ∂xJ = 0, ε2∂tJ + ∂xρ = −2A(ρ, J, εJ),(3.8)

which has been shown recently to exhibit diffusive asymptotics as ε → 0. More
precisely, by the implicit function theorem, one goes formally from (3.8) to

J = −B(ρ, ∂xρ), ∂tρ = ∂x(B(ρ, ∂xρ)),

and this limiting behavior holds rigorously, for instance, if
• A(ρ, J, εJ) = A(ρ, J) = ραJ and B(ρ, ∂xρ) =

1
2ρ
−α∂xρ, α < −1 (see [29]),

• A(ρ, J, εJ) = J − 1
2 (ρ

2 + (εJ)2) and B(ρ, ∂xρ) = − 1
2 (ρ

2 − ∂xρ) (see [8]).
Some other results are available in different contexts; see, for instance, [5, 31].

The main point of the AP schemes [17, 21] is to capture these features numerically
as ε→ 0 with a fixed (and reasonable!) h > 0.
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Following Proposition 1, we integrate (3.7) on ξ ∈ [0, 1] and, inverting (3.6), we
find within the notation of (2.9) and with ρ̄ = f̄+ + f̄−

Φ(J ; f+
L , f

−
R )

def
= (2f−R + εJ)− (2f+

L − εJ) + 2h

∫ 1

0

A(ρ̄, J, εJ)dξ = 0.(3.9)

We plan to apply the implicit function theorem to Φ since

∂JΦ = 2ε+ 2h

∫ 1

0

∂JA(ρ̄, J, εJ)dξ, ∂JA =
1

2
(∂+G− ∂−G) > 0.

Therefore, the solution of (3.9) in J is given by a smooth flux function:

F : (R+
∗ )

2 → R,

(f+
L , f

−
R ) �→ J = F (f+

L , f
−
R ).

(3.10)

Moreover, we know that

∇F =

( −1
∂JΦ

)
∇Φ.

Therefore we propose the following definition.
Definition 1. We say that the flux function F (3.10) is monotone if F (0, 0) = 0,

and it is increasing (resp., decreasing) with respect to its first (resp., second) variable:

∂+F ≥ 0, ∂−F ≤ 0.

We also aim at treating (3.4) by means of the modified (partly implicit) numerical
scheme one gets out of (3.1), (3.2), (3.3):

f+
j,n+1 = f+

j,n −
∆t

εh
(f+

j,n+1 − f−j,n+1) +
∆t

h
F (f+

j−1,n, f
−
j,n),

f−j,n+1 = f−j,n +
∆t

εh
(f+

j,n+1 − f−j,n+1)−
∆t

h
F (f+

j,n, f
−
j+1,n).

(3.11)

In sharp contrast with (3.3), this emphasizes the consistency of such a discretization
with a diffusive asymptotic behavior for ρj,n = f+

j,n + f−j,n. Of course, we keep on

using the notation f±h for the piecewise constant numerical approximations to (3.4)
generated by (3.11).

Lemma 3. Let 0 ≤ f±0 ∈ L1 ∩ BV (R); if the flux function F is monotone and
under the parabolic CFL condition (∆t+ εh)Lip(F ) ≤ h, one has for all t > 0, ε > 0

• ‖f+
h (., t)‖L1(R) + ‖f−h (., t)‖L1(R) ≤ ‖f+

0 ‖L1(R) + ‖f−0 ‖L1(R),

• TV (f+
h (., t)) + TV (f−h (., t)) ≤ TV (f+

0 ) + TV (f−0 ),
and the scheme (3.11) is positivity preserving.

The aforementioned CFL condition is said to be parabolic because Lip(F ) is
O(h−1) and doesn’t blow up as ε→ 0. It means also in most cases that ε ≤ O(h); in
this sense, it completes the picture with (3.2), which is stable in the complementary
range of parameters.

Remark 3. We stress that there exist many cases of interest for which the
monotonicity of F can be established rigorously. For instance if A(ρ, J) = k(ρ)J ,
k > 0 (see [29]), one may use a different functional:

Φ̃(J ; f+
L , f

−
R )

def
= φ(2f−R + εJ)− φ(2f+

L − εJ) + 2hJ = 0, φ′(ρ) =
1

k(ρ)
.(3.12)
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Proof. For ease of writing, we denote a = 1+ ∆t
εh , b =

∆t
εh . The system (3.11) can

be explicitly solved, and this is a desirable feature according to [17]:

f+
j,n+1 =

a

a+ b

(
f+
j,n +

∆t

h
F (f+

j−1,n, f
−
j,n)

)
+

b

a+ b

(
f−j,n −

∆t

h
F (f+

j,n, f
−
j+1,n)

)
,

f−j,n+1 =
b

a+ b

(
f+
j,n +

∆t

h
F (f+

j−1,n, f
−
j,n)

)
+

a

a+ b

(
f−j,n −

∆t

h
F (f+

j,n, f
−
j+1,n)

)
.

In order to control the L1 norm, we linearize F around (0, 0):

F (f+
j−1,n, f

−
j,n) = ∂+F (ξj− 1

2 ,n
)f+

j−1,n + ∂−F (ξj− 1
2 ,n

)f−j,n.

The monotonicity property of the flux function together with the CFL restriction give

|f+
j,n+1| ≤

1

a+ b

[
|f+

j,n|
(
a− b∆t

h
∂+F (ξj+ 1

2 ,n
)

)
+ |f+

j−1,n|
a∆t

h
∂+F (ξj− 1

2 ,n
)

+ |f−j,n|
(
b+

a∆t

h
∂−F (ξj− 1

2 ,n
)

)
− |f−j+1,n|

b∆t

h
∂−F (ξj+ 1

2 ,n
)

]
,

|f−j,n+1| ≤
1

a+ b

[
|f+

j,n|
(
b− a∆t

h
∂+F (ξj+ 1

2 ,n
)

)
+ |f+

j−1,n|
b∆t

h
∂+F (ξj− 1

2 ,n
)

+ |f−j,n|
(
a+

b∆t

h
∂−F (ξj− 1

2 ,n
)

)
− |f−j+1,n|

a∆t

h
∂−F (ξj+ 1

2 ,n
)

]
.

Such a convex combination ensures the positivity-preserving property for (3.11).
Adding the two inequalities leads to∑

j∈Z

h(|f+
j,n+1|+ |f−j,n+1|) ≤

∑
j∈Z

h(|f+
j,n|+ |f−j,n|).

The decay in time of the total variation in space is shown by similar arguments.
This stability result is already enough to ensure strong compactness for the nu-

merical approximations f±h generated by (3.11) as h → 0, as long as the relaxation
parameter ε remains strictly positive.

3.3. The diffusive regime: Limiting behavior. We are now interested in
the behavior of (3.11) as ε→ 0. The forthcoming result completes Lemma 3.

Lemma 4. Under the hypotheses of Lemma 3, we suppose ε‖F̃‖L∞ < 1 in the
following decomposition, which holds for F , uniformly in h ≥ 0:

F (f+
h , f

−
h ) = (f+

h − f−h )F̃ (f+
h , f

−
h ) + g(f+

h , f
−
h ),

F̃ ∈ C1(R2), F̃ (f+
h , f

−
h ) ∈ L∞(R), g(f+

h , f
−
h ) ∈ L1(R).

(3.13)

Then one has the estimates uniformly in ε ≥ 0 (where C is an absolute constant):

• ‖f+(t, .)− f−(t, .)‖L1(R) ≤ ‖f+
0 − f−0 ‖L1(R)

+ Cε(‖g‖L1(R) + hLip(F )(TV (f+
0 ) + TV (f−0 ))),

• ‖f+(t, .)− f+(s, .)‖L1(R) + ‖f−(t, .)− f−(s, .)‖L1(R) ≤
√|t− s|

×
[
2

ε
‖f+

0 − f−0 ‖L1(R) + hLip(F )(1 + C)(TV (f+
0 ) + TV (f−0 )) + C‖g‖L1(R)

]
.
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The condition ε‖F̃‖L∞ < 1 roughly means that ε < O(h); this kind of restriction
has already been encountered in [14] in order to show compactness in the context of
another relaxation problem. The technical assumption (3.13) will be checked in the
numerical examples later on: it expresses the fact that the Maxwellian distribution
for (3.4), (1.1) should be given by f+ = f−. (In the case of the Goldstein–Taylor
model, the decomposition is trivial, F̃ ≡ 1

h+ε , g ≡ 0; see [13].)
Proof. We keep on using the same notations; from (3.11), we get

(1 + 2b)(f+
j,n+1 − f−j,n+1) = (f+

j,n − f−j,n) +
2∆t

h
F (f+

j,n, f
−
j,n)

+
∆t

h
[F (f+

j−1,n, f
−
j,n) + F (f+

j,n, f
−
j+1,n)− 2F (f+

j,n, f
−
j,n)].

We now use the decomposition (3.13) in order to get

(1 + 2b)|f+
j,n+1 − f−j,n+1| ≤ |f+

j,n − f−j,n|
(
1 +

2∆t

h
‖F̃‖L∞

)
+

2∆t

h
|g(f+

j,n, f
−
j,n)|+

∆t

h
Lip(F )[|f+

j−1,n − f+
j,n|+ |f−j+1,n − f−j,n|].

Thus an elementary computation shows that

α
def
=

1 + 2∆t
h ‖F̃‖L∞

1 + 2∆t
εh

< 1 ⇔ ε‖F̃‖L∞ < 1.

This implies that

‖f+(t, .)− f−(t, .)‖L1(R) ≤ ‖f+
0 − f−0 ‖L1(R)

+
ε

1− α (‖g‖L1(R) + h.Lip(F )[TV (f+
0 ) + TV (f−0 )]),

and the control on the Maxwellian distribution follows.
Concerning the L1-modulus of continuity in time, following [13], we rewrite the

first equation in (3.11) as

f+
j,n+1−f+

j,n+
∆t

εh
(f+

j,n+1−f+
j,n) =

∆t

εh
(f−j,n+1−f−j,n)−

∆t

εh
(f+

j,n−f−j,n)+
∆t

h
F (f+

j−1,n, f
−
j,n),

in order to derive for all j ∈ Z, n ∈ N,

|f+
j,n+1 − f+

j,n|
(
1 +

∆t

εh

)
− ∆t

εh
|f−j,n+1 − f−j,n| ≤

∆t

εh
|f+

j,n − f−j,n|+
∆t

h
|F (f+

j−1,n, f
−
j,n)|,

together with a similar expression for the f− variable. Therefore, we arrive at

|f+
j,n+1 − f+

j,n|+ |f−j,n+1 − f−j,n| ≤
2∆t

εh
|f+

j,n − f−j,n|

+
∆t

h
Lip(F )[|f+

j−1,n − f+
j,n|+ |f−j+1,n − f−j,n|],

and we are done with the second inequality of Lemma 4, just summing on j ∈ Z and
noticing that under a parabolic CFL condition, ∆t

h = O(h) = O(
√
∆t).
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As a consequence of Lemma 4, strong compactness as ε→ 0, h > 0 fixed follows
as soon as one provides a so-called well-prepared initial datum, that is to say,

‖f+
0 − f−0 ‖L1(R) = O(ε).(3.14)

Such an initialization for (3.4) cancels any kind of initial layer, which would destroy
the Hölder time regularity of the process (see also [35] for a similar remark) in t = 0+.

With obvious notation, we can easily deduce the asymptotic behavior of the
scheme (3.11) as ε→ 0; adding the two equations, we derive

ρj,n+1 = ρj,n +
∆t

h

(
F
(ρj−1,n

2
,
ρj,n
2

)
− F

(ρj,n
2
,
ρj+1,n

2

))
+Rj,n,(3.15)

and the estimates from Lemma 4 ensure that the remaining term is of the order of ε
in L1 as a consequence of the smoothness of F . This has already been evidenced by
explicit computations with the Goldstein–Taylor model in [13].

Remark 4. At this point, we underline that, relying on the monotonicity of F ,
(3.13) can be easily fulfilled using the mean-value theorem:

F (f+, f−) = (f+ − f−)∂+F (ξ) + div(F )(ξ)f−, ξ ∈ (R+)2.(3.16)

Since f±(t, .) ∈ L1(R), what we need is just div(F ) = O(1) uniformly in h ≥ 0. It
turns out that this corresponds to a splitting of the flux function F between a diffusive
and a convective part when looking at the scheme (3.15) since it can be rewritten as

ρj,n+1 = ρj,n+
∆t

2h
∂+F (ξj,n)(ρj+1,n−2ρj,n+ρj−1,n)− ∆t

2h
div(F )(ξj,n)(ρj+1,n−ρj,n).

One readily checks that this scheme is L∞-stable; its L1 and BV stability are just
particular cases of Lemma 3.

As a byproduct of Lemmas 3 and 4, we can state the following theorem, which
deals with the cases investigated by Lions and Toscani in [29].

Theorem 1. Assume that 0 ≤ f±0 ∈ L1 ∩ BV (R) are initial data for (3.4) with
G(f+, f−) = (f++f−)α(f+−f−), α ≤ 0, and satisfy (3.14). Then as h, ε→ 0 under
the prescribed CFL conditions, the sequence f±h generated by the scheme (3.11) is
relatively compact in the strong topology of L1

loc(R
+
∗ ×R). In particular, ρh = f+

h +f−h
converges towards the unique solution in the sense of distributions to

∂tρ =
1

2
∂x(ρ

−α∂xρ), ρ(t = 0, .) = 2f+
0 = 2f−0 .

Proof. We are precisely in position to use the modified functional Φ̃ in (3.12)
since in the notation of Remark 3, k(ρ) = ρα ≥ 0. Thus the flux function F exists
and is monotone in the sense of Definition 1. Moreover, the Maxwellian distribution
is f+ = f−, and we can take g ≡ 0 in (3.13) since by the mean-value theorem we get
some expression for the flux function from (3.12):

F (f+
L , f

−
R ) =

f+
L − f−R

h.k(ζ) + ε
, ζ ∈ R

+.(3.17)

The conclusion thus follows from Lemma 4 and (3.15).
We left behind the cases 0 < α ≤ 1 (fast diffusion equations) as Φ̃ can become

singular if ρ = 0; this isn’t an issue in practical computations (see section 4.3).
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Fig. 4.1. Numerical results for (3.11) on Barenblatt’s problem in T = 3: 3.10−6 ≤ ε ≤ 5.10−2.

4. Numerical experiments. We illustrate in this section the results previously
stated by means of some numerical runs of increasing difficulty inspired by those in
[13, 19].

4.1. The porous media equation. We simulate here the so-called Barenblatt’s
problem [3], which consists of finding a particular solution to the porous media equa-
tion whose analytical expression is known. More precisely, we select A(ρ, J) = J

4ρ in

(3.8), which gives α = −1 in Theorem 1, and we look for

ρ(t, x) =
1

r(t)

(
1−

(
x

r(t)

)2
)
1|x|≤r(t), r(t) =

(
12(1 + t)

) 1
3 .

In this case, (3.12) is solved explicitly, and the flux function is given by

F (f+
L , f

−
R ) =

(f+
L )

2 − (f−R )
2

(h/4) + ε(f+
L + f−R )

.

The partial derivatives do not change signs, whatever values ε, h take, since the
scheme (3.11) preserves positivity and

∂+F (f
+
L , f

−
R ) =

2hf+
L + 4ε(f+

L + f−R )
2(

h+ 4ε(f+
L + f−R )

)2 , ∂−F (f+
L , f

−
R ) = −

2hf−R + 4ε(f+
L + f−R )

2(
h+ 4ε(f+

L + f−R )
)2 .

Notice that, since we deal with a quadratic nonlinearity, the value of ζ in (3.17) is
simply given by an arithmetic average. Numerical results are shown in Figure 4.1 in
time T = 3, with the parameters h = 0.15 and ∆t = 0.01. On the right, the absolute
error between (3.11) and the exact solution is displayed as a function of ε; it stalls
below a certain value as the value of h becomes a limiting factor.

4.2. The advection-diffusion equation. Wemove on now to another equation
which has been investigated from the relaxation point of view in [20, 5, 2]:

∂tρ+ ∂xρ =
1

2
∂xxρ, x ∈ R, t > 0.(4.1)

Here, we apply the same program, relying on (3.8) together with the right-hand side
A(ρ, J) = J − ρ. Once again, we are able to solve (3.7), and the flux function F is
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Fig. 4.2. Numerical results for (3.11), (4.1) on a Riemann problem: 2.10−6 ≤ ε ≤ 1.

monotone since it comes out to be

F (f+
L , f

−
R ) = 2

exp(2h)f+
L − f−R

exp(2h)− 1 + ε(1 + exp(2h))
.

By means of Lemma 3, compactness holds in h ≥ 0 under the CFL condition

2(∆t+ εh)

1− exp(−2h) ≤ h ⇒ 0 ≤ ∆t = O(h2), ε < h,

and one can check therefore that for (3.16),

div(F ) =
2

1 + ε
(

exp(2h)+1
exp(2h)−1

) = O(1), 0 ≤ h ≤ 1.

Moreover, concerning (3.13) and Lemma 4, we can choose F̃ = ∂+F and we get

ε‖F̃‖L∞ < 1 ⇔ ε < h < 1.

Therefore, gathering inside Lemmas 3, 4 and Remark 4, we obtain an analogue of
Theorem 1 for (4.1).

Theorem 2. Assume that 0 ≤ f±0 ∈ L1 ∩ BV (R) are initial data for (3.6),
(3.8) with A(ρ, J) = J − ρ and satisfy (3.14). Then as h, ε → 0 under the prescribed
conditions, the sequence f±h generated by the scheme (3.11) is relatively compact in
the strong topology of L1

loc(R
+
∗ × R). In particular, ρh = f+

h + f−h converges towards
the unique solution to (4.1), ρ(t = 0, .) = 2f+

0 = 2f−0 .
We close this paragraph by presenting some numerical results which illustrate our

statements. We choose some Maxwellian initial data f±0 (x) = 1x<5 to compute the
solution of (3.8) in x ∈ [0, 10] for T = 2. Of course, the exact solution of (4.1) is given
by ρ(t, x) = 1− erf((x− t− 5)/√2t). We took h = 0.2 and ∆t = 0.02; see Figure 4.2.

4.3. The Carleman model. We consider the so-called Carleman’s model [6],
which corresponds to the choice A(ρ, J) = ρJ , that is to say, α = 1 in Theorem 1.
This presents a difficulty as the asymptotic behavior is singular if ρ = 0; anyway, we
succeeded in simulating the following initial-boundary value problem by means of the
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Fig. 4.3. Transient regime (T = 0.01) for Carleman’s model on the IBVP (initial boundary
value problem) (4.2): 10−6 ≤ ε ≤ 3.10−2.

scheme (3.11):

∂tρ =
1

2
∂xx(ln(ρ)), ρ(0, .) = 1 +1x>0.5;

ρ(., x = 0) = 1.5, ρ(., x = 1) = 2.5.

(4.2)

The computational domain is x ∈ [0, 1], and we took h = 0.03, ∆t = 0.001 in order
to produce the results displayed in Figure 4.3. In this case, the flux function cannot
be known analytically, but it turns out from (3.12) that the equation

F (f+
L , f

−
R ) = J =

1

2h
ln

(
2f+

L − εJ
2f−R + εJ

)
can be easily solved by means of a fixed point algorithm if ε is small enough. We
compared our results with those generated by a standard second order centered scheme
for (4.2): the absolute error between them is of the order of ε, as announced in (3.15).

4.4. The Ruijgrok–Wu model. We close this section devoted to numerical
tests with the Ruijgrok and Wu model of the Boltzmann equation [8, 29, 30], which
relaxes under a diffusive scaling of variables towards the viscous Burgers equation
[16]. More precisely, we aim at reproducing with (3.11) the smooth solution of the
initial-boundary value problem

∂tρ+ ρ∂xρ =
1

2
∂xxρ, ρ(0, .) = 2

(
2−1x>0

)
;

ρ(., x = −1) = 4, ρ(., x = 1) = 2,

(4.3)

by means of (3.8) with the right-hand side A(ρ, J, εJ) = J − ε2

2 J
2 − 1

2ρ
2.

Several features make this difficult: first is that, according to [8, 30], this 2 × 2
system is not unconditionally quasi-monotone. Indeed, this property holds only in
case the initial data satisfy f−0 ≤ 1/2ε; this has to be taken into account when
starting the simulation. Moreover, the differential equation (3.7) cannot always be
solved analytically, and we integrated it approximately through the midpoint rule.
Thus the flux function we used comes out of a fixed point algorithm on the following
equation, which is deduced from (3.9):

J =
1

2h

[
(2f+

L − εJ)
(
1 +

h

2
(2f+

L − εJ)
)
− (2f−R + εJ)

(
1− h

2
(2f−R + εJ)

)
+ εhJ2

]
.
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Fig. 4.4. Transient regime (T = 0.3) for Ruijgrok and Wu’s model on (4.3): 10−6 ≤ ε ≤ 3.10−2.

This choice led to the results displayed in Figure 4.4 with the parameters h = 0.05,
∆t = 0.001. This demonstrates the fact that an approximate treatment of the jump
relation (3.7) still gives a good outcome on a nonlinear problem, and the Maxwellian
estimate of Lemma 4 is kept.

5. Conclusion. We presented in this paper a study of a well-balanced scheme
for discrete 2×2 kinetic models. This scheme is endowed with several interesting prop-
erties as it preserves steady-state curves in the rarefied regime (1.1) and is asymptotic
preserving in the sense of [17] as ε → 0 in (3.4). Moreover, these statements can
be rigorously established in many significant situations like, for instance, the cases
investigated in [29]. From this point of view, this work can be seen as an extension of
[10, 11] to relaxation problems with a diffusive behavior. The present approach may
be further developed in several directions; first, multidimensional problems could be
considered, then more complex asymptotics could also be tackled in the spirit of [31].
In any case, intermediate scalings considered in [8, 32] (the so-called incompressible
Euler limits) relaxing to conservation laws can be handled by a suitable modification
of (3.5) inside the scheme (3.11).
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Abstract. In this paper the Chebyshev–Legendre collocation method is applied to the gener-
alized Burgers equation. Optimal error estimate of the method is proved for the problem with the
Dirichlet boundary conditions. Also, a Legendre–Galerkin–Chebyshev collocation method is given for
the generalized Burgers equation. The scheme is basically formulated in the Legendre spectral form
but with the nonlinear term being treated by the Chebyshev collocation method so that the scheme
can be implemented at Chebyshev–Gauss–Lobatto points efficiently. Optimal order convergence is
also obtained through coupling estimates in the L2-norm and the H1-norm.
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1. Introduction. The spectral method is used widely in seeking numerical so-
lutions of partial differential equations because of its “infinite order” of convergence
[4, 2, 9]. It is well known that the Chebyshev method is easier to implement than
the Legendre method, but it is more difficult to justify in numerical analysis than
the latter. In 1994, Don and Gottlieb first introduced the Chebyshev–Legendre (CL)
method [6], where the Legendre method was implemented on Chebyshev points. The
boundary conditions were imposed via a penalty technique, and the scheme was in
a collocation form. It was shown that the method was stable in the unweighted
L2-norm, and error estimates were given for linear problems [6, 9]. In 1989, Reyna
[21] analyzed an L2-estimate of a modified Chebyshev collocation method for a lin-
ear system of equations. Shen [24, 25] recommended the CL method for elliptic
problems with simple schemes and efficient implementation. Ma [15, 16] applied CL
viscosity methods to the nonlinear conservation laws. Error analysis of a similar CL
method but using the Chebyshev–Gauss (CG) points, which are not as common as
the Chebyshev–Gauss–Lobatto (CGL) points, can be found in [13].

In this paper, we consider CL methods for the following generalized Burgers
equation:

∂tU(x, t) + ∂xF (U(x, t))− ν∂2
xU(x, t) = 0, (x, t) ∈ (−1, 1)× (0, T ),

αU(1, t) + β∂xU(1, t) = g+(t), t ∈ (0, T ),

γU(−1, t) + δ∂xU(−1, t) = g−(t), t ∈ (0, T ),

U(x, 0) = U0(x), x ∈ (−1, 1),

(1.1)

where F (z) is a smooth function of z, the parameters α, γ, β are nonnegative, and δ
is nonpositive. Much work has been done on numerical analysis of spectral methods
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for Burgers’ equation [18, 19, 3, 17, 7], where error estimates of the Legendre spec-
tral/pseudospectral method and the Chebyshev spectral/pseudospectral method for
Burgers’ equation have been established. The key to the numerical analysis of the
Chebyshev method is the coercive property of the nonsymmetric bilinear form, which
is true if the function vanishes on the boundaries. This becomes unavailable at the
interface points when the method is used with domain decompositions. In order to
overcome this difficulty, a modified Chebyshev pseudospectral method is given in [8]
which introduced linear polynomials so that the new unknown vanishes at interface
points. The CL methods enjoy both advantages of easy implementation of the Cheby-
shev method and good stability of the Legendre method for the nonlinear problems
and can be applied to multidomain cases without such a difficulty. The aim of this
paper is to give optimal error estimates of CL methods for solving the generalized
Burgers equation. Besides the Chebyshev–Legendre collocation (CLC) method in
[6], a Legendre–Galerkin–Chebyshev collocation (LGCC) scheme is presented. The
scheme is basically formulated in the Legendre–Galerkin form but with the nonlinear
term being treated with the Chebyshev collocation method. Here the CGL points are
adopted. By combining Galerkin and collocation methods, the scheme seems more
flexible and easier to be generalized to multidomain approaches. In numerical analysis
of such methods, we need to consider the stability and approximation properties of
the Chebyshev interpolation operator in the L2-norm rather than in the Chebyshev
weighted norm. Also, due to the property of the Chebyshev interpolation operator,
we find that it is difficult to get the desired L2-estimate directly for our fully discrete
scheme. This is why an H1-estimate is involved in analysis. Optimal convergence
rate of the methods is obtained through combining L2- and H1-estimates.

Given the history of success with the preconditioning methods discussed in
[20, 5, 10, 11, 12], such methods will probably be successful in the CLC case, which
may be more preferable for high dimensional problems. The LGCC scheme can be
solved by efficient direct solvers developed in [22, 23].

2. Schemes. Let I = (−1, 1). Denote by (·, ·) and ‖ · ‖ the inner product and
norm of the space L2(I), respectively. For σ > 0, let Hσ(I) be the classical Sobolev
space equipped with the norm ‖ · ‖σ and the seminorm | · |σ. Let PN be the set of all
algebraic polynomials of degree at most N .

We first apply the CLC method in [6] to the following problem (1.1) [9]: Find
u ∈ PN such that for 0 ≤ j ≤ N ,{

∂tu(xj , t) + (∂xI
C
NF (u))(xj , t)− ν∂2

xu(xj , t) = −R(xj , t),

u(xj , 0) = U0(xj),
(2.1)

where xj = cos(πjN ) (0 ≤ j ≤ N) are the CGL points, ICN is the Chebyshev interpola-
tion operator at the CGL points, and [6]

R(x, t) = τ0Q
+(x)[B+(t)− g+(t)] + τNQ

−(x)[B−(t)− g−(t)]

with

Q+(x) =
(1 + x)L′N (x)

2L′N (1)
, B+(t) = αu(1, t) + β∂xu(1, t),

Q−(x) =
(1− x)L′N (x)

2L′N (−1)
, B−(t) = γu(−1, t) + δ∂xu(−1, t),
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where LN (x) is the Legendre polynomial of degree N. For the time advance, we adopt
the second order Crank–Nicolson/leapfrog (CNLF) scheme. Let τ be the mesh size
in time, and let St = {kτ : k = 1, 2, . . . , nt, t = ntτ}. The notations vt̂(t) and v̂(t)
are used as

vt̂(t) =
v(t + τ)− v(t− τ)

2τ
, v̂(t) =

1

2
[v(t + τ) + v(t− τ)].

The fully discrete CL scheme for (1.1) is to find u ∈ PN such that for 0 ≤ j ≤ N ,
ut̂(xj , t) + (∂xI

C
NF (u))(xj , t)− ν∂2

xû(xj , t) = −R̂(xj , t), t ∈ ST−τ ,
u(xj , τ) = U0(xj) + τ∂tU(xj , 0),

u(xj , 0) = U0(xj),

(2.2)

where ∂tU(x, 0) = ν∂2
xU0(x)− ∂xF (U0(x)) is computed via (1.1).

We next give an LGCC scheme. For simplicity, we consider only the homogenous
Dirichlet boundary condition. Other kinds of cases can be treated as in [22]. Define
the approximation space

V 0
N = PN ∩H1

0 (I), H1
0 (I) =

{
v ∈ H1(I) : v(−1) = v(1) = 0

}
.

The fully discrete LGCC scheme for (1.1) is to find u(t) ∈ V 0
N such that

(ut̂, v) + (∂xI
C
NF (u), v) + ν(∂xû, ∂xv) = 0 ∀v ∈ V 0

N , t ∈ ST−τ ,
u(τ) = ICN (U0 + τ∂tU(0)),

u(0) = ICNU0,

(2.3)

where ∂tU(0) = ν∂2
xU0 − ∂xF (U0). We choose appropriate base functions of V 0

N as
in [22] to set up the corresponding system of equations. For 0 ≤ n ≤ N − 2, let
cn = 1/(2n+1) and φn(x) = cn+1[Ln(x)−Ln+2(x)], where {Ln(x)} are the Legendre

polynomials, so that ∂xφn(x) = −Ln+1(x). Expanding u(x, t) =
∑N−2
n=0 an(t)φn(x)

and taking v = φm in (2.3) lead to

N−2∑
n=0

[(φn, φm) + 2cn+1ντδmn]an(t + τ) = −2τ(ICNF (u(t)), Lm+1)(2.4)

+

N−2∑
n=0

[(φn, φm)− 2cn+1ντδmn]an(t− τ), 0 ≤ m ≤ N − 2, t ∈ ST−τ .

The matrix of above system is pentadiagonal [22]. We note that the nonlinear term
in (2.4) can be computed by the fast Legendre transform (FLT) [1] between the
coefficients of the Legendre series and its values at the CGL points, such as

{an} FLT−→ {u(xj)} → {F (u(xj)} FLT−→ {( ̂ICNF (u))Ln},

where ( ̂ICNF (u))Ln are the Legendre expansion coefficients of ICNF (u).

3. Preliminary. In this section, we introduce a suitable comparison function
and give some lemmas needed in error analysis. We shall denote by C a generic
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positive constant independent of N or any function. Define P1,N : H1(I)→ PN such
that

P1,Nu(x) = u(−1) +

∫ x

−1

PLN−1∂yu dy,

where PLN : L2(I) → PN denotes the Legendre orthogonal projection operator. We
have from the definition of P1,N immediately that

(∂xP1,Nu, ∂xv) = (∂xu, ∂xv) ∀ v ∈ PN .(3.1)

Also, it is easy to see that P1,Nu− u ∈ H1
0 (I) and

(P1,Nu− u, v) = (P1,Nu− u, ∂x∂
−1
x v)(3.2)

= (PLN−1∂xu− ∂xu, ∂
−1
x v) = 0 ∀ v ∈ PN−2,

where ∂−1
x v :=

∫ x
−1

v(y) dy ∈ PN−1. We will need an estimate in the following negative
norm:

‖u‖−1 := sup
v∈H1

0 (I),v �=0

|(u, v)|
‖v‖1 .

Lemma 3.1 (see [4, 15]). If u ∈ Hσ(I) (σ ≥ 1), then

‖P1,Nu− u‖l ≤ CN l−σ ‖u‖σ, −1 ≤ l ≤ 1.(3.3)

Proof. We prove only (3.3) with l = −1. The other cases can be found in [4, 15].
For any v ∈ H1

0 (I), on the use of (3.2) and the result (3.3) with l = 0, we get

(P1,Nu− u, v) = (P1,Nu− u, v − P1,N−2v) ≤ CN−σ−1‖u‖σ‖v‖1,

which gives the desired result.
In general, the discrete inner product and norm are defined as follows:

(u, v)N =

N∑
j=0

u(yj)v(yj)ωj , ‖u‖N =
√

(u, u)N ,

where yj and ωj (j = 0, . . . , N) are the Legendre–Gauss–Lobatto points and the
corresponding quadrature weights. Associating with this quadrature rule, we denote
by ILN the Legendre interpolation operator.

Lemma 3.2 (see [4, 9]). If u ∈ Hσ(I) (σ ≥ 1), then

‖ILNu− u‖l ≤ CN l−σ‖u‖σ, 0 ≤ l ≤ 1,(3.4)

|(u, v)− (u, v)N | ≤ CN−σ‖u‖σ ‖v‖ ∀v ∈ PN .(3.5)

Further, if u ∈ PN , then

‖u‖ ≤ ‖u‖N ≤
√

2 +
1

N
‖u‖,(3.6)

‖u‖L∞(I) ≤ N + 1√
2
‖u‖.(3.7)
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Lemma 3.3 (see [15]). If u ∈ H1(I), then

N‖ICNu− u‖+ |ICNu|1 ≤ C‖u‖1.(3.8)

Moreover, if u ∈ Hσ(I) (σ ≥ 1), then

‖ICNu− u‖l ≤ CN l−σ‖u‖σ, 0 ≤ l ≤ 1.(3.9)

We note that although ICN is the Chebyshev interpolation operator, the norms in
(3.8) and (3.9) are in the Legendre form rather than in the weighted Chebyshev form.
These results are useful for numerical analysis of CL spectral methods.

4. The stability and convergence of the CLC method. In this section, we
first consider the stability of the semidiscrete scheme (2.1) with the Dirichlet boundary
conditions (α = γ = 1, β = δ = 0) and then give the proof of its convergence.
Suppose that u and the term on the right-hand side in (2.1) have the errors ũ and f̃ ,
respectively. Then by (2.1) we have

(∂tũ, v)N + (∂xI
C
N F̃ , v)− ν(∂2

xũ, v) + (R̃, v)N = (f̃ , v)N ∀v ∈ PN , t ∈ (0, T ),(4.1)

where F̃ := F (u + ũ)− F (u) and

R̃(x, t) := τ0Q
+(x)ũ(1, t) + τNQ

−(x)ũ(−1, t).

Taking v = ũ in (4.1), we get

d

dt
‖ũ‖2N + ν|ũ|21 + τ0ω0ũ

2(1) + τNωN ũ
2(−1)(4.2)

= (f̃ , ũ)N − (∂xI
C
N F̃ , ũ) + νũ(1)∂xũ(1)− νũ(−1)∂xũ(−1).

We bound the terms on the right-hand side of the above equation. First,

|(f̃ , ũ)N | ≤ ‖f̃‖2N + ‖ũ‖2N .
Next, let

τ0, τN ≥ 1

4
max{4ν, 1}N2(N + 1)2.(4.3)

Then it can be seen that

|νũ(1)∂xũ(1) − νũ(−1)∂xũ(−1)|
≤ ν

4
(ω0|∂xũ(1)|2 + ωN |∂xũ(−1)|2) +

ν

ω0
|ũ(1)|2 +

ν

ωN
|ũ(−1)|2

≤ ν

4
|ũ|21 +

1

4
τ0ω0|ũ(1)|2 +

1

4
τNωN |ũ(−1)|2.

As for the nonlinear term, by integrating by parts and noting that ω0 = ωN = 2
N(N+1) ,

we get from (3.7) and (3.8) that∣∣∣(∂xICN F̃ , ũ)
∣∣∣

≤
∣∣∣(ICN F̃ − F̃ , ∂xũ) + (F̃ , ∂xũ)

∣∣∣+
∣∣∣ICN F̃ (1)ũ(1)− ICN F̃ (−1)ũ(−1)

∣∣∣
≤ ν

4
|ũ|21 + 2‖ICN F̃ − F̃‖2 + 2‖F̃‖2 + ω0|F̃ (1)|2 + ωN |F̃ (−1)|2 +

ũ2(1)

4ω0
+
ũ2(−1)

4ωN

≤ ν

4
|ũ|21 + 2‖ICN F̃ − F̃‖2 + 5‖F̃‖2 + 3‖ILN F̃ − F̃‖2 +

1

4
τ0ω0ũ

2(1) +
1

4
τNωN ũ

2(−1)

≤ ν

4
|ũ|21 + CN−2|F̃ |21 + C‖F̃‖2 +

1

4
τ0ω0ũ

2(1) +
1

4
τNωN ũ

2(−1).



664 HUA WU, HEPING MA, AND HUIYUAN LI

Let C0 be a positive constant and

uM = max
0≤s≤T

{‖u(s)‖L∞(I) + N−1‖∂xu(s)‖L∞(I)

}
,(4.4)

CF (z1, z2) = max
|z|≤|z1|+|z2|

|F ′(z)|+ (|z1|+ |z2|) max
|z|≤|z1|+|z2|

|F ′′(z)| .

For any given t ∈ (0, T ), if

‖ũ(s)‖L∞(I) ≤ C0 ∀ s ∈ (0, t),(4.5)

then

‖F̃‖+ N−1|F̃ |1
=

∥∥∥∥∫ 1

0

F ′(u + θũ)ũdθ

∥∥∥∥+ N−1

∥∥∥∥∫ 1

0

(F ′′(u + θũ)(∂xu + θ∂xũ)ũ + F ′(u + θũ)∂xũ)dθ

∥∥∥∥
≤ CF (uM , C0)‖ũ‖+

1

4
ν|ũ|1 ∀ s ∈ (0, t).

Therefore, integrating (4.2) in time leads to

E(ũ, t) ≤ ρ(ũ, f̃ , t) + C∗
∫ t

0

E(ũ, s)ds,(4.6)

where C∗ is a positive constant depending on CF (uM , C0) and

E(ũ, t) = ‖ũ(t)‖2N +

∫ t

0

{ν|ũ(s)|21 + τ0ω0ũ
2(1, s) + τNωN ũ

2(−1, s)}ds,

ρ(ũ, f̃ , t) = ‖ũ(0)‖2N +

∫ t

0

‖f̃(s)‖2Nds.

We have the following stability result.
Theorem 4.1. If ρ(ũ, f̃ , T ) ≤ 2C2

0e
−C∗T (N + 1)−2, then

E(ũ, t) ≤ ρ(ũ, f̃ , t)eC
∗t.(4.7)

Proof. Following the line in [14], we first prove that

max
0≤s≤T

‖ũ(s)‖L∞(I) ≤ C0.(4.8)

Otherwise, there must exist t1 < T such that

max
0≤s≤t1

‖ũ(s)‖L∞(I) ≤ C0, ‖ũ(t1)‖L∞(I) = C0,(4.9)

while by (4.6) and the Gronwall inequality we have

E(ũ, t1) ≤ ρ(ũ, f̃ , t1)eC
∗t1 < ρ(ũ, f̃ , T )eC

∗T ≤ 2C2
0 (N + 1)−2.

Thus, from Lemma 3.2,

‖ũ(t1)‖L∞(I)≤ N + 1√
2
‖ũ(t1)‖ ≤ N + 1√

2
‖ũ(t1)‖N

≤ (N + 1)

√
E(ũ, t1)

2
< C0,
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which is contradictory with (4.9). Thus (4.8) holds, and we derive (4.7) from the
Gronwall inequality.

Next we consider the convergence of the scheme (2.1) with the Dirichlet boundary
conditions α = γ = 1, β = δ = 0. Setting w = P1,NU and η = u − w, we get from
(1.1) and (2.1) that

(∂tη, v)N + (∂xI
C
N G̃, v)− ν(∂2

xη, v) + (R(η, t), v)N = g(v) ∀ v ∈ PN ,(4.10)

where G̃ = F (w + η)− F (w) and

g(v) := [(∂tU, v)− (∂tw, v)N ] + (∂x(F (U)− ICNF (w)), v)− ν(∂2
x(U − w), v),(4.11)

R(η, t) = τ0Q
+(x)η(1, t) + τNQ

−(x)η(−1, t).

Similar to (4.4), we let

UM = max
0≤s≤T

{‖w(s)‖L∞(I) + N−1‖∂xw(s)‖L∞(I)}.

Then, as in the analysis of stability, we need to estimate g(η) in (4.11). We separate
it into

g(η) = [(∂tU, η)− (∂tw, η)N ] + (∂x(F (U)− ICNF (w)), η)− ν(∂2
x(U − w), η)

:=

3∑
i=1

Ji.

First, by (3.5), (3.6), (3.4), and (3.3),

|J1| ≤ |(∂tU, η)− (∂tU, η)N |+ |(∂tILNU, η)N − (∂tw, η)N |(4.12)

≤ CN−σ‖∂tU‖σ‖η‖N + 2‖∂tILNU − ∂tw‖ ‖η‖N
≤ CN−σ‖∂tU‖σ‖η‖N .

Next, by (3.9) we have

|J2| = |(F (U)− ICNF (w), ∂xη)| ≤ C‖F (U)− ICNF (w)‖2 +
ν

8
|η|21

≤ C(‖(I − ICN )(F (w)− F (U))‖2 + ‖(I − ICN )F (U)‖2 + ‖F (U)− F (w)‖2) +
ν

8
ν|η|21

≤ C(N−2|F (w)− F (U)|21 + ‖F (U)− F (w)‖2) + CN−2σ‖F (U)‖2σ +
ν

8
|η|21

≤ CC ′F
(
‖U‖L∞(I), ‖w‖L∞(I)

)(
1 + N−1(‖∂xU‖L∞(I) + ‖∂xw‖L∞(I))

)
N−2σ‖U‖2σ

+
ν

8
|η|21 + CN−2σ‖F (U)‖2σ,

where

C ′F (z1, z2) = max
|z|≤max{z1,z2}

{|F ′(z)|, |F ′′(z)|}.

Finally, let τ0, τN ≥ CN6. Then, from integrating by parts, (3.1), (3.3), and (3.4), we
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also have

|J3| = |ν{∂x(U − w)η}|1−1|

≤ 1

8
τ0ω0η

2(1) +
1

8
τNωNη

2(−1) +
2ν2

τ0ω0
|∂x(U − w)(1)|2 +

2ν2

τNωN
|∂x(U − w)(−1)|2

≤ 1

8
τ0ω0η

2(1) +
1

8
τNωNη

2(−1) + CN−2‖∂x(U − w)‖2N
≤ 1

8
τ0ω0η

2(1) +
1

8
τNωNη

2(1) + CN−2σ‖U‖2σ.

For the initial error, we have from (3.3) and (3.9) that

‖η(0)‖N ≤ C‖η(0)‖ ≤ C‖(ICN − P1,N )U0‖2(4.13)

≤ C‖(ICN − I)U0‖2 + C‖(I − P1,N )U0‖2 ≤ CN−2σ‖U0‖2σ.
We end this section with the following convergence theorem.
Theorem 4.2. Let U and u be the solutions of (1.1) and (2.1), respectively.

Assume that σ ≥ 2, U ∈ H1(0, T ;Hσ(I)), F (z) ∈ Cσ(R), and τ0, τN ≥ CN6. Then
there exists a positive constant C depending on ν−1 and the regularities of U and F
such that

‖u(t)− U(t)‖ ≤ CN−σ ∀ t ∈ (0, T ).

5. The stability and convergence of LGCC method. In this section, we
consider the stability and convergence of the fully discrete scheme (2.3). We assume
that all functions below are valued at time s unless otherwise specified. Suppose u
and the term on the right-hand side in (2.3) have the error ũ and f̃ , respectively.
Then by (2.3) we have

(ũt̂, v) + (∂xI
C
N F̃ , v) + ν(∂x ˆ̃u, ∂xv) = (f̃ , v) ∀ v ∈ V 0

N , t ∈ St−τ .(5.1)

Taking v = ˆ̃u in (5.1), we get

1

2
‖ũ‖2

t̂
+ ν|ˆ̃u|21 = (f̃ , ˆ̃u) + (ICN F̃ , ∂x ˆ̃u).(5.2)

We need to bound the term ‖ICN F̃‖, which would be easy to do, provided that ICN is
replaced by the Legendre–Galerkin/collocation operator or the norm is in the weighted
Chebyshev one. But here we cannot deal with this directly. So we turn to the stability
property of ICN given in (3.8). Taking v = ũt̂ in (5.1), we have

‖ũt̂‖2 +
1

2
ν(|ũ|21)t̂ = (f̃ , ũt̂)− (∂xI

C
N F̃ , ũt̂).(5.3)

Combining (5.2) and (5.3) through the factor N−2, we arrive at

(‖ũ‖2 + N−2ν|ũ|21)t̂ + 2(ν|ˆ̃u|21 + N−2‖ũt̂‖2)(5.4)

= 2(f̃ , ˆ̃u) + 2(ICN F̃ , ∂x ˆ̃u) + 2N−2((f̃ , ũt̂)− (∂xI
C
N F̃ , ũt̂))

≤ C(‖f̃‖2−1 + ‖ICN F̃‖2 + N−2‖f̃‖2 + N−2|ICN F̃ |21) + ν|ˆ̃u|21 + N−2‖ũt̂‖2,
where C is a positive constant dependent on ν−1. Summing (5.4) for s ∈ St−τ gives

E(ũ, t) ≤ ρ(ũ, f̃ , t) + Cτ
∑

s∈St−τ

(‖ICN F̃ (s)‖2 + N−2|ICN F̃ (s)|21),(5.5)
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where

E(ũ, t) = ‖ũ(t)‖2 + N−2ν|ũ(t)|21 + 2τ
∑

s∈St−τ

(ν|ˆ̃u(s)|21 + N−2‖ũt̂(s)‖2),

ρ(ũ, f̃ , t) = ‖ũ(0)‖2 + N−2ν|ũ(0)|21 + ‖ũ(τ)‖2 + N−2ν|ũ(τ)|21
+ Cτ

∑
s∈St−τ

(‖f̃(s)‖2−1 + N−2‖f̃(s)‖2).

For any given t ∈ ST , if

‖ũ(s)‖L∞(I) ≤ C0 ∀ s ∈ St−τ ,(5.6)

then by (3.8) and (3.9)

‖ICN F̃‖+ N−1|ICN F̃ |1 ≤ ‖F̃‖+ ‖ICN F̃ − F̃‖+ N−1|ICN F̃ |1 ≤ ‖F̃‖+ CN−1|F̃ |1
=

∥∥∥∥∫ 1

0

F ′(u + θũ)ũdθ

∥∥∥∥+ CN−1

∥∥∥∥∫ 1

0

(F ′′(u + θũ)(∂xu + θ∂xũ)ũ + F ′(u + θũ)∂xũ)dθ

∥∥∥∥
≤ CF (uM , C0)(‖ũ‖+ N−1|ũ|1) ∀ s ∈ St−τ .
Thus, we have shown that for any t ∈ ST , if (5.6) holds, then

E(ũ, t) ≤ ρ(ũ, f̃ , t) + C∗τ
∑

s∈St−τ

E(ũ, s),(5.7)

where C∗ is a positive constant dependent on CF (uM , C0) and ν−1.
Theorem 5.1. Let τ be suitably small. If ρ(ũ, f̃ , T ) ≤ 2C2

0e
−C∗T /(N + 1)2, then

E(ũ, t) ≤ ρ(ũ, f̃ , t)eC
∗t ∀ t ∈ ST .(5.8)

Proof. We prove the result by induction over t ∈ ST . It is easy to see that the
result (5.8) is true for t = τ . Assume that it is true for all s ∈ St−τ :

E(ũ, s) ≤ ρ(ũ, f̃ , s)eC
∗s.(5.9)

Then, from the inverse inequality (3.7), we have

‖ũ(s)‖2L∞(I) ≤
(N + 1)2

2
‖ũ(s)‖2 ≤ (N + 1)2

2
ρ(ũ, f̃ , s)eC

∗s ≤ C2
0 ,

which means (5.6) holds. Therefore, we have from (4.6) and (5.9) that

E(ũ, t) ≤ ρ(ũ, f̃ , t) + C∗τ
∑

s∈St−τ

E(ũ, s) ≤ ρ(ũ, f̃ , t) + C∗τ
∑

s∈St−τ

ρ(ũ, f̃ , s)eC
∗s

≤ ρ(ũ, f̃ , t)

1 + C∗τ
∑

s∈St−τ

eC
∗s

 ≤ ρ(ũ, f̃ , t)eC
∗t.

Thus the proof is completed.
Next we consider the convergence of the scheme (2.3). Setting w = P1,NU and

η = u− w, we get from (1.1) and (2.3) that

(ηt̂, v) + (∂xI
C
N G̃, v) + ν(∂xη̂, ∂xv) = (g̃, v) ∀ v ∈ V 0

N ,(5.10)
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where

g̃ = ∂tÛ − Ut̂ + Ut̂ − wt̂ + ∂x(F (U)− ICNF (w) +
τ2

2
F (U)tt̄),(5.11)

vtt̄(t) :=
1

τ2
(v(t + τ)− 2v(t) + v(t− τ)).(5.12)

Let C∗ be a positive constant dependent on CF (UM , C0) and ν−1. Then, as in Theo-
rem 5.1, if ρ(η, g̃, T ) ≤ 2C0e

−C∗T /(N + 1)2, we have

E(η, t) ≤ ρ(η, g̃, t)eC∗t ∀ t ∈ ST .(5.13)

We arrive at the following convergence result.
Theorem 5.2. Let U and u be the solution of (1.1) and (2.3), respectively.

Assume that σ ≥ 2 and U ∈ C(0, T ;H1
0 (I) ∩Hσ(I)) ∩H1(0, T ;H1

0 (I) ∩Hσ−1(I)) ∩
H3(0, T ;L2(I)) ∩ H2(0, T ;H1(I)), ∂tU(0) ∈ Hσ/2(I), and F (z) ∈ Cmax{3,σ}(R).
Then there exists a positive constant C depending on ν−1 and the regularities of U
and F such that if τ

√
N ≤ c0 being suitably small,

‖u(t)− U(t)‖ ≤ C(τ2 + N−σ) ∀ t ∈ ST .
Proof. We need only to estimate ρ(η, g̃, t) in (5.13). We separate g̃ in (5.11) into

g̃ = (∂tÛ − Ut̂) + (Ut̂ − wt̂) + ∂x(F (U)− ICNF (U))

+ ∂xI
C
N (F (U)− F (w)) +

τ2

2
∂xF (U)tt̄ :=

5∑
j=1

g̃j .

A simple calculation and (3.3) give

τ
∑

s∈St−τ

(‖g̃1‖2−1 + N−2‖g̃1‖2) ≤ Cτ4(‖∂3
tU‖2L2(0,T ;H−1(I)) + N−2‖∂3

tU‖2L2(0,T ;L2(I))),

τ
∑

s∈St−τ

(‖g̃2‖2−1 + N−2‖g̃2‖2) ≤ CN−2στ
∑

s∈St−τ

‖Ut̂‖2σ−1

≤ CN−2σ‖∂tU‖2L2(0,T ;Hσ−1(I)).

From (3.9) and (3.3),

‖g̃3‖−1 + N−1‖g̃3‖
≤ ‖F (U)− ICNF (U)‖+ N−1|F (U)− ICNF (U)|1 ≤ CN−σ‖F (U)‖σ,

‖g̃4‖−1 + N−1‖g̃4‖
≤ ‖F (U)− F (w)‖+ ‖(ICN − I)(F (U)− F (w))‖+ N−1|ICN (F (U)− F (w))|1
≤ ‖F (U)− F (w)‖+ CN−1|F (U)− F (w)|1
≤ CC ′F (‖U‖L∞(I), ‖w‖L∞(I))(1 + N−1(‖∂xU‖L∞(I) + ‖∂xw‖L∞(I)))N

−σ‖U‖σ.
Also,

τ
∑

s∈St−τ

(‖g̃5‖2−1 + N−2‖g̃5‖2) ≤ τ5
∑

s∈St−τ

(‖F (U)tt̄‖2 + N−2|F (U)tt̄|21)

≤ Cτ4(‖∂2
t F (U)‖2L2(0,T ;L2(I)) + N−2‖∂2

t F (U)‖2L2(0,T ;H1(I)))

≤ CC ′′F τ
4(‖U‖2H2(0,T ;L2(I)) + ‖∂tU‖4L4(I×(0,T )) + N−2‖U‖2H2(0,T ;H1(I)))

≤ CC ′′F τ
4‖U‖2H2(0,T ;H1(I)),
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where

C ′′F = max
|z|≤‖U‖C(Ī×[0,T ])

{|∂lzF (z)|2 : l = 1, 2, 3
}
.

For the initial errors we have

‖η(0)‖+ N−1|η(0)|1 = ‖(ICN − P1,N )U0‖+ N−1|(ICN − P1,N )U0|1 ≤ CN−σ‖U0‖σ,
and from Taylor’s formula

‖η(τ)‖+ N−1|η(τ)|1
≤ ‖(ICN − I)U0‖+ N−1|(ICN − I)U0|1 + τ(‖(ICN − I)U(τ)‖+ N−1|(ICN − I)U(τ)|1)

+ τ2(‖∂2
tU‖C(0,τ ;L2(I)) + N−1‖∂2

tU‖C(0,τ ;H1(I)))

+ ‖(I − P1,N )U(τ)‖+ N−1|(I − P1,N )U(τ)|1
≤ CN−σ(‖U0‖σ + ‖U(τ)‖σ) + CτN−σ/2‖∂tU(0)‖σ/2 + Cτ2‖∂2

tU‖C(0,τ ;H1(I)).

Thus the proof is completed by (5.13) and (3.3) with the triangle inequality.
Remark 5.1. If we consider only the semidiscrete scheme, the stability and optimal

error estimate similar to Theorems 4.1–4.2 can be established for (2.1) with all three
kinds of boundary conditions by combining the arguments given in [6, 13], provided
that

τ0 =

{
νβ−1ω−1

0 , β �= 0,
CN6, β = 0,

τN =

{ −νδ−1ω−1
N , δ �= 0,

CN6, δ = 0.
(5.14)

For the fully discrete CNLF scheme, it seems difficult to get desired results in that
way. The difference is that in the semidiscrete case one has the term |ũ(t)|1 which can
be used to control the nonlinear term, while in the fully discrete case one has only the
term |ũ(t+ τ)+ ũ(t− τ)|1 (but the nonlinear term is set at t for ease of computation).
However, an H1-estimate can be obtained for the fully discrete scheme of the problem
with the Neumann or Robin boundary condition. Under the condition (5.14) with
β �= 0 and δ �= 0, which is also applied in [6] to the problem with the Neumann
boundary condition, the scheme (2.1) reads as follows: For any v ∈ PN ,


(∂tu(t), v)N + (∂xI

C
NF (u(t)), v) + ν(∂xu(t), ∂xv)

+ νβ−1(αu(1, t)− g+(t))v(1) + ν|δ|−1(γu(−1, t)− g−(t))v(−1) = 0,

(u(0), v)N = (ICNU0, v)N .

(5.15)

This is just a pseudospectral scheme with the boundary condition being treated in a
natural way. Then the fully discrete CNLF scheme is the following: For any v ∈ PN ,

{
(ut̂(t), v)N + (∂xI

C
NF (u(t)), v) + ν(∂xû(t), ∂xv)

+ νβ−1(αû(1, t)− ĝ+(t))v(1) + ν|δ|−1(γû(−1, t)− ĝ−(t))v(−1) = 0,

(5.16)

with the initial values as in (2.2). The LGCC scheme can be set by simply replacing
(·, ·)N with (·, ·) in (5.15) and (5.16), respectively. In both cases, the stability and
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Table 1
Maximum error at t = 12 for Example 6.1 with m = 1, ν = 0.1, ω = 0.5, I = [−5, 5], x0 = −3.

LGCC LC

τ N L∞ error Time L∞ error Time

1.e-1 16 5.4400e-02 0.09 5.4894e-02 0.14

1.e-2 32 4.5000e-03 0.89 4.5000e-03 0.83

1.e-3 64 2.9282e-05 10.72 2.7465e-05 10.73

1.e-4 128 3.4310e-09 166.21 3.4576e-09 533.19

1.e-5 256 2.0935e-11 4583.69 2.0800e-11 13872.49

Table 2
Maximum error at t = 1 for Example 6.1 with m = 2, ν = 7, ω = 10, I = [−10, 10], x0 = −6.

LGCC LC

τ N L∞ error Time L∞ error Time

2.5e-3 32 3.2600e-2 0.39 3.4200e-2 0.32

8.0e-4 64 8.2341e-4 1.27 8.2723e-4 1.24

5.0e-5 128 4.4544e-7 29.11 3.9143e-7 92.64

5.0e-6 256 4.3200e-9 800.72 4.5900e-9 2280.66

optimal error estimates in the H1-norm can be derived for the fully CNLF scheme
by an argument similar to the one given in the proofs of Theorems 5.1–5.2. When an
H1-estimate is considered, the nonlinear term can be estimated directly by using the
stability property (3.8) of the Chebyshev interpolation operator.

6. Numerical results. In this section, we will give some numerical results of
the LGCC method and the Legendre collocation (LC) method to make a comparison.

Example 6.1. Consider the generalized Burgers equation

∂tU + Um∂xU − ν∂2
xU = 0,(6.1)

with the following analytical solution:

U(x, t) =

{
(m + 1)ω

2

[
1− tanh

(mω

2ν
(x− ωt− x0)

)]}1/m

, ω > 0.

It is computed by the LGCC method and the LC method with m = 1, ν = 0.1, ω = 0.5,
I = [−5, 5], x0 = −3, t ∈ [0, 12], and m = 2, ν = 7, ω = 10, I = [−10, 10], x0 = −6,
t ∈ [0, 1]. The maximum errors are reported in Table 1 at t = 12 and Table 2 at t = 1,
respectively.

Example 6.2. Consider the Burgers equation

∂tU + U2∂xU − ν∂2
xU = g,(6.2)

with a soliton-like solution

U(x, t) = sech2(ax− bt− c).

Numerical results of the LGCC method and the LC method with a = b = 1, c = −4,
ν = 1, and I = [−10, 10] are reported in Table 3 at t = 8. From Tables 1–3, we can
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Table 3
Maximum error at t = 8 for Example 6.2 with a = b = 1, c = −4, ν = 1, I = [−10, 10].

LGCC LC

τ N L∞ error Time L∞ error Time

1.e-1 16 1.5660e-01 0.79 2.3770e-01 0.16

1.e-2 32 2.9800e-02 0.89 3.2700e-02 0.81

1.e-3 64 3.1580e-04 9.79 3.0556e-04 11.00

1.e-4 128 1.7111e-08 149.21 1.5117e-08 279.72

1.e-5 256 8.2430e-12 3629.76 8.3099e-12 9937.84

see that the LGCC method obtained nearly the same precision as the LC method. But
the LGCC method spends less time than the LC method, especially when the number
of collocation points increases.

Acknowledgment. The authors thank the referees for their valuable suggestions
and comments.
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Abstract. We derive a Godunov-type numerical flux for the class of strictly convex, homoge-
neous Hamiltonians that includes H(p, q) =

√
ap2 + bq2 − 2cpq, c2 < ab. We combine our Godunov

numerical fluxes with simple Gauss–Seidel-type iterations for solving the corresponding Hamilton–
Jacobi (HJ) equations. The resulting algorithm is fast since it does not require a sorting strategy
as found, e.g., in the fast marching method. In addition, it provides a way to compute solutions
to a class of HJ equations for which the conventional fast marching method is not applicable. Our
experiments indicate convergence after a few iterations, even in rather difficult cases.

Key words. Hamilton–Jacobi equations, fast marching, fast sweeping, upwind finite differen-
cing, eikonal equations
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1. Introduction. Hamilton–Jacobi (HJ) equations have a rich pool of applica-
tions, ranging from those of optimal control theory and geometrical optics, to essen-
tially any problem that needs the (weighted) distance function [14]. Examples include
crystal growth, ray tracing, etching, robotic motion planning, and computer vision.
Solutions of these types of equations usually develop singularities in their derivatives,
and thus the unique viscosity solution [6] is sought.

In this article, we focus on the class of time independent HJ equations with
Dirichlet boundary condition

H(x,∇u) = r(x), u|Γ = 0;

H(x,p) are strictly convex nonnegative, and limλ→0 H(x, λp) = 0. We explain our
method using the following important model equation:

H(φx, φy) =
√

aφ2
x + bφ2

y − 2cφxφy = r,(1.1)

where φ : R
2 �→ R is continuous and a, b, c, and r can be either constants or scalar

functions; in the latter case, H depends also on x, defined on R
2, satisfying ab > c2,

a, b, r > 0. With a = b = 1 and c = 0, we have the standard eikonal equation for
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which many numerical methods have been developed. This equation has the essential
features of HJ equations with convex Hamiltonians, so that we can easily explain our
algorithm, and is general enough that fast marching is not applicable.

In the following subsections, we will review some of the solution methods for
the eikonal equation since it forms the motivation of our work. We then present a
fast Gauss–Seidel-type iteration method for (1.1) which utilizes a monotone upwind
Godunov flux for the Hamiltonian. We show numerically that this algorithm can be
applied directly to equations of the above type with variable coefficients.

1.1. Solving eikonal equations. In geometrical optics [10], the eikonal equa-
tion √

φ2
x + φ2

y = r(x, y)(1.2)

is derived from the leading term in an asymptotic expansion

eiω(φ(x,y)−t)
∞∑
j=0

Aj(x, y, t)(iω)
−j

of the wave equation

wtt − c2(x, y)(wxx + wyy) = 0,

where r(x, y) = 1/|c(x, y)| is the function of slowness. The level sets of the solution φ
can thus be interpreted as the first arrival time of the wave front that is initially Γ.
It can also be interpreted as the “distance” function to Γ.

We first restrict our attention for now to the case in which r = 1. Let Γ be a
closed subset of R

2. It can be shown easily that the distance function defined by

d(x) = dist (x,Γ) := min
p∈Γ
||x− p||, x = (x, y) ∈ R

2,

is the viscosity solution to (1.2) with the boundary condition

φ(x, y) = 0 for (x, y) ∈ Γ.

Rouy and Tourin [20] proved the convergence to the viscosity solution of an itera-
tive method solving (1.2) with the Godunov Hamiltonian approximating ||∇φ||. The
Godunov Hamiltonian function can be written in the following form:

HG(p−, p+, q−, q+) =
√
max{p+

−, p
−
+}2 +max{q+

−, q
−
+}2,(1.3)

where p± = Dx
±φi,j , q± = Dy

±φi,j , D
x
±φi,j = ±(φi±1,j − φi,j)/h and accordingly for

Dy
±φi,j , and x+ = max(x, 0), x− = −min(x, 0).
Osher [13] provided a link to time dependent eikonal equations by proving that

the t-level set of φ(x, y) is the zero level set of the viscosity solution of the evolution
equation at time t,

ψt = ||∇ψ|| = 0,

with appropriate initial conditions. In fact, the same is true for a very general class
of HJ equations (see [13]). As a consequence, one can try to solve the time dependent
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equation by the level set formulation [17] with high order approximations on the par-
tial derivatives [9, 18]. Crandall and Lions proved that the discrete solution obtained
with a consistent, monotone numerical Hamiltonian converges to the desired viscosity
solution [5].

Tsitsiklis [25] combined heap sort with a variant of the classical Dijkstra algorithm
to solve the steady state equation of the more general problem

||∇φ|| = r(x).

This was later rederived in [23] and also reported in [8]. It has become known as the
fast marching method, whose complexity is O(N log(N)), where N is the number of
grid points. Osher and Helmsen [15] have extended the fast marching-type method to
somewhat more general HJ equations. We will comment on this in a following section.

1.2. Anisotropic eikonal equation. We return to the Hamiltonian in ques-
tion: H(p, q) =

√
ap2 + bq2 − 2cpq. Writing the quadratic form as

ap2 + bq2 − 2cpq =
(

p q
)( a −c
−c b

)(
p
q

)
,

it is easy to see that we can diagonalize the symmetric matrix in the middle of the
equation for our previously noted choices of a, b, c and find a coordinate system ξ-η
such that, after rescaling, the Hamiltonian becomes

H(p̃, q̃) =
√

p̃2 + q̃2.

The eigensystem of the above matrix defines the anisotropy. Indeed, the authors in
[15] proposed to solve the constant coefficient equation (1.1) by first transforming it
to (1.2) in the ξ-η coordinate system.

This anisotropy occurs in fields such as ray tracing in special media, e.g., crystals,
in which there are “preferred” directions. Furthermore, we will see that it can be a
result of considering the geodesic distance function on a manifold M that is defined
as the graph of a smooth function f .

Let φ be the distance function such that

φ(x, y) = min
γ⊂M

∫
γ

ds

and γ connects the point (x, y) with the set Γ ⊂ M. The minimizing curve is called
the geodesic, and φ the distance function to Γ on M. Moreover, φ solves

||P∇ψ∇φ||2 = 1, φ|Γ = 0,(1.4)

where ψ(x, y, z) = f(x, y)− z, and the projection operator [4]

P∇ψ = I − ∇ψ
⊗∇ψ
||∇ψ||2 ,

which projects a vector onto a plane whose normal is parallel to ∇ψ. Using the fact
that P∇ψ is a projection operator, a simple calculation shows that

||P∇ψ∇φ||2 =

(
1− f2

x

f2
x + f2

y + 1

)
φ2
x +

(
1− f2

y

f2
x + f2

y + 1

)
φ2
y − 2

fxfy
f2
x + f2

y + 1
φxφy.

(1.5)
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This is clearly of the form of Hamiltonians that we are interested in. We will apply
our algorithm to compute the geodesic distance later in this paper.

There are other approaches that are designed to compute distances on manifolds.
For example, [11] provided an algorithm to compute the geodesic distance on trian-
gulated manifolds. Barth [2] uses the discontinuous Galerkin method to find distance
on graphs of functions that are represented by spline functions. In [4], the authors
embed the manifold as the zero level set of a Lipschitz continuous function and solve
the corresponding time dependent eikonal equation (1.4) in the embedding space. As
we have mentioned in the previous subsection, the zero level set of the time dependent
eikonal equation at time t1 is the t1-level set of the solution to the stationary eikonal
equations (see [13]). In [12], the authors adopted the standard fast marching method
to solve the isotropic eikonal equation in a thin band of thickness ε, which encloses
the manifold M , and proved that the restriction of the solution to M converges to the
geodesic distance as ε goes to 0. In [21, 22], the authors provide an ordered upwind
method to solve a general class of static HJ equations. We will comment on their
method in a later subsection.

1.3. Osher’s fast marching criteria. Since the fast marching method is by
now well known, we will not give much detail on its implementation in this paper. In
general, this involves a sorting procedure and the solution of

HG(D
x
−φi,j , D

x
+φi,j , D

y
−φi,j , D

y
+φi,j) = 1(1.6)

for φij in terms of its four neighboring values. More precisely, the heap sort strategy
of the fast marching method requires a monotone update sequence. The updated
value of a grid node has to be greater than or equal to those of the grid nodes used
to form the finite difference stencil. This amounts to the condition

pHp + qHq ≥ 0,

which dictates that the solution be nondecreasing along the characteristics. However,
if we use one-sided upwind finite difference approximations for partial derivatives of
φ on a Cartesian grid, it is equivalent to demanding that the partial derivatives of
φ (i.e., p and q) and their corresponding components of the characteristics directions
(i.e., dx/dt and dy/dt) have the same sign. Since dx/dt = Hp and dy/dt = Hq, we
have the stricter Osher’s fast marching criterion

pHp ≥ 0, qHq ≥ 0.(1.7)

It does not matter whether the Hamiltonian is convex or not; as long as criterion (1.7)
is satisfied, a simple fast marching algorithm can be applied. But if the criterion is
not satisfied, fast marching cannot be applied to the problem on a Cartesian grid. Of
course there are Hamiltonians that do not satisfy (1.7). In the class of Hamiltonians
that we consider, as long as c = 0, it is likely that the values of p and q differ to the
extent that the above criterion is no longer satisfied. In light of criterion (1.7), we
have also tried to find directions ξ(x, y) and η(x, y) locally in which p̃Hp̃ ≥ 0, q̃Hq̃ ≥ 0.
However, if one insists on using Cartesian grids, the implementation of this approach
might be a bit hairy. We are interested especially in tackling, over a Cartesian grid,
problems where the solution is nondecreasing along characteristics but where Osher’s
fast marching criterion is not satisfied.
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1.4. The sweeping idea. Danielsson [7] proposed an algorithm to compute
Euclidean distance to a subset of grid points on a two dimensional grid by visiting
each grid node in some predefined order. In [3], Boué and Dupuis suggest a similar
“sweeping” approach to solve the steady state equation which, by experience, results
in anO(N) algorithm for the problem at hand. This “sweeping” approach has recently
been used in [24] and [27] to compute the distance function to an arbitrary data set
in computer vision. In [26], the author provides some theoretical evidence indicating
that sweeping converges to an approximate Euclidean distance function, i.e., to an
approximate viscosity solution of |∇φ| = 1 in 2d predetermined iterations. We will
talk about these iterations in a later section. Using this “sweeping” approach, the
complexity of the algorithms drops from O(N logN) in fast marching to O(N), and
the implementation of the algorithms becomes a bit easier than the fast marching
method that requires heap sort.

This sweeping idea is best illustrated by solving the eikonal equation in [0, 1]:

|ux| = 1, u(0) = u(1) = 0.

Let ui = u(xi) denote the grid values associated with the uniform grid composed of
the gridpoints 0 = x0 < x1 < · · · < xn = 1. We then solve the discretized nonlinear
system √

max(max(D−ui, 0)2,min(D+ui, 0)2) = 1, u0 = un = 0,(1.8)

by our sweeping approach. We initially set u
(0)
i =∞, i = 1, . . . , n− 1. In practice, ∞

can be replaced by some number K, which is larger than maxx∈[0,1] u. Let us begin
by sweeping from 0 to 1; i.e., we update ui from i = 1 increasing to i = n− 1. This is

“equivalent” to following the characteristics emanating from x0. Let u
(1)
i denote the

grid values after this sweep. We then have

u
(1)
i =

{
i
n if i = 1, . . . , n− 2,

1
n if i = n− 1.

Notice that at i = n−1, we actually use the upwind information from the neighboring

right boundary point. Furthermore, notice that u
(1)
i already has the correct desired

values for i ≤ n/2 since the sweep goes from left to right, the desired upwind direction
for these i. In the second sweep, we update ui from i = n−1 decreasing to 1, starting

with u
(1)
i . During this sweep, we follow the characteristics emanating from xn. The

use of (1.8) is essential, since it determines what happens when two characteristics
cross each other. It is then not hard to see that, after the second sweep,

ui =

{ i
n if i ≤ n

2 ,
(n−i)
n otherwise.

Notice that the correct values at i ≤ n/2 derived after the first sweep are un-
changed, and new and correct values for i > n/2 are created. In summary, this simple
iterative algorithm can be described as follows: at the kth iteration, solve

max

(
max

(
u

(k)
i − u

(k−1)
i−1

∆x
, 0

)
,min

(
u

(k−1)
i+1 − u

(k)
i

∆x
, 0

))
= 1

for u
(k)
i for each i going from 1 to n− 1 in the first iteration (k = 1), and from n− 1

to 1 for the second iteration (k = 2). However, for more complicated equations and
boundary conditions, it is not so easy to write down the equivalent explicit solution.
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In this paper, we will extend this sweeping approach to a class of HJ equations
that cannot be solved by the fast marching algorithm, by first deriving a Godunov
Hamiltonian.

In [21, 22], the authors proposed a one-pass method that is based on a control-
theoretic viewpoint. In principle, they solve the HJB equation

max
a
∇u · af(a,x) = 1,(1.9)

where p = (p, q) and the function f(a,x) is the speed of motion. This formula is the
second Legendre transform taken on the sphere; see, e.g., [16, 19].

The idea is still to follow the characteristics and update the grid value in a mono-
tone sequence. In a notation similar to the two dimensional setting of [21, 22], we
let uo be the grid value we are updating. To update uo, we have to look for two
other grid values ur and us, which are not necessarily the immediate grid neighbors
of uo. For example, if uo is the grid value ui,j , the immediate neighbors of uo are
then ui+1,j ,ui,j+1,ui−1,j , and ui,j−1. As we indicated in the previous subsection, it is
possible that uo is less than all its immediate neighboring values. We then need to
find two other grid values, here denoted as us and ur, to form an upwinding stencil.
Then uo is found by minimizing a nonlinear expression derived from (1.9), using the
values of ur, us, and f. The heap sort data structures are used in order to find ur and
us; therefore, the complexity is N logN, where N is the total number of grid points.
Also, since ur and us may not lie on the immediate neighbors, this algorithm may
need a larger region around the initial wave front to get started.

As one will see in the following section, our proposed method is also based on
following the characteristics. To update uo, our method uses only the immediate
neighboring grid values and does not need the heap sort data structure. More impor-
tantly, our algorithm follows the characteristics with certain directions simultaneously,
in a parallel way, instead of a sequential way as in the fast marching method. The
Godunov flux is essential in our algorithm, since it determines what neighboring grid
values should be used to update u on a given grid node o. At least in the examples
presented, we need only to solve a simple quadratic equation and run some simple
tests to determine the value to be updated. This simple procedure is performed in
each sweep, and the solution is obtained after a few sweeps. Our code is not much
more than what is presented in section 3.2. We also point out the ease of implementing
our proposed algorithm and its extension to more dimensions; this will be described
in a sequel paper.

2. A Godunov flux for strictly convex Hamiltonians. By solving the Rie-
mann problem for HJ equations (Godunov’s procedure), Bardi and Osher [1] proved
rigorously that

HG(p−, p+; q−, q+) = ext
p∈I[p−,p+]

ext
q∈I[q−,q+]

H(p, q),(2.1)

where

ext
p∈I[a,b]

= min
p∈[a,b]

if a ≤ b,

ext
p∈I[a,b]

= max
p∈[b,a]

if a > b,

HG(D
x
−φij , D

x
+φij , D

y
−φij , D

y
+φij) = HG(p−, p+; q−, q+),
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and I[a, b] denotes the closed interval bounded by a and b. This is a monotone upwind
flux function, which implies convergence. Godunov’s scheme (1.3) for the eikonal

equation
√
φ2
x + φ2

y = 1 can be derived from the above formula. It is one of the
central topics of this paper to derive an explicit formula for the class of strictly convex
Hamiltonians in question. Especially, we will demonstrate our numerical methods on
H =

√
aφ2

x + bφ2
y − 2cφxφy, c

2 < ab.
Note that, in general, if we reverse the order on p and q in our ext-ext decision,

the result might be different, although they both give convergent monotone methods.
However, in the convex Hamiltonian at hand, the results are order independent.

For convenience, we will also use HG(φi,j , φi±1,j , φi,j±1) to denote the evaluation
of our Godunov Hamiltonian HG(D

x
−φij , D

x
+φij , D

y
−φij , D

y
+φij).

2.1. Derivation of the flux. In order to derive a compact expression that
satisfies (2.1), we need to study the extremum of the Hamiltonian on Ip × Iq ⊂ R

2,
where Ip is a shorthand for I[p−, p+].

The extremum may occur on either the critical points of H or the boundary of
Ip × Iq. Let us first look at the partial derivatives of H, i.e., Hp and Hq, and their
zeros. Fix a q0; the extremum of H(p, q0) occurs at either the critical point of H(p, q0)
(i.e., where Hp = 0) or the boundary of I[p−, p+]. We denote the critical point by
pσ(q0). Similarly, given p0, we obtain the critical point qσ(p0). For convenience, we
shall denote pσ(q0) by pσ when q0 can be determined from the context, and (pσ, qσ) is
the critical point of H such that Hp(pσ, qσ) = Hq(pσ, qσ) = 0. Therefore, we consider
separately H(pσ, qσ), H(p−, qσ(p−)), H(p+, qσ(p+)), H(pσ(q−), q−), H(pσ(q+), q+),
and H(p±, q±) as possible evaluations of (2.1).

For fixed p, we have

HG(p, q−, q+) = H(p, sgnmax{(q− − qσ)
+, (q+ − qσ)

−}+ qσ ),(2.2)

where

sgnmax(x, y) = x+ if max{x+, y−} = x+,

sgnmax(x, y) = −y− if max{x+, y−} = y−.

The expression for fixed q is a direct analogy to (2.2). It is easy to see thatHG(·, ·; q−, q+)
is increasing in q− and decreasing in q+. By symmetry, HG(p−, p+; ·, ·) is increasing
in p− and decreasing in p+.

Details of the derivation of the above expression are provided in the appendix.
The following proposition will be of use in analyzing this introduced Godunov

flux.
Proposition 1. If Hpp > 0, Hqq > 0, pHp ≥ 0, qHq ≥ 0, and pσ(0) = qσ(0) = 0,

then pσ(q) ≡ 0 ∀q, and qσ(p) ≡ 0 ∀p.
Proof. pσ(q), by definition, is the zero of Hp(pσ(q), q) = 0. We will write pσ in

place of pσ(q) for brevity. This proposition is then proved by simple manipulation of
the definitions:

d

dq
pσH(pσ, q) = p′σHp(pσ, q) + pσ(Hpp(pσ, q)p

′
σ +Hpq(pσ, q))

= pσp
′
σHpp(pσ, q) +

∂

∂q
Hp(pσ, q)

= pσp
′
σHpp(pσ, q)

= 0.
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The hypothesis Hpp > 0 implies that

pσ(q) = 0 ∀q or p′σ(q) = 0 ∀q.
Again, by the hypothesis that pσ(0) = qσ(0) = 0, we can conclude that pσ(q) ≡ 0 ∀q.

Similarly, qσ(p) ≡ 0 ∀p.
Notice that if the Hamiltonian is

√
p2 + q2, our upwinding expression in (2.2) is

identical to the conventional expression max(p+
−, p

−
+). (In this case, the sign of the

second argument does not matter since we are really evaluating its square product
in the eikonal equation.) In fact, we have the following corollary, which is a direct
consequence of Proposition 1.

Corollary 1. If Hpp > 0, Hqq > 0, pHp ≥ 0, qHq ≥ 0, pσ(0) = qσ(0) = 0, and
H(p, q) = H(|p|, |q|), then the Godunov flux can be simplified to

HG(p−, p+; q−, q+) = H(max{p+
−, p

−
+},max{q+

−, q
−
+}).

3. The sweeping algorithms. We will use the model equation (1.1) as a con-
crete example for the exposition of our algorithm. We stress here again that the
scheme described below is valid for a general class of convex, homogeneous HJ equa-
tions.

From the assumption that the solution is nondecreasing along the characteristics,
i.e.,

pHp + qHq ≥ 0,

we can easily deduce that the solution is nondecreasing at least in either the x- or
y- direction; i.e., either pHp ≥ 0 or qHq ≥ 0. Since we approximate the derivatives
φx(xi,j) by finite differencing using the neighbors of φi,j , the above monotonicity
property translates to the following requirement in the solution φi,j .

Definition 1. Let φi,j be the solution of HG(φ, φi±1,j , φi,j±j) = ri,j . We say
that φ satisfies the monotonicity requirement if

φi,j ≥ min{φi±1,j , φi,j±1}.
3.1. Derivation of the scheme. Without loss of generality, we assume that

r(x, y) = 1. Let us reexamine the equation to be solved:

H(p, q) = 1,(3.1)

where

H : R× R→ R.

Equation (3.1) dictates a level set relation; namely, the solution is the 1-level set of
H in the p-q plane (denoted here as Λ). Correspondingly, the solutions of the HJ
equation with the Godunov Hamiltonian

HG(p+, p−; q+, q−) = ext
p∈I[p−,p+]

ext
q∈I[q−,q+]

H(p, q) = r(3.2)

satisfy the following two properties:
• they are the intersections of Λ and the set I[p−, p+]× I[q−, q+];
• they are either the critical points of H or the boundary points of the set

I[p−, p+]× I[q−, q+].
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q

p+p−

p

q−

q+

p

q

p+p−

q+

q−

Fig. 1. The 1-level set of H and the box I[p−, p+ ]xI[q−, q + ].

Figure 1 demonstrates two possible configurations of the intervals. So what our al-
gorithm should do is find a suitable value of φ on each grid node so that the divided
forward and backward differences of φ at that grid node satisfy (3.2).

Suppose we are on the grid node (i, j), and it is determined that

HG(p+, p−; q+, q−) = H(p−, q+) = 1.

Correspondingly, for our model equation (1.1) we have to solve the following quadratic
equation:

a

(
φi,j − φi−1,j

∆x

)2

+ b

(
φi,j+1 − φi,j

∆y

)2

− 2c

(
φi,j − φi−1,j

∆x

)(
φi,j+1 − φi,j

∆y

)
= 1.

(3.3)

The solution φi,j not only has to satisfy the above equation, but ultimately has to
be a solution to (3.2), given its four neighbors φi−1,j , φi+1,j , φi,j−1, and φi,j+1. The
subfigure on the right in Figure 1 shows one such possible configuration; i.e.,

φi,j − φi−1,j

∆x
<

φi+1,j − φi,j
∆x

and
φi,j − φi,j−1

∆y
<

φi,j+1 − φi,j
∆y

such that

ext
p∈I[p−,p+]

ext
q∈I[q−,q+]

H(p, q) = min
p∈I[p−,p+]

min
q∈I[q−,q+]

H(p, q) = 1.

One can, of course, implement a tree of all the probable cases from the complete
listing of that of the Godunov Hamiltonian (2.1). However, we have a more straight-
forward approach that utilizes the compact expressions for the Godunov Hamiltonian
(2.2) that we obtained from the previous section.

Instead, we solve the equation with the following reduced formulas for the original
Godunov Hamiltonian:

HG(p+, p−; q+, q−) = ext
q∈I[q−,q+]

H(p−, q),(3.4)

HG(p+, p−; q+, q−) = ext
q∈I[q−,q+]

H(p+, q),(3.5)
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HG(p+, p−; q+, q−) = ext
p∈I[p−,p+]

H(p, q−),(3.6)

HG(p+, p−; q+, q−) = ext
p∈I[p−,p+]

H(p, q+),(3.7)

HG(p+, p−; q+, q−) = H(pσ, qσ).(3.8)

For example, in the first case, the flux is equivalent to

H(p−, sgnmax{(q− − qσ)
+, (q+ − qσ)

−}+ qσ) = 1.

The possible evaluations of sgnmax{(q−− qσ)
+, (q+− qσ)

−}+ qσ are q−, q+, qσ(p−),
and 0. We thus end up solving the HJ equation with all possible arguments for the
Hamiltonian.

Suppose we algebraically solve H(p−, q+) = 1 for φi,j and call the solution φcan.
We then compute the divided differences p± and q± using this φcan in place of φi,j .
We call φcan valid if both

H(p−, sgnmax{(q− − qσ)
+, (q+ − qσ)

−}+ qσ) = 1,

H(sgnmax{(p− − pσ)
+, (p+ − pσ)

−}+ pσ , q+) = 1,

and φcan satisfies the monotonicity requirement (Definition 1).
Finally, we set φi,j to be the minimum of those in the set of all valid candidate

solutions φcan obtained from using all the possible combinations of the arguments of
H. This is motivated by the first arrival time interpretation of the function φ.

In essence, we are solving for the central value in the Godunov Hamiltonian in
terms of its four neighbors. It is well known and easy to show that any monotone
Hamiltonian, let alone Godunov’s, is a monotone function of this value. For these
Hamiltonians, this value goes from−∞ to +∞. Thus there is always a unique solution.

Definition 2 (sweeping iteration). A compact way of writing this sweeping
iterations in C/C++ is the following:

for(s1=-1;s1<=1;s1+=2)

for(s2=-1;s2<=1;s2+=2)

for(i=(s1<0?nx:0);(s1<0?i>=0:i<=nx);i+=s1)

for(j=(s2<0?ny:0);(s2<0?j>=0:j<=ny);j+=s2)

update φi,j .

3.2. The algorithm. For the brevity of the algorithm, we define respectively

hG1(p, q−, q+) := sgnmax{(q− − qσ(p))
+, (q+ − qσ(p))

−}+ qσ(p),

hG2(p−, p+, q) := sgnmax{(p− − pσ(q))
+, (p+ − pσ(q))

−}+ pσ(q),

where qσ(p) = pc/b and pσ(q) = qc/a.
Algorithm. We assume that φ(i, j) is given the exact values in a small neighbor-

hood of Γ. We denote this neighborhood Nbd(Γ). We initialize φ by setting φ(i, j) =

φ
(0)
i,j to ∞.1 We begin by computing φ

(n)
i,j for n = 1.

Do the following steps while ||φ(n) − φ(n−1)|| > δ (δ > 0 is the given tolerance):

1Notice that we only need to use a large value in actual implementation.
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1. For each grid point (i, j) visited in the sweeping iteration, if xi,j = Nbd(Γ),
do the following:
(a) For (sx, sy) = (−1, 1), (−1,−1), (1,−1), and (1, 1)

i. Solve

H
(
sx·(φtmp(sx,sy)−φ(n)(i−sx,j))

dx ,
sy·(φtmp(sx,sy)−φ(n)(i,j−sy))

dy

)
= r(i, j)

for φtmp(sx, sy).
ii. Let

p(sx, sy) =
sx · (φtmp(sx, sy)− φ(n)(i− sx, j))

dx

and

q(sx, sy) =
sy · (φtmp(sx, sy)− φ(n)(i, j − sy))

dy
.

iii. Let TG1(sx, sy) be the logical evaluation of the equality

H(p(sx, sy), hG1(p(sx, sy), q(sx, 1), q(sx,−1))) = r(i, j),

and TG2(sx, sy) be that of

H(hG2(p(1, sy), p(−1, sy), q(sx, sy)), q(sx, sy)) = r(i, j).

iv. Let M(sx, sy) = φtmp(sx, sy)−min(φ(n)(i− sx, j), φ
(n)(i, j − sy)).

v. If TG1(sx, sy), TG2(sx, sy) are true andM(sx, sy) ≥ 0, add φtmp(sx, sy)
to the list phi candidate.

(b) For (sx, sy) = (1, 0), (−1, 0)
i. Solve

H
(
sx·(φtmp(sx,0)−φ(n)(i−sx,j))

dx ,
sx·(φtmp(sx,0)−φ(n)(i−sx,j))

dx
c
b

)
= r(i, j)

for φtmp(sx, sy).
ii. Compute p(sx, sy) and q(sx, sy), following the definition.
iii. Evaluate TG1(sx, sy).
iv. If TG1(sx, sy) is true and M(sx, sy) ≥ 0, add φtmp(sx, sy) to the list

phi candidate.

(c) For (sx, sy) = (0, 1) and (0,−1)
i. Solve

H
(
sy·(φtmp(0,sy)−φ(n)(i,j−sy))

dy
c
a ,

sy·(φtmp(0,sy)−φ(n)(i,j−sy))
dy

)
= r(i, j)

for φtmp(sx, sy).
ii. Compute p(sx, sy) and q(sx, sy), following the definition.
iii. Evaluate TG2(sx, sy).
iv. If TG2(sx, sy) is true and M(sx, sy) ≥ 0, add φtmp(sx, sy) to the list

phi candidate.

(d) Let φmin be the minimum element of phi candidate.

φ(n)(i, j) = min(φ(n)(i, j), φmin).
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(e) Clear phi candidate.

2. Set n = n+ 1; go back to step 1.
As described in the previous section, we have to solve the HJ equation with all pos-
sible arguments for the Hamiltonian and take the minimum of those in the set of all
valid candidate solutions. The possible arguments of the Hamiltonian consist of the
forward/backward differences of φ and the critical points centered at each grid node.
In the above algorithm, this set of all possible arguments is indexed by {−1, 0, 1}2.
Therefore, by X(−1, 1) we denote the quantity X that is computed using H(p−, q+).
The number 0 encodes the cases of critical points. For example, φtmp(−1, 1) denotes
the roots of the quadratic equation formed by H(p−, q+) = r; φtmp(1, 0) denotes that
of H(p+, qσ(p+)).

We remark that in the case of c = 0, our algorithm is equivalent to what is used
in the fast marching method under the Rouy–Tourin formula (1.3). Secondly, in our
numerical implementation, we put a threshold value in the evaluations TG1 and TG2

for numerical accuracy reasons.

4. Examples. Proposition 1 and Corollary 1 show the equivalence of the Go-
dunov flux derived in this paper to the one commonly used in the fast marching
applications. The use of this sweeping approach with the Godunov flux (1.3) has
been reported in [24, 26] for eikonal equations; we will not repeat those examples in
this paper. Instead, we present results of our algorithm applied to our model equation.

4.1. Quadratic Hamiltonians
√
ap2 + bq2 − 2cpq, ab > c2, a, b > 0.

In each of the following examples, we compute the difference in the approximations
in each successive iteration, i.e., ||φn+1 − φn||L1

, and say that the iterations have
converged if this distance is less than ε∆x, where ε > 0 and ∆x is the grid size. In
the examples presented in this paper, we simply set the threshold to be 10−10. Notice
also that the set Γ, on which φ = 0, is either a rectangle, an L-shaped piecewise linear
object, or a set of isolated points. The reader can identify their location easily from
the figures.

We started out by testing our algorithm on constant coefficient cases. In the case

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Fig. 2. A sweeping result after 2 sweeping iterations on a 50 × 50 grid. The initial boundary
is a single point in the center. a = 1.0, b = 1.0, c = 0.9.
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Fig. 3. a = 1, b = 1, c = 0, with a more oscillatory r(x) = 2.1 − cos(4π2xy), on a 200 × 200
grid; convergence is reached in 7 sweeping iterations. The subplot on the left is the contour of the
solution started with the square in the center. On the right is the graph of r(x). Level curves with
step 0.02 are plotted.
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Fig. 4. (A very degenerate case) a = 0.375, b = 0.25, c = 0.29, with a more oscillatory
r(x) = (2.1− cos(4π2xy))/4.0, on a 100× 100 grid. Notice that, in this case, ab = 0.0938 is barely
greater than c2 = 0.0841. The contour of the solution is plotted. Convergence is reached at 43
sweeping iterations.

of a = b, c = 0, we have solutions that match the fast marching solutions. Figure 2
shows a result of a computation of the anisotropic case in which a = b = 1, c = 0.9.
This is our first example in which the fast marching method is not applicable.

Next we apply the sweeping algorithm directly to cases in which the coefficients
of the quadratic Hamiltonian or the right-hand sides are not constant. Figure 3
shows a computational result on a constant coefficient isotropic Hamiltonian and
rather oscillatory forcing function. The rectangle in the middle is the set Γ. Figure 4
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Fig. 5. a = 1, b = 1, c(x, y) = 0.9 sin(5πx), and r(x, y) = 1, on a 50 × 50 grid. Convergence
occurs after 10 iterations.
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Fig. 6. a = 1.5 + sin(5πx), b = 1, c = −0.6, on a 50 × 50 grid. Convergence occurs after 10
iterations.

shows a computational result for a very anisotropic case. We notice that the num-
ber of iterations needed for convergence seems to depend on the anisotropy of the
Hamiltonian and also on how oscillatory the forcing term is. Figures 5, 6, and 7 show
results obtained from variable coefficient Hamiltonians with constant and variable
forcing function r(x, y).

4.2. Examples of distance on manifolds. We now apply our sweeping algo-
rithm to compute the geodesic distance on manifolds that are the graphs of certain
functions. Given a function f(x, y), with graph z = f(x, y), we compute the coeffi-
cients a(x, y), b(x, y), and c(x, y) according to (1.5) and apply our algorithm directly
to the corresponding HJ equation. We first test the algorithm on a half-sphere with
radius one. Figures 8 and 9 show the equidistance lines to one and two seed points,
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Fig. 7. a = 1.5+ sin(5πx), b = 1, c = −0.6, and r(x, y) = 2.1+ cos(4πxy), on a 100× 100 grid.
Convergence occurs after 10 iterations.
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Fig. 8. This is an example of the distance on a half-sphere. The sweeping algorithm was applied
to the graph of f(x, y) =

√
1.0− (x2 + y2), with φ(0, 0) = 0 as boundary condition, on a 100× 100

grid.

respectively. Figures 10, 11, and 12 show similar computation results applied to
somewhat more oscillatory manifolds. As we expected, more sweeping iterations are
required for convergence.

4.3. Grid effects. We first perform a rotation of the coordinate system. We
represent this by

(x, y) �→ (x̃, ỹ)

and let

(a, b, c) �→ (ã, b̃, c̃).
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Fig. 9. This is an example of the distance on a half-sphere. The sweeping algorithm was applied
to the graph of f(x, y) =

√
1.0− (x2 + y2), with two seed points. Convergence is reached after 2

sweeping iterations.
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Fig. 10. The distance contour from the seed point (0, 0) on the graph of f(x, y) =
cos(2πx) sin(2πy), on a 100× 100 grid. Convergence occurs after 9 iterations.

To study the grid effects of our sweeping algorithm, we set u = 0 on a rotated
square whose sides do not align with the grid lines. Comparing the results, shown in
Figure 13, we see that the second picture, concentrating especially on the diamond-
shaped contour in the middle, indeed shows grid effects compared to the first picture.
However, with further grid refinement, as shown in the third picture, grid effects
become unnoticeable, and the solution from our sweeping algorithm accurately ap-
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Fig. 11. The distance contour from the seed point (0, 0) and (−0.8,−0.5) on the graph of
f(x, y) = cos(2πx) sin(2πy), on a 100× 100 grid. Convergence occurs after 11 iterations.
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Fig. 12. The distance contour from the seed point (0, 0) on the graph of f(x, y) = cos(2πx −
π) sin(2πy − π/2), on a 100× 100 grid. Convergence occurs after 9 iterations.

proximates the exact solution.

4.4. Comparison with the time marching solutions. We use the first order
Runge–Kutta–Lax–Friedrichs method [18] to discretize the following equation and
march to steady state:

φ̃t + sgn(φ(x, y))(H(x, y, φ̃x, φ̃y)− r(x, y)) = 0,(4.1)
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Fig. 13. Anisotropic case with a point source at (0, 0). a = 1, b = 1, c = 0.9 and ã = 1.70365
b̃ = 0.296352, and c̃ = −0.561141, on 50 × 50 and 100 × 100 grids. Convergence occurs after 2
iterations.

Table 1
Comparison of the time marching and sweeping solutions to the example shown in Figure 12.

dx = 2/50 2/100 2/200 2/400 2/800

||φ− φ̃||L1
2.85423 1.83377 1.04008 0.56206 0.295738

||φ− φ̃||∞ 1.03825 0.708986 0.436469 0.246439 0.133858

where φ̃(x, y, t = 0) = φ(x, y) = 0 for (x, y) ∈ Γ and φ is the solution obtained from
the sweeping algorithm.

We remark that solving (4.1) is by no means a practical method for solving the
steady state equation. Thousands of iterations are required for steady state, even if we
take φ as the initial Cauchy data. We use it only to verify the validity of our algorithm.
Secondly, the solutions of (4.1) suffer from excessive smearing due to the numerical
viscosity introduced by the Lax–Friedrichs method. As a consequence, φ̃ does not
match well with φ on coarse grids. The reader can compare Figure 14 with Figure 12,
for example. However, we do see that ||φ − φ̃|| decreases with the refinement of the
grid size; see Table 1 and Figure 14. We remark that higher order approximation
schemes such as RK3-WENO5 will greatly reduce the numerical viscosity; the reader
is referred to [18]. Our purpose here is only to show that the sweeping approximations
converge to the viscosity solution.
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Fig. 14. Steady state of the time marching on a 100× 100 and 800× 800 grid.

Table 2
A numerical convergence study of the sweeping algorithm applied to the graph of f(x, y) =√

1.0− (x2 + y2), with φ(0, 0) = 0 as boundary condition on the domain [−0.7, 0.7]× [−0.7, 0.7].

dx = 1.4/200 1.4/400 1.4/800 1.4/1600

||φ− φ̃||L1
0.0138803 0.0079927 0.00453004 0.00253513

rate 0.796 0.819 0.84

4.5. Numerical convergence. Since we can easily compute the geodesic dis-
tance on a sphere, we will use it as an example to show numerical convergence of our
algorithm. A distance contour plot is shown in Figure 8. Table 2 shows a numerical
convergence of order 1. We have also noticed that the number of iterations needed
for the L1 difference of the approximations in each successive iteration to decrease
below the given tolerance seems to be bounded independently of the grid size. This
number seems to depend on the anisotropy (c2/ab), the forcing function r, and the
configuration of the interface Γ.
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5. Conclusion. In this article, we studied a fast method for solving a class of
time independent HJ equations with Dirichlet boundary conditions. The Hamilto-
nians of interest are homogeneous and convex. This fast method combines the idea
of tracing the characteristics with Godunov construction and Gauss–Seidel iterations
with smart choices of different updating sequences. In particular, we discussed some
important properties of the Hamiltonian H =

√
ap2 + bq2 − 2cpq, c2 < ab, and the

corresponding HJ equations. By the simple structure of the convexity, we derived a
compact expression for the Godunov Hamiltonian that involves taking extrema of the
Hamiltonian in relation to the evaluations of the derivatives of the solution. With
our compact Godunov flux, the complexity of evaluating the Godunov Hamiltonian
is reduced to only eight cases in two space dimensions. We then incorporated the
expression into a simple Gauss–Seidel-type iteration procedure. We have produced
some computational results using this algorithm. In particular, we have applied our
algorithm to compute geodesic distances on graphs of functions. This is of some im-
portance since people are interested in finding the geodesics on terrain-like manifolds.

We also remark that this Godunov-flux sweeping approach can be extended to
higher dimensional cases. We are currently preparing another paper on this subject.

Our experience shows that the number of iterations needed depends on the amount
of anisotropy and the nature of the forcing function. Under normal nondegenerate
circumstances, experience shows an O(N) complexity for convergence, where N is
the number of grid points. Recently, in [26], the author provided some theoretical
evidence on the bound of the number of iterations for isotropic, homogeneous eikonal
equations. This points out a future research direction of bounding the number of
sweeping iterations needed for convergence in relation to the anisotropy.

6. Appendix.

6.1. Derivation of the flux for homogeneous convex Hamiltonians. To
obtain the formula used earlier in this paper, we simply verify its equivalence to the
following cases, which rely only on the convexity of H:

p− < p+, and q− < q+ :

HG = min
p∈[p−,p+]

min
q∈[q−,q+]

H(p, q).

• If qσ ∈ [q−, q+],
– pσ < p− < p+, H(p−, qσ),
– p− < p+ < pσ, H(p+, qσ),
– p− < pσ < p+, H(pσ, qσ).

• If qσ < q−,
– pσ < p− < p+, H(p−, q−),
– p− < p+ < pσ, H(p+, q−),
– p− < pσ < p+, H(pσ, q−).

• If qσ > q+,
– pσ < p− < p+, H(p−, q+),
– p− < p+ < pσ, H(p+, q+),
– p− < pσ < p+, H(pσ, q+).

p− < p+, and q− > q+ :

HG = min
p∈[p−,p+]

max
q∈[q+,q−]

H(p, q) = min
p∈[p−,p+]

max{H(p, q−), H(p, q+)}.
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• If qσ < q+,
– pσ < p− < p+, H(p−, q−),
– p− < p+ < pσ, H(p+, q−),
– p− < pσ < p+, H(pσ, q−).

• If qσ > q−,
– pσ < p− < p+, H(p−, q+),
– p− < p+ < pσ, H(p+, q+),
– p− < pσ < p+, H(pσ, q+).

• If q+ < qσ < q−,
– (qσ − q+) > (q− − qσ), H(·, q+),
– (qσ − q+) ≤ (q− − qσ), H(·, q−).

p− > p+, and q− > q+ :

HG = max
p∈[p+,p−]

max
q∈[q+,q−]

H(p, q).

• If qσ > q−,
– pσ > p−, H(p+, q+),
– pσ < p+, H(p−, q+).

• If qσ < q+,
– pσ > p−, H(p+, q−),
– pσ < p+, H(p−, q−).

• If q+ < qσ < q−
– (qσ − q+) > (q− − qσ), H(·, q+),
– (qσ − q+) ≤ (q− − qσ), H(·, q−).

p− > p+, and q− < q+ :

HG = max
p∈[p+,p−]

min
q∈[q−,q+]

H(p, q).

• If qσ ∈ [q−, q+],
– pσ > p−, H(p+, qσ),
– pσ < p+, H(p−, qσ).

• If qσ < q−,
– pσ > p−, H(p+, q−),
– pσ < p+, H(p−, q−).

• If qσ > q+,
– pσ > p−, H(p+, q+),
– pσ < p+, H(p−, q+).
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conversations on this topic. The authors also thank Prof. Giovanni Russo for his
helpful suggestions to improve this paper.
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1. Introduction. We revisit the postprocessing algorithm for the Galerkin and
nonlinear Galerkin methods. Postprocessing methods first evolved from the theory of
approximate inertial manifolds (AIMs) (see, e.g., [3], [5], [6], [7], [15], [19], and [21])
and take advantage of the observation that, for dissipative evolution equations, the
Galerkin and nonlinear Galerkin methods do better approximating the low modes of
the exact solution u than approximating the solution itself. AIMs are used to “post-
process” the low modes in order to obtain a more accurate approximation for the high
modes. For a variety of applications, the postprocessed Galerkin has been shown to be
a very efficient algorithm for improving the accuracy of Galerkin/nonlinear Galerkin
methods with very little extra computational cost (see, for example, [8], [10], [11],
[12], and [17]). However, postprocessing is not simply a technique for improving
efficiency. In this paper we show that postprocessing methods arise in a very natural
way through a classical truncation analysis of the dissipative evolution equation. More
specifically, we will show that, to leading order, the correct approximative scheme is
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actually the postprocessed Galerkin method, and not the standard Galerkin method
as is commonly believed.

We present this work in the context of the two-dimensional Navier–Stokes equa-
tions (NSE) in Ω, an open bounded set of R

2, with smooth boundary ∂Ω,

∂u

∂t
− ν∆u + (u · ∇)u +∇π = f,(1.1)

∇ · u = 0,

u(0, x) = u0(x),

where the unknowns are the vector velocity u and the scalar pressure π; f(x, t) is
a given body forcing, and ν > 0 is the kinematic constant viscosity. The equations
are subject to either nonslip Dirichlet boundary conditions for ∂Ω smooth enough, or
periodic boundary conditions when Ω is a square. To this end, we define the Hilbert
space H as

H = {u ∈ L2(Ω)2,∇ · u = 0, u · �n = 0 on ∂Ω}

in the case of nonslip Dirichlet boundary conditions, where �n denotes the outward
normal unit vector to ∂Ω, or

H =

{
u ∈ L2

per(Ω)2,∇ · u = 0,

∫
Ω

u dx = 0

}
in the case of periodic boundary conditions. The space H is a closed subspace of
L2(Ω)2 and is endowed with the scalar product and norm from L2(Ω)2, denoted
by (·, ·) and ‖ · ‖, respectively. We also define the Hilbert space V as V = {u ∈
H1

0 (Ω)2,∇ · u = 0} or V = {u ∈ H1
per(Ω)2,∇ · u = 0,

∫
Ω
u dx = 0}, depending on the

boundary conditions. Let P be the Leray orthogonal projection from L2(Ω)2 onto
H. Then (1.1) projected onto H may be written as an abstract functional differential
equation of the form

du

dt
+ νAu + B(u, u) = f,(1.2)

u(0) = u0;

see, e.g., [2] or [20].
The Stokes operator A is defined as −P∆ with the appropriate boundary condi-

tions. The domain of A in H, denoted D(A), is either H2(Ω)2 ∩ V or H2
per(Ω)2 ∩ V ,

depending on the boundary conditions. The nonlinear term is B(u, u) and is de-
fined in general as B(u, v) = P [(u · ∇)v]. Finally, f (or f = Pf) is the forcing
term and is assumed to be at least in H. The operator A is a positive, self-adjoint,
densely defined, unbounded operator with compact inverse. The eigenfunctions of
A, {ω1, ω2, . . .}, form a complete orthonormal basis for the space H. The associated
eigenvalues {λ1, λ2, . . .} satisfy 0 < λ1 ≤ λ2 ≤ · · · and the asymptotic formula λj ∼ j.
Properties of the spaces H, V = D(A1/2), and D(A) may be found in [2], [18], or [20].

We decompose the solution u into low mode and high mode components by letting
HN = span{ω1, ω2, . . . , ωN}, the span of the first N eigenfunctions of the Stokes
operator A. Let PN be the orthogonal projection of H onto HN , and QN = I − PN
be the projection onto the orthogonal complement space H⊥N . Then, for any u ∈ H,
we can uniquely decompose u = p+q, where p = PNu and q = QNu. Projecting (1.2)
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onto HN and H⊥N , we get an equivalent system for the NSE

dp

dt
+ νAp + PN [B(p, p) + B(p, q) + B(q, p) + B(q, q)] = PNf,(1.3)

dq

dt
+ νAq + QN [B(p, p) + B(p, q) + B(q, p) + B(q, q)] = QNf,(1.4)

p(0) = PNu0 and q(0) = QNu0.

The truncation analysis is accomplished by using estimates for the low modes
p and high modes q of a solution u. We present the truncation analysis for the
two-dimensional NSE; however, similar analysis may be done for general nonlin-
ear parabolic evolution or elliptic equations, such as reaction-diffusion systems, the
Bénard convection problem, etc. The key to the analysis is understanding the inter-
action of the low and high modes, and estimating the nonlinear term.

The truncation analysis is based on asymptotic (in time) estimates for the low
and high mode components, as was done in [10] and [11] when developing the postpro-
cessing algorithm. These asymptotic estimates hold when solutions of the NSE are on,
or near, the attractor, i.e., for the case of autonomous systems (f time-independent)
and provided that t is large enough. However, these estimates may not hold, for
example, in the case of nonsmooth initial data, long transients, or nonautonomous
systems with highly oscillatory (in time) forcing. In [15] the authors showed that, for
a highly oscillatory time-dependent forcing function, the dominant balance in (1.4)
is between the dq/dt term and the forcing term; hence the dq/dt term should not be
dropped in the AIM construction. This case leads to and justifies an alternate/reform
postprocessing method, proposed in [24] for integrating along transients, which we
call here dynamic postprocessing.

Let us emphasize again that there is a basic difference between the nonlinear
Galerkin methods and the postprocessing Galerkin method. Specifically, unlike the
usual multigrid (in this case two-grid) and the nonlinear Galerkin methods, in the
postprocessing Galerkin methods the evolution/integration on the coarse mesh, i.e.,
low frequencies, does not use at all the information on the fine mesh (small scales
or high frequencies). Only at the end of the calculations does one use the solution
on the coarse mesh to refine the solution. On the other hand, in standard two-grid
methods, including the nonlinear Galerkin methods and their variants, one uses cycles
in which one has to compute the solution on the fine mesh in order to update the time
step integration on the coarse mesh and vice versa. In fact, this occasional updating
of the solutions on the fine mesh is the major source of computational disadvantage
of the nonlinear Galerkin method in comparison to the Galerkin method, as was
demonstrated computationally in, for instance, [10] and [11].

In this paper we first present a classical truncation analysis of the NSE using es-
tablished asymptotic (in time) estimates. In section 2 we present several approximate
systems of varying orders of accuracy based on the truncation analysis results. We
introduce a more general postprocessing algorithm in section 3 for the case in which
the asymptotic estimates no longer hold (i.e., in the presence of long transients, non-
smooth initial data, or highly oscillatory forcing). In section 4 we analyze the accuracy
of the various postprocessing methods for the case of a highly time-oscillatory solu-
tion. In section 5 we present some numerical experiments to support the analysis of
sections 2, 3, and 4 and compare the computational efficiency of the standard and the
more general postprocessing methods. Finally, we give some concluding remarks in
section 6. Preliminary results of this study were reported in [23].
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2. Near-attractor truncation analysis. We first present the truncation anal-
ysis based on asymptotic estimates for u, p, and q. It is well known (see, e.g., [2] or
[18]) that for f ∈ H and independent of time, (1.2) is dissipative in the spaces H, V ,
and D(A). This means that any solution u(t) of (1.2) will, after a certain time, enter
and remain in a ball in H centered at 0 with radius ρ0. The same is true for a ball in
V of radius ρ1, and a ball in D(A) of radius ρ2. The radii ρ0, ρ1, and ρ2 depend on
‖f‖, ν, and λ1. Therefore, we will assume that for t ≥ T0, for some positive T0 that
depends on ν, ‖f‖, λ1, and the initial data ‖u0‖, we have

‖u(t)‖ ≤ ρ0, ‖A1/2u(t)‖ ≤ ρ1, ‖Au(t)‖ ≤ ρ2.(2.1)

Notice that the global attractor for (1.2) is contained in these balls. For solutions
on the attractor, T0 = 0 and the uniform bounds apply for all time t ∈ R, since the
global attractor is invariant (see, e.g., [2] and [18]).

From the above bounds for u, we have that q is also bounded in H, D(A1/2), and
D(A) for t > T0. Using the bound ‖Aq‖ ≤ ρ2 and the fact that ‖Aαq‖ ≤ λ−αN+1‖q‖,
we quickly obtain estimates for q in terms of λN+1. We denote ε = (λ1/λN+1)1/2.
Then for t > T0 the following estimates for q and dq/dt are at hand:

‖q‖ ≤ λ−1
N+1‖Aq‖ ≤ λ−1

N+1ρ2 = O(ε2),

‖A1/2q‖ ≤ λ
−1/2
N+1 ‖Aq‖ ≤ λ

−1/2
N+1 ρ2 = O(ε),(2.2)

‖Aq‖ ≤ ‖Au‖ ≤ ρ2 = O(1)

as ε→ 0. Using the fact that the solutions are analytic in time (see, e.g., [2] and [20]),
one can apply the Cauchy formula for the derivatives of complex analytic functions
to obtain an estimate for ‖dq/dt‖ of the same order as ‖q‖ (again, see, e.g., [2], [5],
and [20]). We have ∥∥∥∥dqdt

∥∥∥∥ = O(ε2) as ε→ 0.(2.3)

Let us stress that the constant ρ2, which depends on the physical parameters but not
on N , is quite large in comparison with the constants ρ0 or ρ1 for small values of the
viscosity ν or large values of ‖f‖. It is preferable to avoid using the ρ2 bound and
to derive more delicate estimates for ‖q‖, ‖dq/dt‖, and ‖A1/2q‖ of the same orders as
above involving only ρ0 and ρ1. Indeed, the authors of [5] derive bounds of the type
given in (2.2) and (2.3) involving ρ0 and ρ1 but not ρ2. However, this is done at the
expense of adding a term of the order | log ε|. In practice, this is a more reasonable
bound, since the best available bound for ρ2 is many orders of magnitude larger than
those for ρ0 and ρ1. Moreover, for practical computations, | log ε| will be of order 1
even if ε is very small.

For the low mode component, we have only that p is bounded in H, D(A1/2),
and D(A) for t > T0. Hence, we set

‖p‖, ‖A1/2p‖, ‖Ap‖ = O(1) as ε→ 0.(2.4)

For the truncation analysis we consider a perturbation expansion for q of the form

q = q1 + q2 + q3 + q4 + · · · .(2.5)
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To leading order, we have estimates (2.2) and (2.3) for q. Hence, the corresponding
estimates for the first expansion term q1 are as follows:

‖q1‖,
∥∥∥∥dq1dt

∥∥∥∥ = O(ε2),

‖A1/2q1‖ = O(ε),(2.6)

‖Aq1‖ = O(1) as ε→ 0.

Each successive term qj is assumed to be of higher order in ε, i.e., ‖dqj/dt‖, ‖qj‖ =
O(εj+1), ‖A1/2qj‖ = O(εj), and ‖Aqj‖ = O(εj−1), for j = 1, 2, . . . . In principle, the
initial value u0 should also be decomposed accordingly, i.e., u0 = PNu0 + QNu0,
with QNu0 = q01 + q02 + · · · such that O(q0j ) = εO(q0j−1). In particular, for solutions

on or near the attractor, we should have ‖q0j ‖ = O(εj+1), ‖A1/2q0j ‖ = O(εj), and

‖Aq0j ‖ = O(εj−1), for j = 1, 2, . . . .
We substitute expansion (2.5) into system (1.3)–(1.4) above and estimate the

order of each term in the system. By keeping terms up to order ε1/2, ε3/2, and so
on, we generate approximate systems for NSEs of increasing orders of accuracy. The
challenge comes with estimating the nonlinear terms. Substituting expansion (2.5)
into the nonlinear terms results in the following:

B(p, q) = B(p, q1 + q2 + q3 + · · ·)
= B(p, q1) + B(p, q2) + B(p, q3) + · · · ,

B(q, p) = B(q1 + q2 + q3 + · · · , p)
= B(q1, p) + B(q2, p) + B(q3, p) + · · · ,

B(q, q) = B(q1 + q2 + q3 + · · · , q1 + q2 + q3 + · · ·)
= B(q1, q1) + B(q1, q2) + B(q1, q3) + · · ·

+B(q2, q1) + B(q2, q2) + B(q2, q3) + · · ·
+B(q3, q1) + B(q3, q2) + B(q3, q3) + · · ·
+ · · · .

We majorize each term using inequalities for the nonlinear term given, for instance,
in [2], [20], or [22] for inequalities (2.9) and (2.10). For convenience we recall the
two-dimensional version of these inequalities. For any u, v ∈ D(A),

‖B(u, v)‖ ≤ c1‖u‖1/2‖A1/2u‖1/2‖A1/2v‖1/2‖Av‖1/2(2.7)

≤ c2‖u‖1/2‖Au‖1/2‖A1/2v‖(2.8)

≤ c3‖A1/2u‖‖A1/2v‖
(

1 + log
‖Au‖2

λ1‖A1/2u‖2
)1/2

(2.9)

and

‖B(u, v)‖ ≤ c4‖u‖ ‖Av‖
(

1 + log
‖A3/2v‖2
λ1‖Av‖2

)1/2

(2.10)

for u ∈ D(A) and v ∈ D(A3/2). The constants c1–c4 are independent of u, v, and
the size of Ω, but might depend on its shape. For each nonlinear term we choose the
inequality that results in the highest order of ε. Using estimates (2.4) for p and (2.6)
for q1, we obtain ‖B(p, p)‖ = O(1), ‖B(p, q1)‖ = O(ε), and ‖B(q1, q1)‖ = O(ε2). For
the B(q1, p) term, inequality (2.7) gives ‖B(q1, p)‖ = O(ε3/2), and inequality (2.10)
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gives ‖B(q1, p)‖ = O(ε2L
1/2
ε ), where Lε = (1 + 2| log ε|). The O(ε2L

1/2
ε ) estimate is

“closer” to being of the order O(ε2) than O(ε). However, in either case, the term is
definitely of the order O(ε3/2). For simplicity of ordering the various terms, we will
consider this term to be O(ε3/2).

2.1. Near-attractor approximate systems. To produce approximate schemes
for the Navier–Stokes system, we keep only terms in (1.3)–(1.4) to certain orders in
ε. Below, we list the approximate systems produced by keeping terms to order ε1/2

and ε3/2. We will set nonlinear terms of the order O(ε2L
1/2
ε ) and O(ε3L

1/2
ε ) to be of

the order O(ε3/2) and O(ε5/2), respectively.

O(ε1/2):

dp

dt
+ νAp + PN [B(p, p)] ≈ PNf,(2.11)

νAq1 + QN [B(p, p)] ≈ QNf,(2.12)

p(0) = PNu0.(2.13)

Equation (2.11) is an evolution equation for the low mode component p. Equa-
tion (2.12) is coupled to (2.11); it defines q1, the leading order approximation term
of the high modes, in terms of the low modes and is therefore a postprocessing step.
From (2.12) one can verify that ‖Aq1‖ = O(1), which is consistent with our assump-
tions.

O(ε3/2):

dp

dt
+ νAp + PN [B(p, p) + B(p, q1) + B(q1, p)] ≈ PNf,(2.14)

νA(q1 + q2) + QN [B(p, p) + B(p, q1) + B(q1, p)] ≈ QNf,(2.15)

νAq2 + QN [B(p, q1) + B(q1, p)] ≈ 0,(2.16)

p(0) = PNu0.(2.17)

Equation (2.14) is the evolution equation for p with q1 in the nonlinear term defined
by (2.12); it is a nonlinear Galerkin method as defined in [5], [13], [14], and [16].
Equation (2.15) defines q1 + q2, which is a higher order approximation of the high
modes. Equation (2.16) defines q2; it is derived from (2.15) and the definition of q1
given in (2.12). From (2.16) one can show that ‖Aq2‖ ≤ ‖B(p, q1)‖ + ‖B(q1, p)‖ =
O(ε). Hence ‖q2‖ = O(ε2), which is consistent with our assumptions.

Similarly, we may obtain an approximate system for the NSE valid to order
O(ε5/2), O(ε7/2), and in general, valid to order O(εj+1/2). In the general case, the low
mode equation is evolved with linear combinations of q1 through qj in the nonlinear
term; the high mode equation involves linear combinations of q1 through qj+1, where
(q1 + q2 + · · ·+ qj+1) is used to approximate q. Thus the high modes of the solution
u should be approximated to one order higher in ε than the order of the high mode
terms used in the low mode equation. The term qj+1 is not used to evolve the low
modes; it needs to be evaluated only once, at some final time T , and may therefore
be considered a postprocessing step. The approximate systems above, produced with
a classical truncation analysis, demonstrate that the postprocessing step is a very
natural and significant part of approximating the original system.

2.2. Standard (near-attractor) postprocessing schemes. For each approx-
imate system from the previous section, we may generate a postprocessed Galerkin
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or nonlinear Galerkin scheme of increasing order of accuracy. From the truncation
analysis we know that, to approximate the low and high modes of a solution u to the
same order in ε, we must include the postprocessing step. In general the solution of
the evolution equation is sought as an approximation of the low modes of the exact
solution u, and the solution of the high mode equation is sought as an approximation
of the high modes of the solution u. The goal for each εj+1/2 postprocessing scheme is
to produce a more accurate approximation of the low and high modes as j increases.

From system (2.11)–(2.12), i.e., keeping terms to order O(ε1/2), we obtain the
postprocessed standard Galerkin method

duN
dt

+ νAuN + PN [B(uN , uN )] = PNf,(2.18)

νAφ1 + QN [B(uN , uN )] = QNf,(2.19)

uN (0) = PNu0,(2.20)

where uN ∈ HN is the solution of the evolution equation and is an approximation
of the low modes p, and φ1 ∈ QNH is an approximation of the high modes q (i.e.,
φ1 ≈ q1). Note that φ1(t) = Φ1(uN (t)), where Φ1 is exactly the Foias–Manley–Temam
(FMT) AIM first introduced in [5]. This is the same postprocessed Galerkin method
originally defined in [10] and [11]. Solving for uN (t) does not depend on φ1, and
hence one does not need to evaluate φ1(t) = Φ1(uN (t)) at all times, but only when
an approximate solution is needed. This is typically done once at some final time
T . It is therefore a postprocessing step. The approximate solution at time T is then
uN (T ) + φ1(T ) = uN (T ) + Φ1(uN (T )), and not uN (T ) as is traditionally used with
the standard Galerkin method. This scheme indicates that, to leading order in ε, the
correct approximation method is the postprocessed Galerkin method.

The approximation properties of the postprocessed Galerkin method (j = 0) are
well understood. We know, for instance, that Φ1 is Lipschitz continuous, ‖φ1(t)‖ =
O(ε2), ‖q(t) − φ1(t)‖ = O(ε3), and ‖p(t) − uN (t)‖ = O(ε3). Proofs of the first three
properties may be found, for example, in [4] and [5]. The fourth property is proven
in [11], specifically for the two-dimensional NSE.

In general, keeping terms of order εj+1/2 for j ≥ 1, we obtain a postprocessed
nonlinear Galerkin scheme with successively more accurate approximation properties
as j increases. In particular, for the scheme generated from system (2.14)–(2.16), i.e.,
the case j = 1, we can show that the low and high mode approximation errors are
of the order O(ε4) using the techniques as in [11] and [17]. Though more accurate,
the O(εj+1/2) systems are not computationally competitive for j ≥ 1. We know from
numerical experiments presented in [10], [11], and [17] that the more computationally
efficient schemes are the postprocessed Galerkin method (2.18)–(2.19) and variants
thereof, such as the postprocessed filtered Galerkin method. Hence, for the purposes
of this paper, we will concentrate on the postprocessed Galerkin method, system
(2.18)–(2.20).

3. A more general truncation analysis. The standard postprocessing scheme
and systems in the previous section were generated based on asymptotic (in time) es-
timates for the low and high mode components. These estimates hold for autonomous
systems when solutions of the NSE are on or near the attractor, i.e., for t large enough.
However, these estimates may no longer hold, for instance, in the case of nonsmooth
initial data, long transients, or nonautonomous systems with highly oscillatory time-
dependent forcing. For these cases, the leading order approximation for system (1.3)–
(1.4) is no longer clear. In particular, the dq/dt term may no longer be small in
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comparison with the other terms in (1.4). For instance, in the case of a highly oscilla-
tory time-dependent force, the authors of [15] presented an analytic example showing
that the dominant balance in (1.4) is between the dq/dt term and the forcing term,
and not between the dissipative term and the forcing and nonlinear terms. In this
case they concluded that the dq/dt term should not be dropped in the AIM construc-
tion. In this section we consider the special case in which the forcing f is a highly
oscillatory time-dependent function.

We start with the nonautonomous Navier–Stokes system (1.3)–(1.4) with highly
oscillatory forcing. We assume that the force remains bounded (i.e., f ∈ L∞((0,∞);H)
but oscillatory in time (defined later in Theorem 4.4). Furthermore, we assume that
the solution u(t) is bounded in D(A) for t ≥ 0 and that the initial condition is smooth,
i.e., u0 ∈ D(A). As before, we observe that ‖Au(t)‖ = O(1) since ‖Au(t)‖ is bounded
uniformly. Then for all t ≥ 0 we have

‖p(t)‖, ‖A1/2p(t)‖, ‖Ap(t)‖ = O(1) and ‖Aq(t)‖ = O(1).

Again using the fact that ‖q‖ ≤ λ−αN+1‖Aαq‖, we obtain that ‖q(t)‖ = O(ε2) and

‖A1/2q(t)‖ = O(ε) as before. Since the forcing is highly oscillatory in time, we cannot
assume that the time derivative of the solution u, and hence q, is necessarily small.
In this situation we will suppose that ‖dq/dt‖ = O(1), the same order as the ‖Aq(t)‖
term or larger. We have the following bounds for q,

‖q(t)‖ = O(ε2),

‖A1/2q(t)‖ = O(ε),(3.1)

‖Aq(t)‖, ‖dq/dt‖ = O(1).

Without assuming that the forcing term is real analytic in time with values in H, one
could not show that the solution u(t) is real analytic in time with values in D(A).
Therefore, it would not be possible to employ the techniques used in [5] to get tight
estimates on the constants involved in the bounds given in (3.1).

3.1. More general approximate systems. For the truncation analysis, we
again assume a perturbation expansion for q of the form q = (q1 + q2 + q3 + · · ·).
Since q1 is the leading order approximation for q, the above estimates hold for q1 as
well. We then substitute the perturbation expansion for q into system (1.3)–(1.4) and
estimate the orders of the various terms as before. The only differences are the orders
of the d(q1 + q2 + · · ·)/dt terms.

Keeping terms up to order ε1/2, we have the following leading order approximate
system:

dp

dt
+ νAp + PN [B(p, p)] ≈ PNf,(3.2)

dq1
dt

+ νAq1 + QN [B(p, p)] ≈ QNf,(3.3)

p(0) = PNu0,(3.4)

q1(0) = QNu0.(3.5)

Equation (3.2) is the usual evolution equation for the low mode component; it is the
standard Galerkin method. Equation (3.3) is used to define q1, the leading order
approximation of the high modes, only now it is an evolution equation. Here q1
is not needed for the evolution of the low modes; hence (3.3) may be considered a
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postprocessing step. This is the same postprocessing step introduced in [24] for the
case of nonsmooth initial data and long transients, and justifies the postprocessing
method given therein. It is worth noting that one can think about the above system
(3.2)–(3.5) as a two-level multigrid method, where one integrates (3.2) on the coarse
mesh and then postprocesses on the fine mesh using (3.3).

Keeping terms up to order ε3/2, we have the following approximate system:

dp

dt
+ νAp + PN [B(p, p + q1) + B(q1, p)] ≈ PNf,(3.6)

d(q1 + q2)

dt
+ νA(q1 + q2) + QN [B(p, p + q1) + B(q1, p)] ≈ QNf,(3.7)

p(0) = PNu0,(3.8)

(q1 + q2)(0) = QNu0.(3.9)

Equation (3.6) is the same evolution equation for p as in (2.14), but with q1 now
defined by (3.3). It is a nonlinear Galerkin method. Equation (3.7) defines q1 + q2,
the high mode approximation. From (3.3), (3.6), and (3.7) one concludes

dp

dt
+ νAp + PN [B(p, p + q1) + B(q1, p)] ≈ PNf,(3.10)

dq1
dt

+ νAq1 + QN [B(p, p)] ≈ QNf,(3.11)

dq2
dt

+ νAq2 + QN [B(p, q1) + B(q1, p)] ≈ 0,(3.12)

p(0) = PNu0,(3.13)

q1(0) = q01 ,(3.14)

q2(0) = q02 .(3.15)

Equation (3.12) is a postprocessing step since q2 is not used in the evolution equation
for the low mode component p. Here again one can think about the above scheme as
a two-level multigrid method.

We may continue this process as before, keeping terms to higher and higher or-
ders in ε to generate a general postprocessing scheme. However, for computational
efficiency, we are interested only in the leading order postprocessing algorithms.

3.2. A dynamic postprocessing scheme. Motivated by the approximate sys-
tem (3.2)–(3.5), we introduce the dynamic postprocessing scheme

duN
dt

+ νAuN + PN [B(uN , uN )] = PNf,(3.16)

dφ̃1

dt
+ νAφ̃1 + QN [B(uN , uN )] = QNf,(3.17)

uN (0) = PNu0,(3.18)

φ̃1(0) = QNu0,(3.19)

where the approximation for the high modes φ̃1 is obtained as the solution of evolution
equation (3.17). Notice that φ̃1 = φ̃1(t;uN (t)).

4. Error analysis. In the following, we will compare the accuracy of the stan-
dard postprocessing method, system (2.18)–(2.20), with the dynamic postprocessing
method, system (3.16)–(3.19), in the case of a highly oscillatory forcing function.
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Since the approximation for the low mode component is exactly the same in each
case, namely the Galerkin approximation, we will compare only the postprocessing
approximation of the high mode component.

For comparison purposes we will use the uniform bounds

‖Au(t)‖ ≤ ρ2, ‖AuN (t)‖ ≤ ρ∗2, t ≥ 0,(4.1)

where ρ2 and ρ∗2 are constants which depend on the data of the problem (i.e., ν, f ,
‖u0‖, and λ1) but are independent of N . Let us observe that usually ρ∗2 = ρ2. We
will also utilize a low mode accuracy estimate, which we restate below without proof
(see [11], Theorem 1).

Theorem 4.1. Let T > 0 be fixed. Let u = p + q be the solution of (1.2) on
[0, T ] such that the bounds in (3.1) and (4.1) hold. Then, there exists a constant
C = C(T, ρ1, ρ2) such that for any t ∈ [0, T ] the solution uN (t) of (2.18) and (2.20)
satisfies

‖p(t)− uN (t)‖ ≤ C
L2
ε

λ
3/2
N+1

= O(ε3L2
ε),(4.2)

where Lε = 1 + 2| log ε| = 1 + log(λN+1/λ1).
The theorem is proven in the case of f time-independent. However (see [11,

Remark 2]), f plays no role in the estimates, and hence the result is valid for f = f(t)
as well.

We first work with the leading order postprocessing method presented in section 2,
whose corresponding scheme is given by (2.18)–(2.19). Here uN is the Galerkin low
mode approximation. The high mode approximation is given by φ1 = Φ1(uN ), where
Φ1 is the FMT AIM introduced in [5] and is defined in general as

Φ1(v) = (νA)−1(QNf −QNB(v, v)), v ∈ HN .

A common approach for estimating the error ‖q(t)−Φ1(uN (t))‖ is to first bound
‖q−Φ1(p)‖ using asymptotic estimates for p, q, and dq/dt, where u(t) = p(t) + q(t) is
the exact solution. Since we no longer assume that ‖dq/dt‖ is small, we first reexamine
the ‖q−Φ1(p)‖ estimate in the case of a highly oscillatory forcing function. We have
the following theorem.

Theorem 4.2. Let f(t) ∈ L∞((0,∞);H) and u0 ∈ D(A). Then for any solution
u(t) = p(t) + q(t) of (1.2), and uN (t) the solution of (2.18) and (2.20) such that
estimates (3.1) and (4.1) hold, we have

‖q(t)− Φ1(p(t))‖ ≤ C

νλN+1

(∥∥∥∥dqdt
∥∥∥∥+ λ

−1/2
N+1 ‖Aq‖

)
,(4.3)

‖q(t)− Φ1(uN (t))‖ ≤ L‖p(t)− uN (t)‖+
C

νλN+1

(∥∥∥∥dqdt
∥∥∥∥+ λ

−1/2
N+1 ‖Aq‖

)
(4.4)

for every t ≥ 0. Here L is the Lipschitz constant for Φ1, which is known to be of the
order o(1) as λN+1 →∞ (see, e.g., [4], [5], and [21]).

Proof. Let t ≥ 0. Subtracting (2.11) from (1.4) and taking the L2 norm, we
obtain

‖νA(q(t)− Φ1(p(t)))‖ ≤
∥∥∥∥dqdt

∥∥∥∥+ ‖B(p, q)‖+ ‖B(q, p)‖+ ‖B(q, q)‖.
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Using inequalities (2.7)–(2.10) to bound the nonlinear terms, we have

‖νA(q − Φ1(p))‖ ≤
∥∥∥∥dqdt

∥∥∥∥+
c1‖Ap‖
λ

1/2
N+1

‖Aq‖+
c1‖Ap‖
λ

3/4
N+1

‖Aq‖+
c1

λN+1
‖Aq‖2,

and hence

‖q − Φ1(p)‖ ≤ (νλN+1)−1

(∥∥∥∥dqdt
∥∥∥∥+

C

λ
1/2
N+1

‖Aq‖
)
,(4.5)

where C = C(c1, ρ1, ρ2). This proves estimate (4.3). To obtain estimate (4.4), first
apply the triangle inequality,

‖q(t)− Φ1(uN (t))‖ ≤ ‖q(t)− Φ1(p(t))‖+ ‖Φ1(p(t))− Φ1(uN (t))‖.
Then use the Lipschitz continuity of Φ1 (see [5]) and estimate (4.3).

In this section we assume that ‖dq/dt‖, ‖Aq‖ = O(1), and thus ‖q − Φ1(p)‖ =

O(ε2), rather than of the order O(ε3) = O(λ
−3/2
N+1 ) for the solutions on or near the

attractor in the case of autonomous systems. Different asymptotic estimates for the
q and dq/dt terms result in different accuracy estimates for ‖q − Φ1(p)‖ and for
the total accuracy estimate of the standard postprocessing algorithm. In particular,
using Theorem 4.1 to bound the ‖p(t) − uN (t)‖ term, the bounds for ‖dq/dt‖ and
‖Aq‖ dominate the error in estimate (4.4). The accuracy estimate for the high mode
approximation using the standard postprocessing method is given below.

Corollary 4.3. Let f(t) ∈ L∞((0,∞);H), u0 ∈ D(A), and T > 0. Then for
any solution u(t) = p(t) + q(t) of (1.2), and uN (t) the solution of (2.18) and (2.20)
such that the estimates (3.1) and (4.1) hold, we have

‖q(t)− Φ1(uN (t))‖ = O(ε2)(4.6)

for t ≥ 0.
Note that, without a better estimate for the ‖dq/dt‖ term, we could easily have

obtained the same estimate for ‖q − Φ1(p)‖ by first applying the triangle inequality
to get

‖q − Φ1(p)‖ ≤ ‖q‖+ ‖Φ1(p)‖.
Then, under the assumptions of Theorem 4.2, one can show that ‖Φ1(p)‖ = O(λ−1

N+1) =
O(ε2). Since ‖q‖ = O(ε2) as well, we obtain ‖q−Φ1(p)‖ = O(ε2). Hence, Corollary 4.3
only indicates that q and Φ1(p) are of the same order.

With additional assumptions on f(t), the above estimate for ‖q−Φ1(p)‖ may be
improved. In particular, in [15] the authors show that ‖q − Φ1(p)‖ = O(ε1+2θ) for f
Hölder continuous in time (with exponent θ), with values in H for N large enough.
For convenience we restate the theorem.

Theorem 4.4. Let f(t) be Hölder continuous (i.e., ‖f(t1) − f(t2)‖ ≤ L1|t1 −
t2|θ) and satisfy supt≥0 |f(t)| ≤ f∞ < ∞. Furthermore, impose sufficient conditions
on f(t) so that ‖Au‖ is uniformly bounded and, hence, the solution p(t) of (1.3) is
uniformly Lipschitz in time, (i.e., ‖p(t1)− p(t2)‖ ≤ L2|t2 − t1|, where L2 depends on

ν, f∞, and λ1). Let ‖q(0)− Φ1(p(0))‖ = O(λ
(1/2+θ)
N+1 ). Then, for N sufficiently large

and t ≥ 0, any solution u(t) = p(t) + q(t) of (1.2) satisfies

‖q(t)− Φ1(p(t))‖ ≤ 4α5

λ
1/2+θ
N+1

,
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where α5 = α4(1 + (1 +e)−1), α4 = λ
−1/2
N+1 2ν−1(α3L2λ

1/2
N +L1) +α2L2 +ν−1L1λ

−1/2
N+1 ,

L1 is the Hölder constant for f , and L2 is the Lipschitz constant for p.
Proof. We refer the reader to [15, Theorem 5.11] for specific conditions on N ,

definitions of α2, α3, α4, and the proof of the above theorem.
If θ > 1/2, then Theorem 4.4 represents an improvement from the previous O(ε2)

estimate for ‖q−Φ1(p)‖, where f was only assumed to be bounded. Using the Lipschitz
continuity of Φ1 and Theorem 4.1, we have an improved estimate for ‖q − Φ1(uN )‖
in the case in which f is Hölder continuous.

Corollary 4.5. Let f(t) satisfy the conditions of Theorem 4.4, u0 ∈ D(A),
T > 0, and N sufficiently large. Then for any solution u(t) = p(t) + q(t) of (1.2),
and uN (t) the solution of (2.18) and (2.20) such that estimates (3.1) and (4.1) hold,
we have

‖q(t)− Φ1(uN (t))‖ ≤ L‖p(t)− uN (t)‖+
4α5

λ
1/2+θ
N+1

= O(ε2+2(θ−1/2))(4.7)

for t ∈ [0, T ]. Here L = o(1) is the Lipschitz constant for Φ1.
We now examine the dynamic postprocessing method, system (3.16)–(3.19), and

obtain an estimate for ‖q(t)− φ̃1(t;uN (t))‖.
Theorem 4.6. Let f(t) ∈ L∞((0,∞);H), u0 ∈ D(A), and T > 0. Let u(t) =

p(t) + q(t) be a solution of (1.2), and uN (t) and φ̃1(t;uN (t)) be a solution of system
(3.16)–(3.19) such that estimates (3.1) and (4.1) hold. Then, for t ∈ [0, T ], we have

‖q(t)−φ̃1(t;uN (t))‖ ≤ C

νλ
1/2
N+1

(
max
s∈[0,T ]

‖p(s)− uN (s)‖+ λ−1
N+1 max

s∈[0,T ]
‖Aq(s)‖

)
,

(4.8)
where C = C(ρ2, ρ

∗
2); ρ2 and ρ∗2 are defined in (2.1) and (4.1), respectively.

Proof. We subtract (3.17) from (1.4). Letting ∆(t) = q(t)− φ̃1(t;uN (t)), we have

d∆

dt
+ νA∆ = QN [B(p + q, q) + B(q, p) + B(p, p− uN ) + B(p− uN , uN )] .

Taking the inner product of ∆ and the above equation, we obtain

1

2

d

dt
‖∆‖2 + ν‖A1/2∆‖2 ≤ |(B(p + q, q),∆)|+ |(B(q, p),∆)|

+ |(B(p, p− uN ),∆)|+ |(B(p− uN , uN ),∆)|.

We apply the Cauchy–Schwarz inequality and Young’s inequality to get a factor of
ν‖A1/2∆‖ from each term on the right-hand side. Combining all ‖A1/2∆‖ terms with

the left-hand side of the inequality and using the fact that λ
1/2
N+1‖∆‖ ≤ ‖A1/2∆‖, we

have

d

dt
‖∆‖2 + νλN+1‖∆‖2 ≤ 5

νλN+1

(‖B(p, q)‖2 + ‖B(q, p)‖2 + ‖B(q, q)‖2

+ ‖B(p, p− uN )‖2 + ‖B(p− uN , uN )‖2) .
Estimating the nonlinear terms using estimates (2.7)–(2.10) as before,
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d

dt
‖∆‖2 + νλN+1‖∆‖2 ≤ 5

νλN+1

(
c22‖p‖‖Ap‖‖A1/2q‖2

+ c24(1 + log(λN/λ1))‖Ap‖2‖q‖2 + c22‖q‖‖A1/2q‖2‖Aq‖
+ c22‖p‖‖Ap‖‖A1/2(p− uN )‖2 + c24(1 + log(λN/λ1))‖AuN‖2‖p− uN‖2

)
≤ 5

νλN+1

(
c22‖Ap‖2
λN+1

‖Aq‖2 +
c24Lε‖Ap‖2
λ2
N+1

‖Aq‖2 +
c22‖Aq‖2
λ2
N+1

‖Aq‖2

+λNc
2
2‖p‖‖Ap‖‖p− uN‖2 + c24Lε‖AuN‖2‖p− uN‖2

)
≤ C

ν

(‖p− uN‖2 + λ−2
N+1‖Aq‖2

)
,

where C = C(c2, c3, c4, ρ2, ρ
∗
2). We then apply Gronwall’s inequality to obtain

‖∆(t)‖2 ≤ ‖∆(0)‖2e−νλN+1t +
C

ν2λN+1

(
max
[0,T ]
‖p− uN‖2 + λ−2

N+1 max
[0,T ]
‖Aq‖2

)
for t ∈ [0, T ]. Finally, by initializing φ̃1(0;uN ) = QNu0 = q(0), we have estimate
(4.8).

Corollary 4.7. Let f(t) ∈ L∞((0,∞);H), u0 ∈ D(A), and T > 0. Let u(t) =
p(t) + q(t) be a solution of (1.2), and uN (t) and φ̃1(t;uN (t)) be a solution of system
(3.16)–(3.19) such that estimates (3.1) and (4.1) hold. Then, for t ∈ [0, T ], we have

‖q(t)− φ̃1(t;uN (t))‖ = O(ε3).(4.9)

Proof. Since ‖Aq‖ = O(1) and ‖p(t) − uN (t)‖ = O(ε3) from Theorem 4.1, the
‖Aq‖ term dominates the right-hand side of (4.8). Thus ‖q − φ̃1(t;uN (t))‖ = O(ε3)
as ε→ 0.

In this case, the dynamic postprocessing method produces a more accurate high
mode approximation. In particular, the dynamic postprocessing method produces a
high mode approximation of the same order as the low mode approximation.

5. Numerical experiments. In this section we present some numerical exper-
iments to support the above accuracy analysis and compare the efficiency of the two
leading order methods. Opting for a one-dimensional calculation, we integrated Burg-
ers equation with homogeneous Dirichlet boundary conditions on the interval [0, π].
That is, we used the equation

∂u

∂t
− ν

∂2u

∂x2
+ u

∂u

∂x
= f(x, t),

u(0, t) = u(π, t) = 0,

u(x, 0) = u0(x).

Using notation similar to the NSE, the above equation is equivalent to the functional
differential equation

du

dt
+ νAu + B(u, u) = f,

where, in this case, A = − ∂2

∂x2 with domain D(A) = H2(0, π) ∩H1
0 (0, π). The eigen-

functions of A are ωk =
√

2/π sin(kx), with corresponding eigenvalues λk = k2, for
k = 1, 2, . . . . The bilinear term B(u, u) is defined by B(u, v) = 2

3uvx + 1
3uxv for every

u, v ∈ H1
0 (0, π). In particular, we have B(u, u) = uux for every u ∈ H1

0 (0, π).
We chose an exact solution ue(x, t) and then computed the “highly oscillatory”

time-dependent forcing term from the exact solution. In this way we checked errors
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without computing a large Galerkin approximation as an “exact” solution. We chose
ue(x, t) as follows,

ue(x, t) =

∞∑
k=1

ak(t)

k3
sin kx, ak(t) =

{
1 + γ sin k2t, 1 ≥ k ≥ 100,

1, k > 100,
(5.1)

and then calculated the forcing function as f(x, t) := due/dt+νAue+B(ue, ue). The
exact solution ue is in D(A) for t ≥ 0 as assumed above in section 3. Actually, we
can compute sharper estimates for ‖Aq‖ and ‖dq/dt‖ using expression (5.1) to obtain

‖Aq‖ ≤ √2/λ
1/4
N = O(ε1/2), and similarly ‖dq/dt‖ ≤ √γ/λ1/4

N = γO(ε1/2). Note that
the ‖Aq‖ and ‖dq/dt‖ terms are of the same order, depending on the magnitude of γ.
We then obtain ‖q‖ = O(ε5/2) and ‖A1/2q‖ = O(ε3/2). These estimates are of slightly
higher order in ε than those assumed in the theoretical section. However, using these
estimates for the truncation analysis and keeping terms up to order ε, we obtain the
same leading order approximate system as in system (3.2)–(3.3).

The experiments in this section were run on a Sun Ultra 5. The time integra-
tor used was the VODE code [1] with computed diagonal Jacobians (VODE option
MF=23). This code is a reliable and efficient tool for the time integration of systems
of ODEs, especially for stiff problems like those arising from the spatial discretizations
of dissipative PDEs. VODE consists of a backward differentiation formula (BDF) im-
plemented with variable time step and variable order. Specifically, in the algorithm
the time levels are unevenly spaced and the step sizes are produced by the code as
the integration proceeds. Also, formulas of different orders (up to order six) are used,
the order of the formula being selected by the code at every time step. For problems
similar to those in this section, the superior efficiency of codes like VODE with respect
to other frequently used time integrators was experimentally checked in [9].

For each value of N we sought the Galerkin approximation, the standard post-
processed Galerkin approximation (standard PP) from system (2.18)–(2.20), and the
dynamic postprocessed Galerkin approximation (dynamic PP) from system (3.16)–
(3.19). Each experiment was carried out with decreasing values of the time-integration
tolerance (an input parameter to VODE) until additional reduction did not improve
the accuracy of the solution any further. This means that the time discretization error
is negligible in comparison with the spatial error that we are interested in examining.

Figure 5.1 shows the total errors for each of the approximations at time t = 2.0
units, with γ = 0.1 and ν = 1. The initial condition was the projection of ue(x, 0).
The solid line represents errors from the Galerkin method, (2.18) and (2.20); dashed
lines represent errors from the standard postprocessing method, system (2.18)–(2.20);
and dotted lines represent errors from the dynamic postprocessing method, system
(3.16)–(3.19). It is clear from Figure 5.1 that the dynamic postprocessing method
achieves the best rate of convergence as indicated by the most negative slope. The
improvement of the standard postprocessing method over the Galerkin method is only
algebraic, and not a significant improvement in the rate of convergence. Thus, the
addition of the dq1/dt term in the high mode equation is beneficial in this case, at
least in terms of accuracy. The low mode errors for each of the three methods are
essentially the same. The high mode errors are very similar to the total errors shown
in Figure 5.1, since the high mode error dominates the total Galerkin and standard
postprocessing error. Only the dynamic postprocessing method produces high mode
errors (and rate of convergence) that are approximately of the same order as those
for the low mode errors. In the case being studied, i.e., highly oscillatory solutions,
the dynamic postprocessing method is the most accurate.
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Fig. 5.1. Total errors ‖uapprox − ue‖.

The dynamic postprocessing method requires a numerical integration to obtain
the high modes, rather than evaluating the high modes once at some final time, as
with the standard postprocessing method [8], [10], [11], [17]. We next looked at the
efficiency of the dynamic postprocessing method in the case of highly time-oscillatory
solutions to determine whether the error improvement justifies any additional com-
putational cost (CPU).

We again integrated Burgers equation with homogeneous Dirichlet boundary con-
ditions on the interval [0, π] as in section 5. However, this time we provided the forcing
function defined by

f(x, t) =
∞∑
k=1

(
ȧk(t)

k3
+
ak(t)

k

)
sin kx, ak(t) =

{
1 + γ sin k2t, 1 ≥ k ≥ 100,

1, k > 100,

(5.2)
and used a large Galerkin run as an “exact” solution for computing errors. This
way we did not accumulate the cost of computing the forcing function from an exact
solution at each time step. The experiments in this section were run on an SGI Origin
2000 with γ = 0.1, ν = 1, and initial condition u0(x) =

∑
k−3 sin kx.

We first verified that we obtain accuracy results with this forcing function similar
to those in the previous numerical experiment. Figure 5.2 shows the total error
estimates at t = 2.0 units using the VODE time integrator. The rates of convergence
are similar to those in Figure 5.1; the dynamic postprocessing method is again the
most accurate method. In Figure 5.3 we plot the total errors ‖uapprox − ue‖ from
Figure 5.2 versus the amount of computing time (in seconds) needed by each method
to achieve those errors. We added results from larger mode standard postprocessing
runs to better indicate any overlap. A horizontal line across the plot indicates, for
a particular error, the CPU time needed by each method. Again, the solid line
represents errors from the Galerkin method, dashed lines represent errors from the
standard postprocessing method, and dotted lines represent errors from the dynamic
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Fig. 5.3. Error vs. CPU: VODE.

postprocessing method. For the larger mode runs, the dynamic postprocessing method
is slightly more efficient than the standard postprocessing method.

We also sought to take advantage of using a larger time step to integrate the high
modes, subcycling the low mode integration within the high mode integration. For
this experiment we used a semi-implicit backward Euler scheme. The low modes were
integrated using the scheme

pn+1 − pn + ∆t
(
Apn+1 + PNB(pn, pn)

)
= ∆tPNf

n,
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Fig. 5.4. Error vs. CPU: backward Euler.

and the high modes were integrated, in the dynamic postprocessing method, using

qn+1 − qn + ∆t
(
Aqn+1 + QNB(pn, pn)

)
= ∆tQNf

n.

Otherwise, the experimental setup was the same as with the VODE time integrator,
i.e., we computed the errors at time t = 2 units with ν = 1, γ = 0.1, and initial
condition u0(x) =

∑
k−3 sin kx. In each experiment we set ∆t small enough so that

the low mode error (‖p−uN‖) was equivalent to the low mode errors from the VODE
experiments. The effect of subcycling was to slightly increase the error with little
improvement in CPU time. This is because the cost of evaluating the high modes at
each time step is minimal compared to the cost of evaluating the nonlinear term within
each subcycle in order to integrate the low modes. The CPU comparison for the semi-
implicit backward Euler experiments without subcycling is given in Figure 5.4. We
plot error versus CPU time for the standard and dynamic postprocessing methods.
Again the dynamic postprocessing method is the more efficient method for the case
of a highly oscillatory (in time) solution due to a highly oscillatory (in time) forcing
function.

Performing the same experiments with a less time-oscillatory forcing function, we
obtained different accuracy and CPU comparisons. In this final set of experiments,
we used the forcing function

f(x, t) =
∞∑
k=1

(
ȧk(t)

k3
+
ak(t)

k

)
sin kx, ak(t) =

{
1 + γ sin t, 1 ≥ k ≥ 100,

1, k > 100.

(5.3)
In this case we expect the solution to be less oscillatory, and hence the ‖dq/dt‖ term

should be of a smaller order, and the standard postprocessing method should be as
accurate as the dynamic postprocessing method. Figure 5.5 shows the total errors for
the Galerkin, standard postprocessing, and dynamic postprocessing approximations
using the VODE time integrator at time t = 3.0 units, again with γ = 0.1, ν = 1.0, and
u0(x) =

∑
k−3 sin kx. Note that the standard and dynamic postprocessing methods
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Fig. 5.6. Error vs. CPU: VODE and f slowly oscillating in time.

have the same rate of convergence, and there is no improvement with the dynamic
postprocessing method.

In Figure 5.6 we plot the total error versus CPU time for the case of the slowly
oscillating (in time) forcing function when using the VODE time integrator; the stan-
dard postprocessing method proves to be more efficient. Results using the backward
Euler scheme are similar, though the differences are less pronounced.

6. Concluding remarks. Through a classical truncation analysis we have shown
that postprocessing appears as a natural part of approximate systems and correspond-
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ing schemes for numerically integrating the two-dimensional NSE. For autonomous
systems, we generated a family of approximate systems (and schemes) of increasing
orders of approximation using the asymptotic (in time) estimates from [5] for ‖Aq‖
and ‖dq/dt‖. Each system included a postprocessing step that resulted in a high
mode approximation of the same order as the low mode approximation. We found
that the leading order system is the standard Galerkin method with postprocessing
as introduced in [11]. The standard Galerkin method alone uses a less accurate ap-
proximation for the high modes than for the low modes. Hence, the accuracy of the
high mode approximation, or lack thereof, dominates the error.

By assuming different asymptotic (in time) estimates for ‖Aq‖ and ‖dq/dt‖, we
obtained the dynamic postprocessing method as the leading order method. This was
done for the case of a highly oscillatory (in time) solution; the algorithm applies
to the case of nonsmooth initial data as well [24]. In the case of a highly oscillatory
solution, the dynamic postprocessing method was more accurate and efficient than the
standard postprocessing method. For nonautonomous systems with solutions that are
not so oscillatory, both methods obtained the same accuracy; however, the standard
postprocessing method was more efficient in this case.

The method of using truncation analysis with asymptotic estimates for the low
and high modes may easily be extended to general nonlinear parabolic evolution or
elliptic equations to obtain postprocessing systems and schemes which approximate
the low and high modes to the same order of accuracy.
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formulation with the symmetry condition of the stress tensor imposed in the first-order system.
For the respective displacement and stress, using the Crouzeix–Raviart and Raviart–Thomas finite
element spaces, our least-squares finite element method is shown to be optimal in the (broken) H1

and H(div) norms uniform in the incompressible limit.
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1. Introduction. The practical need of the stress tensor has motivated extensive
studies of mixed finite element methods in the stress-displacement formulation (see
[1, 4, 2, 3, 5, 11, 14, 20]). Unlike mixed methods for second-order scalar elliptic
boundary value problems, stress-displacement finite elements are extremely difficult
to construct. This is due to the fact that the stress tensor is symmetric. A beautiful
finite element space had not been constructed until recently by Arnold and Winther
[5]. Their space is a natural extension of the Raviart–Thomas space of H(div). The
minimum degree of freedom on each triangle of Arnold and Winther space for the
symmetric stress tensor in two dimensions is 24, which is very expensive. Previous
works impose the symmetry condition weakly via a Lagrange multiplier (see [1, 2,
20]). Like scalar elliptic problems, mixed methods lead to saddle-point problems, and
mixed finite elements are subject to the inf-sup condition. Many solution methods
which work well for symmetric positive definite problems cannot be applied directly.
Although substantial progress in solution methods for saddle-point problems has been
achieved, these problems may still be difficult and expensive to solve.

Finite element methods of least-squares type have been the object of many studies
recently (see, e.g., the survey [7] and the monograph [18]). Least-squares finite element
methods have also been applied to first-order system formulations of linear elastic-
ity, for example, in [13], where displacement gradients are used as additional degrees
of freedom. Recently, a displacement-stress-rotation least-squares formulation has
been investigated in [19] (see also the references therein for some other least-squares
approaches in the engineering literature). Our aim is to present a least-squares formu-
lation that computes approximations for the stress and displacement only. These are
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the quantities of interest in many practical applications including coupling of elastic
deformation with fluid flow models. The least-squares formulation presented in this
paper also has some advantages for the extension to geometrically nonlinear elasticity
computations, as will be considered in a companion paper.

The purpose of this paper is to develop a least-squares finite element method
based on the stress-displacement formulation. To circumvent the numerical difficulty
on the symmetry of the stress tensor, we impose such a symmetry condition in the
first-order system and then apply the least-squares principle to this overdetermined,
but consistent, system. The least-squares functional uses the L2 norm, and it is shown
that the homogeneous functional is equivalent to the energy norm involving the Lamé
constant for the displacement and the standard H(div) norm for the stress. This
implies that our least-squares finite element method using the respective Crouzeix–
Raviart and Raviart–Thomas spaces for the displacement and stress yields optimal
error estimates uniformly in the incompressible limit. The algebraic system resulting
in this discretization may be efficiently solved by multigrid methods, which will be
considered in a forthcoming paper. Additionally, we consider an inverse norm least-
squares functional and show that its homogeneous form is equivalent to the energy
norm for the displacement and the L2 norm for the stress. This functional can be
used to develop a discrete inverse norm least-squares method (see, e.g., [9]).

An outline of the paper is as follows. The linear elasticity system is introduced in
section 2, along with some notations. Section 3 develops the least-squares functionals
based on the extended first-order system of the stress and displacement and establishes
their ellipticity and continuity. Section 4 discusses the finite element approximation.
Finally, section 5 establishes an inequality in the stress tensor space, used in section
3, through a Helmholtz decomposition.

2. Linear elasticity and preliminaries. We consider an isotropic elastic ma-
terial in the configuration space Ω ⊂ �d (d = 2 or 3). Assume that Ω is a bounded,
open, connected domain with Lipschitz boundary ∂Ω. Let u = (u1, . . . , ud)

t be the
displacement and f = (f1, . . . , fd)

t be the body force. The constituent law expresses a
linear relation between the stress tensor σ(u) = (σij(u))d×d and the linearized strain
tensor ε(u) = (εij(u))d×d, with εij(u) = 1

2 (∂jui + ∂iuj):

σij(u) = λtr
(
ε(u)

)
δij + 2µεij(u),(2.1)

where tr stands for the trace operator (i.e., tr (ε(u)) =
∑d
j=1 εjj(u) = ∇·u), δij is the

Kronecker tensor, and the positive constants λ and µ are the Lamé constants such
that µ ∈ [µ1, µ2] with 0 < µ1 < µ2 and λ ∈ (0,∞). We have the equilibrium equation

d∑
i=1

∂σij(u)

∂xi
+ fj = 0 for j = 1, . . . , d.(2.2)

Let ΓD and ΓN be a partition of the boundary of Ω such that ∂Ω = Γ̄D ∪ Γ̄N
and ΓD ∩ ΓN = ∅. Let n = (n1, . . . , nd)

t be the outward unit vector normal to
the boundary. We impose the homogeneous displacement and traction boundary
conditions 

u = 0 on ΓD,
d∑
i=1

σij(u)ni = 0 on ΓN for j = 1, . . . , d.
(2.3)
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For simplicity, we assume that ΓD is not empty (i.e., mes (ΓD) 
= 0). For the pure
traction problem (ΓD = ∅), our approach may be easily extended to the space of
infinitesimal rigid motions.

We use the standard notation and definition for the Sobolev spaces Hs(Ω) for
s ≥ 0, the associated inner products are denoted by (·, ·)s,Ω, and their norms by
‖ · ‖s,Ω. (We will omit Ω from the inner product and norm designation when there is
no risk of confusion.) For s = 0, Hs(Ω) coincides with L2(Ω). In this case, the norm
and inner product will be denoted by ‖ · ‖ and (·, ·), respectively. Let

H1
D(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD} and H1

N (Ω) = {v ∈ H1(Ω) : v = 0 on ΓN}.
We use H−1

D (Ω) to denote the dual of H1
D(Ω) with the norm defined by

‖φ‖−1, D = sup
0 �=ψ∈H1

D(Ω)

(φ, ψ)

‖ψ‖1

(see [6, section 6.2]). Let

H(div; Ω) = {q ∈ L2(Ω)d : ∇ · q ∈ L2(Ω)}
and

H(curl; Ω) = {q ∈ L2(Ω)d : ∇×q ∈ L2(Ω)2d−3},
which are Hilbert spaces under the respective norms

‖q‖H(div; Ω) =
(‖q‖2 + ‖∇ · q‖2) 1

2 and ‖q‖H(curl; Ω) =
(‖q‖2 + ‖∇×q‖2) 1

2 .

Define the subspaces

HN (div; Ω) = {q ∈ H(div; Ω) : n · q = 0 on ΓN}
and

HD(curl; Ω) = {q ∈ H(curl; Ω) : n× q = 0 on ΓD}.
Finally, define the product spaces

H−1
D (Ω)d =

d∏
i=1

H−1
D (Ω) , HN (div; Ω)d =

d∏
i=1

HN (div; Ω),

and HD(curl; Ω)d =
d∏
i=1

HD(curl; Ω)

with standard product norms. We also use the notations

σ : τ =

d∑
i,j=1

σijτij and |τ | = √τ : τ .

The weak form of boundary value problem for the displacement in (2.2) and (2.3)
has a unique solution u ∈ H1

D(Ω)d for every f ∈ H−1
D (Ω)d. Moreover, the solution u

satisfies the following H1 regularity estimate:

‖u‖1 + λ‖∇ · u‖ ≤ C ‖f‖−1.(2.4)
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If the domain Ω is convex or its boundary is C1,1, then the H2 regularity estimate
holds:

‖u‖2 + λ‖∇ · u‖1 ≤ C ‖f‖(2.5)

for the pure displacement or pure traction problems (see, e.g., [10]). We use C with
or without subscripts to denote a generic positive constant, possibly different at dif-
ferent occurrences, which is independent of the Lamé constant λ and the mesh size
h introduced in the subsequent section but may depend on the Lamé constant µ and
the domain Ω. We will frequently use the term uniform in reference to a relation to
mean that it holds independent of λ and h.

3. First-order system least squares. Let C = λbbt+2µI be a d2×d2 matrix,
where

b =

{
(1, 0, 0, 1)t, d = 2,
(1, 0, 0, 0, 1, 0, 0, 0, 1)t, d = 3.

It is easy to see that C is symmetric and positive definite and that its inverse has the
form of

C−1 =
1

2µ

(
I − λ

dλ+ 2µ
bbt

)
.

It is convenient to view d × d-matrices as d2-vectors, e.g., (σij)d×d as (σ1, . . . ,σd)
t,

where σj = (σ1j , . . . , σdj)
t is the jth column of (σij)d×d for j = 1, . . . , d. Thus,

tr σ = tr (σij)d×d =

d∑
i=1

σii = bt

 σ1

...
σd

 = btσ.

Now, the constituent law may be rewritten in terms of the matrix C:
σ(u) = Cε(u).(3.1)

By treating the stress tensor as independent variables, we then have the following
first-order system: {

σ − Cε(u) = 0 in Ω,
∇ · σ + f = 0 in Ω,

(3.2)

with boundary conditions

u = 0 on ΓD and n · σ = 0 on ΓN .(3.3)

Here, the respective divergence and normal operators ∇· and n· (and other operators
encountered in the subsequent section) are extended componentwise:

∇ · σ =

 ∇ · σ1

...
∇ · σd

 and n · σ =

 n · σ1

...
n · σd

 .
Note that the stress tensor is symmetric; that is,

σ = σt in Ω.(3.4)
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(Here, σt denotes the transpose of σ as a d× d matrix.) One can impose such sym-
metry in the solution space as in [5]. By doing so, it complicates the construction and
increases the dimension of the finite element space. The construction of a piecewise
linear H(div)-conforming finite element space for the stress field would necessarily be
of the form

σ|T =

(
αT + γTx1 βT + γTx2

ρT + δTx1 σT + δTx2

)
with αT , βT , γT , δT , ρT , σT ∈ �. The symmetry condition would imply γT = δT = 0,
leaving us with nothing but constants and therefore with div σ = 0. This does cer-
tainly not lead to an acceptable approximation property in the H(div) norm, and
therefore, piecewise linear finite element spaces are not admissible in this context. In-
stead of using higher-order polynomials, we choose to impose the symmetry condition
in the system. To this end, an equivalent extended system for (3.2) is C

− 1
2σ − C 1

2 ε(u) = 0 in Ω,
∇ · σ + f = 0 in Ω,

1
2 (σ − σt) = 0 in Ω.

(3.5)

Applying the trace operator to (3.1) gives

tr σ = tr Cε(u) = (dλ+ 2µ)∇ · u in Ω.(3.6)

If ΓN = ∅, then ∫
Ω
∇·u dx =

∫
∂Ω

n ·u ds = 0, which implies
∫
Ω

trσ dx = 0. Therefore,

we are at liberty to impose such a condition for σ. Let X denote HN (div; Ω)d if
ΓN 
= ∅, and its subspace {τ ∈ HN (div; Ω)d :

∫
Ω

tr τ dx = 0} otherwise. For

f ∈ L2(Ω)d, we define the following least-squares functionals:

G−1(u, σ; f) = ‖C− 1
2σ − C 1

2 ε(u)‖2 + ‖∇ · σ + f‖2−1,D +

∥∥∥∥12 (σ − σt)
∥∥∥∥2

(3.7)

and

G(u, σ; f) = ‖C− 1
2σ − C 1

2 ε(u)‖2 + ‖∇ · σ + f‖2 +

∥∥∥∥12 (σ − σt)
∥∥∥∥2

(3.8)

for (u, σ) ∈ H ≡ H1
D(Ω)d×X. We first establish uniform boundedness and ellipticity

(i.e., equivalence) of the homogeneous functionals G−1(v, τ ; 0) and G(v, τ ; 0) in
terms of the respective functionals M−1(v, τ ) and M(v, τ ) defined on H by

M−1(v, τ ) = ‖C 1
2 ε(v)‖2 + ‖C− 1

2 τ‖2 + ‖∇ · τ‖2−1,D

and

M(v, τ ) = ‖C 1
2 ε(v)‖2 + ‖C− 1

2 τ‖2 + ‖∇ · τ‖2.

Theorem 3.1. There exist positive constants C1 and C2, independent of λ, such
that

1

C1
M−1(v, τ ) ≤ G−1(v, τ ; 0) ≤ C1M−1(v, τ )(3.9)
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and that

1

C2
M(v, τ ) ≤ G(v, τ ; 0) ≤ C2M(v, τ )(3.10)

hold for all (v, τ ) ∈ H1
D(Ω)d ×HN (div; Ω)d.

Proof. Decomposing the tensor τ into symmetric and skew-symmetric parts

τ =
τ + τ t

2
+
τ − τ t

2
,

we then have

C−1τ = C−1

(
τ + τ t

2

)
+

1

2µ

τ − τ t
2

.

Note that A : B = 0 if A and B are symmetric and skew-symmetric tensors, respec-
tively. Hence,

‖C− 1
2 τ‖2 =

∥∥∥∥C− 1
2
τ + τ t

2

∥∥∥∥2

+

∥∥∥∥C− 1
2
τ − τ t

2

∥∥∥∥2

=

∥∥∥∥C− 1
2
τ + τ t

2

∥∥∥∥2

+
1

2µ

∥∥∥∥τ − τ t2

∥∥∥∥2

.

Now, the upper bounds in both (3.9) and (3.10) follow from the triangle inequality.
To show the validity of the lower bound in (3.9), note first that ε(v) = 1

2 (∇v+(∇v)t)
is the symmetric part of the gradient, and hence, using integration by parts,

(τ , ε(v)) =

(
τ + τ t

2
, ε(v)

)
=

(
τ + τ t

2
, ∇v

)

= (τ , ∇v)−
(
τ − τ t

2
, ∇v

)
= −(∇ · τ , v)−

(
τ − τ t

2
, ∇v

)
.(3.11)

Using the Cauchy–Schwarz and Korn inequalities, we then have that

‖C1/2ε(v)‖2 = (Cε(v), ε(v)) = (Cε(v)− τ , ε(v)) + (τ , ε(v))

≤ ‖C−1/2τ − C1/2ε(v)‖ ‖C1/2ε(v)‖+ ‖∇ · τ‖−1,D ‖v‖+
∥∥∥∥τ − τ t2

∥∥∥∥ ‖∇v‖
≤ C

(
‖C−1/2τ − C1/2ε(v)‖+ ‖∇ · τ‖−1,D +

∥∥∥∥τ − τ t2

∥∥∥∥) ‖C1/2ε(v)‖ ,

(3.12)

which implies that

‖C 1
2 ε(v)‖2 ≤ C

(
‖C− 1

2 τ − C 1
2 ε(v)‖+ ‖∇ · τ‖−1,D +

∥∥∥∥τ − τ t2

∥∥∥∥)2

≤ C G−1(v, τ ; 0).

Together with the triangle inequality, it is easy to see that ‖C− 1
2 τ‖2 is also bounded

above by the homogeneous functional. This completes the proof of the lower bound
in (3.9). Since G−1(v, τ ; 0) ≤ G(v, τ ; 0) and ‖∇ · τ‖2 ≤ G(v, τ ; 0), the lower
bound in (3.10) follows from that in (3.9). The proof of the theorem is therefore
finished.

Note that

‖C 1
2 ε(v)‖2 = 2µ‖ε(v)‖2 + λ‖∇ · v‖2.
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Hence, Korn’s inequality (see, e.g., Braess [8, section VI.3]),

‖v‖21 ≤ C ‖ε(v)‖2 ∀ v ∈ H1
D(Ω)d,

implies the uniform equivalence of ‖C 1
2 ε(v)‖2 and

|||v||| ≡ ‖v‖21 + λ‖∇ · v‖2;

i.e., there exists a positive constant C independent of λ such that

1

C

(‖v‖21 + λ‖∇ · v‖2) ≤ ‖C 1
2 ε(v)‖2 ≤ C (‖v‖21 + λ‖∇ · v‖2)(3.13)

holds for all v ∈ H1
D(Ω)d. It is easy to see that

‖C−1/2τ‖2 =
1

2µ

(
‖τ‖2 − λ

dλ+ 2µ
‖tr τ‖2

)
.

We may split C−1 into its deviatoric and volumetric parts as

C−1τ =
1

2µ

(
I − 1

d
bbt

)
τ +

1

d(dλ+ 2µ)
bbtτ =

1

2µ
dev τ +

1

d(dλ+ 2µ)
tr τ I,

which implies

‖C−1/2τ‖2 =
1

2µ
‖dev τ‖2 +

1

d(dλ+ 2µ)
‖tr τ‖2 .(3.14)

This means that the nondeviatoric part of the stress is unweighted in the incompress-
ible limit. Particularly, in two dimensions one has

‖C−1/2τ‖2 =
1

2µ
‖τ12‖2 +

1

2µ
‖τ21‖2 +

1

4µ
‖τ11 − τ22‖2 +

1

4(λ+ µ)
‖tr τ‖2 .(3.15)

Lemma 3.2. For any τ ∈ X, there exists a positive constant C independent of λ
such that

‖τ‖ ≤ C (‖C−1/2τ‖+ ‖∇ · τ‖−1,D).(3.16)

Proof. The validity of (3.16) follows from Lemmas 5.3 and 5.4 (see section 5) and
the fact that

‖τ‖2 = 2µ‖C−1/2τ‖2 +
λ

dλ+ 2µ
‖tr τ‖2 ≤ 2µ‖C−1/2τ‖2 +

1

d
‖tr τ‖2.

This completes the proof of the lemma.
Since, for all τ ∈ X,

‖∇ · τ‖−1,D ≤ ‖τ‖ and ‖∇ · τ‖−1,D ≤ ‖∇ · τ‖ ,

it is then easy to see that there exist positive constants C1 and C2 such that

1

C1
‖τ‖2 ≤ ‖C−1/2τ‖2 + ‖∇ · τ‖2−1,D ≤ C1‖τ‖2(3.17)
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and that

1

C2
‖τ‖2H(div;Ω) ≤ ‖C−1/2τ‖2 + ‖∇ · τ‖2 ≤ C2‖τ‖2H(div;Ω).(3.18)

Theorem 3.3. There exist positive constants C1 and C2, independent of λ, such
that

1

C1

(|||v|||2 + ‖τ‖2) ≤ G−1(v, τ ; 0) ≤ C1

(|||v|||2 + ‖τ‖2)(3.19)

and that

1

C2
(|||v|||2 + ‖τ‖2H(div;Ω)) ≤ G(v, τ ; 0) ≤ C2(|||v|||2 + ‖τ‖2H(div;Ω))(3.20)

hold for all (v, τ ) ∈ H1
D(Ω)d ×X.

Proof. The theorem is a direct consequence of Theorem 3.1, (3.13), (3.17), and
(3.18).

4. Finite element approximation. For the finite element approximation of
the system (3.5), the least-squares functional in (3.8) is minimized with respect to
appropriate finite-dimensional spaces. For the stress approximation, the standard
H(div; Ω)-conforming Raviart–Thomas elements may be used. Due to the special
structure of C−1, we have proved the uniform equivalence ofM(0, τ ) and theH(div; Ω)
norm in (3.18). Therefore, [11, Proposition 3.9] gives approximation properties which
are uniform in λ with respect to M(0, · ). However, the situation is more complicated
for the displacement approximation. In order to get approximation properties with
respect to

‖v‖21 + λ‖∇ · v‖2 ,

standard continuous piecewise polynomial elements are not sufficient. Following [11,
section VI.3] we may use nonconforming finite element spaces; see also [10, section
9.4] for the case of Crouzeix–Raviart elements.

To this end, let Th be a regular triangulation of the domain Ω with elements of
size O(h) (see [14]). The minimization is then carried out for the discrete least-squares
functional

Gh(uh,σh; f) =
∑
K∈Th

‖C− 1
2σh − C 1

2 ε(uh)‖20,K + ‖∇ · σh + f‖2 +

∥∥∥∥12 (σh − σth)
∥∥∥∥2

(4.1)

over a finite dimensional space Vh ×Xh. If we define the associated bilinear form

Bh(u,σ;v, τ ) =
∑
K∈Th

(C− 1
2σ − C 1

2 ε(u), C− 1
2 τ − C 1

2 ε(v))0,K

+ (∇ · σ,∇ · τ ) +
1

4
(σ − σt, τ − τ t) ,

then the minimum (uh,σh) ∈ Vh×Xh of the least-squares functional in (4.1) satisfies

Bh(uh,σh;v, τ ) = −(f,∇ · τ )(4.2)
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for all (v, τ ) ∈ Vh ×Xh.
For simplicity, we restrict ourselves to triangular elements in two dimensions.

Specifically, for k ≥ 1,

Vh = {v ∈ L2(Ω)2 : v|T is a polynomial of degree k for each K ∈ Th ,
such that v is continuous at the k Gauss points on interior edges ,

and v = 0 at the k Gauss points of edges in ΓD}

and

Xh = {τh ⊂ X : v|T is a polynomial of degree k for each K ∈ Th ,
such that n · τh is a polynomial of degree k − 1 along edges } .

In order to establish approximation properties for this approach, we need to modify
the result of Theorem 3.1 for the discrete least-squares functional in (4.1). To this
end, we define a discrete norm by

|||(v, τ )|||h ≡
( ∑
K∈Th

‖C 1
2 ε(v)‖20,K + ‖C− 1

2 τ‖2 + ‖∇ · τ‖2
) 1

2

(4.3)

and show its equivalence with respect to the discrete least-squares functional.
Theorem 4.1. There exist positive constants CE and CC , independent of λ, such

that

Gh(v, τ ;0) ≥ CE |||(v, τ )|||2h
∀ (v, τ ) ∈ Vh ×Xh ,

Gh(v, τ ;0) ≤ CC |||(v, τ )|||2h
∀ (v, τ ) ∈ (H1

D(Ω) +Vh)×HN (div; Ω).

(4.4)

Proof. We proceed similarly to the proof of Theorem 3.1. As in (3.11), we obtain

∑
K∈Th

(τ , ε(v))0,K =
∑
K∈Th

[
(τ ,∇v)0,K −

(
τ − τ t

2
,∇v

)
0,K

]

=
∑
K∈Th

(n · τ ,v)0,∂K −
∑
K∈Th

(∇ · τ ,v)0,K −
∑
K∈Th

(
τ − τ t

2
,∇v

)
0,K

.

The first sum on the right-hand side can be written as a sum over all edges∑
Eh	E⊆ΓN

(n · τ ,v)0,E +
∑

Eh	E⊆ΓD

(n · τ ,v)0,E +
∑

Eh	E�∂Ω

(n · τ , [v])0,E ,(4.5)

where Eh is the collection of all edges of the triangulation Th, and [v] denotes the
jump of v on E. For (v, τ ) ∈ Vh ×Xh, the first term above vanishes since n · τ = 0
on ΓN . For the remaining two terms, we see that n ·τ is a polynomial of degree k−1,
and v or [v], respectively, is a polynomial of degree k which vanishes at the Gauss
points. In both cases, the integrand is therefore a polynomial of degree 2k− 1, which
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is zero at the k Gauss points, implying that the second and third terms in (4.5) also
vanish. We therefore have in analogy to (3.12)

∑
K∈Th

(τ , ε(v))0,K = −(∇ · τ ,v)−
∑
K∈Th

(
τ − τ t

2
,∇v

)
0,K

.(4.6)

The rest of the proof is completely analogous to that of Theorem 3.1.
Remark. Theorem 4.1 is also valid if nonconforming elements of degree k for the

displacement are combined with Raviart–Thomas elements of lower degree for the
stress. For example, quadratic nonconforming elements may be combined with the
lowest-order Raviart–Thomas spaces.

The quasioptimality of the least-squares finite element approximation follows from
the coercivity result in Theorem 4.1 in the usual way.

Corollary 4.2. Let (u, σ) be the solution of (3.5) with boundary conditions
(3.3), and let (uh, σh) ∈ Vh ×Xh be the solution of (4.2). Then

|||(u− uh,σ − σh)|||h ≤ C inf
(vh,τ h)∈Vh×Xh

|||(u− vh,σ − τh)|||h .(4.7)

Proof. The triangle inequality and the first inequality in (4.4) give

|||(u− uh,σ − σh)|||h ≤ |||(u− vh,σ − τh)|||h + |||(uh − vh,σh − τh)|||h
≤ |||(u− vh,σ − τh)|||h + C

−1/2
E Gh(uh − vh,σh − τh; 0)1/2

for all (vh, τh) ∈ Vh ×Xh. The following orthogonality property is the consequence
of (3.5) and (4.2):

Bh(u− uh,σ − σh;uh − vh,σh − τh) = 0.

Hence,

Gh(uh − vh,σh − τh; 0) = Bh(uh − vh,σh − τh;uh − vh,σh − τh)
= Bh(u− vh,σ − τh;uh − vh,σh − τh)
≤ Gh(u− vh,σ − τh; 0)1/2Gh(uh − vh,σh − τh; 0)1/2 ,

which, combined with the second inequality in (4.4), implies

Gh(uh − vh,σh − τh; 0) ≤ Gh(u− vh,σ − τh; 0) ≤ CC |||(u− vh,σ − τh)|||2h .

We have therefore proved

|||(u− uh,σ − σh)|||h ≤
(

1 +

(
CC
CE

)1/2
)
|||(u− vh,σ − τh)|||h(4.8)

for all (vh, τh) ∈ Vh ×Xh.
Theorem 4.3. Assume that f ∈ L2(Ω)2 and that the regularity estimate in (2.5)

holds. Then, for k = 1, i.e., for Vh the Crouzeix–Raviart elements and Qh the
lowest-order Raviart–Thomas elements, we have the error estimate

|||(u− uh,σ − σh)|||h ≤ C h ‖f‖ .(4.9)
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Proof. The definition of the discrete norm in (4.3) implies that it is sufficient to
bound the two terms( ∑

K∈Th
‖C 1

2 ε(u− vh)‖20,K
)1/2

and
(
‖C−1/2(σ − τh)‖2 + ‖∇ · (σ − τh)‖2

)1/2

separately. For the first term we conclude in analogy to [10, section 9.4] that there is
a mapping Ih : H1

D(Ω)2 → Vh such that( ∑
K∈Th

‖C1/2ε(u− Ihu)‖20,K
)1/2

=

( ∑
K∈Th

(
2µ‖ε(u− Ihu)‖20,K + λ‖∇ · (u− Ihu)‖20,K

))1/2

≤ C h (‖u‖2 + λ‖∇ · u‖1)
uniformly as λ → ∞. For the second term we know that there exists a projection
Rh : HN (div; Ω)2 → Xh such that

‖C−1/2(σ −Rhσ)‖ ≤ 1

2µ
‖σ −Rhσ‖ ≤ C h (‖σ‖1 + ‖∇ · σ‖1) ,

‖∇ · (σ −Rhσ)‖ ≤ C h ‖∇ · σ‖1
uniformly in λ (cf. [11, Proposition III.3.9]). The proof is concluded using the regu-
larity estimate (2.5) and the quasioptimality result in Corollary 4.2.

Due to (3.14), the norm |||( · , · )|||h in Theorem 4.2 degenerates for the trace part
as λ→∞. With Lemma 3.2 we get the following stronger result.

Corollary 4.4. Under the same assumptions as in Theorem 4.3 we have the
error estimate( ∑

K∈Th
‖C1/2ε(u− uh)‖20,K + ‖σ − σh‖2H(div;Ω)

)1/2

≤ C h ‖f‖.(4.10)

Remark. The approximation results (4.9) and (4.10) are also valid for the case
k = 2. For the quadratic nonconforming elementsVh, the existence of an interpolation
operator Ih : H1

D(Ω)2 → Vh with the desired properties follows along the same lines
as in [10, section 9.4]. The crucial ingredient in the proof there is the property

div u = 0 =⇒ div (Ihu)|T = 0 ∀T ∈ Th,
which is shown in [17, pp. 513 and 514]. The interpolation result for the quadratic
Raviart–Thomas elements also follows from [11, Proposition III.3.9].

Remark. The definition of |||( · , · )|||h involves the term∑
K∈Th

‖C1/2ε(v)‖20,K .

For our approximation results (4.9) and (4.10) to be meaningful, we need to show that
this defines a norm on H1

D(Ω) + Vh. If ΓN 
= ∅, this is not true for linear Crouzeix–
Raviart elements, in general (cf. [11, section VI.3]). For nonconforming finite element
spaces of higher degree, however, a discrete Korn’s inequality can be shown (see [16]),
giving us the desired result.
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5. A Helmholtz decomposition. We establish a Helmholtz decomposition for
any τ ∈ X. To this end, define q ∈ H1

D(Ω)d satisfying ∇ ·
(C∇q) = ∇ · τ in Ω,

q = 0 on ΓD,
n · (C∇q) = 0 on ΓN .

(5.1)

Its weak form is to find q ∈ H1
D(Ω)d such that

λ(∇ · q, ∇ · ξ) + (∇q, ∇ξ) = (∇ · τ , ξ) ∀ ξ ∈ H1
D(Ω)d.(5.2)

Let L2
D(Ω) denote L2

0(Ω) = {v ∈ L2(Ω) :
∫
Ω
v dx = 0} if ΓN = ∅, or L2(Ω) otherwise.

We will make use of the following lemma (see, e.g., [15]).
Lemma 5.1. For any p ∈ L2

D(Ω), one has

‖p‖ ≤ C sup
v∈H1

D(Ω)d

(p,∇ · v)

‖v‖1 .(5.3)

Lemma 5.2. The solution of (5.2) satisfies the following regularity estimate:

λ‖∇ · q‖+ ‖q‖1 ≤ C ‖∇ · τ‖−1,D.(5.4)

Proof. Taking ξ = q in (5.2) and using the Poincaré inequality, one has

λ‖∇ · q‖2 + ‖q‖21 ≤ C ‖∇ · τ‖2−1,D.(5.5)

It follows from Lemma 5.1 that

λ‖∇ · q‖ ≤ C sup
v∈H1

D(Ω)d

(λ∇ · q, ∇ · v)

‖v‖1 = C sup
v∈H1

D(Ω)d

(∇ · τ , v)− (∇q, ∇v)

‖v‖1 ,

which, together with the Cauchy–Schwarz inequality and (5.5), implies (5.4).
First, let us consider the case in which d = 2. We use standard curl notation

for two dimensions by identifying �2 with the (x, y)-plane in �3. Thus, the curl of
v = (v1, v2)

t means the scalar function

∇× v = ∂1v2 − ∂2v1,

and ∇⊥ denotes its formal adjoint:

∇⊥v =

(
∂2v
−∂1v

)
.

Since τ − C∇q is divergence-free, there exists φ ∈ H1
N (Ω)2 such that

τ = C∇q+∇⊥φ,

where φ satisfies that
∇× (C−1∇⊥φ) = ∇× (C−1τ

)
in Ω,

n× (C−1∇⊥φ) = n× (C−1τ
)

on ΓD,

φ = 0 on ΓN .

(5.6)
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It is easy to see that

(C−1∇⊥φ, ∇⊥φ) = (C−1τ , ∇⊥φ) ≤ ‖C− 1
2 τ‖ ‖C− 1

2∇⊥φ‖,

which implies that

1

2µ

(
‖∇⊥φ‖2 − λ

2(λ+ µ)
‖∇ × φ‖2

)
= (C−1∇⊥φ, ∇⊥φ) ≤ ‖C− 1

2 τ‖2.(5.7)

Lemma 5.3. For any τ ∈ X and d = 2, we have the following decomposition:

τ = C∇q+∇⊥φ,(5.8)

where q ∈ H1
D(Ω)2 and φ ∈ H1

N (Ω)2 satisfy (5.1) and (5.6), respectively. Moreover,
we have that

‖tr τ‖ ≤ C (‖C− 1
2 τ‖+ ‖∇ · τ‖−1,D

)
.(5.9)

Proof. Since

bt∇q = ∇ · q and bt∇⊥φ = −∇× φ,

applying the trace operator to (5.8) gives that

tr τ = 2(λ+ µ)∇ · q−∇× φ.

By Lemma 5.2, (5.7), and the fact that λ
λ+µ < 1, to show the validity of (5.9), it then

suffices to prove that

‖∇ × φ‖ ≤ C
(
‖∇⊥φ‖2 − 1

2
‖∇ × φ‖2

) 1
2

.(5.10)

If ΓN = ∅, then ∇× φ ∈ L2
0(Ω) since∫

Ω

∇× φ dx = 2(λ+ µ)

∫
Ω

∇ · q dx−
∫

Ω

tr τ dx = 0,

where we have used the divergence theorem and q = 0 on ∂Ω for the first integral,
τ ∈ X for the second. Since (∇⊥φ, ∇v) = 0 for all v ∈ H1

D(Ω)2, it follows from the
Cauchy–Schwarz inequality that for any v ∈ H1

D(Ω)2

(∇× φ, ∇ · v) =
(
(∇× φ)b, ∇v) =

(
(∇× φ)b+ 2∇⊥φ, ∇v)

≤ ‖(∇× φ)b+ 2∇⊥φ‖ ‖∇v‖ = 2

(
‖∇⊥φ‖2 − 1

2
‖∇ × φ‖2

) 1
2

‖∇v‖.

Hence, by Lemma 5.1, we have

‖∇ × φ‖ ≤ C sup
v∈H1

D(Ω)d

(∇× φ,∇ · v)

‖v‖1 ≤ C
(
‖∇⊥φ‖2 − 1

2
‖∇ × φ‖2

) 1
2

.

This completes the proof of (5.10) and, hence, the lemma.
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In the case that d = 3, since τ − C∇q is divergence-free, there exists Φ =
(φ1, φ2, φ3) ∈ H(curl; Ω)3 such that

τ = C∇q+∇×Φ,

where Φ satisfies that
∇× (C−1∇×Φ) = ∇× (C−1τ

)
in Ω,

∇ ·Φ = 0 in Ω,

n× (C−1∇⊥Φ) = n× (C−1τ
)

on ΓD,

n×Φ = 0 on ΓN .

(5.11)

An argument similar to that for d = 2 gives that

1

2µ

(
‖∇×Φ‖2 − λ

3λ+ 2µ
‖bt∇×Φ‖2

)
= (C−1∇×Φ, ∇×Φ) ≤ ‖C− 1

2 τ‖2 .(5.12)

Lemma 5.4. For any τ ∈ X and d = 3, we have the following decomposition:

τ = C∇q+∇×Φ,(5.13)

where q ∈ H1
D(Ω)2 and Φ ∈ H(curl; Ω)3 satisfy (5.1) and (5.11), respectively. More-

over, the estimate in (5.9) is valid.
Proof. Again, it suffices to show that

‖bt∇×Φ‖ ≤ C
(
‖∇×Φ‖2 − 1

3
‖bt∇×Φ‖2

) 1
2

.(5.14)

An argument similar to that in the proof of Lemma 5.3 implies that

bt∇×Φ ∈ L2
D(Ω) and (∇×Φ, ∇v) = 0 ∀ v ∈ H1

D(Ω)3.

Since

‖(bt∇×Φ)b− 3∇×Φ‖ = 3

(
‖∇×Φ‖2 − 1

3
‖bt∇×Φ‖2

) 1
2

,

it then follows from Lemma 5.3 that

‖bt∇×Φ‖ ≤ C sup
v∈H1

D(Ω)d

(bt∇×Φ,∇ · v)

‖v‖1 ≤ C ‖(bt∇×Φ)b− 3∇×Φ‖

≤ C
(
‖∇×Φ‖2 − 1

3
‖bt∇×Φ‖2

) 1
2

.

This completes the proof of (5.10) and, hence, the lemma.

6. A numerical example. We conclude this paper with a simple numerical
example. On the unit square Ω = (−1, 1) × (−1, 1), we consider the system (3.2),
(3.3) with

ΓD = [−1, 1]× {−1}, ΓN = ([−1, 1]× {1}) ∪ {−1, 1} × [−1, 1]
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Fig. 6.1. Displacement field on a uniform triangulation.

Table 6.1
Gh(uh,σh; f) for different values of λ.

h # triangles # d.o.f. λ = 10 λ = 1000 λ = 100000

1 8 76 2.785 · 10−1 3.366 · 10−1 3.374 · 10−1

1/2 32 296 1.205 · 10−1 1.508 · 10−1 1.512 · 10−1

1/4 128 1168 4.817 · 10−2 6.130 · 10−2 6.147 · 10−2

1/8 512 4640 1.917 · 10−2 2.456 · 10−2 2.463 · 10−2

1/16 2048 18496 7.736 · 10−2 1.003 · 10−2 1.005 · 10−2

1/32 8192 73856 3.160 · 10−3 4.174 · 10−3 4.187 · 10−3

1/64 32768 295168 1.303 · 10−3 1.766 · 10−3 1.772 · 10−3

and with f = (0,−1), i.e., a unit volume force pointing downward. The Lamé pa-
rameter µ is always 1 in this example. We compute the least-squares finite element
approximation for a sequence of triangulations resulting from uniform refinement.
The displacement field for λ = 1000 is shown in Figure 6.1 (for h = 1/4 on the left
and for h = 1/16 on the right).

Table 6.1 shows the least-squares functional for different mesh sizes h and different
values of the Lamé parameters λ. Obviously, the convergence is uniform as λ→∞, as
indicated by the theory. Also shown is the number of triangles and the total number
of degrees of freedom (for displacement and stress) in the system.

More numerical results including more sophisticated test examples will be pre-
sented in a companion paper [12], which focusses on adaptive refinement strategies.

Acknowledgment. We thank Travis Austin for helpful discussions.
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Abstract. The conditioning of a set of hierarchic basis functions for p-version edge element
approximation of the space H(curl) is studied. Theoretical bounds are obtained on the location of
the eigenvalues and on the growth of the condition numbers for the mass, curl-curl, and stiffness
matrices that naturally arise from Galerkin approximation of Maxwell’s equations. The theory
is applicable to meshes of curvilinear quadrilaterals or hexahedra in two and three dimensions,
respectively, including the case in which the local order of approximation is nonuniform. Throughout,
the theory is illustrated with numerical examples that show that the theoretical asymptotic bounds
are sharp and are attained within the range of practical computation.

Key words. eigenvalue bounds, hierarchic basis, edge finite elements, Maxwell equations
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1. Introduction. The p-version of the finite element method is an established
tool for the numerical approximation of problems arising in mechanics. The use of
higher order edge finite elements for problems in electromagnetic applications such as
approximation of Maxwell’s equations, though less well established, has witnessed a
steadily increasing interest since the early works of Nédélec [16] and Bossavit [3, 4, 5].
Let H(curl; Ω) denote the space

H(curl; Ω) =
{
u ∈ L2(Ω) : curlu ∈ L2(Ω)

}
,

where Ω is a bounded, curvilinear polyhedral domain in R
d, d = 2, 3. The space

H(curl; Ω) arises naturally in many physical models, such as Maxwell’s equations.
While the traces of the tangential components of functions belonging to H(curl; Ω)
are continuous across any interface, the normal components may be discontinuous.
Consequently, the space H(curl; Ω) is a proper subspace of H1(Ω). It is vital that
any Galerkin approximation should be based on a finite dimensional subspace that
matches these continuity properties. For instance, a standard conforming finite el-
ement approximation of the space H1(Ω) is known to lead to spurious solutions in
quite commonly occurring situations [7]. A finite dimensional subspace of H(curl; Ω)
suitable for the Galerkin approximation of Maxwell’s equations may be constructed
using the p-version of the finite element method based on Nédélec, or edge, finite
elements [16].

Higher order edge elements are employed in the engineering literature [19, 20],
where the degree of element is typically fixed in the range p = 2, 3, 4 and convergence
is sought through mesh refinement. However, the p-version means, at least in princi-
ple, that the mesh is fixed and that the degree of approximation p tends to infinity.
The mathematical analysis of the p-version edge finite elements was considered by
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Monk [14, 15], while significant contributions to the practical implementation of p-
and hp-version edge finite elements were made by Demkowicz and coworkers [8, 18].

The improved accuracy and rate of convergence obtained using p-version proce-
dures comes at a price. An efficient practical implementation of higher order methods
requires the use of hierarchic basis functions. Generally, it is found that the con-
ditioning of the matrices that arise from discretization using higher order elements
degenerates quite rapidly in comparison with those of h-version procedures. The con-
ditioning of the stiffness and mass matrices on a tensor product reference element
using a particular hierarchic basis for H1 conforming p-version approximation was
studied by Maitre and Pourquier [13]. Subsequently, Olsen and Douglas [17] studied
the conditioning of hierarchic bases on tensor product elements in general and con-
jectured that, regardless of the choice of basis, the condition numbers grow as O(p4d)
or faster in d space dimensions. Hu, Guo, and Katz [11] disproved this conjecture
by exhibiting a hierarchical basis where the condition number of the stiffness matrix
grows as O(p4(d−1)).

Comparatively little is known concerning the conditioning of the matrices arising
from p-version edge element approximation of Maxwell’s equations. The hierarchic
basis presented by Rachowicz and Demkowicz was studied numerically in [1], where it
was observed that the condition number degrades exponentially fast with increasing
polynomial order, even in two spatial dimensions. An alternative hierarchic basis
presented in [1] was observed numerically to have superior conditioning properties.
Nevertheless, there has been no theoretical analysis of the conditioning of hierarchic
p-version edge elements.

The aim of the present work is to address this problem directly and to study the
conditioning theoretically and establish bounds on the growth explicitly in terms of
the polynomial degree. The situation for Maxwell’s equations is rather different from
the cases considered in the works mentioned above. For instance, the underlying space
is H(curl) rather than H1, meaning that the basis functions are vectorial in nature
and possess only continuity of traces in the tangential components. One implication
of this is that the basis functions on the physical elements are constructed using a
covariant transformation from the reference element, rather than a standard pull-back
construction employed in the H1-conforming situation. Furthermore, the operators
involved in the Maxwell equations are different and naturally lead [12] to the mass

M(E,F ) =

∫
Ω

εE · F dV(1)

and curl-curl

S(E,F ) =

∫
Ω

µ−1 curlE · curlF dV(2)

bilinear forms. Here, the permeability µ and permittivity ε are real, scalar-valued
functions that are assumed to be bounded above and below in Ω; i.e., there exist
positive constants c1 and C1 such that

c1 ≤ µ(x), ε(x) ≤ C1 for all x ∈ Ω.(3)

Moreover, for transient simulations, a difference approximation of the time derivatives
would typically lead to the need to invert a stiffness matrix given by

A = S + ω2M ,(4)
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where ω would be inversely proportional to the time step ∆t. The exponential rate of
convergence of the p-version spatial discretization means that the order p will generally
be modest in comparison with the choice of the time step, i.e., ∆t−1 � p.

We derive bounds on the asymptotic behavior of the eigenvalues and on the growth
of the condition numbers for each of the above matrices for the family of hierarchic
basis functions presented in [1]. The theory is applicable to meshes of curvilinear
quadrilaterals or hexahedra in two and three dimensions, respectively, and allows for
nonuniform local order of approximation. By analogy with the results obtained by Hu,
Guo, and Katz [11], it is shown that the condition number of the mass and curl-curl
matrices grows as O(p4(d−1)) and O(p2(d−1)), respectively, in d spatial dimensions.
The diagonally scaled stiffness matrix has a condition number that grows as

Cmax
(
1,

p

ω

)2

p2(d−1)

so that, in the typical case where ω ∝ ∆t−1 � p, the condition number grows as
O(p2(d−1)). Throughout, the theory is illustrated with numerical examples that show
that the theoretical asymptotic bounds are sharp and are attained within the range
of practical computation.

2. Statement of the results. Let M be a partitioning of Ω into curvilinear
quadrilaterals or hexahedra [6] such that the nonempty intersection of distinct ele-
ments is either a single common face, edge, or vertex of both elements. Each element
K ∈M is the image of a reference element K̂ = (−1, 1)d under a differentiable bijec-
tion FK : K̂ → K. It is assumed that positive constants exist such that the Jacobian
matrix JK of the mapping satisfies

c2,K ≤ detJK(ξ) ≤ C2,K(5)

and

σ
(
J−1
K J

−�
K

)
⊂ [c3,K , C3,K ](6)

for all ξ ∈ K̂, where σ(A) denotes the spectrum [10] of the matrix A.
A finite element in the sense of Ciarlet [6] is represented by a triple (P,K,Σ).

The space P̂ associated with the Nédélec element of order p on the reference element
is given by

P̂ =
{

Qp,p+1 ×Qp+1,p, d = 2,

Qp,p+1,p+1 ×Qp+1,p,p+1 ×Qp+1,p+1,p, d = 3,

where

Qp,q =
{
xiyj : 0 ≤ i ≤ p, 0 ≤ j ≤ q

}
and

Qp,q,r =
{
xiyjzk : 0 ≤ i ≤ p, 0 ≤ j ≤ q, 0 ≤ k ≤ r

}
.

The set of degrees of freedom Σ̂ is specified implicitly by the choice of basis. Let
{Li}pi=0 denote normalized Legendre polynomials, so that ‖Li‖(−1,1) = 1, and define

the set {�i}p+1
i=0 as follows:

�0(s) =
1

2
(1− s), �1(s) =

1

2
(1 + s)
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and

�i(s) =

∫ s

−1

Li−1(t) dt, i = 2, . . . , p+ 1.

The basis functions on the quadrilateral reference element K̂ = (−1, 1)2 are chosen
to be

Li(ξ1)�j(ξ2)e1

�j(ξ1)Li(ξ2)e2

}
i = 0, . . . , p, j = 0, . . . , p+ 1,(7)

while for the hexahedral reference element K̂ = (−1, 1)3 the basis functions are given
by

Li(ξ1)�j(ξ2)�k(ξ3)e1

�j(ξ1)Li(ξ2)�k(ξ3)e2

�j(ξ1)�k(ξ2)Li(ξ3)e3

 i = 0, . . . , p, j, k = 0, . . . , p+ 1,(8)

where e1, . . . ,e3 denote the unit Cartesian vectors. The dimensions of P̂ are given
by d(p+ 1)(p+ 2)d−1 for d = 2, 3.

The Nédélec element (P,K,Σ) on a physical domain K is constructed from the

reference element as follows. First, observe that the electric field Ê on a reference
element is related to the field E on the physical element by the covariant transforma-
tion [12],

E(x)|K = J−�K Ê(ξ), x = FK(ξ).(9)

Consequently, the global basis function φ corresponding to the local basis function φ̂
on the reference element is defined by

φ(x)|K = J−�K φ̂(ξ).(10)

The degrees of freedom Σ on the global element are implicit in the choice of basis.
The degrees of freedom shared by more than one element may be shown to correspond
to tangential moments of the field on the edges and faces of the element similar
to the degrees of freedom employed by Nédélec [16] in the case of uniform order
approximation. However, some care must be exercised if the use of a nonuniform
polynomial order of approximation pK on each element K in the partition M is
permitted. The continuity properties of the space H(curl; Ω) mean that the order
of approximation must be appropriately restrained at common interfaces and edges
between neighboring elements. This is accomplished by applying the minimum rule,
whereby the order of approximation on the element of higher local order is reduced
to match that of the neighboring elements. We refer to [2] for a discussion of the
minimum rule in the context of H1(Ω) conforming approximation, and to [8] for
the H(curl; Ω) situation. The polynomial orders are collected into a degree vector
p = {pK : K ∈ P}, with the maximum order of approximation denoted by pmax.

One feature of the basis presented above that is important for efficient practical
implementation is that it is hierarchical. An alternative hierarchical basis will be found
in [18]. However, numerical evidence presented in [1] indicates that the latter choice
leads to extremely poorly conditioned matrices. In fact, numerical evidence suggests
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that the condition number degenerates exponentially fast with the polynomial order
p. The conditioning of the basis described above is the subject of Theorem 1.

The spectral condition number κ(A) of a square matrix A is defined by

κ(A) =
λmax(A)

λmin(A)
.(11)

Many numerical algorithms work, either explicitly or implicitly, with the diagonally
scaled matrix Ã defined by

Ã =D−1/2AD−1/2,

where D denotes the diagonal of A. The next result presents bounds on the growth
of the spectral condition number of various matrices that arise in the Galerkin ap-
proximation of Maxwell’s equations. The mass matrix M is real, symmetric, and
positive definite and therefore has positive eigenvalues. However, the curl-curl matrix
S is semidefinite, and in this case, we bound the ratio κ′(S) of the largest eigenvalue
to the smallest nonzero eigenvalue.

Theorem 1. LetM be a partition with variable order of approximation given by
p, and with maximum order pmax. Then, there exist positive constants C∗M,M , C∗M,S,
and C∗M,A, depending on the constants defined in (5)–(6) but independent of the poly-
nomial order, such that

(1) for the global mass matrix,

κ
(
M

(d)
M,p

) ≤ C∗M,Mp
4(d−1)
max

κ
(
M̃

(d)

M,p

) ≤ C∗M,Mp
2(d−1)
max

 d = 2, 3;(12)

(2) for the global curl-curl matrix,

κ′
(
S

(d)
M,p

) ≤ C∗M,Sp
4(d−2)
max

κ′
(
S̃

(d)

M,p

) ≤ C∗M,Sp
2(d−2)
max

 d = 2, 3;(13)

(3) and for the global stiffness matrix,

κ
(
A

(d)
M,p

) ≤ C∗M,Ap
4(d−1)
max

κ
(
Ã

(d)

M,p

) ≤ C∗M,Amax
(
1,

pmax

ω

)2

p2(d−1)
max

 d = 2, 3.(14)

The proof of this result is deferred until the next section. First, we present a
simple example to illustrate the results in the case of uniform polynomial degree ap-
proximation, i.e., pK = p for all K ∈ M, using the mesh shown in Figure 1(a). This
mesh is typical of the type of geometrically graded meshes needed to achieve exponen-
tial rates of convergence. The permittivity and permeability are chosen to be unity
throughout the domain. The numerical results agree with theoretical predictions. In
particular, the theorem predicts a transition from growth of order O(p4) to O(p2) in

the condition number of the diagonally scaled stiffness matrix Ã
(d)

M,p as the value of
ω is increased. This behavior is also observed in practice, as seen in Figure 1(d).

3. Proofs of the results. This section is organized as follows. First, bounds
are established for the eigenvalues and condition numbers of the mass, curl-curl, and
stiffness matrices on a single reference element. Theorem 1 is then deduced from these
results.
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Fig. 1. Mesh used to illustrate the results in (12)–(14) of Theorem 1 in two dimensions. The
variation of the condition numbers versus the order of approximation using the mesh in (a) for
uniform polynomial order p = 0, . . . , 15 is given for (b) the global mass and diagonally scaled global
mass matrices, (c) the global curl-curl and diagonally scaled global curl-curl matrices, and (d) the
global stiffness and diagonally scaled global stiffness matrices. The theoretical rates predicted in
Theorem 1 are also indicated.

3.1. Analysis of the mass matrix. The first result concerns the mass matrix.

Lemma 2. Let M
(d)

K̂,p
and M̃

(d)

K̂,p denote the mass and diagonally scaled mass
matrices in d spatial dimensions with order p approximation. Then there exist positive
constants c

K̂,M
and C

K̂,M
independent of p such that

λmin

(
M

(d)

K̂,p

) ≥ c
K̂,M

p−4(d−1), λmax

(
M

(d)

K̂,p

) ≤ C
K̂,M

(15)

and

λmin

(
M̃

(d)

K̂,p

) ≥ c
K̂,M

p−2(d−1), λmax

(
M̃

(d)

K̂,p

) ≤ C
K̂,M

.(16)

Therefore, there exists a positive constant C∗
K̂,M

independent of p such that

κ
(
M

(d)

K̂,p

) ≤ C∗
K̂,M

p4(d−1)(17)
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and

κ
(
M̃

(d)

K̂,p

) ≤ C∗
K̂,M

p2(d−1).(18)

Proof. The bounds (17) and (18) on the condition numbers are immediate con-
sequences of (15) and (16), thanks to (11) and setting C∗

K̂,M
= C

K̂,M
/c
K̂,M

. It

remains to prove (15) and (16). The basis functions in (7) and (8) are multiples of
the Cartesian vectors. As a result, the mass matrix can be written in block diagonal
form:

M
(2)

K̂,p
= blockdiag

(
M

(2)
1,p,M

(2)
2,p

)
(19)

and

M
(3)

K̂,p
= blockdiag

(
M

(3)
1,p,M

(3)
2,p,M

(3)
3,p

)
,(20)

whereM
(d)
i,p represents the coupling between the basis functions that are multiples of

the ith Cartesian vectors. In the case of d = 2, order the basis functions as follows:

ψ1
j+1+i(p+2) = Li(ξ1)�j(ξ2)e1

ψ2
i+1+j(p+1) = �j(ξ1)Li(ξ2)e2

}
i = 0, . . . , p, j = 0, . . . , p+ 1.(21)

That is to say, we order the functions by looping over the index corresponding to the
ξ2 variable first. The block matrices in (19) can then be rewritten by observing that

(
M

(2)
1,p

)
j+1+i(p+2),n+1+m(p+2)

= δim

∫ 1

−1

�j(ξ2)�n(ξ2) dξ2

and (
M

(2)
2,p

)
i+1+j(p+1),m+1+n(p+1)

= δim

∫ 1

−1

�j(ξ1)�n(ξ1) dξ1

for i,m = 0, . . . , p and j, n = 0, . . . , p+1, where δim is the Kronecker symbol. Hence,

M
(2)
1,p = Ip+1 ⊗ �p+1 and M

(2)
2,p = �p+1 ⊗ Ip+1,

where ⊗ denotes the Kronecker product [10], Ip+1 is the p+1 by p+1 identity matrix,
and �p+1 is the mass matrix in one dimension with entries given by

(�p+1)ij =

∫ 1

−1

�i(s)�j(s) ds, i, j = 0, . . . , p+ 1.

Likewise, for d = 3, we order the basis functions by first looping over the indices
corresponding to the ξ3 variable and then over the indices corresponding to the ξ2
variable. The block matrices in (20) take the form

M
(3)
1,p = Ip+1 ⊗ �p+1 ⊗ �p+1,

M
(3)
2,p = �p+1 ⊗ Ip+1 ⊗ �p+1,

M
(3)
3,p = �p+1 ⊗ �p+1 ⊗ Ip+1.
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Fig. 2. Variation of the condition numbers versus the order of approximation of the mass
and diagonally scaled mass matrices for (a) two and (b) three dimensions on the reference element.
These results agree with those predicted by (17) and (18) for d = 2 and d = 3, respectively.

By Theorem 4.2.12 of [10], the spectrum of each block matrix is given by

σ
(
M

(d)
i,p

)
= σ (Ip+1)⊗

d−1︷ ︸︸ ︷
σ(�p+1)⊗ · · · ⊗ σ(�p+1),

and since σ(Ip+1) = {1}, we obtain

λmin

(
M

(d)

K̂,p

)
= λmin

(
�p+1

)d−1
and λmax

(
M

(d)

K̂,p

)
= λmax (�p+1)

d−1
.(22)

The bounds (15) then follow by recalling (see [13]) that there exist positive constants
c and C independent of p such that

λmin (�p+1) ≥ cp−4 and λmax (�p+1) ≤ C.(23)

Similar arguments show that for the diagonally scaled mass matrix,

M̃
(d)

K̂,p = diag
(
M̃

(d)

1,p, . . . ,M̃
(d)

d,p

)
, d = 2, 3,

and hence,

λmin

(
M̃

(d)

K̂,p

)
= λmin

(
�̃p+1

)d−1
and λmax

(
M̃

(d)

K̂,p

)
= λmax

(
�̃p+1

)d−1
.

The bounds (16) follow by recalling (see [13]) that

λmin

(
�̃p+1

) ≥ cp−2 and λmax

(
�̃p+1

) ≤ C(24)

for the diagonally scaled one dimensional mass matrix. The result follows as claimed
by choosing c

K̂,M
= min

(
c, c2

)
and C

K̂,M
= max

(
C,C2

)
.

In Figure 2 the variation of the condition numbers of M
(d)

K̂,p
and M̃

(d)

K̂,p versus

order of approximation for p = 0, . . . , 100 is shown for d = 2 in (a) and d = 3 in (b).
It will be observed that the estimates in Lemma 2 are sharp.
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3.2. Analysis of the curl-curl matrix. The next result gives bounds for the
nontrivial eigenvalues of the curl-curl matrix on a single reference element.

Lemma 3. Let S
(d)

K̂,p
and S̃

(d)

K̂,p denote the curl-curl and diagonally scaled curl-

curl matrices in d spatial dimensions with order p approximation. Then there exist
positive constants c

K̂,S
and C

K̂,S
independent of p such that

λ′min

(
S

(d)

K̂,p

) ≥ c
K̂,S

p−4(d−2), λmax

(
S

(d)

K̂,p

) ≤ C
K̂,S

(25)

and

λ′min

(
S̃

(d)

K̂,p

) ≥ c
K̂,S

p−2(d−2), λmax

(
S̃

(d)

K̂,p

) ≤ C
K̂,S

,(26)

where λ′min denotes the smallest nonzero eigenvalue. Therefore, there exists a positive
constant C∗

K̂,S
independent of p such that

κ′
(
S

(d)

K̂,p

) ≤ C∗
K̂,S

p4(d−2)(27)

and

κ′
(
S̃

(d)

K̂,p

) ≤ C∗
K̂,S

p2(d−2),(28)

where κ′ denotes the ratio of λmax to λ′min.

Proof. As before, it suffices to prove (25) and (26). We begin by considering the
two dimensional case. The curl-curl matrix is less straightforward to analyze than
the mass matrix. Nevertheless, the basis functions given in (7) may be partitioned
into four sets that are mutually orthogonal with respect to the H(curl) semi-inner
product, as follows:

S1 = span {L0(ξ1)�j(ξ2)e1 : j ∈ {0, 1}}
⊕ span {�j(ξ1)L0(ξ2)e2 : j ∈ {0, 1}} ,

S2 = span {Li(ξ1)�j(ξ2)e1 : i ∈ {1, . . . , p}; j ∈ {0, 1}}
⊕ span {�j(ξ1)L0(ξ2)e2 : j ∈ {2, . . . , p+ 1}} ,

S3 = span {L0(ξ1)�j(ξ2)e1 : j ∈ {2, . . . , p+ 1}}
⊕ span {�j(ξ1)Li(ξ2)e2 : i ∈ {1, . . . , p}; j ∈ {0, 1}} ,

S4 = span {Li(ξ1)�j(ξ2)e1 : i ∈ {1, . . . , p}; j ∈ {2, . . . , p+ 1}}
⊕ span {�j(ξ1)Li(ξ2)e2 : i ∈ {1, . . . , p}; j ∈ {2, . . . , p+ 1}} .

Hence

S
(2)

K̂,p
= blockdiag (S1,S2,S3,S4) ,
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where Si is the curl-curl matrix corresponding to the nonzero coupling between basis
functions in Si. Simple computation reveals that

S1 =
1

2

[
1 −1
−1 1

]
⊗
[

1 −1
−1 1

]
,

S2 =
1

2

 1 −1 √
2

−1 1 −√2√
2 −√2 2

⊗ Ip,
S3 = Ip ⊗ 1

2

 1 −1 √
2

−1 1 −√2√
2 −√2 2

 ,

S4 =

[
1 −1
−1 1

]
⊗ (Ip ⊗ Ip).

The spectra of these matrices are found, again using Theorem 4.2.12 of [10], to be

σ (S1) = {2, 0, 0, 0},
σ (S2) = {2, 0} (multiplicity of p and 2p, respectively),

σ (S3) = σ(S2),

σ (S4) = {2, 0} (multiplicity of p2 for each).

Hence, the nonzero eigenvalues satisfy

λ′min

(
S

(2)

K̂,p

)
= 2 and λmax

(
S

(2)

K̂,p

)
= 2.(29)

The same arguments apply equally well to the case when diagonal scaling is applied.
In particular, the matrices S̃2, . . . , S̃4 agree with S2, . . . ,S4, while S̃1 = 2S1. The
eigenvalues of S̃1 are therefore given by {4, 0, 0, 0}, so that

λ′min

(
S̃

(2)

K̂,p

)
= 2 and λmax

(
S̃

(2)

K̂,p

)
= 4.(30)

Together, these results give (25) and (26) in the case d = 2. Before proceeding with
the case d = 3, it is useful to note that maintaining the same ordering of the degrees
of freedom as described in (21) yields the alternative form

S
(2)

K̂,p
=

[
Ip+1 ⊗ �′p+1 −L̃p ⊗ L̃

�
p

−L̃�p ⊗ L̃p �′p+1 ⊗ Ip+1

]
,(31)

where L̃p is the matrix with entries given by

(L̃p)ij =

∫ 1

−1

Li(s)�j(s) ds, i = 0, . . . , p, j = 0, . . . , p+ 1,

and �′p+1 is the one dimensional stiffness matrix

(�′p+1)ij =

∫ 1

−1

�′i(s)�
′
j(s) ds, i, j = 0, . . . , p+ 1.
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Adopting the ordering of the basis functions used in the proof of Lemma 2 for the
three dimensional mass matrix, the three dimensional curl-curl matrix takes the form

S
(3)

K̂,p
= S1 + S2 + S3,(32)

where

S1 =

 Ip+1 ⊗ �′p+1 ⊗ �p+1 −L̃p ⊗ L̃
�
p ⊗ �p+1 0

−L̃�p ⊗ L̃p ⊗ �p+1 �′p+1 ⊗ Ip+1 ⊗ �p+1 0
0 0 0

 ,

S2 =

 0 0 0

0 �p+1 ⊗ Ip+1 ⊗ �′p+1 −�p+1 ⊗ L̃p ⊗ L̃
�
p

0 −�p+1 ⊗ L̃
�
p ⊗ L̃p �p+1 ⊗ Ip+1 ⊗ �′p+1

 ,

and

S3 =

 Ip+1 ⊗ �p+1 ⊗ �′p+1 0 −L̃p ⊗ �p+1 ⊗ L̃
�
p

0 0 0

−L̃�p ⊗ lp+1 ⊗ L̃p 0 �′p+1 ⊗ �p+1 ⊗ Ip+1

 .

Observe, in particular, that S1 is related to the two dimensional curl-curl matrix S
(2)

K̂,p

defined in (31) by the rule

S1 = S
(2)

K̂,p
⊗ �p+1.(33)

By symmetry, the same expression holds for S2 and S3, and hence, by Theorem 4.2.12
of [10],

σ (Si) = σ
(
S

(2)

K̂,p

)⊗ σ (�p+1) , i = 1, . . . , 3.(34)

Let #α = (#α1, #α2, #α3) ∈ R
3(p+1)(p+2)2 denote the values of the degrees of freedom

in the approximation on the reference element. Decompose

#α =
1

2

(
#β1 + #β2 + #β3

)
,(35)

where

#β1 =

 #α1

#α2

0

 , #β2 =

 0
#α2

#α3

 , and #β3 =

 #α1

0
#α3

 .

Observing that

#α�Si#α = #β �i Si#βi, i = 1, . . . , 3,(36)

we deduce from (34) that

#α�Si#α ≥ λmin (�p+1)λmin

(
S

(2)

K̂,p

)|#βi|2 = 2λmin (�p+1) |#βi|2
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Fig. 3. Variation of the condition numbers versus the order of approximation of the curl-
curl and diagonally scaled curl-curl matrices for (a) two and (b) three dimensions on the reference
element. These results agree with those predicted by (27) and (28) for d = 2 and d = 3, respectively.

and

#α�Si#α ≤ λmax (�p+1)λmax

(
S

(2)

K̂,p

)|#βi|2 = 2λmax (�p+1) |#βi|2.

Thus, using (32), (36) and the fact that
∑3
i=1 |#βi|2 = 2

∑3
i=1 |#αi|2, we obtain

#α�S(3)

K̂,p
#α ≥ 2λmin (�p+1)

3∑
i=1

|#βi|2 = 4λmin(�p+1)|#α|2(37)

and

#α�S(3)

K̂,p
#α ≤ 2λmax (�p+1)

3∑
i=1

|#βi|2 = 4λmax (lp+1) |#α|2.(38)

Analogous arguments may be used in the case of diagonal scaling to obtain

#α�S̃
(3)

K̂,p#α ≥ 4λmin

(
�̃p+1

)|#α|2 and #α�S̃
(3)

K̂,p#α ≤ 8λmax

(
�̃p+1

)|#α|2.(39)

Thus, for the nonzero eigenvalues, using (23) and (24) in conjunction with (37)–(39)
yields

λ′min

(
S

(3)

K̂,p

) ≥ 4cp−4, λmax

(
S

(3)

K̂,p

) ≤ 4C(40)

and

λ′min

(
S̃

(3)

K̃,p

) ≥ 4cp−2, λmax

(
S̃

(3)

K̂,p

) ≤ 8C.(41)

Setting c
K̂,S

= 4c and C
K̃,S

= 8C establishes (25) and (26) for d = 2, 3, and the
lemma is proved.

In Figure 3 the condition numbers of S
(d)

K̂,p
and S̃

(d)

K̂,p versus order of approximation

for p = 0, . . . , 100 are shown for d = 2 in (a) and d = 3 in (b). Once again, it will be
observed that the results in Lemma 3 are sharp.
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3.3. Analysis of the stiffness matrix. Finally, we present bounds for the
eigenvalues of the stiffness matrix on a single reference element.

Lemma 4. Let A
(d)

K̂,p
and Ã

(d)

K̂,p denote the stiffness and diagonally scaled stiffness

matrices in d spatial dimensions with order p approximation. Then there exist positive
constants c

K̂,A
and C

K̂,A
independent of p such that

λmin

(
A

(d)

K̂,p

) ≥ c
K̂,A

p−4(d−1), λmax

(
A

(d)

K̂,p

) ≤ C
K̂,A

(42)

and

λmin

(
Ã

(d)

K̃,p

) ≥ c
K̂,A

min

(
1,

ω

p

)2

p−2(d−1), λmax

(
Ã

(d)

K̂,p

) ≤ C
K̂,A

.(43)

Therefore, there exists a positive constant C∗K,A independent of p such that

κ
(
A

(d)

K̂,p

) ≤ C∗
K̂,A

p4(d−1)

ω2
(44)

and

κ
(
Ã

(d)

K̂,p

) ≤ C∗
K̂,A

max
(
1,

p

ω

)2

p2(d−1).(45)

Proof. Once again, it suffices to prove (42) and (43). We obtain upper bounds for
the maximum eigenvalues by applying the results in Lemmas 2 and 3 for the maximum
eigenvalues of the mass and curl-curl matrices to deduce

#α�A(d)

K̂,p
#α = #α�S(d)

K̂,p
#α+ ω2#α�M (d)

K̂,p
#α ≤ 2max (C

K̂,S
, ω2C

K̂,M

)|#α|2(46)

and hence

λmax

(
A

(d)

K̂,p

) ≤ 2max (C
K̂,S

, ω2C
K̂,M

)
.

Equally well, using the bounds in Lemmas 2 and 3 for the maximum eigenvalues of
the diagonally scaled matrices gives

#α�A(d)

K̂,p
#α = #α�

[
S

(d)

K̂,p
+ ω2M

(d)

K̂,p

]
#α

≤ #α�
[
C
K̂,S

diag
(
S

(d)

K̂,p

)
+ ω2C

K̂,M
diag

(
M

(d)

K̂,p

)]
#α

≤ max (C
K̂,S

, C
K̂,M

)
#α�diag

(
A

(d)

K̂,p

)
#α(47)

and hence

λmax

(
Ã

(d)

K̂,p

) ≤ max (C
K̂,S

, C
K̂,M

)
.

The minimum eigenvalue of the stiffness matrix is bounded using the result in (15)
for the minimum eigenvalue as follows,

#α�A(d)

K̂,p
#α ≥ ω2#α�M (d)

K̂,p
#α ≥ ω2c

K̂,M
p−4(d−1)|#α|2,
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and hence

λmin

(
A

(d)

K̂,p

) ≥ ω2c
K̂,M

p−4(d−1).

It remains to derive the lower bound on the minimum eigenvalue of the diagonally
scaled stiffness matrix. The bound in Lemma 2 for the minimum eigenvalue of the
diagonally scaled mass matrix gives

#α�M (d)

K̂,p
#α ≥ cp−2(d−1)#α�diag

(
M

(d)

K̂,p

)
#α.(48)

A direct computation using standard properties of Legendre polynomials reveals that
if φ is any of the basis functions defined in (7) or (8), then

‖curlφ‖2
L2(K̂)

≤ Cp2 ‖φ‖2
L2(K̂)

,

or, expressed in terms of matrices,

#α�diag
(
S

(d)

K̂,p

)
#α ≤ Cp2#α�diag

(
M

(d)

K̂,p

)
#α.

With the aid of (48) we deduce that

#α�M (d)

K̂,p
#α ≥ cp−2d#α�diag

(
S

(d)

K̂,p

)
#α.(49)

The bounds (48) and (49) are used to obtain the lower bound on the eigenvalue as
follows,

#α�A(d)

K̂,p
#α ≥ ω2#α�M (d)

K̂,p
#α

≥ cp−2(d−1)#α�
[
ω2

p2
diag

(
S

(d)

K̂,p

)
+ ω2diag

(
M

(d)

K̂,p

)]
#α

≥ cp−2(d−1)min

(
1,

ω

p

)2

#α�diag
(
S

(d)

K̂,p
+ ω2M

(d)

K̂,p

)
#α

= cp−2(d−1)min

(
1,

ω

p

)2

#α�diag
(
A

(d)

K̂,p

)
#α,(50)

and the result follows as claimed.
Figures 4 and 5 show the computed condition numbers of A

(d)

K̂,p
and Ã

(d)

K̂,p versus

order of approximation on the reference element for p = 0, . . . , 80, for d = 2 and
d = 3, respectively. As before, the bounds are seen to be sharp. Observe the change
in asymptotic behavior with increasing values of the coefficient ω from O(p4) to O(p2)
in Figure 4, and from O(p6) to O(p4) in Figure 5, as predicted in (45).

3.4. Proof of Theorem 1. (1) LetM
(d)
K,p denote the mass matrix over a phys-

ical element K ∈M corresponding to order of approximation p. Then, for a discrete
electric field E on the physical element, relation (9) implies that

MK(E,E) =

∫
K

ε|E|2 dx =
∫
K̂

ε|J−�K Ê|2|det(JK)|dξ.

Applying the bounds in (3) and (5)–(6) leads to the conclusion

c1c2,Kc3,Kλmin

(
M

(d)

K̂,p

)
I ≤M (d)

K,p ≤ C1C2,KC3,Kλmax

(
M

(d)

K̂,p

)
I.(51)



CONDITIONING OF NÉDÉLEC ELEMENTS 745
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Fig. 4. Variation of the condition numbers versus the order of approximation of the stiffness
matrix (a) and diagonally scaled stiffness matrix (b) in two dimensions on the reference element.
Note that in (a) only the results for the extreme values of ω have been shown, for clarity, since the
curves for intermediate values are found to lie in between. These results agree with those predicted
in (44) and (45) for d = 2.
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As before, in (a), only the results for the extreme values of ω have been shown, for clarity, since the
curves for intermediate values are found to lie in between. These results agree with those predicted
by (44) and (45) for d = 3.

Lemma 2 implies that

λmin

(
M

(d)
K,p

) ≥ cK,Mp−4(d−1) and λmax

(
M

(d)
K,p

) ≤ CK,M ,(52)

where

cK,M = c1c2,Kc3,Kc
K̂,M

and CK,M = C1C2,KC3,KC
K̂,M

.

As a consequence of (52),

κ
(
M

(d)
K,p

) ≤ C∗K,Mp4(d−1),(53)
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where C∗K,M = CK,M/cK,M . The same argument may be applied in the case of
diagonal scaling to deduce that

λmin

(
M̃

(d)

K,p

) ≥ cK,Mp−2(d−1), λmax

(
M̃

(d)

K,p

) ≤ CK,M(54)

and

κ
(
M̃

(d)

K,p

) ≤ C∗K,Mp2(d−1).(55)

Let #αp ∈ R
N denote the values of the global degrees of freedom for the non-

uniform order of approximation p over M with maximum order p = pmax, and let
#αp ∈ R

N ′
denote the value of the global degrees of freedom for the uniform order

of approximation p over M. The global mass matrix M
(d)
M,p, corresponding to the

uniform order approximation p over the entire mesh, satisfies

#α�pM
(d)
M,p#αp = #α�p

( ∑
K∈M

ΛKM
(d)
K,pΛ

�
K

)
#αp =

∑
K∈M

#β �K,pM
(d)
K,p

#βK,p,

where #βK,p = Λ�K#αp and the ΛK is the usual connectivity matrix representing the
mapping from the local to the global degrees of freedom for each element K ∈M. In
particular, this implies that there are positive constants c6 and C6 such that

c6|#αp|2 ≤
∑
K∈M

|#βK,p|2 ≤ C6|#αp|2.(56)

Using (52), it follows that

#α�pM
(d)
M,p#αp ≤

∑
K∈M

λmax

(
M

(d)
K,p

)
|#βK,p|2 ≤

(
max
K∈M

CK,M

) ∑
K∈M

|#βK,p|2

and

#α�pM
(d)
M,p#αp ≥

∑
K∈M

λmin

(
M

(d)
K,p

)
|#βK,p|2 ≥

(
min
K∈M

cK,M

)
p−4(d−1)

∑
K∈M

|#βK,p|2.

We use (56) to deduce

c6p
−4(d−1)

(
min
K∈M

cK,M

)
|#αp|2 ≤ #α�pMM,p#αp ≤ C6

(
max
K∈M

CK,M

)
|#αp|2,

which implies

λmin

(
M

(d)
M,p

) ≥ c′M,Mp−4(d−1) and λmax

(
M

(d)
M,p

) ≤ C ′M,M ,

where c′M,M = c6minK∈M cK,M and C ′M,M = C6maxK∈M CK,M . The result for
diagonal scaling

λmin

(
M̃

(d)

M,p

) ≥ c′M,Mp−2(d−1) and λmax

(
M̃

(d)

M,p

) ≤ C ′M,M

is established in the same way.
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The eigenvalues of the global mass matrix corresponding to the nonuniform order
approximation p overM satisfy

λmax

(
Md
M,p

)
= max

�αp∈RN

#α�pM
(d)
M,p#αp

|#αp|2 ≤ max
�αp∈RN′

#α�pM
(d)
M,p#αp

|#αp|2 ≤ C ′M,M(57)

and

λmin

(
Md
M,p

)
= min

�αp∈RN

#α�pM
(d)
M,p#αp

|#αp|2 ≥ min
�αp∈RN′

#α�pM
(d)
M,p#αp

|#αp|2
≥ p−4(d−1)c′M,M ,(58)

and hence the first part of (12) holds with C∗M,M = C ′M,M/c′M,M . The second part
of (12) is proved using (54) in the same fashion.

(2) Define the following skew-symmetric form (see [16]), using the discrete electric

field Ê on the reference element:

C(Ê) =

 0 Ê1,2 Ê1,3

−Ê1,2 0 Ê2,3

−Ê1,3 −Ê2,3 0

 ,(59)

where

Ê = (Ê1, Ê2, Ê3)
� and Êi,j =

∂Êj
∂ξi
− ∂Êi

∂ξj
.

Straightforward calculations reveal that

|curl Ê|2 = 1

2
‖C(Ê)‖2F ,

where ‖ · ‖F denotes the Frobenius norm (see [9]). Furthermore, using (9), it follows
that

C(E) = J−�K C(Ê)J−1
K

for the discrete electric field E on the physical element K ∈M, and hence,

|curlE|2 = 1

2
‖J−�K C(Ê)J−1

K ‖2F .(60)

Using the inequality (see, e.g., problem 23, section 5.6 of [9])

1

d2
‖JTK‖−2

2 ‖C(Ê)‖2F ‖JK‖−2
2 ≤ ‖J−�K C(Ê)J−1

K ‖2F ≤ d2‖J−�K ‖22‖C(Ê)‖2F ‖J−1
K ‖22,

where ‖ · ‖2 denotes the spectral norm (see [9]), establishes that

c23
d2
|curl Ê|2 ≤ 1

2
‖J−�K C(Ê)J−1

K ‖2F ≤ d2C2
3 |curl Ê|2(61)

using (5)–(6). By integrating over the physical element K, we deduce

SK(E,E) =

∫
K

µ−1|curlE|2 dx = 1

2

∫
K̂

µ−1‖J−�K C(Ê)J−1
K ‖2F |det(JK)|dξ,
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and applying (3) and (61) yields

λmax

(
S

(d)
K,p

) ≤ d2C1C2,KC2
3,Kλmax

(
S

(d)

K̂,p

)
(62)

and

λmin

(
S

(d)
K,p

) ≥ c1c2,Kc23,K
d2

λmin

(
S

(d)

K̂,p

)
.

As a result of (25),

λmin

(
S

(d)
K,p

) ≥ cK,Sp−4(d−2) and λmax

(
S

(d)
K,p

) ≤ CK,S ,(63)

where

cK,S =
1

9
c1c2,Kc23,Kc

K̂,S
and CK,S = 9C1C2,KC2

3,KC
K̂,S

.

Hence

κ
(
S

(d)
K,p

) ≤ C∗K,Sp4(d−2),(64)

where C∗K,M = CK,S/cK,S . The same argument may be applied in the case of diagonal
scaling:

λmin

(
S̃

(d)

K,p

) ≥ cK,Sp−2(d−2), λmax

(
S̃

(d)

K,p

) ≤ CK,S(65)

and

κ
(
S̃

(d)

K,p

) ≤ C∗K,Sp2(d−2).(66)

The global curl-curl matrix S
(d)
M,p corresponding to the uniform order approxima-

tion p overM satisfies(
min
K∈M

cK,S

) ∑
K∈M

|#βK,p|2 ≤ #α�p S
(d)
M,p#αp ≤

(
max
K∈M

CK,S

) ∑
K∈M

|#βK,p|2.

Thus, using (56) results in

c6p
−4(d−2)

(
min
K∈M

cK,S

)
|#αp|2 ≤ #α�p S

(d)
M,p#αp ≤ C6

(
max
K∈M

CK,S

)
|#αp|2,

which leads to

λmin

(
S

(d)
M,p

) ≥ c′M,Sp−4(d−2) and λmax

(
S

(d)
M,p

) ≤ C ′M,S ,

where c′M,S = c4minK∈M cK,S and C ′M,S = C4maxK∈M CK,S .
Applying arguments similar to those used in (57) and (58), the global curl-curl

matrix corresponding to the nonuniform order approximation p overM satisfies

λmin

(
S

(d)
M,p

) ≥ c′M,Sp−4(d−2) and λmax

(
S

(d)
M,p

) ≤ C ′M,S ,

and the first part of (13) holds with C∗M,S = C ′M,S/c′M,S . The second part is proved
using (65) in the same manner.



CONDITIONING OF NÉDÉLEC ELEMENTS 749

(3) Let #αK,p denote the values of the degrees of freedom in the approximation over
K ∈ M. Retracing the steps in deriving (46) and using the estimates (52) and (63)
yields

#α�K,pA
(d)
K,p#αK,p ≤ 2max(CK,S , ω2CK,M )|#αK,p|2,

while following the steps leading to (47) using the estimates (54) and (65) yields

#α�K,pA
(d)
K,p#αK,p ≤ max(CK,S , CK,M )#α�K,pdiag

(
A

(d)
K,p

)
#αK,p,

which implies that

λmax

(
A

(d)
K,p

) ≤ CK,A and λmax

(
Ã

(d)

K,p

) ≤ CK,A.

Similarly, using (52) gives a bound for the minimum eigenvalue of the stiffness matrix

#α�K,pA
(d)
K,p#αK,p ≥ ω2#α�K,pM

(d)
K,p#αK,p ≥ ω2cK,Mp−4(d−1)|#αK,p|2.

The arguments used to obtain (48) and (49) may be modified to deduce that

#α�K,pM
(d)
K,p#αK,p ≥ cp−2(d−1)#α�K,pdiag

(
M

(d)
K,p

)
#αK,p

and

#α�K,pM
(d)
K,p#αK,p ≥ cp−2d#α�K,pdiag

(
S

(d)
K,p

)
#αK,p.

Then, following the steps in (50), we obtain

#α�K,pA
(d)
K,p#αK,p ≥ cp−2(d−1)min

(
1,

ω

p

)2

#α�K,pdiag
(
A

(d)
K,p

)
#αK,p,

which leads to a bound on the smallest eigenvalue of the diagonally scaled stiffness
matrix.

The above bounds for the eigenvalues of matrices on a single element are used
to obtain bounds for the global matrices corresponding to uniform order of approx-
imation p by summing element contributions as before. Then, arguments analogous
to (57) and (58) are used to deduce bounds for nonuniform order of approximation p.

This completes the proof of Theorem 1.
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Abstract. The problem of interpolation at (n + 1)2 points on the unit sphere S2 by spherical
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of interpolation by trigonometric polynomials is also solved.
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1. Introduction. The purpose of this paper is to study polynomial interpolation
on the unit sphere S2 = {x : ‖x‖ = 1} of R

3, where ‖x‖ is the Euclidean norm of
R

3. Let Π2
n denote the space of polynomials of degree at most n in 2 variables, and

let P3
n denote the space of homogeneous polynomials of degree n in 3 variables. The

notation Πn(S
2) denotes the space of spherical polynomials of 3 variables, that is, the

restriction of polynomials of 3 variables in Π3
n on S2. It is known that

dimΠn(S
2) = (n+ 1)2, n ≥ 0.

We study the following polynomial interpolation problem on S2:
Problem 1. Let X = {ai : 1 ≤ i ≤ (n + 1)2} be a set of distinct points on S2.

Find conditions on X such that there is a unique polynomial T ∈ Πn(S
2) satisfying

T (ai) = fi, ai ∈ X, 1 ≤ i ≤ (n+ 1)2,

for any given data {fi}.
If there is a unique solution to the interpolation problem, we say that the problem

is poised and that X solves Problem 1. In terms of a basis of Πn(S
2), the interpolation

conditions give linear equations for the coefficients of T . It follows that the problem
has a unique solution if and only if T (ai) = 0 for all ai ∈ X implies T = 0, which
holds if and only if the determinant of the linear system of equations is nonzero. The
determinant is a polynomial of the interpolation points; hence it is nonzero for almost
all choices of interpolation points. In other words, Problem 1 is poised for almost all
choices of X. On the other hand, given a set of points, it is often difficult to determine
if it leads to unique interpolation. The question is related to several other problems;
see the discussion below. In many applications, one would like to have poised sets of
points explicitly given. The main result of this paper provides families of such points
that admit unique interpolation by Πn(S

2) for all n.
We need some basic facts about spherical harmonics (see [3, 10], for example). The

harmonic polynomials are homogeneous polynomials Y in P3
n that satisfy ∆Y = 0,

where ∆ is the usual Laplace operator, and ∆ = ∂2
1 + ∂2

2 + ∂2
3 with ∂i = ∂2/∂x2

i . The
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spherical harmonics are the restriction of the harmonic polynomials on S2. Let H3
n

denote the space of spherical harmonics of degree n in three variables. It is known
that

dimH3
n = 2n+ 1, n ≥ 0.

Let {Sk,n : 1 ≤ k ≤ 2n+ 1} be an orthonormal basis of H3
n. The reproducing kernel

Yn(x,y) of H3
n is defined by

Yn(x,y) =

2n+1∑
k=1

Sk,n(x)Sk,n(y), x,y ∈ S2.

In particular, for each fixed y ∈ S2, Yn(x,y) is a spherical harmonic, the so-called
zonal harmonic of degree n. Let Cλn(t) be the Gegenbauer polynomial of degree n
normalized so that Cλn(1) =

(
n+2λ−1

n

)
. Then Yn satisfies

Yn(x,y) = (2n+ 1)C1/2
n (〈x,y〉), x,y ∈ S2.

In L2(S2), the space Πn(S
2) admits a unique orthogonal decomposition Πn(S

2) =⊕n
k=0H3

k in terms of the spaces of spherical harmonics. The reproducing kernel of
Πn(S

2) in L2(S2) is given by

Kn(x,y) =

n∑
k=0

Yk(x,y) =

n∑
k=0

(2k + 1)C
1/2
k (〈x,y〉).

For each fixed y ∈ S2, Kn(x,y) is a polynomial in Πn(S
2) that depends only on

〈x,y〉.
Apart from its own interest, the interpolation problem is related to other problems

concerning spherical polynomials. As an example, let X = {ai : 1 ≤ i ≤ (n+ 1)2} be
a set of distinct points on S2; one can ask the question of when {Kn(x,ai), 1 ≤ i ≤
(n+1)2} is a basis of Πn(S

2). It turns out that this problem is equivalent to Problem
1. The following proposition is folklore and can be proved easily using the formulae
for Kn and Yn given above.

Proposition 1.1. Let X = {ai : 1 ≤ i ≤ (n + 1)2} be a set of distinct points.
Then X is a solution of Problem 1 if and only if {Kn(x,ai), 1 ≤ i ≤ (n+ 1)2} forms
a basis of Πn(S

2).
The problem of {Kn(x,ai)} being a basis has been considered recently in [4] for

possible application in wavelets, since such a basis is better localized than the usual
orthonormal basis. The interpolation problem is also closely related to constructing
cubature formulae on the sphere (see section 3), and there have been considerable
efforts computing good interpolation points for that purpose; see [12] and the ref-
erences therein. Recently, the polynomial interpolation has also been studied in [6]
in connection with radial basis interpolation on the sphere and in [11] in connection
with scattered data interpolation on the sphere. In [15], we showed that there is a
close relation between interpolation on Sd and on the unit ball Bd of R

d. In particu-
lar, it shows that many sets of points that allow unique polynomial interpolation on
B2 = {(x, y) : x2+y2 ≤ 1} can be used to generate symmetric points on S2 that solve
Problem 1, where symmetry means that the points are symmetric with respect to a
coordinate plane. The interpolation on B2 has been studied in [1, 2] recently. The
result in [1] leads to a set of symmetric points on S2 in which points are equidistant
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points on parallel circles, and each circle has the same number of points. However,
the more general result in [2] cannot be used to give points on S2, since the corre-
spondence between points on B2 and on S2 requires that there are n + 1 points on
the boundary circle of B2.

In the following section, we present a theorem that gives many sets of points that
solve Problem 1. The (n+1)2 points all lie on n+1 distinct latitudes (parallel circles on
S2), and on each latitude there are an odd number of equidistant points. The number
of points need not be the same on each latitude, and there is no restriction on the
distribution of latitudes. The proof relies on a method of factorization, which is closely
related to the method used for polynomial interpolation on the unit ball B2 in [2, 7].
The use of equidistant points allows us to reduce the problem of interpolation on the
sphere to an interpolation problem by a family of special trigonometric polynomials,
which turns out to be equivalent to a Hermite–Birkhoff interpolation by trigonometric
polynomials.

As far as we know, apart from a result that is a simple consequence of Bezout’s
theorem (see Proposition 2.1 below), these families of points are first examples of
poised interpolation points that are given explicitly for all n.

The paper is organized as follows. We prove the factorization theorem in the
following section. The main result and various examples are given in section 3, which
also includes a result on cubature formulae. The related trigonometric Hermite–
Birkhoff interpolation is discussed in section 4.

2. Preliminary and results on factorization of polynomials. On S2 it is
more convenient to work with spherical coordinates:

x = sin θ sinφ, y = sin θ cosφ, z = cos θ, 0 ≤ φ ≤ 2π, 0 ≤ θ ≤ π.

For a polynomial T ∈ Π(S2) we introduce the notation T̃ defined by

T̃n(θ, φ) = Tn(sin θ sinφ, sin θ cosφ, cos θ), 0 ≤ φ ≤ 2π, 0 ≤ θ ≤ π.

If X = {(xi, yi, zi) : 1 ≤ i ≤ M} is a set of points on S2, we also use the notation

X̃ = {(θi, φi) : 1 ≤ i ≤M} for the corresponding set in spherical coordinates.
The notation S2(a) := {(x, y, z) : (x, y, z) ∈ S2, z = a}, −1 < a < 1, denotes

the circle on S2 resulting from the intersection of S2 with the plane z = a (called the
latitude at z = a).

An orthogonal basis of H3
n can be given in terms of the Gegenbauer polynomials.

In spherical coordinates, define

Y
(1)
k,n (x, y, z) = C

k+1/2
n−k (cos θ)(sin θ)k cos kφ, 0 ≤ k ≤ n,

Y
(2)
k,n (x, y, z) = C

k+1/2
n−k (cos θ)(sin θ)k sin kφ, 1 ≤ k ≤ n.

ThenH3
n = span{Y (1)

k,n , 0 ≤ k ≤ n, and Y
(2)
k,n , 1 ≤ k ≤ n}. Since Πn(S2) =

⊕n
k=0H3

k,

every polynomial Tn ∈ Πn(S
2) can be written as

Tn(x, y, z) =

n∑
j=0

j∑
k=0

C
k+1/2
j−k (cos θ)(sin θ)k(ak,j cos kφ+ bk,j sin kφ).

Changing the order of sums in the above expression, we see that

T̃n(θ, φ) = a0(cos θ) +

n∑
k=1

[ak(cos θ)(sin θ)
k cos kφ+ bk(cos θ)(sin θ)

k sin kφ],(2.1)
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where ak(t) and bk(t) are polynomials of degree n− k in one variable,

ak(cos θ) =

n−k∑
j=0

ak,k+jC
k+1/2
j (cos θ), and bk(cos θ) =

n−k∑
j=0

bk,k+jC
k+1/2
j (cos θ).

Since Cλj is a polynomial of degree exactly j, ak and bk are generic polynomials of

degree n − k. Notice that for a fixed θ, the polynomial T̃ (θ, φ) is a trigonometric
polynomial of degree n in φ. We will use the fact that the interpolation on 2n + 1
distinct points inside [0, 2π) by trigonometric polynomials of degree n is unique.

The proof of our main result is based on a factorization of the polynomial that
vanishes on the interpolation points. In the simplest case, an analogue of such a fac-
torization is akin to the Bezout theorem for algebraic curves. That Bezout’s theorem
can be used to establish the uniqueness of the interpolation is folklore (see, for exam-
ple, [5]). For interpolation on the sphere, we use it to give a proof of the following
proposition (see [6]), which gives a prelude of the factorization method that leads to
our main result.

Proposition 2.1. Let z0, z1, . . . , zn be n + 1 distinct elements in (−1, 1). If X
consists of 2k + 1 distinct points on the latitude S2(zk) for 0 ≤ k ≤ n, then X solves
Problem 1 in Πn(S

2).

Proof. It is sufficient to prove that if Tn ∈ Πn(S
2) vanishes on X, then Tn is

identically zero. Using the expression of T̃n in (2.1) and the fact that Tn vanishes on
2n+1 points of S2(zn), it follows from the uniqueness of the trigonometric interpola-
tion that ak(zn) = 0 and bk(zn) = 0, 0 ≤ k ≤ n. Consequently, an(z) = bn(z) = 0 and
ak(z) = (z− zn)a∗k(z) and bk(z) = (z− zn)b∗k(z) for 0 ≤ k ≤ n− 1 so that Tn satisfies
a factorization Tn(x, y, z) = (z − zn)Tn−1(x, y, z), where Tn−1 ∈ Πn−1(S

2). Evi-
dently, we can continue this process for zn−1, . . . , z0 and conclude that Tn(x, y, z) =
(z − zn) . . . (z − z0)T

∗(x, y, z). However Tn is a polynomial of degree n so that
Tn ≡ 0.

The analogue of this proposition holds for higher dimensional spheres, as shown
in [6]. The points in the above proposition have little symmetry on S2, since no two
latitudes have the same number of points. It is worthwhile to emphasize that the
position of the points on each latitude is completely arbitrary. In our result below,
the points on each latitude are equidistant points. In essence, our main result is based
on a more general factorization that holds, however, only for equidistant points.

Let Θα,m denote a set of 2m+ 1 equidistant points,

Θα,m = {θαj : θαj = (2j + α)π/(2m+ 1), j = 0, 1, . . . , 2m, 0 ≤ α < 2}.(2.2)

Under the mapping φ → eiφ, these points can be considered as points on the unit
circle. The presence of the number α means that the equidistant points are defined up
to a rotation. The following simple fact plays an important role in the development
below.

Lemma 2.2. Let n = 2m or n = 2m− 1. For φ ∈ Θα,m,

T̃n(θ, φ) = a0(cos θ) +

m∑
k=1

[(
ak(cos θ)(sin θ)

k + u2m−k+1(cos θ)(sin θ)
2m−k+1

)
cos kφ

+
(
bk(cos θ)(sin θ)

k + v2m−k+1(cos θ)(sin θ)
2m−k+1

)
sin kφ

]
,
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where

u2m−k+1(cos θ) = a2m−k+1(cos θ) cosαπ + b2m−k+1(cos θ) sinαπ,

v2m−k+1(cos θ) = a2m−k+1(cos θ) sinαπ − b2m−k+1(cos θ) cosαπ,

and we assume that a2m(t) = b2m(t) = 0 if n = 2m− 1.
Proof. The proof amounts to using the fact that

cos(2m− k + 1)φ = cos(απ − kφ) = cosαπ cos kφ+ sinαπ sin kφ,

sin(2m− k + 1)φ = sin(απ − kφ) = sinαπ cos kφ− cosαπ sin kφ

for φ ∈ Θα,m, and we rewrite T̃ (θ, φ) accordingly.
In particular, using the uniqueness of trigonometric interpolation, this shows that

if T̃n(θj , φi) = 0 for φi ∈ Θα,m, 0 ≤ i ≤ 2m, then a0(θj) = 0 and

ak(cos θj)(sin θj)
k + u2m−k+1(cos θj)(sin θj)

2m−k+1 = 0,

bk(cos θj)(sin θj)
k + v2m−k+1(cos θj)(sin θj)

2m−k+1 = 0.
(2.3)

Hence, we need to consider the poisedness of interpolation by trigonometric polyno-
mials of the form

p(cos θ)(sin θ)k + q(cos θ)(sin θ)2m−k+1,

where p(t) and q(t) are polynomials of degree n− k and n− 2m+ k− 1, respectively.
For this purpose, we need a lemma which is elementary but somewhat unexpected.
It contains the following elementary formula as its simplest case:

d5

dt5

[
(1− t2)3/2(at+ b)

]
= 45

a+ bt

(1− t2)7/2
.

It is this simple formula, stumbled upon using a computer algebra system, that leads
to the lemma below. We will use the Pochhammer symbol (a)n = a(a+1) . . . (a+n−1).

Lemma 2.3. Let m and k be positive integers, and let 1 ≤ k ≤ 2m. Let qk−1(t)
be an algebraic polynomial of degree k − 1. Then

(1− t2)m+1/2
( d
dt

)2m−k+1 (
(1− t2)m−k+1/2qk−1(t)

)
= q∗k−1(t),

where q∗k−1 is a polynomial of degree k − 1 such that qk−1(t) = 0 if and only if

q∗k−1(t) = 0. In fact, if qk−1(t) =
∑k−1
l=0 al(1− t)l, then q∗k−1 is given by

q∗k−1(t) = (−1)k−122m−k+1
k−1∑
l=0

(−m+ l + 1/2)2m−k+1 al sl(t),

where sl are polynomials of degree k − 1 that are defined by

sl(t) = (1− t)l
k−l−1∑
j=0

(−k + l + 1)j(k − 2m− 1)j
(−m+ l + 1/2)jj!

(1− t

2

)j
.
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Proof. We need to recall the definition of Jacobi polynomials. Let α and β be two

arbitrary real numbers. Then the Jacobi polynomial P
(α,β)
n is given by Rodrigue’s

formula [14, p. 67, (4.3.1)],

P (α,β)
n (t) =

(−1)n
n!2n

(1− t)−α(1 + t)−β
( d
dt

)n [
(1− t)n+α(1 + t)n+β

]
.

Let qk−1(t) =
∑k−1
l=0 al(1− t)l. It follows that

φ(t) :=(1− t2)m+1/2
( d
dt

)2m−k+1 (
(1− t2)m−k+1/2qk−1(t)

)
=

k−1∑
l=0

al(1− t2)m+1/2
( d
dt

)2m−k+1 (
(1− t)m−k+l+1/2(1 + t)m−k+1/2

)
.

Using Rodrigue’s formula with n = 2m−k+1, α = −m+ l−1/2, and β = −m−1/2,
we get

φ(t) =
k−1∑
l=0

al(−1)k−122m−k+1(2m− k + 1)!(1− t)lP
(−m−1/2+l,−m−1/2)
2m−k+1 (t).

It is known that the Jacobi polynomials with negative parameters satisfy the following
relation [14, p. 64, (4.22.3)]:(

n

j − 1

)
P (α,β)
n (t) =

(
n+ α

n− j + 1

)
P

(α,β)
j−1 (t) if n+ α+ β + j = 0,

which shows that P
(α,β)
n (t) is in fact a polynomial of degree j−1 with j = −n−α−β.

The condition n+ α+ β + j = 0 is satisfied in our case with n, α, β as defined above
and j = k − l. Consequently, we conclude that

φ(t) =
k−1∑
l=0

al(−1)k−122m−k+1(k − l − 1)!
(−m+ l + 1/2)2m−k+1

(−m+ l + 1/2)k−l−1

× (1− t)lP
(−m−1/2+l,−m−1/2)
k−l−1 (t),

after some simplification of the constants. This shows that φ is indeed a polynomial
of degree k − 1, which we called q∗k−1 in the statement. The explicit formula of q∗k−1

is derived from the explicit formula of P
(α,β)
n (t) [14, p. 62, (4.21.2)],

P (α,β)
n (t) =

(
n+ α

n

)
2F1

(
−n, n+ α+ β + 1;α+ 1;

1− t

2

)
,

where 2F1 is the hypergeometric function defined by

2F1(a, b; c; z) =

∞∑
k=0

(a)k(b)k
(c)kk!

zk, |z| < 1.

Finally, let sl(t) be the polynomials in the statement. Writing s0(t), s1(t), . . . , sk−1(t)
in terms of 1, (1− t), . . . , (1− t)k−1, the transition matrix is triangular with nonzero
diagonal elements. Hence, the polynomials s0, s1, . . . , sk−1 are linearly independent.
Consequently, q∗k−1(t) = 0 if and only if qk−1(t) = 0.
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Lemma 2.4. Let k and m be positive integers, and let k ≤ 2m. Let p2m−k
be a polynomial of degree 2m − k, and let qk−1 be a polynomial of degree k − 1. If
φ(t) = p2m−k(t)+(1−t2)m−k+1/2qk−1(t) vanishes on 2m+1 distinct points in [−1, 1],
then φ(t) ≡ 0.

Proof. Since φ has 2m + 1 zeros, Rolle’s theorem implies that φ(2m−k+1)(t) has
at least k zeros inside (−1, 1). Using the previous lemma,

φ(2m−k+1)(t) =
( d
dt

)2m−k+1 [
(1− t2)m−k+1/2qk−1(t)

]
= (1− t2)−m−1/2q∗k−1(t)

so that q∗k−1(t) has k zeros inside (−1, 1). Since q∗k−1 is a polynomial of degree k− 1,
we have q∗k−1(t) ≡ 0. Consequently, qk−1(t) ≡ 0 by the previous lemma. Therefore,
φ(t) = p2m−k(t), which must be zero since it is a polynomial of degree 2m− k and it
vanishes on 2m+ 1 points.

Corollary 2.5. Let k and m be positive integers, and let k ≤ 2m. Let p2m−k
be a polynomial of degree 2m− k, and let qk−1 be a polynomial of degree k − 1. If

ψ(θ) = p2m−k(cos θ)(sin θ)k + (sin θ)2m−k+1qk−1(cos θ)

vanishes on 2m+ 1 distinct points in (0, π), then ψ(θ) ≡ 0.
Proof. Using the fact that sin θ is positive on (0, π), the stated result follows from

the previous proposition with φ(t) = ψ(θ)/(sin θ)k and t = cos θ.
There is another way to state the result in Corollary 2.5. A system of functions

{g1, . . . , gn} is called a Chebyshev system on the interval (a, b) ⊂ R if for any set of
nonzero real numbers c1, . . . , cn the function c1g1+ · · ·+ cngn has at most n−1 zeros
in (a, b).

Corollary 2.6. Let k and m be integers, and let k ≤ 2m. The system of
functions

(sin θ)k{1, cos θ, . . . , cos(2m− k)θ} ∪ (sin θ)2m−k+1{1, cos θ, . . . , cos(k − 1)θ}
is a Chebyshev system on (0, π). Equivalently, the system of functions

{1, t, . . . , t2m−k} ∪ (1− t2)2m−2k+1{1, t, . . . , tk−1}
is a Chebyshev system on (0, 1).

Even in the case of k = 1, which states that {1, cos θ, . . . , cos(2m−1)θ, (sin θ)2m−1}
is a Chebyshev system on (0, π), this corollary is not obvious.

The following factorization theorem holds the key to our main result.
Theorem 2.7. Let m be an integer, let m ≤ s ≤ 2m + 1, and let n = 2m or

n = 2m − 1. Let θ0, θ1, . . . , θ2λ be distinct numbers in (0, π), where λ = s −m. If
T ∈ Πs(S

2) satisfies

T̃ (θj , φi) = 0, 0 ≤ j ≤ 2λ, 0 ≤ i ≤ 2m, φi ∈ Θα,m,

where α is a number in [0, 2), then there is a spherical polynomial T ∗ ∈ Πn−2λ−1(S
2)

such that

T (x, y, z) =
2λ∏
j=0

(z − cos θj)T
∗(x, y, z).

In particular, T ∗(x, y, z) = 0 if s = 2m or s = 2m− 1.
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Proof. Using the formula (2.1), we write

T̃ (θ, φ) = a0(cos θ) +

s∑
k=1

[
ak(cos θ)(sin θ)

k cos kφ+ bk(cos θ)(sin θ)
k sin kφ

]
,

where ak and bk are polynomials of degree s− k. By Lemma 2.2, for φi ∈ Θα,m,

T̃ (θj , φi) = a0(cos θj) +

m∑
k=1

(sin θj)
k (ak(cos θj) cos kφi + bk(cos θj) sin kφi)

+

m∑
k=2m+1−s

(
u2m−k+1(cos θj)(sin θj)

2m−k+1 cos kφi

+ v2m−k+1(cos θj)(sin θj)
2m−k+1 sin kφi

)
for 0 ≤ i ≤ 2m and 0 ≤ j ≤ 2λ. For each fixed j, T̃ (θj , φi) = 0 shows that

the trigonometric polynomial T̃ (θj , ·) of degree m vanishes on 2m + 1 points; the
uniqueness of the trigonometric interpolation implies the following two cases.

Case 1: 0 ≤ k ≤ 2m− s.

ak(cos θi)(sin θj)
k = 0, bk(cos θj)(sin θj)

k = 0, 0 ≤ j ≤ 2λ,

where we assume b0(cos θ) = 0. Since θj ∈ (0, π), this shows that ak(cos θj) = 0
and bk(sin θj) = 0. Consequently, there exist polynomials a∗k(t) and b∗k(t), both of

degree n−k− (2λ+1), such that ak(t) =
∏2λ
j=0(t− cos θj)a

∗
k(t) and bk(t) =

∏2λ
j=0(t−

cos θj)b
∗
k(t).

Case 2: 2m− s+ 1 ≤ k ≤ m.

ak(cos θj)(sin θj)
k + u2m−k+1(cos θj)(sin θj)

2m−k+1 = 0,

bk(cos θj)(sin θj)
k + u2m−k+1(cos θj)(sin θj)

2m−k+1 = 0,
0 ≤ j ≤ 2λ.

By Corollary 2.5, this shows that ak(t) = bk(t) = 0 and u2m−k+1(t) = v2m−k+1(t) = 0.
The definition of u2m−k+1 and v2m−k+1 then shows

a2m−k+1(cos θ) cosαπ + b2m−k+1(cos θ) sinαπ = 0,

a2m−k+1(cos θ) sinαπ − b2m−k+1(cos θ) cosαπ = 0,

which implies that a2m−k+1(t) = b2m−k+1(t) = 0.
Together these two cases show that we have the following factorization:

T̃ (θ, φ) =

2λ∏
j=0

(cos θ − cos θj)

×
a∗0(cos θ) + 2m−s∑

j=1

[
a∗k(cos θ)(sin θ)

k cos kφ+ b∗k(cos θ)(sin θ)
k sin kφ

] ,

which completes the proof.
The fact that the interpolation points are equidistant on the circle is essential

in this theorem. One important property of the factorization is that it allows us to
repeat the argument to get a complete factorization of the polynomial.
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Theorem 2.8. Let n and σ be positive integers. Let λ1, . . . , λσ be nonnegative
integers. Define nk = nk−1 − (2λk + 1) for 1 ≤ k ≤ σ with n0 = n. Assume that
nk ≥ 0 for 1 ≤ k ≤ σ − 1. If T ∈ Πn(S

2) satisfies

T̃ (θj,k, φi,k) = 0, 0 ≤ j ≤ 2λk, 0 ≤ i ≤ 2(nk−1 − λk), 1 ≤ k ≤ σ,

where θj,k, 0 ≤ j ≤ 2λk and 1 ≤ k ≤ σ, are distinct numbers in (0, π) and φi,k ∈
Θαk,nk−1−λk

with αk ∈ [0, 2), then there exists a polynomial T ∗ ∈ Πnσ (S
2) such that

T (x, y, z) =
σ∏
k=1

2λk∏
j=0

(z − cos θj,k)T
∗(x, y, z).

In particular, T (x, y, z) ≡ 0 if nσ < 0.
Proof. We apply the factorization in the theorem repeatedly with s = nk−1,

m = nk−1 − λk, and λ = λk for k = 1, 2, . . . , σ.
We note that the interpolation points in the corollary are located on σ groups

of latitudes {S2(zj,k) : 0 ≤ j ≤ 2λk}, 1 ≤ k ≤ σ and zj,k = cos θj,k, and latitudes
in different groups contain different number of nodes. More precisely, each of the
latitudes in the kth group, S2(z0,k), S

2(z1,k), . . . , S
2(z2λk,k), contains 2(nk−1−λk)+1

equidistant points.

3. Interpolation on the unit sphere. Our main result on interpolation follows
from the result on factorization. The following formula is used to show that the
interpolation condition matches the dimension of the polynomial space:

dimΠs(S
2) = dimΠs−2λ−1(S

2) + (2λ+ 1)(2s− 2λ+ 1).(3.1)

Theorem 3.1. Let n and σ be positive integers such that n + 1 − σ is an even
integer and σ ≤ n+ 1. Let λ1, . . . , λσ be nonnegative integers such that

λ1 + · · ·+ λσ =
n+ 1− σ

2
.(3.2)

Define nk = nk−1 − (2λk + 1) for 1 ≤ k ≤ σ − 1 with n0 = n. Let

X̃ = {(θj,k, φi,k) : 0 ≤ j ≤ 2λk, 0 ≤ i ≤ 2(nk−1 − λk), 1 ≤ k ≤ σ},
where θj,k, 0 ≤ j ≤ 2λk and 1 ≤ k ≤ σ, are distinct numbers in (0, π) and φi,k ∈
Θαk,nk−1−λk

with αk ∈ [0, 2). Then the set X solves Problem 1 in Πn(S
2).

Proof. Again it is sufficient to prove that the dimension of Πn(S
2) matches the

interpolation conditions, and if T ∈ Πn(S
2) vanishes on X, then T (x, y, z) ≡ 0. Under

the condition (3.2), it follows that

nσ := nσ−1 − (2λσ + 1) = n− (2λ1 + 1)− · · · − (2λσ + 1) = −1 < 0.

Hence, the factorization theorem in Theorem 2.8 shows that T (x, y, z) ≡ 0. Moreover,
it follows from (3.1) that

dimΠn(S
2) = (n+ 1)2 =

σ∑
k=1

(2λk + 1)(2nk−1 − 2λk + 1)

so that the interpolation condition matches the dimension of Πn(S
2).
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For a fixed n this theorem contains a number of different interpolation processes.
In fact, for each positive integer n, the number of sets X contained in Theorem 3.1
depends on the number of nonnegative integer solutions of (3.2), where σ is also a
variable which satisfies the condition that n + 1 − σ is a nonnegative even integer.
Every such solution of (3.2) leads to a set of interpolation points that solves Problem
1. The number of solutions of such an equation grows exponentially as n goes to
infinity. Moreover, the order of λ1, . . . , λσ matters; that is, different permutations of
a solution λ1, . . . , λσ of (3.2) give different sets of interpolation points.

Among the solutions of (3.2), one extreme case is σ = n + 1, for which the
equation has only one solution, λ1 = · · · = λn+1 = 0. In this case, nk = n − k,
and the interpolation points are located on n+1 latitudes S2(z0), S

2(z1), . . . , S
2(zn)

and the latitude S2(zk) contains 2k + 1 points. Hence, this is just a special case of
Proposition 2.1.

The other extreme case is σ = 1. In this case, n needs to be even to keep
n+1− σ even. Assume n = 2m. There is only one solution of the equation, which is
λ1 = (n− σ + 1)/2 = m. We state this case as a corollary.

Corollary 3.2. Let m be a positive integer. Let θ0, θ1, . . . , θ2m be 2m + 1
distinct numbers in (0, π). Let X be defined by

X̃ = {(θi, φi) : 0 ≤ j ≤ 2m, 0 ≤ i ≤ 2m},

where φi ∈ Θα,m with α ∈ [0, 2π). Then X solves Problem 1 in Π2m(S2).

In this case, the interpolation points are located on 2m+ 1 latitudes S2(zi) with
zi = cos θi; each latitude has 2m + 1 equidistant points. In the special case that
{θ0, . . . , θ2m} are symmetric (that is, θ2m−i = π − θi), the corollary has been es-
tablished in [15] using the fact that the uniqueness of the interpolation on S2 of the
symmetric set can be related to the interpolation on the unit disc B2 of R

2, which
allows us to use the result in [1] for interpolation on B2. The first nontrivial case of
this corollary is m = 1, for which there are 3 latitudes, each with 3 points.

To illustrate the main result, we list all sets of interpolation points contained
in Theorem 3.1 for small n. For n = 1, there is only one set, for which points are
located on 2 latitudes with 3 points and 1 point, respectively, which is a special case
of Proposition 2.1. The case n = 2 contains two cases, σ = 1 and σ = 3; the case
σ = 1 is a special case of Corollary 3.2 with 3 latitudes and each with 3 points; the
case σ = 3 is a special case of Proposition 2.1 of 3 latitudes with 5, 3, and 1 points,
respectively. In general, for each σ there can be multiple solutions of (3.2) and the
order matters. The cases of n = 3 and n = 4 are given below.

Example 3.3. n = 3. That n + 1 − σ is even implies that σ can be either 2 or
4. The set X contains 16 points.

1. σ = 2: λ1 + λ2 = 1 has two solutions (order matters).
(a) λ1 = 1, λ2 = 0: 3 latitudes each with 5 points and 1 latitude with 1 point;
(b) λ1 = 0, λ2 = 1: 1 latitude with 7 points and 3 latitudes each with 3

points.
2. σ = 4: λ1+λ2+λ3+λ4 = 0 has only one solution, λi = 0. This is the special
case of Proposition 2.1 of 4 latitudes with 7, 5, 3, and 1 points, respectively.

Example 3.4. n = 4. That n + 1 − σ is even implies that σ can be either 1, 3,
or 5. Here X contains 25 points.

1. σ = 1: λ1 = 5 is a special case of Corollary 3.2; 5 latitudes each with 5 points.
2. σ = 3: λ1 + λ2 + λ3 = 1 has three solutions.
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(a) λ1 = 1, λ2 = 0, λ3 = 0: 3 latitudes each with 7 points, 1 latitude with 3
points, and 1 latitude with 1 point;

(b) λ1 = 0, λ2 = 1, λ3 = 0: 1 latitude with 9 points, 3 latitudes each with 5
points, and 1 latitude with 1 point;

(c) λ1 = 0, λ2 = 0, λ3 = 1: 1 latitude with 9 points, 1 latitude with 7 points,
and 3 latitudes each with 3 points;

3. σ = 5: λ1 + λ2 + λ3 + λ4 + λ5 = 0 has only one solution, λi = 0. This is
the special case of Proposition 2.1 of 5 latitudes with 9, 7, 5, 3, and 1 points,
respectively.

Thus, for n = 3, Theorem 3.1 contains 3 sets of 16 points that solve Problem 1,
and for n = 4 it contains 5 sets of 25 points. In the next two cases, n = 5 gives 8 sets
of 36 points and n = 6 gives 13 sets of 49 points. In general, the number of different
sets for each degree is a Fibonacci sequence. (I thank a referee for pointing out this
fact.)

Proposition 3.5. Let γn denote the number of different sets in Theorem 3.1 that
solves Problem 1 in Πn(S

2). Then {γn} is a Fibonacci sequence: λn = λn−1 + λn−2,
λ1 = 1, and λ2 = 2.

Proof. Denote by Ωn the set of solutions of the equation λ1 + · · · + λσ = (n +
1 − σ)/2, where λi ∈ N0, σ ∈ N0 and n + 1 − σ is even. Let (λ1, . . . , λσ) ∈ Ωn. If
λσ = 0, then λ1 + · · · + λσ−1 = (n − 1 + 1 − (σ − 1))/2 so that (λ1, . . . , λσ−1) ∈
Ωn−1, and this defines a one-to-one mapping from Ωn to Ωn−1. If λσ > 0, then
λ1 + · · ·+ λσ−1 + (λσ − 1) = (n− 2+ 1− σ)/2 so that (λ1, . . . , λσ−1, λσ − 1) ∈ Ωn−2.
Again this defines a one-to-one mapping from Ωn to Ωn−2. Since γn = #Ωn, this
shows that λn = λn−1 + λn−2.

Let us consider the interpolation process in Corollary 3.2 again. In this case, the
interpolation points are on 2m + 1 latitudes and each latitude has 2m + 1 points.
This seems to indicate that the interpolation polynomial should be a product type,
that is, a product of two interpolation polynomials of one variable. However, since
polynomials in Π2

n(S
2) have to have the form of (2.1), this is not the case. To find the

formula for the interpolation polynomials, we need to find a formula for interpolation
using the Chebyshev system in Corollary 2.6.

If we integrate an interpolation polynomial in Theorem 3.1 over the sphere, we
get a cubature formula that is exact for polynomials of degree n; that is, the cubature
formula is of degree n. In the case where points are those in Corollary 3.2, the formula
takes a particularly simple form and can be explicitly given.

Proposition 3.6. Let m be a positive integer. Let θ0, . . . , θ2m be distinct num-
bers in (0, π), and let α be a number in [0, 2). Then for all f ∈ Π2m(S2),

∫
S2

f(x, y, z)dω =

2m∑
j=0

λj
2m+ 1

2m∑
i=0

f̃(θj , φi), φi =
(2i+ α)π

2m+ 1
,

where λj are given by

λj =

∫ 1

−1

2m∏
i=0,i �=j

t− cos θi
cos θj − cos θi

dt.

Proof. Let the interpolation polynomial T2m be of the form (2.1). We use the
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quadrature formula

1

2π

∫ 2π

0

τ(t)dt =
1

2m+ 1

2m∑
j=0

τ(θαj ), θαj =
(2j + α)π

2m+ 1
,(3.3)

which is known to hold for every trigonometric polynomial of degree 2m. For α = 0
this is the classical result in [16, Vol. 2, p. 8], and for α �= 0 it follows from∫ 2π

0

τ(θ + t)dt =

∫ 2π

0

τ(t)dt,

which holds for every θ and for every trigonometric polynomial τ . Using the formula
(3.3) and the interpolation property of T2m, it follows that

a0(cos θj) =
1

2π

∫ 2π

0

T̃2m(θj , φ)dφ =
1

2m+ 1

2m∑
i=0

f̃(θj , φi), φi =
(2i+ α)π

2m+ 1
,

for every θj , 0 ≤ j ≤ 2m. Consequently, a0 is uniquely determined by these interpo-
lation conditions. It follows that

a0(t) =

2m∑
j=0

(
1

2m+ 1

2m∑
i=0

f̃(θj , φi)

)
3j(t), 3j(t) =

2m∏
i=0,i �=j

t− cos θi
cos θj − cos θi

.

Using the change of variable formula∫
S2

f(x, y, z)dω =

∫ π

0

∫ 2π

0

f̃(θ, φ) sin θdθdφ,

the integral of T2m over the surface of the sphere is equal to∫
S2

T2m(x, y, z)dω = 2π

∫ π

0

a0(cos θ) sin θdθ = 2π

∫ 1

−1

a0(t)dt.

The stated formula follows from the formula of a0(t) derived above.
In particular, if cos θj are chosen so that λj are nonnegative, then the formula

is a nonnegative cubature formula. For example, this holds if cos θj are the zeros
of the Legendre polynomial P2m+1 of degree 2m + 1 or the zeros of quasi-Legendre
orthogonal polynomial P2m+1 + αP2m with mild conditions imposed on α ∈ R. The
nodes of such a formula are located on circles, just as the usual product-type formula.
However, these cubature formulae are different from the usual product formulae. As it
is well-known [13] that the usual way of deriving the product formula is to treat it as
the product of Gaussian quadrature for trigonometric polynomials and the Gaussian
quadrature formula for the unit weight on [−1, 1], the result works for all linear
combinations of cos jθ(ak cos kφ + bk sin kφ) of degree 2m + 1, which contains the
spherical polynomials of degree 2m+1 as a subset. In our case, the cubature formula
is derived by interpolation, and it holds for spherical polynomials of degree up to 2m,
which are trigonometric polynomials that are of the special form (2.1). Our formula
uses twice as many nodes as the usual product formula, but we still have the freedom
of choosing the latitudes (that is, θj) on which the interpolation points lie and, in the
case of several groups of latitudes, the rotations (that is, αk) of points on the latitudes
for different groups. A proper choice of θj and αk may lead to some cubature formula
of higher degree. Furthermore, every set of interpolation points in Theorem 3.1 leads
to a cubature formula of degree n, and one can ask the question of how to find a
cubature formula of the highest degree by choosing proper θj and αk.
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4. Trigonometric interpolation. In order to construct a formula for the in-
terpolation polynomial in Theorem 3.1, we need to understand the interpolation by
trigonometric polynomials in Corollary 2.6. It turns out that this interpolation is
closely related to a nontrivial Hermite–Birkhoff interpolation problem by trigonomet-
ric polynomials, which we discuss in this section.

Let Tn denote the space of trigonometric polynomials of degree n,

Tn = span

{
a0 +

n∑
k=1

(ak cos θ + bk sin θ) : ak, bk ∈ R

}
.

A Birkhoff interpolation problem is usually described using the notion of incidence
matrices, which are matrices whose entries are 0 and 1. Let E = (el,j) be such a
matrix with s rows l = 1, 2, . . . , s and n columns with j = 0, 1, . . . , n− 1. Then

T (j)(tl) = fl,j if el,j = 1, T ∈ Tn,

describes an interpolation process on the points t1, . . . , ts. An incidence matrix E of
s× n is said to satisfy the Pólya condition if

j∑
k=1

s∑
l=1

el,k ≥ j + 1, j = 0, 1, . . . , n.

A sequence in an incidence matrix is a sequence of consecutive 1’s in a row of E, say
the lth row with el,k = 1 for k = i + 1, . . . , i + j, el,i = 0, and el,i+j+1 = 0, and it
is an odd sequence if j is odd. A supported sequence is a sequence such that there
are nonzero elements of E in both its upper and lower left sides; that is, there are
ei1,j1 = 1 and ei2,j2 = 1 with i1 < l, i2 > l, j1 ≤ i, and j2 ≤ i. For example, the
matrix

E =

1 0 1 1 1 0
0 1 1 1 0 1
1 0 0 1 1 0


has, in its second row, two supported odd sequences of length 3 and 1, respectively.
Since the trigonometric polynomials are periodic, the interpolation matrix should be
considered periodic: Its last row should precede the first row; that is, the points in
Θ are considered to be circular in the sense that the last point θs is in front of the
first point θ1. For example, if the matrix E in the above example is an incidence
matrix for trigonometric interpolation, then its first row contains an odd supported
sequence. Thus, for the interpolation by trigonometric polynomials, the supported
sequence is a sequence that does not start from the first row, assuming that the matrix
satisfies the Pólya condition. Although taking derivatives does not reduce the degree
of a trigonometric polynomial, the analogue of the Atkinson–Sharma theorem ([8]
or [9, p. 23]) still holds, giving the above understanding of the support sequence.
The theorem states that a Birkhoff interpolation is poised if all its odd supported
sequences begin in column 0 and E satisfies the Pólya condition.

We consider the following Hermite–Birkhoff interpolation problem.

Problem 2. Let m be a positive integer. Let Θ = {θi : 1 ≤ i ≤ 2m+1} be a set of
distinct points in (0, π). Let k be an integer such that 1 ≤ k ≤ 2m. Find conditions
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on Θ such that the interpolation problem

T (θi) = fi, i = 1, 2, . . . 2m+ 1,

T (j)(0) = g0,j , T (j)(π) = gπ,j , j = 0, 1, . . . , k − 2, k − 1 and

j = k + 1, k + 3, . . . , 2m− k − 1,

has a unique solution in T2m for any data fi, g0,j , and gπ,j .
Let Θ be the set as above. Assume that 0 < θ1 < θ2 < · · · < θ2m+1 < π, and

define θ0 = 0 and θ2m+2 = π. Then the above problem is described by the incidence
matrix E with 2m+ 3 rows, whose elements el,j are defined by

e0,j = e2m+2,j = 1, 0 ≤ j ≤ k − 1 and j = k + 1, k + 3, . . . , 2m− k − 1,

and el,0 = 1 for l = 1, 2, . . . , 2m + 1; all other el,j are 0. By the definition, there
are exactly 2(2m)+ 1 interpolation conditions, which is the same as the dimension of
T2m. Clearly, the matrix E for this interpolation satisfies the Pólya condition. This
matrix, however, has many odd supported sequences that do not begin in column
0; the analogue of the Atkinson–Sharma theorem does not apply. It turns out that
Corollary 2.5 can be used to show that it is poised if Θ is a subset of (0, π). The key
ingredient is the following lemma.

Lemma 4.1. Let m be a positive integer. The trigonometric polynomial T ∈ T2m
satisfies the conditions

T (j)(0) = T (j)(π) = 0, j = 0, 1, . . . , k − 2, k − 1 and

j = k + 1, k + 3, . . . , 2m− k − 1,

for a fixed integer k, 0 ≤ k ≤ 2m, if and only if T takes the form

T (θ) = (sin θ)kp(cos θ) + (sin θ)2m−k+1q(cos θ),(4.1)

where p is a polynomial of degree 2m− k and q is a polynomial of k − 1.
Proof. First assume that T is of the special form (4.1). Let T1(θ) = (sin θ)kp(cos θ)

and T2(θ) = (sin θ)2m−k+1q(cos θ). Since T1 is an odd function if k is odd and an
even function if k is even, and an odd trigonometric polynomial vanishes at 0 and π,
it follows from taking derivatives that

T
(j)
1 (0) = T

(j)
1 (π) = 0, 0 ≤ j ≤ k − 1 and j = k + 1, k + 3, k + 5, . . . .

Similarly, since T2 is odd if k is odd and even if k is even, it follows that

T
(j)
2 (0) = T

(j)
2 (π) = 0, 0 ≤ j ≤ 2m− k and j = 2m− k + 2, 2m− k + 4, . . . .

Since T = T1 + T2 and 0 ≤ k ≤ m, the stated result follows from the above two
displayed equations.

On the other hand, the conditions T (j)(0) = T (j)(π) = 0 for 0 ≤ j ≤ k − 1 imply
that

T (θ) = (sin θ)kS(θ), S ∈ T2m−k.

This can be considered as a simple consequence of the fact that the Hermite interpola-
tion problem is unique for the trigonometric interpolation (consider the Hermite inter-
polation conditions on 0 and π, together with Lagrange interpolation on 2(2m−k)+1
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distinct points). Applying the Leibniz rule to T implies that

T (k+2l−1)(θ) =

k+2l−1∑
j=0

(
k + 2l − 1

j

)
S(j)(θ)

dk+2l−1−j

dθk+2l−1−j (sin θ)
k.

Since (dk+2l−1−j/dθk+2l−1−j)(sin θ)k is even if j is odd and odd if j is even, it follows
that these terms are nonzero at θ = 0 or θ = π only if j = 1, 3, 5, . . . , 2l − 1, where
l = 1, 2, 3, . . . ,m − k. Consequently, using induction on l shows that the conditions
T (j)(0) = T (j)(π) = 0 for j = k + 1, k + 3, . . . , 2m − k − 1 are equivalent to the
following conditions on S:

S(2l−1)(0) = S(2l−1)(π) = 0, l = 1, 2, 3, . . . ,m− k.(4.2)

Since S ∈ T2m−k, we can write S(θ) = a0 +
∑2m−k
j=1 (aj cos jθ + bj sin jθ). Be-

cause the conditions (4.2) involve only odd derivatives, it applies only to the odd

part of S. Hence, we need only to show that if So(θ) :=
∑2m−k
j=1 bj sin jθ sat-

isfies (4.2), then So(θ) = (sin θ)2m−2k+1q(cos θ). Since So automatically satisfies

S
(2j)
o (0) = S

(2j)
o (π) = 0 for all j, it follows that it satisfies the Hermite interpolation

conditions S
(j)
o (0) = S

(j)
o (π) = 0 for 0 ≤ j ≤ 2m − 2k. Consequently, it follows that

So(θ) = (sin θ)2m−2kR(θ), R ∈ Tk+2m. However, So is odd, so it must be R. Conse-
quently, we can write R(θ) = sin θq(cos θ) so that S(θ) = p(cos θ)+(sin θ)m−2k+1q(θ),
which completes the proof.

Theorem 4.2. Let m be a positive integer. Let θ1 < θ2 < · · · < θ2m+1 be a set
of distinct points in (0, π). Then Problem 2 has a unique solution in T2m.

Proof. Let T be a polynomial that satisfies T (j)(xi) = 0 for ei,j = 1. The above
lemma shows that T is of the form (4.2), and the problem reduces to showing that if

T (θ) = (sin θ)kp(cos θ) + (sin θ)2m−k+1q(cos θ)

vanishes on θ1, . . . , θ2m+1, then T (θ) ≡ 0. This, however, is a consequence of Corollary
2.6.

Acknowledgment. The author thanks the referees for their careful review and
valuable comments.
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Abstract. In this work we consider the semicirculant preconditioning of elliptic differential
operators of the form

Lu := −ε∆u+ aux + buy + cu

in two cases: 0 < ε � 1 and ε ≡ 1. The paper [Numer. Math., 81 (1998), pp. 211–249] provided
extremely interesting and useful results in the first case. On the other hand, those appear to con-
tradict basic results on preconditioning given in [SIAM J. Numer. Anal., 27 (1990), pp. 656–694].
We reobtain the results of [Numer. Math., 81 (1998), pp. 211–249] by a new approach which we
believe to be more transparent. We also clarify the situation regarding the apparent contradiction
with [SIAM J. Numer. Anal., 27 (1990), pp. 656–694]. Finally, we describe the distribution of the
preconditioned eigenvalues in the uniformly elliptic case, ε ≡ 1.

Key words. preconditioning, difference equations, limiting operator, convection-diffusion equa-
tion
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1. Introduction. This work was motivated by the paper [LH], which discussed
the semicirculant preconditioning of two-dimensional convection diffusion equations.
The results on the distribution of the eigenvalues of the preconditioned system are
extremely interesting. On the other hand, these results seemed to contradict a fun-
damental principle enunciated in [MP]. The basic results of [MP] imply that if one
preconditions a discrete elliptic operator Lh with Dirichlet boundary conditions by
another discrete elliptic operator Bh and one has results such as those of [LH], then
Bh must also impose Dirichlet boundary conditions. However, it would appear that
the semicirculant preconditioner has some Dirichlet boundary conditions and some
periodic boundary conditions. Finally, since part of the attraction of the semicircu-
lant preconditioner is the fact that this preconditioner is easily inverted, one is led to
a study of semicirculant preconditioners for the uniformly elliptic case.

In this paper we clarify the apparent contradiction between the results of [LH] and
[MP]. Simply put, the limiting operator of the difference schemes is not elliptic. It is
the limiting hyperbolic operator when ε, the singular perturbation parameter, goes to
zero. Since the solution of the elliptic convection-diffusion equation converges to the
solution of this hyperbolic equation, the method and the preconditioning approach are
reasonable. Of course, there is a boundary layer in both the solution of the differential
equation and the solution of the difference equation. This method does not capture
the correct boundary layer. However, that is a small point.
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While this clarification is both scientifically important and satisfying, it is not
the main thrust of our work. Our major effort is directed at the development and
exposition of a method for studying these problems which we believe is both more
transparent and elementary. Using this approach we both reobtain the results of [LH]
and describe the distribution of the eigenvalues of the semicirculant preconditioned
system in the uniformly elliptic case. As we might expect from the results of [CC]
for the full circulant preconditioner, roughly ( 1

h ) of these eigenvalues grow like O( 1
h ).

Still, as we shall see, for many of those eigenvalues the coefficients of the growth
are quite small. Thus, given the ease of inverting the preconditioner semicirculant,
preconditioning may be a useful approach for some problems. While this work focuses
on the distributions of the eigenvalues, we are well aware that in these nonsymmetric
problems eigenvalues do not tell the whole story as compared with the effectiveness
of the preconditioning strategy; see [G].

Let f ∈ C(Ω), and consider the equations

Lu = −ε∆u+ aux + buy + du = f in Ω,(1.1)

u = 0 on ∂Ω.(1.2)

Here Ω is the unit square [0, 1]× [0, 1] and the coefficients a, b, d, and ε are constant.
Moreover,

d ≥ 0, ε > 0.(1.3)

Let m1,m2 be positive integers, and set

h1 =
1

m1 + 1
, h2 =

1

m2 + 1
, ϕ =

h2

h1
.(1.4)

The usual centered second order finite-difference scheme which approximates (1.1) is
given by

− ε
h2

2

{ Cuk−1,j +Auk,j +Buk+1,j + γuk,j−1(1.5)

+αuk,j + βuk,j+1 } = fk,j , 1 ≤ k ≤ m1, 1 ≤ j ≤ m2,

where

A = −2ϕ2,(1.6)

B = ϕ2

(
1− ah1

2ε

)
, C = ϕ2

(
1 +

ah1

2ε

)
,(1.7)

α = −2− dh
2
2

ε
,(1.8)

β = 1− bh2

2ε
, γ = 1 +

bh2

2ε
.(1.9)

Here uk,j is the value of the approximant at the point (xk, yj) and

fk,j = f(xk, yj).(1.10)
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Throughout this paper we assume the mesh Peclet number condition∣∣∣bh2

2ε

∣∣∣ < 1,
∣∣∣ah1

2ε

∣∣∣ < 1.(1.11)

The difference operator Lh on the left-hand side of (1.5) is easily described as

Lh := − ε
h2

2

{T2 ⊗ Im1
+ Im2

⊗ T1},(1.12)

where Imk
are the appropriate identity matrices, and T1 and T2 are tridiagonal ma-

trices of order m1 and m2, respectively. In particular,

T1 =


A B
C A B

. . .
. . .

. . .

B
C A

(1.13)

and

T2 =


α β
γ α β

. . .
. . .

. . .

β
γ α

 .(1.14)

The semicircular preconditioner is given by

S := − ε
h2

2

{C ⊗ Im1
+ Im2

⊗ T1},(1.15)

where C is the circulant

C =


α β γ
γ α β

. . .
. . .

. . .

β
β γ α

 = T2 +


0 · · · 0 γ
0 · · · 0 0
...

...
...

...
0 · · · · · · 0
β 0 · · · 0

 .(1.16)

Our basic problem is the study of the eigenvalues λ which satisfy

λSU = (S −Q⊗ Im1)U,(1.17)

where

Q := − ε
h2

2


0 · · · 0 γ
0 · · · 0 0
...

...
...

...
0 · · · · · · 0
β 0 · · · 0

 .(1.18)
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The reader familiar with [LH] will realize that we interchanged the roles of x and
y. That small change leads to this form of the error term Q, which appears to be
simpler than the corresponding term in [LH].

Of course, we can ignore the (−ε/h2
2) term and deal with the eigenvalue problem

λS0U = (S0 −Q0 ⊗ Im1
)U,(1.19)

where

S0 = {C ⊗ Im1 + Im2
⊗ T1}(1.20)

and

Q0 =


0 · · · 0 γ
0 · · · 0 0
...

...
...

...
0 · · · · · · 0
β 0 · · · 0

 .(1.21)

Since Q0 is of rank 2, it is clear that there will be m1m2 − 2m1 eigenvalues λ which
are exactly equal to one. We then focus on the remaining 2m1 eigenvalues.

In our approach we reduce the problem to m1 problems of the form

λC0u = T0u,(1.22)

where T0 is a particular m2 × m2 tridiagonal matrix and C0 is a related m2 × m2

circulant. This is done as follows. We rewrite (1.17) as

λ{C ⊗ Im1 + Im2 ⊗ T1}U = {T2 ⊗ Im1 + Im2 ⊗ T1}U.(1.23)

Assume that (τ, F ) is an eigenpair for T1. That is,

T1F = τF.(1.24)

We seek an eigenvector of (1.23) in the form u⊗ F . We obtain

λ[(C + τIm2)u⊗ F ] = (T2 + τIm2)u⊗ F.(1.25)

Thus, we set

C0 = C + τIm2 ,

T0 = T2 + τIm2 .

Since T1 has m1 distinct eigenvalues, and hence m1 linearly independent eigenvectors,
we have indeed found m1 such simpler (one-dimensional) problems.

In dealing with these problems we consider two distinct cases.

Case 1. 0 < E 
 1. This is the case considered in [LH]. In this work, as in [LH],
we assume

hs
ε

= Gs, a constant, s = 1, 2.(1.26)
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In this case the eigenvalues of (1.23) fall into three groups. There are exactly
m1m2 − 2m1 eigenvalues equal to one. And, as h1, h2 → 0, m1 of the remaining
eigenvalues cluster about an interval (a1, b1) with

1

2
≤ a1 < b1 < 1

while the other m1 eigenvalues cluster about a finite interval (c1, d1) with

1 < c1 < d1 <∞.

These are exactly the results of [LH].
In this case the difference approximation is a poor approximation to the elliptic

convection-diffusion equation [F], [WH]. On the other hand, if we imagine a sequence
(or family) of computations in which (1.26) holds and h1 → 0, h2 → 0, the solu-
tions of the difference equations converge—in every subdomain away from the edges
which have the boundary layers—to an appropriate solution of the reduced hyperbolic
equation

aux + buz + du = f.(1.27)

We will prove this in the appendix. However, it is important to point out that while
that proof can be extended from the constant coefficient case to some problems with
variable coefficients there are many important cases for which it cannot be extended.
An example of such a case is the case of an interior “stagnation point,” i.e., a point
(x, y) at which

a(x, y) = b(x, y) = 0.

Case 2. ε = 1. In this case we are dealing with a uniformly elliptic problem and
simply let h1 → 0, h2 → 0.

In this case there are exactly m2m1 − 2m1 eigenvalues which are equal to one.
There are m1 eigenvalues in the interval (.38, 1). We believe the correct interval is
(.5, 1), but we cannot prove this sharper result. There are m1 eigenvalues greater
than one. The larger of these grows like cm2. However, many of the coefficients of

growth are small. Indeed, [m1/2] of these eigenvalues are in the interval [1, 1 + 1+
√

2
2ϕ2 ].

These results are important for most regular problems. In addition, they are relevant
for convection-diffusion equations where (1.26) does not hold. For example, the paper
[LW] draws its inspiration and motivation from [LH]. However, we believe our results
are equally relevant to those computations.

Analytically, the distinction between the two cases is that in Case 1 the limiting
operator is not elliptic while in Case 2 the limiting operator is elliptic. Algebraically,
the distinction concerns the eigenvalues τ . As we shall see in section 5, the eigenvalues
in Case 1 satisfy

0 < 2ϕ2(1− δ) ≤ |τj | ≤ 2ϕ2(1 + δ),

where

δ =

√
1−

(
aG1

2

)2

.
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On the other hand, in Case 2 the eigenvalues τj range from O(h2) to O(1). It is the
small eigenvalues τj which lead to the large eigenvalues λ.

In section 2 we develop the basic theory for finding the eigenvalues of C−1
0 T0.

In section 3 we use the elementary theory of one-dimensional difference equations to
further extend the theory and obtain the required asymptotic estimates needed to
deal with the reaction-diffusion equations. In section 4 we turn to an analysis of the
problem in the case ε = 1, i.e., the uniformly elliptic case. In section 5 we apply the
results of sections 2, 3, and 4 to resolve the two-dimensional problems in both cases.
In section 6 we discuss some computational results.

2. The basic theory. In this section we turn to the study of (1.22) and develop
the theory for finding the eigenvalues λ of the matrix C−1

0 T0. With this in mind we
replace α by

α̂ = −2(1 +D0).(2.1)

We are interested in a wide range of values of D0, not necessarily small. The matrix
T0 is the m2 ×m2 tridiagonal matrix given by

T0 =


α̂ β
γ α̂ β

. . .
. . .

. . .

β
γ α̂

(2.2)

and C0 is the circulant

C0 = T0 +Q0.(2.3)

Thus, we are concerned with the eigenvalues λ of

λC0U = TU = (C0 −Q0)U(2.4)

or

λU = (I − C−1
0 Q0)U.(2.5)

Therefore (m2−2) eigenvalues are exactly one and there are two nontrivial eigenvalues
which are of the form

λ = 1− ρ,(2.6)

where ρ is a nonzero eigenvalue of the problem

ρC0U = Q0U.(2.7)

We begin our discussion with the following problem: find two m2 vectors v and
w such that

C0v =


σ
0
.
.
.
0

 , C0w =


0
0
.
.
.
σ

 ,(2.8)

where σ will be determined later.
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Lemma 2.1. Consider the (m2 + 1) vector v̂ of the form

v̂ =



1
v1
v2
.
.
.

vm2−1

1


=



v0
v1
v2
.
.
.

vm2−1

vm2


(2.9)

which satisfies the (m2 − 1) equations

γvk−1 + α̂vk + βvk+1 = 0, k = 1, 2, . . . , (m2 − 1).(2.10)

Let

v =



1
v1
v2
.
.
.

vm2−1


, w =



v1
v2
.
.
.

vm2−1

1


.(2.11)

Then

C0v =


σ
0
.
.
.
0

 , C0w =


0
.
.
.
0
σ

 ,(2.12)

where

σ = α̂+ βv1 + γvm2−1.(2.13)

Moreover,

0 < vj ≤ 1.(2.14)

Proof. Direct verification yields (2.12) and (2.13). Since the Peclet condition
(1.11) holds and β, γ are positive, the bound (2.14) follows from a standard maximum
principle (convexity) argument.

We seek an eigenvector U of (2.7) of the form

U = xv + yw.(2.15)

Then

C0(xv + yw) =



xσ
0
.
.
.
0
yσ


(2.16)
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and

Q0(xv + yw) =



(γvm2−1)x + γy
0
.
.
.
0

βx + (βv1)y


.(2.17)

Lemma 2.2. Let M be the matrix

M =


γvm2−1 0 · · · 0 γ

0 · · · · · · · · · 0
...

...
...

...
...

0 · · · · · · · · · 0
β 0 · · · 0 βv1

 .(2.18)

Let [x, 0, . . . , 0, y]T be an eigenvector of M with associated nonzero eigenvalues µ.
Then

U = (xv + yw)(2.19)

satisfies (µ
σ

)
C0(xv + yw) =

µ

σ
C0U = Q0U.(2.20)

Thus, U is an eigenvector and µ/σ = ρ is an eigenvalue of the eigenvalue problem
(2.7).

Proof. From (2.16) and (2.17) we have

µ

σ
C0(xv + yw) = µ



x
0
.
.
.
0
y


(2.21)

and

Q0(xv + yw) = M



x
0
.
.
.
0
y


= µ



x
0
.
.
.
0
y


.(2.22)

Therefore the lemma is proven.
Theorem 2.3. Let

R = (γvm2−1 + βv1).(2.23)
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Then the nonzero eigenvalues of M are given by

µ =
R±√R2 + 4γβ(1− v1vm2−1)

2
(2.24)

and the eigenvalues ρ of (2.7) are given by

ρ =
R±√R2 + 4γβ(1− v1vm2−1)

2(−2 +R− 2D0)
(2.25)

and the value “ 0” (m2 − 2) times.
Proof. The theorem is proven by a direct computation.
Lemma 2.4. Let D0 be a number of order 1. Consider ρ+ given by

ρ+ =
R+

√
R2 + 4γβ(1− v1vm2−1)

2(−2 +R− 2D0)
.(2.26)

Then ρ+ < 0 and

|ρ+| ≤ 1 +
√

2

2D0
.(2.27)

Proof. The lemma is proven by observing the following:

0 ≤ R ≤ 2, 0 ≤ 4γβ(1− v1vm2−1) ≤ 4,

and

| − 2 +R− 2D0| ≥ 2D0.

3. The difference equations. In this section we study the eigenvalues ρ+ and
ρ− and their dependence on the parameter D0. This involves a rather technical dis-
cussion of the properties of the vector v̂ described by (2.9) and (2.10). This discussion
uses differentiation with respect to (2D0).

As before, we assume (1.11). Since h2 and ε are always positive, we have

|b|h2

2ε
< 1.(3.1)

As is well known [H] the {vj ; j = 1, 2, . . . , (m2 − 1)} are linear combinations of the
roots S1, S2 of the quadratic equation

βS2 + α̂S + γ = 0.(3.2)

Lemma 3.1. Under the assumption (1.11) the roots of (3.2)

S1 =
−α̂+

√
α̂2 − 4γβ

2β
, S2 =

−α̂−
√
α̂2 − 4γβ

2β
(3.3)

are both positive. If D0 > 0, then

0 < S2 < 1 < S1.(3.4)
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Finally, the solution of (2.10) subject to the boundary condition v0 = vm2
= 1 is given

by

vk =
(Sm2

1 − 1)Sk2 + (1− Sm2
2 )Sk1

Sm2
1 − Sm2

2

.(3.5)

Proof. The formulae (3.3) are elementary. Since

α̂2 − 4γβ > 4− 4

(
1− (bh2)2

4ε2

)
=

(
bh2

ε

)2

≥ 0,

the roots S1 and S2 are distinct and positive. Furthermore,

S1 ≥
2(1 +D0) + | bh2

ε |
2 + | bh2

ε |
≥ 1(3.6)

and strictly greater than one if D0 > 0.
If b ≤ 0, then

S1S2 =
γ

β
=

1− | bh2

2ε |
1 + | bh2

2ε |
≤ 1.(3.7)

Since S1 > 1, we see that S2 < 1.
On the other hand, if b > 0, we observe that

θ1 =
1

S2
, θ2 =

1

S1
(3.8)

are the roots of the equation γθ2 + α̂θ + β = 0. The previous argument shows that

θ1 =
1

S2
> 1, θ2 =

1

S1
< 1.

Thus, we have established (3.4). Finally, the formula (3.5) is verified by evaluation of
v0 and vm2 .

Let “·” represent differentiation with respect to (2D0). That is, for any quantity
m,

∂

∂(2D0)
m := ṁ.(3.9)

Lemma 3.2. For D0 > 0 we have

Ṡ1 =

[
1 +

−α̂√
α̂2 − 4γβ

]
/2β =

[
S1√

α̂2 − 4γβ

]
> 0,(3.10)

Ṡ2 =

[
1− −α̂√

α̂2 − 4γβ

]
/2β =

[
− S2√

α̂2 − 4γβ

]
< 0.(3.11)

Moreover,

v̇1 < 0, v̇m2−1 < 0.(3.12)



SEMICIRCULANT PRECONDITIONING OF ELLIPTIC OPERATORS 777

Proof. The formulae (3.10), (3.11) are established by a simple computation.
Let us consider v1 = v1(D0). We have

v1 =
(Sm2

1 − 1)S2 + (1− Sm2
2 )S1

Sm2
1 − Sm2

2

.(3.13)

A computation yields

v̇1 = Z1 + Z2,(3.14)

where

Z1 =
Ṡ1(1− Sm2

2 ){(Sm2
1 − Sm2

2 )−m2(S1 − S2)Sm2−1
1 }

(Sm2
1 − Sm2

2 )2
,(3.15)

Z2 =
Ṡ2(Sm2

1 − 1){(Sm2
1 − Sm2

2 )−m2(S1 − S2)Sm2−1
2 }

(Sm2
1 − Sm2

2 )2
.(3.16)

We have

Sm2
1 − Sm2

2 = Sm2
1

(
1− S2

S1

)m2−1∑
k=0

(
S2

S1

)k
.

Thus,

(Sm2
1 − Sm2

2 ) < m2(S1 − S2)Sm2−1
1 .

Since Ṡ1 > 0 and 0 < S2 < 1, we see that

Z1 < 0.(3.17)

As for Z2, we have

Sm2
1 − Sm2

2 = Sm2−1
2 (S1 − S2)

m2−1∑
k=0

(
S1

S2

)k
.

Thus,

(Sm2
1 − Sm2

2 ) > m2S
m2−1
2 (S1 − S2).

Since Ṡ2 < 0 and S1 > 1, we see that

Z2 < 0.(3.18)

Therefore we have

v̇1 < 0.(3.19)

The proof that v̇m2−1 < 0 follows from the observation that

vm2−1 =
(θm2

1 − 1)θ2 + (1− θm2
2 )θ1

θm2
1 − θm2

2

,

θ1 =
−α̂+

√
α̂2 − 4γβ

2γ
=

1

S2
,

θ2 =
−α̂−

√
α̂2 − 4γβ

2γ
=

1

S1
,

and the previous argument applies.
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Lemma 3.3. Let R and ρ+ be defined as in the previous section. Then

Ṙ < 0, −ρ̇+ < 0.(3.20)

Proof. We have Ṙ < 0 because of Lemma 3.2. And after some algebra we see
that

−ρ̇+ ≤ 2[2RṘ− 2γβ(v̇1vm2−1 + v1v̇m2−1)][2 + 2D0 −R]

[2(2 + 2D0 −R)]2
√
R2 + 4γβ(1− v1vm2−1)

(3.21)

− 2
(1− Ṙ)[R+

√
R2 + 4γβ(1− v1vm2−1)]

[2(2 + 2D0 −R)]2
.

The second term of (3.21) is negative. Hence we need prove only that

2RṘ− 2γβ(v̇1vm2−1 + v1v̇m2−1) < 0.

However, after some algebra we see that this reduces to

2(γ2vm2−1v̇m2−1 + β2v1v̇1) < 0.(3.22)

Remark 3.4. Since ρ+ < 0, this implies that

|ρ+| decreases as D0 increases.(3.23)

We believe that

|ρ−| decreases as D0 increases,

but we cannot prove it.
Remark 3.5. This lemma, and (3.23) in particular, enables us to study the largest

eigenvalues in Case 2 by studying the smallest eigenvalues τj which are O(h2). In those
cases we can estimate v1 and vm2−1 by studying a particular boundary value problem
for an ordinary differential equation. We shall see this in section 4.

While the next theorem is valid in both cases, it is used primarily in Case 1, where
it yields the asymptotic distribution of the eigenvalues.

Theorem 3.6. Assume that

D0 = D0(h2) ≥ D1 > 0,(3.24)

where D1 is a constant. Further assume that

D0(h2)→ D0 as h2 → 0.(3.25)

Observe that as h2 → 0 the quantities γ and β have limits γ∞, β∞. In Case 1, where
(1.26) holds, we have

β ≡ 1− b
2
G2 = β∞, γ ≡ 1 +

h

2
G2 = γ∞.(3.26)

In Case 2, where ε ≡ 1, we have

β → 1 = β∞, γ → 1 = γ∞ as h1, h2 → 0.(3.27)
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Furthermore,

S1 → S∞1 =
(1 +D0) +

√
(1 +D0)2 − γ∞β∞
β∞

,(3.28)

S2 → S∞2 =
(1 +D0)−

√
(1 +D0)2 − γ∞β∞
β∞

.(3.29)

Then as m2 →∞ (i.e., h2 → 0) we have

−ρ+ = |ρ+| → −ρ∞+ =
(1 +D0) +

√
γ∞β∞ − Z

2Z
,(3.30)

ρ− = |ρ−| → ρ∞− =
Z +
√
γ∞β∞ − (1 +D0)

2Z
,(3.31)

where

Z =

√
(1 +D0)2 − γ∞β∞.(3.32)

Proof. Under the hypotheses (3.24) and (3.25) the remarks before (3.30) and
(3.31) are obvious. We proceed to prove (3.30), (3.31).

Since

v1 =
(Sm2

1 − 1)S2 + (1− Sm2
2 )S1

Sm2
1 − Sm2

2

(3.33)

and

vm2−1 =
(1− S−m2

1 )Sm2−1
2 + (1− Sm2

2 )S−1
1

1−
(
S2

S1

)m2
,(3.34)

we see that as m2 →∞ (h2 → 0) we have

v1 → v∞1 = S∞2 ,(3.35)

vm2−1 → v∞m2−1 =
1

S∞1
.(3.36)

Hence

R→ R∞ =
γ∞

S∞1
+ β∞S∞2 .(3.37)

However,

γ∞

S∞1
= β∞S∞2 .(3.38)

Hence

−ρ∞+ =
R∞ + 2

√
γ∞β∞

2[2(1− β∞S∞2 ) + 2D0]
,(3.39)



780 SANG DONG KIM AND SEYMOUR V. PARTER

ρ∞− =
2
√
γ∞β∞ −R∞

2[2(1− ρ∞S∞2 ) + 2D0]
.(3.40)

The theorem now follows from algebraic manipulation using the fact that

β∞S∞2 = (1 +D0)−
√

(1 +D0)2 − γ∞β∞.

Corollary 3.7.

−ρ̇∞+ < 0, ρ̇∞− < 0,(3.41)

and

ρ∞− ≤ 1/2.(3.42)

4. The case ε = 1 in one dimension. In this section we consider the case
ε ≡ 1 and h2 = 1

m2+1 → 0. At first we consider the case where

2D0 = d̂h2
2

and d̂ is a fixed constant of modest size. In this case the solutions of the equations

1

h2
2

[γvk−1 + α̂vk + βvk+1] = 0, k = 1, 2, . . . , (m2 − 1),(4.1)

v0 = vm2 = 1(4.2)

approximate the function uh(x) which satisfies

−u′′h + bu′h + d̂uh = 0, 0 ≤ x ≤ 1− h2,(4.3)

uh(0) = uh(1− h2) = 1.(4.4)

We use this fact to obtain reasonable estimates for ρ+, ρ−, and

λ+ = 1− ρ−, λ− = 1− ρ+.(4.5)

The solution of (4.3) and (4.4) is

uh(x) =
(eM1(1−h2) − 1)eM2x + (1− eM2(1−h2))eM1x

eM1(1−h2) − eM2(1−h2)
,(4.6)

where

M1 =
b+

√
b2 + 4d̂

2
, M2 =

b−
√
b2 + 4d̂

2
.(4.7)

Therefore

u′h(0) =
M2(eM1(1−h2) − 1) +M1(1− eM2(1−h2))

eM1(1−h2) − eM2(1−h2)
(4.8)
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and

u′h(1− h2) =
M2(eM1(1−h2) − 1)eM2(1−h2) +M1(1− eM2(1−h2))eM1(1−h2)

eM1(1−h2) − eM2(1−h2)
.(4.9)

We observe that

u′h(0) < 0, u′h(1− h2) > 0.

Moreover, there is a d0 and an H > 0 such that for d̂ ≥ d0 and 0 < h2 < H we have

|u′(0)| > |b|
2
, |u′(1)| > |b|

2
.

Hence, for d̂ ≥ d0 we have

βv1 ≈
(

1− bh2

2

)
(1 + u′h(0)h2) < 1(4.10)

and

γvm2−1 ≈
(

1 +
bh2

2

)
(1− u′h(1− h2)h2) < 1.(4.11)

Since v1 and vm2−1 decrease with increasing D0, once (4.10) and (4.11) hold for some
D0 > 0, they hold for all larger D0. These inequalities will be important in the latter
part of this section, where we discuss the case of large D0 and we cannot use (4.6) to
approximate v1 and vm2−1.

We recall that

σ = α̂+ βv1 + γvm2−1.

Since

v1 = uh(h2) +O(h3
2), vm2−1 = uh(1− 2h2) +O(h3

2),(4.12)

we see that

σ =

[
βuh(h2)−

[
1 +

d̂h2
2

2

]
uh(0)

]
(4.13)

+

[
γuh(1− 2h2)−

[
1 +

d̂h2
2

2

]
uh(1− h2)

]
+O(h3

2).

A careful computation using the differential equation shows that

σ = shh2 +O(h3
2),(4.14)

where

sh = u′h(0)− u′h(1− h2).(4.15)

Therefore, after a lengthy computation we see that

sh = s0 [1 +K0h2 +K1h2],(4.16)
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where

s0 = −e
M1 + eM2 − 1− eb
eM1 − eM2

√
b2 + 4d̂ = u′0(0)− u′0(1),(4.17)

K0 =
beb − (M1e

M1 +M2e
M2)

(eM1 − 1)(1− eM2)
,(4.18)

and

K1 =
M1e

M1 −M2e
M2

eM1 − eM2
.(4.19)

We also require the quantity

W = [u′0(0) + u′0(1)]2 − 2b[u′0(0) + u′0(1)].(4.20)

We are now prepared to state and prove the main theorem for this case.
Theorem 4.1. For 2D0 = d̂h2

2 and h2 small we have

ρ+ =
1

2
+

2

σ
+O(h2)(4.21)

and

ρ− =
1

2
+O(h2).(4.22)

Therefore

λ+ = 1− ρ+ =
1

2
+

2

|sh|h2
+O(h2),(4.23)

or

λ+ =
1

2
+

2(K0 +K1)

s0
+

2

|s0|h2
+O(h2),(4.24)

and

λ− = 1− ρ− =
1

2
+
h2

2

|sh|
( d̂

2
− W

8

)
+O(h2) =

1

2
+O(h2).(4.25)

Proof. Since (see (2.26))

|ρ+| = R+
√

(βv1 + γvm2−1)2 + 4γβ(1− v1vm2−1)

2|σ| ,

therefore

|ρ+| = R+
√

(βv1 − γvm2−1)2 + 4− (bh2)2

2|σ| .(4.26)

Straightforward computations yield

R = 2 + σ + d̂h2
2(4.27)
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and

(βv1 − γvm2−1)2 = h2
2{W + b2}+O(h2

2).(4.28)

Hence

ρ+ ≈ 2 + σ + d̂h2
2 +

√
4 +Wh2

2 +O(h2
2)

2σ
.

Thus,

ρ+ ≈ 2

σ
+

1

2
+O

(h2
2

σ

)
.(4.29)

Hence we have proven (4.21). A similar calculation yields (4.22). Finally, (4.24)
follows from (4.29), (4.14), and (4.16).

We now turn to those cases where 2D0 is not necessarily small. We recall that
for d ≥ d0 we have (4.10) and (4.11).

Theorem 4.2. Let

γvm2−1 < 1, βv1 < 1.(4.30)

Consider ρ− given by

ρ− =
R−√R2 + 4γβ(1− v1vm2−1)

2(−2 +R− 2D0)
.(4.31)

Then

|ρ−| ≤
√

5− 1

2
≈ .618.(4.32)

Proof. Let

1− γvm2−1 = p, 1− βv1 = r.(4.33)

Observe that

R2 + 4γβ(1− v1vm2−1) = (γvm2−1 − βv1)2 + 4γβ(4.34)

and

γvm2−1 − βv1 = r − p.(4.35)

Let

θ =

√
5− 1

2
.(4.36)

The assertion (4.32) is equivalent to the assertion√
(r − p)2 + 4γβ −R
2[(2−R) + 2D0]

≤ θ.

Now 2−R = (p+ r), so this assertion is equivalent to the statement√
(r − p)2 + 4γβ ≤ 2θ[2−R+ 2D0] +R
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or √
(r − p)2 + 4γβ ≤ (2θ − 1)(p+ q) + 2(1 + 2θD0).

Since both sides of this inequality are positive, this inequality is equivalent to

(r − p)2 + 4γβ = (2θ − 1)2(p+ r)2 + 4(2θ − 1)(1 + 2θD0)(p+ r)

+ 4(1 + 2θD0)2.

This inequality is equivalent to

4γβ ≤ [(2θ − 1)2 − 1](p2 + r2) + 2[(2θ − 1)2 + 1]pr

+ 4(2θ − 1)(1 + 2θD0)(p+ r) + 4(1 + 2θD0)2.

Since |p| and |r| are each less than one and 4γβ ≤ 4, it is sufficient to prove that

4 ≤ [(2θ − 1)2 + 4(2θ − 1)− 1][p2 + r2] + 4.

However, 2θ − 1 = (
√

5− 2) is a root of

m2 + 4m− 1.

Hence the inequality is proven.
Remark 4.3. Notice that while this estimate is sufficient for our purposes, we

have made no effort to make a sharp estimate.

5. Two dimensions. We now return to the basic eigenvalue problem (1.23).
From the discussion following (1.22) we must determine the eigenvalues τj of T1.
However, these are known. We have the following lemma.

Lemma 5.1. Consider the matrix T1 given by (1.13) with A,B,C given by (1.6)
and (1.7). The eigenvalues of T1 are

τj = A+ 2
√
BC cosπjh1.(5.1)

Proof. This is a well-known result; see [P].
Our first basic theorem is for the case of the convection-diffusion equation studied

in [LH]. However, we must remark that due to differences in notation we have not
attempted to show the exact equivalence of these formulae and those of [LH].

Unfortunately, the description of these eigenvalues requires quite a bit of notation.
Our basic result is the following theorem.

Theorem 5.2. Let |a| > 0. Let 0 < ε
 1, and let

δ =

√
1−

(
aG1

2

)2

= ϕ2
√
BC,(5.2)

Dm = ϕ2(1− δ),(5.3)

DM = ϕ2(1 + δ),(5.4)

Xm = 1 +Dm,(5.5)
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XM = 1 +DM ,(5.6)

δ1 =

√
1−

(
bG2

2

)2

,(5.7)

Ym =
√
X2
m − δ21 ,(5.8)

YM =
√
X2
M − δ21 ,(5.9)

c1 = 1 +
XM + δ1 − YM

2YM
,(5.10)

d1 = 1 +
Xm + δ1 − Ym

2Ym
,(5.11)

a1 = 1− YM + δ1 −XM
2YM

,(5.12)

b1 = 1− Ym + δ1 −Xm
2Ym

.(5.13)

Then the eigenvalues λj of (1.23) subject to the conditions (1.26) fall into three
groups: (i) There are m1m2 − 2m1 eigenvalues which are exactly one. (ii) There
are m1 eigenvalues which lie in an interval (a1(h), b1(h)) and

a1(h)→ a1 ≥ 1

2
as h1, h2 → 0(5.14)

and

b1(h)→ b1 ≤ 1 as h1, h2 → 0.(5.15)

(iii) Finally, there are m1 eigenvalues which lie in a finite interval (c1(h), d1(h))
and

c1(h)→ c1 ≥ 1 as h1, h2 → 0(5.16)

and

d1(h)→ d1 <∞ as h1, h2 → 0.(5.17)

Proof. In this case the eigenvalues τj are given by

τj = 2ϕ2(1− δ cosπjh1).(5.18)

Therefore the argument in the introduction shows that we are led to study the prob-
lems of sections 2 and 3 with

D0 = D0(j) = ϕ2(1− δ cosπjh1) +
dh2

2

2ε
.
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And for all j = 1, 2, . . . ,m1 we have

Dm ≤ D0(j) ≤ DM .(5.19)

We now apply Theorem 3.6 with D0 = Dm and D0 = Dm, together with (3.41) and
(3.42), to see that the limiting eigenvalues all fall within the indicated intervals.

We now turn to the uniformly elliptic case with ε ≡ 1.
Theorem 5.3. Let ε ≡ 1. Let j be a fixed integer, and set

d̂(j) = d− τj
h2

2

.(5.20)

Let

M1 = M1(j) =
b+

√
b2 + 4d̂(j)

2
, M2 = M2(j) =

b−
√
b2 + 4d̂(j)

2
(5.21)

and

K0(j) =
beb − [M1(j)eM1(j) +M2(j)eM2(j)]

(eM1(j) − 1)(1− eM2(j))
,(5.22)

K1(j) =
M1(j)eM1(j) −M2(j)eM2(j)

eM1(j) − eM2(j)
.(5.23)

Let

s = s(j) = −e
M1 + eM2 − 1− eb
eM1 − eM2

√
b+ 4d̂(j).(5.24)

Let

λ1 > λ2 > · · · > λm1

be the m1 largest eigenvalues of (1.23). Then as h1, h2 → 0 we have

λj ≈ 1

2
+

2[K0(j) +K1(j)]

s(j)
+

1

h2

2

|s(j)| .(5.25)

Furthermore, for 1 ≤ j < s ≤ m1 we have

1 ≤ λs ≤ λj .(5.26)

Finally, for m1/2 ≤ j ≤ m1 we have

1 ≤ λj ≤ 1 +
1 +
√

2

2ϕ2
.(5.27)

Proof. For each j we have the situation described in Theorem 4.1 with d̂ given by
d̂(j) in (5.20). Hence (5.25) follows from Theorem 4.1. The estimate (5.26) follows
from Lemma 3.3. Finally, the estimate (5.27) follows from the fact that

|τj | ≥ 2ϕ2,
m1

2
< j ≤ m1,

and from (2.27).
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Remark 5.4. We note that

τj
h2

2

→ −
(
a2

4
+ (πj)2

)
= −µj .(5.28)

And the quantity µj is precisely the jth eigenvalue of the operator

La := −
(
d

du

)2

+ a
d

du
.

Furthermore, for very large j

s(j)→
√
b2 + 4µj ≈ 2(jπ).

Hence

λj ≈ K2 +
1

h2

1

(jπ)
,

where K2 is a constant. Thus, for j modestly large the coefficient of 1
h2

is quite small.
And (5.26) and (5.27) assure us that it is even smaller for larger values of j.

Theorem 5.5. There are m1 eigenvalues λ(h) of (1.23) which satisfy

.38 <
3−√5

2
≤ λ ≤ 1(5.29)

as h1, h2 → 0.
Proof. For any fixed j we have the results of Theorem 4.2 which yields

λ− ≈ 1

2
− h2S,

where S is a constant depending on b and j.
On the other hand, if j is fixed and so large that (4.30) holds, we have (4.32)

which implies that (5.29) holds for all j.

6. Numerical tests. In this section we provide a series of numerical examples
to illustrate the theories developed in the previous sections. For this, we take the
following examples by recalling (1.4) and (1.11).

Example 1. Consider

−ε∆u+ 2ux + uy.

We fix h
ε = 3

4 , where h = h1 = h2 so that ε = 4
3h. The non-one eigenvalues are in

either [0.7136, .84762] or [1.2186, 1.67316], which can be predicted by Theorem 5.2.
The two groups of eigenvalues are listed in Tables 6.1 and 6.2.

Example 2. Consider

−ε∆u+ 3ux + 3uy + u.

We fix

h

ε
=

1

6
, where h = h1 = h2
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Table 6.1
Two groups of eigenvalues for −ε∆u+ 2ux + uy .

Mesh size Eigenvalues Eigenvalues

h = 1
12
, ε = 1

9
0.71835511876813 1.22163948354662

0.73076629515934 1.22913287556744

0.74816845617320 1.24219275206102

...
...

0.83684051876625 1.50835544156721

0.84287352767439 1.58621137822330

0.84643374383331 1.65101906814222

h = 1
20

ε = 1
15

0.71482281489471 1.22007306632850

0.71976536398126 1.22272233383939

0.72742605877215 1.22721010848919

...
...

0.84377959972260 1.59928967271870

0.84591431356486 1.63764397287832

0.84718698934437 1.66385884311555

Table 6.2
Two groups of eigenvalues for −ε∆u+ 2ux + uy .

Mesh size Eigenvalues Eigenvalues

h = 1
36
, ε = 1

27
0.71363243881612 1.21946709926894

0.71520966610960 1.22027908908089

0.71777733892708 1.22163902770585

...
...

0.84643342008918 1.64796148998121

0.84708778274694 1.66165790078332

0.84747937636160 1.67023428901938

so that

ε = 6h.

The non-one eigenvalues are in either [0.58861, .8563394] or [1.2014, 3.23054], which
can be predicted by Theorem 5.2. The two groups of eigenvalues are listed in Tables 6.3
and 6.4.

Example 3. Consider

−∆u+ u.

The two groups of extreme eigenvalues are listed in Table 6.5. The range of these
non-one eigenvalues can be predicted by Theorems 5.3 and 5.5.

Example 4. Consider

−∆u+ 2ux + uy.
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Table 6.3
Two groups of eigenvalues for −ε∆u+ 3ux + 3uy + u.

Mesh size Eigenvalues Eigenvalues

h = 1
12
, ε = 1

2
0.62466691796258 1.20374405122117

0.65546439052744 1.21266616467924

0.69692692594231 1.22864225975214

...
...

0.84310400457523 1.77404662541921

0.85079543914318 2.15993704327438

0.85524282838158 2.98996959219607

h = 1
20
, ε = 3

10
0.60537755820952 1.20214214350094

0.61998545186220 1.20527177800520

0.64351646258473 1.21062284753986

...
...

0.85180405592886 2.24806343511870

0.85447327937503 2.63972089973388

0.85605326117245 3.17985080512051

Table 6.4
Two groups of eigenvalues for −ε∆u+ 3ux + 3uy + u.

Mesh size Eigenvalues Eigenvalues

h = 1
36
, ε = 1

6
0.59440675231608 1.20158915529747

0.60043847405159 1.20254607834540

0.61030104435121 1.20415353499653

...
...

0.85503620670062 2.77188289202506

0.85584854532074 3.01565361766728

0.85633390013561 3.22519300391089

Table 6.5
Intervals of non-one eigenvalues for −∆u+ u.

h1 h2 Interval of eigenvalues Interval of eigenvalues
1
10

1
10

[0.59004667366385, 0.85158439347714] [1.21106725151139, 3.92860278756037]
1
20

[0.54471305741227, 0.72162412759633] [1.62803608757833, 7.17580980406249]
1
40

[0.52225190888377, 0.62000575794387] [2.58323341635383, 13.72238351656002]
1
80

[0.51109595032917, 0.56134263742518] [4.57546877591445, 26.84016379297525]
1

160
[0.50553997118222, 0.53084591888113] [8.60479998696234, 53.08770653678894]

1
20

1
20

[0.54480311242263, 0.85306283371772] [1.20808925812872, 7.15212321759623]
1
40

[0.52229798679507, 0.72311100784202] [1.62051844692941, 13.67584277325651]
1
80

[0.51111919462630, 0.62095166870805] [2.56694130531961, 26.74789578807177]
1
40

1
40

[0.52230953204310, 0.85343085930757] [1.20735192871894, 13.66424738691479]
1
80

[0.51112501865209, 0.72348284346403] [1.61865410393456, 26.72490726700744]
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Table 6.6
Two groups of eigenvalues for −∆u+ 2ux + uy .

Mesh size Eigenvalues Eigenvalues Predicted eigenvalues

h1 = 1
10
, h2 = 1

20
0.54542861516161 1.62987429948952

...
...

0.68750237545680 2.26976641446903 2.1979

0.70340882342242 2.74846688963437 2.6923

0.71461453038915 3.74970109457185 3.7099

0.72126356537295 7.16806444851755 7.1365

h1 = 1
10
, h2 = 1

40
0.52260538394637 2.58744503148715

...
...

0.59911298302300 3.93229722429224 3.8958

0.60866013977106 4.91275919905165 4.8844

0.61557719684619 6.93558127427726 6.9157

0.61976363553775 13.70450516030257 13.6890

h1 = 1
10
, h2 = 1

80
0.51127161201154 4.58419759593318

...
...

0.55030179229328 7.30991697075110 7.2916

0.55531702253128 9.28283232359111 9.2686

0.55898081759268 13.33712479068527 13.3272

0.56121153499154 26.80162392976290 26.7939

h1 = 1
10
, h2 = 1

160
0.50562753543833 8.62241607624211

...
...

0.52524671556309 14.09235001577338 14.0832

0.52778614033191 18.04414211391962 18.0370

0.52964529138036 26.15516009926207 26.1502

0.53077901958173 53.00764397304166 53.0038

Table 6.7
Growth rates of the first five largest eigenvalues for −∆u+ 2ux + uy.

jth largest eigenvalue 1st 2nd 3rd 4th 5th

Computed rates 0.32682 0.15929 0.10821 0.08313 0.06857

0.32743 0.16004 0.10925 0.08444 0.07012

0.32756 0.16023 0.10952 0.08478 0.07053

Predicted rate 0.3276 0.1603 0.1096 0.0849 0.0707

We list a sequence of eigenvalues in Table 6.6. We also list several of the predicted
growth rates of the first five largest eigenvalues with their computed growth rates in
Table 6.7 when h1 = 1

10 and h2 takes 1
20 ,

1
40 ,

1
80 , and 1

160 . These predictions are based
on (4.24), and the computed rates are calculated using Table 6.6. For example, for
h1 = 1

10 fixed we assume these larger eigenvalues can be written as

Xj + Yj
1

h2
= λ(j, h2).
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Then, a first approximation to Yj is given by

Yj =
λ(j, 1

40 )− λ(j, 1
20 )

20
.

Appendix. Consider the case where 0 < ε
 1 and

h1/ε = G1, h2/ε = G2.(A.1)

For definitiveness we assume that

a < 0, b < 0.(A.2)

Thus the boundary layers in (1.1) occur on ∂Ωb given by

∂Ωb := {(x, 0); 0 < x < 1} ∪ {(0, y); 0 < y < 1}.(A.3)

Let ∂ΩH = ∂Ω\∂Ωb be the hyperbolic boundary, i.e.,

∂ΩH = {(x, 1); 0 < x < 1} ∪ {(1, y); 0 < y < 1}.(A.4)

Let u = {uk,j} be the solution of (1.5) with zero Dirichlet boundary values. Let
Φ(x, y) be the solution of

aΦx + bΦy = f(A.5)

with boundary condition

Φ = 0 on ∂ΩH .(A.6)

The basic result of this appendix is the following theorem.
Theorem A.1. Let 0 < δ < 1. Let

Ωδ := {(x, y) : δ < x, y < 1}.(A.7)

Then, for every such δ, if (xk, yj) ∈ Ωδ, then

Max |uk,j − Φ(xk, yj)| → 0 as h1, h2 → 0.(A.8)

The proof follows from the argument below.
Let

u = uI + uII ,(A.9)

where

Lhu
I = f in Ω,(A.10)

uI = Φ on ∂Ω,(A.11)

and

Lhu
II = 0 in Ω,(A.12)
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uII = −Φ on ∂Ω.(A.13)

We observe that (A.13) means

uII = 0 on ∂ΩH , uII = −Φ on ∂Ωb.(A.14)

Lemma A.2. There is a constant K3 > 0, depending only on a, such that

‖u‖∞ ≤ K3‖f‖∞.(A.15)

Proof. Let

θ = 1 +
h1

a
≈ e−

h1
|a| ,(A.16)

and set

uk,j = θkvk,j .(A.17)

Then v = {vk,j} satisfies the equation

− ε
h2

2

{
C

θ
vk−1,j − 2ϕ2vk,j +Bθvk+1,j + γvk,j−1(A.18)

+ αvk,j + βvk,j+1

}
= θ−kfk,j .

We approximate 1
θ by 1− h1

a . Let

C1 = C/θ, B1 = Bθ,(A.19)

g =

(
1− h

2
1

2ε

)
= 1− 1

2
G1h1,(A.20)

P =

(
ah1

2ε
− h1

a

)
/g =

(
aG1

2
− h1

a

)
/g.(A.21)

Then an algebraic computation shows that

C1 = ϕ2g(1 + P ), B1 = ϕ2g(1− P ),(A.22)

−2ϕ2 = −2ϕ2g − h
2
1

ε
ϕ2.(A.23)

Since

h2
1

ε
ϕ2 =

h2
2

ε
,

we see that v satisfies

− ε
h2

2

{ϕ2g[(1 + P )vk−1,j − 2vk,j + (1− P )vk+1,j ](A.24)

+ [γvk,j−1 + αvk,j + βvk,j+1]}+ vk,j = θ−kfk,j .
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An easy application of maximum principle arguments shows that

‖v‖∞ ≤ θ−m1‖f‖∞ ≈ e
1

|a| ‖f‖∞.(A.25)

From (A.17) we see that

‖u‖∞ ≤ ‖v‖∞ ≤ K3‖f‖∞,(A.26)

and the lemma is proven.
Lemma A.3. Let W > 0 be a constant. Let w = {wk,j} satisfy

Lhw = 0,(A.27)

w = 0 on ∂ΩH ,(A.28)

|w| ≤W on ∂Ωb.(A.29)

Let

θ1 =
√
C/B, θ2 =

√
γ/β.(A.30)

Note. Since a < 0, b < 0, we have

θ1 < 1, θ2 < 1.(A.31)

Then

|wk,j | ≤ θk1θj2|W |.(A.32)

Proof. Let

wk,j = θk1θ
j
2vk,j .(A.33)

Then v satisfies

− ε
h2

2

{Cvk−1,j − 2ϕ2vk,j + Cvk+1,j γvk,j−1 + αvk,j + γvk,j+1} = 0.(A.34)

And, since w = 0 on ∂ΩH , we have

v = w on ∂Ω.(A.35)

Here

C =
√
CB = ϕ2

√
1−

(
aG1

2

)2

≤ ϕ2,(A.36)

γ =
√
γβ =

√
1−

(
bG2

2

)2

≤ 1.(A.37)

An application of the maximum principle now shows that v takes on its maximum on
∂Ω. Hence

‖v‖∞ ≤W
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and

|wk,j | ≤ θk1θj2W.(A.38)

Proof of Theorem A.1. To complete the proof of Theorem A.1 we must show that

‖uI − Φ‖∞ → as h1, h2 → 0.(A.39)

For the sake of completeness we consider two cases. First we deal with the easy case
where

Φ ∈ C4(Ω).

Then we deal with the general case.
Theorem A.4. Let Φ ∈ C4(Ω). Then there is a constant K such that

‖uI − Φ‖∞ ≤ K[h2
1 + h2

2].(A.40)

Proof. In this case we see that

‖LhuI − LhΦ‖∞ ≤ K(h2
1 + h2

2).

Hence the theorem follows from Lemma A.2.
Theorem A.5. Let f ∈ (CΩ). Then

‖Φ− uI‖∞ → 0 as h2 = ε/G2 → 0.(A.41)

Proof. Since f ∈ C(Ω), we know that Φ ∈ C1(Ω). Standard “mollifier” arguments
(see [N]) show that for each ε, h1, h2 with ε/hs = Gs, a fixed number, there exists a
function Φε(x, y) and a number ηε > 0 such that

‖∆Φε‖ ≤ ε−1/2,(A.42)

‖Φ− Φε‖∞ +

∥∥∥∥ ∂∂x [Φ− Φε]

∥∥∥∥
∞

+

∥∥∥∥ ∂∂y [Φ− Φε]

∥∥∥∥
∞
≤ ηε,(A.43)

ηε → 0 as ε→ 0.(A.44)

Therefore

LhΦε = fε,(A.45)

where

‖f − fε‖∞ ≤ [|a|+ |b|+ |c|]ηε + ε1/2.(A.46)

Hence, since

‖Lh(uI − Φε)‖∞ ≤ ‖f − fε‖,
Lemma A.2 yields

‖uI − Φε‖∞ ≤ K[(|a|+ |b|+ |c|)ηε + ε1/2].(A.47)
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Finally,

‖uI − Φ‖∞ ≤ ‖uI − Φε‖∞ + ‖Φε − Φ‖∞.

Therefore

‖uI − Φ‖∞ ≤ K[|a|+ |b|+ |c|]ηε + ηε + ε1/2,

and the theorem is proven.
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CORRIGENDUM: FOURIER SPECTRAL APPROXIMATION
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The purpose of this note is to correct an error in the proof of Proposition 2.4 in
[1]. The inequality ||g(dM )||1 ≤ c||dM ||2L4 |dM |1 on line 18 of page 741 in [1] is not
correct. We now revise the proof and the result of Proposition 2.4 as follows. Indeed,

||g(dM )||21 ≤ c
∫

Ω

|dM |4(∇dM )2dx.

By integration by parts, the Cauchy inequality, and (2.10) in [1], we obtain

||g(dM )||21 ≤ c||dM ||5L10 |dM |2 ≤ c||dM ||52n
5

|dM |2 ≤ cM2n−5||dM ||51|dM |2.

Thus, by (2.18) of [1], we have

||(PM − I)g(dM )|| ≤ cM 2n−7
2 ||dM ||

5
2
1 |dM |

1
2
2 .

Next, by virtue of the imbedding inequality and (2.10) of [1],

2λ|G| ≤ 2λ||uM ||L3 ||∇dM ||L6 ||(PM − I)g(dM )|| ≤ cλM 2n−7
2 ||uM ||n6 ||dM ||

5
2
1 ||dM ||

3
2
2

≤ cλM 2n−7
2 ||uM ||

3
4
n
6
||uM ||

1
4
1 ||dM ||

5
2
1 ||dM ||

3
2
2

≤ cλM 9n−28
8 ||uM || 34 ||uM ||

1
4
1 ||dM ||

5
2
1 ||dM ||

3
2
2

≤ cλM 9n−28
40 ||uM ||

1
4
1 ·M

3(9n−28)
80 ||dM ||

3
2
2 ·M

3(9n−28)
160 ||uM || 34 ·M 9n−28

16 ||dM ||
5
2
1

≤ cλ(M 9n−28
5 ||uM ||21 +M

9n−28
20 ||dM ||22 +M

3(9n−28)
10 ||uM ||12 ·M9n−28||dM ||401 ).

On the other hand, we have

2λ

∫
Ω

F (dM )dx ≥ λ

2ε2
(||dM ||4L4 − 2||dM ||2 + (2π)n)

≥ λ

2ε2

(
1

(2π)n
||dM ||4 − 2||dM ||2 + (2π)n

)
≥ λ

2ε2(2π)n
(||dM ||2 − (2π)n(1 + ε2))2 + λ||dM ||2 − λ(2π)n

2
(2 + ε2)

≥ λ||dM ||2 − λ
2 (2π)

n(2 + ε2).
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Moreover, by (2.23) of [1],

λγ||∆dM−PMf(dM )||2 = λγ

(
|dM |22+||PMf(dM )||2− 2

ε2
|dM |21

)
≥ λγ|dM |22−

2λγ

ε2
|dM |21.

Substituting the above three estimates into (2.17) of [1] and integrating the resulting
inequality with respect to t, we find that for n ≤ 3 and M sufficiently large

Ẽ(t) ≡ E(t) +
∫ t

0

(
ν

4
|uM (s)|21 + λγ||∆dM (s)− PMf(dM (s))||2

)
ds

≤ σ0 +

∫ t

0

(
2λγ

ε2
||dM (s)||21 + c4M

3
10 (9n−28)||uM (s)||12 + c4M

9n−28||dM (s)||401
)
ds,

(1)

where

E(t) = ||uM (t)||2 + λ||dM (t)||21,
σ0 = ||u0||2 + λ|d0|21 + 3λ

∫
Ω

F (d0)dx+ λ(2π)n(ε2 + 1 + ε
√
ε2 + 1).

(2)

Finally, we apply Lemma 2.3 of [1] to the above inequality to obtain for n ≤ 3

Ẽ(t) ≤ σ0e

(
2λγ

ε2
+c4M

− 3
10

)
t
.(3)

In fact, we can derive improved results for Proposition 2.4 in the two-dimensional
case (i.e., n = 2). Indeed, using the imbedding theory and (2.9) and (2.10) in [1], we
obtain for any δ > 0

||g(dM )||1 ≤ c||dM ||2L∞ |dM |1 ≤ c||dM ||21+ δ
2
|dM |1 ≤ cM δ

2 ||dM ||31.

Thus, by (2.18) of [1],

||(PM − I)g(dM )|| ≤ cM δ−2
2 ||dM ||31.

By virtue of imbedding theory and the Cauchy inequality,

2λ|G| ≤ ||uM ||L∞ ||dM ||1||(PM − I)g(dM )|| ≤ cMδ−1||uM ||1||dM ||41

≤ ν

2
|uM |21 + c4M

1
2 (δ−1)||uM ||2 + c4M

3
2 (δ−1)||dM ||81.

Using the above estimate instead of (2.19) in [1] and repeating the same procedure as
in the proof of Proposition 2.4, we obtain the following revised result.

Proposition 2.4 (revised). Let Ẽ(t), E(t), and σ0 be defined in (1)–(2). Then,
for n = 3, we have

Ẽ(t) ≤ σ0e

(
2λγ

ε2
+c4M

− 3
10

)
t
;

for n = 2, we have for any small δ > 0,

E(t) +

∫ t

0

(
ν

2
|uM (s)|21 + 2λγ||∆dM (s)− PMf(dM (s))||2

)
ds ≤ σ0e

c4M
1
2
(δ−1)t,

E(t) +

∫ t

0

(
ν

2
|u(s)|21 + 2λγ|dM (s)|22

)
ds ≤

(
1 +

4γ

ε2

)
σ0e

c4M
1
2
(δ−1)t.
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Remark 1. The revised result improves the result of Proposition 2.4 in [1] when
n = 2. We can use the revised Proposition 2.4 to prove directly the existence of a
global solution for (2.3) when n = 2, and of a local solution for (2.3) when n = 3. We
can also use the same techniques as in [2] to prove the existence of a global solution
for (2.3) when n = 3.

Remark 2. There is a similar error in the proof of Theorem 3.1: the estimate
(3.20) is not correct. However, we can revise the proof for Theorem 3.1 as above and
show that the result of Theorem 3.1 still holds.
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AN ADAPTIVE FINITE ELEMENT METHOD
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Abstract. We develop a finite element adaptive strategy with error control for the wave scat-
tering by periodic structures. The unbounded computational domain is truncated to a bounded one
by an extension of the perfectly matched layer (PML) technique, which attenuates both the outgoing
and evanescent waves in the PML region. PML parameters such as the thickness of the layer and the
medium property are determined through sharp a posteriori error estimates. Numerical experiments
are included to illustrate the competitive behavior of the proposed adaptive method.
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1. Introduction. We consider the prediction of the scattered modes that arise
when an electromagnetic wave is incident on some periodic structure. The media are
assumed to be nonmagnetic, and the magnetic permeability µ is constant everywhere.
Then the electromagnetic fields in the whole space are governed by the following time
harmonic (time dependence e−iωt) Maxwell equations:

∇×E− iωµH = 0,(1.1)

∇×H + iωεE = 0.(1.2)

Here E and H are the electric and the magnetic field vectors, respectively. The phys-
ical structure is described by the dielectric coefficient ε(x), x = (x1, x2, x3). In this
paper we restrict ourselves to the two-dimensional setting (a one-dimensional (1D)
grating problem); the medium and the grating surface are assumed to be constant
in the x2 direction. The more complicated biperiodic diffraction (three-dimensional)
problems will be considered in a separate work. We assume that the dielectric coeffi-
cient ε(x) = ε(x1, x3) is periodic in the x1 direction with period L > 0:

ε(x1 + nL, x3) = ε(x1, x3) ∀ x1, x3 ∈ R, n integer.

The dielectric coefficient ε(x) may be complex. We assume Im ε(x) ≥ 0 and Re ε(x) >
0 whenever Im ε(x) = 0. It is natural to assume that ε is constant away from a region
{(x1, x3) : b2 < x3 < b1} that includes the structure; that is, there exist constants ε1
and ε2 such that

ε(x1, x3) = ε1 in Ω1 = {(x1, x3) : x3 ≥ b1},
ε(x1, x3) = ε2 in Ω2 = {(x1, x3) : x3 ≤ b2}.

In practical applications, we have ε1 > 0, but ε2 may be complex according to the
substrate material used in Ω2. Depending on the direction and polarization of the
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Fig. 1.1. Geometry of the grating problem.

incident plane wave, the Maxwell equations can be simplified by considering the two
fundamental polarizations: the transverse electric (TE) polarization and the trans-
verse magnetic (TM) polarization. In the TE case, the electric field E is parallel to
the x2 axis: E = (0, u, 0)T ∈ R3, where u = u(x1, x3) satisfies the Helmholtz equation

∆u+ k2(x)u = 0 in R2.(1.3)

Here k2(x) = ω2ε(x)µ is the magnitude of the wave vector. Similarly, in the TM
case, the magnetic field H is parallel to the x2 axis: H = (0, u, 0)T ∈ R3, where
u = u(x1, x3) satisfies the equation

div

(
1

k2(x)
∇u
)

+ u = 0 in R2.(1.4)

Scattering theory in periodic structures, which has many important applications
in microoptics, has recently received considerable attention in the applied mathemat-
ical community. We refer to Dobson and Friedman [14], Abboud [1], Dobson [13],
Bao, Dobson, and Cox [4], Bao [5], and Bao, Cao, and Yang [7] for the existence,
uniqueness, and numerical approximations of solutions to grating problems. A good
introduction to the problem of electromagnetic diffraction through periodic structures
can be found in Petit [19]. More recent review on the diffractive optics technology
and its mathematical modeling can be found in Bao, Cowsar, and Masters [6].

The purpose of this paper is to develop efficient numerical methods for solving the
1D grating problem for both the TE (1.3) and the TM (1.4) polarizations. In doing
so, the first difficulty is to truncate the domain into a bounded computational domain.
The finite element method studied in [4] and [7] is based on variational formulation on
the bounded domain Ω, with periodic condition in the x1 direction and the transparent
boundary condition on the top and bottom boundaries Γ1 and Γ2 (see Figure 1.1).
The transparent boundary condition is obtained by insisting that the solution u of
(1.3) or (1.4) be composed of bounded outgoing plane waves in Ω1 and Ω2 plus the
incident wave uI in Ω1. The derived transparent boundary condition is represented as
a quasi-differential operator and is nonlocal. In practical computations, the infinite
series in the definition of the quasi-differential operator must be truncated. The
second difficulty is the singularity of the solutions. Usually, the grating surface is
piecewise smooth, and across the surface the dielectric coefficient ε(x) is discontinuous.
Thus the solution of (1.4) will have singularities which slow down the finite element
convergence when using uniform mesh refinements. Even in the TE case (1.3), when
there are lossy materials beneath the grating surface, the transmitted waves decay
exponentially. This makes uniform mesh refinements uneconomical.
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The purpose of this paper is twofold: First we explore the possibility of applying
the recently introduced perfectly matched layer (PML) technique to deal with the
first difficulty in truncating the unbounded domain. Second we explore the possibility
of using an a posteriori error analysis to design an efficient adaptive method with
error control which adaptively determines the finite element meshes and the PML
parameters such as the thickness of the PML region and the medium property inside
the region. We hope the ideas developed in this paper will be useful for solving other
scattering problems on unbounded domains.

A posteriori error estimates are quantities computable in terms of the discrete
solution and data, and they measure the actual discrete errors without knowledge of
the limit solutions. They are essential in designing algorithms for mesh modifications,
which equidistribute the computational effort and optimize the computation. Ever
since the pioneering work of Babuška and Rheinboldt [3], the adaptive finite element
methods based on a posteriori error estimates have become crucial in scientific and
engineering computations. The ability to control error and the asymptotically optimal
approximation property (see, e.g., Morin, Nochetto, and Siebert [18], Chen and Dai
[10]) make the adaptive finite element method attractive for complicated physical and
industrial processes (cf., e.g., Chen and Dai [9], Chen, Nochetto, and Schmidt [11]).
For efforts to solve scattering problems using adaptive methods based on a posteriori
error estimates, we refer to the recent work of Monk [16] and Monk and Süli [17].

Under the assumption that the exterior solution is composed of outgoing waves
only, the basic idea of the PML technique is to surround the computational domain
with a finite thickness layer of a specially designed model medium, which would either
slow down or attenuate all the waves that propagate from inside the computational
domain. Since the work of Berenger [8], which proposed a PML for use with the time
dependent Maxwell equations, various constructions of PML absorbing layers have
been proposed and studied in the literature. We refer to Turkel and Yefet [22] for a
review on various proposed models, and Lassas and Somersalo [15] for the study of
mathematical properties of the PML equations. In practical applications involving
the PML method, there is a judicial compromise between a thin layer, which requires
a rapid variation of the artificial material property, and a thick layer, which requires
more grid points and hence more computer time and more storage (see, e.g., Collino
and Monk [12]). In this paper, we propose to use an a posteriori error estimate to
determine the PML parameters. Moreover, the derived a posteriori error estimate has
the nice feature of exponentially decaying in terms of the distance to the computa-
tional domain. This property leads to coarse mesh size away from the computational
domain and thus makes the total computational cost insensitive to the thickness of
the PML absorbing layer.

The layout of the paper is as follows. In section 2 we first recall the transparent
boundary condition for 1D grating problems and introduce our PML formulation,
which extends the standard PML condition for Helmholtz equations, in that our
PML condition attenuates both the outgoing plane waves and the evanescent waves.
This extension allows us to reduce the computational domain and thus reduce the
computational cost. Existence, uniqueness, and convergence of the PML formulation
are considered. In section 3 we introduce the finite element discretization. In section 4
we derive a sharp a posteriori error estimate, which lays down the basis of the adaptive
method. In section 5 we present parallel results for the case in which Im ε2 > 0.
Finally, in section 6 we discuss the implementation of the adaptive method and present
several numerical examples to illustrate the competitive behavior of the method.
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2. The PML formulation. In this section we shall introduce variational for-
mulations for the 1D grating problem (1.3) and (1.4) using the PML technique, which
are suitable for further finite element approximations. As the discussions for the TE
polarization and TM polarization are parallel, we shall concentrate on the TE po-
larization first, and state the corresponding results on the TM polarization without
proof. In sections 2–4, we consider the case in which Im ε2 = 0, and thus kj = ω

√
εjµ

is real, for j = 1, 2. The parallel results for the case in which Im ε2 > 0 will be
presented in section 5.

2.1. TE polarization. We start by recalling the variational formulation with
transparent boundary condition in [4], which is the basis of the analysis in this paper.
Let uI = eiαx1−iβx3 be the incoming plane wave that is incident upon the grating
surface from the top, where α = k1 sin θ, β = k1 cos θ, and −π/2 < θ < π/2 is the
incident angle. We are interested in quasi-periodic solutions u, that is, solutions u of
(1.3) such that uα = ue−iαx1 are periodic in x1 with period L > 0.

Define Γj = {(x1, x3) : 0 < x1 < L, x3 = bj}, j = 1, 2. We wish to reduce the
problem to the bounded domain

Ω = {(x1, x3) : 0 < x1 < L and b2 < x3 < b1}.
The radiation condition for the diffraction problem insists that u is composed of
bounded outgoing plane waves in Ω1 and Ω2, plus the incident wave uI in Ω1.

For each integer n, let αn = 2πn/L; since uα is periodic in the x1 direction with
period L > 0, it has a Fourier series expansion

uα(x1, x3) =
∑
n∈Z

u(n)α (x3)e
iαnx1 , u(n)α (x3) =

1

L

∫ L

0

uαe
−iαnx1dx1.

Thus we have the expansion

u(x1, x3) = uαe
iαx1 =

∑
n∈Z

u(n)α (x3)e
i(αn+α)x1 .(2.1)

Since u satisfies the Helmholtz equation ∆u+ k21u = 0 in Ω1, we deduce that∑
n∈Z

[(
k21 − (αn + α)2

)
u(n)α (x3) +

d2

dx23
u(n)α (x3)

]
ei(αn+α)x1 = 0,

which yields(
k21 − (αn + α)2

)
u(n)α (x3) +

d2

dx23
u(n)α (x3) = 0 for x3 ≥ b1.(2.2)

For any integer n ∈ Z and j = 1, 2, we define

βnj = βnj (α) =

{(
k2j − (αn + α)2

)1/2
if k2j ≥ (αn + α)2,

i
(
(αn + α)2 − k2j

)1/2
if k2j < (αn + α)2.

(2.3)

Note that β01 = β by definition. We assume that k2j �= (αn+α)2 for all n ∈ Z, j = 1, 2.
This condition excludes “resonance.” All the solutions of the ODE (2.2) can then be
written as

u(n)α (x3) = An1 e
iβn

1 x3 +Bn1 e
−iβn

1 x3 ,
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with complex constants An1 and Bn1 . The assumption that only bounded outgoing
plane waves except uI exist in Ω1 implies Bn1 = 0 for n �= 0. Thus we deduce from
(2.1) the following Rayleigh expansion in Ω1:

u = uI +
∑
n∈Z

An1 e
i(αn+α)x1+iβn

1 x3 , x ∈ Ω1.(2.4)

Similarly, we have the following Rayleigh expansion in Ω2:

u =
∑
n∈Z

An2 e
i(αn+α)x1−iβn

2 x3 , x ∈ Ω2.(2.5)

For any quasi-periodic function f which has the expansion f =
∑
n∈Z f

(n) ei(αn+α)x1 ,
the following Dirichlet to Neumann operator Tj is introduced in [4]:

(Tjf)(x1) =
∑
n∈Z

iβnj f
(n)ei(αn+α)x1 , 0 < x1 < L , j = 1, 2.(2.6)

With this notation in mind, simple calculation shows that the Rayleigh expansion u
in Ωj , j = 1, 2, defined in (2.4) and (2.5) satisfies, respectively, the following relations:

∂(u− uI)
∂ν

− T1(u− uI) = 0 on Γ1,
∂u

∂ν
− T2u = 0 on Γ2,(2.7)

where ν stands for the unit outer normal to ∂Ω. These are the transparent bound-
ary conditions used in [4]. To define a variational formulation for the 1D grating
problem (1.3) using the boundary conditions (2.7), we first introduce the following
subspace of H1(Ω), which includes all the quasi-periodic functions:

X(Ω) = {w ∈ H1(Ω) : w(0, x3) = e−iαLw(L, x3) for b2 < x3 < b1}.
Define the sesquilinear form b : X(Ω)×X(Ω)→ C as follows:

b(ϕ,ψ) =

∫
Ω

(∇ϕ∇ψ̄ − k2(x)ϕψ̄
)
dx−

2∑
j=1

∫
Γj

(Tjϕ)ψ̄dx1.(2.8)

Note that ∂uI

∂ν − T1uI = −2iβuI on Γ1; the weak formulation of the 1D grating
problem in the TE polarization then reads as follows: Given incoming plane wave
uI = eiαx1−iβx3 , seek u ∈ X(Ω) such that

b(u, ψ) = −
∫
Γ1

2iβuIψ̄dx1 ∀ ψ ∈ X(Ω).(2.9)

Recall that k2(x) = ω2ε(x)µ. The existence of a unique solution u to (2.9) is proved
for all but a sequence of countable frequencies ωj with |ωj | → +∞. Further uniqueness
results can be obtained for any frequency ω if the dielectric coefficient ε(x) has non-
zero imaginary part in some subdomains in Ω. In this paper, we shall not elaborate
on this issue, and we assume in the following that the variational problem (2.9) has a
unique solution. Then the general theory in Babuška and Aziz [2, Chapter 5] implies
that there exists a constant γ > 0 such that the following inf-sup condition holds:

sup
0 �=ψ∈H1(Ω)

|b(ϕ,ψ)|
‖ψ ‖H1(Ω)

≥ γ ‖ϕ ‖H1(Ω) ∀ ϕ ∈ X(Ω).(2.10)
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Now we turn to the introduction of absorbing PML layers. We surround our
computational domain Ω with two PML layers of thickness δ1 and δ2 in Ω1 and Ω2,
respectively. The specially designed model medium in the PML layers should basically
be chosen so that either the wave never reaches its external boundary or the amplitude
of the reflected wave is so small that it does not essentially contaminate the solution
in Ω. Let s(x3) = s1(x3) + is2(x3) be the model medium property which satisfies

s1, s2 ∈ C(R), s1 ≥ 1, s2 ≥ 0, and s(x3) = 1 for b2 ≤ x3 ≤ b1.(2.11)

Here we remark that, in contrast to the original PML condition which takes s1 ≡ 1 in
the PML region, we allow a variable s1 in order to attenuate both the outgoing and
evanescent waves there. The advantage of this extension makes our method insensitive
to the distance of the PML region from the structure. Following the general idea in
designing PML absorbing layers, we introduce the PML regions

ΩPML1 = {(x1, x3) : 0 < x1 < L and b1 < x3 < b1 + δ1},
ΩPML2 = {(x1, x3) : 0 < x1 < L and b2 − δ2 < x3 < b2},

and the PML differential operator

L :=
∂

∂x1

(
s(x3)

∂

∂x1

)
+

∂

∂x3

(
1

s(x3)

∂

∂x3

)
+ k2(x)s(x3).

The PML equations in the PML region are

L(û− uI) = 0 in ΩPML1 ,(2.12)

Lû = 0 in ΩPML2 .(2.13)

The equation satisfied by the PML solution û in the domain Ω is the original Helmholtz
equation ∆û + k2(x)û = 0. Let D = {(x1, x3) : 0 < x1 < L, b2 − δ2 < x3 < b1 + δ1}.
Due to the assumption (2.11), we can now formulate the PML model which we are
going to solve in this paper:

Lû = −g in D,(2.14)

with the quasi-periodic boundary condition û(0, x3) = e−iαLû(L, x3) for b2 − δ2 <
x3 < b1 + δ1, and the Dirichlet condition û = uI on ΓPML1 = {(x1, x3) : 0 < x1 <
L, x3 = b1 + δ1}, û = 0 on ΓPML2 = {(x1, x3) : 0 < x1 < L, x3 = b2 − δ2}. Here the
source function is

g =

{
−LuI in ΩPML1 ,

0 elsewhere.

For any G ⊂ D, define

X(G) = {w ∈ H1(G) : wα = we−iαx1 is periodic in x1 with period L},

and introduce the sesquilinear form a
G

: X(G)×X(G)→ C as

a
G

(ϕ,ψ) =

∫
G

(
s(x3)

∂ϕ

∂x1

∂ψ̄

∂x1
+

1

s(x3)

∂ϕ

∂x3

∂ψ̄

∂x3
− k2(x)s(x3)ϕψ̄

)
dx.
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Define
◦
X(D) = {w ∈ X(D), w = 0 on ΓPML1 ∪ ΓPML2 }. Then the weak formulation of

the PML model reads as follows: Find û ∈ X(D) such that û = uI on ΓPML1 , û = 0
on ΓPML2 , and

a
D

(û, ψ) =

∫
D

gψ̄dx ∀ ψ ∈
◦
X(D).(2.15)

Our next objective is to prove the existence and uniqueness of the above problem
and derive an error estimate between û and u, the solution of the original 1D grating
problem (2.9). To achieve the goal, we first find an equivalent formulation of (2.15)
in the domain Ω. Similar to the argument leading to the Rayleigh expansion (2.4),
we deduce from (2.12) that

û = uI +
∑
n∈Z

(
An1 e

iβn
1

∫ x3
b1

s(τ)dτ +Bn1 e
−iβn

1

∫ x3
b1

s(τ)dτ
)
ei(αn+α)x1 in ΩPML1 .(2.16)

If we write û(x1, b1) = uI(x1, b1) +
∑
n∈Z û

(n)
α (b1)e

i(αn+α)x1 on Γ1, then the constants
An1 , B

n
1 can be uniquely determined by the additional boundary condition û = uI on

ΓPML1 through following equations:

An1 +Bn1 = ûnα(b1),

An1 e
iβn

1

∫ b1+δ1
b1

s(τ)dτ +Bn1 e
−iβn

1

∫ b1+δ1
b1

s(τ)dτ = 0.

Thus we conclude from (2.16) that

û = uI +
∑
n∈Z

ζn1 (x3)

ζn1 (b1)
û(n)α (b1)e

i(αn+α)x1 in ΩPML1 ,(2.17)

where ζn1 (x3) = e
−iβn

1

∫ b1+δ1
x3

s(τ)dτ − eiβn
1

∫ b1+δ1
x3

s(τ)dτ
. Similarly, we deduce from (2.13)

that

û =
∑
n∈Z

ζn2 (x3)

ζn2 (b2)
û(n)α (b2)e

i(αn+α)x1 in ΩPML2 ,(2.18)

where ζn2 (x3) = e−iβn
2

∫ x3
b2−δ2

s(τ)dτ − eiβn
2

∫ x3
b2−δ2

s(τ)dτ . Similar to (2.6), for any quasi-
periodic function f which has the expansion f =

∑
n∈Z f

(n)ei(αn+α)x1 , we define the
following Dirichlet to Neumann operator TPMLj :(

TPMLj f
)

(x1) =
∑
n∈Z

iβnj coth(−iβnj σj)f (n)ei(αn+α)x1 ,(2.19)

where coth(τ) = eτ+e−τ

eτ−e−τ and

σ1 =

∫ b1+δ1

b1

s(τ)dτ, σ2 =

∫ b2

b2−δ2
s(τ)dτ.(2.20)

Then we know easily from (2.17), (2.18) that

∂(û− uI)
∂ν

− TPML1 (û− uI) = 0 on Γ1,
∂û

∂ν
− TPML2 û = 0 on Γ2.(2.21)
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This motivates us to introduce the sesquilinear form b
PML

: X(Ω)×X(Ω)→ C,

b
PML

(ϕ,ψ) =

∫
Ω

(∇ϕ∇ψ̄ − k2(x)ϕψ̄)dx−
2∑
j=1

∫
Γj

(TPMLj ϕ)ψ̄dx1,(2.22)

and introduce the following variational problem: Find ϑ ∈ X(Ω) such that

b
PML

(ϑ, ψ) = −
∫
Γ1

iβ(1 + coth(−iβσ1))uIψ̄dx1 ∀ ψ ∈ X(Ω),(2.23)

where we have used the fact that ∂uI

∂ν − TPML1 uI = −iβ(1 + coth(−iβσ1))uI on Γ1.
The following lemma establishes the relation of this variational problem to the PML
model problem (2.15).

Lemma 2.1. Any solution û of the problem (2.15) restricted to Ω is a solution of
(2.23). Conversely, any solution ϑ of the problem (2.23) can be uniquely extended to
the whole domain D to be a solution of (2.15).

Proof. This proof is standard based on the constructions given in (2.17) and
(2.18). We omit the details.

Let ∆n
j = |k2j − (αn + α)2|1/2 and Uj = {n : k2j > (αn + α)2}, j = 1, 2. Then we

have βnj = ∆n
j for n ∈ Uj , and βnj = i∆n

j for n /∈ Uj . Let

∆−j = min{∆n
j : n ∈ Uj}, ∆+

j = min{∆n
j : n /∈ Uj}.(2.24)

The following lemma plays a key role in the subsequent analysis.
Lemma 2.2. For any ϕ,ψ ∈ X(Ω), we have∣∣∣∣∣

∫
Γj

(Tjϕ− TPMLj ϕ)ψ̄dx1

∣∣∣∣∣ ≤Mj‖ϕ ‖L2(Γj)‖ψ ‖L2(Γj),

where

Mj = max

(
2∆−j

e2σ
I
j∆

−
j − 1

,
2∆+

j

e2σ
R
j ∆

+
j − 1

)

and σRj , σ
I
j are the real and imaginary parts of σj defined in (2.20), that is, σj =

σRj + iσIj .
Proof. For any ϕ,ψ ∈ X(Ω), their traces on Γj have the following expansions:

ϕ(x1, bj) =
∑
n∈Z

ϕ(n)α (bj)e
i(αn+α)x1 , ψ(x1, bj) =

∑
n∈Z

ψ(n)α (bj)e
i(αn+α)x1 .

The ϕ
(n)
α and ψ

(n)
α are the Fourier coefficients of periodic functions ϕα(x1, bj) =

ϕ(x1, bj)e
−iαx1 and ψα(x1, bj) = ψ(x1, bj)e

−iαx1 . The orthogonality property of
Fourier series yields

‖ϕ‖2L2(Γj)
= ‖ϕα‖2L2(Γj)

= L
∑
n∈Z
|ϕ(n)α (bj)|2,

‖ψ‖2L2(Γj)
= ‖ψα‖2L2(Γj)

= L
∑
n∈Z
|ψ(n)α (bj)|2.
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By the orthogonality of Fourier series, we also have∫
Γj

(Tjϕ− TPMLj ϕ)ψ̄dx = L
∑
n∈Z

iβnj (1− coth(−iβnj σj))ϕ(n)α (bj)ψ̄
(n)
α (bj).(2.25)

For n ∈ Uj , we have βnj = ∆n
j > 0; thus

|iβnj (1− coth(−iβnj σj))| =
∣∣∣∣ 2βnj

1− e−2iβn
j σj

∣∣∣∣ =
2∆n

j

|e2i∆n
j σ

R
j − e2∆n

j σ
I
j |

≤ 2∆n
j

e2∆
n
j σ

I
j − 1

≤ 2∆−j
e2∆

−
j σ

I
j − 1

≤Mj ,

where we have used the facts that ∆n
j ≥ ∆−j for n ∈ Uj and that the function

ξ(τ) = 2τ/(e2τ − 1) is decreasing for τ > 0. A similar argument shows that, for
n /∈ Uj , ∣∣iβnj (1− coth(−iβnj σj))

∣∣ ≤ 2∆+
j

e2∆
+
j σ

R
j − 1

≤Mj .

This completes the proof upon using the Cauchy inequality in (2.25).
Now let us take a closer look at the structure of constant Mj , which controls

the modeling error of the PML equation towards the original 1D grating problem
(see Theorems 2.4 and 2.5 below). Once the incoming plane wave uI = eiαx1−iβx3

is fixed, the numbers ∆−j ,∆
+
j are fixed according to (2.24). Thus the constant Mj

approaches zero exponentially as the PML parameters σRj , σ
I
j tend to infinity. From

the definition (2.20) we know that σRj , σ
I
j can be calculated by the medium property

s(x3), which is usually taken as a power function:

s(x3) =


1 + σm1

(x3 − b1
δ1

)m
if x3 ≥ b1,

1 + σm2

(b2 − x3
δ2

)m
if x3 ≤ b2,

m ≥ 1.

Thus we have

σRj =

(
1 +

Reσmj
m+ 1

)
δj , σIj =

Imσmj
m+ 1

δj .(2.26)

It is obvious that either enlarging the thickness δj of the PML layers or enlarging the
medium parameters Reσmj and Imσmj will reduce the PML approximation error.

Lemma 2.3. For any ψ ∈ X(Ω), we have

‖ψ ‖L2(Γj) ≤ ‖ψ ‖H1/2(Γj) ≤ Ĉ‖ψ ‖H1(Ω),

with Ĉ =
√

1 + (b2 − b1)−1. Here if ψ(x1, bj) =
∑
n∈Z ψ

(n)
α (bj)e

i(αn+α)x1 on Γj,

‖ψ ‖H1/2(Γj) =

(
L
∑
n∈Z

(1 + |αn + α|2)1/2|ψ(n)α (bj)|2
)1/2

.

Proof. Since ψ ∈ X(Ω), we have the expansion

ψ(x1, x3) =
∑
n∈Z

ψ(n)α (x3)e
i(αn+α)x1 in Ω.
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Thus

‖ψ‖2H1(Ω) = L
∑
n∈Z

∫ b1

b2

(
(1 + |αn + α|2)|ψ(n)α (x3)|2 +

∣∣∣∣ ddx3ψ(n)α (x3)

∣∣∣∣2
)
dx3.

Now the proof follows from the identity

|ψ(n)α (bj)|2 = |ψ(n)α (x3)|2 +

∫ x3

bj

d

dx3
|ψ(n)α (τ)|2dτ, b2 ≤ x3 ≤ b1,

and the Cauchy inequality. This completes the proof.
Theorem 2.4. Let γ > 0 be the constant in the inf-sup condition (2.10) and

(M1 + M2)Ĉ
2 < γ. Then the PML variational problem has a unique solution û.

Moreover, we have the following error estimate:

‖|u− û‖|Ω := sup
0 �=ψ∈H1(Ω)

|b(u− û, ψ)|
‖ψ ‖H1(Ω)

≤ ĈM1‖ û− uI ‖L2(Γ1) + ĈM2‖ û ‖L2(Γ2).(2.27)

Proof. By Lemma 2.1 we need to show only that the variational problem (2.23)
has a unique solution. We resort to the general existence and uniqueness result for
sesquilinear forms in [2, Chapter 5]. The key point is to show the inf-sup condition for

the sesquilinear form b
PML

: X(Ω)×X(Ω)→ C defined in (2.22). Thanks to Lemmas
2.2 and 2.3 and the assumption (M1 +M2)Ĉ

2 < γ, this is now obvious:

|bPML

(ϕ,ψ)| ≥ |b(ϕ,ψ)| −
2∑
j=1

∣∣∣∣∣
∫
Γj

(Tjϕ− TPMLj ϕ)ψ̄dx1

∣∣∣∣∣
≥ |b(ϕ,ψ)| − (M1 +M2)Ĉ

2‖ϕ ‖H1(Ω)‖ψ ‖H1(Ω) ∀ϕ,ψ ∈ X(Ω).

It remains to prove the estimate (2.27). By (2.8), (2.9), (2.22), (2.23), and Lemma 2.1
we conclude that

b(u− û, ψ) = −
∫
Γ1

2iβuIψ̄dx1 +

∫
Γ1

iβ(1 + coth(−iβσ1))uIψ̄dx1

+ b
PML

(û, ψ)− b(û, ψ)

=

∫
Γ1

(T1 − TPML1 )(û− uI)ψ̄dx1

+

∫
Γ2

(T2 − TPML2 )ûψ̄dx1 ∀ψ ∈ X(Ω).(2.28)

This completes the proof of the theorem upon using Lemmas 2.2 and 2.3.
To conclude, we remark that the error estimate (2.27) is a posteriori in nature as

it depends on the PML solution û. This makes a posteriori error control possible (see
section 3 for details).

2.2. TM polarization. In this subsection we state the parallel results for the
grating problem (1.4). First we introduce the sesquilinear form b

TM : X(Ω)×X(Ω)→
C as follows:

b
TM

(ϕ,ψ) =

∫
Ω

(
1

k2(x)
∇ϕ∇ψ̄ − ϕψ̄

)
dx−

2∑
j=1

∫
Γj

1

k2j
(Tjϕ)ψ̄dx1.(2.29)
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The variational form for the 1D grating problem in the TM polarization then reads
as follows: Given incoming plane wave uI = eiαx1−iβx3 , seek uTM ∈ X(Ω) such that

bTM
(uTM, ψ) = −

∫
Γ1

2iβ

k21
uIψ̄dx1 ∀ ψ ∈ X(Ω).(2.30)

We again assume the above variational problem has a unique solution, and thus there
exists a constant γTM > 0 such that

sup
0 �=ψ∈H1(Ω)

|b
TM(ϕ,ψ)|
‖ψ ‖H1(Ω)

≥ γ
TM
‖ϕ ‖H1(Ω) ∀ ϕ ∈ X(Ω).(2.31)

The sesquilinear form a
TM : X(D)×X(D)→ C associated with the PML problem is

a
TM(ϕ,ψ) =

∫
Ω

(
1

k2(x)
s(x3)

∂ϕ

∂x1

∂ψ̄

∂x1
+

1

k2(x)

1

s(x3)

∂ϕ

∂x3

∂ψ̄

∂x3
− s(x3)ϕψ̄

)
dx,

and the weak formulation of the PML problem reads as the following: Find ûTM ∈
X(D) such that ûTM = uI on ΓPML1 , ûTM = 0 on ΓPML2 , and

a
TM

(ûTM, ψ) =

∫
D

gTM ψ̄dx ∀ ψ ∈
◦
X(D),(2.32)

where g
TM

= g/k21. The following theorem is an analogue of Theorem 2.4.

Theorem 2.5. Assume that
∑2
j=1MjĈ

2/k2j < γ
TM
. Then the PML variational

problem (2.32) has a unique solution ûTM. Moreover, we have the following error
estimate:

‖|uTM − ûTM‖|TMΩ = sup
0 �=ψ∈H1(Ω)

|b
TM

(uTM − ûTM, ψ)|
‖ψ ‖H1(Ω)

≤
(
M1Ĉ

k21

)
‖ ûTM − uI ‖L2(Γ1) +

(
M2Ĉ

k22

)
‖ ûTM ‖L2(Γ2).

3. The discrete problem. In this section we introduce the finite element ap-
proximations of the PML problems (2.15) and (2.32). LetMh be a regular triangula-
tion of the domain D. Remember that any triangle T ∈ Mh is considered as closed.

We assume that any element T must be completely included in ΩPML1 , ΩPML2 , or Ω.
To define a finite element space whose functions are quasi-periodic in the x1 direction,
we also require that if (0, z) is a node on the left boundary, then (L, z) also be a node
on the right boundary, and vice versa. Let Vh(D) ⊂ X(D) be the conforming linear

finite element space and
◦
V h(D) = Vh(D)

⋂ ◦
X(D). Denote by Ih : C(D̄)→ Vh(D) the

standard finite element interpolation operator.
The finite element approximation to the PML problem (2.15) reads as follows:

Find ûh ∈ Vh(D) such that ûh = IhuI on ΓPML1 , ûh = 0 on ΓPML2 , and

a
D

(ûh, ψh) =

∫
D

gψ̄hdx ∀ ψh ∈
◦
V h(D).(3.1)

Following the general theory in [2, Chapter 5], the existence of a unique solution of
the discrete problem (3.1) and the finite element convergence analysis depend on the
following discrete inf-sup condition:

sup

0 �=ψh∈
◦
V h(D)

|a
D

(ϕh, ψh)|
‖ψh ‖H1(D)

≥ γ
D
‖ϕh ‖H1(D) ∀ ϕh ∈

◦
V h(D),(3.2)
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where the constant γ
D
> 0 is independent of the finite element mesh size. Since the

continuous problem (2.15) has a unique solution by Theorem 2.4, the sesquilinear
form a

D
: X(D) × X(D) → C satisfies the continuous inf-sup condition. Then a

general argument of Schatz [20] implies that (3.2) is valid for sufficiently small mesh
size h < h∗. Based on (3.2), an appropriate a priori error estimate can also be
derived that depends on the regularity of the PML solution û. In this paper, we
are interested in a posteriori error estimates and the associated adaptive algorithm.
Thus in the following we simply assume that the discrete problem (3.1) has a unique
solution ûh ∈ Vh(D).

Let

A(x) =

(
A11 0
0 A22

)
=

(
s(x3) 0

0 1/s(x3)

)
, B(x) = k2(x)s(x3).

Then the definitions of L and a
D

can be rewritten as

L = div (A(x)∇) +B(x),

a
D

(ϕ,ψ) =

∫
D

(
A(x)∇ϕ∇ψ̄ −B(x)ϕψ̄

)
dx.

For any T ∈ Mh, we denote by hT its diameter. Let Bh denote the set of all sides
that do not lie on ΓPMLj , j = 1, 2. For any e ∈ Bh, he stands for its length. For any
T ∈Mh, we introduce the residual

RT := Lûh|T + g|T =

{
L(ûh|T − uI|T ) if T ⊂ ΩPML1 ,

Lûh|T otherwise.
(3.3)

For any interior side e ∈ Bh which is the common side of T1 and T2 ∈Mh, we define
the jump residual across e as

Je = (A∇ûh|T1
−A∇ûh|T2

) · νe,(3.4)

using the convention that the unit normal vector νe to e points from T2 to T1. Define
Γleft = {(x1, x3) : x1 = 0, b2 − δ2 < x3 < b1 + δ1} and Γright = {(x1, x3) : x1 = L,
b2 − δ2 < x3 < b1 + δ1}. If e = Γleft ∩ ∂T for some element T ∈ Mh and e′ the
corresponding side on Γright which is also a side of some element T ′, then we define
the jump residual as

Je = A11

[
∂

∂x1
(ûh|T )− e−iαL · ∂

∂x1
(ûh|T ′)

]
,

Je′ = A11

[
eiαL · ∂

∂x1
(ûh|T )− ∂

∂x1
(ûh|T ′)

]
.

(3.5)

For any T ∈ Mh, denote by η
T

the local error estimator, which is defined as
follows:

η
T

= max
x∈T̃

ρ(x3) ·
hT ‖RT ‖L2(T ) +

(
1

2

∑
e⊂T

he‖ Je ‖2L2(e)

)1/2 ,(3.6)

where T̃ is the union of all elements having nonempty intersection with T and

ρ(x3) =

{
|s(x3)|e−Rj(x3) if x ∈ ΩPMLj ,

1 if x ∈ Ω,



ADAPTIVE METHODS FOR WAVE SCATTERING PROBLEMS 811

with Rj(x3), j = 1, 2, being defined in (4.5)–(4.6) below.

The following theorem is the main result in this paper.

Theorem 3.1. There exists a constant C > 0, depending only on the minimum
angle of the meshMh, such that the following a posteriori error estimate is valid:

‖|u− ûh‖|Ω ≤ ĈM1‖ûh − uI‖L2(Γ1) + ĈM2‖ûh‖L2(Γ2)

+ ĈM3‖ IhuI − uI ‖L2(ΓPML
1 ) + C(1 + C1 + C2)

( ∑
T∈Mh

η2
T

)1/2
,

where the constants Mj(j = 1, 2), Ĉ, Cj, and M3 are defined in Lemmas 2.2, 2.3, 4.3,
and 4.4, respectively.

The proof of this theorem will be given in section 4. We notice that when the PML
parameters σRj and σIj tend to infinity, the constants Mj decay exponentially and the

constants Cj remain bounded. The important exponential decay factors e−Rj(x3) in
the PML region ΩPMLj allow us to take thicker PML layers without introducing un-
necessary fine meshes away from the computational domain. Recall that thicker PML
layers allow a smaller PML medium property, which enhances numerical stability.

To conclude this section, we state the parallel results for the TM polarization.
The finite element approximation to the TM polarization problem (2.32) reads as
follows: Find ûTMh ∈ Vh(D) such that ûTMh = IhuI on ΓPML1 , ûTMh = 0 on ΓPML2 , and

aTM(ûTMh , ψh) =

∫
D

gTM ψ̄hdx ∀ ψh ∈
◦
V h(D).(3.7)

Let ATM(x) = A(x)/k2(x), B
TM

(x) = B(x)/k2(x), and L
TM

= div (A
TM

(x)∇) +
B

TM(x). Then we have the following theorem, parallel to Theorem 3.1, whose proof
is omitted.

Theorem 3.2. There exists a constant C > 0, depending only on the minimum
angle of the meshMh, such that the following a posteriori error estimate is valid:

‖|uTM − ûTMh ‖|TMΩ ≤
(
ĈM1

k21

)
‖ûTMh − uI‖L2(Γ1) +

(
ĈM2

k22

)
‖ûTMh ‖L2(Γ2)

+

(
ĈM3

k21

)
‖ IhuI − uI ‖L2(ΓPML

1 ) + C(1 + C1 + C2)

( ∑
T∈Mh

η2
T

)1/2
,

where the constants Mj(j = 1, 2), Ĉ, Cj, and M3 are defined in Lemmas 2.2, 2.3,
4.3, and 4.4, respectively. Here η

T
is defined as in (3.6), with A,L, g, and ûh being

replaced by ATM ,LTM , gTM , and û
TM
h , respectively.

4. A posteriori error analysis. In this section we prove the a posteriori error
estimates in Theorem 3.1.

4.1. Error representation formula. For any ψ ∈ X(Ω), we extend it to be a
function in X(D) denoted by ψ̃ as follows:

ψ̃(x1, x3) =
∑
n∈Z

ζ̄nj (x3)

ζ̄nj (bj)
ψ(n)α (bj)e

i(αn+α)x1 in ΩPMLj , j = 1, 2,(4.1)
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where ζnj (x3) are defined in (2.17) and (2.18), and ψ
(n)
α (bj) are the Fourier coefficients

of the function ψα = ψe−iαx1 on Γj ; that is,

ψ(x1, bj) =
∑
n∈Z

ψ(n)α (bj)e
i(αn+α)x1 .(4.2)

It is easy to see that ψ̃ = ψ on Γj and L ¯̃
ψ = 0 in ΩPMLj .

Lemma 4.1. Let νj be the unit outer normal to ΩPMLj . Then for any ϕ,ψ ∈ X(Ω)
we have ∫

Γj

TPMLj ϕψ̄dx1 = −
∫
Γj

ϕ
∂

¯̃
ψ

∂νj
dx1.(4.3)

Proof. Define

ϕ(x1, bj) =
∑
n∈Z

ϕ(n)α (bj)e
i(αn+α)x1 .

Then, by the definition of TPMLj in (2.19) and the orthogonality property of Fourier
series, we have∫

Γj

TPMLj ϕψ̄dxj = L
∑
n∈Z

iβnj coth(−iβnj σj)ϕ(n)α (bj)ψ̄
(n)
α (bj).

On the other hand, by direct calculation from (4.1), we have

−
∫
Γj

ϕ
∂

¯̃
ψ

∂νj
dx1 = (−1)j−1

∫
Γj

ϕ
∂

¯̃
ψ

∂x3
dx1

= (−1)j−1L
∑
n∈Z

d

dx3

(
ζnj (x3)

ζnj (bj)

)∣∣∣∣∣
x3=bj

ϕ(n)α (bj)ψ̄
(n)
α (bj)

= L
∑
n∈Z

iβnj coth(−iβnj σj)ϕ(n)α (bj)ψ̄
(n)
α (bj).

This completes the proof.

Whenever no confusion of the notation is incurred, we shall write ψ̃ as ψ in ΩPMLj

in what follows.

Lemma 4.2 (error representational formula). For any ψ ∈ X(Ω), which is ex-

tended to be a function in X(D) according to (4.1), and ψh ∈
◦
V h(D), we have

b(u− ûh, ψ) =

∫
D

g(ψ − ψh)dx− a
D

(ûh, ψ − ψh)

+

∫
Γ1

(T1 − TPML1 )(ûh − uI)ψ̄dx1 +

∫
Γ2

(T2 − TPML2 )ûhψ̄dx1

+

∫
ΓPML

1

1

s(x3)

∂ψ̄

∂x3
(IhuI − uI)dx1.(4.4)
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Proof. First by (2.28), (2.22), and (2.8) we have

b(u− ûh, ψ) = b(u− û, ψ) + b(û− ûh, ψ)

=

∫
Γ1

(T1 − TPML1 )(û− uI)ψ̄dx1 +

∫
Γ2

(T2 − TPML2 )ûψ̄dx1

+ b
PML

(û− ûh, ψ)−
2∑
j=1

∫
Γj

(Tj − TPMLj )(û− ûh)ψ̄dx1

=

∫
Γ1

(T1 − TPML1 )(ûh − uI)ψ̄dx1 +

∫
Γ2

(T2 − TPML2 )ûhψ̄dx1

+ b
PML

(û− ûh, ψ).

Next, by (2.22) and Lemma 4.1, we obtain

b
PML

(û− ûh, ψ) = a
Ω

(û− ûh, ψ)−
2∑
j=1

∫
Γj

TPMLj (û− ûh)ψ̄dx1

= aΩ(û− ûh, ψ) +

2∑
j=1

∫
Γj

(û− ûh)
∂ψ̄

∂νj
dx1.

Recall that νj is the unit outer normal to ∂ΩPMLj . Since Lψ̄ = 0 in ΩPMLj , we deduce
by the Green formula that

a
ΩPML
j

(û− ûh, ψ) =

∫
Γj

(û− ûh)
∂ψ̄

∂νj
dx1 +

∫
ΓPML
j

1

s(x3)

∂ψ̄

∂νj
(û− ûh)dx1.

Thus, by using (2.15) and (3.1), we conclude that

b
PML

(û− ûh, ψ) = a
D

(û− ûh, ψ)−
∫
ΓPML
j

1

s(x3)

∂ψ̄

∂νj
(û− ûh)dx1

=

∫
D

g(ψ − ψh)dx− a
D

(ûh, ψ − ψh)−
∫
ΓPML

1

1

s(x3)

∂ψ̄

∂x3
(û− ûh)dx1,

where we have used the fact that û = ûh = 0 on ΓPML2 . This completes the proof.
We remark that evaluating the various terms in the error representation formula

in suitable Sobolev norms would yield the desired a posteriori error estimate in The-
orem 3.1. To achieve the goal, we need to prove stability estimates for the extension
(4.1) of the function ψ in ΩPMLj .

4.2. Estimates for the extension. We begin by introducing the notation

R1(x3) = min

(
∆−1

∫ x3

b1

s2(τ)dτ,∆+
1

∫ x3

b1

s1(τ)dτ

)
, x3 ≥ b1,(4.5)

R2(x3) = min

(
∆−2

∫ b2

x3

s2(τ)dτ,∆+
2

∫ b2

x3

s1(τ)dτ

)
, x3 ≤ b2.(4.6)

The objective of this section is to prove the following two lemmas.
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Lemma 4.3. For any ψ ∈ X(Ω), let ψ be extended to the whole domain D
according to (4.1). Then we have the following estimates, for j = 1, 2 :

‖ s−1eRj∇ψ ‖L2(ΩPML
j ) ≤ Cj‖ψ ‖H1(Ω),

where

Cj = Ĉ max

(
2kjδ

1/2
j

1− e−2∆−
j σ

I
j

,
2(1 + 2δj(∆

+
j + kj))

1/2

1− e−2∆+
j σ

R
j

)
.

Proof. We define

r1(x3) =

∫ b1+δ1

x3

s(τ)dτ, r2(x3) =

∫ x3

b2−δ2
s(τ)dτ.

Then we have ζnj (x3) = e−iβn
j rj(x3) − eiβn

j rj(x3) and consequently

dζ̄nj
dx3

= iβ̄nj (−1)j s̄(x3)
[
eiβ̄

n
j r̄j(x3) + e−iβ̄n

j r̄j(x3)
]
.

By direct calculation, we deduce from (4.1) that∫ L

0

|∇ψ|2dx1 = L
∑
n∈Z
|αn + α|2|e−iβn

j rj(x3) − eiβn
j rj(x3)|2|ζnj (bj)|−2|ψ(n)α (bj)|2

+ L
∑
n∈Z
|βnj |2|s(x3)|2|e−iβn

j rj(x3) + eiβ
n
j rj(x3)|2|ζnj (bj)|−2|ψ(n)α (bj)|2.(4.7)

Since Reβnj ≥ 0 and Imβnj ≥ 0, we have

Re (−iβnj rj(x3)) = Im (βnj )rRj (x3) + Re (βnj )rIj (x3) ≥ 0.

Thus

|e−iβn
j rj(x3) ± eiβn

j rj(x3)|2
= |e2iIm (−iβn

j rj(x3)) ± e−2Re (−iβn
j rj(x3))|2e2Re (−iβn

j rj(x3))

≤ 4e2(Im (β
n
j )r

R
j (x3)+Re (β

n
j )r

I
j (s3)).

Similarly, we have

|ζnj (bj)|2 = |e−iβn
j σj − eiβn

j σj |2
= |e2iIm (−iβn

j σj) − e−2Re (−iβn
j σj)|2e2Re (−iβn

j σj)

≥ e2(σR
j Im β

n
j +σ

I
jRe β

n
j )|1− e−2(σR

j Im β
n
j +σ

I
jRe β

n
j )|2.

Therefore, by rj(bj) = σj , we have

|e−iβn
j rj(x3) ± eiβn

j rj(x3)|2|ζnj (bj)|−2

≤ 4e
−2(Im βn

j |
∫ x3
bj

s1(τ)dτ |+Re βn
j |
∫ x3
bj

s2(τ)dτ |)(1− e−2(σR
j Im β

n
j +σ

I
jRe β

n
j ))−2.(4.8)

For n ∈ Uj , we have Reβnj = ∆n
j ≥ ∆−j , Imβnj = 0, and thus

|e−iβn
j rj(x3) ± eiβn

j rj(x3)|2|ζnj (bj)|−2 ≤ 4e−2Rj(x)(1− e−2∆−
j σ

I
j )−2.
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Similarly, for n /∈ Uj , we have Reβnj = 0, Imβnj = ∆n
j ≥ ∆+

j , and thus

|e−iβn
j rj(x3) ± eiβn

j rj(x3)|2|ζnj (bj)|−2

≤ 4e
−2(∆n

j −∆+
j )|

∫ x3
bj

s1(τ)dτ |e−2Rj(x3)(1− e−2∆+
j σ

R
j )−2

≤ 4e−2Rj(x3)e−2(∆
n
j −∆+

j )|x3−bj |(1− e−2∆+
j σ

R
j )−2,

where we have used the fact s1(τ) ≥ 1 (see (2.11)). Define I1 = (b1, b1 + δ1) and
I2 = (b2 − δ2, b2). It is easy to see that∫

Ij

e−2(∆
n
j −∆+

j )|x3−bj |dx3 ≤ min

(
δj ,

1

2(∆n
j −∆+

j )

)
.

Then, by substituting the above estimates into (4.7), we obtain that

‖s−1eRj∇ψ‖2L2(ΩPML
j ) =

∫
Ij

|s(x3)|−2e2Rj(x3)

∫ L

0

|∇ψ(x1, x3)|2dx1dx3

≤ 4Lδj
∑
n∈Uj

|αn + α|2 + |βnj |2
(1− e−2∆−

j σ
I
j )2
|ψ(n)α (bj)|2

+ 4L
∑
n/∈Uj

|αn + α|2 + |βnj |2
(1− e−2∆+

j σ
R
j )2
|ψ(n)α (bj)|2 min

(
δj ,

1

2(∆n
j −∆+

j )

)
:= I + II.

If n ∈ Uj , then |αn + α|2 + |βnj |2 = k2j and we get

I ≤ C2j Ĉ−2L
∑
n∈Uj

|ψ(n)α (bj)|2.

If n /∈ Uj , then |αn + α|2 − k2j = |βnj |2 = |∆n
j |2 and we have |αn + α|2 + |βnj |2 ≤

k2j + 2|∆n
j |2 ≤ 2(kj + ∆n

j )2 and |αn + α|2 + |βnj |2 ≤ 2|αn + α|2. Hence

|αn + α|2 + |βnj |2 ≤ 2|αn + α|(kj + ∆n
j ).

Therefore

(|αn + α|2 + |βnj |2) min

(
δj ,

1

2(∆n
j −∆+

j )

)
≤ |αn + α|(1 + 2δj(∆

+
j + kj)),

which yields

II ≤ C2j Ĉ−2L
∑
n/∈Uj

|αn + α||ψ(n)α (bj)|2.

This completes the proof upon using Lemma 2.3.
Lemma 4.4. For any ψ ∈ X(Ω), let ψ be extended to the whole domain D

according to (4.1). Then we have the following estimate:∥∥∥∥ s−1 ∂ψ∂x3
∥∥∥∥
L2(ΓPML

1 )

≤ ĈM3‖ψ ‖H1(Ω),
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where

M3 = max

(
2∆−1 e

−∆−
1 σ

I
1

1− e−2∆−
1 σ

I
1

,
2∆+

1 e
−∆+

1 σ
R
1

1− e−2∆+
1 σ

R
1

)
.

Proof. From (4.1) we deduce easily that

∂ψ

∂x3
(x1, b1 + δ1) = −2

∑
n∈Z

iβ̄n1 s̄(b1 + δ1)ζ̄
n
1 (b1)

−1ψ(n)α (b1)e
i(αn+α)x1 .

Thus ∥∥∥∥ s−1 ∂ψ∂x3
∥∥∥∥
L2(ΓPML

1 )

= 2

(∑
n∈Z
|βn1 |2|ζn1 (b1)|−2|ψ(n)α (b1)|2

)1/2
.

Moreover,

|βn1 ||ζn1 (b1)|−1 =

∣∣∣∣ βn1 eiβn
1 σ1

1− e2iβn
1 σ1

∣∣∣∣ .
The proof now follows by using an argument similar to that used in Lemma 2.2 and
using Lemma 2.3.

4.3. Proof of Theorem 3.1. Since we are going to interpolate nonsmooth func-
tions satisfying quasi-periodic boundary conditions, we resort to an interpolation op-

erator Πh :
◦
X(D) →

◦
V h(D) of Scott and Zhang [21]. Let Nh = {ai}Ni=1 be the set

of all nodes of Mh, and {φi}Ni=1 be the corresponding nodal basis of Vh(D). For any
node ai that is interior to D, we take σi = e, any side in Bh having ai as one of its ver-
tices. For any node ai that is in the interior of the left boundary, that is, ai = (0, zi)
for some zi ∈ (b2 − δ2, b1 + δ1), we take σi as any side on the left boundary with one
vertex ai. Now for the corresponding node ak = (L, zi) on the right boundary, we
choose σk as the corresponding side of σi on the right boundary. For the nodes ai
lying on ΓPML1 ∪ ΓPML2 , we can choose σi as any side on ΓPML1 or ΓPML2 which has ai
as one vertex. Let ai,1 = ai, and let {ai,j}2j=1 be the set of nodal points in σi with

nodal basis {φi,j}2j=1. Define {ψi,j}2j=1 as the L2(σi) dual basis:∫
σi

ψi,j(x)φi,k(x)ds = δjk, j, k = 1, 2,

where δjk is the Kronecker delta. We let ψi = ψi,1. Then the interpolation operator
Πh : H1(D)→Wh(D), the conforming linear finite element space, is defined by

Πhv(x) =

N∑
i=1

φi(x)

∫
σi

ψi(x)v(x)ds.

This operator enjoys the following interpolation estimates (see [21]):

‖ v −Πhv ‖L2(T ) ≤ ChT ‖∇v ‖L2(T̃ ), ‖ v −Πhv ‖L2(e) ≤ Ch1/2e ‖∇v ‖L2(ẽ),(4.9)

where T̃ and ẽ are the union of all elements inMh having nonempty intersection with
T ∈Mh and the side e, respectively.
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It remains to check whether Πh keeps the boundary condition. It is clear that

Πhv = 0 on ΓPML1 ∪ ΓPML2 since for any ai ∈ ΓPML1 ∪ ΓPML2 , σi ⊂ ΓPML1 or ΓPML2 and
v = 0 on ΓPML1 ∪ΓPML2 . Now let ai = (0, zi) ∈ Γleft and ak = (L, zi) ∈ Γright. Without
loss of generality, we assume σi = {x ∈ R2 : x1 = 0, zi ≤ x3 ≤ zi+1}. Then by
construction we have σk = {x ∈ R2 : x1 = L, zi ≤ x3 ≤ zi+1}. The nodal basis
φi,1 = (zi+1−x3)/(zi+1−zi), φi,2 = (x3−zi)/(zi+1−zi) in σi, and simple calculation
yields the dual basis

ψi,1 =
4

di
φi,1 − 2

di
φi,2, ψi,2 = − 2

di
φi,1 +

4

di
φi,2 in σi,

where di = zi+1 − zi. Similar computation implies that

ψk(L, x3) = ψi(0, x3) =
4

di
φi,1(x3)− 2

di
φi,2(x3).

Thus for any v ∈ X(D), that is, v(0, x3) = e−iαLv(L, x3), we have

Πhv(ai) =

∫
σi

ψi(0, x3)v(0, x3)dx3 = e−iαL

∫
σk

ψk(L, x3)v(L, x3)dx3 = e−iαLΠhv(ak).

This shows that Πhv ∈
◦
V h(D) if v ∈

◦
X(D).

Now we take ψh = Πhψ ∈
◦
V h(D) in the error representation formula (4.4) to get

b(u− ûh, ψ) =

∫
D

g(ψ −Πhψ)dx− a
D

(ûh, ψ −Πhψ)

+

∫
Γ1

(T1 − TPML1 )(ûh − uI)ψ̄dx1 +

∫
Γ2

(T2 − TPML2 )ûhψ̄dx1

+

∫
ΓPML

1

1

s(x3)

∂ψ̄

∂x3
(IhuI − uI)dx1

:= III + · · ·+ VII.(4.10)

We observe that, by integration by parts and using (3.3)–(3.5),

III + IV =
∑
T∈Mh

(∫
T

RT (ψ −Πhψ)dx+
∑
e⊂∂T

1

2

∫
e

Je(ψ −Πhψ)ds

)
.

Standard argument in the a posteriori error analysis using (4.9) and Lemma 4.3 implies

|III + IV| ≤ C
∑
T∈Mh

η
T
‖ ρ−1∇ψ ‖L2(T̃ )

≤ C(1 + C1 + C2)

( ∑
T∈Mh

η2
T

)1/2
‖ψ ‖H1(Ω).(4.11)

By Lemmas 2.2 and 2.3, we obtain

|V + VI| ≤M1‖ ûh − uI ‖L2(Γ1)‖ψ ‖L2(Γ1) +M2‖ ûh ‖L2(Γ2)‖ψ ‖L2(Γ2)

≤ (ĈM1‖ ûh − uI ‖L2(Γ1) + ĈM2‖ ûh ‖L2(Γ2))‖ψ ‖H1(Ω).(4.12)

Finally, by Lemmas 4.4 and 2.3, we get

|VII| ≤M3‖ IhuI − uI ‖L2(ΓPML
1 )‖ψ ‖L2(Γ1)

≤ ĈM3‖ IhuI − uI ‖L2(ΓPML
1 )‖ψ ‖H1(Ω).(4.13)

Combining (4.10)–(4.13), we obtain the desired estimate.
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5. The Im ε2 > 0 case. In this section we consider briefly the case in which
Im ε2 > 0. Let k22 = ω2ε2µ satisfy Im k2 > 0. The constants βn2 in the Rayleigh
expansion (2.5) in Ω2 satisfy

(βn2 )2 = k22 − (αn + α)2, Imβn2 ≥ 0.

Define

ξn =
1

2
(Re (k22)− (αn + α)2), η =

1

2
Im (k22);

then (βn2 )2 = 2(ξn + iη). Since Im (k22) = ω2Im (ε2)µ > 0, we obtain that

Reβn2 = (
√
ξ2n + η2 + ξn)1/2, Imβn2 = (

√
ξ2n + η2 − ξn)1/2.(5.1)

Thus Re (−2iβn2 σ2) = 2(σR2 Imβn2 + σI2Reβn2 ) ≥ 2σR2 Imβn2 , which yields

|iβn2 (1− coth(−iβn2 σ2))| =
∣∣∣∣ 2βn2
e−2iβn

2 σ2 − 1

∣∣∣∣ ≤ 2|βn2 |
e2σ

R
2 Im β

n
2 − 1

=
2
√

2(ξ2n + η2)1/4

e2σ
R
2 (
√
ξ2n+η

2−ξn)1/2 − 1
.

Simple but tedious calculation shows that the function on the right-hand side is in-
creasing with respect to ξn ∈ R. Since ξn ≤ 1

2Re (k22), we deduce after some algebraic
manipulations that

|iβn2 (1− coth(−iβn2 σ2))| ≤ M2 :=
2|k2|

e2σ
R
2 Im k2 − 1

.

Therefore, we conclude that Lemma 2.2 and thus Theorems 2.4 and 2.5 are also valid
in the case Im ε2 > 0, with the definition of M2 being replaced by M2 =M2.

Moreover, we deduce from (4.8) that

|e−iβn
2 r2(x3) ± eiβn

2 r2(x3)|2|ζn2 (b2)|−2 ≤ 4e
−2Im βn

2

∫ b2
x3
s1(τ)dτ (1− e−2σR

2 Im β
n
2 )−2.

Since ξn ≤ 1
2Re (k22), we see easily from (5.1) that Imβn2 ≥ Im k2. Now the argument

in the proof of Lemma 4.3 implies that

‖ s−1eR2∇ψ ‖L2(ΩPML
2 ) ≤ C2‖ψ ‖H1(Ω),

with R2(x3) = Im (k2)
∫ b2
x3
s1(τ)dτ and

C2 = Ĉ
2[max(1, |k2|)(1 + 2δ2(Im k2 + |k2|))]1/2

1− e−2σR
2 Im k2

.

Therefore, we know that Theorems 3.1 and 3.2 are also valid, with the definitions
of R2(x3), C2, and M2 being replaced by R2 = R2(x3), C2 = C2, and M2 = M2,
respectively.
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6. Implementation and numerical examples. The implementation of the
adaptive algorithm in this section is based on the PDE toolbox of MATLAB. We use
the a posteriori error estimate from Theorem 3.1 in the TE case and from Theorem 3.2
in the TM case to determine the PML parameters. According to the discussion in
section 2, we choose the PML medium property as the power function, and thus we
need to specify only the thickness δj of the layers and the medium parameters σmj
(see (2.26)). Recall from Theorem 3.1 that the a posteriori error estimate consists
of two parts: the PML error EPML and the finite element discretization error EFEM,
where

EPML = M1‖ ûh − uI ‖L2(Γ1) +M2‖ ûh ‖L2(Γ2),(6.1)

EFEM = M3‖ ûh − uI ‖L2(ΓPML
1 ) +

( ∑
T∈Mh

η2T

)1/2
.(6.2)

EPML and EFEM should be changed accordingly in the TM case. In our implementation
we first choose δj and σmj such that MjL

1/2 ≤ 10−8, which makes the PML error
negligible compared with the finite element discretization errors. Once the PML
region and the medium property are fixed, we use the standard finite element adaptive
strategy to modify the mesh according to the a posteriori error estimate (6.2). For
any T ∈Mh, we define the local a posteriori error estimator as follows:

η̃
T

= η
T

+M3‖ IhuI − uI ‖L2(ΓPML
1 ∩∂T ).

Now we describe the adaptive algorithm we have used in this paper.
Algorithm 6.1. Given tolerance TOL > 0. Let m = 2, δ1 = δ2 = δ.
• Choose δ and σmj such that MjL

1/2 ≤ 10−8 for j = 1, 2;

• Set the computational domain D = ΩPML2 ∪Γ2 ∪Ω∪Γ1 ∪ΩPML1 and generate
an initial mesh Mh over D;

• While EFEM > TOL do
– refine the mesh Mh according to the strategy

if η̃
T
> 1

2 maxT∈Mh
η̃
T

, refine the element T ∈Mh,

– solve the discrete problem (3.1) or (3.7) on Mh,
– compute error estimators on Mh,

end while.
In the following, we report several numerical examples to demonstrate the com-

petitive behavior of the proposed algorithm. In all the experiments we document only
the value δ of the thickness of the PML layers. The medium parameters σmj are de-

termined accordingly through the relation MjL
1/2 ≤ 10−8 for j = 1, 2. We normalize

the space variables so that µ = 1. We also scale the error estimator by a factor of 0.15
as in the PDE toolbox of MATLAB.

Example 1. We consider the simplest grating structure, a straight line. Assume
that a plane wave uI = eiαx1−iβx3 is incident on the straight line {x3 = 0}, which sep-
arates two homogeneous media whose dielectric coefficients are ε1 and ε2, respectively.
The exact solution is known (see [7]):

u =

{
uI + reiαx1+iβx3 if x3 > 0,

teiαx1−iβ̂x3 if x3 < 0,
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Table 6.1
Comparison of numerical results using adaptive and uniform mesh refinements. Nk is the

number of nodal points of mesh Mk. Ek = (
∑
T∈Mk

η̃2
T

)1/2 and ek = ‖∇(u− ûk) ‖L2(Ω).

Adaptive mesh Uniform mesh

k Nk ek Ek/ek
0 29 8.7043 0.7830

2 62 3.4572 0.9866

4 133 2.1563 1.1251

5 195 1.6772 1.1143

6 302 1.3618 1.1088

7 477 0.9488 1.2212

9 1135 0.5874 1.2348

10 1838 0.4592 1.2371

11 3379 0.3503 1.1864

k Nk ek Ek/ek
0 29 8.7043 0.7830

1 71 3.7531 1.0117

2 143 2.6595 1.1021

3 283 1.7305 1.2505

4 575 1.3448 1.1709

5 1145 0.9556 1.2237

6 2321 0.6984 1.1734

7 4639 0.5065 1.1982

8 9359 0.3549 1.1812
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Fig. 6.1. Quasioptimality of the adaptive mesh refinements.

where β̂ = (k22 − α2)1/2, t = 2β/(β + β̂), and r = (β − β̂)/(β + β̂). The domain
Ω = (0, L)× (−b, b), b > 0.

In our experiment, the parameters are chosen as ε1 = 1, ε2 = (0.22 + 6.71i)2,
θ = π/6, ω = π, and L = 2. Table 6.1 compares the results using adaptive and uniform
mesh refinements when b = δ = 1. It clearly shows the advantage of using adaptive
mesh refinements. Moreover, our a posteriori error estimate Ek = (

∑
T∈Mk

η̃2
T

)1/2

provides a rather good estimate of the interested error ek = ‖∇(u− ûk) ‖L2(Ω).

Figure 6.1 shows the curves of logNk versus log ‖∇(u − ûk) ‖L2(Ω), where Nk is
the number of nodes of the mesh Mk. It indicates that for the proposed method,
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Fig. 6.2. Robustness of the grating efficiency with respect to the thickness of PML layers.

the meshes and the associated numerical complexity are quasi-optimal: ‖∇(u −
ûk) ‖L2(Ω) = CN

−1/2
k is valid asymptotically.

Figure 6.2 shows the robustness of the proposed method with respect to the choice
of the thickness of PML layers: The error of the grating efficiency is insensitive to the
thickness δ. The definition of the grating efficiency can be found, for example, in [7].
The reason for this robustness is the exponential decay factor in our a posteriori error
estimator in the PML region. Our experiences indicate that the choice of δ in the
range of 0.5L to 1.5L usually produces satisfactory results.

The parameter b determines the position of the PML layers, which, in the tra-
ditional PML technique, should be sufficiently far away from the grating surface to
allow the evanescent waves to be sufficiently decayed. Figure 6.3 shows the robustness
of our method with respect to the position of the PML layers, which is the purpose
of our extended PML technique for attenuating both the outgoing and evanescent
waves.

Example 2. This example concerns the TM polarization on a grating surface
with a sharp angle, indicated in Figure 6.4. The parameters are the same as those
in Example 1. There are two reflected outgoing waves. The grating efficiency of the
reflected waves as well as the total grating efficiency are displayed in Figure 6.5. Fig-
ure 6.6 shows the mesh and the amplitude of the associated solution after 10 adaptive
iterations when the grating efficiency is stabilized. The mesh has 3585 nodes, and
the a posteriori error estimate over the mesh is 0.6468. The initial a posteriori error
estimate is 3.7838. This example shows clearly the ability of the proposed method to
capture the singularities of the problem. The meshes near the upper PML boundary
are rather coarse, as a result of the exponential decay factor in our a posteriori error
estimator.
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Fig. 6.3. Robustness of the grating efficiency with respect to the position of PML layers.
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Fig. 6.4. Geometry of the domain in Example 2.
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Fig. 6.5. Grating efficiency of Example 2.
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Fig. 6.6. The mesh (a) and the surface plot of the amplitude of the associated solution (b)
after 10 adaptive iterations. The mesh has 3585 nodes.
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Fig. 6.7. Geometry of the domain in Example 3.
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Fig. 6.8. Grating efficiency of Example 3.

Example 3. The final example is taken from [7] for TE polarization. The grating
structure consists of multiple interfaces, as shown in Figure 6.7. This type of grating
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Fig. 6.9. The mesh (a) and the surface plot of the amplitude of the associated solution (b)
after 7 adaptive iterations. The mesh has 1480 nodes.

structure has applications in optical filters and guided mode resonance devices. The
parameters are taken as follows: ε1 = 1, ε2 = 2.31, ε3 = 4.4, ε4 = 3.6, θ = π/4,
L = 0.3, and ω = 2π/0.526. The thickness of the PML layers δ = 0.4. There are
two transmitted waves and one reflected outgoing wave. The grating efficiency of the
reflected and transmitted waves as well as the total grating efficiency are displayed in
Figure 6.8. Figure 6.9 shows the mesh and the amplitude of the associated solution
after 7 adaptive iterations when the grating efficiency is stabilized. The mesh has
1480 nodes, and the a posteriori error estimate over the mesh is 0.8189. The initial a
posteriori error estimate is 3.0701. Again the meshes near the upper PML boundary
are rather coarse, as a result of the exponential decay factor in our a posteriori error
estimator.

Acknowledgment. The authors wish to thank Gang Bao for many inspiring
discussions on the physical background and mathematical modeling of the grating
problems.
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Abstract. Algorithms to compute the zeros and turning points of the solutions of second order
ODEs y′′ + B(x)y′ + A(x)y = 0 are developed. Two fixed point methods are introduced. The first
method consists of fixed point iterations that are built from the first order differential system relating
the problem function with a contrast function w; the contrast function w has zeros interlaced with
those of y, and it is a solution of a different second order ODE. This method, which generalizes pre-
vious findings [J. Segura, SIAM J. Numer. Anal., 40 (2002), pp. 114–133], requires the evaluation of
the ratio of functions y/w. The second method is based on fixed point iterations stemming from the
second order ODE; it requires the computation of the logarithmic derivative y′/y. Both are quadrat-
ically convergent methods; error bounds are provided. The particular case of second order ODEs
depending on one parameter, y′′n+Bn(x)y′n+An(x)yn(x) = 0, with applications to the computation
of the zeros and turning points of special functions, is discussed in detail. The combination of both
methods provides algorithms for the efficient computation of the zeros and turning points of a broad
family of special functions, including hypergeometric and confluent hypergeometric functions of real
parameters and variables (Jacobi, Laguerre, and Hermite polynomials are particular cases), Bessel,
Airy, Coulomb, and conical functions, among others. We provide numerical examples showing the
efficiency of the methods.
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1. Introduction. The study of the properties of zeros and turning points of
special functions and orthogonal polynomials has become an active field in applied
mathematics, which is not surprising, because of the importance of these topics in ap-
proximation theory, the theory of differential equations, and in many fields of physics
and engineering.

In [1] a method of computation of zeros of special functions was presented whose
applicability was illustrated for first kind Bessel functions and regular Coulomb wave
functions. This article applies matrix eigenvalue methods, first put forward by Grad
and Zakrajsek [10] and later enhanced by Ikebe and colleagues [11, 12, 15], who also
applied the method for regular Bessel and Coulomb functions.

In [22] a fixed point method was introduced which covers the problems solved by
matrix methods and can be applied to more general situations like, for instance, eval-
uating the zeros of any cylinder (Bessel) function or of any Coulomb function, and not
necessarily the regular solutions. This method generalizes previous findings regarding
Bessel functions [19, 21], and the fixed point iterations improve the convergence rate
of the global Newton method considered in [19, 20]. The case of second order ODEs
depending on one parameter, y′′n +B(x)y′n +An(x)yn(x) = 0 (B not depending on n),
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was described in detail. The global convergence of the resulting fixed point iteration
was proved, and algorithms to compute with certainty the zeros inside an interval
were given.

In this paper, the fixed point method described in [22], based on the first order
systems associated with a set of second order ODEs, is established in its most general
form (including the case of dependence of both A and B on the parameter n). In
the particular case of hypergeometric functions, these fixed point methods can be
directly applied for the computation of both the zeros and turning points (TPs).
However, cases will be described for which these methods are difficult to apply to
the computation of TPs, the main difficulty being that the change of variables is
not analytically invertible. An alternative method for the computation of TPs is
built. It is based on fixed point iterations stemming from the second order ODE.
These methods require that an algorithm to evaluate the logarithmic derivative of the
function be available. An explicit algorithm for the method based on the second order
ODE is provided (section 3.3); this algorithm, combined with those described in [22],
can be applied to the computation of the zeros and TPs of a broad family of special
functions including hypergeometric and confluent hypergeometric functions of real
parameters and variables (which includes classical orthogonal polynomials: Jacobi,
Laguerre, Hermite), Bessel and Airy functions, Coulomb wave functions, and conical
functions, among others.

Both methods are quadratically convergent, and error bounds are given. The
methods are illustrated with three examples that combine both methods (Bessel,
Coulomb, and conical functions). These examples show the efficiency of the proposed
computational schemes. Comparison with other methods is also provided.

2. Method I: Fixed point methods based on first order systems. In [22]
a method for the computation of the zeros of the solutions of second order ODEs

y′′ + By(x)y′ + Ay(x)y = 0,(2.1)

with continuous coefficients By and Ay in an interval I, was described. This method
can be applied when contrast functions w exist which are solutions of a differential
equation with continuous coefficients in I,

w′′ + Bw(x)w′ + Aw(x)w = 0,

such that, given two fundamental systems of solutions of these ODEs, {y(1), y(2)} and
{w(1), w(2)}, the functions y and w (twice continuously differentiable) are related by
a first order system

y′ = α(x)y + δ(x)w,

w′ = β(x)w + γ(x)y
(2.2)

both for {y(1), w(1)} and {y(2), w(2)}, with continuous coefficients α, β, δ, γ in I. Such
coefficients exist and are unique [14, Theorem 1], and therefore the restriction in the
contrast function is given by the continuity of the coefficients. We restrict the analysis
to real intervals I where all the coefficients are continuous and the solutions are twice
continuously differentiable, which implies the differentiability of the coefficients in
(2.2).

In [22], the case of uniparametric families of differential equations (Bw = Bn−1,
Aw = An−1, By = Bn, Ay = An, with n a parameter) was considered; however,
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the theory applies to more general situations. Also, the restriction By = Bw was
considered; as remarked in this same reference, this is not an essential restriction
because the By and Bw terms can be eliminated by proper changes of the dependent
variable.

An essential property is the fact that the δ and γ coefficients are different from
zero for any x in I [22, Lemma 2.1]; this is so because the first order system is simul-
taneously satisfied by {y(1), w(1)} and {y(2), w(2)} and, therefore, the first equation in
(2.2) implies δ(x) = W [y(1), y(2)]/Z(x), where W is the Wronskian of two independent
solutions of a second order ODE (and therefore never vanishes) and

Z(x) =

∣∣∣∣ y(1) w(1)

y(2) w(2)

∣∣∣∣ .(2.3)

Z(x) is never zero in I because we are assuming that the coefficients of the first order
system are continuous in I.

Another essential ingredient of the method is the fact that δ(x)γ(x) < 0 ∀x ∈ I if
there is a solution y of the original ODE or w of the contrast ODE with at least two
zeros in I [22, Lemma 2.1].

2.1. First order systems in normal form and oscillating functions. Let
us briefly summarize the transformations which must be performed over the system
(2.2) in order to build global fixed point iterations to compute the zeros of y(x). First,
a change of the dependent functions is considered

y(x) = λy(x)ȳ(x), w(x) = λw(x)w̄(x),(2.4)

with λy(x) �= 0, λw(x) �= 0 ∀x ∈ I in such a way that ȳ and w̄ satisfy

ȳ′ = ᾱ ȳ + δ̄ w̄,

w̄′ = β̄ w̄ + γ̄ ȳ
(2.5)

with δ̄ > 0 and δ̄ = −γ̄. This is accomplished by choosing

λy = sign(δ)λw

√
− δ

γ
,(2.6)

and the argument of the square root is positive if y and/or w have at least two zeros
in I. The new functions ȳ and w̄ obviously have the same zeros as y and w; it is
easy to verify that ȳ and w̄ satisfy second order ODEs with the same B-coefficient
accompanying the first derivative term. This is the situation described in more detail
in [22].

Considering now a change of variables

z(x) =

∫
δ̄(x)dx,(2.7)

the system reads

˙̄y = ā ȳ + w̄,

˙̄w = b̄ w̄ − ȳ,
where ā =

ᾱ

δ̄
and b̄ =

β̄

δ̄
,(2.8)

where dots mean derivatives with respect to z.



830 AMPARO GIL AND JAVIER SEGURA

From (2.8) we see that the ratio H(z) = ȳ/w̄ satisfies the first order nonlinear
ODE

Ḣ = 1 + H2 − 2ηH, where η =
b̄− ā

2
,(2.9)

which resembles the behavior of the tangent function, at least for small η. The zeros
and singularities of H are interlaced, as happens with the tangent function; this is a
consequence of the continuity of the coefficients in (2.2).

For later convenience, let us consider an additional change of the dependent
variables; namely, we can take ȳ(z) = ν(z)ỹ(z) and w̄(z) = ν(z)w̃(z), with ν(z) =
exp

(∫
1
2 (ā + b̄)dz

)
. Then, we have

˙̃y = −η ỹ + w̃,
˙̃w = η w̃ − ỹ,

(2.10)

and ỹ and w̃ satisfy second order ODEs in normal form; for instance,

¨̃y + Ã(z)ỹ = 0 with Ã(z) = 1 + η̇ − η2,(2.11)

and similarly for w with Ã(z) = 1− η̇ − η2.
We will say that the system (2.10) is in normal form. The function η, together with

an initial value H(z0), determines the location of the zeros; η measures the deviation
of H(z) from a tangent function. Generally, we will have |η(x)| < 1 (η(x) = η(z(x)))
in the interval I where our problem function oscillates. (This is an important feature
when we later analyze the rate of convergence of the method.) This is so because of
the following.

Theorem 2.1. If |η| > 1 in an interval I, then H(z(x)) has at most one zero
and one singularity in this interval

Proof. If |η| > 1, then (2.9) implies that Ḣ < 0 for |H−η| <
√
η2 − 1. Taking into

account that H is differentiable except at its singularities, that the singularities and
zeros are interlaced, and that H is increasing at their zeros, then if zs is a singularity
of H in I, necessarily limz→z+

s
H(z) = −∞ and there cannot be any other singularity

zs′ > zs (such that limz→z−
s′
H(z) = +∞) because H(z) becomes decreasing in a

band-shaped region (above the z axis for η > 0 and below for η < 0). On the other
hand, due to interlacing, if there can be no more than one singularity in I, then there
can be no more than one zero in I.

Therefore, we expect that |η| < 1 in an interval where the problem function
oscillates and has several zeros. A related result is the following sufficient condition
for the existence of infinitely many real zeros.

Theorem 2.2. If
∫ +∞
z0

(1 − η(z)2)dz = +∞ with η bounded in [z0,+∞), then

H(z) has infinitely many interlaced zeros and singularities for z > z0.
Proof. This is a direct consequence of a well known result: the solutions of an

equation in normal form ÿ(z) + A(z)y(z) = 0 that satisfies
∫ +∞
z0

A(z)dz = +∞ have

infinitely many zeros for z > z0. Considering (2.11), we see that H(z) = ỹ/w̃ has

infinitely many zeros because ỹ satisfies ¨̃y + Ã(z)ỹ = 0 with Ã(z) = 1 + η̇(z)− η(z)2

and ∫ +∞

z0

[
1 + η̇ − η2

]
dz = lim

z→+∞

[
η(z)− η(z0) +

∫ z

z0

(1− η(z)2)dz

]
= +∞,
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and because the zeros and singularities are interlaced, there is also an infinite number
of singularities.

Corollary 2.3. If |η(x)| < 1 − ε, 0 < ε < 1, ∀x ≥ x0, then H(z(x)) has
infinitely many interlaced zeros and singularities for x > x0.

2.2. Fixed point methods for first order systems. In [22], it was shown
that, given the ratio H(z), with zeros and singularities interlaced and satisfying the
first order nonlinear ODE (2.9), the fixed point iteration

T (z) = z − arctan(H(z))(2.12)

is globally convergent to the zeros of the problem function y(x(z)) in intervals where
η does not change sign. More specifically, denoting the zeros of the problem function

y(x(z)) by z
(j)
y (zeros of H(z)) and those of the contrast function by z

(j)
w (singularities

of H(z)), j being integer numbers such that

· · · < z(j)
w < z(j)

y < z(j+1)
w < z(j+1)

y < · · · ,(2.13)

then

lim
n→∞T (n)(z0) = z(j)

y ∀z0 ∈ (z(j)
w , z(j+1)

w )(2.14)

and the convergence to z
(j)
y is monotonic if η < 0 and z0 ∈ (z

(j)
w , z

(j)
y ) or η > 0 and

z0 ∈ (z
(j)
y , z

(j+1)
w ).

Global bounds for the distance between the zeros and singularities of H(z) when
η does not change sign can be established (see [22, Corollary 4.4]):

z(j)
y − z(j)

w >
π

2
and z(j+1)

w − z(j)
y <

π

2
for η < 0,(2.15)

and the contrary if η > 0.
These global bounds stem from the fact that, when η < 0, the graph of H(z)

lies above the graph of tan(z − z
(j)
y ) around z

(j)
y ; this feature also explains the global

convergence of the method (see [22]). Using these global bounds, iterative schemes
to compute with certainty all the zeros inside a given interval I were developed; for

instance, when η < 0, we have that z
(j+1)
w < z

(j)
y +π/2 < z

(j+1)
y < z

(j+1)
w and therefore

z(j+1)
y = lim

n→∞T (n)(z(j)
y + ∆z(j)) with ∆z(j) =

π

2
,(2.16)

and the iteration converges monotonically. Hence, the successive zeros inside I can
be found by using this forward iterative scheme. Obviously, when η > 0, a backward
scheme is the option:

z(j−1)
y = lim

n→∞T (n)(z(j)
y + ∆z(j)) with ∆z(j) = −π

2
.(2.17)

When η changes sign, forward and backward sweeps can be combined. For the usual
situation in which η changes sign only once, at z = zη, explicit algorithms were
described in [22]. These algorithms, depending on the sign of S = (z− zη)η, compute
zeros by an expansive sweep when S ≤ 0 (forward sweep for z > zη and backward
sweep for z < zη) or by a contractive sweep when S ≥ 0.
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2.3. Improvement of the iteration step. The iteration steps ∆z(j) = ±π/2

can be improved under certain monotonicity conditions of the Ã(z) coefficient in
(2.11). For instance, when η < 0 in I, a forward sweep (2.16) can be used to compute
the zeros of y(x(z)) in I, the convergence to each zero being monotonic because

z
(j)
y + π/2 ∈ (z

(j+1)
w , z

(j+1)
y ). (See [22], where the intervals (z

(j+1)
w , z

(j)
y ) are called

subintervals of monotonic convergence, or SMCs.) In this case (η < 0), the step

∆z(j) = π/2 can be improved when Ã(z) is a decreasing function; indeed, this means
that ỹ(z) (which has the same zeros as the problem function y(x(z))) oscillates more

slowly as z increases, and therefore z
(j+1)
y − z

(j)
y > z

(j)
y − z

(j−1)
y . Hence z

(j)
y + [z

(j)
y −

z
(j−1)
y ] < z

(j+1)
y . On the other hand, because of the global bounds between zeros and

singularities, ∆̃z(j) ≡ z
(j)
y − z

(j−1)
y > π/2, and therefore

z(j+1)
w < z(j)

y +
π

2
< z(j)

y + ∆̃z(j) < z(j+1)
y .

Hence, the starting value z
(j)
y + ∆̃z(j) guarantees (monotonic) convergence to z

(j+1)
y ,

and it is a better iteration step than ∆z(j) because z
(j)
y + ∆̃z(j) lies closer to z

(j+1)
y

than z
(j)
y + ∆z(j) (the convergence being monotonic in both cases).

In other words, when Ã(z) is decreasing and η is negative, the difference between

the two previously evaluated zeros (z
(j)
y and z

(j−1)
y ) can be used as the iteration step

to generate a starting value to compute the next zero (z
(j+1)
y ). Obviously, a similar

scheme can be devised for the case η > 0 when Ã(z) is increasing. These arguments
lead to the following result.

Theorem 2.4. If η(z)
˙̃
A(z) > 0 in (z

(j−1)
y , z

(j+1)
y ), then

z(j±1)
y = lim

n→∞T (n)(z(j)
y + ∆z(j)) with ∆z(j) = z(j)

y − z(j∓1)
y ,

where the upper sign is for the case η < 0, and the lower sign for η > 0. The
convergence is monotonic.

These iteration steps, as mentioned, improve the steps ∆z(j) = ±π/2. Notice,
however, that the improvement cannot be considered until two zeros have been eval-
uated. (The step ∆z(j) = π/2 must be considered in order to compute the second
zero.)

As we will discuss next, the condition η
˙̃
A > 0 can be achieved with great generality

for the case of families of second order ODEs depending continuously on one parameter
(typical case of special functions).

2.3.1. Difference-differential equations and three term recurrence re-
lations. Let us consider now the case, described in [22], of second order ODEs de-
pending continuously on one parameter k,

y′′k (x) + Bk(x)y′k(x) + Ak(x)yk(x) = 0,(2.18)

with general difference-differential equations (DDEs)

y′k(x) = ak(x)yk(x) + dk(x)yk−1(x),

y′k−1(x) = bk(x)yk−1(x) + ek(x)yk(x)
(2.19)

satisfied by two families of independent solutions {y(1)
k } and {y(2)

k }; we take integer
differences of k. These general DDEs will allow us, if permitted by the range of k, to
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consider two different contrast functions (yn−1 or yn+1) in order to compute the zeros
of a problem function yn; in other words, both equations in (2.19), taking k = n and
k = n + 1, can be used to build the fixed point iterations to compute the zeros of yn.

Explicitly and following the steps described in section 2.1, the following two fixed
point iterations can be built:

Ti(z) = z − arctan(Hi(z)), i = ±1,(2.20)

where

Hi(z) = −isign(dni)Ki
yn(x(z))

yn+i(x(z))
, ni =

{
n, i = −1,

n + 1, i = +1,
(2.21)

and

z(x) =

∫ √
−dnieni

dx, Ki =

(
−dni

eni

)i/2

,(2.22)

and x(z) is the inverse function of z(x).
The functions Hi(z) satisfy Ḣi = 1 + H2

i − 2ηHi, where the function η is given
by ηi(z) = ηi(x(z)) and

ηi(x) = i
1

2
√
−dnieni

(
ani − bni +

1

2

(
e′ni

eni

− d′ni

dni

))
.(2.23)

It is interesting to note that η+1 is equal to η−1 with reversed sign and with
the substitution n → n + 1. Therefore, quite generally, η−1 and η+1 have opposite
signs. This means, as described above, that two different types of sweep are possible
for computing the zeros of yn: forward and backward when the η functions do not
change sign, and expansive and contractive when the η functions change sign once.
This is an important feature for improving the iteration step ∆z(j) = ±π/2 by ∆̃z(j) =

z
(j)
y −z(j∓1)

y as described in the previous section, given that the sign of η can be chosen
in such a way that the hypothesis of Theorem 2.4 is met.

On the other hand, (2.19), satisfied by two independent sets of solutions ({y(1)
k }

and {y(2)
k }), implies the existence of a three term recurrence relation between the

functions Yk = αy
(1)
k + βy

(2)
k for any α, β, namely,

Yn+1 = rn Yn + sn Yn−1 with rn =
an − bn+1

en+1
, sn =

dn
en+1

,(2.24)

with sn �= 0∀x ∈ I.
Given that, by hypothesis, the coefficients of the DDEs are continuous in I, then

{y(1)
k } and {y(2)

k } are necessarily independent solutions of the three term recurrence

relation because the determinant Z(x) of (2.3) (with y ≡ y
(k)
n , k = 1, 2, and w = y

(k)
n−1

or w = y
(k)
n+1) can never vanish in I. This is an important fact from a computational

point of view because recurrence relations are useful tools for computing the ratios
yn/yn±1, which are at the heart of the fixed point method. In section 4, we will
discuss these recursive computations.
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2.4. Order of convergence of the method. The fixed point iteration T (z) =
z−arctan(H(z)) with H(z) satisfying (2.9) is, as shown in [22], a globally convergent
iteration. Next, we will show that the order of convergence is 2, and the speed of
convergence increases as |η| is smaller. As discussed before, generally |η| < 1 in the
region where the problem function y oscillates.

Defining εn = z(n) − z
(j)
y , where z(n) = T (n)(z0), z0 ∈ (z

(j)
w , z

(j+1)
w ), we have,

expanding in Taylor series, that

εn+1 = T (z(j)
y + εn)− z(j)

y = η(z(j)
y )ε2n +O(ε3n)

because Ṫ (z) = 1 − Ḣ(z)/(1 + H(z)2) = 2ηH(z)/(1 + H(z)2) and then Ṫ (z
(j)
y ) = 0,

T̈ (z
(j)
y ) = 2η(z

(j)
y ).

Therefore the fixed point iteration is quadratically convergent. The convergence
will be faster as η is smaller.

The error after the nth iteration can be bounded by standard methods when
|Ṫ (z)| ≤M < 1. It is well known that in this case |εn| ≤ |z(1)−z(0)|Mn/(1−M), and
given that |Ṫ (z)| =

∣∣2ηH/(1 + H2)
∣∣ ≤ |η(z)|, the absolute error in the computation

of z
(j)
y after the nth iteration can be bounded by

|εn| ≤
Mn

η

1−Mη
| arctan(H(z(0)))| ≤ π

2

Mn
η

1−Mη
,(2.25)

where |η| ≤Mη < 1 in (z
(j)
w , z

(j+1)
w ).

As we know from Theorem 2.1 and Corollary 2.3, we can expect that |η| < 1 in the
oscillating region I, while |η| is expected to become larger than 1 outside this region.
This is, for instance, the case of Bessel functions: as x → 0 the oscillations end and
|η| becomes larger than one. According to (2.25) we can expect that the convergence
will improve as larger zeros are considered since |η| decreases with increasing x. (For
Bessel functions the associated change of variables is trivial z(x) = x.) Later, we will
illustrate this behavior with numerical examples.

2.5. Examples of application: Hypergeometric functions and Bessel
functions. The method described will be particularly indicated for those systems
for which the associated change of variables (2.7) is a simple transformation which
can be analytically inverted; otherwise, we would need to develop an additional root
finding scheme to invert the function z(x) in order to obtain the zeros of the problem
function y(x).

In the particular case of the hypergeometric and confluent hypergeometric equa-
tions of real parameters and real variables, it is easy to build global fixed point itera-
tions with simple changes of variables. On the other hand, the method described can
also be applied to compute the TPs of these functions, or, more generally, the zeros
of any derivative, given that the derivatives of (confluent) hypergeometric functions
are (confluent) hypergeometric functions. This is an important category of functions,
which, as a subset, includes classical orthogonal polynomials (Hermite, Laguerre, Ja-
cobi).

We will illustrate the method for (confluent) hypergeometric functions. For imagi-
nary arguments (Bessel functions), we will see how difficulties arise in the computation
of the TPs, which suggest the development of an alternative method, to be developed
in section 3. This alternative method will also be the method of choice for computing
the turning points of other functions related to hypergeometric functions of complex
parameters or variables (Coulomb and conical functions).
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2.5.1. Hypergeometric functions. Let us consider the confluent hypergeo-
metric equation

xy′′ + (β − n− x)y′ + ny = 0,(2.26)

with n and β real numbers. One of the solutions of this ODE is Kummer’s function

1F1(−n;β−n;x). (We modify the standard notation for the parameters 1F1(a; b;x).)
We denote by yn our problem function, which is a solution of (2.26). Taking the
derivative of (2.26), we observe that y′n satisfies the same equation with n replaced
by n − 1; we define yn−1 ≡ y′n and, considering (2.26), we can write the first order
system relating these functions:

y′n = yn−1,

y′n−1 =
(

1− β − n
x

)
yn−1 − n

xyn.
(2.27)

For instance, in the case of Kummer functions, yn−1 = y′n = n
n−β 1F1(−n +

1;β − n + 1;x); we can also take as a contrast function a confluent hypergeometric
function yn+1 such that y′n+1 = yn; in terms of the Kummer function we could choose

yn+1 = n+1−β
n+1 1F1(−n − 1, β − n − 1, x). In fact, it is not difficult to see that the

selection of yn+1 as our contrast function is more appropriate since improved iteration
steps (Theorem 2.4) can be implemented for this selection (contrary to the case when
yn−1 is the contrast function).

Similarly one can build fixed point iterations for hypergeometric functions starting
with the differential equation

x(1− x)y′′ + [c− (a + b + 1)x]y′ − aby = 0;(2.28)

as before, the derivative of a solution y is also a solution of the hypergeometric equa-
tion with the parameters a, b, c incremented by one. Taking y′ as the contrast function
for y, we have that the associated change of variables is z(x) =

∫ √
ab/
√
x(1− x)dx.

Considering, for instance, the case I = (0, 1), we see that, if y has at least two zeros
in I, then ab > 0 and the change of variables is z(x) =

√
ab arcsin(2x − 1). The

change of variables is simple and analytically invertible, and we can proceed similarly
to confluent hypergeometric functions.

As for confluent hypergeometric functions, the first order system built from the
differential equation is equivalent to the first order DDEs for uniparametric families
of functions with parameters a = −n, b = β − n, c = γ − n; this means that to
compute the zeros of a solution y(a, b; c;x) of (2.28), we choose as contrast functions
y(a±1, b±1; c±1;x). This is not the only possibility since, for instance, we could also
choose y(a± 1, b; c;x) (and for the confluent case, y(a± 1; b;x)); this was the choice
considered in [22] for the case of Legendre, Hermite, and Laguerre polynomials. The
selection of the most appropriate contrast functions depending on the ranges of the
parameters and the dependent variables lies outside the scope of the present work [7].

As mentioned before, for (confluent) hypergeometric functions, the same methods
apply for the computation of the TPs, and because the derivatives of (confluent)
hypergeometric functions are (confluent) hypergeometric functions, also satisfy the
(confluent) hypergeometric equation. These methods therefore enable us to compute
the zeros of classical orthogonal polynomials (Hermite, Laguerre, Legendre, Jacobi,
Gegenbauer) and their derivatives, or the zeros and TPs of any other solution of the
same differential equation.
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2.5.2. Bessel functions. Bessel functions are Kummer functions of imaginary
variable [25]; they are a simple example of an important type of function for which the
method described above can be used to compute the zeros [21]; however, it is not so
simple to employ the same methods for the computation of their turning points. Let
us consider Ricatti–Bessel functions yn (Bessel functions multiplied by

√
x), which

satisfy second order ODEs in normal form,

y′′n + An(x)yn = 0, where An(x) = 1− n2 − 1/4

x2
,(2.29)

and first order DDEs in normal form

y′n = −ηyn + yn−1,

y′n−1 = ηyn−1 − yn,
with η =

n− 1/2

x
,(2.30)

which can be used to build the corresponding fixed point methods. In this case, the
transformations considered in section 2.1 are not required because both the ODE and
the DDEs are in normal form; therefore, the change of variables is trivial z(x) = x.
Since η(x)A′n(x) > 0 for n > 0, these DDEs are suitable for applying improved
iteration steps (Theorem 2.4) for positive orders. (Positive and negative orders are
related by reflection formulas; (see [19, equation (24)]).)

Let us notice that we could have considered the first order system associated
with the second order ODE (as we did for hypergeometric functions of real variables);
however, the associated change of variables

z(x) =

∫ √
An(x)dx(2.31)

is not simple enough to allow for an analytical inversion. For this reason, the first
order DDEs (2.30) are preferred. A second essential difference with respect to hyper-
geometric functions of real variables and parameters is that the computation of TPs
is not so simple as the computation of the zeros through (2.30); the derivatives of
Bessel functions (or Ricatti–Bessel functions) are not Bessel functions, and they do
not satisfy the same type of DDEs. We could consider the first order system associ-
ated to the second order ODE to compute the zeros of y′n using as a contrast function
the same yn; however, as commented, we are faced with the numerical inversion of
the change of variables (2.31). Also, the possibility of considering y′n as the problem
function with contrast function y′n−1 (as we can do for hypergeometric functions) is
also possible, but the associated change of variables is even more involved than (2.31)
and is related to elliptic integrals.

In the next section, we propose an alternative method, which is based on the
direct use of second order ODEs in normal form.

3. Method II: Fixed point methods based on second order ODEs in
normal form. Much as did the method based on first order systems, the method
that we are next describing converges with certainty. Also, as we will show, the
method is quadratically convergent. It can be used to compute zeros and TPs of any
solution of a given second order ODE in normal form,

y′′(x) + A(x)y(x) = 0,(3.1)

where we assume that A(x) is continuous and that y(x) has continuous second deriva-
tive (and is not a trivial solution).
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Differently from Method I, Method II does not provide iteration steps in order
to find with certainty all the zeros (or TPs) of a solution of the second order ODE in
a given interval I. However, we can use this method to compute bracketed zeros or
TPs.

In particular, we will describe the computation of TPs of solutions of second order
ODEs in normal form, which are bracketed by the zeros of these solutions. This new
method will solve a considerable number of cases for which Method I, based on first
order systems, failed to provide a simple solution.

This method can also be efficiently applied to second order ODEs, which can be
transformed to normal form by a simple (analytically invertible) change of variables.
It is important to realize that for calculating the TPs of solutions of a second order
ODE

y′′ + B̃(x)y′ + Ã(x)y = 0(3.2)

we cannot consider changes of the dependent variable in order to write down an
equation in normal form, because the extrema of ν(x)y(x) are not the extrema of
y(x). However, considering a change of variable z = z(x), we arrive at

(z′)2ÿ + [z′′ + B̃z′]ẏ + Ãy = 0,(3.3)

where dots mean derivatives with respect to z, and the primes are derivatives with
respect to x. And, choosing

z(x) =

∫
exp

(
−
∫

B̃dx

)
dx,(3.4)

we have

ÿ(z) + A(z)y(z) = 0, A(z) = A(x(z))ẋ2.(3.5)

The TPs of y(x) will be z−1(z
(j)
y′ ), with z

(j)
y′ being the turning points of y(x(z)).

Thus, the problem of finding the TPs of any second order ODE with continuous co-
efficients B̃(x), Ã(x) can be reduced to the problem of finding the turning points of a
second order ODE in normal form. We will require that this change of the indepen-
dent variable be a simple change (i.e., analytically invertible in terms of elementary
functions).

Of course, similarly to Method I, Method II can be applied in general, regard-
less of whether the change of variable is elementary. However, the cases when the
change is simple are the most indicated for the method. Combining Methods I and
II, the spectrum of functions whose zeros and TPs can be easily computed (with
simple changes of variable) becomes very wide. As we know, the zeros and TPs of
(confluent) hypergeometric functions of real parameters and variables can be obtained
with Method I. Combining Methods I and II, we can add to the list of satisfactorily
solved problems, among others, the computation of the zeros and TPs of Airy, Bessel
(Cν = cosαJν(x)− sinαYν(x)), and Coulomb wave functions; Whittaker functions of
real parameters; associated Legendre functions (ALFs) of real parameters and conical
functions (ALFs of complex degrees); and the zeros of Bessel-related functions like
xαCν(x). Both Methods I and II deal with any solution of the corresponding second
order ODE (and not only the regular solution or the polynomial solutions, as is the
case of matrix methods [1]).
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3.1. Construction of the method for ODEs in normal form. In what
follows, we consider that the zeros of a function y(x) inside an interval [x1, x2] have
already been evaluated by using Method I (or any other method) and that this function
satisfies a second order ODE in normal form (3.1). We further assume that A(x) has
no more than one zero in the interval of interest [x1, x2]. If this were not so, we would
subdivide the search for TPs for different subintervals where this property holds.

If there is a value xa ∈ [x1, x2] for which A(xa) = 0, we will take A(x) < 0 in
[x1, xa) and A(x) > 0 ∈ (xa, x2], making the change of independent variable x→ −x,
if necessary.

It is straightforward to prove that y can have no more than one zero in [x1, xa);
this is so because y′′y ≥ 0 in [x1, xa]. It is also a simple matter to check that the zeros
of y and y′ are interlaced in (xa, x2]; see the following.

Lemma 3.1. The zeros of y and y′ are interlaced in (xa, x2].
Proof. y and v ≡ y′ can not vanish simultaneously, given that we assume that y

is not a trivial solution. Interlacing is an immediate consequence of the fact that the
Wronskian of y and v is always different from zero. Indeed, W [y, v] = y′v − yv′ =
(y′)2 − y′′y = (y′)2 + A(x)(y)2 > 0.

The first step towards an algorithm to evaluate the TPs of y is computing each
TP between two consecutive zeros of y in (xa, x2]. For this, given that the TPs
are bracketed by the zeros of y (because they are interlaced) except for one possible
exception (see the discussion after Lemma 3.12), one can, for instance, use bisection.
Instead, we introduce fixed point iterations which are quadratically convergent.

Given the interlacing of the zeros of y and y′, it is expected that the logarithmic
derivative of y will behave roughly like the tangent function, which can be used to set
globally convergent fixed point iterations. Namely, defining

h(x) = −y
′(x)

y(x)
,(3.6)

taking the derivative, and using y′′(x) + A(x)y(x) = 0, we get

h′ = A + h2;(3.7)

thus h is monotonically increasing when A(x) > 0 except at the zeros of y. This
equation is the starting point of the method. In order to implement the method we
require only that an algorithm to evaluate the logarithmic derivative be available.
Assuming that the function y ≡ yn satisfies relations of the form (2.19), we need only
to evaluate ratios yn/yn−1 (or yn/yn+1) for computing both the zeros (Method I) and
TPs (Method II).

Let us first discuss the calculation of TPs when A(x) > 0, that is, for x > xa.
The next theorem provides globally convergent fixed point iterations on subintervals
(x(j), x(j+1)), with x(k) being the zeros of y(x).

Theorem 3.2. Let D be the logarithmic derivative of y. Let x(j), x(j+1) be two
consecutive zeros of y, and x′ ∈ (x̄1, x̄2) ⊆ (x(j), x(j+1)) a turning point of y. If
0 < A(x) < K ∀x ∈ (x̄1, x̄2), then

lim
p→∞T (p)(x) = x′ ∀x ∈ (x̄1, x̄2),

where

T (x) = x +
1√
K

arctan

(
D√
K

)
(3.8)
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and the convergence is monotonic.

Proof. Let h = −D = −y′

y ; then h′ < K + h2, that is, h′
K+h2 − 1 < 0, and then

sign(x− x′)
∫ x

x′

[
h′

K + h2 − 1

]
< 0.

Performing the integral and taking into account that h(x′) = 0, we get

sign(x− x′)
[

1√
K

arctan

(
h√
K

)
− (x− x′)

]
< 0.(3.9)

Then, if x > x′ (x ∈ (x̄1, x̄2)),

x′ < x− 1√
K

arctan

(
h√
K

)
≡ T (x) ,

and given that h′ > 0 in (xa, x2], then h > 0 in (x′, x̄2) (and h < 0 in (x̄1, x
′)).

Therefore

x′ < T (x) = x +
1√
K

arctan

(
D√
K

)
< x.(3.10)

Similarly, if x < x′,

x′ > T (x) > x,(3.11)

and given that x′ is the only fixed point of T (x) in (x̄1, x̄2) and considering that, ac-
cording to (3.10) and (3.11), the successive iterations of T form monotonic sequences,
we have that

lim
p→∞T (p)(x) = x′ ∀x ∈ (x̄1, x̄2)

and convergence is monotonic.
Corollary 3.3. If x is a zero adjacent to a turning point x′ of y and 0 < A < K

between x and x′, then |x− x′| > π/(2
√
K).

Proof. Take x in (3.9) to be a zero of y adjacent to x′.
An immediate consequence of this corollary is the following.
Corollary 3.4. If x(j), x(j+1) are two consecutive zeros of y and 0 < A < K

between x(j) and x(j+1), then |x(j+1) − x(j)| > π/
√
K.

This is nothing but the classical result from Sturm’s comparison theorem [25].
Similarly, it is easy to prove the following result.
Proposition 3.5. If x is a zero adjacent to a turning point x′ of y and 0 < k < A

between x and x′, then |x− x′| < π/(2
√
k).

Corollary 3.6. Similarly, if x(j), x(j+1) are two consecutive zeros of y and
0 < k < A between x(j) and x(j+1), then |x(j+1) − x(j)| < π/

√
k.

Corollaries 3.4 and 3.6 also apply to consecutive turning points of y.
The bounds from Corollary 3.3 and Proposition 3.5 can be sufficient when A

varies slowly to obtain accurate values for the turning points, as in the following.
Proposition 3.7. Let x′ be a turning point between two consecutive zeros of

y such that x′ ∈ (x(j), x(j+1)), and let 0 < k < A(x) < K in (x(j), x(j+1)). Then
x′ ∈ J ≡ (xm−λ, xm +λ) with xm = (x(j) +x(j+1))/2 and λ =

[
k−1/2 −K−1/2

]
π/4.

Also, J ⊂ (x(j), x(j+1)) if K/k < 9.
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Then, if the upper and lower bounds of A are similar, xm will be a good approx-
imation to x′ with relative accuracy better than λ/xm. Even if xm is not a good
enough approximation, we can use it as a starting value to evaluate x′ by means of
the fixed point iteration previously discussed.

When the function A(x) is monotonic in some interval, the speed of convergence
of the fixed point iteration can be improved by adjusting the upper bound K in each
iteration. For instance, if A(x) is positive and increasing inside an interval Ī = (x̄1, x̄2)
which contains a TP of y(x), x′, and y(x) �= 0 ∀x ∈ Ī, then x′ < T (x) < x for any
x ∈ Ī such that h(x) > 0. T (x) is the fixed point iteration of (3.8) with K the upper
bound of A(x) in Ī. But, because x′ < T (x) < x, the same holds if K is replaced by
the upper bound of A(x) in (x′, x], which is A(x). Therefore we have the following.

Theorem 3.8. Let D be the logarithmic derivative of y. Let Ī = (x̄1, x̄2) be an
interval such that A(x) > 0 in Ī and y(x) �= 0∀x ∈ Ī; let x′ ∈ Ī be a turning point of
y(x). If A is monotonic in Ī and x0 ∈ Ī is such that A′(x0)h(x0) ≥ 0, then

lim
p→∞T (p)(x0) = x′,

where

T (x) = x +
1√
A(x)

arctan

(
D(x)√
A(x)

)
(3.12)

and the convergence is monotonic.
Later we will show that the fixed point method of the previous theorem is quadrat-

ically convergent.
If A(x) is monotonic, we can find a guideline for choosing a starting value for which

Theorem 3.8 holds. Although xm = (x(j) + x(j+1))/2 could be a good estimation, it
is not the best choice, given that for this initial value one can not apply Theorem 3.8,
as the next result shows.

Proposition 3.9. Let A(x) be positive (x > xa) and x′ the turning point of y in
(x(j), x(j+1)).

1. If A(x) is increasing in (x(j), x(j+1)), then xm ≡ (x(j) + x(j+1))/2 < x′ and
hm(xm) < 0.

2. If A(x) is decreasing in (x(j), x(j+1)), then xm ≡ (x(j) + x(j+1))/2 > x′ and
h(xm) > 0.

Proof.
1. A(x′) ≡ k is the upper bound of A in (x(j), x′], and then x′−x(j) > π/(2

√
k)

(Corollary 3.3). On the other hand, k is the lower bound of A in [x′, x(j+1)),
and then x(j+1) − x′ < π/(2

√
k) (Proposition 3.5). Then xm < x′ and

h(xm) < 0 because h is monotonically increasing for x > xa.
2. This is shown similarly as in 1.

However, Proposition 3.7 gives a recipe for choosing a starting value for which
Theorem 3.8 will hold, whenever A does not show very strong variations and K/k < 9.

(a) If A is increasing in (x(j), x(j+1)), take as a starting value xm + λ.
(b) If A is decreasing in (x(j), x(j+1)), take as a starting value xm − λ.

If K/k > 9, we could, for instance, choose xm as a starting value and apply Theo-
rem 3.2. (We have never encountered such a situation in the examples we will later
discuss.) An alternative, which is generally more efficient, is locating a value of x for
which Theorem 3.8 applies; this can be done by applying one or two bisection steps.
This possibility is generally better because, as mentioned, the fixed point iteration of
Theorem 3.8 is quadratically convergent.
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If A(x) has a turning point in (x(j), x(j+1)), the previous two rules are substituted
with the following:

(c) If A(x) has a maximum in xMax ∈ (x(j), x(j+1)), take xMax as a starting
value;

(d) If A(x) has a minimum in xMin ∈ (x(j), x(j+1)), take xMin − sign(h(xMin))λ
(provided K/k < 9).

Of course, in principle several extrema of A(x) could be located between two con-
secutive zeros of y. However, rules (a), (c), and (d) will suffice in most circumstances.
With this choice of starting values the improved iteration in Theorem 3.8 converges
monotonically.

We have all the ingredients for computing the TPs between two consecutive zeros
which are greater than xa. The only thing left is the TPs in [x1, x

(a+)), with x(a+)

being the smallest zero larger than xa (in the case that x1 < xa). First, it is important
to note the following results.

Lemma 3.10. If xa is a TP, xa is a double root of y
′ = 0 and there are no other

TPs in [x1, x
(a+)).

Lemma 3.11. If there are no TPs in (xa, x
(a+)), then there are no TPs in

[x1, xa).
Lemma 3.12. If there is a zero of y in [x1, xa], then there are no TPs in [x1, xa].
Lemmas 3.11 and 3.12 are consequences of the different convexity properties of y

for x > xa and x < xa and the continuity of y′′.
One should always test the existence of a TP in [xa, x

(a+)) and compute it when
it exists. If h(xa) = 0, there is a turning point at xa and no more TPs in [x1, xa)
(Lemma 3.10). If this is not so and there are no TPs in (xa, x

(a+)), then there are
no TPs in [x1, xa] (Lemma 3.11). On the contrary, we must compute the TP in
(xa, x

(a+)) and later check the existence of a TP in (x1, xa) in case there is no zero of
y in this subinterval (Lemma 3.12).

To compute the possible TP in (xa, x
(a+)), bisection can be used; the convergence

is accelerated by using the iteration of Theorem 3.8 when A(x) is monotonic or has
at most one extremum in (xa, x

(a+)). If this is not so, Theorem 3.2 can be applied.
For finding the possible TP in (x1, xa) one cannot use the fixed point iterations

discussed so far. Bisection is a safe choice but not the fastest method. We can use a
fixed point iteration, which converges for values close enough to the TP, in order to
“polish” the roots as follows.

Theorem 3.13. Let x′ be a TP in [x1, xa] and let −C < A(x) < 0 in an interval
I such that x′ ∈ I ⊆ [x1, xa), with C a positive constant; then

lim
p→∞ T̄ (p)(x) = x′ ∀x ∈ I such that h2 < C between x and x′,

where

T̄ (x) = x− 1√
C

tanh−1

(
D√
C

)
.(3.13)

Proof. h′ = A + h2 > −C + h2, but h2 < C and therefore h′
−C+h2 − 1 < 0.

Integrating, we get

sign(x− x′)
∫ x

x′

(
h′

−C + h2 − 1

)
dx < 0

and

sign(x− x′)[R(x)− (x− x′)] < 0,(3.14)
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where

R(x) =
1

2
√
C

log

√
C − h√
C + h

=
1√
C

tanh−1

(
D√
C

)
,

and similarly as in Theorem 3.2, monotonic convergence holds from (3.14).
In the common case in which A is increasing in [x1, xa], the following alternative to

Theorem 3.13 can be considered, with the advantage that the iteration is quadratically
convergent.

Theorem 3.14. Let x′ be a TP in [x1, xa) and let A(x) be increasing in [x1, xa).
Let x0 < x′ such that 0 < h(x0) <

√−A(x0); then

lim
p→∞ T̄ (p)(x0) = x′,

where

T̄ (x) = x− 1√
−A(x)

tanh−1

(
D√−A(x)

)
,(3.15)

and the convergence is monotonic.
If A(x) may become negative on two subintervals I1 = [x1, xa) and I2 = (xb, x2]

contained in the interval of interest [x1, x2], the following Corollary can be applied to
compute the possible TPs in I1 (case of Theorem 3.14) and I2.

Corollary 3.15. Let x′ be a TP inside an interval B where A(x) < 0, A(x)
being monotonic in B. Let x0 ∈ B such that 0 < h(x0)sign(A(x0)) <

√−A(x0); then
limp→∞ T̄ (p)(x0) = x′ with T (x) as in Theorem 3.14. The convergence is monotonic.

3.2. Order of convergence of the method. A good reason to consider the
improved iterations from Theorems 3.8 and Corollary 3.15 instead of the iterations
from Theorems 3.2 and 3.13 is that the first two iterations are quadratically conver-
gent. Given that we can easily choose starting values such that the hypothesis of
Theorems 3.8 and Corollary 3.15 are met, our algorithms (see the next section) will
be based on these fixed point iterations.

It is straightforward to check that the fixed point iterations (3.12) and (3.15) are
quadratically convergent. For instance, taking the derivative of the iteration (3.12)
and considering the second order ODE (2.1), we have

T ′(x) = − A′

2A

[
y′/y

A + (y′/y)2
+

1√
A

arctan

(
y′/y√
A

)]
.(3.16)

Therefore, if x′ is a turning point of y for x > xa (a fixed point of T (x)), we have
that T ′(x′) = 0 and then the convergence is quadratical.

Besides, we see that for x > xa, |T ′(x)| ≤ |A′(x)|
4A3/2(x)

π = |π2 d
dxA

−1/2(x)|, which,

similarly as for Method I, can be used to bound the absolute error after n iterations.
The convergence is faster as A−1/2(x) varies more slowly.

A similar analysis can be made with the iteration (3.15).

3.3. Algorithm for the computation of TPs. Let us now describe the algo-
rithm (using a Fortran-like style) for the computation of the TPs of a function y(x)
in an interval I = [x1, x2]. As noted in the beginning of section 3.1, we need to con-
sider only the evaluation of TPs in an interval I = [x1, x2], where A(x) changes sign
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at most once, at xa, and A(x) < 0 if x < xa, A(x) > 0 if x > xa. However, we have

also considered the possibility that A(x) may have two zeros x
(−1)
a and x

(+1)
a (A(x)

being positive in (x
(−1)
a , x

(+1)
a )), which is an easy-to-carry generalization; we consider

only the possibility of A(x) having one maximum in I or A(x) being monotonic in I;
this is enough for a vast number of special functions.

The algorithm consists of the implementation of Theorem 3.8 for the computation

of TPs for x ∈ (x
(−1)
a , x

(+1)
a ) and Theorem 3.14 for x < x

(−1)
a (which should be

replaced by Theorem 3.13 if A(x) is not increasing in (x1, x
(−1)
a )). When x > x

(+1)
a ,

according to the fact that we consider that A(x) has at most one maximum, we
suppose that A(x) is decreasing. For the computation of the possible TP in this
interval, we apply Corollary 3.15.

Algorithm: Computation of Turning Points.
Let I ≡ [x1, x2] be the interval for the computation of TPs of y(x), which is the

solution of a second order ODE y′′+A(x)y = 0. A(x) is a differentiable function with
at most one extremum (x = xe) in I, such possible extremum being a maximum.

Let L be such that −L < x1, L > x2. We define the quantities x
(−1)
a and x

(+1)
a as

follows: x
(s)
a ∈ I are such that A(x

(s)
a ) = 0 and A′(x(s)

a ) ∗ s < 0; if a value x
(s)
a does

not exist, we set x
(s)
a = s ∗ L.

xe is the maximum of A(x). We set xe = −L if A′(x1) ≤ 0, and xe = L if
A′(x2) ≥ 0. (There can be no maximum in these cases.)

Let x(j) be the zeros of y(x), x(n) ∈ I being the smallest zero in I greater than

x
(−1)
a , and x(m) (m ≥ n) the largest zero in I smaller than x

(+1)
a .

Also, we will use the function h(x) = −y′(x)/y(x) and, finally, given three real
values xl, xu (xl < xu) and xp, we define

isg(xl, xu, xp) =


−1 if xp ≤ xl,

0 if xp ∈ ]xl, xu[,

+1 if xp ≥ xu.

Then, the following algorithm computes with certainty all the zeros of y′(x) in I.

Input: x1; x2; x
(±1)
a ; xe, x(n) . . . x(m); ε ≡ relative precision

Output: x′(j): turning points in I. j = ((n− 2), n− 1), n, . . . ,m− 1, (m, (m+ 1))
Common parameters and functions for the routines: xe, ε, A(x), h(x)

(1) DO i = n,m− 1
(2) IC=isg(x(i),x(i+1),xe)
(3) IF (IC=0) THEN
(4) xo = xe
(5) ELSEIF (1/9 < A(x(i+1))/A(x(i)) < 9) THEN
(6) x0 = (x(i+1) + x(i))/2 + IC ∗ π4 [A(x(i+1))−1/2 −A(x(i))−1/2]

(7) ELSE
(8) CALL SX(+1,IC,x(i),x(i+1),x0)
(9) ENDIF
(10) CALL FP(+1,x0,x)
(11) x′(i) = x
(12) ENDDO
(13) Xout =MIN(X

(−1)
a ,x1); XA0 = MAX(x

(−1)
a ,x1); Xin = x(n)

(14) CALL EXTR(−1,Xout,XA0,Xin, x′ext(1), x′ext(2))
(15) IF (xext(2) ≥ x1) THEN
(16) x′(n− 1) = x′ext(2); IF (x′ext(1) ≥ x1) THEN x′(n− 2) = x′ext(1) ENDIF
(17) ENDIF
(18) Xout = MAX(x

(+1)
a ,x2); XA0 = MIN(x

(+1)
a ,x2); Xin = x(m)

(19) CALL EXTR(+1,Xout,XA0,Xin, x
′
ext(1), x

′
ext(2))
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(20) IF (xext(2) ≤ x2), THEN
(21) x′(m) = x′ext(2); IF (x′ext(1) ≤ x2) THEN x′(m+ 1) = x′ext(1) ENDIF
(22) ENDIF
(23) END

SUBROUTINE SX(par,sign,xl,xu,xo)
Input: par, sign, xl, xu. Output: x0
(1)1 IF (sign=0), THEN
(2)1 x0 = xe
(3)1 ELSE
(4)1 xm = (xl + xu)/2; hm = h(xm); hl = −par
(5)1 DOWHILE (hm ∗ sign < 0 or −par ∗ h2m > −0.5 ∗ (1− par) ∗A(xm))
(6)1 IF (hm ∗ hl < 0), THEN
(7)1 xu = xm
(8)1 ELSE
(9)1 xl = xm
(10)1 ENDIF
(11)1 xm = (xl + xu)/2; hm = h(xm)
(12)1 ENDDO
(13)1 x0 = xm
(14)1 ENDIF
(15)1 END

SUBROUTINE FP(par,x0,x)
Input: par, x0. Output: x
(1)2 x = x0
(2)2 DO WHILE (Err> ε)
(3)2 xp = x
(4)2 IF (par=1), THEN

(5)2 x = x+ 1√
A(x)

arctan

(
y′(x)/y(x)√

A(x)

)
(6)2 ELSE

(7)2 x = x− 1√
−A(x)atanh

(
y′(x)/y(x)√

−A(x)

)
(8)2 ENDIF
(9)2 Err= |1− x/xp|
(10)2 ENDDO
(11)2 END

SUBROUTINE EXTR(side,Xout,XA0,Xin, x′ext(1),x′ext(2))
Input: side,Xout,XA0,Xin. Output: x′ext(1),x′ext(2)
(1)3 IF (h(XA0) = 0), THEN
(2)3 x′ext(2) = XA0; x

′
ext(1)= side*L

(3)3 ELSEIF (h(XA0) ∗ side > 0), THEN
(4)3 CALL ZE(+1,MIN(XA0,Xin), MAX(XA0,Xin),x); x

′
ext(2) = x

(5)3 IF (L-side*Xout < 0) and (h(Xout) ∗ side < 0), THEN
(6)3 CALL ZE(−1, MIN(XA0,Xout), MAX(XA0,Xout),x); x′ext(1) = x
(7)3 ELSE
(8)3 x′ext(1) =L*side
(9)3 ENDIF
(10)3 ELSE
(11)3 x′ext(1) = x′ext(2) = side*L
(12)3 ENDIF
(13)3 END

SUBROUTINE ZE(par,xl,xu,x)
Input: par, xl, xu. Output: x
(1)4 IC=isg(xl,xu,xe); CALL SX(par,IC,xl,xu,x0); CALL FP(par,x0,x)
(2)4 END

The structure of the algorithm is as follows.
1. Lines (1)–(23) are the main program.

(i) (1)–(12). The TPs of y, which are bracketed by their zeros (inside the
interval where A(x) is positive), are computed. Line (4) implements rule
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(c) (one maximum of A(x) between the two consecutive zeros). In line (5)
the rules (a) or (b) (after Proposition 3.9) to obtain the starting values
are implemented (case of monotonic A(x)), in the case when the upper
(K) and lower bounds (k) for A(x) verify K/k < 9; if this condition is
not met, rules (a) or (b) cannot be applied. Then, the program calls SX,
which computes a starting value (using a few bisection steps) for which
the conditions of Theorem 3.8 are met. Then, the subroutine FP, which
implements this theorem (as well as Corollary 3.15), is applied.

(ii) (13)–(17). The TPs in [x
(−1)
a , x(n)) and [x1, x

(−1)
a ) are computed; if they

exist, they are stored in the positions: n− 1 and n− 2 (respectively) of
the array x′. Such computation is performed by the routine EXTR with
first parameter −1.

(iii) (17)–(21). Same as before, but for the intervals (x(m), x
(+1)
a ] and

(x
(−1)
a , x2]. The TPs, if they exist, are stored in the positions m and

m + 1. Such computation is performed by the routine EXTR with first
parameter +1.

2. Lines (1)1–(15)1. As described above, the routine SX performs a few bisection
steps until either Theorem 3.8 or Corollary 3.15 can be applied.

3. Lines (1)2–(11)2. The fixed point iterations of Theorem 3.8 (line (5)2) and
Corollary 3.15 (line (7)2) are implemented.

4. Lines (1)3–(13)3. This routine checks the existence of extreme TPs (those
described above in items 1(ii) and 1(iii)). If they exist, starting values are
computed which guarantee that Theorem 3.8 and/or Corollary 3.15 can be
applied.

5. Lines (1)4–(2)4. Auxiliary routine called by EXTR (lines (1)3–(13)3).

4. Computation of the ratios y/w and the logarithmic derivatives y′/y.
In the methods described in the two previous sections, it is assumed that algorithms
are available to compute the ratio between the problem function and the contrast
function y/w for Method I and the logarithmic derivative for Method II. Although
the numerical analysis of the computation of these ratios lies beyond the scope of the
present paper, we give here some hints for the computation of ratios for functions
satisfying three term recurrence relations (TTRRs).

We consider the particular case of functions which are solutions of a uniparametric
family of second order ODEs, as described in section 2.3.1; this is the case of a great
number of special functions. In this case, the ratios for both methods are related.
The contrast function for the computation of the zeros of yn (Method I) will be
yn−1 or yn+1. Using (2.19), we have that the logarithmic derivative for the problem
function can be written as y′n/yn = dn(x) + an(x)yn(x)/yn−1(x); on the other hand,
the ratio yn/yn+1 is related to yn/yn−1 through the TTRR (2.24), which can be used
to compute the ratios Rn = yn/yn−1 from recursion:

Rn = rn−1 +
sn−1

Rn−1
(forward recurrence),

Rn =
sn

Rn+1 − rn
(backward recurrence).

(4.1)

The problem of computing ratios of special functions of consecutive orders, Rn =
yn/yn−1, satisfying a TTRR has been broadly studied in the literature. A classical
reference for condition and stability issues is the article by Gautschi [6]; see also [30, 4].
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Important results are Perron’s and Pincherle’s theorems. Perron’s theorem is a
classical result for determining when a TTRR admits a minimal solution y↓n (see [6]
and [25]) and what its asymptotic behavior is as n → ∞. A solution y↓n of a TTRR
is said to be minimal if, for any other solution y↑n (dominant solution), we have that
limn→∞ y↓n/y

↑
n = 0. (Of course, the minimal solution, if it exists, is unique.) Perron’s

theorem does not always provide an answer to the problem of the existence of a
minimal solution; there are cases which need to be analyzed by other means. Of
course, there is also the possibility that a TTRR has no minimal solution (and hence
no dominant ones).

When a solution y↑n is known to be dominant, forward recursion is well condi-
tioned, and the first equation in (4.1) can be safely iterated to compute the values

of Rn = y↑n/y
↑
n−1 starting from a ratio y↑k/y

↑
k−1 (k < n); for a minimal solution the

same happens for the backward recursion (that is, starting from k > n and using the
second equation in (4.1)). A related result is Pincherle’s theorem, which guarantees
the convergence of the infinite continued fraction for the ratio of consecutive minimal
solutions y↓n/y

↓
n−1 obtained by iterating infinitely many times the second recurrence

of (4.1).
Then, if the function under consideration is a minimal solution of the correspond-

ing TTRR, an infinite continued fraction can be used to compute the ratios y↓n/y
↓
n±1.

It should be noted that only the coefficients rn and sn of the TTRR are needed
for such a computation. In order to compute the continued fraction, the use of the
Lentz–Thompson algorithm [2, 26, 17] has the great advantage that overflow problems
caused by cancellation of the denominators are under control; this is an important
feature when computing ratios of functions both having zeros in the interval under
consideration. Minimal solutions are, for instance, the Bessel functions Jν , the conical
functions Pm

−1/2+iτ , and the regular Coulomb functions FL,ρ(x). Of course, depending
on the range of the parameters and the variables, the continued fraction will converge
at different speeds. For instance, for the case of first kind Bessel functions Jν(x)
that we will later describe, the convergence of the continued fraction slows down as
x increases. The same is true for regular Coulomb wave functions and for conical
functions.

Apart from the condition issues previously described, it is impossible to provide
a general recipe for the computation of these ratios of special functions. For instance,
for dominant solutions (or more generally nonminimal solutions), even if the forward
recurrence relation can be used to compute the ratios yn/yn−1 starting from, say,
y1/y0, the difficulty in the computation of this initial ratio is strongly dependent on
the function under consideration: it is trivial to compute for orthogonal polynomials
(understanding that n is the degree of the polynomial), but it is not so for irregular
Coulomb wave functions, among other examples. (For more trivial and nontrivial
examples, see, for instance, [18].) In fact, for the case of Coulomb functions that
we will later analyze, the computation of the zeros for the regular Coulomb wave
function can be made by using its continued fraction representation, while for any
other solution combining the regular and the irregular solutions, we will directly
compute the numerator and the denominator using Barnett’s code [2].

We will not insist on the analysis of the computation of special function values.
For the theory of the computation through TTRRs, see [4, 6, 25, 30]; numerical details
on the computation of special function ratios can be found, for instance, in [2, 21, 20].

As previously noted, there are a great number of functions for which stable meth-
ods to compute the ratios are available. This has enabled the authors to develop
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algorithms which are able to compute the zeros and TPs of the classical orthogonal
polynomials and of several important special functions: Jacobi and related polyno-
mials (Gegenbauer, Legendre), Laguerre polynomials, Hermite polynomials, Bessel
functions, Airy functions, and Coulomb wave functions.

5. Numerical examples. In order to illustrate the performance of the methods
developed, we will consider three different examples for which Methods I and II are
combined to compute the zeros and TPs: Bessel functions, Coulomb wave functions,
and conical functions. Of these three examples, the cases of the zeros of Bessel
functions [1, 10, 12] and Coulomb wave functions [1, 11, 12] have been also considered
as illustrations of the matrix methods.

5.1. Bessel functions. The Bessel equation reads

y′′n +
1

x
y′n +

(
1− n2

x2

)
yn = 0(5.1)

with real n. The zeros and TPs of the regular Bessel function can be computed
by means of matrix eigenvalue methods [1, 10, 12] (being the minimal solution of a
TTRR). The zeros and TPs of irregular solutions Yn(x) can not be computed us-
ing these methods, but methods based on asymptotics [24] or more general-purpose
methods [13, 27, 28] have been used. The methods discussed here cover not only
these cases but also general cylinder functions Cn ≡ cosαJn − sinαYn (and thus, for
instance, also the case of Airy functions).

Ricatti–Bessel functions are the solutions of the second order ODE

y′′n +

(
1− n2 − 1/4

x2

)
yn = 0,(5.2)

with solutions related to Bessel functions by yn(x) =
√
xCn(x). Their zeros, of course,

coincide with the zeros of Bessel functions but not their TPs. We discuss the eval-
uation of the zeros and TPs of Bessel and Ricatti–Bessel functions (appearing, for
instance, in quantum electromagnetism [3]) and, in general, of TPs of xαCn(x), that
is, of zeros of αCn(x) + xC′n(x).

The evaluation of the zeros of Bessel or Ricatti–Bessel functions is performed as
discussed in section 2.5.2. Figure 1 shows the performance of the fixed point method
(Method I) for the evaluation of the zeros of Bessel functions (backward sweep).
Fortran language was used, and the ratios Jn/Jn−1 were computed using the con-
tinued fraction representation. The number of iterations needed to achieve a double
precision (∼ 15 digits) computation for each zero is shown. Notice that the number
of iterations needed for the evaluation of the smallest zero increases with increas-
ing order. This is as expected since the function |η(x)| increases with decreasing x,
which means that the convergence of the fixed point method must be slower for low
x; besides, the spacing between the first zeros becomes larger as the order increases.
However, the number of iterations increases mildly. Notice also that the two largest
zeros evaluated need more iterations than the immediately smaller zeros; this is so be-
cause we need to compute two zeros before improved iteration steps can be considered.
This figure thus illustrates the effect of improving the iteration step.

We have also implemented the algorithm in Maple, with the advantage that one
can select almost arbitrarily the number of digits for the computation. The description
of a Maple procedure to compute zeros of special functions using Method I can be
found in [8]. With this, one can check that with few additional iterations the achieved
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Fig. 1. Number of iterations needed for the evaluation of the zeros of the first kind Bessel
function Jn(x) and its derivative, plotted as a function of the values of the zeros of Jn and its
derivative. Results for two different orders are shown: (a) n = 10 and (b) n = 100. The solid
vertical bars correspond to the number of iterations needed in order to compute the zeros with 15
exact digits; the dashed lines represent the number of iterations for the computation of TPs.

accuracy can be greatly improved. For instance, in order to achieve 10−100 accuracy
only two or three additional iterations of the function T (z) are needed for n = 10 and
similarly for n = 100.

Regarding the TPs, the zeros of the derivative of Bessel–Ricatti functions can
be computed directly using Theorem 3.8, given that these functions satisfy a second
order ODE in normal form. For the case of Bessel functions, defined by (5.1), we have
to consider a change of variables to transform the equation into normal form (section
3):

z(x) =

∫
exp

(
−
∫

Bdx

)
dx, B(x) =

1

x
→ z(x) = lnx.(5.3)

In the new variable z the differential equation reads

ÿn + [e2z − n2]yn = 0,(5.4)

and Ã(z) = e2z −n2 (Ã(z(x)) = x2−n2) is increasing. After this change of variables,
one can apply the methods described in sections 3.1 and 3.3. Notice that the x variable
in these sections corresponds to the z variable of (5.4). We can undo this change in
the fixed point iteration, first rewriting the logarithmic derivative as

D(z(x)) =
ẏn(x(z))

yn(x(z))
= x

y′n(x)

yn(x)
.(5.5)

With this, the fixed point iteration of Theorem 3.12 reads

T (z) = z +
1√

x2 − n
arctan

(
xy′n(x)

yn(x)
√
x2 − n

)
, x = ez.(5.6)

For seeking the TPs inside intervals (x
(j)
n , x

(j+1)
n ) the previous iteration is used,

taking as a starting value z0 = zm + λ, with

zm =
ln(x(j)

n ) + ln(x(j+1)
n )

2
= ln

(√
x

(j)
n x

(j+1)
n

)
(5.7)



THE ZEROS AND TURNING POINTS OF SECOND ORDER ODEs 849

and

λ =
π

4

(
k−1/2
n −K−1/2

n

)
, kn = (x(j)

n )2 − n2, Kn = (x(j+1)
n )2 − n2.(5.8)

Here z0 is larger than z(x′n) and lies inside (z(x
(j)
n ), z(x

(j+1)
n )) whenever Kn/kn < 9.

The corresponding starting value x0 is therefore x0 = exp(λ)
√
x

(j)
n x

(j+1)
n .

For TPs outside intervals (x
(j)
n , x

(j+1)
n ) (or in the rare situations for which Kn/kn ≥

9) we proceed as discussed in sections 3.1 and 3.3.
With this, it turns out that the computation of the TPs is very efficient and that

typically 3-4 iterations are enough to attain double precision values (15 digits) for the
turning points (Figure 1). Similarly, as happens with the computation of the zeros,
only two additional iterations are required when the accuracy demanded is 10−100.

As a spin-off of the method, it is interesting to note that the fact that zm =

z(xm) < z(x′n) leads to the inequality
√
x

(j)
n x

(j+1)
n < x′n relating two consecutive

zeros of a cylinder function and the zero of the derivative between such zeros. This
is a general inequality for the solutions of Bessel equations which proves a conjecture
by Elbert [5, 23].

Theorem 5.1. Let jν,κ and jν,κ+1 be two consecutive zeros of a solution of Bessel
differential equations and j′ν,κ the TP between them; then

j′ν,κ >
√
jν,κjν,κ+1.

Similar methods can be used to compute the zeros of other functions related to
Bessel functions. For instance, the turning points of xαCn(x) are the roots of

αCn(x) + xC′n(x) = 0,(5.9)

which are important roots in many applications. Using (5.1), the differential equation
satisfied by the functions yn = xαCn(x) is

y′′n +
1− 2α

x
y′n +

(
1− n2 − α2

x2

)
yn = 0,(5.10)

which is transformed into the normal form by the change of variables z(x) = x2α/2α
(α �= 0, which is the case previously discussed). After changing variables, we have
that the coefficient of the second order ODE in normal form reads

A(z(x)) = (x2 − (n2 − α2))x−4α,(5.11)

and the interlacing between the zeros of Cn and αCn(x) + xC′n(x) for x >
√
n2 − α2

follows immediately. Methods similar to those used before can therefore be applied.
Additional properties of the zeros of xαCν(x) have been explored in [23] using these
ideas.

5.2. Coulomb wave functions. Coulomb functions are the solutions of the
second order ODE

y′′n + An(x)yn = 0, An(x) = 1− 2γ

x
− n(n + 1)

x2
(5.12)

and satisfy the DDEs (2.19) with coefficients an = −bn = −(n2/x+γ)/n, dn = −en =√
n2 + γ2/n. Ricatti–Bessel functions are Coulomb functions with γ = 0.



850 AMPARO GIL AND JAVIER SEGURA

40 60 80 100 120 140 160 180 200
x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Ite
ra

tio
ns

5 10 15 20 25 30 35 40 45 50
x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14

Ite
ra

tio
ns

(a) (b)

Fig. 2. Number of iterations needed for the evaluation of the zeros and TPs with 15 exact
digits for two different values of n and the parameter γ: (a) n = 10, γ = 20 and (b) n = 20,
γ = −20. The zeros and TPs correspond to the combination of regular (F ) and irregular (G)
solutions 0.5F −√

3G/2.

The main distinction of Coulomb functions with respect to Bessel functions is that
An(x) is not a monotonic function when γ < 0, which results in new phenomena with
respect to the evaluation of zeros and TPs. Similarly to Bessel functions, the change
of variables is trivial in this case (a factor times x). We will consider the evaluation of
the positive zeros. (The negative zeros are the positive zeros of a Coulomb function
with the opposite sign of γ.)

The functions ηi (see (2.23)) which determine the type of sweep to be applied
are ηi(x) = −i(γ + n2

i /x)/
√
n2
i + γ2, where i = ±1 and n+1 = n + 1, n−1 = n.

The iteration corresponding to i = −1 is the most appropriate since the improved
iteration step (Theorem 2.4) can be considered; indeed, A′(x)η−1(x) > 0 except when
γ < 0 and x ∈ [xη−1 , xMax], where xMax = −n(n+ 1)/γ is the maximum of A(x) and
η−1(xη−1) = 0 (xη−1 = −n2/γ). In that interval, one could always use the iteration
step without improvement (∆z = ±π/2). For γ ≥ 0, A(x) is always increasing, and
the method of computation of zeros is a backward sweep (η−1 > 0). For γ < 0, as
remarked, An(x) has a maximum, and the zeros are computed by an expansive sweep
starting from xη−1 (see [22]).

The monotonicity properties of An(x) also have consequences for the evaluation of

TPs. For instance, for TPs inside intervals (x
(j)
n , x

(j+1)
n ), when An(x) is increasing we

should use starting values x0 = xm+λ, while we must use x0 = xm−λ when An(x) is

decreasing; in this way, Theorem 3.8 can be applied. In the interval (x
(j)
n , x

(j+1)
n ) where

xm lies we can also use Theorem 3.8 by proceeding as described after Proposition 3.9.
Figure 2 shows the performance of the method for the following choice of pa-

rameters: n = 10, γ = 20 (Figure 2(a)) and n = 20, γ = −20 (Figure 2(b)). The
improved iteration step is used for computing the zeros. We use Barnett’s code [2]
for computing the F and G functions and obtaining the ratios appearing in the fixed
point iterations.

The Maple implementation of the algorithms (for the computation of zeros of F
by means of the continued fraction representation for the ratios) shows that two or
three extra iterations are required to compute the zeros (and the TPs) for an accuracy
of 10−100 (in addition to those required for 10−15 accuracy).

5.3. Conical functions. Conical functions are Legendre functions of degrees
−1/2 + iτ with real τ (yn ≡ Pn

−1/2+iτ (x) or yn ≡ Qn
−1/2+iτ (x)). They satisfy general
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DDEs (see (2.19)) with coefficients

y′′n(x) + B(x)y′n(x) + An(x)yn(x) = 0,

B(x) =
2x

x2 − 1
, An(x) =

1/4 + τ2 − n2/(x2 − 1)

x2 − 1
.

(5.13)

We consider n > 0 (the differential equation is invariant under the replacement n →
−n), and we restrict our study to x > 1 (where the functions oscillate).

The DDEs (2.19) have the coefficients

an = −nx
x2 − 1

, bn =
(n− 1)x
x2 − 1

, dn = − λ2
n√

x2 − 1
, en = 1√

x2 − 1
.(5.14)

The ηi functions are (see (2.23)) ηi(x) = i(−ni + 1/2)x/(λni

√
x2 − 1), where, as

usual, n+1 = n + 1 and n−1 = n. With this, we see that i = −1 is the appropriate
iteration in order to apply the improved iteration. Indeed, choosing i = −1, the
associated change of variables (see (2.22)) is

z(x) = λn cosh−1 x,(5.15)

with λn =
√

(n− 1/2)2 + τ2, and the coefficient Ã(z) of the equation in normal form
(see (2.11)) is

Ã(z) = 1 + η̇−1 − η2
−1 =

1

λ2
n

[
τ2 − n2 − 1/4

sinh2(z/λn)

]
(5.16)

so that ˙̃A(z)η−1(z) > 0 for n > 0, and therefore Theorem 2.4 can always be applied.
The computation of zeros will be performed in the backward direction for n > 1/2
and in the forward direction of n < 1/2 because sign(η−1) = sign(n− 1/2).

Notice that from the expressions for both η−1 (Theorem 2.2 and Corollary 2.3)
and A(z) one deduces the following.

Theorem 5.2. Conical functions have infinitely many zeros for x > 1 and τ �= 0.
Conical functions illustrate how the change of variables associated to the DDE

tends to make uniform the distribution of zeros. In fact, we see that Ã(z)→ (τ/λn)2

as z → +∞, which means that the difference between zeros in the z variable for large
z tends to

z(j+1)
y − z(j)

y = π

√
1 +

(
n− 1/2

τ

)2

, j → +∞.

In fact, for the particular case n = 1/2 we observe that the zeros are equally spaced
in the z variable.

Regarding the TPs and going back to (5.13), the equation can be transformed to
the normal form by taking a change of variables so that dz/dx = exp(− ∫ Bdx). Let
us again insist (as we did for Bessel functions) that the z variable here corresponds to
the x variable in sections 3.1–3.2 and that this z variable is unrelated to (5.15). With
this,

z(x) = − tanh−1

(
1

x

)
, D(z) =

ẏn(z)

yn(z)
= (x2 − 1)

y′n(x)

yn(x)
,(5.17)
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Fig. 3. Number of iterations required for the computation of the zeros of Pn−1/2+iτ (solid bars)

and those of its derivative (dashed bars) with 15 exact digits as a function of its location (in the z
variable of (5.15)). The left figure is for τ = 20, n = 1 while the figure on the right corresponds to
τ = 20, n = 40.

and the coefficient Ãn(z) appearing in the ODE in normal form (see (3.5)) is

Ãn(x(z)) = (x(z)2 − 1)An(x(z)) =

(
1

4
+ τ2

)
(x(z)2 − 1)− n2,(5.18)

which is increasing in x. A method similar to the one applied for Bessel functions is
the choice for conical functions.

Figure 3 shows the number of iterations required for the computation of the zeros
and TPs with 15 exact digits. The effect of the improved iteration step becomes
apparent from Figure 3(b), where the two largest zeros are computed by the plain
iterative sweep (with ∆z = π/2) and require more iterations than for the computation
of the rest of zeros, which profit from the improved iteration step. This effect is also
observed in Figure 3(a), but the improvement is not so noticeable.

6. Comparison with other methods. Other methods for computing the real
zeros of special functions are the general-purpose methods described, for instance,
in [13, 27, 28] (which have been applied to Bessel and Airy functions), or the most
specialized methods which are based on previous approximations to the roots, mainly
asymptotic approximations [16, 24]. Of course, when accurate a priori approximations
to the roots are available, one can build efficient codes which use these approximations
as starting points of, for instance, a Newton method; the algorithm presented in [24]
is an example of an efficient algorithm based on asymptotic approximations.

Differently from these specific methods, the fixed point methods that we have de-
scribed are general for a considerable number of special functions. Generally speaking,
and starting from the least general to the most general methods (attending to the num-
ber of cases that they cover), the least general (but very efficient) methods are those
based on specific approximations [16, 24], followed by matrix methods [1, 10, 11], our
fixed point methods and the more general purpose methods [13, 27, 28].

Our computational scheme can be considered to be more general than matrix
methods for the computation of real zeros in the sense that, given a second order ODE
to which we can apply our methods, they are valid for any solution of the differential
equation. In contrast, matrix methods can be applied only to minimal solutions
with respect to a TTRR or to orthogonal polynomials (Golub–Welsch algorithm [9],
[29, Problem 9, p. 80]). For example, matrix methods apply to the zeros of the
regular Bessel function Jν(x) and the regular Coulomb wave functions FL(η, ρ), while
fixed point methods apply to any solution of the Bessel equation Cν = cosαJν(x) −
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Table 1
Timing comparison for the evaluation of the zeros of Bessel functions Jν(x) between the matrix

method and the fixed point method (FPM) for 15 exact digits. The first column represents the order
of the function; the first row is the number of computed zeros. In each entry of the table the first
number is the ratio between the time spent by the fixed point method and the time spent by the matrix
diagonalization (if smaller than one FPM is faster) and the second number is the ratio between the
size of the truncated matrix and the number of zeros N .

ν\N 10 20 50 100
0 0.64|2.5 0.58|2.2 0.48|1.9 0.43|1.8
1 0.71|2.5 0.61|2.2 0.52|1.9 0.44|1.8
2 0.67|2.5 0.67|2.2 0.61|1.9 0.48|1.8
5 0.98|2.8 0.72|2.3 0.60|2.0 0.59|1.8
10 1.1|2.9 0.94|2.3 0.67|2.0 0.65|1.8
20 1.4|3.1 1.0|2.5 0.77|2.1 0.63|1.9
50 2.1|3.7 1.4|2.8 0.85|2.2 0.66|2.0

sinαYν(x) or any solution of the Coulomb equation. On the other hand, matrix
methods can also be applied to compute complex zeros. There are other advantages
of fixed point methods with respect to matrix methods, as discussed in [22], like,
for instance the fact that the interval [x1, x2] for computing the zeros can be freely
chosen (while for matrix methods one has to choose to compute a given number of
zeros in increasing order). Besides, our methods can be mixed with more specific
methods using a priori approximations to the roots; this can be used to improve the
performance.

For the case of orthogonal polynomials, the matrix eigenvalue methods are exact
in the sense that the N zeros of an orthogonal polynomial of degree N can be obtained
by diagonalizing a real symmetric matrix of size N . However, for the case of functions
with infinitely many zeros, of course this is not so; in this case, if the function is the
minimal solution of a TTRR, the problem of computing the first N zeros can be
approximated by the problem of diagonalizing a truncated matrix, the exact problem
being the diagonalization of a matrix of infinite size. The size of the matrix must be
greater than the number of zeros that are needed to a prescribed accuracy. The main
difficulty consists in estimating the size of the truncated matrix, which is function-
and parameter dependent. (See [12] for estimations for the regular Bessel function,
and [15] for the regular Coulomb wave function.)

Regarding the efficiency of the different methods, the most general methods tend
to be slower than the most specific ones; however, fixed point methods are an exception
to this rule. Indeed, the fixed point methods, though being applicable to a wider set
of functions than matrix methods, are not slower. On the other hand, the comparison
between our method and the more general purpose method [27] based on the concept of
topological degree favors the fixed point method: in [20] such a method was compared
against a global Newton method which proved to be faster and, as shown in [22], the
fixed point method developed here converges faster than the Newton method [20].

In Table 1, we show the relative comparison of CPU times spent by Method I and
matrix methods to compute a given number of zeros of Bessel functions for different
orders. The comparison in Table 1 is performed in the following way: we compute
the first N zeros of the Bessel function with our method for a relative precision better
than 10−15. Then we select the size of the matrix to be diagonalized by testing that
the N zeros are computed with a relative precision better than 10−15. We use an
efficient algorithm for tridiagonal matrices [17]. The comparison in Table 1 is rather
unfair because we are selecting the optimal size of the matrix for a given precision and
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number of zeros by comparing with our method; a stand-alone algorithm based on
matrix methods should provide its own estimations of the size of the matrix, which
are function dependent and not so easy to compute (see [12, 15]). As mentioned
before, the truncation problem is one of the main limitations of the matrix methods
for functions with infinitely many zeros.

Our methods admit simple improvements when accurate a priori approximations
are available. For instance, for the particular case of Bessel functions, the perfor-
mance for low numbers of zeros and high orders can be improved by considering the
asymptotic approximations of [24] for high orders. And when a high number of zeros
is demanded, asymptotic approximations for large zeros are also available. In any
case, it is apparent that the fixed point methods are efficient methods by themselves.

7. Conclusions. Two methods for the computation of zeros and turning points
of solutions of second order homogeneous linear ODEs have been presented. They
are based on fixed point methods which compute with certainty all the zeros and
TPs; these procedures have been applied to the computation of zeros and TPs of
ODEs depending on one parameter n (like, for instance, hypergeometric functions
and Bessel functions). These methods require that algorithms for the computation of
ratios of solutions yn/yn−1 be available. For minimal solutions of the corresponding
TTRR, this ratio can be computed by using the continued fraction associated with this
recurrence; the coefficients of the recurrences are then the only information necessary
for computing the zeros and TPs (as happens with matrix methods [1, 11]). This is the
case of the Bessel function Jν(x), the regular Coulomb wave function FL(η, ρ), and
the conical function Pn

−1/2+iτ (x), among others. Differently from matrix methods,
the fixed point methods here presented can be applied to general solutions of the
second order ODE; it is not required that the solutions be minimal with respect to a
three-term recurrence.

The fixed point methods prove to be efficient schemes of computation, as illus-
trated with Bessel, Coulomb, and conical functions, and they can be systematically
and easily implemented. The analytical steps prior to the application of the method
are simple to perform and can be made automatic by using symbolic computation
packages such as Maple or Mathematica. The methods here presented lead to efficient
and portable algorithms for the computation of zeros and TPs of special functions.
A Maple algorithm to compute the zeros and the TPs of the three families of func-
tions discussed in detail in this article (Bessel, Coulomb, and conical functions) is
available upon request to the authors; in the near future, the Maple algorithm will
be expanded to include, among others, the cases of hypergeometric and confluent hy-
pergeometric functions of real parameters and variables (which, as a subset, include
classical orthogonal polynomials).
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Abstract. The Leibniz formula, for the divided difference of a product, and Opitz’s formula,
for the divided difference table of a function as the result of evaluating that function at a certain
matrix, are shown to be special cases of a formula available for the coefficients, with respect to any
basis, of an “ideal” or “Hermite” polynomial interpolant, in any number of variables.
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1. Introduction. The so-called Leibniz formula

∆(xi, . . . , xj)(fg) =

j∑
k=i

∆(xi, . . . , xk)f ∆(xk, . . . , xj)g,(1.1)

for the divided difference of a product in terms of the divided differences of the factors,
has played a major role in the development of spline theory; it was an essential tool
in the derivation of the B-spline recurrence relations. My earliest reference for it now
is Popoviciu [16, p. 12], who refers, for the case of uniform spacing, to [9] where, on
page 105, that special case of the formula is referred to as “bekannt”. Nevertheless,
the formula is generally credited (see, e.g., [15]) to Steffensen, because of his paper
[20].

In this paper, the algebraic background of the Leibniz formula is explored, showing
the formula to be equivalent to the Opitz formula (from [15]; see (2.1) below) that
gives the divided difference table of any polynomial as the result of applying that
polynomial to a certain matrix. This, in turn, is shown to be a particular consequence
of the fact that, in G. Birkhoff’s [2] terminology, polynomial interpolation is an “ideal”
interpolation scheme. This insight is used to explore Leibniz (and Opitz) formulas
for certain multivariate polynomial interpolation schemes and their associated divided
differences.

The paper is laid out as follows. In section 2, the connection between the Leibniz
formula and the Opitz formula is recalled, along with Opitz’s way of deriving them.
The next section brings a brief discussion of the basic features of “ideal” interpolation,
i.e., linear projectors on the space of polynomials (in one or several variables, real or
complex) whose kernel is a polynomial ideal. Section 4 provides the Opitz formula in
the general setting of “ideal” interpolation, and the truncated Taylor series serves as a
trivial illustration. The nontrivial details for both the Opitz and the Leibniz formulas
are fully worked out for Chung–Yao interpolation in section 6. Such formulas for
other divided differences are outlined in section 7. The final section points out that
this paper’s restriction to interpolation to polynomials is easily removed.
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For ready reference, here is the (mostly, but not entirely, standard) notation used
in this paper. α ∈ Z

d
+ denotes a multi-index or, more precisely, a d-index, i.e., a

d-vector with nonnegative integer entries; |α| := ∑j α(j) is its length (or “degree”);
also, α! :=

∏
j α(j)!. There being no standard notation for it, I use

()α : F
d → F : x �→ xα :=

∏
j

x(j)α(j)

for the monomial of multidegree α. Here, F is either R or C, though usually it is C.
With this,

ΠI := span(()α : α ∈ I), I ⊂ Z
d
+,

with the special cases

Π := Π(Fd) := ΠZd
+
, Πk := span(()α : |α| ≤ k).

The ad hoc abbreviation

p̂(α) := (Dαp)(0)/α!, p ∈ Π, α ∈ Z
d
+,

with

Dα :=
∏
j

D
α(j)
j

and Dj differentiation with respect to the jth argument, is convenient. Analogously,

()j : x �→ x(j), j = 1:d,

while

()0 : x �→ 1.

In the dual, Π′, of Π, evaluation at some point v ∈ F
d is singled out; i.e., the

linear functional

εv : Π→ F : p �→ p(v),

and, more generally, εvq(D) : p �→ (q(D)p)(v) for q ∈ Π, with

q(D) :=
∑
α

q̂(α)Dα.

Also,

Q(D) := {q(D) : q ∈ Q}, Q ⊂ Π,

and

Λ⊥ := ker Λ :=
⋂
λ∈Λ

kerλ, Λ ⊂ Π′.
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2. The Opitz formula. In his short note [15], describing a talk submitted
but not given, Opitz introduces “Steigungsmatrizen” (literally “divided difference
matrices”) as matrices of the form

S[f ;X] := f(AX),

with f a (univariate) polynomial or rational function or, more generally, a suitable
limit of such functions, and, correspondingly, f(AX) the “value” of f at the matrix
AX , with

AX :=


x1 1

x2 1

x3
. . .
. . . 1

xn

 ,

and with X := (x1, . . . , xn) a sequence of pairwise distinct complex numbers. Using
the (obvious) eigenstructure of AX , Opitz readily concludes that, for each i, j,

S[f ;X](i, j) = ∆(xi, . . . , xj)f,(2.1)

i.e., the divided difference of f at (xi, . . . , xj) (in W. Kahan’s felicitous notation1),
and hence the name “Steigungsmatrix”. Here, as is customary, ∆(xi, . . . , xj) := 0 for
i > j.

In other words, f(AX) is (or, the upper triangular part of f(AX) provides) the
divided difference table for f with respect to the sequence X, and, as Opitz points
out, its calculation in this fashion from AX is less affected by loss of significance than
is the direct construction of the divided difference table by the repeated formation
of divided differences. In fact, it can be used for the symbolic calculation of divided
differences; see, e.g., [10], and, most recently, [18].

Further, Opitz observes that the map

f �→ S[f ;X]

is linear as well as multiplicative, and hence a ring homomorphism, from the ring
of functions under pointwise addition and multiplication into the ring of matrices of
order n. In particular,

(fg)(AX) = f(AX)g(AX).

Because of (2.1), this is equivalent to the Leibniz formula, (1.1), i.e., to

∆(xi, . . . , xj)(fg) =

j∑
k=i

∆(xi, . . . , xk)f ∆(xk, . . . , xj)g.

Further, if we take (2.1) as the definition of S[f ;X], then the Leibniz formula implies
that f �→ S[f ;X] is a ring homomorphism and so, in particular, S[f ;X] = f(AX).

1I am using here Kahan’s notation not only because it is quite literal, but because the standard
notation, [xi, . . . , xj ], has already other uses, e.g., the matrix with columns xi, . . . , xj or, in the case
j = i+ 1, the closed interval with endpoints xi, xj .
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3. Ideal interpolation. If P is a linear projector of finite rank on the linear
space F with algebraic dual F ′, then we can think of P as providing a linear interpo-
lation scheme on F : For each g ∈ F , f = Pg is the unique element of ranP := P (F )
for which

λf = λg, λ ∈ ranP ′ = {λ ∈ F ′ : λP = λ}
(with P ′ : F ′ → F ′ : λ �→ λP the dual of P ). In other words, given that kerP =
ran(id − P ), we have

ranP ′ = (kerP )⊥ := {λ ∈ F ′ : kerP ⊂ kerλ}.
In this way, ranP ′ provides the interpolation conditions matched by P . Not sur-
prisingly, there are exactly as many independent conditions as there are degrees of
freedom, i.e.,

dim ranP = dim ranP ′.

Now we take

F = Π,

the ring of polynomials in d (complex) variables. In [2], Birkhoff defined ideal in-
terpolation as any linear projector P on Π whose nullspace or kernel is an ideal. In
the interest of brevity, and without passing judgement, we will call such a projector
ideal. However, Birkhoff seemed not to have been aware of the fact that such pro-
jectors had already been looked at carefully before that, by Möller in [12], who called
them “Hermite interpolation”, for the following reason.

As is well known (and, in this formulation, probably due to Gröbner; see [8,
p. 176]), a nonempty subset I of Π is an ideal of finite codimension if and only if

I =
⋂
v∈V

ker(εvQv(D))

for some finite subset V of C
d (necessarily the ideal’s variety) and some nontrivial

D-invariant finite-dimensional polynomial subspaces Qv, necessarily given by

Qv := {q ∈ Π : ((Dαq)(D)p)(v) = 0, α ∈ Z
d
+, p ∈ I}.

In other words, as Möller rightly stresses, ideal interpolation is characterized by the
fact that its interpolation conditions involve values and, possibly, also derivatives at
certain sites, subject only to the condition that if the linear functional εvq(D) is
matched, then so are all “lower” derivatives, i.e., every εv(D

αq)(D) for α ∈ Z
d
+.

Since an ideal projector is, in a sense, aware of the multiplicative structure of Π,
we would expect insights from considering its interaction with multiplication. The
following lemma gives this interaction a handy formulation.

Lemma 3.1. A linear projector P on Π is ideal if and only if

P (pq) = P (pPq), p, q ∈ Π.(3.1)

Proof. The condition (3.1) is equivalent to having

P (Π(id − P )(Π)) = {0},
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and, since P is a linear projector, and hence (id − P )(Π) = kerP , this is equivalent
to

Π kerP ⊂ kerP,

and hence, given that kerP is a linear subspace, to kerP being an ideal.
It is standard in algebraic geometry (see, e.g., [7, pp. 51ff.]) to consider, on the

quotient ring

Π/I := {f + I : f ∈ Π}
of the polynomials over the ideal I and for an arbitrary polynomial p, the map

Π/I → Π/I : f + I �→ pf + I.
In our context, it is more convenient to consider, equivalently, the map

Mp : ranP → ranP : f �→ P (pf).(3.2)

Evidently,

Mp ∈ L(ranP );

i.e., Mp is a linear map on ranP . Further, (3.1) implies that, for arbitrary p, q ∈ Π
and f ∈ ranP ,

MqMpf −Mqpf = P (qP (pf))− P (qpf) = 0.

It follows that the map

m : Π→ L(ranP ) : p �→Mp(3.3)

is a ring homomorphism onto the commutative algebra generated by the specific linear
maps

Mj : ranP → ranP : f �→ P (()jf), j = 0:d,

in terms of which

Mp = p(M) :=
∑
α

p̂(α) Mα, p ∈ Π,

with

Mα :=
∏
j

(Mj)
α(j) = M()α

independent of the order in which this product is formed from its factors.
It follows, directly from (3.1), that

p(M)P ()0 = P (pP ()0) = Pp, p ∈ Π.(3.4)

Such a formula plays a major role in Mourrain’s intriguing paper [14], though it is
proved there, consistent with that paper’s setting, only for P whose range, B := ranP ,
is connected to 1, meaning that each b ∈ B can be written in the form

∑d
j=0()jbj

with each bj in B ∩ Π<deg b; hence, in particular, ()0 ∈ B, and (3.4) simplifies to
p(M)()0 = Pp.

(3.4) implies that kerm ⊂ kerP , while, if p ∈ kerP , then p(M)f = P (pf) =
P (fPp) = P0 = 0 for all f ∈ dom p(M) = ranP , i.e., p(M) = 0. Thus, altogether,

kerm = kerP.(3.5)
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4. A general Opitz formula. If now

V : F
n → ranP : a �→

∑
j

vja(j) =: [v1, . . . , vn]a

is any basis for ranP , i.e., V = [v1, . . . , vn] is an invertible linear map, then the matrix
representation for Mp = p(M) with respect to this basis is

M̂p = V −1MpV = p(M̂),(4.1)

with

M̂j = V −1MjV, j = 1:d.

Consequently,

P (pvj) = p(M)vj = V p(M̂)(:, j), p ∈ Π.(4.2)

In particular,

Pp = p(M)P ()0 = V p(M̂)a0, p ∈ Π,

with a0 := V −1P ()0 the coordinates of P ()0 with respect to V .
(4.1), (4.2) is the promised generalization of the Opitz formula.
To make the connection with (2.1), take, in particular, d = 1, and let P = Pn be

the linear projector of interpolation from polynomials of degree < n to data at the
distinct sites x1, . . . , xn. Choosing, specifically, for V the Newton basis

vj :=
∏

j<k≤n
(· − xk), j = 1:n,

we compute the jth column of M̂ := M̂1 as the coordinates, with respect to V , of

M1vj = Pn(()1vj) = Pn(xjvj + (· − xj)vj) = xjvj + Pnvj−1 = xjvj +

{
vj−1, j > 1;
0, j = 1,

and hence

M̂ =


x1 1

x2 1

x3
. . .
. . . 1

xn

 = AX .

Consider now p(M)vj = Pn(pvj). Certainly, (Pjp)vj is in ranPn and matches pvj at
all the xi, and hence must equal Pn(pvj). Therefore,

p(M)vj =

 j∑
k=1

∏
k<h≤j

(· − xh) ∆(xk, . . . , xj)p

 vj =

j∑
k=1

vk∆(xk, . . . , xj)p.

Consequently,

p(M̂)(k, j) = ∆(xk, . . . , xj)p, k, j = 1:n.
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Since Opitz [15] bases his derivations on the eigenstructure of the matrix AX , it
seems appropriate to point out that it is standard in algebraic geometry (see, e.g.,
[7, pp. 54ff.]) to consider the eigenstructure of the linear maps Mp (defined in (3.2)).
To be sure, it is their dual, more precisely the matrix Mp, called a multiplication
table and defined implicitly by

〈()αp〉 =:
∑
β∈I

Mp(α, β)〈()β〉, α ∈ I

(with 〈f〉 := f + I and I the set of multidegrees that do not occur among the mul-
tidegrees of elements of the ideal), whose eigenstructure is given, by Stetter and his
collaborators, a major role in the solving of polynomial systems; see, e.g., [1], [13].
But I find it more convenient to deal with the linear maps Mp.

The bare facts are these: For each v in the variety V := V(kerP ) of the ideal
kerP , εv ∈ ranP ′, and hence, for every f ∈ B := ranP ,

εvMpf = εvP (pf) = εv(pf) = p(v)εvf,

and this shows εv (or, more precisely, εv B) to be a left eigenvector of Mp, with
corresponding eigenvalue p(v). Hence, if we are dealing with Lagrange interpolation
(as is the case in [15] at the outset), i.e., if (εv : v ∈ V) spans ranP ′, then Mp is
diagonalizable, and {p(v) : v ∈ V} is its spectrum. In that case, a right eigenbasis
for Mp is the basis ($v : v ∈ V) of ranP dual to (εv : v ∈ V), i.e., $v(w) = δvw, the
Lagrange basis. Further, {p(v) : v ∈ V} is also the spectrum of Mp in the general

case, with each q ∈ Qv that is not in
∑d
j=1 DjQv giving rise to a (right) eigenvector

of Mp for the eigenvalue p(v).

5. An example: The truncated Taylor series. As a first (and trivial) d-
variate example with d > 1, consider P = Tk, the linear map on Π that associates
with p ∈ Π its Taylor expansion

Tkp :=
∑
|α|<k

()αDαp(0)/α!

of order k. Evidently,

ranT ′k = ε0Π<k(D);

thus

kerTk = ideal(()α : |α| = k).

In particular, with

V<k := [()α : |α| < k]

the power basis for Π<k = ranTk, we find ()j()
α ∈ ranTk if and only if |α| < k − 1,

while, for |α| = k − 1, P (()j()
α) = 0. Hence, with ιj := (δij : i = 1:d),

M̂j(α, β) = δβ+ιj−α, |α|, |β| < k,

a strictly lower triangular matrix in any total ordering of Z
d
+ that respects “degree”,

i.e., for which |α| < |β| =⇒ α < β. It reflects the evident fact that the action of M̂j

is to shift the coefficient function

p̂ : α→ p̂(α) = Dαp(0)/α!
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by ιj , i.e.,

M̂jp = p̂(· − ιj),

dropping off those terms that are, thereby, pushed outside the relevant index set,
{α : |α| < k}.

Correspondingly (or directly by (4.2)), the αth column of p(M̂) is obtained from
p̂ by a shift of p̂ by α, again dropping off those terms that are, thereby, pushed outside
{α : |α| < k}, i.e.,

p(M̂)(:, α) = p̂(· − α).

In particular, for any p, q ∈ Π,

(̂pq)(α) = (pq)(M̂)(α, 0) = p(M̂)q(M̂)(α, 0) =
∑
β≤α

p̂(α− β)q̂(β),

the familiar Leibniz formula for the derivative of a product.

6. An example: Chung–Yao interpolation. In [6], Chung and Yao intro-
duced the eponymous multivariate polynomial interpolation scheme. This scheme
provides interpolation from Πk to data at the sites

ΘH := {θH : H ∈ (Hd)},
with H a set of d + k hyperplanes in R

d in general position and θH the unique point
common to the d hyperplanes in such an H ∈ (Hd). Chung and Yao [6] show that such
interpolation is possible, and uniquely so, by exhibiting the interpolant PHg to g in
Lagrange form.

[3] (see [4] for details) provides the following Newton form for PHg:

PHg =

k∑
j=0

∑
K∈
(

Hj−1

d−1

) pj−1,K [ΘHj ,K | nK , . . . , nK ]g,(6.1)

with the various terms occurring here defined as follows:

H−1 ⊂ · · · ⊂ Hk := H

is any increasing sequence of subsets of H with #Hj = d + j, all j. Further,

pj,K :=
∏

h∈Hj\K

h

h↑(nK)
,

with h denoting a hyperplane as well as a particular linear polynomial whose zero set
coincides with that hyperplane, and h↑ its leading term, i.e., its linear homogeneous
part. Also,

ΘK,K := ΘK ∩ lK ,
with

lK :=
⋂
h∈K

h
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the straight line common to the d− 1 hyperplanes in K, while

nK

is an arbitrary nontrivial vector parallel to that line. Last, but certainly not least,

[X | Ξ]g :=

∫
[X]

DΞg

is the multivariate divided difference (notation) introduced in [3]. In this formula,
X = (x0, . . . , xn) and Ξ = (ξ1, . . . , ξn) are arbitrary sequences in R

d, the first one
having one more entry than the second, DΞ := Dξ1 · · ·Dξn is the composition of
directional derivatives Dξ :=

∑
j ξ(j)Dj , and

f �→
∫

[x0,...,xn]

f :=

∫ 1

0

∫ s1

0

· · ·
∫ sn−1

0

f(x0 +s1∇x1 + · · ·+sn∇xn) dsn · · · ds1(6.2)

(with ∇xj := xj − xj−1) is termed, by Micchelli in [11], the divided difference
functional on R

d and is familiar from the Genocchi–Hermite formula for the uni-
variate divided difference. [X | Ξ] is symmetric in the “sites” x ∈ X, is linear and
symmetric in the “directions” ξ ∈ Ξ, and satisfies the recurrence

[X | Ξ][X ′, · | Ξ′] = [X,X ′ | Ξ,Ξ′].
Let now

V := [pj,K : (j,K) ∈ I], with I := {(j,K) : K ∈ ( Hj

d−1

)
, j = −1:(k − 1)},

be the corresponding “Newton” basis for ranP = Πk. For j = 0:k, let hj be the sole

element of Hj\Hj−1, pick K ∈ (Hj−1

d−1

)
, and let H := K ∪ hj . Then

(x− θH) =
∑
h∈H

nH\h
h(x)

h↑(nH\h)
.

This implies that

xpj−1,K(x) = (θH + (x− θH))pj−1,K(x)

= θHpj−1,K(x) +
∑
h∈H

nH\h

 ∏
h′∈Hj\H

h′↑(nH\h)

h′↑(nK)

 pj,H\h(x).

Notice that each of the pj,H\h in the sum over H vanishes on ΘHj . In particular, for
j = k, the sum over H vanishes for every x ∈ ΘH. It follows that, for i = 1:d, the
matrix representation M̂i for Mi : f �→ P (()if) with respect to the “Newton” basis
V is “lower triangular” and quite sparse, with the column corresponding to pj−1,K

having nonzero entries only on the diagonal, where it has the value θhj∪K(i), and at
the entries, if any, corresponding to pj,hj∪K\h for h ∈ hj ∪K.

Now, what about f(M̂) for arbitrary f ∈ Π? The polynomial fpj−1,K vanishes
on ΘHj−1

, and hence depends only on f restricted to ΘH\ΘHj−1
. However, this de-

pendence is hardly simple. Formally, we have

f(M̂)((j,K), (j′,K ′)) = [ΘHj+1,K | nK , . . . , nK ](fpj′,K′), (j,K), (j′,K ′) ∈ I.
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The fact that f(M̂) is lower triangular, in any ordering of the index set I that refines
the natural partial ordering provided by the first components, is evident.

With this, from the fact that (fg)(M̂) = f(M̂)g(M̂), we get the following “Leibniz
formula”:

[ΘHj ,K | nK , . . . , nK ](fg)

=
∑

(j′,K′)∈I;j′<j

[ΘHj ,K | nK , . . . , nK ](fpj′,K′) [ΘHj′+1,K
′ | nK′ , . . . , nK′ ]g.(6.3)

Note that the second factor depends only on g on the sites in ΘHj′+1
, while the first

factor depends only on f on the sites in ΘHj
\ΘHj′ . In particular, the first factor is

trivially zero when j′ ≥ j, and hence the sum’s restriction to j′ < j.
Note also, by way of a check, that, for d = 1, H consists of pairwise distinct

points, with Hj containing j + 1 points, h0, . . . , hj , say. Further, K = ∅ is the sole

element of
(

Hj

d−1

)
, and l∅ = R, and hence we may choose ι1 for n∅ and, with that,

[ΘHj ,K | nK , . . . , nK ] = ∆(h0, . . . , hj),

by the Genocchi–Hermite formula, while, as observed earlier,

∆(h0, . . . , hj)

∏
i<j′

(· − hi)f

 = ∆(hj′ , . . . , hj)f.

This verifies that, indeed, (6.3) reduces to (1.1) when d = 1.

7. Other divided differences. Let T be an arbitrary finite subset of C
d, and

assume that the polynomial subspace B is correct for it in the sense that

Λt
T : B → C

T : b �→ b T

is one-to-one and onto. Then, with

W : C
W → B : a �→

∑
w∈W

a(w)w

an arbitrary basis for B (using W to denote both the basis and the associated basis
map), the Gram matrix

Λt
TW = (w(τ) : τ ∈ T, w ∈W )

is invertible; hence, for any particular ordering of the basis W , there is some ordering
of T so that

Λt
TW = LU,

with L lower triangular and U unit upper triangular (in the chosen orderings of T
and W ). Then one is free to call

λ(τ1, . . . , τi) :=
∑
k

L−1(i, k)ετk =
∑
k≤j

L−1(i, k)ετk
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the “divided difference” at the sequence (τ1, . . . , τi), and to call, correspondingly, the
polynomials

vj :=
∑
k

wkU
−1(k, j) =

∑
k≤j

wkU
−1(k, j)

“Newton polynomials”, and to call∑
j

vj λ(τ1, . . . , τj)f

the “Newton form” of the interpolant from B to f at T. Assuming that B contains
the constant function and that, in fact, v1 = ()0, it then follows that

λ(τ1, . . . , τj)(fg) =

j∑
k=1

λ(τ1, . . . , τj)(fvk)λ(τ1, . . . , τk)g,

with λ(τ1, . . . , τj)(fvk) depending only on f at τk, . . . , τj . The role reversal of f and
g here as compared to (1.1) is due to the fact that the “Newton” basis here is ordered
differently than there.

It is in this manner, or, perhaps, in a more relaxed block-triangular way, that
one could provide some kind of Leibniz formula and even an Opitz formula in the
context of more general schemes of multivariate polynomial interpolation, e.g., the
least interpolant of [5] or the Sauer–Xu formulation [19].

The divided difference introduced by Rabut in [17] does not quite fit this pattern.
While Rabut does define divided differences as the coefficients of the interpolating
polynomial, he sticks to the power basis

Vk := [()α : |α| ≤ k]

rather than some kind of multivariate Newton basis. Precisely, with T some pointset
in R

d correct for interpolation from Πk, and hence

P := Vk(Λ
t
TVk)

−1Λt
T

well-defined, he denotes the (T, α)-divided difference of f by

f [T]α

and defines it implicitly by

Pf =:
∑
α

()αf [T]α.

With this definition, it follows from (4.2) that

(p[T]α : |α| ≤ k) = p(M̂)(:, 0), p ∈ Π,

and hence that

(pq)[T]α =
∑
β

(p()β)[T]α q[T]β =
∑
β≤α

(p()β)[T]α q[T]β .
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However, since f [T]α depends on f on all of T, the first factor in each summand still
depends, offhand, on p on all of T.

In Rabut’s setting, the matrix representation M̂j of

Mj : Πk → Πk : p �→ P (()jp)

is, in principle, not that hard to work out. For |α| ≤ k, we have ()j()
α ∈ Πk if and

only if |α| < k. Therefore

M̂j(α, β) =

{
δβ+ιj−α, |β| < k;

()β+ιj [T]α, |β| = k.

However, this still leaves the particular details of the specific divided differences
()β+ιj [T]α for |β| = k to be supplied. At this point, I do not know whether it
would be worthwhile to make that effort.

8. Extensions. In contrast to the standard literature on polynomial interpo-
lation and divided differences, I have restricted here attention to interpolation to
polynomials. However, since a polynomial interpolant depends only on the values at
the interpolation sites of the function being interpolated, interpolation extends im-
mediately to any function having values at least at the interpolation sites, and this
leads to a natural extension, to such functions, of whatever divided difference notion
or polynomial interpolation scheme is used.

In the univariate setting, if the interpolation involves “repeated” sites, i.e., match-
ing of certain “consecutive” derivatives, then, correspondingly, the interpolation scheme
and the divided differences extend to functions suitably differentiable at the interpola-
tion sites. The same holds for multivariate ideal interpolation, except that, at present,
it is not known whether every such Hermite interpolation scheme can be viewed as
the limit of suitable Lagrange interpolation schemes, i.e., whether in this sense mul-
tivariate Hermite interpolation can be viewed as interpolation involving “repeated”
sites.
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1979, pp. 211–248.
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Abstract. The filtered backprojection algorithm is probably the most often used reconstruction
algorithm in two-dimensional computerized tomography. For a semidiscrete version in the parallel
scanning geometry we prove optimal L2-convergence rates for density distributions in Sobolev spaces.
Additionally we show L2-convergence without rates when the density distribution is only in L2. The
key to success is a new representation of the filtered backprojection which enables us to apply
techniques from approximation theory. Our analysis provides further a modification of the Shepp–
Logan reconstruction filter with an improved convergence behavior. Numerical experiments in the
fully discrete setting reproduce the theoretical predictions.
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1. Filters in tomography. Tomographic reconstruction means finding a den-
sity distribution f from all its line integrals g = Rf . Here, R denotes the Radon
transform,

Rf(s, ϑ) :=

∫
L(s,ϑ)∩Ω

f(x) dσ(x),

mapping a function to its integrals over the lines L(s, ϑ) = {τ ω⊥(ϑ)+s ω(ϑ) | τ ∈ R},
where s ∈ R, ω(ϑ) = (cos ϑ, sin ϑ)t, and ω⊥(ϑ) = (− sin ϑ, cos ϑ)t for ϑ ∈ ]0, π[.
This parameterization of lines gives rise to the parallel scanning geometry. The Radon
transform R maps L2(Ω) boundedly to L2(Z), where Ω is the unit ball in R

2 centered
about the origin and Z is the rectangle Z = ]− 1, 1[× ]0, π[.

Analytically, tomographic reconstruction is represented by the inversion formula

f = (2π)−1 R∗ Λ g,(1.1)

where the backprojection operator R∗ : L2(Z)→ L2(Ω) is the adjoint to R,

R∗Φ(x) :=
∫ π

0

Φ(xt ω(ϑ), ϑ) dϑ.

Formally, Λ is the square root of the one-dimensional Laplacian −∆: Λ = (−∆)1/2.
In (1.1), Λ acts on the variable s of g. For a proof of (1.1) see, e.g., Natterer [14].

Due to the compactness of R the reconstruction of f from noisy Radon data g by
(1.1) is unstable (Λ amplifies high frequencies). A stable algorithm of tomographic
reconstruction is therefore based on

f � eγ = R∗(υγ �s g), eγ = R∗υγ ,(1.2)
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where � denotes convolution and �s denotes convolution with respect to the variable s.
In (1.2), eγ(x) = e(x/γ)/γ2, γ > 0, and e = e1 is amollifier, that is, a smooth function
with normalized mean value. Thus, f � eγ is a smoothed or mollified approximation
to f . The function υ = υ1 is called the reconstruction kernel or reconstruction filter
which is independent of the angle ϑ for radially symmetric mollifiers (which we assume
in what follows). Note that υγ(s) = υ(s/γ)/γ2. By the inversion formula (1.1) we
can compute the reconstruction kernel from a mollifier e:

υ =
1

2π
ΛRe.(1.3)

The convolution υγ �s g realizes a low pass filtered version of Λg/(2π).
A straightforward discretization of (1.2) together with an interpolation step yields

the filtered backprojection algorithm (FBA) which is the most frequently used algo-
rithm in computerized tomography; see, e.g., Natterer [14, Chap. V]. In what follows
let f be a density distribution compactly supported in Ω. If we assume to know the
discrete Radon data gk,j := Rf(sk, ϑj) for sk = k/q, k = −q, . . . , q, and ϑj = j π/p,
j = 0, . . . , p− 1, then the FBA reconstructs fFB by

fFB(x) := R∗pIh(w �q g)(x).(1.4)

In the FBA, first the discrete convolution

(w �q g)�,j :=
1

q

∑
k∈Z

w�−k gk,j ≈
(
υγ �s g(·, ϑj)

)
(s�)(1.5)

is performed, where {wk} is a weight sequence associated with the chosen kernel υγ .
In the second step, an interpolation operator Ih is applied (with respect to �). Finally,
the discrete backprojection operator

R∗pΦ(x) :=
π

p

p−1∑
j=0

Φ(xt ω(ϑj), ϑj)(1.6)

is evaluated.
Except for the interpolation process, the discrete convolution (1.5) is the most

delicate step in the FBA: the discrete convolution kernel {wk} has to be chosen
carefully from the continuous kernel υγ . For instance, a common choice is

wk = υγ(sk).(1.7)

Here γ has to be adjusted to the discretization step size h = 1/q. The sensitivity of
the reconstructed image to γ has been noticed probably for the first time by Smith
in [22, p. 20]. Rules for selecting γ have been suggested by Smith and Keinert [23,
Sect. VI], Natterer [14], and Rieder [16]. For local tomography, see Faridani [8] and
Rieder, Dietz, and Schuster [17].

Smith [22, pp. 18–19] propagated a different way to define the wk’s. He intended
the discrete convolution (1.5) to be exact for a large class of functions. Let Ehu be an
approximation to the function u given as the superposition of translated and scaled
versions of a function B; that is,

Ehu(s) =
∑
k∈Z

u(sk)Bh(s− sk), where Bh(s) = B(s/h).(1.8)
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For instance, Eh could be an interpolation operator. Defining

wk :=
1

h

∫
υγ(s) Bh(sk − s) ds =

1

h
υγ � Bh(sk), k ∈ Z,(1.9)

we have that

(w �q u)� = υγ �s Ehu(s�), � ∈ Z.

Moreover, if Eh is interpolating, then

(w �q Ehu)� = υγ �s Ehu(s�), � ∈ Z;

that is, the discrete convolution (1.5) is exact for Ehu. Numerical as well as theoret-
ical considerations (see [16, 22]) showed that the reconstructed images fFB are less
sensitive to changes in γ when working with (1.9) rather than working with (1.7).
Indeed, we will show in the next section that the discrete filter {wk} from (1.9) con-
verges for γ → 0 and that its limit {w∞k } is again a reconstruction filter belonging to a
compactly supported mollifier. This limit filter has an interesting feature: computing
ΛEhu(s�)/(2π) can now be realized by the discrete convolution

1

2π
ΛEhu(s�) = (w∞ �q u)�.

The latter equation is the starting point in section 3 for a reformulation of the FBA
leading to optimal L2-convergence rates in a semidiscrete setting (Theorem 3.7) where
in (1.4) the discrete backprojection operator R∗p is replaced by the continuous one R

∗.
We see how the reconstruction filter, the interpolation process (Ih in (1.4)), and the
Sobolev regularity of the density distribution f influence the convergence rate. As
a by-product of our analysis we discover a new reconstruction filter (Example 4.1)
with an improved convergence behavior compared to the widely used Shepp–Logan
filter [21] (sections 4 and 5). Indeed, our modified Shepp–Logan filter yields optimal
convergence for Sobolev orders up to 5/2, whereas the convergence order of the orig-
inal Shepp–Logan filter saturates at 2 (Example 5.1). Numerical experiments in the
fully discrete setting of (1.4) agree completely with our theoretical predictions and
are presented in section 6. Auxiliary but new approximation properties of (quasi-)
interpolation operators, which we need for the analysis, are proved in several appen-
dices.

2. The limit. We will now investigate the convergence in Sobolev spaces of
υγ � B as γ tends to zero. We define the Sobolev spaces Hα(Rd), α ∈ R, to be the
closure of L2(Rd) with respect to the norm

‖f‖2α :=
∫

Rd

(
1 + ‖ξ‖2)α |f̂(ξ)|2 dξ,

where f̂(ξ) := (2π)−d/2
∫

Rd f(x) e−ı ξ
tx dx is the Fourier transform of a function f

in L1(Rd) ∩ L2(Rd). The Fourier transform can be extended to L2-functions and
tempered distributions by continuity and duality, respectively. The Λ-operator,

Λ̂f(ξ) := ‖ξ‖ f̂(ξ),

maps Hα(Rd) boundedly to Hα−1(Rd).



872 ANDREAS RIEDER AND ADEL FARIDANI

The latter mapping property of Λ together with a smoothing effect of R (see [14,
Chap. II, Thm. 5.1]) and the Sobolev embedding theorem shows that υ from (1.3)
is continuous whenever e is a radially symmetric compactly supported mollifier in
Hα(R2), α > 1. Furthermore, υ ∈ L1(R); see [16, Lem. 3.1]. Thus, υγ � B is well
defined in Ht(R) for B ∈ Ht(R), t ∈ R; see, e.g., Aubin [1, Prop. 9.3.2].

Lemma 2.1. Let e ∈ Hα(R2), α > 1, be a radially symmetric compactly supported
mollifier, and let υ be the corresponding reconstruction kernel (1.3). Then,

lim
γ→0

∥∥∥υγ − 1

2π
Λδ
∥∥∥
−β

= 0 for any β > 3/2,(2.1)

where δ denotes the Dirac generalized function. Moreover, if B ∈ Ht(R), t ∈ R, then

lim
γ→0

∥∥∥υγ � B − 1

2π
ΛB
∥∥∥
t−1

= 0.(2.2)

For values of s such that ΛB is continuous near s we have

lim
γ→0

υγ � B(s) =
1

2π
ΛB(s).

Proof. We prove (2.2) which then implies (2.1) when setting B = δ and recalling
that δ ∈ Ht(R) for t < −1/2. With

I(ξ, γ) = (1 + |ξ|2)t−1
∣∣√ 2π υ̂γ(ξ) B̂(ξ)− |ξ| B̂(ξ)/(2π)

∣∣2
we obtain that ∥∥∥υγ � B − 1

2π
ΛB
∥∥∥2

t−1
=

∫
R

I(ξ, γ) dξ.

By the projection slice theorem (see, e.g., Natterer [14, Chap. II, Thm. 1.1]) we find
(e is a radially symmetric function)

υ̂γ(ξ) =
1

2π
|ξ| R̂eγ(ξ) =

1√
2π
|ξ| êγ(ξ, 0) = 1√

2π
|ξ| ê(γ ξ, 0),

which yields

I(ξ, γ) ≤ (1 + |ξ|2)t ∣∣B̂(ξ)∣∣2 ∣∣ê(γ ξ, 0)− 1/(2π)∣∣2.
The stated convergence follows now from ê(0, 0) = 1/(2π), the Riemann–Lebesgue
lemma, and the dominated convergence theorem.

Let us look at an example. For χ being the indicator function of the interval
[−1/2, 1/2] we are able to compute Λχ by

Λχ(s) = − 1
π

∫
R

|s− t|−2 χ(t) dt, |s| > 1/2;(2.3)

see Faridani et al. [9, Form. (2.1)]. Evaluating the integral gives

Λχ(s) =
4

π

1

1− 4 s2
.(2.4)
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The above formula holds for all s ∈ R \ {−1/2, 1/2}. This can be verified using the
relation Λ(1 − χ) = −Λχ and applying formula (2.1) of [9] to 1 − χ, the indicator
function of R \ [−1/2, 1/2]. So we have that

lim
γ→0

υγ � χ(s) =
2

π2

1

1− 4 s2
, |s| �= 1/2.

In weaker Sobolev norms we can even give convergence rates. For formulating
the respective result and later in the paper we use the following convenient notation:
A � B indicates the existence of a generic constant c such that A ≤ cB holds
uniformly with respect to all parameters A and B may depend on.

Corollary 2.2. Let 0 ≤ s ≤ 2. Under the assumptions of Lemma 2.1 we have
that ∥∥∥υγ � B − 1

2π
ΛB
∥∥∥
t−1−s

� γs ‖B‖t.

Proof. As in the proof of Lemma 2.1 we obtain that∥∥∥υγ � B − 1

2π
ΛB
∥∥∥2

t−1−s
≤
∫

R

(1 + |ξ|2)t−s ∣∣B̂(ξ)∣∣2 M(γ ξ, 0) dξ,

where M(z) := |ê(z)− 1/(2π)|2, z ∈ R
2. Since e is an even function all its first order

moments vanish. Therefore, all first order derivatives of ê are zero at the origin. Thus
the Taylor expansion of ê about the origin becomes

ê(z) =
1

2π
+

∑
ν∈N

2
0

ν1+ν2=2

Dν ê(τz z)

ν!
zν for a τz ∈ [0, 1],

which yields M(z) � ‖z‖4. Now let s ∈ [0, 2]. Then,∥∥∥υγ � B − 1

2π
ΛB
∥∥∥2

t−1−s
�
∫
|ξ|≤1/γ

∣∣B̂(ξ)∣∣2 (1 + |ξ|2)t−s M(γ ξ, 0) dξ

+

∫
|ξ|>1/γ

∣∣B̂(ξ)∣∣2 (1 + |ξ|2)t−s dξ
� γ4

∫
|ξ|≤1/γ

∣∣B̂(ξ)∣∣2 (1 + |ξ|2)t |ξ|4−2s dξ

+

∫
|ξ|>1/γ

∣∣B̂(ξ)∣∣2 (1 + |ξ|2)t |ξ|−2s dξ.

Both latter terms can be bounded by γ2s ‖B‖2t .
Remark 2.3. The generalization of Corollary 2.2 to reconstruction kernels υ

belonging to mollifiers with higher order vanishing moments is obvious.

3. The FBA is optimal. We will reformulate the FBA (1.4) for the limit filters
considered in the former section; see (3.2) below. This new representation of the FBA
allows us to introduce a novel error analysis which shows that the FBA is optimal for
tomographic inversion.
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3.1. A new representation of the FBA. We start with the following simple
observation.

Lemma 3.1. Let B be in Ht(R) for a t ∈ R such that ΛB(s) is continuous near
integer values of s. For ψ(s) =

∑
k∈Z

ck Bh(s− h k), where {ck} is a finite sequence
and h is positive, we have

Λψ(h �) = h−1
∑
k∈Z

ck ΛB(�− k), � ∈ Z.

Proof. The statement follows directly from the relations ΛBh(s) = ΛB(s/h)/h
and ΛT a = T aΛ, where T a is the translation operator T au(s) = u(s− a).

Remark 3.2. Relying on Lemma 3.1 we easily derive that

2

π

1

q + 1/2
=

q∑
k=−q

Λχ(k) for any q ∈ N0,

where χ is as in (2.3). To prove the above identity we mention only that
∑q
k=−q χ(· −

k) is the characteristic function of the interval [−q − 1/2, q + 1/2].
Let the operator Eh be given by (1.8) with B as in Lemma 3.1. Define the discrete

reconstruction kernel {w∞k } by

w∞k =
1

2π h2
ΛB(k) = υ∞h (h k),(3.1)

where υ∞h (s) = υ∞(s/h)/h2 and υ∞(s) := ΛB(s)/(2π). Then, the discrete convolu-
tion (1.5) can be written as the Λ-operator applied exactly to a function approximating
g from discrete values:

(w∞ �q g)�,j =
1

2π

(
ΛEhg(·, ϑj)

)
(h �), � ∈ Z.

Thus, the reconstructed image fFB may be rewritten as

fFB(x) =
1

2π
R∗pIhΛEhg(x);(3.2)

see (1.4). Please observe that the three operators Eh, Λ, and Ih act on the first
variable of the data g = Rf .

Example 3.3. Let B = χ be the characteristic function of [−1/2, 1/2]. Then, the
reconstruction kernel w∞ used for evaluating (3.2) is

w∞k =
2

π2 h2

1

1− 4 k2
,

which follows from (2.4) and (3.1). Here, w∞ is the discrete Shepp–Logan reconstruc-
tion filter [21].

Remark 3.4. Let the discrete reconstruction kernel {wk} be given by (1.9). Due
to Lemma 2.1 we obtain limγ→0 wk = w∞k , implying that

lim
γ→0

(w �q g)�,j =
1

2π

(
ΛEhg(·, ϑj)

)
(h �), � ∈ Z.

We next ask the question, Which mollifier e∞ belongs to the reconstruction kernel
υ∞ (3.1)? By (1.3) and the projection slice theorem we find that

ê∞(ξ) = B̂(‖ξ‖)/
√
2π, ξ ∈ R

2,(3.3)
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1

3

1

1

Fig. 1. Radial part of limit mollifier e∞ (3.4) where B is the linear (left) and the quadratic
(right) B-spline, respectively.

which yields (J0 denoting the Bessel function of the first kind of order 0)

e∞(x) =
1√
2π

∫ ∞
0

r B̂(r) J0(‖x‖ r) dr.(3.4)

In view of (3.3) the mollifier e∞ is in L2(R2) if limr→∞ r |B̂(r)| = 0. Further, a
compact support of B implies a compact support of e∞. More precisely, let B be even
with suppB ⊂ [−R,R]; then supp e∞ ⊂ {x ∈ R

2 | ‖x‖ ≤ R}. The latter statement is
a consequence from the Paley–Wiener theorems; see, e.g., Rudin [19, Chap. 7].

Example 3.5. Let B = χ be the characteristic function of the interval [−1/2, 1/2].
By formula 6.671.7 from [11] we find that

e∞(x) =

{
2
π

1√
1−4 ‖x‖2 : ‖x‖ < 1/2,

0 : otherwise,

which is the mollifier belonging to υ∞(s) = 1
2πΛχ(s) =

2
π2 (1− 4 s2)−1; see (2.4). The

graphs of the radial parts of e∞ with respect to the linear and quadratic B-splines are
plotted in Figure 1.

3.2. A novel error estimate. The new representation (3.2) of the FBA gives us
the freedom to provide a novel error analysis based on principles from approximation
theory. Indeed, we will be able to prove L2-convergence of the FBA with optimal
rates.

In contrast, the error estimates based on Fourier analysis (see Natterer [14,
Chap. V] and Faridani and Ritman [10]) are of qualitative nature in terms of es-
sentially band-limited functions. Since the main tool used is the Poisson summation
formula the considered density distributions are required to be continuous functions at
least (f̂ ∈ L1). Convergence has been shown before: Popov [15] established pointwise
convergence restricted to a small class of functions (piecewise C∞ with jumps across
smooth curves). The approach of Rieder and Schuster [18] leads to L2-convergence
for f ∈ Hα0 (Ω), α > 1/2, however, with suboptimal rates.

In our analysis below we will not take into account the error introduced by dis-
cretizing the backprojection R∗; that is, our model of the FBA reconstructs f̃FB by

f̃FB(x) :=
1

2π
R∗IhΛEhRf(x);(3.5)

compare (3.2).
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Before bounding the reconstruction error of f̃FB we generalize both operators Eh
and Ih. For u ∈ Hα(R), α ∈ R, we define

Ehu(s) := h−1
∑
k∈Z

〈
u, εh(· − sk)

〉
Bh(s− sk),(3.6)

where εh(s) = ε(s/h) with ε ∈ H−α(R) being even and ε̂(0) = 1/
√
2π. Further, 〈·, ·〉

denotes the duality pairing in Hα(R) ×H−α(R). For u ∈ Hα(R), α > 1/2, we may
choose ε = δ (Dirac distribution). Thus, h−1〈u, εh(· − sk)〉 = u(sk), and the general
form (3.6) of Eh coincides with its former definition (1.8). We extended the domain
of definition of Eh to cover (generalized) functions in Hα(R) with α ≤ 1/2.

The redefinition of Eh was necessary because we apply Eh to Rf(·, ϑ) (see (3.5)),
and we have only that Rf(·, ϑ) ∈ H

1/2
0 (−1, 1) for f ∈ L2(Ω) and almost all ϑ. More-

over, our new model allows for finite width of the rays and detector inhomogeneities
in the observed semidiscrete Radon data; see Natterer [14, Chap. V.5.1]. Indeed, for
ε being a nonnegative function compactly supported in [−1/2, 1/2] with a normalized
mean value we obtain

h−1
〈
Rf(·, ϑ), εh(· − sk)

〉
= h−1

∫ sk+h/2

sk−h/2
Rf(s, ϑ) εh(s− sk) ds.(3.7)

Hence, ε can be seen as the sensitivity profile of the X-ray detectors.
In a very similar way we define Ih by

Ihu(s) := h−1
∑
k∈Z

〈
u, ηh(· − sk)

〉
Ah(s− sk),(3.8)

where η and A are like ε and B from (3.6), respectively.
Our modifications of Eh and Ih have no effect on the efficient computation of

IhΛEhRf(·, ϑ)/(2π) by discrete convolution. A straightforward calculation reveals
that

1

2π

(
IhΛEhRf(·, ϑ))(s) = ∑

�∈Z

(
w �q g

ε(·, ϑ))
�
Ah(s− s�),

where gε(s, ϑ) =
(
Rf(·, ϑ) �s εh

)
(s)/h (see (3.7)), and the discrete reconstruction

kernel w is given by

wr = υ(r)/h2, r ∈ Z,

with υ(s) :=
1

π

∫ ∞
0

σ B̂(σ) η̂(σ) cos(s σ) dσ.
(3.9)

The above integral exists as a duality pairing whenever B ∈ Ht(R) and η ∈ H1−t(R).
Example 3.6. We will give the Shepp–Logan reconstruction filter a new interpreta-

tion. To this end, let B(s) = sinc(π s) be the interpolating function used to define Eh.

In Ih let η be the characteristic function of the interval [−1/2, 1/2]. We obtain B̂ =
χ[−π,π]/

√
2π (χD characteristic function of interval D) and η̂(σ) = sinc(σ/2)/

√
2π.

Hence,

υ(s) =
2

π2

2 s sin(π s)− 1
4 s2 − 1 and wk = υ(k)/h2 =

2

π2 h2

1

1− 4 k2
;
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see Example 3.3 and compare formula (1.22) on page 111 in [14].
In estimating the reconstruction error below we will need that the inversion for-

mula (1.1) holds true for functions in L2(Ω); that is,

f = (2π)−1 R∗ ΛRf for any f ∈ L2(Ω).(3.10)

As far as we know, the most general version of (1.1) is due to Smith, Solomon, and
Wagner [24, p. 1257] requiring a compactly supported f ∈ Hα(R2) with α ≥ 1/2. To
verify (3.10) we recall the following mapping property of the Radon transform:

R : Hα0 (Ω)→ H(α+1/2,0) is bounded for any α ≥ 0,(3.11)

which is due to Louis and Natterer [13, Thm. 3.1]; see also [14, Thm. II.5.1]. Above,
Hα0 (Ω) is the closure of C∞0 (Ω), the space of infinitely differentiable functions com-
pactly supported in Ω, with respect to the norm ‖ · ‖α. Further, H(β,0) is the tensor
product space Hβ(R)⊗̂L2(0, π).

Now the validity of (3.10) can be seen from the following three facts: 1. The
operator R∗ ΛR : L2(Ω) → L2(Ω) is bounded since all three mappings R : L2(Ω) →
H(1/2,0), Λ : H(1/2,0) → H(−1/2,0), and R∗ : H(−1/2,0) → L2(Ω) are bounded.1

2. Formula (3.10) applies to all f ∈ C∞0 (Ω); see, e.g., Natterer [14, Thm. II.2.1].
3. The space C∞0 (Ω) is dense in L2(Ω).

After these preparations we concentrate on the reconstruction error for f in
Hα0 (Ω), α ≥ 0. Relying on (3.10) we begin with∥∥f̃FB − f

∥∥
L2(Ω)

=
1

2π

∥∥R∗IhΛEhRf −R∗ΛRf
∥∥
L2(Ω)

≤ ∥∥(R∗Ih −R∗
)
ΛEhRf

∥∥
L2(Ω)

+
∥∥R∗Λ(EhRf −Rf

)∥∥
L2(Ω)

and proceed by estimating both norms on the right-hand side.
We saw above that R∗Λ maps H(1/2,0) boundedly to L2(Ω). Hence,∥∥R∗Λ(EhRf −Rf

)∥∥
L2(Ω)

�
∥∥EhRf −Rf

∥∥
H(1/2,0) .

Now we need an approximation property of Eh. Therefore, we assume there are
nonnegative constants τmax and βmin ≤ βmax such that∥∥Ehu− u

∥∥
τ

� hβ−τ ‖u‖β as h→ 0(3.12a)

for βmin ≤ β ≤ βmax, 0 ≤ τ ≤ β, τ ≤ τmax, u ∈ Hβ0 (−1, 1).(3.12b)

For instance, if Eh represents piecewise linear interpolation
2, then (3.12) holds with

βmax = 2, βmin > 1/2, and τmax < 3/2. For piecewise linear interpolation the
approximation property (3.12) is a classical result when τ ∈ {0, 1} and β = 2; see,
e.g., Strang and Fix [25, Thm. 1.3]. Also band-limited interpolation3 yields (3.12)
with βmin > 1/2 and any βmax = τmax <∞. In Appendices A and B we prove (3.12)
for more general interpolation-like operators Eh where βmin = 0.

1The continuity of R∗ : H(−1/2,0) → L2(Ω) follows from (3.11) by duality.
2ε is the Dirac distribution and B is the linear B-spline.
3ε is the Dirac distribution and B(x) = sinc(πx).
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Estimates of terms from above by powers of h (like (3.12)) are in what follows
always understood asymptotically in the sense of h→ 0.

Assume (3.12) to hold with βmax ≥ 1/2 and τmax ≥ 1/2. If max{0, βmin− 1/2} ≤
α ≤ βmax − 1/2, then

∥∥R∗Λ(EhRf −Rf
)∥∥
L2(Ω)

� hα ‖Rf‖H(1/2+α,0)

(3.11)

� hα ‖f‖α.

Now we turn to ‖(R∗Ih −R∗)ΛEhRf‖L2(Ω) which we estimate according to∥∥R∗(Ih − I
)
ΛEhRf

∥∥
L2(Ω)

≤ ‖R∗‖H(−1/2,0)→L2(Ω) ‖Ih − I‖Hα−1/2(R)→H−1/2(R)

× ‖Λ‖Hα+1/2(R)→Hα−1/2(R) ‖EhRf‖H(1/2+α,0) ,

where I : Hα−1/2(R) ↪→ H−1/2(R) is the canonical inclusion. Observe that (3.12)

implies the boundedness of Eh : H
1/2+α
0 (−1, 1) → H1/2+α(R) uniformly in h for

0 ≤ α ≤ min{βmax, τmax} − 1/2. Thus,

‖EhRf‖H(1/2+α,0) � ‖Rf‖H(1/2+α,0)

(3.11)

� ‖f‖α.

For the operator Ih we require that

‖Ih − I‖Hα−1/2(R)→H−1/2(R) � hα as h→ 0 for 0 ≤ α ≤ αI.(3.13)

which yields that ∥∥(R∗Ih −R∗
)
ΛEhRf

∥∥
L2(Ω)

� hα ‖f‖α.

Thus, we have proven the following theorem.
Theorem 3.7. Assume (3.12) to hold with βmax ≥ 1/2 and τmax ≥ 1/2. Further,

let there exist an αI > 0 such that (3.13) holds true.
If max{0, βmin − 1/2} ≤ α ≤ min{αI, βmax − 1/2, τmax − 1/2

}
and f ∈ Hα0 (Ω),

then ∥∥∥f − 1

2π
R∗IhΛEhRf

∥∥∥
L2(Ω)

� hα ‖f‖α as h→ 0.(3.14)

The best possible L2-convergence rate for the reconstruction of f ∈ Hα0 (Ω) from
Radon data sampled at distance h is hα as h → 0; see Natterer [14, Chap. IV,
Thm. 2.2]. So we just proved that the FBA with an “averaged” limit kernel (3.9)
is an optimal reconstruction algorithm (at least for semidiscrete data). The range
of Sobolev orders yielding optimal convergence depends on the chosen filter and the
used interpolation procedure.

Theorem 3.7 looks similar to Theorem V.1.2 of Natterer [14]. The main difference
is that our theorem takes the discretization of the convolution into account. On
the other hand, the main result of Popov [15, Thm. 3, p. 35] investigates pointwise
convergence utilizing an approach based on asymptotic expansions. It does consider
the fully discrete algorithm but is applicable to a smaller class of functions (piecewise
C∞ with jumps across smooth curves), is stated without a detailed proof, and is not
always easily applied to concrete examples.
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Example 3.8. Here we provide a simple example for (3.13) which results in
a convergence proof of the FBA with the Shepp–Logan filter and nearest-neighbor
interpolation.

To this end let both η and A be first order B-splines; that is, η = A = χ[−1/2,1/2[.
In this situation (3.13) applies with αI = 3/2 as we will demonstrate now. By Theo-
rem A.2,

‖Ihu− u‖τ � hβ−τ ‖u‖β(3.15)

for 0 ≤ τ ≤ β ≤ 1 and τ < 1/2. To estimate ‖Ihu − u‖−1/2 we use a duality
argument and the symmetry Ih = I

∗
h, where I

∗
h is the L2-adjoint of Ih. We find that,

for 0 ≤ α ≤ 1/2,

‖Ihu− u‖−1/2 = sup
v∈H1/2(R)

〈Ihu− u, v〉
‖v‖1/2 = sup

v∈H1/2(R)

〈u, Ihv − v〉
‖v‖1/2

≤ ‖u‖α−1/2 sup
v∈H1/2(R)

‖Ihv − v‖1/2−α
‖v‖1/2

(3.15)

� hα ‖u‖α−1/2.

(3.16)

For 1/2 < α ≤ 3/2 we estimate similarly, relying on I2h = Ih,

‖Ihu− u‖−1/2 = sup
v∈H1/2(R)

〈(Ih − I)2u, v〉
‖v‖1/2 = sup

v∈H1/2(R)

〈Ihu− u, Ihv − v〉
‖v‖1/2

≤ ‖Ihu− u‖L2(R) sup
v∈H1/2(R)

‖Ihv − v‖L2(R)

‖v‖1/2(3.17)

(3.15)

� hα−1/2 ‖u‖α−1/2 h1/2.

Hence, (3.13) holds for αI = 3/2.
Recalling Example 3.6 we observe that the FBA with the Shepp–Logan filter

and nearest-neighbor interpolation is represented by B(s) = sinc(π s) and η = A =
χ[−1/2,1/2[ in our framework (3.5). Therefore, our results from Appendix B give that∥∥f̃FB − f

∥∥
L2(Ω)

� hmin{3/2, α} ‖f‖α for f ∈ Hα0 (Ω), α > 0,

as long as ε is either an even, compactly supported, and normalized L2-function
(Theorem B.2) or the Dirac distribution (Theorem B.4).

In the next section we will generalize the above example, covering especially
piecewise linear interpolation in Ih.

So far we have not shown L2-convergence of the FBA when the density distribu-
tion f is only in L2(Ω). However, we possess all the tools to do this.

Corollary 3.9. Assume (3.12) to hold with βmin ≤ 1/2, βmax > 1/2, and
τmax > 1/2. Further, let there exist an αI > 0 such that (3.13) holds true. Then,

lim
h→0

∥∥∥f − 1

2π
R∗IhΛEhRf

∥∥∥
L2(Ω)

= 0 for any f ∈ L2(Ω).(3.18)

Proof. We will use that R∗IhΛEhR : L2(Ω) → L2(Ω) is uniformly bounded in
h > 0. This follows by setting α = 0 in (3.14) which is allowed since βmin ≤ 1/2.
Thus, ‖R∗IhΛEhR‖L2(Ω)→L2(Ω) � 1.
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Fix an α with 0 < α ≤ min{αI, βmax − 1/2, τmax − 1/2}. By assumption the
upper bound on α is positive. Since Hα0 (Ω) is dense in L2(Ω) there exists a family
{fλ}λ>0 ⊂ Hα0 (Ω) which converges to f in L2(Ω) as λ→ 0. Without loss of generality

we may assume that f is not an element of Hβ0 (Ω) for any β > 0 (otherwise we apply
Theorem 3.7 to obtain (3.18)). Therefore, the function ρ(λ) := ‖fλ‖α explodes:
ρ(λ)→∞ as λ→ 0. Now we choose a family {λh}h>0 satisfying

lim
h→0

λh = 0 as well as lim
h→0

hα ρ(λh) = 0.

We proceed with∥∥∥f − 1

2π
R∗IhΛEhRf

∥∥∥
L2(Ω)

≤ ‖f − fλh‖L2(Ω)

+
∥∥∥fλh − 1

2π
R∗IhΛEhRfλh

∥∥∥
L2(Ω)

+ ‖R∗IhΛEhR(fλh − f)‖L2(Ω)

� ‖f − fλh‖L2(Ω) + hα ρ(λh),

where we applied Theorem 3.7 in the last step. Finally, the limit h → 0 implies
(3.18).

Example 3.10. We reconsider Example 3.8 in light of Corollary 3.9. The conver-
gence (3.18) holds true when using the Shepp–Logan filter with nearest-neighbor inter-
polation for Ih and band-limited quasi interpolation for Eh; that is,
η = A = χ[−1/2,1/2[, B(s) = sinc(π s), and ε is an even, compactly supported, and
normalized L2-function (Theorem B.2). Please note that band-limited interpolation
for Eh (ε is the Dirac distribution), which requires βmin > 1/2, is not covered by
Corollary 3.9.

4. Verifying (3.13) for interpolation-like operators Ih based on orthog-
onalized B-splines. We consider a special choice for Ih (3.8): let η̃ and A be the
B-splines of order M ≥ 1 and N ≥ 1, respectively. Define η by

η̂(σ) :=
̂̃η(σ)
a(σ)

=
1√
2π

sincM (σ/2)

a(σ)
,(4.1)

where

a(σ) =
∑
�∈Z

a� e
−ı �σ with a� =

∫
R

η̃(s) A(�− s) ds.(4.2)

Note that a is a positive even real trigonometric polynomial with a(0) = 1; see
Appendix C.1. Further, η and A are dual functions; that is,〈

η(· − k), A(·)〉 = δk,0;(4.3)

see Appendix C.2. Especially,

(I − Ih) (I − Ĩh) = I − Ih,(4.4)

where Ĩhu(s) := h−1
∑
k∈Z
〈u, η̃h(· − sk)〉Ah(s− sk).
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As in (3.16) we obtain

‖Ihu− u‖−1/2 ≤ ‖u‖α−1/2 sup
v∈H1/2(R)

‖I∗hv − v‖1/2−α
‖v‖1/2 , 0 ≤ α ≤ 1/2.

Accordingly, we have to investigate the approximation power of the L2-adjoint oper-
ator I∗hu(s) = h−1

∑
k∈Z
〈u,Ah(· − sk)〉 ηh(s− sk) which is done in Appendix C.3. By

(C.3),

‖Ihu− u‖−1/2 � hα ‖u‖α−1/2, 0 ≤ α ≤ 1/2.

The range α > 1/2 we approach as in (3.18) with the help of (4.4):

‖Ihu− u‖−1/2 � h1/2 ‖̃Ihu− u‖L2(R).

Applying Theorem A.2 to the above right-hand side implies (3.13) with

αI =

{
3/2 : N = 1,

5/2 : N ≥ 2.

The reconstruction filter belonging to Ih considered in this section is

υ(s) =
1

π
√
2π

∫ ∞
0

σ
sincM (σ/2)

a(σ)
B̂(σ) cos(s σ) dσ.

To find an explicit representation of a poses no problem since a� = B(�), where B is
the B-spline of order M + N . So, a� ∈ Q can be found by the B-spline recursion or
explicit representations of B-splines. Nevertheless, υ cannot be evaluated explicitly
in general. However, the needed values of υ at integers can be computed numerically
to any desired accuracy.

Example 4.1. Let M = 1, N = 2, and B(s) = sinc(π s). Then, a(σ) = 3
4 +

1
4 cos(σ) and

υ(s) =
4

π2

∫ π
0

sin(σ/2) cos(s σ)

3 + cos(σ)
dσ.

Using this filter in the FBA together with piecewise linear interpolation in Ih yields∥∥f̃FB − f
∥∥
L2(Ω)

� hmin{5/2, α} ‖f‖α for f ∈ Hα0 (Ω), α > 0,

since band-limited interpolation (B.4) is considered for Eh (βmax = τmax > 3).
Remark 4.2. The biorthogonalization procedure (4.1) is the same procedure used

in the construction of orthogonal spline wavelets; see Lemarié [12]. The connec-
tion between wavelets and reconstruction filters can even be extended to increase αI.
Choosing A to be a B-spline of order N and η to be a suitable compactly supported
dual scaling function (see Cohen, Daubechies, and Feauveau [4]) yields an operator
Ih with an αI increasing with N . The needed approximation properties of Ih and I

"
h

are reported, for instance, by Dahmen [5, Prop. 5.1].
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5. Verifying (3.13) for interpolation-like operators Ih based on B-splines.
Our analysis presented so far does not cover operators Ih where η and A are B-splines
of order M and N , respectively. We will now investigate this situation.

Let Eh and Ih be defined as earlier with respect to ε, B, η, and A. Moreover,
let a be given as in (4.2); however, η̃ is replaced by η. Further, define the operator

Ah : L2(R) → L2(R), h > 0, by Âhu(σ) := a(hσ) û(σ). Note that ̂A−1
h u(σ) =

û(σ)/a(hσ). Now the key observation is that

f̃FB =
1

2π
R∗IhΛEhRf =

1

2π
R∗IhA−1

h ΛAhEhRf.

Consequently, we have to study the approximation powers of the products AhEh and
IhA

−1
h . The latter product is exactly the operator Ih studied in the former section.

Hence,

‖IhA−1
h − I‖Hα−1/2(R)→H−1/2(R) � hα, 0 ≤ α ≤ αI =

{
3/2 : N = 1,

5/2 : N ≥ 2.
The product AhEh requires a little bit more attention. We begin with

‖AhEhu− u‖τ � ‖Ehu− u‖τ + ‖Ahu− u‖τ .
In view of (3.12) and (C.2) we obtain

‖AhEhu− u‖τ � hβ−τ‖u‖β , u ∈ Hβ0 (−1, 1),
for βmin ≤ β ≤ min{βmax, 2 + τ}, 0 ≤ τ ≤ β, τ ≤ τmax. The parameters βmin, βmax,
and τmax correspond to Eh.

Theorem 3.7 holds accordingly, however, with the following restrictions on α:

max{0, βmin − 1/2} < α ≤ min{αI, 2, βmax − 1/2, τmax − 1/2
}
;

that is, the maximal convergence order cannot exceed 2 which is a tribute to the
operator Ah in front of Eh.

Example 5.1. Using the Shepp–Logan filter (η = χ[−1/2,1/2[, B(s) = sinc(π s)) in
the FBA together with piecewise linear interpolation in Ih (A is the linear B-spline)
yields ∥∥f̃FB − f

∥∥
L2(Ω)

� hmin{2, α} ‖f‖α for f ∈ Hα0 (Ω), α > 0,

when ε is either an even, compactly supported, and normalized L2-function (Theo-
rem B.2) or the Dirac distribution (Theorem B.4).

6. Numerical illustrations. We provide numerical experiments to illustrate
the convergence results proved in the former sections. Especially, we will see that the
convergence rates saturate indeed at the given bounds.

To this end we need an f ∈ L2(Ω) with a prescribed Sobolev order and with
an analytically computable Radon transform. We favor the following construction.
Let pn be defined by pn(x) = (1 − ‖x‖2)n, ‖x‖ ≤ 1, and pn(x) = 0, otherwise. We
have that pn ∈ Hα0 (Ω) for any α < n + 1/2. The function f for the first numerical
experiment is then given by

f(x) :=

3∑
k=1

dk p3

(
Uk(x− bk)

) ∈ Hα0 (Ω) for any α < 7/2,(6.1)
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Fig. 2. The function f from (6.1) (left) and its cross section f(·, 0) (right).

where d1 = 1, d2 = −1.5, d3 = 1.5, and b1 = (0.22, 0)
t, b2 = (−0.22, 0)t, b3 = (0, 0.2)t.

Further, Uk = U(ϕk, δk, γk), k = 1, 2, 3, with

U(ϕ, δ, γ) :=

(
cos(ϕ)/δ sin(ϕ)/δ

− sin(ϕ)/γ cos(ϕ)/γ

)
(6.2)

and

δ1 = 0.51, γ1 = 0.31, ϕ1 = 72π/180,

δ2 = 0.51, γ2 = 0.36, ϕ2 = 108π/180,

δ3 = 0.5, γ3 = 0.8, ϕ3 = π/2.

See Figure 2 for a graphical representation of f . We reconstructed f on the grid
Xq := Ω ∩ {(i/q, j/q) | − q ≤ i, j ≤ q} by

fFB,q(x) :=
1

2π
R∗3qI1/qΛE1/qRf(x), x ∈ Xq,

where R∗p is defined in (1.6). We have chosen the number of directions (3q) close to
its optimal value; see, e.g., Natterer [14, p. 84].

Now we define the relative �2-reconstruction error e by

e(q) :=
( ∑
x∈Xq

(
fFB,q(x)− f(x)

)2/ ∑
x∈Xq

f(x)2
)1/2

.(6.3)

In Figure 3 we plotted e as the function of q ∈ {25, 50, 75, 100, 125, 150, 175, 200} on
a double logarithmic scale with respect to three different settings in the FBA:

• The Shepp–Logan filter with nearest-neighbor interpolation (Example 3.8).
Here, the expected and observed convergence rate is e(q) ∼ q−3/2; see the
dot-dashed line marked with ✷.
• The Shepp–Logan filter with piecewise linear interpolation (Example 5.1).
Here, the expected and observed convergence rate is e(q) ∼ q−2; see the
dashed line marked with �.
• The modified Shepp–Logan filter with piecewise linear interpolation (Exam-
ple 4.1). Here, the expected and observed convergence rate is e(q) ∼ q−5/2;
see the solid line marked with ◦. We also plotted an auxiliary curve decaying
exactly like q−5/2 (solid line in light gray).
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Fig. 3. The relative 
2-errors e (6.3) for reconstructing f (6.1) by the FBA using the Shepp–
Logan filter with nearest-neighbor interpolation (dot-dashed with ✷), the Shepp–Logan filter with
piecewise linear interpolation (dashed with �), and the modified Shepp–Logan filter with piecewise
linear interpolation (solid with ◦). The auxiliary solid line indicates exact decay q−5/2.

In light of the computational experiments we may conclude that our bounds for the
maximal convergence orders cannot be improved (at least for the settings underlying
the experiments).

Next, we present the relative �2-errors in reconstructing the Shepp–Logan head
phantom; see Figure 4. The Shepp–Logan head phantom fSL simulates the geometry
and the density relations in a human skull. It consists of superimposed indicator
functions of ellipses. Hence, fSL ∈ Hα0 (Ω) for any α < 1/2.4 We therefore expect and
observe e(q) ∼ q−1/2 for all three settings from above.

Both experiments agree completely with our theoretical results, although a dis-
cretization of the backprojection operator was not investigated. With our last exper-
iment we justify this simplification once more by considering a setting which might
cause trouble in a convergence analysis including the discrete backprojection operator.

The function to be reconstructed consists of indicator functions of two rectangles
R1 and R2:

f(x) := χR1(x) + 0.5χR2(x)(6.4)

with

R1 := [−2/5, 2/5]× [−3/5, 3/5]

and (U as in (6.2))

R2 :=
{
x ∈ R

2
∣∣U(π/3, 0.7, 0.4)(x− b) ∈ [−1, 1]2}, b = (−0.1,−0.1)t;

see Figure 5 (left). Note that f is in Hα0 (Ω) for any α < 1/2. So what is the
difference to the Shepp–Logan head phantom? While the fact that Rf as a function

4In general, picture densities in medical imaging can be considered elements in Hα
0 (Ω) with

α < 1/2 but close to 1/2; see Natterer [14, pp. 92ff.].
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Fig. 4. Top: head phantom due to Shepp–Logan [21]. Bottom: the relative 
2-errors e (6.3)
for reconstructing the Shepp–Logan phantom by the FBA using the Shepp–Logan filter with nearest-
neighbor interpolation (dot-dashed with ✷), the Shepp–Logan filter with piecewise linear interpolation
(dashed with �), and the modified Shepp–Logan filter with piecewise linear interpolation (solid with◦). The auxiliary solid line indicates exact decay q−1/2.

of two variables lies in Hβ0 (−1, 1)⊗̂L2(0, π) implies that the functions of one variable

Rf(·, ϑ) lie in Hβ0 (−1, 1) for almost all ϑ, there may be a null set of exceptional angles
ϑ, where Rf(·, ϑ) has less Sobolev regularity. For f given in (6.4) we have that Rf

is in Hβ0 (−1, 1)⊗̂L2(0, π) for any β < 1, but there exist four angles ϑ, where Rf(·, ϑ)
is less smooth. Indeed,

Rf(·, ϑ) ∈ Hα0 (−1, 1), α < 1/2, for ϑ ∈ {0, π/3, π/2, 5π/6};

see Figure 5 (right). The bound on α is maximal (there are no such pathological
angles for the Shepp–Logan head phantom; however, one expects such angles in real
measurements from medical imaging).

In Figure 6 we plotted the relative reconstruction error (6.3) for the same q-values
as before. Please note that the discrete Radon data for all q contain integrals over
lines which run along the boundary of R1. Further, all used reconstruction grids
Xq have sufficiently many points on the boundary of R1; indeed, the cardinality of
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Fig. 5. The function f from (6.4) (left) and its projection Rf(·, 0) (right). The jumps of
Rf(·, 0) in ±2/5 are clearly visible.
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Fig. 6. The relative 
2-errors e (6.3) for reconstructing f (6.4) by the FBA using the Shepp–
Logan filter with nearest-neighbor interpolation (dot-dashed with ✷), the Shepp–Logan filter with
piecewise linear interpolation (dashed with �), and the modified Shepp–Logan filter with piecewise
linear interpolation (solid with ◦). The auxiliary solid line indicates exact decay q−1/2.

Xq ∩ ∂R1 increases like O(q).
We observe that even “pathological” projections do not deteriorate the conver-

gence rate obtained by using the continuous backprojection operator for the analysis.

Appendix A. Proof of (3.12) for interpolation-like operators Eh based
on B-splines. We consider Eh as defined in (3.6) where B is the cardinal B-spline
of order N ≥ 1; that is, B is the N -fold convolution of χ[−1/2,1/2] with itself. The

functional ε ∈ H−βmin

0 (R), βmin ≥ 0, is supposed to be even, compactly supported
in ✷ = [−a, a], a > 0, and normalized by 〈1, ε〉 = 1 where 〈·, ·〉 denotes the duality
pairing in Hβmin(✷)×H−βmin

0 (✷).
The techniques we use below are standard in approximation theory, yet we are

not aware of any reference suitable for our setting; however, see Aubin [1, sect. 8.6].
First, we show that Eh reproduces affine linear functions if N ≥ 2.
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Lemma A.1. If N ≥ 2, then Ehp = p for any p ∈ Π1. For N = 1 Eh reproduces
only constants.

Proof. Note that the action of Eh on p is well defined since ε has compact
support. Constants are preserved by 〈1, ε(· − k)〉 = 1 and

∑
k∈Z

B(s − k) = 1; see,
e.g., Schoenberg [20, p. 16]. Let p(s) = s; then 〈p(·), ε(· − k)〉 = k due to the evenness
of ε. By s =

∑
k∈Z

k B(s − k), N ≥ 2 (see, e.g., Schoenberg [20, p. 16]), we are
done.

Theorem A.2. Let βmin ≤ β ≤ min{2, N}, τ < N − 1/2, and 0 ≤ τ ≤ β. Then,

‖Ehu− u‖τ � hβ−τ ‖u‖β as h→ 0.

Proof. We restrict the proof to N ≥ 2, and we show first a local version of the
approximation property. Therefore, let ✷h,k := h (✷+2a k) for k ∈ Z. We will rely on
the Bramble–Hilbert-like estimate (A.1): there is an affine linear function P = P (u)
such that

‖u− P‖Hτ (✷h,k) � hβ−τ ‖u‖Hβ(✷h,k), 0 ≤ τ ≤ β ≤ 2.(A.1)

For τ = 0, (A.1) reduces to the original estimate by Bramble and Hilbert [2]. For pos-
itive real τ , see Dupont and Scott [7, Thm. 6.1] or Brenner and Scott [3, Lem. 4.3.8].
By Lemma A.1 and (A.1) we have

‖Ehu− u‖Hτ (✷h,k) � ‖Eh(u− p)‖Hτ (✷h,k) + hβ−τ ‖u‖Hβ(✷h,k).

Let Jh,k := {r ∈ Z | suppBh(· − sr) ∩ ✷h,k �= ∅}. The cardinality of Jh,k neither
depends on h nor on k. We proceed with

‖Eh(u− p)‖Hτ (✷h,k) �
∑
r∈Jh,k

h−1
∣∣〈u− P, εh(· − sr)

〉∣∣ ‖Bh(· − sr)‖Hτ (R)

� h−τ
∑
r∈Jh,k

h−1/2
∣∣〈u− P, εh(· − sr)

〉∣∣.
From the proof of Lemma 5.2 by Dahmen, Prössdorf, and Schneider [6] we know that∣∣〈u− P, h−1/2 εh(· − sr)

〉∣∣2 � ‖u− P‖2L2(✷h,r) + h2 βmin ‖u− P‖2Hβmin (✷h,r),

which, by (A.1), gives

‖Ehu− u‖Hτ (✷h,k) � hβ−τ
∑
r∈Jh,k

‖u‖Hβ(✷h,r) � hβ−τ
( ∑
r∈Jh,k

‖u‖2Hβ(✷h,r)

)1/2
� hβ−τ ‖u‖Hβ(✷̃h,k),

where ✷̃h,k :=
⋃
r∈Jh,k

✷h,r. Thus,

‖Ehu− u‖Hτ (✷h,k) � hβ−τ ‖u‖Hβ(✷̃h,k).

Squaring both sides of the latter local approximation property and summing over
k ∈ Z yield finally the stated global approximation property.

Summary. The above theorem covers especially the cases ε = δ (Dirac dis-
tribution), where βmin > 1/2, and ε ∈ L2(✷) being even with

∫
✷
ε(s) ds = 1, where

βmin = 0. Hence, for both latter cases (3.12) holds with βmax = 2 and τmax < N−1/2.
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Appendix B. Proof of (3.12) for interpolation-like operators Eh based
on the sinc-function. We consider Eh as defined in (3.6) where B is the sinus
cardinalis; that is, B(x) := sinc(π x), where sinc(x) = sin(x)/x, x �= 0, and sinc(0) =
1. Further, ε ∈ L1(R) ∩ L2(R) is an even function with compact support and a
normalized mean value,

∫
ε(x) dx = 1. Here, 〈·, ·〉 denotes the L2(R)-inner product.

First we bound Eh uniformly in h.
Lemma B.1. (a) The operators Eh : L2(R) → L2(R), h > 0, are uniformly

bounded in h.
(b) Let w be in L2(R) with supp ŵ ⊂ [−π/h, π/h]. Then, we have the inverse

estimate ‖w‖α ≤ 2α/2 πα h−α ‖w‖L2(R) for 0 < h ≤ π and any α ≥ 0.
Proof. (a) Set ✷h,k = h (supp ε+ k). The L2(R)-orthogonality of {Bh(· − sk)}k∈Z

gives

‖Ehu‖2L2(R) = h−1
∑
k∈Z

|〈u, εh(· − sk)〉|2 ≤
∑
k∈Z

‖u‖2L2(✷h,k)‖ε‖2L2(R) � ‖u‖2L2(R).

(b) The inverse estimate results from a straightforward estimate of ‖w‖2α taking
into account the compact support of ŵ.

After the above preparatory results we are able to prove the claimed convergence
estimate.

Theorem B.2. Let 0 ≤ τ ≤ β, β − τ ≤ 2. Under the assumptions from above
we have that

‖Ehu− u‖τ � hβ−τ ‖u‖β as h→ 0.

Proof. Define an auxiliary operator Ph : L
2(R)→ L2(R) by

P̂hw(ξ) := χ✷h
(ξ) ŵ(ξ). 5(B.1)

It is an easy exercise to obtain

‖Phu− u‖τ � hβ−τ ‖u‖β for 0 ≤ τ ≤ β <∞(B.2)

whenever the right-hand side is finite.
In a first step we consider ‖EhPhu− Phu‖τ . We have

ÊhPhu(ξ) =
1√
2π

χ✷h
(ξ)
∑
k∈Z

〈Phu, εh(· − sk)〉 e−ı hkξ

and

h1/2 〈Phu, εh(· − sk)〉 = h1/2

∫
✷h

P̂hu(ξ) ε̂h(ξ) e
ı hkξ dξ

=
( h

2π

)1/2
∫

✷h

̂Phu � εh(ξ) e
ı hkξ dξ,

which is the kth Fourier coefficient of ̂Phu � εh. Hence,

ÊhPhu(ξ) = h−1 χ✷h
(ξ) ̂Phu � εh(ξ).

5Actually, Ph is the orthogonal projector onto the closed subspace of band-limited functions with
band-width π/h.
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Therefore,

‖EhPhu− Phu‖2τ =
∫

✷h

(1 + ξ2)τ
∣∣h−1 ̂Phu � εh(ξ)− P̂hu(ξ)

∣∣2 dξ
�
∫

✷h

(1 + ξ2)τ
∣∣û(ξ)∣∣2 M(hξ) dξ,

whereM(z) = |ε̂(z)−1/√2π|2, z ∈ R. As in the proof of Corollary 2.2 one shows that
M(z) � z4 using a Taylor expansion of ε̂ about the origin. Now let 0 ≤ β − τ ≤ 2.
Then,

‖EhPhu− Phu‖2τ � h4

∫
✷h

(1 + ξ2)β
∣∣û(ξ)∣∣2 ξ4−2(β−τ) dξ(B.3a)

� h2(β−τ) ‖u‖2β .(B.3b)

In the final step we use both statements from Lemma B.1 as well as (B.2) and (B.3):

‖Ehu− u‖τ ≤ ‖Ehu− EhPhu‖τ + ‖EhPhu− Phu‖τ
+ ‖Phu− u‖τ

� h−τ ‖u− Phu‖L2(R) + hβ−τ ‖u‖β .
Applying (B.2) again we conclude with the proof of Theorem B.2.

Remark B.3. The upper bound 2 on β − τ in Theorem B.2 may be relaxed by
imposing higher order vanishing moments on ε.

Now we investigate band-limited interpolation; that is, Eh is defined by

Ehu(s) =
∑
k∈Z

u(sk) sinc
(π
h
(s− sk)

)
.(B.4)

Theorem B.4. Let βmax ∈ N. Then, for 1/2 < β < ∞, 0 ≤ τ ≤ β with
β − τ ≤ βmax, we have that

‖Ehu− u‖τ � hβ−τ ‖u‖β as h→ 0

whenever u ∈ Hβ(R) is compactly supported. The constant in the above estimate may
depend on βmax.

Proof. Band-limited interpolation is well defined under the assumptions on u.

We introduce an auxiliary operator E
(m)
h . To this end let ε ∈ L2(R) be compactly

supported with normalized mean value (
∫
ε(x) dx = 1) and vanishing moments up to

order βmax (
∫
xk ε(x) dx = 1, k = 1, . . . , βmax). Thus, ε̂(0) = 1/

√
2π and ε̂(ν)(0) = 0,

ν = 1, . . . , βmax. Define ε(m)(s) := mε(ms), m ∈ N, and

E
(m)
h u(s) := h−1

∑
k∈Z

〈
u, ε

(m)
h (· − sk)

〉
sinc

(π
h
(s− sk)

)
.

Observe that E
(m)
h : L2(R)→ L2(R) is uniformly bounded in h and m; see the proof

of Lemma B.1. Hence, we may apply Theorem B.2 to obtain

‖E(m)
h u− u‖τ � hβ−τ ‖u‖β ,(B.5)
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where the constant is bounded inm, as a careful inspection of the proof of Theorem B.2
shows. Moreover, the upper bound on β − τ in (B.5) is βmax since all derivatives of ε̂
up to order βmax vanish about 0; see Remark B.3. By (B.5),

‖Ehu− u‖τ � ‖Ehu− E
(m)
h u‖τ + hβ−τ ‖u‖β .(B.6)

Further,

‖Ehu− E
(m)
h u‖τ ≤ ‖sinch/π‖τ

∑
k∈Jm,h(u)

∣∣u(sk)− 〈u, h−1ε
(m)
h (· − sk)

〉∣∣
with Jm,h(u) = {k ∈ Z | sk ∈ suppu} ∪ {k ∈ Z | supp u∩ h(m−1 supp ε+ k)}. The set
Jm,h(u) is finite and its cardinality is bounded in m. So we have that limm→∞ ‖Ehu−
E

(m)
h u‖τ = 0, and the stated estimate is readily seen from (B.6).
Summary. The band-limited interpolation-like operators considered in Theo-

rem B.2 satisfy (3.12) with βmin = 0, βmax = 2 + τ , and any τmax < ∞. For the
band-limited interpolation (B.4) we have (3.12) with βmin > 1/2 and any positive
τmax and any fixed βmax > 1/2.

Appendix C. Complement to section 4. This appendix is devoted to the
proof of various auxiliary results from section 4. Throughout this appendix let η̃ and
A be B-splines of order M ≥ 1 and N ≥ 1, respectively. Further, let η be defined by
(4.1).

C.1. The trigonometric polynomial a. Recall that

a(σ) =
∑
�∈Z

a� e
−ı �σ with a� =

∫
R

η̃(s) A(�− s) ds.

Since η̃ and A are even, so are {a�}�∈Z and a. By
∑
�∈Z

A(·− �) = 1 and
∫
η̃(s)ds = 1

(see, e.g., Schoenberg [20, p. 16 and p. 2]), we have that a(0) = 1. In the remainder of
this appendix we verify that a has no zeros. Then we have established all properties
of a claimed and needed in section 4.

Straightforward calculations reveal that the a�’s are the Fourier coefficients of the

2π-periodic function 2π
∑
k∈Z

̂̃η(σ + 2π k) Â(σ + 2π k). Hence,

a(σ) = 2π
∑
k∈Z

̂̃η(σ + 2π k) Â(σ + 2π k) =
∑
k∈Z

sincM+N (σ/2 + π k).(C.1)

IfM+N is even, a clearly has no zeros because there is no σ such that sincM+N (σ/2+
π k) = 0 for all k ∈ Z. It remains to investigate the odd case M +N = 2L+1, L ∈ N.
We factorize a according to

a(σ) = sin2L(σ/2) Σ2L+1(σ) with Σ2L+1(σ) :=
∑
k∈Z

(−1)k
(σ/2 + π k)2L+1

.

As multiples of 2π are not zeros of a it suffices to show that Σ2L+1 has no zeros in
]0, 2π[. Separating even from odd indices we find

Σ2L+1(σ) = 2−(2L+1)
(
S2L+1(σ/4)− S2L+1(σ/4 + π/2)

)
,

where Sl(σ) :=
∑
k∈Z

(σ + π k)−l, l ≥ 2. Observe that S2l(σ) > 0, l ∈ N. Now,

d

dσ
S2L+1(σ) = −(2L+ 1) S2L+2(σ) < 0, σ ∈ ]0, 2π[.

Therefore S2L+1 is strongly decreasing in ]0, 2π[ which gives Σ2L+1 > 0 in ]0, 2π[.



SEMIDISCRETE FILTERED BACKPROJECTION IS OPTIMAL 891

C.2. Biorthogonality (4.3). By (4.1) and (C.1) we obtain

〈
η(· − k), A(·)〉 = ∫

R

η̂(σ) Â(σ) eı kσ dσ

=

∫ 2π

0

∑
n∈Z

η̂(σ + 2π n) Â(σ + 2π n) eı kσ dσ

=

∫ 2π

0

1

a(σ)

∑
n∈Z

̂̃η(σ + 2π n) Â(σ + 2π n) eı kσ dσ =

∫ 2π

0

eı kσ

2π
dσ,

which is (4.3).

C.3. Approximation power of I∗
h. We are not able to apply Theorem A.2

directly to I∗h as η from (4.1) does not have compact support in general. Nevertheless,

we will show that the approximation power of Ĩ∗h carries over to I
∗
h (for the notation

see section 4). Since

Î∗hu(σ) =
̂̃
I∗hu(σ)/a(hσ)

we have that

‖u− I∗hu‖2τ �
∫

R

(1 + σ2)τ
∣∣a(hσ) û(σ)− ̂̃I∗hu(σ)∣∣2 dσ.

Thus,

‖u− I∗hu‖τ � ‖Ahu− Ĩ∗hAhu‖τ + ‖̃I∗hAhu− Ĩ∗hu‖τ ,

where Âhu(σ) = a(hσ) û(σ). Theorem A.2 provides

‖Ahu− Ĩ∗hAhu‖τ � hβ−τ ‖Ahu‖β � hβ−τ ‖u‖β

for 0 ≤ β ≤ min{2,M}, τ < M − 1/2, and 0 ≤ τ ≤ β. Further, also by Theorem A.2,

‖̃I∗hAhu− Ĩ∗hu‖τ � ‖Ahu− u‖τ

whenever 0 ≤ τ < M−1/2, forM ≤ 2, and 0 ≤ τ ≤ 2, otherwise. A Taylor expansion
of a about 0 proves that |a(σ)−1| � σ2. Now we may copy the proof of Corollary 2.2
to obtain

‖Ahu− u‖τ � hmin{2,β−τ} ‖u‖β , 0 ≤ τ ≤ β.(C.2)

Collecting the pieces we find

‖u− I∗hu‖τ � hβ−τ ‖u‖β as h→ 0(C.3)

for 0 ≤ β ≤ min{2,M}, τ < min{2,M − 1/2}, and 0 ≤ τ ≤ β.
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[12] P. G. Lemarié, Ondelettes à localisation exponentielle, J. Math. Pures Appl. (9), 67 (1988),
pp. 227–236.

[13] A. K. Louis and F. Natterer, Mathematical problems in computerized tomography, Proc.
IEEE, 71 (1983), pp. 379–389.

[14] F. Natterer, The Mathematics of Computerized Tomography, Wiley, Chichester, 1986.
[15] D. A. Popov, On convergence of a class of algorithms for the inversion of the numerical Radon

transform, in Mathematical Problems of Tomography, Transl. Math. Monogr. 81, L. M.
Gelfand and S. G. Gindikin, eds., AMS, Providence, R.I., 1990, pp. 7–65.

[16] A. Rieder, Principles of reconstruction filter design in 2D-computerized tomography, in Radon
Transforms and Tomography, Contemp. Math. 278, T. Quinto, L. Ehrenpreis, A. Faridani,
F. Gonzales, and E. Grinberg, eds., AMS, Providence, RI, 2001, pp. 201–226.

[17] A. Rieder, R. Dietz, and Th. Schuster, Approximate inverse meets local tomography, Math.
Methods Appl. Sci., 23 (2000), pp. 1373–1387.

[18] A. Rieder and Th. Schuster, The approximate inverse in action II: Convergence and stability,
Math. Comp., to appear.

[19] W. Rudin, Functional Analysis, 12th ed., Tata McGraw-Hill, New Delhi, India, 1988.
[20] I. J. Schoenberg, Cardinal Spline Interpolation, CBMS-NSF Regional Conf. Ser. in Appl.

Math. 12, SIAM, Philadelphia, 1973.
[21] L. A. Shepp and B. F. Logan, The Fourier reconstruction of a head section, IEEE Trans.

Nuc. Sci., 21 (1974), pp. 21–43.
[22] K. T. Smith, Reconstruction formulas in computed tomography, Proc. Sympos. Appl. Math.,

27 (1982), pp. 7–23.
[23] K. T. Smith and F. Keinert, Mathematical foundations of computed tomography, Appl. Op-

tics, 24 (1985), pp. 3950–3957.
[24] K. T. Smith, D. C. Solmon, and S. C. Wagner, Practical and mathematical aspects of the

problem of reconstructing objects from radiographs, Bull. Amer. Math. Soc., 83 (1977),
pp. 1227–1270.

[25] G. Strang and G. J. Fix, An Analysis of the Finite Element Method, Prentice-Hall Series in
Automatic Computation, Prentice-Hall, Englewood Cliffs, NJ, 1973.



h-BOX METHODS FOR THE APPROXIMATION OF HYPERBOLIC
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Abstract. We study generalizations of the high-resolution wave propagation algorithm for the
approximation of hyperbolic conservation laws on irregular grids that have a time step restriction
based on a reference grid cell length that can be orders of magnitude larger than the smallest grid
cell arising in the discretization. This Godunov-type scheme calculates fluxes at cell interfaces by
solving Riemann problems defined over boxes of a reference grid cell length h.

We discuss stability and accuracy of the resulting so-called h-box methods for one-dimensional
systems of conservation laws. An extension of the method for the two-dimensional case, which is
based on the multidimensional wave propagation algorithm, is also described.

Key words. finite volume methods, conservation laws, nonuniform grids, stability, accuracy
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1. Introduction. We consider the numerical approximation of hyperbolic sys-
tems of conservation laws using finite volume schemes on irregular grids. We mainly
restrict our considerations to the case of one spatial dimension, although an extension
to the two-dimensional case will also be considered. Under appropriate smoothness
assumptions the equations can be formulated in the differential form

∂

∂t
q(x, t) +

∂

∂x
f(q(x, t)) = 0,(1.1)

where q(x, t) is a vector of conserved quantities and f(q(x, t)) is a vector of flux
functions. For the numerical approximation we want to use a finite volume method.
On an unstructured grid such a scheme can be written in the general form

Qn+1
i = Qn

i −
�t

�xi

(
Fi+ 1

2
− Fi− 1

2

)
,(1.2)

where Qn
i is an approximation of the cell average of the conserved quantity over the

grid cell [xi− 1
2
, xi+ 1

2
] at time t = tn. The vector valued quantities Fi− 1

2
and Fi+ 1

2
are

the numerical flux functions at the cell interfaces. We denote the time step by �t
and the length of the ith grid cell by �xi = xi+ 1

2
− xi− 1

2
.

We are particularly interested in the construction of high-resolution schemes for
a grid which contains one small grid cell, while all other grid cells have the same
length, which will be denoted by h = �x. This situation is motivated by a two-
dimensional application, namely the construction of Cartesian grid methods with
embedded irregular geometry. Away from the boundary one may want to use a
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regular Cartesian grid. Near the boundary one then obtains irregular cut cells, which
may be orders of magnitude smaller than the regular grid cells. Our aim in such a
situation is to construct a scheme that is stable based on time steps adequate for the
regular grid. Such methods were developed by Berger and LeVeque in [4], [5], [6]. The
basic idea of these so-called h-box methods is to approximate the numerical fluxes at
the interfaces of a small cell based on initial values specified over regions of length h,
i.e., of the length of a regular grid cell. If this is done in an appropriate way, then the
resulting method remains stable for time steps based on a CFL number appropriate
for the regular part of the grid. See also [8], [9], [10], [23], [21], and [25] for other
embedded boundary Cartesian grid methods that have this same stability property.

Besides this two-dimensional application, h-box schemes can also offer interesting
alternatives to existing irregular grid methods. An extension of h-box methods to
a completely irregular grid was considered by Berger, LeVeque, and Stern [7]; see
also Stern [28]. We will consider such calculations in section 5. In section 7, we
construct a multidimensional h-box method. Other potential applications are the
construction of moving mesh or front-tracking algorithms. Stern [28] used an h-box
method to construct a conservative finite volume algorithm for a Cartesian grid with
an embedded curvilinear grid.

Unsurprisingly, the accuracy of an h-box method depends strongly on the defi-
nition of the h-box values. In this paper we develop a one-dimensional as well as a
two-dimensional high-resolution h-box method. Our goal here is a systematic study of
h-box methods in a relatively simple context to provide fundamental understanding
for the more complex applications mentioned above. For the advection equation we
show that the one-dimensional scheme leads to a second order accurate approximation
of smooth solutions on nonuniform grids (without any restrictions on the grid). We
also verify that the resulting method leads to high-resolution approximations for the
Euler equations on nonuniform meshes. The approximation of transonic rarefaction
waves turns out to require a special treatment. Throughout this paper we will discuss
the construction of h-box methods based on LeVeque’s high-resolution wave propaga-
tion algorithm [18]. This method is implemented in the clawpack software package
[13], which provided the basic tool for our test calculations.

The large time step Godunov method of LeVeque described in [14], [15], [16] is
related to the h-box method. This scheme allows larger time steps in the approxima-
tion of nonlinear systems of conservation laws by increasing the domain of influence of
the numerical scheme. This is done in a wave propagation approach, in which waves
are allowed to move through more than one mesh cell. The interaction of waves is
approximated by linear superposition. At a reflecting boundary this method becomes
more difficult than an h-box method, especially in higher dimensions, since the reflec-
tion of waves at the boundary has to be considered for waves generated by Riemann
problems away from the boundary; see [3]. In [22, Lemma 3.5], Morton showed that
high-resolution versions of such a large time step method lead to a second order accu-
rate approximation of the one-dimensional advection equation on a nonuniform grid
only if the grid varies smoothly. The high-resolution h-box method described in this
paper does not require this smoothness assumption.

2. The wave propagation algorithm. In this section we describe the basic
concept of the high-resolution wave propagation algorithm applied to irregular Carte-
sian grids; a more general description can be found in LeVeque [18] or [19]. The
numerical method for solving (1.1) is a Godunov-type method; i.e., the fluxes at cell
interfaces are calculated by solving Riemann problems defined from cell averages of
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the conserved quantities. This is done by calculating waves that are moving into each
grid cell. The first order update of the wave propagation algorithm has the form

Qn+1
i = Qn

i −
�t

�xi

(
A+�Qi− 1

2
+A−�Qi+ 1

2

)
.

Here the change of the conserved quantities is calculated by taking all waves into ac-
count that are moving into the grid cell from the left (respectively, right) cell interface.
The solution of Riemann problems at cell interfaces provides a decomposition of the
jump Qn

i+1 −Qn
i into waves Wp

i+ 1
2

that are moving with speed sp
i+ 1

2

for 1 ≤ p ≤Mw,

�Qn
i+ 1

2
= Qn

i+1 −Qn
i =

Mw∑
p=1

Wp

i+ 1
2

.

The left- and right-going fluctuations are calculated as

A+�Qi− 1
2

=

Mw∑
p=1

max(sp
i− 1

2

, 0)Wp

i− 1
2

, A−�Qi+ 1
2

=

Mw∑
p=1

min(sp
i+ 1

2

, 0)Wp

i+ 1
2

.

This can be written as a finite volume scheme of the form (1.2) using the relations

Fi+ 1
2

= f(Qi) +A−�Qi+ 1
2
,(2.1)

Fi− 1
2

= f(Qi)−A+�Qi− 1
2
.(2.2)

Appropriate waves and speeds for systems of conservation laws can sometimes be cal-
culated by using an exact Riemann solver, but more often an approximative Riemann
solver, for instance a Roe–Riemann solver [26], is used.

In the wave propagation algorithm second order correction terms are included by
extending the first order method into the form

Qn+1
i = Qn

i −
�t

�xi

(
A+�Qi− 1

2
+A−�Qi+ 1

2

)
− �t

�xi

(
F̃ 2
i+ 1

2
− F̃ 2

i− 1
2

)
.(2.3)

On an irregular grid, the second order correction terms have the form

F̃ 2
i+ 1

2
=

1

2

Mw∑
p=1

|sp
i+ 1

2

|
( �xi

(�xi +�xi+1)/2
− �t

(�xi +�xi+1)/2
|sp
i+ 1

2

|
)
W̃p

i+ 1
2

.(2.4)

In (2.4) the waves W̃p are limited waves—this limiting is necessary in order to avoid
oscillations near discontinuities.

The resulting scheme is stable for the approximation of systems of conservation
laws (1.1) as long as time steps are restricted such that waves move through at most
one mesh cell, which means the Courant number is no larger than one, i.e.,

CFL = �tmax
i

(
max(maxp(s

p

i− 1
2

, 0), |minp(s
p

i+ 1
2

, 0)|)
�xi

)
≤ 1.(2.5)

The h-box method changes this time step restriction by replacing �xi in the denom-
inator of (2.5) by h, the width of a reference grid cell. We will use the notation CFLh
if we want to indicate that the Courant number is based on grid cells of width h.
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We want to note that some care is necessary in the construction of second order
accurate algorithms for irregular grids. There exist versions of the one-dimensional
Lax–Wendroff method which lead to second order accurate approximations of the
advection equation only if the grid is sufficiently smooth, i.e., if �xi/�xi−1 = 1 +
O(h), where h = maxi�xi; see, for instance, Wendroff and White [30], [31] and Pike
[24]. See also Morton [22] for convergence results of finite volume methods for the
approximation of the advection equation on nonuniform grids.

3. The one-dimensional h-box method. First we want to approximate (1.1)
on an almost uniform grid that contains one small grid cell in the middle. This
example allows simple analytical studies. However, we will show that the results
obtained for this simple test case can be extended to more general applications.

We denote the length of a regular grid cell by h = �x. The small cell has the
length αh, with 0 < α ≤ 1. For the small cell the numerical method has to be modified
in order to obtain a stable scheme for time steps�t that satisfy the stability condition
in the regular part of the grid. The h-box method introduced by Berger and LeVeque
[5] defines new left and right states at the edges of the small cell that represent the
conserved quantities at these interfaces over boxes of length h; see Figure 1. This
guarantees that the domain of dependence of the numerical solution has the size of a
regular mesh cell, which is a necessary stability condition.

3.1. First order accurate h-box methods. As a first step we compare the
performance of two different h-box schemes applied to the advection equation qt(x, t)+
aqx(x, t) = 0. We will assume that a > 0, although analogous considerations can of
course be made for the case a < 0. In the following we assume that k is the index
of the small cell. In order to calculate numerical fluxes at the small cell interfaces
new values of the conserved quantity q that represent piecewise constant initial val-
ues over boxes of length h will be defined. For the left cell interface of the small
cell, these values are denoted by QL

k− 1
2

and QR
k− 1

2

. At the right cell interface of

the small cell we have to define values QL
k+ 1

2

and QR
k+ 1

2

. This is indicated by the

shaded boxes at each interface in Figure 1.
The most obvious choice is to define the h-box values via cell averaging over the

piecewise constant initial values. (To keep the notation simple we sometimes suppress
the time index if it is clear that we mean the values at time tn.) We obtain

QL
k− 1

2
= Qk−1, QR

k− 1
2

= αQk + (1− α)Qk+1,

QL
k+ 1

2
= αQk + (1− α)Qk−1, QR

k+ 1
2

= Qk+1.
(3.1)

Such h-box values were used in Berger and LeVeque [5] as well as by Forrer and
Jeltsch [10]. For the advection equation the update of the small cell value can now
be calculated using the upwind method. We obtain

Qn+1
k = Qn

k −
�t

αh

(
aQL

k+ 1
2
− aQL

k− 1
2

)
= Qn

k −
a�t

αh

(
αQn

k + (1− α)Qn
k−1 −Qn

k−1

)
= Qn

k −
a�t

h
(Qn

k −Qn
k−1).(3.2)

Note that the small denominator (that may cause a stability problem) has been re-
moved. One can indeed show TVD stability for this method assuming CFLh ≤ 1;
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(a)

xk+ 1
2

xk− 1
2

Qn
k−1

Qn
k Qn

k+1

QR
k− 1

2

QL
k− 1

2

xk− 3
2

xk+ 3
2

(b)

xk+ 1
2

xk− 1
2

Qn
k−1

Qn
k Qn

k+1

QR
k+ 1

2

QL
k+ 1

2

xk− 3
2

xk+ 3
2

Fig. 1. Schematic description of h-box values assigned to the left small cell interface (see (a))
(respectively, the right small cell interface (see (b))).

see section 4. However, it is clear that this cannot be a very accurate formula. The
truncation error of the scheme (3.2) has the form

Lq =
qn+1
k − qnk
�t

+ a
qnk − qnk−1

h

= qt(xk, t
n) +

a

2
(α + 1)qx(xk, t

n) +O(�t, h)

=
a

2
(α− 1)qx(xk, t

n) +O(�t, h).

Only for α = 1 is the truncation error in cell k of the order O(�t, h). Note that
grid functions for the exact solution q are expressed with lower-case letters, whereas
numerical approximations are written in capital letters.

In spite of the apparent inconsistency of the scheme, numerical tests suggest
that this h-box method converges with first order. For the advection equation we can
indeed prove that under appropriate smoothness assumptions the scheme is first order
accurate in the small cell. This so-called supraconvergence property can be shown using
an idea developed for conservation laws by Wendroff and White [30], [31]. See also
[12], [20], where these ideas were introduced for boundary value problems for ODEs.

Proposition 1. We consider the approximation of the advection equation on an
almost uniform grid with mesh width h that contains one small mesh cell of length αh,
with α ≤ 1. The one-dimensional h-box method (3.2), based on an upwind discretiza-
tion with h-box values calculated by averaging over piecewise constant cell average
values, leads to a first order accurate approximation for sufficiently smooth solutions
of the advection equation, in spite of the fact that the truncation error indicates in-
consistency.

Proof. The basic step of the proof is to calculate the local truncation error for a
grid function w, which must be an accurate enough approximation of the grid function
of the exact solution q. We want to show that the truncation error for w is first order,
i.e., Lw = O(h). In order to do this we specify the grid function to have the form

wni = qni +
1

2
(1− αi)hqx(xi, t

n).

Here we assume that �xi = αih, i.e., αi = 1 for i �= k and αk = α. The distance
between xk and xk−1 is 1

2h(1 + α). In the simple situation of only one small grid cell
we have wni = qni for i �= k and wnk = qnk + 1

2 (1− α)hqx(xk, t
n). The truncation error
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of the grid function w for the scheme (3.2) has in the small cell the form

Lw =
wn+1
k − wnk
�t

+ a
wnk − wnk−1

h

=
qn+1
k + 1

2 (1− α)hqx(xk, t
n+1)− qnk − 1

2 (1− α)hqx(xk, t
n)

�t

+ a
qnk + 1

2 (1− α)hqx(xk, t
n)− qnk−1

h
+O(�t, h)

=
qnk +�tqt(xk, t

n) + 1
2 (1− α)hqx(xk, t

n)− qnk − 1
2 (1− α)hqx(xk, t

n)

�t

+ a
qnk + 1

2 (1− α)hqx(xk, t
n)− qnk + 1

2 (1 + α)hqx(xk, t
n)

h
+O(�t, h)

= qt(xk, t
n) + aqx(xk, t

n) +O(�t, h) = O(�t, h).

From the truncation error of w and the stability of the method for CFLh ≤ 1 it follows
that |wk −Qk| = O(�t, h). Since w = q +O(h) we obtain the estimate

|qk −Qk| = O(h);

i.e., the h-box method (3.2) leads to a first order accurate approximation of the advec-
tion equation in the small cell k, in spite of the fact that the scheme is inconsistent in
the small cell. Using the same grid function w one can also show that the truncation
error Lw in cell k+1 is of the order O(h). In all other regularly spaced grid cells, the
method agrees with the upwind scheme for which the truncation error is also O(h).
Therefore, we obtain first order convergence in the whole domain.

In order to obtain a more accurate small cell scheme, we will now consider the
construction of h-box values based on linear interpolation using again grid cell values
that are overlapped by the h-boxes. Such h-box values have the general form

QL
k− 1

2
= Qk−1, QR

k− 1
2

= λQk + (1− λ)Qk+1,

QL
k+ 1

2
= λQk + (1− λ)Qk−1, QR

k+ 1
2

= Qk+1.

We want to determine λ so that we obtain a consistent h-box scheme, i.e., for which
Lq = O(h,�t). By again using Taylor series expansion we find that only λ = 2α

1+α
leads to an upwind method that satisfies this condition. This suggests that the h-box
values should have the form

QL
k− 1

2
= Qk−1, QR

k− 1
2

=
2 α Qk + (1− α) Qk+1

1 + α
,

QL
k+ 1

2
=

2 α Qk + (1− α) Qk−1

1 + α
, QR

k+ 1
2

= Qk+1.

(3.3)

Note that this interpolation formula was already given in [4] but not further investi-
gated there. In [7], [28] h-box values were defined in a similar way, and the resulting
scheme was shown to give good results for advection and Burgers’s equation.

One time step of the h-box method based on the interpolation formula (3.3) again
for a > 0 has in the small cell the form

Qn+1
k = Qn

k −
a�t

h
· Q

n
k −Qn

k−1

(1 + α)/2
.(3.4)
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We can derive the same method as a finite difference scheme by replacing qx(xk, t
n)

in the Taylor series expansion of

q(xk, t
n +�t) = q(xk, t

n) +�tqt(xk, t
n) +O(�t2)

= q(xk, t
n)−�t · a qx(xk, t

n) +O(�t2)(3.5)

by an appropriate first order accurate finite difference formula. The h-box method
(3.4) can be interpreted as a finite difference scheme that approximates the qx(xk)
terms by one-sided finite differences. This h-box method leads to a first order accurate
method that approximates linear functions exactly. One can also show that an upwind
scheme based on the h-box values (3.3) also leads to a consistent first order accurate
update in the two neighboring grid cells of the small cell.

If we use the wave propagation algorithm, then the first order update in the small
cell can be written in the form

Qn+1
k = Qn

k −
�t

αh

(
A+�Q̂k− 1

2
− f(QR

k− 1
2
) +A−�Q̂k+ 1

2
+ f(QL

k+ 1
2
)
)
,(3.6)

with �Q̂k− 1
2

= QR
k− 1

2

−QL
k− 1

2

and �Q̂k+ 1
2

= QR
k+ 1

2

−QL
k+ 1

2

. In the limit case α = 1

we have QR
k− 1

2

= QL
k+ 1

2

, and (3.6) reduces to the first order accurate wave propagation

algorithm that is valid in the regular parts of the grid. This formula remains valid
for nonlinear equations as well as systems of conservation laws, assuming we have a
Riemann solver that provides us a decomposition of QR−QL, as described in section 2.
We indicate quantities that are calculated from h-box values by the “ˆ” symbol.

Numerical results shown in section 5 will demonstrate the superior properties of
an h-box method with h-boxes obtained by linear interpolation.

3.2. A second order accurate h-box method. In order to obtain a high-
resolution scheme we want to include second order correction terms. This means we
want to obtain an update of the small cell that can be written as

Qn+1
k = Qn

k −
�t

αh

(
A+�Q̂k− 1

2
− f(QR

k− 1
2
) +A−�Q̂k+ 1

2
+ f(QL

k+ 1
2
)
)

− �t

αh

(
F̂ 2
k+ 1

2
− F̂ 2

k− 1
2

)
,

where F̂ 2 denotes the second order correction terms that are implemented in flux
differencing form. By analogy to the standard wave propagation algorithm, these
second order correction terms should also be calculated by using the waves and speeds
obtained from solving Riemann problems at the cell interfaces. For the small cell we
again use the waves and speeds from Riemann problems defined by the same h-box
values used to obtain the first order update. We will restrict our consideration to
h-box values that are calculated using the interpolation formula (3.3).

The formula (2.4) for the second order correction flux on irregular grids suggests
using correction terms of the form

F̂ 2
i+ 1

2
=

1

2

Mw∑
p=1

(
1

(1 + α)/2
− �t

(1 + α)h/2
|ŝp
i+ 1

2

|
)
· |ŝp

i+ 1
2

| · Ŵp

i+ 1
2

(i = k − 1, k)

(3.7)

in the small cell. The waves Ŵp

i+ 1
2

and the speeds ŝp
i+ 1

2

can be obtained by solving

Riemann problems defined by the h-box values at the small cell interfaces. One can
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show that the truncation error in the small cell that results from such a high-resolution
wave propagation scheme is Lqk = O(h2,�t2); i.e., assuming the scheme is stable we
would obtain a second order accurate approximation in the small cell. However,
numerical tests showed that such an approach is not stable for time steps satisfying
CFLh ≤ 1.

Instead we use second order correction terms of the form

F̂ 2
i+ 1

2
=

1

2

Mw∑
p=1

(
1− �t

h
|ŝp
i+ 1

2

|
)
· |ŝp

i+ 1
2

|Ŵp

i+ 1
2

(i = k − 1, k).(3.8)

The waves are again calculated from Riemann problems defined by the h-box values.
The difference from (3.7) is that we do not take the size of the small cell into account in
the calculation of the correction fluxes. This reflects the general concept of the h-box
method where fluxes are calculated from values defined over regions of length h.

Although the truncation error for the grid cell k now contains first order terms
which do not cancel out, the numerical results are very satisfying and indicate second
order convergence as well as stability for CFLh ≤ 1. Assuming that the solution is
sufficiently smooth we can indeed prove that the resulting method leads to a second
order accurate approximation for the advection equation.

Proposition 2. We consider the approximation of the advection equation on an
almost uniform grid with mesh width h that contains one small mesh cell of length
αh, with α ≤ 1. The h-box method consisting of the first order update (3.4) and the
second order correction terms (3.8) (without limiters) leads to a second order accurate
approximation for sufficiently smooth solutions of the advection equation.

Proof. We again use the idea of Wendroff and White and consider the truncation
error Lw for a grid function of the form wni = qni + 1

8h
2(αi+1)(αi−1)qxx(xi, t

n). Here
we assume that�xi = αih. We have αi = 1 for i �= k and αk = α. In regular grid cells
i �= k the grid function w agrees with the exact solution. We want to show only second
order convergence in the small cell as well as in the two neighboring cells k − 1 and
k + 1, since the method reduces to the high-resolution wave propagation algorithm
in the other regular grid cells. In the case considered here, the wave propagation
algorithm on the regular part of the grid is equivalent to the Lax–Wendroff scheme.

The truncation error for the grid function w has the form

Lw =
wn+1
k − wnk
�t

+ 2a
wnk − wnk−1

h(1 + α)
+

(
1− a

�t

h

)
a
wnk+1 − 2wnk + wnk−1

h(1 + α)

= qt(xk, t
n) +

�t

2
qtt(xk, t

n) + aqx(xk, t
n) +

1

4
h(α− 1)aqxx(xk, t

n)

−1

4
h(1 + α)aqxx(xk, t

n)

+

(
1− a

�t

h

)
a

1
4h

2(1 + α)2qxx(xk, t
n)− 1

4h
2(α2 − 1)qxx(xk, t

n)

h(1 + α)
+O(�t2, h2).

Here we use hk+ 1
2

= hk− 1
2

= 1
2h(1 + α) for the distance from the cell center of

the small cell k to the cell centers of the neighboring cells. By using the relations
qt(xk, t

n) = −aqx(xk, t
n) and qtt(xk, t

n) = a2qxx(xk, t
n) all lower order terms in the

above equation cancel and we obtain Lw = O(�t2, h2). This shows that |wk −Qk| =
O(�t2, h2). Since the grid function was chosen to satisfy w = q+O(h2), we conclude
that

|qk −Qk| = O(�t2, h2).
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(a) xk+ 1
2

xk+ 1
2
− h xk+ 3

2
(b) xk+ 1

2
xk+ 1

2
− h xk+ 3

2

Fig. 2. h-box values at the interface xk+ 1
2
; dotted lines depict the initial values, solid lines the

solution after one time step. (a) first order update by h-box method; (b) second order correction
wave of QL

i+ 1
2

.

Stability of this second order accurate scheme will be shown in the appendix.
Using the same grid function w, one can also show that Lw = O(�t2, h2) in the

neighboring grid cells k − 1 and k + 1. Therefore, the numerical solution converges
with second order accuracy in the whole domain.

Figure 2 shows a schematic description of the first order update and the high-
resolution correction for cell k + 1. The dotted lines depict the initial values, i.e.,
QL
k+ 1

2

and QR
k+ 1

2

= Qk+1. In a first step the piecewise constant values are propagated

over a distance a�t, as shown in Figure 2(a). In order to increase the accuracy,
the piecewise constant initial values are replaced by piecewise linear functions. In
Figure 2(b), we show the piecewise linear reconstructed function QL

k+1(x, t
n) that has

the slope σ = (QR
k+ 1

2

−QL
k+ 1

2

)/h. Since we already calculated the first order update,

the second order correction terms, calculated by propagating piecewise linear initial
values QL

k+ 1
2

(x, tn) instead of the piecewise constant value QL
k+ 1

2

, take only the shaded

region shown in Figure 2(b) into account. Compare with LeVeque [17], where such
second order correction terms were described for the approximation of the advection
equation on a uniform grid.

3.3. Limiters for the h-box method. In order to have control over unphysical
oscillations near discontinuities some kind of limiters must be used in the second order
correction terms (2.4). In the wave propagation algorithm this is done by using wave
limiters that modify the magnitude of the waves Wp (p = 1, . . . ,Mw) in the fluxes
that model the second order correction terms. A limited p-wave Wp

i+ 1
2

is obtained by

comparison of this wave with the neighboring p-waves Wp

i− 1
2

or Wp

i+ 3
2

, depending on

the direction of flow; see LeVeque [18] or [19] for details.
In our high-resolution h-box method we can use the same limiting process in order

to obtain limited versions of the waves that were calculated from h-box values. These
limited waves can then be used in the second order correction fluxes (3.8). In order
to obtain the limiter for waves at a small cell interface, we compare those waves with
waves arising from Riemann problems at a distance h away from the cell interface.
This can be done by constructing two additional h-boxes at the small cell interface.
The waves resulting from the solution of Riemann problems defined by these new
h-box values to the left- and right-hand side of a small cell interface can then be used
in order to estimate the wave limiter for the waves at the small cell interface. This
requires the solution of two additional Riemann problems for each small cell interface;
see Figure 3. We used such a limiting process in order to approximate a shock wave
solution on an irregular grid shown in section 5.

In addition to the wave limiting process we also include a limiter into the approx-
imation of the h-box values. Note that the h-box values (3.3) can also be obtained by



902 M. J. BERGER, C. HELZEL, AND R. J. LEVEQUE

xk− 1
2

Qn
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Qn
k Qn
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k−2
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2
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2 ,−h Ŵk− 1
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2

xk+ 3
2
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2

Fig. 3. Schematic description of h-box values assigned to the left small cell interface. Two
additional h-box values are needed to estimate the wave limiter for the second order correction
terms.

reconstructing a piecewise linear function Q(x) from the cell averages Qi for all i and
calculating the average value of this piecewise linear function over the same boxes of
length h, as indicated in Figure 1. If the reconstructed function has the form

Qk−1(x) = Qk−1 +
Qk −Qk−1
1
2h(1 + α)

(x− xk−1) for x ∈ [xk− 3
2
, xk− 1

2
),(3.9)

Qk+1(x) = Qk+1 +
Qk+1 −Qk
1
2h(1 + α)

(x− xk+1) for x ∈ [xk+ 1
2
, xk+ 3

2
),(3.10)

then averaging over boxes of length h leads to h-box values that have the form (3.3).
The slopes of the piecewise linear initial values are

σk−1 =
Qk −Qk−1

h(1 + α)/2
and σk+1 =

Qk+1 −Qk

h(1 + α)/2
.

Near discontinuities such piecewise linear values may not represent a good approxi-
mation of the solution. We can use standard slope limiters in order to obtain better
approximations there. We can, for instance, use a slope limiter proposed by van Leer
[29]. Here the slopes are replaced by limited versions that have the form σ̂i = σiφi
for i ∈ {k − 1, k + 1}. For our application the limiter has the form

φi(θi) = min

(
1,
|θi|+ θi
1 + |θi|

)
with

θk−1 =
Qk−1 −Qk−2

Qk −Qk−1
and θk+1 =

Qk+2 −Qk+1

Qk+1 −Qk
.

It may be replaced by other limiter functions. Note that we do not want to use
a steeper slope than σk−1 (respectively, σk+1) for the construction of h-box values,
because only those values lead to a second order approximation in smooth regions.
However, near discontinuities we want to limit these slopes. The resulting limited
h-box values can be calculated using the formulas

QL
k+ 1

2
= αQk + (1− α)

(
Qk−1 +

α

1 + α
(Qk −Qk−1)φk−1

)
,

QR
k− 1

2
= αQk + (1− α)

(
Qk+1 +

α

1 + α
(Qk −Qk+1)φk+1

)
.
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4. On the stability of the h-box method. The h-box method retains stability
by constructing a finite volume scheme for which the flux difference is of the order of
the size of the grid cell. For a small grid cell this requires Fk+ 1

2
− Fk− 1

2
= O(αh). In

this case the term αh arising in the denominator of the finite volume scheme should
not cause a stability problem. In regions where the solution of the conservation law
is smooth, the h-box values are constructed to satisfy an analogous property, namely
QL,R

k+ 1
2

− QL,R

k− 1
2

= O(αh). Since in our applications the flux function is a Lipschitz

continuous function of QL and QR, the flux difference has the required cancellation
property; see [5].

For the advection equation Stern [28] proved that the first order accurate h-box
methods are TVD. Here we will briefly outline this proof which follows the general
concept described above. The first order h-box method can (for a > 0) be rewritten
in the form

Qn+1
i = Qn

i −
a�t

αih
(QL

i+ 1
2
−QL

i− 1
2
)

= Qn
i −

a�t

αih

αiQ
n
i − αi

1

αih

∫ x
i− 1

2
−h+αih

x
i− 1

2
−h

Q
n

i−1(x)dx︸ ︷︷ ︸
Q̃n

i

 .

Here we assume that each grid cell has the size hi = αih, with 0 < αi ≤ 1. Q
n

i−1(x) is
the piecewise linear reconstructed function (3.9). The stability result also holds on an
irregular grid with more than one small cell. See also section 5 for a slightly different
generalization of the piecewise linear function that has to be used in the construction
of h-box values for a completely irregular grid.

Using this notation we now consider the difference |Qn+1
i+1 −Qn+1

i | and sum over
all grid cells. This sum can be estimated as

TV (Qn+1) =
∑
i

|Qn+1
i+1 −Qn+1

i |

≤
(
1− a�t

h

)∑
i

|Qn
i+1 −Qn

i |+
a�t

h

∑
i

|Q̃n
i+1 − Q̃n

i |.

We obtain the TVD property TV (Qn+1) ≤ TV (Qn) for time steps CFLh ≤ 1 if∑
i

|Q̃n
i+1 − Q̃n

i | ≤ TV (Qn).(4.1)

For the h-box method (3.2) using h-box values that were calculated by averaging over
piecewise constant values, (4.1) is always satisfied, since Q̃n

i = Qn
i . For the more

accurate first order h-box method (3.4), the TVD property can be shown if a TVD
slope limiter is used in the construction of the h-box values, as discussed in section 3.3.

Note that for the approximation of the advection equation, the first order h-box
method based on h-box values (3.1), i.e., defined by averaging over piecewise constant
values of the conserved quantities, is also monotone. This property does not carry
over to the first order h-box method with h-box values calculated by the interpolation
formula (3.3). Note also that none of these two first order accurate h-box methods
applied to Burgers’s equation leads to a monotone method.
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In the appendix we show stability for the second order accurate h-box method
applied to the advection equation. This proof is based on the stability theory of
Gustafsson, Kreiss, and Sundström [11].

5. Irregular grid calculation. In order to demonstrate the robustness of the
high-resolution h-box method we now apply the scheme to a completely arbitrary
grid; see Figure 4. By again assigning values to boxes of length h, we obtain a scheme
that remains stable for time steps appropriate for a uniform grid with grid cells of
length h. In this more general situation more than two grid cells may be overlapped
by an h-box. We assume that grid cells have the length hi = αih, with αi ≤ 1 for all
indices i. We will show that a generalization of the h-box method based on averaging
over piecewise linear values of the conserved quantities gives accurate results also in
this more difficult situation. We will need to use piecewise linear reconstructed values

Qi(x) = Qi +
Qi+1 −Qi

h(αi + αi+1)/2
(x− xi) for x ∈ [xi− 1

2
, xi+ 1

2
), i ∈ {m, l},(5.1)

Qj(x) = Qj +
Qj −Qj−1

h(αj + αj−1)/2
(x− xj) for x ∈ [xj− 1

2
, xj+ 1

2
), j ∈ {s, t}.(5.2)

The indices m, l and s, t indicate the grid cells that are only partly covered by the left-
(respectively, right-) going h-boxes that are constructed at the cell interfaces of grid
cell k. Slopes are needed only in these four cells because averaging over an entire cell
gives a value that is independent of the slope. Averaging over these piecewise linear
functions leads to the h-box values

QL
k− 1

2
=

k−1∑
i=m+1

αiQi +
(
1−

k−1∑
i=m+1

αi

)
·
[
Qm +

Qm+1 −Qm

αm + αm+1

( k−1∑
i=m

αi − 1
)]

,

QR
k− 1

2
=

s−1∑
i=k

αiQi +
(
1−

s−1∑
i=k

αi

)
·
[
Qs +

Qs −Qs−1

αs + αs−1

(
1−

s∑
i=k

αi

)]
,

QL
k+ 1

2
=

k∑
i=l+1

αiQi +
(
1−

k∑
i=l+1

αi

)
·
[
Ql +

Ql+1 −Ql

αl + αl+1

( k∑
i=l

αi − 1
)]

,

QR
k+ 1

2
=

t−1∑
i=k+1

αiQi +
(
1−

t−1∑
i=k+1

αi

)
·
[
Qt +

Qt −Qt−1

αt + αt−1

(
1−

t∑
i=k+1

αi

)]
.

(5.3)

5.1. Approximation of the advection equation on irregular grids. We
can show that these h-box values used in an upwind scheme (which is equivalent to
the first order wave propagation algorithm) lead to a consistent approximation of the
advection equation.

Proposition 3. The h-box method Qn+1
i = Qn

i −a �tαih
(QL

i+ 1
2

−QL
i− 1

2

) with h-box

values defined by (5.3) leads to a first order accurate approximation of the advection
equation (with advection speed a > 0) on an irregular grid.

The proof is based on Taylor series expansion and may be found in the preprint
version of this paper [2]. Together with the stability result mentioned in section 4,
we obtain first order convergence of this h-box method on irregular grids using time
steps that satisfy CFLh ≤ 1.

Once the h-box values are defined we can apply the same second order correction
terms (3.8) at the cell interfaces of a completely irregular grid. With such an approach
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Fig. 4. Schematic description of the h-box method on a completely irregular grid.
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Fig. 5. Approximation of the advection equation on an irregular grid using the high-resolution
h-box method with h-box values calculated by linear interpolation. (a) numerical results on an irreg-
ular grid with h = 0.04; (b) log-log-plot of h versus L1-norm error as well as maximum-norm error
shows second order convergence.

we can expect second order convergence. Figure 5 shows numerical results for the
approximation of the advection equation on a sequence of irregular grids. The
initial values are set to q(x, 0) = sin(2πx) on the interval [0, 1]. Periodic boundary
conditions are imposed. A convergence study shows that our new high-resolution h-
box method converges with second order accuracy both in the L1-norm as well as the
maximum norm. The accuracy of this calculation compares well with the accuracy
of the standard wave propagation algorithm that was briefly described in section 2.
However, here we could use much larger time steps. In Figure 6, we show results
for the same test case, but here the h-box values were constructed by averaging over
piecewise constant values of the conserved quantity, i.e., the formally inconsistent
method described in section 3.1. Although we add second order correction terms
(which increases the accuracy) the resulting method is only first order accurate. This
is analogous to our analytical results for the simpler situation with only one small
cell.

5.2. Approximation of the Euler equations on irregular grids. In this sec-
tion we study the performance of the high-resolution h-box method for one-dimensional
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Fig. 6. Approximation of the advection equation on an irregular grid using an h-box method with
second order correction terms, where h-box values are calculated by averaging over piecewise constant
values of the conserved quantity. (a) numerical results on an irregular grid with h = 0.04; (b) log-
log-plot of h versus L1-norm error as well as maximum-norm error shows first order convergence.

Euler equations. The equations can be written in the form (1.1) with

q = (ρ, ρu,E), f(q) = (ρu, ρu2 + p, u(E + p)),

where ρ, p, E, and u describe the density, pressure, total energy, and the velocity,
respectively. The equation of state has the form

E =
p

γ − 1
+

1

2
ρu2.

First we consider the approximation of a test problem defined in Example 5.1 on an
irregular grid.

Example 5.1. We consider the numerical approximation of the one-dimensional
Euler equations on an irregular grid. The grid cells vary in size between h/10 and h.
The initial values are sufficiently smooth so that the solution does not develop shocks
over the time interval considered. Reflecting boundary conditions are imposed on the
left and right boundary. The computational domain is the interval [0, 1]. Our initial
values are

ρ(x, 0) = 1 + 0.4 sin
(π

2
+ xπ

)
, u(x, 0) = 0.25− (x− 0.5)2, p(x, 0) = 1.

The ratio of specific heats is set to γ = 1.4.
In Figure 7 we show numerical results for the approximation of Example 5.1

using our new high-resolution h-box method. A convergence study for density at
different time steps is shown in Table 5.1. Here we compare the numerical solution
for density on a sequence of irregular grids to a highly resolved reference solution
that was calculated on a regular spaced grid. We show results for both the unlimited
second order h-box method and a version using the minmod limiter. Next we consider
the approximation of a shock wave with the Euler equations.

Example 5.2. We consider the one-dimensional Euler equations with initial values
on the interval [0, 1] that have constant density ρ = 1 and constant pressure p = 1.
The velocity is set to u = 1 for x < 0.5 and u = −1 for x > 0.5. The ratio of specific
heats is γ = 1.05. The exact solution of this problem consists of two symmetric
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Fig. 7. Numerical results of density and pressure for Example 5.1 on an irregular grid (h =
0.02). The solid line shows a highly resolved reference solution calculated on a regular grid.

Table 5.1
Convergence study for Example 5.1. L1 error of density at different times as well as the ex-

perimental order of convergence (EOC) are shown. For this smooth test problem, we show results
for the unlimited second order h-box method as well as the limited h-box method using a minmod
limiter.

t=0.2 t = 0.4 t = 0.6 t = 0.8 t = 1

h/EOC L1 error of density (unlimited method)

0.02 1.1229d-4 1.544d-4 3.4573d-4 5.9017d-4 0.0014
0.01 2.9567d-5 4.2550d-5 9.4628d-5 1.7825d-4 4.2628d-4
EOC 1.92 1.86 1.87 1.73 1.72
0.005 7.7282d-6 1.1786d-5 2.5092d-5 5.1242d-5 1.3381d-4
EOC 1.94 1.89 1.91 1.80 1.67

h/EOC L1 error of density (using minmod limiter)

0.02 1.6893d-4 2.0212d-4 3.1620d-4 5.2083d-4 0.0012
0.01 5.6937d-5 6.5761d-5 1.1105d-4 1.9282d-4 3.6960d-4
EOC 1.57 1.62 1.51 1.46 1.70
0.005 1.6357d-5 2.1260d-5 4.5036d-5 7.6802d-5 1.2018d-4
EOC 1.80 1.63 1.30 1.33 1.62

shock waves that are propagating outwards. We use an irregular grid with grid cells
that may be smaller than h = 0.01 on the left half of the interval. For x > 0.5 the
grid is regular with mesh length �x = 0.01. We use time steps that correspond to
CFLh ≈ 0.9.

Figure 8 shows numerical results of Example 5.2 for the high-resolution h-box
method based on the linear interpolation formula. Our numerical results in Figure 8(a)
show that the limiters described in section 3.3 can suppress spurious oscillations near
the discontinuity. The approximation of the shock wave that is moving into the
region of the irregular grid is in good agreement with the symmetric shock wave that
is moving into the regular part of the grid. On the irregular grid the shock is smeared
out over more grid cells than on the regular grid. The reason for this more smeared
out shock profile is that a jump in the conserved quantities can influence several h-
box values. In Figure 8(b) we show the results obtained by the second order method
without limiters.

6. Approximation of transonic rarefaction waves. In this section we point
out that h-box methods can cause numerical difficulties in the approximation of tran-
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Fig. 8. Approximation of Example 5.2 on a grid that is irregular for x < 0.5 and regular
for x > 0.5. (a) plot of density with limiters; (b) plot of density without limiters. The solid line
indicates the exact solution.

sonic rarefaction waves that do not appear for standard Godunov-type methods on
regular or irregular spaced grids. To see this we first consider the approximation of
Burgers’s equation qt + (q2/2)x = 0 with initial values q(x, 0) = −0.5 for x ≤ 0.5 and
q(x, 0) = 0.5 for x > 0.5 on an irregular grid. The first order accurate fluxes at the
cell interface xi− 1

2
can be calculated by using the exact formula, i.e.,

Fi− 1
2

=

 minQL

i− 1
2

≤q≤QR

i− 1
2

f(q) : QL
i− 1

2

≤ QR
i− 1

2

,

maxQR

i− 1
2

≤q≤QL

i− 1
2

f(q) : QR
i− 1

2

≤ QL
i− 1

2

,

with the flux f(q) = 1
2q

2. Figure 9(a) demonstrates that this method produces un-
physical oscillations around the sonic point. Note that in this section we use only first
order accurate methods to isolate this phenomenon from the flux limiting procedure.
The numerical problem can be avoided by using the Lax–Friedrichs flux, which has
at the interface xi− 1

2
the form

Fi− 1
2

=
1

2

(
f(QL

i− 1
2
) + f(QR

i− 1
2
)
)
+

h

2�t

(
QL
i− 1

2
−QR

i− 1
2

)
.

See Figure 9(b) for numerical results.
The same effect can also be observed in the approximation of a transonic rarefac-

tion wave for the Euler equations. To see this we consider a shock tube problem for
which the solution consists of a right-moving shock wave, a contact discontinuity, and
a left-moving transonic rarefaction wave. The initial values are ρ = 1, u = 0.75, p = 1
for x ≤ 0.3 and ρ = 0.125, u = 0, p = 0.1 for x > 0.3. The ratio of specific heats
is γ = 1.4. For the numerical approximation we used a Roe–Riemann solver with
standard entropy fix for transonic rarefaction waves. The results of this calculation
are shown in Figure 10. The numerical solution shows some oscillations around the
sonic point; see Figure 10(b) for a closer view of the region around the sonic point.
If the fluxes at the cell interfaces are again calculated by the Lax–Friedrichs method
this numerical problem does not arise; see Figure 11.

In the preprint [2] of this paper, we studied the entropy consistency of the h-
box method for the approximation of Burgers’s equation. For the h-box method with
Godunov flux, we showed that a discrete entropy inequality is satisfied away from sonic



h-BOX METHODS FOR CONSERVATION LAWS 909

(a) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Transonic rarefaction wave

(b) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Transonic rarefaction wave

Fig. 9. Approximation of a transonic rarefaction wave solution for Burgers’s equation on an
irregular grid. (a) h-box method based on Godunov flux; (b) h-box method based on Lax–Friedrichs
flux.
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Fig. 10. Approximation of a shock tube problem for the Euler equations. (a) plot of density
obtained by first order Roe solver with entropy fix; (b) zoom of density around sonic point.

points. This implies that the numerical solution converges to the entropy consistent
weak solution of the conservation law. We showed that this discrete entropy inequality
can be violated at a sonic point. While this does not give us any prediction whether
or not the method is entropy consistent at the sonic point, it is interesting to note
that this is exactly the case where the h-box method leads to numerical difficulties.
We plan to further investigate the entropy consistency of h-box methods in order to
develop an entropy fix that is less dissipative than the Lax–Friedrichs method and
that can be extended to a high-resolution method.

7. Higher-dimensional irregular grid calculations. Now we will consider
two-dimensional systems of conservation laws in the form

∂

∂t
q(x, y, t) +

∂

∂x
f(q(x, y, t)) +

∂

∂y
g(q(x, y, t)) = 0.(7.1)

The simplest way to extend a one-dimensional method for conservation laws to mul-
tidimensional problems is to use dimension splitting. Equation (7.1) would be ap-
proximated by solving one-dimensional subproblems in an alternating way. The high-
resolution one-dimensional h-box method could be used in each substep.
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Fig. 11. Approximation of a shock tube problem for the Euler equations. (a) plot of density
obtained by Lax–Friedrichs method; (b) zoom of density around sonic point.

Instead of using a dimensional splitting approach, we will here develop a two-
dimensional h-box method that is based on the multidimensional wave propagation
algorithm [17], [18]. We assume that the reader is familiar with the two-dimensional
wave propagation algorithm and with the notation used below. As a first step in this
approach we solve one-dimensional Riemann problems normal to each cell interface.
Based on formula (3.6), which describes the one-dimensional h-box method, we obtain

Qn+1
ij = Qn

ij +�upij
= Qn

ij −
�t

�xi

(
A+�Q̂i− 1

2 ,j
+A−�Q̂i+ 1

2 ,j
+ f(QL

i+ 1
2 ,j

)− f(QR
i− 1

2 ,j
)
)

− �t

�yj

(
B+�Q̂i,j− 1

2
+ B−�Q̂i,j+ 1

2
+ g(QL

i,j+ 1
2
)− g(QR

i,j− 1
2
)
)
.

(7.2)

The method (7.2) is stable for time steps that satisfy CFLh ≤ 1
2 . Second order

correction terms of the form (3.8) can be included in x as well as in y direction, which
leads to a method of the form

Qn+1
ij = Qn

ij +�upij −
�t

�xi

(
F̂ 2
i+ 1

2 ,j
− F̂ 2

i− 1
2 ,j

)
+
�t

�yj

(
Ĝ2
i,j+ 1

2
− Ĝ2

i,j− 1
2

)
.(7.3)

The second order correction terms are again obtained by using the waves and speeds
calculated from solving Riemann problems defined by h-box values. Limiters are used
in exactly the same form as described earlier for the one-dimensional case.

In addition to fluxes in the normal direction, the multidimensional wave propaga-
tion algorithm also calculates waves that are moving in a transverse direction. For the
usual wave propagation scheme one has QL

i+ 1
2 ,j

= QR
i− 1

2 ,j
and QL

i,j+ 1
2

= QR
i,j− 1

2

. In this

case the transverse propagation of waves can be obtained by a decomposition of the
flux differences A±�Q, B±�Q into transverse fluctuations. For the h-box method
this transverse propagation has to be modified. In order to explain the transverse
propagation we consider the two-dimensional advection equation

∂

∂t
q(x, y, t) + a

∂

∂x
q(x, y, t) + b

∂

∂y
q(x, y, t) = 0, a, b > 0.

Assuming first that �xi = h and �yj ≤ h, the change of the cell average of the
conserved quantity q in grid cell (i, j) due to the first order update in the x-direction
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Fig. 12. Different possibilities for transverse propagation of a right-moving wave for the ad-
vection equation on a nonuniform Cartesian grid.

has the form

− �t

�xi
A+�Qi− 1

2 ,j
= −�t

h
a(Qn

i,j −Qn
i−1,j).(7.4)

Since we assume that the advection speed a in the x-direction is positive, there is no
wave that moves into this cell from the right cell interface. Furthermore, the difference
f(QL

i+ 1
2 ,j

) − f(QR
i− 1

2 ,j
) vanishes in the case �xi = h. In the two-dimensional case a

part of the right-moving flux difference A+�Q should affect other grid cells. This
is indicated in Figure 12. The shaded regions indicate the influence of the jump
Qij − Qi−1,j (initially located at the left cell interface) due to the solution of the
Riemann problem in the normal direction. In a multidimensional method the solution
of the Riemann problem at the interface xi− 1

2
should not affect only the cell average

of the conserved quantities in the grid cell (i− 1, j) and (i, j). It should also have an
effect on grid cells in the tangential direction. In the situation shown in Figure 12(a),
the triangular portion of the wave describes the fraction that should affect the grid cell
(i, j + 1). The transverse propagation of the wave considered in Figure 12(a) should
change the cell average of the conserved quantity in grid cell (i, j) by the amount

(�t)2

�xi�yj

1

2
bA+�Qi− 1

2 ,j
=

(�t)2

�xi�yj

1

2
B+A+�Qi− 1

2 ,j
.

The change of the cell average of the conserved quantity in cell (i, j + 1) due to the
transverse propagation of this wave has the form

− (�t)2

�xi�yj+1

1

2
B+A+�Qi− 1

2 ,j
.

The notation B±A±�Q was introduced in [18] to describe transverse propagations
of left- and right-moving flux differences. For the wave propagation algorithm with
time step restriction CFL ≤ 1 the transverse propagation has always the triangular
form depicted in Figure 12(a), even if the grid is irregular. Since the transverse
propagation approximates terms that are needed in order to obtain second order
accuracy, we include those terms into the second order correction terms used in (7.3).
The up-going flux difference B+A+�Qi− 1

2
contributes to the G̃ term in the form of

an update

Ĝ2
i,j+ 1

2
:= Ĝ2

i,j+ 1
2
− 1

2

�t

�xi
B+A+�Qi− 1

2 ,j
.
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For our h-box method we have to extend the transverse propagation to allow also
wave propagation of other forms, for instance those shown in Figures 12(b) or (c). For
the situation shown in Figure 12(b) the update of the flux G̃ due to the transverse
propagation has the form

Ĝ2
i,j+ 1

2
:= Ĝ2

i,j+ 1
2
− �t− 1

2�yj/b

b�t�xi
�yjB+A+�Qi− 1

2 ,j
.

In the situation shown in Figure 12(c), the transverse propagation of A+�Qi− 1
2 ,j

leads to an update of Ĝ2
i,j+ 1

2

as well as Ĝ2
i,j+ 3

2

, depending on the fraction of the wave

considered. As demonstrated in these examples, simple geometric routines can be used
to calculate the fraction of the waves that determine the change of the cell average
of the conserved quantity due to the transverse propagation. Note that the wave
speed in the normal direction (i.e., a in our example) is present in the fluctuations
A±�Q. In order to calculate the transverse propagations no other information from
the structure of the Riemann problem in the normal direction is needed. Therefore,
even for a system of conservation laws, we have only to decompose the left- and right-
moving flux differences, instead of decomposing each wave resulting from the Riemann
problem in the normal direction separately.

So far we have assumed that �xi = h. If �xi < h, we want to use the one-
dimensional h-box method in order to calculate the fluxes in the normal direction.
The transverse propagation will take a very similar form as discussed above. Now we
could interpret the grid cells (i, j), (i, j+1) shown in Figure 12 as h-boxes constructed
at the interface xi− 1

2
. The transverse propagation of waves should again depend on the

fraction of the wave that moves through the h-box considered. This can be calculated
in exactly the same way as described above for the case �xi = h. In order to obtain
the correct cancellation property needed for a stable update, we have to include the
terms f(QL

i+ 1
2 ,j

) and f(QR
i− 1

2 ,j
) that arise in (7.2) into our transverse propagation.

Motivated by (2.1), (2.2) we do this by applying an update of the form

A+�Qi− 1
2 ,j

:= A+�Qi− 1
2 ,j
− f(QR

i− 1
2
),

A−�Qi− 1
2 ,j

:= A−�Qi− 1
2 ,j

+ f(QL
i− 1

2
)

before we calculate the change of the fluxes Ĝ2. For our example of the advection
equation with positive advection speeds, this update of A±�Q has the effect that
A−�Q is no longer equal to zero. Moreover, the fraction of the wave that is prop-
agated in the transverse direction depends only on the size of the grid cells and the
speed b. Therefore, our transverse propagation has the effect that a fraction of the
update used in (7.3) is propagated in the transverse direction. The update, which
describes the wave propagation in the x-direction was already constructed to be of
the order O(�x) with �x ≤ h. Our transverse propagation allows that at most a
fraction of magnitude O(�y) (�y ≤ h) is propagated in the transverse direction.
(See, for instance, Figure 12(c).) Therefore, our transverse propagation satisfies the
cancellation property. The transverse propagation of B+�Q also has to be included in
an analogous way. By including the transverse propagation into our two-dimensional
h-box method, we obtain stability for time steps that satisfy the condition CFLh ≤ 1.

A transverse propagation of the second order correction (3.8) can be included
into the transverse propagation in the same form as it was discussed for the wave
propagation algorithm in [18]. This further increases the accuracy of the method. It
was used in our test calculations below.
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Fig. 13. Approximation of Example 7.1. (a) The grid for a discretization with h = 0.02; (b)
contour plot of the solution using the two-dimensional h-box approach with h = 0.01 and CFLh ≈ 0.9;
(c) convergence study for irregular grid clawpack algorithm, CFL ≈ 0.9; (d) convergence study for
h-box method, CFLh ≈ 0.9 (o-symbol: error in L1-norm; +-symbol: error in maximum norm).

We now demonstrate the performance of our two-dimensional high-resolution h-
box method for the approximation of the advection equation. We will compare the
numerical results obtained for this h-box scheme with results obtained using the stan-
dard high-resolution clawpack algorithm for irregular grid calculations. The latter
method requires the time step restriction CFL ≤ 1, while the h-box method is stable
for time steps that satisfy CFLh ≤ 1. We first study the accuracy for the two-
dimensional advection equation.

Example 7.1. We consider the approximation of the advection equation qt+ qx+
qy = 0, with initial values q(x, y, 0) = sin(2πx) cos(2πy) on the domain [0, 1] × [0, 1].
We impose periodic boundary conditions. The grid contains two lines as well as two
columns of grid cells with height (respectively, width) 0.1h and 0.9h. All other grid
cells have the size h× h. See Figure 13(a) for a plot of a fraction of the grid.

Test calculations for Example 7.1 confirm that the h-box method leads to sec-
ond order accurate approximations also in this multidimensional application. In Fig-
ure 13(d) we document the experimental order of convergence of the h-box method
in both the L1-norm (depicted by o-symbols) as well as in the maximum norm (+-
symbols). For this grid, inaccuracies near the small cells would be displayed in the
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Fig. 14. (a) Contour plot of density obtained by the high-resolution wave propagation algorithm
on a uniform grid with h = 0.005; (b) contour plot of density obtained with high-resolution h-box
method, h = 0.005. We used the monotonized centered limiter.

maximum norm rather than in the L1-norm. However, in both norms the experimen-
tal order of convergence is about 2. The results for the h-box method compare well
with numerical results obtained with the standard wave propagation algorithm with
appropriate modifications that allow the approximation on a nonuniform grid. Both
schemes converge with second order, but the error is slightly smaller if we use the
h-box method. This is due to the numerical viscosity, since the time step restriction
CFL ≈ 0.9 for the wave propagation algorithm leads away from the small cell to time
steps that correspond to CFL ≤ 0.1.

Our two-dimensional h-box method can be extended to systems of conservation
laws in the same way as the standard wave propagation algorithm. The modifications
described above now have to be applied to each wave resulting from the decomposition
of the left- (respectively, right-) going flux differences into up- and down-going waves.
In our last example we consider the approximation of a two-dimensional Riemann
problem for the Euler equations, as studied in [27]. This same example was considered
in [18], where results of clawpack calculations on a uniform grid are shown. The
initial values are piecewise constant in four quadrants, and the solution of each single
Riemann problem is a shock wave. Due to the interaction a complex solution structure
is obtained. For this calculation we have, in addition to the regular grid cells of the
size h× h, 10 lines and 10 columns with height (respectively, width) varying between
0.1h and 0.9h. Our solution on a nonuniform grid calculated by the high-resolution
h-box method with h = 0.005 compares well with those obtained on a regular grid; see
Figure 14. The shock waves are equally well approximated with both methods. Slight
differences are visible only at the unstable contact lines, which are very sensitive to
the numerical method; see also [18], where it was shown that different limiters have
quite a large impact on the approximation.

8. Conclusions. We studied high-resolution h-box methods for the approxima-
tion of hyperbolic systems of conservation laws on irregular grids and showed that the
definition of the h-box values is important in order to construct accurate schemes. In
forthcoming work we will use this to construct a new two-dimensional high-resolution
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Fig. 15. Notation for GKS stability, with one small cell in the middle.

h-box scheme for the approximation of conservation laws with embedded irregular
boundaries. So far there is no Cartesian grid embedded boundary method that leads
to a second order accurate approximation at boundary cells. Further work will also
concentrate on the entropy consistency of h-box methods and the approximation of
transonic rarefaction waves.

Appendix A. Stability of the second order h-box method. In this ap-
pendix we prove the stability of the second order h-box scheme for qt = qx using
linear interpolation according to the theory of Gustafsson, Kreiss, and Sundström
[11] (henceforth GKS). We treat the small cell with mesh width αh as a boundary
condition for the Lax–Wendroff scheme applied on either side of the small cell, using
the notation of Figure 15. Here the conserved quantity assigned to the right h-box
at the interface x− 1

2
is denoted by V0. The left h-box value at the interface x 1

2
is

U0. The derivation of the stability condition for the update of the small cell is similar
to those used in Berger [1], where stability for schemes with local grid refinement was
analyzed.

Both U and V are computed using the second order Lax–Wendroff scheme,

Un+1
j = Un

j + λ/2(Un
j+1 − Un

j−1) + λ2/2(Un
j+1 − 2Un

j + Un
j−1), j ≥ 1,

V n+1
j = V n

j + λ/2(V n
j+1 − V n

j−1) + λ2/2(V n
j+1 − 2V n

j + V n
j−1), j ≤ −1,

(A.1)

with λ = �t
h . Using the approach of [1], we look for solutions of the form

Un
j = ρκjzn, |κ| ≤ 1, j = 1, 2, . . . ,

V n
j = στ jzn, |τ | ≥ 1, j = −1,−2, . . . .

(A.2)

With this numbering, for l2 solutions the root κ of the characteristic equation for
U on the right side has magnitude less than 1, and τ has magnitude greater than 1.
Roughly speaking, the scheme is unstable if and only if there are l2 solutions satisfying
the interpolation conditions with growth in time |z| > 1.

The linear interpolation conditions (3.3) give us

U0 =
1− α

1 + α
V−1 +

2α

1 + α
W, V0 =

1− α

1 + α
U1 +

2α

1 + α
W,(A.3)
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where the small cell, labeled W above, satisfies the “small cell” version of Lax–
Wendroff,

Wn+1 = Wn +
∆t

αh

[
U0 + U1

2
+

∆t

2h
(U1 − U0)− V0 + V−1

2
− ∆t

2h
(V0 − V−1)

]
.(A.4)

The characteristic equation for W is Wn = ŵzn. We normalize the equations and take
ŵ = 1. Substituting the characteristic roots for U, V into the interpolation conditions
(A.3) gives

ρ =
1− α

1 + α
στ−1 +

2α

1 + α
, σ =

1− α

1 + α
ρκ +

2α

1 + α
.(A.5)

Equation (A.5) is easily solved for ρ and σ, giving

ρ =
2α
(
1 + α + (1− α)τ−1

)
(1 + α)2 − (1− α)2κτ−1

, σ =
2α (1 + α + (1− α)κ)

(1 + α)2 − (1− α)2κτ−1
.(A.6)

Substitution of the resolvent equations for U and V into (A.4) gives

z = 1 +
λ

2α

[
ρ(1 + κ) + λρ(κ− 1)− σ(1 + τ−1)− λσ(1− τ−1)

]
.(A.7)

We use (A.5) to replace ρ and σ in terms of στ−1 and ρκ. Also, for a given mesh
width h on both the left and right, it is easily seen that the product of the roots κ
and τ are κτ = λ−1

λ+1 , so τ−1 can be replaced using κ. Thus, (A.7) simplifies to

z = 1− 2λ2

1 + α
+

λ(1 + λ)

1 + α
κ(ρ + σ).(A.8)

We call this root condition for the stability of the small cell scheme with Lax–Wendroff.
If there are roots z with |z| > 1 and κ, τ−1 with magnitude less than or equal to 1,
satisfying (A.8), then by the GKS theory the scheme is unstable. Conversely, if there
are no such roots, the scheme is stable. As in [1], we will use the maximum principle
to reduce the range of values we need to check for stability.

To see that the maximum principle applies, we will show that the right-hand side
of (A.8), call it f(z), has no singularities for |z| ≥ 1 and is bounded as z →∞. First

note that f(z) = (1 − 2λ2

1+α ) + λ(1+λ)
1+α κ(ρ + σ) has no branch points for |z| ≥ 1. This

is because the roots κ, τ satisfy the Lax–Wendroff characteristic equation for (A.1),

z = 1 +
λ

2
(η − η−1) +

λ2

2
(η − 2 + η−1),(A.9)

which lead to a quadratic equation for η with roots

η1,2 =
z − 1 + λ2 ±√(z − 1)2 + λ2(2z − 1)

λ(λ + 1)
.(A.10)

One of the roots is always inside the unit circle, and the other one is outside the unit
circle; see [11, Lemma 6.1]. The root inside the unit circle is the root we call κ above,
and τ is the root that is outside the unit circle.

The square root term of (A.10) is zero only for z = 1− λ, which being inside the
unit circle is outside the region of interest, so there are no branch points for |z| > 1.
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Fig. 16. Locus of values of f(z) for |z| = 1; all values lie inside or on the unit circle.

Also, note from (A.10) that as z →∞, the root τ grows like 2z
λ2+λ , so the root κ grows

like λ(λ−1)
2z , which is clearly bounded for large z. So the maximum principle applies.

Thus f(z) attains its maximum value on the circle |z| = 1. The next step then is
to examine the magnitude of f(z) for values of z on the unit circle. Since we can show
only analytically that f(z) ≤ 1 for λ > 0.5, we instead evaluate f(z) numerically, for
0 ≤ α ≤ 1, and 0 < λ ≤ 1, on the unit circle for z = eiθ, 0 ≤ θ ≤ 2π. Figure 16 shows
the locus of values of f(z), where the unit circle is also drawn. As the figure and some
algebra shows, only for z = 1, λ = 0, and z = −1, λ = 1, does z = f(z).

Examining the first value z = 1 = f(z), we have λ = 0, or equivalently ∆t = 0,
so Qn+1 = Qn (with Q ∈ {U, V,W}), which is clearly a stable solution. For the
other case, we have z = −1 = f(z), whose only solution (again using some numerical
evaluation and some algebra) is λ = 1, α = 0. But α = 0 corresponds to the usual
Lax–Wendroff scheme without the small cell, and λ = 1 for this case is straight copying
of the solution (κ = 0, τ = −1). Again this is stable.

Since Lax–Wendroff is a second order method, the use of linear interpolation with
O(h2) error on a lower-dimensional set of points is reasonable. However, one might
consider the use of quadratic interpolation for U0, V0. The next question is what
stencil to use for the quadratic interpolant. Using the notation of Figure 15, one
might consider using the same interpolant based on V−1, W , and U1 to get both U0

and V0. However, this choice reduces the stability region to λ < .5. If instead the
interpolant for U0 uses the surrounding points V−1 and W , and the third point is
always the upwind point V−2, full stability for a Courant number of λ ≤ 1 is retained
for all small cells with 0 < α < 1.
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Abstract. We consider the scattering of monochromatic electromagnetic waves at a dielectric
object with a rough surface. We investigate the coupling of a weak formulation of Maxwell’s equations
inside the scatterer with boundary integral equations that arise from the homogeneous problem in
the unbounded region outside the scatterer. The symmetric coupling approach based on the full
Calderón projector for Maxwell’s equations is employed. By splitting both the electric field inside
the scatterer and the surface currents into components of predominantly electric and magnetic nature,
we can establish coercivity of the coupled variational problem, provided that the frequency is away
from resonant frequencies.

Discretization relies on both curl-conforming edge elements inside the scatterer and divΓ-
conforming boundary elements for the surface currents. The splitting idea, adjusted to the dis-
crete setting, permits us to show uniform stability of the discretized problem. We exploit it to come
up with a priori convergence estimates.

Key words. electromagnetic scattering, Helmholtz decomposition, Hodge decomposition,
Calderón projector, symmetric coupling, edge elements, discrete coercivity
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1. Introduction. The simulation of electromagnetic scattering is mainly con-
cerned with approximately solving the homogeneous Maxwell equations in R

3, subject
to excitation by some monochromatic incident wave. Outside a bounded object, which
is called the scatterer and occupies the bounded domain Ωs ⊂ R

3, the electromag-
netic material coefficients ε and µ assume the constant values ε0 > 0 and µ0 > 0,
respectively. Inside Ωs they may display some spatial variation. Commonly faced
in applications are scatterers with piecewise smooth, Lipschitz-continuous boundary.
For simplicity, we suppose that the surface Γ := ∂Ωs of the scatterer is connected,
but, with slight alterations, all considerations of this article carry over to more general
situations.

Let E denote the complex amplitude of the scattered electric field in Ω′ := R
3\Ω̄s

and the total electric field inside Ωs. It emerges as the solution of the transmission
problem (cf. [45, sect. 5.6.3])

curl curlE− κ2E = 0 in Ω′,

curlµ−1
r curlE− κ2εrE = 0 in Ωs,

[γtE]Γ = γtEinc,
[

1
µr
γNE

]
Γ
= γNEinc on Γ,

lim
|x|→∞

curlE× x− iκ|x|E = 0.

(1.1)

Here, κ := ω
√
ε0µ0L (with ω > 0 the fixed angular frequency of the excitation, L the

characteristic length of the scatterer) stands for the normalized wave number. In what
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follows, it should be regarded as merely a nonzero real parameter. Einc stands for the
complex amplitude of the electric field associated with the incident wave. In addition,
we write γtE for the tangential components of E on Γ, and γNE for the “magnetic
trace” curlE × n on Γ. The exterior unit normal vectorfield n ∈ L∞(Γ) is directed
from Ωs into Ω

′. Finally, [γφ]Γ designates the jump γφ|Ω′ − γφ|Ωs
of some trace γ of

a function φ across Γ. We remark that a similar, entirely equivalent formulation in
terms of the magnetic field H := 1

iωµr
curlE exists.

Using Rellich’s lemma and unique continuation techniques, the following result
can be established (cf. [35, Thm. 3.1]).

Theorem 1.1. Provided that the relative material parameters µr and εr > 0 are
piecewise smooth and bounded away from zero everywhere in Ωs, the problem (1.1)
has a unique solution.

Boundary element methods (BEM) offer the most flexible way to deal with the
homogeneous problem in the unbounded exterior domain Ω′. They are based on
boundary integral operator equations (BIE) on Γ. Owing to potentially nonconstant
material parameters, the field problem inside Ωs may not be amenable to a treatment
by means of boundary elements. Finite element schemes (FEM) founded on a weak
variational formulation of the electric wave equation have to be used there. Thus, the
topic of the paper comes into focus, namely, how to derive and discretize a suitable
coupled problem, and how to analyze the resulting FEM-BEM formulation.

Coupling entails expressing the Dirichlet-to-Neumann map of the exterior prob-
lem through boundary equations linking the Cauchy data γtE and γNE for the elec-
tric field. There is a wealth of integral formulations for the exterior electromagnetic
boundary value problem. A comprehensive survey is given in Nédélec’s recent mono-
graph [45]. In principle, all these methods furnish the Dirichlet-to-Neumann map.
However, in many cases, in particular with so-called indirect formulations, the result-
ing operator lacks structural properties of the Dirichlet-to-Neumann map. This is
blatantly obvious in the case of second order elliptic problems [40]. If structure is not
preserved, then the linear systems of equations obtained through Galerkin boundary
element discretization are adversely affected.

For second order elliptic problems Costabel [23] discovered that the so-called
direct boundary integral equations provide a remedy. The key concept is that of
the Calderón projector acting on the Cauchy data of the problem. For details and
theoretical examinations we refer to [17, sect. 4.5] and [29]. In short, the Calderón
projector supplies two sets of boundary integral equations. Judiciously combining
them yields a version of the Dirichlet-to-Neumann map that perfectly lends itself to
a Galerkin discretization. The realization of Costabel’s idea is called the “symmetric
coupling approach” to marrying finite elements and boundary elements. It has been
applied to a wide range of (strongly elliptic) problems; see, among many others,
[15, 37, 41].

Unsurprisingly, the Calderón projector for the Maxwell system has been amply
studied (cf. [16, sect. 1.3.2], [32], [45, sect. 5.5], and [39, sect. 3]). The idea of
symmetric coupling for the transmission problem was theoretically probed in [1, 2,
3], and in [6] for a related problem involving impedance boundary conditions. All
these theoretical results employ compactness arguments and the Fredholm alternative.
To this end, most authors have meticulously studied the integral operators on Γ.
They have completely succeeded on smooth boundaries, but all efforts to adjust the
approach to nonsmooth boundaries have been in vain.

It was fundamental new insights about the trace spaces of electromagnetic fields,
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presented in [8, 10, 11, 13], that cleared the road to further progress. That progress
could finally be achieved by remembering a highly effective policy in the modern
treatment of boundary integral equations: The guideline is to stay off the boundary
as far as possible by studying variational problems instead of the boundary integral
operators directly. This policy has demonstrated its efficacy in the work of Costabel
[24]. The recent textbook [43] discusses all nuances of this approach for strongly
elliptic boundary value problems. Moving off the boundary helps steer clear of its
awkward geometric features. Thus, the foundation for a theory of electromagnetic
boundary integral operators on nonsmooth boundaries could be laid in [14].

In addition, in order to harness compactness arguments, we have to employ de-
compositions of surface vectorfields, on whose components the boundary integral op-
erators will be considered. The classical decomposition is the so-called Hodge de-
composition [32], which remains a very effective tool on piecewise smooth boundaries
(see [12, 38] and, in particular, [14]). Its counterpart on domains is the Helmholtz
decomposition. It is important to realize that there is some leeway in choosing the
decomposition, because the exact orthogonality featured by Hodge and Helmholtz de-
compositions is of minor importance. Instead, we prefer to use related, but simpler,
splittings.

All BIE for the exterior Dirichlet problem in electromagnetic scattering and acous-
tics are haunted by the presence of “forbidden frequencies” [14, 12, 18], for which the
equations fail to have a unique solution. Those agree with interior Dirichlet eigenval-
ues. The symmetrically coupled problem investigated in this paper exhibits the same
drawback. Therefore we have to resign ourselves to making the following assumption
about the uniqueness of the solutions of the interior Dirichlet problem with constant
coefficients.

Assumption 1. If curl curlU−κ2U = 0 in Ωs and γtU = 0 on Γ, then necessarily
U = 0.

To discretize the symmetrically coupled problem, we rely on discrete differen-
tial forms (edge elements, face elements) on triangulations of both Ωs and Γ. The
Galerkin approach is straightforward, and yet, in the discrete setting another chal-
lenge arises, because the continuous decompositions do not directly carry over to the
discrete spaces. For pure indirect boundary element formulations (Rumsey’s princi-
ple) remedies have been explored in [18] and [38]. Direct BIE were successfully tackled
in [14]. All these approaches exploit the fact that appropriate discrete splittings can
approximate their continuous counterparts reasonably well. In this paper we adapt
the ideas pioneered in [14] to the symmetrically coupled FEM-BEM problem. At
the heart of the developments will be symmetry and compactness properties of the
Calderón projector, which were first established in [14]. We will use variants of these
results that do not rely on any sophisticated results on elliptic regularity.

The plan of the paper is as follows. In the next section we discuss the rationale
behind the use of decompositions. Then, the theory of tangential traces is reviewed in
section 3. After that we introduce the potentials that supply the building blocks for
the Stratton–Chu representation formula. These potentials spawn integral operators
that are examined in section 5. The coupled variational formulation of the entire
scattering problem is derived in section 6. In section 7 we construct decompositions
of fields in Ωs and on Γ. These decompositions give rise to a split variational problem
that is shown to be coercive in section 8. Up to this point everything is aimed at
the analysis of the continuous variational problem. Then, section 9 is devoted to the
spaces of finite elements and boundary elements used for the Galerkin discretization
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of the coupled problem. Discrete counterparts of the continuous decompositions are
presented in section 10. Abstract conditions that the discrete decompositions have
to meet are put forth in section 11, which is also devoted to their verification for
the concrete decompositions. Finally, in section 12, we give quantitative a priori
convergence estimates.

2. Electromagnetic versus acoustic scattering. What is the point of this
paper in light of the fairly general theory of symmetric coupling for strongly elliptic
boundary value problems? To elucidate this, let us consider the apparently similar
problem of time-harmonic acoustic scattering governed by the Helmholtz equation

−∆ρ− κ2ρ = 0 in Ω′.

This is a showcase example for the application of the general theory. What accounts
for the fundamental difference between electromagnetism and acoustics? Both phe-
nomena, from a physical point of view, are marked by an incessant conversion of en-
ergies. In acoustics, potential and kinetic energy of the fluid are converted into each
other; in electromagnetism, the same roles are played by the electric and magnetic
energy. In acoustics the kinetic energy (with respect to a bounded control volume
Ω) is a compact perturbation of the potential energy. Just remember that those are
associated with the squared L2(Ω)- and H1(Ω)-norms, respectively. Therefore we
can clearly single out the Laplacian as the principal part of the Helmholtz operator.
This paves the way for proofs of coercivity based on “ignoring” the kinetic energy
altogether.

Conversely, for the electric wave equation, the electric energy described by ‖E‖2L2(Ω)

is by no means a compact perturbation of the magnetic energy, which is measured by
‖curlE‖2L2(Ω). Both energies are completely symmetric, and none can be given prefer-

ence at the expense of the other: No term in the differential operator curl curlE−κ2E
plays the role of a principal part. Formally speaking, the operator of the electric wave
equation lacks the essential property of strong ellipticity. However, this is what is
required by standard arguments involving compact perturbations.

There is a way to promote one type of energy to dominate the other. This is called
regularization and is usually done by imposing some constraint on the divergence of the
electric field [35, 6, 28]. Regularization is problematic, becauseH(curl; Ω)∩H(div; Ω)
is still not compactly embedded in L2(Ω) [4, Prop. 2.7]. In [35] this forces a separation
of the surface on which the integral operators are defined and the surface on which
they are evaluated in order to salvage coercivity. An alternative consists of tampering
with the transmission conditions as in [6, 28, 25], but equivalence to the original
problem holds only for smooth Γ.

The superior alternative to regularization is the splitting of the fields into two
components. One set of components, called the electric, will feature dominant electric
energy. With the other set, the magnetic quantities, the situation is reversed. This
will promote either curl curl or Id to the role of a principal part. As a consequence,
on each component the electric wave equation should be amenable to a treatment
along the lines of the classical theory.

To find a suitable splitting, we can take our cue from a stationary situation.
There, we find that valid electric fields are irrotational. In a nonstationary situation,
magnetic induction generates another solenoidal contribution to E. Thus, we have
arrived at a Helmholtz decomposition

E = gradϕ+ curlA
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of the electric field. The first term has an “electric nature,” and the second can
be labeled “magnetic.” The reader should not be misled by the symbol E and the
parlance “electric field”: For positive wave numbers both E andH have a twin electric
and magnetic nature.

Similar considerations apply to the Cauchy data γtE and γNE. A splitting of
γtE is instantly induced by the Helmholtz decomposition, and the electric and mag-
netic parts are also clear from it. In the case of γNE, which is a rotated tangential
trace of the magnetic field, we remember that it is commonly viewed as a “surface
current.” Hence, its divergence-free components are currents not accompanied by sur-
face charges; they qualify as “magnetic quantities.” Currents in a complement space
inevitably generate surface charges. Thus, they can be regarded as “electric.” This
suggests that we start out from the Hodge decomposition

γNE = curlΓϕ+ gradΓ ψ

of the surface currents, in order to deal with the BIE.

3. Traces and spaces. The natural Hilbert space setting for the analysis of the
transmission problem (1.1) is provided by the spaces

H loc(curl; Ω) := {V ∈ L2
loc(Ω), curlV ∈ L2

loc(Ω)}.

Here and in what follows, Ω is a “generic domain,” which can either be Ωs or Ω
′. For

a thorough examination of these spaces and notations, we refer to [33, Chap. 1].
The Sobolev spaces of scalar functions and related functionals,Hs(Γ) andH−s(Γ),

can be defined invariantly for 0 ≤ s ≤ 1 [34, Sect. 1.3.3]. In addition, we write
γ : Hs

loc(Ω) → Hs− 1
2 (Γ), 1

2 < s < 3
2 , for the usual trace operator [43, Thm. 3.38].

Superscripts − and + will be attached to the trace operators, when it is important
whether they act from Ωs or Ω

′, respectively.
If Γ is a curvilinear Lipschitz polyhedron (cf. the introduction of [26]) with smooth

components Γj , j = 1, . . . , NΓ, we set

Hs(Γ) :={u ∈ H1(Γ), u|Γj
∈ Hs(Γj), j = 1 . . . , NΓ} for s > 1,

Hs
t(Γ) :={u ∈ L2

t(Γ), u|Γj
∈Hs(Γj), j = 1, . . . , NΓ} for s ≥ 0,

where L2
t(Γ) := {u ∈ (L2(Γ))3,u · n = 0}. All these spaces are equipped with the

natural graph norms.
The tangential components trace γt and the twisted tangential trace γ×, for U ∈

C∞(Ω̄) defined by γtU(x) := n(x)× (U(x)×n(x)) and γ×U(x) := U(x)×n(x) a.e.
on Γ, play a central role in the mathematical treatment of the Maxwell transmission
problem. Their extension to H loc(curl; Ω) was accomplished for piecewise smooth
boundaries in [10, 8] and for Lipschitz domains in [13]. These articles and section 2
of [12] supply the main references for the current section.

Theorem 3.1. There are intrinsically defined spaces H
1/2
|| (Γ),H

1/2
⊥ (Γ) ⊂ L2

t(Γ)

such that the tangential trace mappings γt
±/γ±× : H1

loc(Ω) → H
1/2
|| (Γ)/H

1/2
⊥ (Γ),

Ω = Ω′,Ωs, are continuous, surjective and possess continuous right inverses.
Proof. See Proposition 1.7 in [10] and [13, sect. 2].

The associated dual spaces will be denoted by H
−1/2
|| (Γ) and H

−1/2
⊥ (Γ), respec-

tively, where the sesqui-linear duality pairings 〈·, ·〉 1
2 ,‖,Γ :H

−1/2
|| (Γ)×H1/2

|| (Γ) → C,
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〈·, ·〉 1
2 ,⊥,Γ :H

−1/2
⊥ (Γ)×H1/2

⊥ (Γ) → C are taken with L2
t(Γ) as pivot space.

The classical Rellich theorem can also be applied to the tangential trace spaces
as follows.

Lemma 3.2. The embeddings H
1
2

|| (Γ),H
1
2

⊥(Γ) ↪→ L2
t(Γ) are compact.

Based on surface differential operators (cf. section 3 of [13]) we can define

H−
1
2 (curlΓ,Γ) ={v ∈H−

1
2

⊥ (Γ), curlΓ v ∈ H− 1
2 (Γ)},

H−
1
2 (divΓ,Γ) ={ζ ∈H−

1
2

|| (Γ), divΓζ ∈ H−
1
2 (Γ)}.

These spaces are endowed with natural graph norms. They are important as suitable
trace spaces for vectorfields in H(curl; Ω) (see [10, Thms. 2.7, 2.8], [11, Thm. 4.5],
[8], [13, sect. 4]).

Theorem 3.3. The trace mappings γt
+ : H loc(curl; Ω

′) → H−
1
2 (curlΓ,Γ),

γt
− : H(curl; Ωs) → H−

1
2 (curlΓ,Γ) and γ

+
× : H loc(curl; Ω

′) → H−
1
2 (divΓ,Γ),

γ−× : H(curl; Ωs) → H−
1
2 (divΓ,Γ) are continuous and surjective with continuous

right inverses F±t ,F
±
×.

We learn that H−
1
2 (curlΓ,Γ) is exactly the right space for the Dirichlet data

γt
±E in (1.1). Hence, we adopt the alternative notation γD for γt to stress that

this is the right “Dirichlet trace.” As demonstrated in [11, sect. 4], H−
1
2 (curlΓ,Γ)

and H−
1
2 (divΓ,Γ) can be put in duality when L

2
t(Γ) is used as pivot space. More

precisely, the usual L2
t(Γ)-inner product can be extended to a sesqui-linear duality

pairing

〈·, ·〉τ :H−
1
2 (divΓ,Γ)×H− 1

2 (curlΓ,Γ) → C

by means of Green’s formula (“+” for Ω = Ωs)

∓
∫

Ω

U · curlV − curlU ·V dx = 〈γ±×V, γt±U〉τ ∀U,V ∈H(curl; Ω) .

An overbar designates complex conjugation.1 A ubiquitous device is the surface twist
operator R, for continuous tangential vectorfields given by (Ru)(x) := (n × u)(x)

for almost all x ∈ Γ. It gives rise to an isometric mapping R : H−
1
2 (curlΓ,Γ) →

H−
1
2 (divΓ,Γ).
We will also need the normal components trace γn with γnU(x) = n(x) ·U(x) for

almost all x ∈ Γ and U ∈ C∞(Ω̄). It can be extended to a continuous and surjective
mapping γn :H(div; Ω) → H−

1
2 (Γ) [33, Thm. 2.5].

Beside the Dirichlet trace γD, the transmission conditions of (1.1) feature a second
trace γN , aptly called a Neumann trace. It has to be introduced in a weak sense: For

U ∈H loc(curl
2,Ω) := {V ∈H loc(curl; Ω), curl curl(v) ∈ L2

loc(Ω)}

we define γ±NU ∈H−
1
2 (divΓ,Γ) by

∓
∫

Ω

curlU · curlV − curl curlU ·V dx = 〈γ±NU, γ±DV〉τ
1We adopt the following convention: Surface vectorfields in H−1/2(curlΓ,Γ) will be written

in small bold Roman print, those in H−1/2(divΓ,Γ) in small bold Greek characters. Capital bold
Roman symbols are used for vectorfields in Ωs or Ω′. Regular print marks scalar quantities.
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for all compactly supported V ∈ H(curl; Ω), where “+” applies to Ω = Ωs. Obvi-
ously, for smooth fields we recover γNU = γ×(curlU) = curlU× n.

Lemma 3.4 (see [37, Lem. 3.3]). The traces γ±N furnish continuous mappings

γ+
N :H loc(curl

2,Ω′) →H−
1
2 (divΓ,Γ) and γ

−
N :H(curl

2,Ωs) →H−
1
2 (divΓ,Γ).

4. Potentials. In [12, sect. 3], in [16, Chap. 3, sect. 1.3.2], and in [45, sect. 5.5]
the Stratton–Chu representation formula is derived. It states that any distribution
U ∈H loc(curl

2,Ω′) that satisfies

curl curlU− κ2U = 0 in Ω′(4.1)

and the Silver–Müller radiation conditions can be written as

U = Ψκ
M(γ

+
DU)−Ψκ

A(γ
+
NU)− gradΨκV (γ

+
nU) in Ω′.(4.2)

Here,Ψκ
M(·),Ψκ

A(·), and ΨκV (·) are potentials, i.e, in our parlance, mappings of bound-
ary data to functions defined everywhere off the boundary. In detail, based on the
Helmholtz kernel Eκ(x,y) := exp(iκ|x− y|)/4π|x− y|, x �= y, ΨκV is the scalar single
layer potential, given by

ΨκV (φ)(x) :=

∫
Γ

Eκ(x,y)φ(y) dS(y), x �∈ Γ,(4.3)

and Ψκ
A its cousin, the vectorial single layer potential

Ψκ
A(µ)(x) :=

∫
Γ

Eκ(x,y)µ(y) dS(y), x �∈ Γ.(4.4)

They are joined by the Maxwell double layer potential

Ψκ
M(u)(x) := curlxΨ

κ
A(Ru)(x), x �∈ Γ.

A simplification of (4.2) is possible by observing that (cf. [13, eq. (26)])

divΓ(γ
+
NU) = γ

+
n (curl curlU) = κ

2(γ+
nU) in H−

1
2 (Γ)(4.5)

for all U ∈ H loc(curl
2,Ω′) satisfying (4.1). This enables us to get rid of the normal

components trace in (4.2). We end up with

U = Ψκ
M(γ

+
DU)−Ψκ

S(γ
+
NU) in Ω′,(4.6)

where we introduced the Maxwell single layer potential according to

Ψκ
S(µ)(x) := Ψκ

A(µ)(x) +
1

κ2
gradxΨ

κ
V (divΓµ)(x).(4.7)

Lemma 4.1 (see [24], [37, Thm. 5.1]). The single layer potentials Ψκ
A and ΨκV

give rise to continuous mappings ΨκV : H
−1/2(Γ) → H1

loc(R
3), Ψκ

A : H
−1/2
|| (Γ) →

H1
loc(R

3).

Lemma 4.2 (see [42, Lem. 2.3]). For u ∈ H−1/2(divΓ,Γ) we have divΨ
κ
A(u) =

ΨκV (divΓu) in L
2(R3).

From this we get the identities

(curl curl−κ2Id)Ψκ
A(µ) = gradΨκV (divΓµ) ∀µ ∈H−

1
2 (divΓ,Γ),(4.8)

(curl curl−κ2Id)Ψκ
M(u) = 0 ∀u ∈H− 1

2 (curlΓ,Γ),(4.9)
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off the boundary Γ in the pointwise sense and, globally, in L2
loc(R

3). Summing up,
both Ψκ

M and Ψκ
S are radiating solutions of the homogeneous electric wave equation

in Ωs ∪ Ω′.
From these relationships and Lemma 4.1 we infer the following continuity prop-

erties.

Theorem 4.3. The mappings Ψκ
S : H

− 1
2 (divΓ,Γ) → H loc(curl

2,Ωs ∪ Ω′) and
Ψκ

M :H−
1
2 (curlΓ,Γ) →H loc(curl

2,Ωs ∪ Ω′) are continuous.
The potentials also satisfy fundamental jump relations (cf. [22, Thm. 6.11], [45,

Thm. 5.5.1], [37, sect. 5]).

Theorem 4.4. The interior and exterior Dirichlet and Neumann traces of

the potentials Ψκ
S and Ψκ

M are well defined and fulfill for µ ∈ H− 1
2 (divΓ,Γ), u ∈

H−
1
2 (curlΓ,Γ),

[γDΨ
κ
S(µ)]Γ = 0, [γNΨ

κ
S(µ)]Γ = −µ, [γDΨ

κ
M(u)]Γ = u, [γNΨ

κ
M(u)]Γ = 0.

This theorem in conjunction with Lemma 4.2 and Ψκ
A(Ru) ∈ H1

loc(R
3) supplies

further jump relations:

[γnΨ
κ
M(u)]Γ = 0, [γ divΨκ

A(µ)]Γ = 0.(4.10)

5. Integral operators. In the usual fashion, we obtain the relevant boundary
integral operators by applying Dirichlet and Neumann trace operators to the poten-
tials of the representation formula.

Lemma 5.1. The integral operators Aκ := γDΨ
κ
A : H

−1/2
|| (Γ) → H

1/2
|| (Γ),

Ãκ := γ×Ψκ
A ◦ R :H

−1/2
⊥ (Γ) →H

1/2
⊥ (Γ), and Vκ := γΨ

κ
V : H

−1/2(Γ) → H1/2(Γ) are
continuous.

Proof. The assertion is immediate by combining Theorem 4.3 with Theorem 3.1
and properties of the standard trace γ.

Theorem 5.2. The following integral operators are continuous:

Sκ := γDΨ
κ
S : H−

1
2 (divΓ,Γ) →H−

1
2 (curlΓ,Γ),

Bκ :=
1

2
(γ+
N + γ

−
N )Ψ

κ
A : H−

1
2 (divΓ,Γ) →H−

1
2 (divΓ,Γ),

Cκ :=
1

2
(γ+
D + γ

−
D)Ψ

κ
M : H−

1
2 (curlΓ,Γ) →H−

1
2 (curlΓ,Γ),

Nκ := γNΨ
κ
M : H−

1
2 (curlΓ,Γ) →H−

1
2 (divΓ,Γ).

Proof. The continuity properties instantly follow from those of the potentials
stated in Theorem 4.3, and the continuity of the trace operators from Theorem 3.3
and Lemma 3.4.

Beyond continuity, the integral operators possess numerous important properties.
In particular, they are closely related as expressed in the next two lemmas.

Lemma 5.3 (see [21, eq. (3.86)]). The identity Nκ = R∗ ◦ Sκ ◦ R holds true.

Lemma 5.4. There is a compact linear operator Tκ :H
− 1

2 (divΓ,Γ) →H−
1
2 (divΓ,Γ)

such that

〈Bκζ,q〉τ = 〈ζ,Cκq〉τ − 〈Tκζ,q〉τ ∀ζ ∈H− 1
2 (divΓ,Γ), q ∈H− 1

2 (curlΓ,Γ).
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Proof. The proof follows that of [14, Thm. 3.9]. We fix ρ > 0 such that Ω̄s
is contained in the ball Bρ := {x ∈ R

3, |x| < ρ}. Traces onto ∂Bρ bear a .̂ Set
U := Ψκ

A(ζ), V := Ψκ
M(q), and observe that (4.9) involves〈

γ+
NV, γ

+
DU

〉
τ
= −

∫
Ωρ

curlV · curlU− curl curlV ·U dx+ 〈γ̂NV, γ̂DU〉τ ,∂Bρ

= −
∫

Ωρ

curlV · curlU dx+

∫
Ωρ

κ2V ·U dx+ 〈γ̂NV, γ̂DU〉τ ,∂Bρ
,〈

γ−NV, γ
−
DU

〉
τ
=

∫
Ωs

curlV · curlU− κ2V ·U dx.

The jump relations of Theorem 4.4 reveal that both expressions agree. Moreover,
since divV = 0 in Ωs ∪ Ω′,〈

γ−NU, γ
−
DV

〉
τ
=

∫
Ωs

curlU · curlV − curl curlU ·V dx

=

∫
Ωs

curlU · curlV − (κ2U+ gradΨκV (divΓζ)
)
V dx

=
〈
γ−NV, γ

−
DU

〉
τ
− 〈γ−n V, γ−ΨκV (divΓζ)〉 1

2 ,Γ

and〈
γ+
NU, γ

+
DV

〉
τ
= −

∫
Ωρ

curlU · curlV − curl curlU ·V dx+ 〈γ̂NU, γ̂DV〉τ

= −
∫

Ωρ

curlU · curlV dx+
∫

Ωρ

(
κ2U+ gradΨκV (divΓζ)

)
V dx+ 〈γ̂NU, γ̂DV〉τ

=
〈
γ+
NV, γ

+
DU

〉
τ
− 〈γ+

nV, γ+ΨκV (divΓζ)
〉

1
2 ,Γ
+ 〈γ̂nV, γ̂ΨκV (divΓζ)〉1/2,∂Bρ

− 〈γ̂NV, γ̂DU〉τ + 〈γ̂NU, γ̂DV〉τ .
From the extra jump relation (4.10) we infer

(5.1)
〈
γ−NU, γ

−
DV

〉
τ
=

〈
γ+
NU, γ

+
DV

〉
τ

+ {Potentials evaluated on ∂Bρ}.
The potentials, when restricted to domains off the boundary Γ, are C∞-smoothing
(cf. the proof of Theorem 7.6 in [43]). Thus their evaluations on ∂Bρ will lead to
compact operators. Plugging in the definitions of the boundary integral operators,
(5.1) gives the assertion.

Since, ultimately, we aim to resort to a Fredholm alternative argument, com-
pactness properties of the boundary integral operators deserve special attention. It
will be crucial that we are able to switch to the “Laplace kernel” E0 by a compact
perturbation only.

Lemma 5.5 (see [14, Thm. 3.12], [38, Lem. 3.2]). The following integral opera-
tors are compact:

δAκ := Aκ −A0 : H
− 1

2

|| (Γ) →H
1
2

|| (Γ),

δÃκ := Ãκ − Ã0 : H
− 1

2

⊥ (Γ) →H
1
2

⊥(Γ),

δVκ := Vκ − V0 : H−
1
2 (Γ) → H

1
2 (Γ),

δNκ := Nκ −N0 : H−
1
2 (curlΓ,Γ) →H−

1
2 (divΓ,Γ).
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The significance of the case κ = 0 is highlighted by the following result (cf. [43,
Cor. 8.13], [31, Vol. IV, Chap. XI, sect. 2, Thm. 3], [12, Prop. 4.1]).

Lemma 5.6 (see [14, Thm. 3.8]). The operators V0, Ã0, and A0 are continuous,
self-adjoint and fulfill

〈µ, V0µ〉 1
2 ,Γ
≥ C ‖µ‖2

H− 1
2 (Γ)

∀µ ∈ H− 1
2 (Γ),

〈µ,A0µ〉 1
2 ,‖,Γ ≥ C ‖µ‖

2

H
− 1

2
|| (Γ)

∀µ ∈H− 1
2

|| (Γ), divΓµ = 0,

〈v, Ã0v〉 1
2 ,⊥,Γ ≥ C ‖v‖

2

H
− 1

2
⊥ (Γ)

∀v ∈H− 1
2 (curlΓ,Γ), curlΓv = 0,

with constants 2 C > 0 depending only on Γ.

6. Coupled problem. Applying Green’s formula to the electric wave equation
in Ωs results in the variational formulation: Seek E ∈H(curl; Ωs) such that(

µ−1
r curlE, curlV

)
0;Ωs
− κ2 (εrE,V)0;Ωs

−
〈
1

µr
γ−NE, γ

−
DV

〉
τ

= 0(6.1)

for all V ∈ H(curl; Ωs). The coupling to the exterior domain is taken into account
through the transmission conditions from (1.1):

1

µr
γ−NE = γ

+
NE+ γNEinc, γ−DE = γ

+
DE+ γDEinc.(6.2)

In addition, some realization of the exterior Dirichlet-to-Neumann map has to be pro-
vided. It is furnished by the exterior Calderón projector, which arises from applying
both the exterior Dirichlet and Neumann traces to the representation formula (4.6)
(cf. [32, eq. (29)], [45, sect. 5.5], [14, sect. 3.3], [39, eq. (24)]). The resulting iden-

tity reads in variational form: For all µ ∈ H− 1
2 (divΓ,Γ), v ∈ H− 1

2 (curlΓ,Γ) the
following must hold:〈

µ, γ+
DE
〉

τ
=

〈
µ,

(
1

2
Id+Cκ

)
(γ+
DE)

〉
τ

− 〈
µ,Sκ(γ

+
NE)

〉
τ
,

〈
γ+
NE,v

〉
τ
=

〈
Nκ(γ

+
DE),v

〉
τ

+

〈(
1

2
Id−Bκ

)
(γ+
NE),v

〉
τ

.

(6.3)

Now we can use the transmission conditions (6.2) and the second equation of the
Calderón projector in order to replace the boundary term in (6.1). The trick underly-
ing the symmetric coupling according to Costabel [23] is to retain the first equation of
(6.3) in addition (cf. [32, sect. 4] for Maxwell’s equations). Adopting the abbreviation

λ := γ+
NE, we arrive at the formulation: Seek E ∈ H(curl; Ωs), λ ∈ H−

1
2 (divΓ,Γ)

such that for all V ∈H(curl; Ωs), µ ∈H− 1
2 (divΓ,Γ)

qκ(E,V)−
〈
Nκγ

−
DE, γ

−
DV

〉
τ
+

〈(
−1
2
Id+Bκ

)
λ, γ−DV

〉
τ

= f(V),

−
〈
µ,

(
−1
2
Id+Cκ

)
(γ−DE)

〉
τ

+ 〈µ,Sκλ〉τ = g(µ),

(6.4)

2We use C to designate generic constants that may depend only on “fixed quantities” as Γ, κ,
and the material parameters εr, µr. Their values might vary between different occurrences.
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with right-hand sides f(V) :=
〈
γNEinc, γ

−
DV

〉
τ
− 〈Nκ(γDEinc), γ

−
DV

〉
τ
, g(µ) =

− 〈µ, ( 12Id+Cκ)γDEinc

〉
τ
, and qκ(·, ·) representing the interior sesqui-linear form,

that is, qκ(E,V) :=
(
µ−1
r curlE, curlV

)
0;Ωs
− κ2 (εrE,V)0;Ωs

.

Lemma 6.1. Provided that Assumption 1 holds, a solution of (6.4) provides a
solution of (1.1) by retaining E in Ωs and using the representation formula (4.6) for
the Cauchy data (γ−DE+ γDEinc,λ) in Ω

′.
Proof. Our approach is based on [49, sect. 4.3] and [14, sect. 5]. Testing with V

that is compactly supported in Ωs confirms that E satisfies (1.1) in Ωs. We conclude
(6.1) for any admissible V. This renders (6.4) equivalent to

〈
ξ, γ−DV

〉
τ
− 〈Nκu, γ

−
DV

〉
τ
+

〈(
−1
2
Id+Bκ

)
λ, γ−DV

〉
τ

= 0,〈
µ,

(
−1
2
Id+Cκ

)
u

〉
τ

− 〈µ,Sκλ〉τ = 0,

with ξ := 1
µr
γ−NE− γNEinc, u := γ

−
DE− γDEinc. In operator notation this means

−Nκu +

(
1

2
Id+Bκ

)
λ = λ− ξ,(

1

2
Id−Cκ

)
u + Sκλ = 0.

(6.5)

We recognize the operator in (6.5) as an interior Calderon projector [14, sect. 3.3].
Its range comprises valid Cauchy data for boundary value problems for curl curlU−
κ2U = 0 in Ωs. In particular, λ − ξ are seen to be Neumann boundary values of
interior Dirichlet eigensolutions. According to Assumption 1 these are trivial, which
implies ξ = λ.

From this we immediately conclude that (u,λ) must belong to the range of the
exterior Calderon projector. Hence, (u,λ) are valid Cauchy data for the exterior
field problem. By definition, (u + γDEinc, ξ) are valid Cauchy data for the interior
field problem. Taken together with ξ = λ, this finishes the proof.

Remark 6.1. If κ2 coincides with an interior Dirichlet eigenvalue, then the
solution of (6.4) is unique only up to a contribution (0,η), where η lies in the span
of Neumann data belonging to interior Dirichlet eigensolutions. In particular, γ−DE is
unique.

To keep notations short, we set V := H(curl; Ωs) × H− 1
2 (divΓ,Γ) and write

aκ : V × V → C for the sesqui-linear form associated with the variational problem
(6.4). Then the latter can be stated as follows: Seek (E,λ) ∈ V such that

aκ((E,λ), (V,µ)) = f(V) + g(µ) ∀(V,µ) ∈ V .(6.6)

At first glance, the resulting variational problem much resembles those we get in the
case of strongly elliptic second order elliptic problems, as they are encountered, for
instance, in models for acoustic scattering (cf. section 2). Now, Sκ seems to play
the role of a single layer potential Vκ, Bκ and Cκ act as double layer boundary
integral operators, and Nκ substitutes for the hypersingular operator Dκ. A closer
scrutiny reveals that appearances are deceptive: The key feature of Vκ and Dκ is that
they are strongly elliptic operators of order −1 and 1, respectively. Conversely, as is
immediate from the formula (4.7) and Lemma 5.3, neither Sκ norNκ can be assigned
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orders, let alone different orders. They both comprise two terms of order 1 and −1,
respectively, neither of which can be identified as the principal part. This mirrors the
characteristics of the electric wave operator, as discussed in section 2.

7. Decompositions. The considerations of section 2 suggest that we study
L2(Ωs)-orthogonal Helmholtz decomposition of the electric field into an irrotational
component and some complement. However, it turns out that only the energetic sta-
bility of the splitting is essential, not its exact orthogonality. Hence, we decided to
trade orthogonality for regularity of the magnetic component.

In the case of H(curl; Ωs), the construction of such a Helmholtz-type decomposi-
tion hinges on the existence of vector potentials in H1(Ωs).

Lemma 7.1 (see [4, Lem. 3.5]). There is a linear continuous lifting operator
L : H(div 0; Ωs) := {V ∈ L2(Ωs), divV = 0} → H1(Ωs) that satisfies div(LU) = 0
and curl(LU) = U for all U ∈H(div 0; Ωs).

Using this device, we introduce the operator

P :H(curl; Ωs) →H1(Ωs), PU := L(curlU).

From the properties of L we immediately conclude numerous features of P as follows.
Lemma 7.2. The operator P is a continuous projection that preserves the curl

and satisfies Ker(P) = Ker(curl) ∩H(curl; Ωs).
As Ker(P) = Ker(curl) ∩ H(curl; Ωs), it has become evident that the closed

subspaces

X(curl,Ωs) := P(H(curl; Ωs)) and N(curl,Ωs) := Ker(curl) ⊂H(curl; Ωs)
provide a stable and direct Helmholtz-type splitting

H(curl; Ωs) = X(curl,Ωs)⊕N(curl,Ωs).(7.1)

For both components we retain theH(curl; Ωs)-norm. Keeping in mind the discussion
of the components of the Helmholtz decomposition in section 2, we easily identify
X(curl,Ωs) as the space of “magnetic components” and N(curl,Ωs) as “electric”
space. For later compactness arguments the extra regularity of the X(curl,Ωs)-
component, which is contained in H1(Ωs), is pivotal, since it immediately yields the
following compact embedding.

Corollary 7.3. The embedding X(curl,Ωs) ↪→ L2(Ωs) is compact.

In addition, we need splittings of the Neumann trace space H−
1
2 (divΓ,Γ). Here

we could use an L2
t(Γ)-orthogonal Hodge decomposition as in [14]. However, as before,

we waive orthogonality in favor of enhanced regularity of an algebraic complement
of Ker(divΓ). The construction is largely parallel to that of X(curl,Ωs): Pick any

λ ∈H− 1
2 (divΓ,Γ) and set ω := divΓλ ∈ H− 1

2 (Γ). Solve the Neumann problem

Ψ ∈ H1(Ωs)/R : ∆Ψ = 0 in Ωs, γ−n gradΨ = w on Γ.

We find that W := gradΨ ∈ H(div 0; Ωs) belongs to the domain of the lifting L.

Hence, it makes sense to introduce the operator J : H−
1
2 (Γ) →H1(Ωs) by Jω := LW.

Its continuity is elementary and, thanks to Theorem 3.1, inherited by the mapping

PΓ := γ× ◦ J ◦ divΓ :H− 1
2 (divΓ,Γ) →H

1
2

⊥(Γ). Properties of PΓ matching those of P
can be easily established.

Lemma 7.4. The operator PΓ : H−
1
2 (divΓ,Γ) → H

1
2

⊥(Γ) is a continuous projec-

tion and preserves divΓ, and Ker(P
Γ) = Ker(divΓ) ∩H− 1

2 (divΓ,Γ).
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Through the components

X(divΓ,Γ) := PΓ(H−
1
2 (divΓ,Γ)), N(divΓ,Γ) := Ker(divΓ) ∩H− 1

2 (divΓ,Γ),

we arrive at a stable direct decomposition of the space of magnetic traces:

H−
1
2 (divΓ,Γ) := X(divΓ,Γ)⊕N(divΓ,Γ).(7.2)

In light of the remarks in section 2, and recalling that the spaceH−
1
2 (divΓ,Γ) contains

twisted tangential traces of magnetic fields, the two components in the splitting (7.2)
correspond to electric and magnetic field components, respectively.

As before, the extra regularity of X(divΓ,Γ) rewards us with a valuable compact
embedding analogous to [14, Thm. 3.4].

Corollary 7.5. The embedding X(divΓ,Γ) ↪→ L2
t(Γ) is compact.

8. Coercivity. We decompose the trial and test functions in the variational
problem (6.4) according to the splittings provided in the previous section:

E = E⊥ +E0, E⊥ ∈ X(curl,Ωs), E0 ∈ N(curl,Ωs),
V = V⊥ +V0, V⊥ ∈ X(curl,Ωs), V0 ∈ N(curl,Ωs),
λ = λ0 + λ⊥, λ0 ∈ N(divΓ,Γ), λ⊥ ∈ X(divΓ,Γ),
µ = µ0 + µ⊥, µ0 ∈ N(divΓ,Γ), µ⊥ ∈ X(divΓ,Γ).

In addition, we sort the unknowns according to their “electric” or “magnetic” nature,
grouping them as (λ⊥,E0) (electric), (λ0,E⊥) (magnetic). Thus we arrive at a vari-
ational problem with a distinct block structure. After flipping the signs of the first
two equations, it reads: Find λ⊥ ∈ X(divΓ,Γ), E

0 ∈ N(curl,Ωs), λ
0 ∈ N(divΓ,Γ),

E⊥ ∈ X(curl,Ωs) such that

∗11
+
+
∗12

=
=

g(µ⊥) ∀µ⊥ ∈ X(divΓ,Γ),
f(V0) ∀V0 ∈ N(curl,Ωs),

∗21
+
+
∗22

=
=

g(µ0) ∀µ0 ∈ N(divΓ,Γ),
f(V⊥) ∀V⊥ ∈ X(curl,Ωs),

(8.1)

where

∗11 :=

〈
µ⊥,Sκλ⊥

〉
τ

+

〈
µ⊥,

(
−1
2
Id+Cκ

)
γ−DE

0

〉
τ

,〈(
1

2
Id−Bκ

)
λ⊥, γ−DV

0

〉
τ

+ κ2
〈
γ−DV

0, Ãκγ
−
DE

0
〉

1
2 ,⊥,Γ
+ κ2

(
εrE

0,V0
)
0;Ωs

,

∗12 :=

− 〈µ⊥,Aκλ
0
〉

1
2 ,‖,Γ

+

〈
µ⊥,

(
−1
2
Id+Cκ

)
γ−DE

⊥
〉

τ

,〈(
1

2
Id−Bκ

)
λ0, γ−DV

0

〉
τ

+ κ2
〈
γ−DE

⊥, Ãκγ
−
DV

0
〉

1
2 ,⊥,Γ
+ κ2

(
εrE

⊥,V0
)
0;Ω− ,

∗21 :=

〈
µ0,Aκλ

⊥
〉

1
2 ,‖,Γ

−
〈
µ0,

(
−1
2
Id+Cκ

)
γ−DE

0

〉
τ

,〈(
−1
2
Id+Bκ

)
λ⊥, γ−DV

⊥
〉

τ

− κ2
〈
γ−DE

0, Ãκγ
−
DV

⊥
〉

1
2 ,⊥,Γ
− κ2

(
εE0,V⊥

)
0;Ω− ,
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∗22 :=

〈
µ0,Aκλ

0
〉

1
2 ,‖,Γ

−
〈
µ0,

(
−1
2
Id+Cκ

)
γ−DE

⊥
〉

τ

,〈(
−1
2
Id+Bκ

)
λ0, γ−DV

⊥
〉

τ

− 〈
Nκγ

−
DE
⊥, γ−DV

⊥〉
τ
+ q(E⊥,V⊥) .

Here, we have used that the first order parts of the operators Sκ and Nκ disappear
when those are applied to functions in N(divΓ,Γ) and γ

−
DN(curl,Ωs), respectively.

Evidently, (8.1) and (6.4) produce exactly the same solutions for λ = λ⊥ + λ0 and
E = E⊥+E0, provided that a unique solution exists. It is also clear that (6.4) can be
written as a variational problem for a continuous sesqui-linear form âκ on the Hilbert
space G := X(divΓ,Γ)×N(curl,Ωs)×N(divΓ,Γ)×X(curl,Ωs) that is endowed with
the natural graph norm. Also, âκ is given by

âκ((ζ
⊥,U0, ζ0,U⊥), (µ⊥,V0,µ0,V⊥))(8.2)

= aκ((U
⊥ +U0, ζ⊥ + ζ0), (V⊥ −V0,−µ⊥ + µ0)).

The goal is to resort to compact perturbations and achieve a block structure with
elliptic diagonal blocks and off-diagonal blocks that fit a skew-symmetric pattern. To
this end we have to identify operators in the above variational problem that can be
neglected because they are compact.

Lemma 8.1. The operators

(γ−D)
∗ ◦
(
−1
2
Id+Bκ

)
: N(divΓ,Γ) → N(curl,Ωs)

′,

(
−1
2
Id+Cκ

)
◦ γ−D : N(curl,Ωs) → N(divΓ,Γ)

′

are compact.
Proof. The proof closely follows that of [14, Prop. 3.13]. Pick ζ ∈ N(divΓ,Γ),

V ∈ N(curl,Ωs), and set v := γ−DV. Note that there is a direct splittingN(divΓ,Γ) =
curlΓH

1
2 (Γ)⊕H1(Γ), whereH1(Γ) is some cohomology space of Γ, whose dimension

is finite and agrees with the first Betti number β1(Γ) (cf. [8]). Hence, we can write

ζ = curlΓφ(ζ) + η(ζ), φ(ζ) ∈ H 1
2 (Γ), η(ζ) ∈H1(Γ).

Further, let Φ ∈ H1(Ωs) be some extension of φ. The key to the proof is the observa-
tion

〈ζ,v〉τ =
∫

Γ

curlV · gradΦ−V · curl gradΦ dx+ 〈η(ζ),v〉τ = 〈η(ζ),v〉τ .

By the jump relations, the identity (4.8), and the weak definition of the Neumann
trace γ−N ,〈
γ+
NΨ

κ
A(ζ),v

〉
τ
=
〈−ζ + γ−NΨκ

A(ζ),v
〉

τ
=
〈
γ−NΨ

κ
A(ζ),v

〉
τ
− 〈η(ζ),v〉τ

=

∫
Ωs

curlΨκ
A(ζ) · curlV − curl curlΨκ

A(ζ) ·V dx− 〈η(ζ),v〉τ

=

∫
Ωs

curlΨκ
A(ζ) · curlV − gradΨκV (divΓζ) ·V − κ2Ψκ

A(ζ) ·V dx− 〈η(ζ),v〉τ .
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The first two terms can be dropped as V and ζ are curl-free and divΓ-free, respec-
tively. This leaves us with

| 〈γ+
NΨ

κ
A(ζ),v

〉
τ
+ 〈η(ζ),v〉τ | ≤ κ2 ‖Ψκ

A(ζ)‖L2(Ωs)
‖V‖L2(Ωs)

.

As dimH1(Γ) <∞, the mapping N(divΓ,Γ) →H1(Γ), ζ → η(ζ), is compact. Since

Ψκ
A : H

− 1
2

|| (Γ) → H1(Ωs) is continuous, the compact embedding H
1(Ωs) ↪→ L2(Ωs)

confirms the first assertion of the theorem. Thanks to Lemma 5.4, the second is then
immediate.

Lemma 8.2. The operators

(γ−D)
∗ ◦
(
−1
2
Id+Bκ

)
: X(divΓ,Γ) → X(curl,Ωs)

′,

(
−1
2
Id+Cκ

)
◦ γ−D : X(curl,Ωs) → X(divΓ,Γ)

′

are compact.
Proof. The proof runs parallel to that of [14, Prop. 3.13]. Choose any ζ ∈

X(divΓ,Γ), V ∈ X(curl,Ωs), and recall the definition of Bκ along with the jump
conditions〈(
−1
2
Id+Bκ

)
ζ, γ−DV

〉
τ

=
〈
γ−NΨ

κ
A(ζ), γ

+
DV

〉
τ
− 〈ζ, γ−DV〉τ

=

∫
Ωs

curlΨκ
A(ζ) · curlV − curl curlΨκ

A(ζ) ·V dx−
〈
ζ, γ−DV

〉
τ

=

∫
Ωs

curlΨκ
A(ζ) · curlV − gradΨκV (divΓζ) ·V − κ2Ψκ

A(ζ)V dx−
〈
ζ, γ−DV

〉
τ

=

∫
Ωs

curlΨκ
A(ζ) · curlV − κ2Ψκ

A(ζ)V dx−
〈
γ−n V, Vκ(divΓζ)

〉
1
2 ,Γ
− 〈ζ, γ−DV〉τ .

Owing to the construction of X(curl,Ωs), this means∣∣∣∣〈(−12Id+Bκ

)
(ζ), γ−DV

〉
τ

∣∣∣∣
≤ |Ψκ

A(ζ)|H1(Ωs)
‖curlV‖L2(Ωs)

+ κ2 ‖Ψκ
A(ζ)‖L2(Ωs)

‖V‖L2(Ωs)

+ ‖Vκ(divΓζ)‖L2(Γ)

∥∥γ−n V∥∥L2(Γ)
+ ‖ζ‖L2(Γ)

∥∥γ−DV∥∥L2(Γ)

≤ C
(
‖ζ‖

H
− 1

2
|| (Γ)

+ ‖Vκ(divΓζ)‖L2(Γ) + ‖γ̂ΨκV (divΓζ)‖L2(Γ̂)
+ ‖ζ‖L2(Γ)

)
‖V‖H(curl;Ωs)

,

with some C = C(Ωs) > 0. It goes without saying that the operators Vκ : H
− 1

2 (Γ) →
L2(Γ) and γ̂ΨκV : H

− 1
2 (Γ) → L2(Γ̂) are compact. Then, the compact embedding of

X(divΓ,Γ) in L
2
t(Γ) according to Corollary 7.5 finishes the proof.

The previous two lemmas reveal that the bilinear forms associated with both ∗12
and ∗21 from (8.1) are compact. This means that the off-diagonal blocks in (8.1) do
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not contribute to the principal part of âκ. Rather, in the principal part electric and
magnetic field quantities are completely decoupled.

To strip compact perturbations off of ∗11 and ∗22, we first deduce from Corol-
lary 7.5, combined with the continuity properties from Theorem 5.3, that the opera-

tors Aκ : X(divΓ,Γ) →H
1/2
|| (Γ) and Ãκ ◦ γ−D : X(curl,Ωs) →H

1/2
⊥ (Γ) are compact.

Next, we recall Theorem 5.5 and obtain the following bilinear form through a compact
perturbation of âκ:

b̂κ((ζ
⊥,U0, ζ0,U⊥), (µ⊥,V0,µ0,V⊥))

=
1

κ2

〈
divΓµ

⊥, V0divΓζ
⊥
〉

1
2 ,Γ

+

〈
µ⊥,

(
−1
2
Id+Cκ

)
γ−DU

0

〉
τ

−
〈(
−1
2
Id+Bκ

)
ζ⊥, γ−DV

0

〉
τ

+ κ2
〈
γ−DV

0, Ã0γ
−
DU

0
〉

1
2 ,⊥,Γ

+ κ2
(
εrU

0,V0
)
0;Ωs

+
〈
µ0,A0ζ

0
〉

1
2 ,‖,Γ

−
〈
µ0,

(
−1
2
Id+Cκ

)
γ−DU

⊥
〉

τ

+

〈(
−1
2
Id+Bκ

)
ζ0, γ−DV

⊥
〉

τ

+
〈
curlΓ γ

−
DV

⊥, V0 curlΓ γ
−
DU

⊥〉
1
2 ,Γ
+

(
1

µr
curlU⊥, curlV⊥

)
0;Ωs

.

Obviously, due to Lemma 5.4, cancellation weeds out all terms that cannot be
controlled by compactness. Then the following main result, corresponding to [14,
Thm. 3.12], is straightforward.

Theorem 8.3. The sesqui-linear form âκ related to the variational problem (6.4)

is coercive on G; that is, it can be written as a sum âκ = d̂κ + k̂κ of a G-elliptic
sesqui-linear form d̂κ and a compact sesqui-linear form k̂κ : G × G → C.

Proof. By the above reasoning, âκ − b̂κ is compact. Using Lemma 5.4 and the
compact operator Tκ introduced there, we readily see that d̂κ := b̂κ−〈Tκ·, ·〉τ+〈Tκ·, ·〉τ
is G-elliptic.

Any solution of the scattering problem (1.1) will ultimately turn out to be a
solution of (6.6). Consequently, given Assumption 1, Lemma 6.1 combined with
Theorem 1.1 guarantees the injectivity of the operator associated with (6.6). Thus,
the Fredholm alternative (cf. [43, Thm. 2.33]) instantly vindicates that (6.6) always

has a unique solution (E,λ) ∈H(curl; Ωs)×H− 1
2 (divΓ,Γ). Uniqueness carries over

to the split variational problem (8.1). From this we infer the continuous inf-sup
condition

sup
v∈G

|âκ(u, v)|
‖v‖G

≥ C ‖u‖G ∀u ∈ G.(8.3)

9. Finite element spaces. We equip (the curvilinear polyhedron) Ωs with a
family of shape-regular, tetrahedral triangulations (Ωh)h. The parameter h designates
the meshwidth, that is, the length of the longest edge. Let H stand for the collec-
tion of meshwidths occurring in (Ωh)h and, moreover, assume that H ⊂ R

+ forms
a decreasing sequence tending to zero. The set Th will include all triangles of Ωh.
Restricting Ωh, h ∈ H, to Γ gives a sequence (Γh)h of surface meshes. They inherit
shape-regularity from (Ωh)h. We suppose that all Γh are aligned with edges of Γ.

Discrete electric fields should be modelled by discrete 1-forms (edge elements).
They can be represented by piecewise polynomial vectorfields: For a fixed polynomial
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degree ν, ν ∈ N0, and any tetrahedron T ∈ Th the local spaces are given by (cf. [44])

E1
ν+1(T ) := {V ∈ (Pν+1(T ))

3, V(x) · x = 0 ∀x ∈ T},

where Pι is the space of multivariate polynomials of total degree ν on T . This gives
rise to the global finite element space

E1
ν+1(Ωh) := {U ∈H(curl; Ωs), U|T ∈ E1

ν+1(T ) ∀T ∈ Th}.

The condition E1
ν+1(Ωh) ⊂ H(curl; Ωs) is equivalent to the continuity of tangential

components across interelement faces. This renders degrees of freedom based on
moments of (tangential components) on edges, faces, and the elements themselves
well defined. See [44] and [36] for details and proofs of unisolvence. The discrete
1-forms on {Ωh}h form an affine family of finite elements in the sense of [19] with
respect to the pullback of 1-forms. Based on the degrees of freedom, we can introduce
nodal interpolation operators Π1

h onto E1
ν+1(Ωh). To begin with, those are declared

for continuous vectorfields. It turns out that this is not enough and that we badly
need to apply Π1

h to less regular vectorfields. The extent to which this is possible is
revealed by the following interpolation error estimate.

Lemma 9.1 (see [20, Lems. 3.2, 3.3]). If s > 1
2 , then for all U ∈ Hs(Ωs) such

that curlU ∈Hs(Ωs)∥∥U−Π1
hU
∥∥

L2(Ωs)
≤ C̃hmin{ν+1,s}(|U|Hs(Ωs)

+ |curlU|Hs(Ωs)
),∥∥curl(U−Π1

hU)
∥∥

L2(Ωs)
≤ C̃hmin{ν+1,s} |curlU|Hs(Ωs)

,

with constants 3 C̃ > 0 depending only on Ωs, ν, s, and the shape-regularity of the
meshes.

The reader might be wondering why we want to use the nodal interpolation op-
erator even though it fails to be defined on the entire space H(curl; Ωs). The reason
is its exceptional algebraic properties. To explain them, we have to introduce the
H(div; Ωs)-conforming finite element spaces F1

ν(Ωh) of discrete 2-forms of degree ν,
also known as Raviart–Thomas elements [7, Chap. 3], [44]. Suitable degrees of freedom
for this space are supplied by moments of “face fluxes” and weighted integrals over el-
ements. They induce the nodal interpolation operators Π2

h onto F1
ν(Ωh). Application

of the Stokes theorem (cf. [36]) confirms the commuting diagram property

curl ◦Π1
h = Π

2
h ◦ curl,(9.1)

valid for vectorfields in the domain Dom(Π1
h) of Π

1
h. The relationship (9.1) teaches

that Π1
h leaves the kernel of curl invariant. This accounts for the pivotal role of the

nodal interpolation operator.

To pick a suitable discrete trial space forH−
1
2 (divΓ,Γ) we also adopt the perspec-

tive of differential forms. Be aware thatH−
1
2 (divΓ,Γ) is the trace space for magnetic

fields, and keep in mind that those can also be described by 1-forms. This suggests

that H−
1
2 (divΓ,Γ) should be approximated by traces of discrete 1-forms on the sur-

face. In other words, as H−
1
2 (divΓ,Γ)-conforming boundary element space we chose

γ×E1
ν+1(Ωh). Elementary computations reveal that the procedure generates exactly

3A˜ tag for a generic constant indicates that it may also depend on ν and the shape-regularity
of the family of meshes.
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the two-dimensional Raviart–Thomas elements F1
ν(Γh) [46] on the surface mesh. The

degrees of freedom are also inherited from E1
ν+1(Ωh). By construction, the induced

nodal interpolation operator ΠΓ
h satisfies

ΠΓ
h ◦ γ× = γ× ◦Π1

h,(9.2)

which, due to (9.1), implies another commuting diagram property,

divΓ ◦ΠΓ
h = QΓ

h ◦ divΓ,(9.3)

for sufficiently smooth tangential surface vectorfields. Here, QΓ
h is the plain L

2(Γ)-
orthogonal projection onto the space Qν(Γh) of discontinuous, piecewise polynomials
(of degree ν) on Γh. Invariance of Ker(divΓ) ∩Dom(ΠΓ

h) under Π
Γ
h is immediate.

From the results of [46] and [38, sect. 5] we harvest the following interpolation
error estimates.

Lemma 9.2. If µ ∈Hs
t(Γ), divΓµ ∈ Hs(Γ) for some s > 0, then∥∥µ−ΠΓ

hµ
∥∥

L2(Γ)
≤ C̃hmin{s,ν+1} (|µ|Hs

t(Γ) + |divΓµ|Hs(Γ)),∥∥divΓ(µ−ΠΓ
hµ)

∥∥
L2(Γ)

≤ C̃hmin{s,ν+1} |divΓµ|Hs(Γ) .

Armed with conforming finite element spaces, the Galerkin discretization of the
variational problem (6.4), (6.6) is straightforward. Seek (Eh,λh) ∈ E1

ν+1(Ωh) ×
F1
ν(Γh) such that

aκ((Eh,λh), (Vh,µh)) = f(Vh) + g(µh)(9.4)

for all (Vh,µh) ∈ E1
ν+1(Ωh)×F1

ν(Γh).

10. Discrete decompositions. The highly effective splitting idea of the con-
tinuous setting also has to be adopted for the analysis of the discretized problem (9.4).
We follow a simple guideline, which boils down to applying nodal interpolation to the
Helmholtz-type splittings of finite element functions. The approach to both E1

ν+1(Ωh)

and F1
ν(Γh) is completely parallel.

First, we construct a discrete counterpart of X(curl,Ωs). As in section 7, we
rely on a projector. According to the recipe outlined above, it is formally defined as
Ph := Π

1
h◦P. However, even on P(H(curl; Ωs)) ⊂H1(Ωs) the nodal interpolation Π

1
h

is not bounded, because the smoothness of the curls is not controlled. Nonetheless,
we aim to apply Ph to finite element functions only, which saves the idea.

Lemma 10.1. If U ∈H1(Ωs) and curlU ∈ F1
ν(Ωh), then U ∈ Dom(Π1

h) and∥∥U−Π1
hU
∥∥

L2(Ωs)
≤ C̃hmin{ν+1,s} |U|Hs(Ωs)

,

with C̃ > 0 depending only on Ωs, ν, and the shape regularity of Ωh.
Since, by (9.1), curlPUh ∈ F1

ν(Ωh) for Uh ∈ E1
ν+1(Ωh), the same arguments as

in the case of P, along with the properties of the latter, give us information on Ph.
Lemma 10.2. The operator Ph : E1

ν+1(Ωh) → E1
ν+1(Ωh) is an h-uniformly con-

tinuous projection and preserves the curl, and Ker(Ph) = Ker(curl) ∩ E1
ν+1(Ωh).

Setting

Xh(curl,Ωh) := Ph(E1
ν+1(Ωh)), Nh(curl,Ωh) := Ker(curl) ∩ E1

ν+1(Ωh),
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we instantly get an h-uniformly H(curl; Ωs)-stable direct splitting

E1
ν+1(Ωh) = Xh(curl,Ωh)⊕Nh(curl,Ωh).(10.1)

The following result makes it possible to pursue the same strategy in the case of
F1
ν(Γh).

Lemma 10.3 (see [38, Lem. 6.2]). If λ ∈H 1
2
t (Γ) and it has its surface divergence

in Qν(Γh), then λ ∈ Dom(ΠΓ
h) and∥∥λ−ΠΓ
hλ
∥∥

L2(Γ)
≤ C̃hmin{ν+1,s} ‖λ‖Hs

t(Γ) ,

with C̃ > 0 independent of λ and the meshwidth h.

Thus, we can define

PΓ
h : F1

ν(Γh) → F1
ν(Γh), PΓ

h := Π
Γ
h ◦ PΓ

and find properties corresponding to those of Ph as follows.
Lemma 10.4. The mapping PΓ

h is an h-uniformly continuous projector, which
preserves divΓ and fulfills Ker(PΓ

h) = Ker(divΓ) ∩F1
ν(Γh).

The projector furnishes the desired h-uniformly H−
1
2 (divΓ,Γ)-stable splitting of

the discrete space of Neumann traces

F1
ν(Γh) = Xh(divΓ,Γh)⊕Nh(divΓ,Γh),(10.2)

with

Xh(divΓ,Γh) := PΓ
h(F1

ν(Γh)), Nh(divΓ,Γh) := Ker(curl) ∩F1
ν(Γh).

We claimed that we were searching for discrete “counterparts” of X(curl,Ωs) and
X(divΓ,Γ). If we had set out to find discrete subspaces, the above constructions would
not have been at our disposal. Just notice that, in general, the vectorfields in E1

ν+1(Ωh)
are by no means continuous. Conversely, any piecewise polynomial vectorfield in
X(curl,Ωs) ⊂ H1(Ωs) must possess continuous components. Similarly, there are
elements in Xh(divΓ,Γh) that cannot occur as twisted tangential traces of continuous
vectorfields. In short,

Xh(curl,Ωh) �⊂ X(curl,Ωs), Xh(divΓ,Γh) �⊂ X(divΓ,Γ).

This means that, introducing

Gh := Xh(divΓ,Γh)×N(curl,Ωs)×Nh(divΓ,Γh)×Xh(curl,Ωh)

as a discrete approximation space for G, we have made a nonconforming choice, as
Gh �⊂ G. This is a special kind of nonconformity, as it is not caused by the choice
of finite element spaces, but by the manner in which they are split. Actually, we do
not commit any “variational crime” when considering the (split) bilinear form âκ on
Gh. However, coercivity of âκ was established only with respect to the split space G.
This prevents us from directly applying the known results about the convergence of
conforming Galerkin approximations of coercive variational problems [47]. Therefore,
coercivity in the discrete setting must be established by a separate argument.
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11. Bridge mappings. We recall a variant of the main result from section 4.1
of [14] (also cf. [9, 18]) as follows.

Theorem 11.1 (see [38, sect. 7]). Let a : V × V → C be a continuous sesqui-
linear form on a Banach space V , whose restriction to a closed subspace W ⊂ V
satisfies the inf-sup condition

sup
v∈W

|a(u, v)|
‖v‖V

≥ c ‖u‖V ∀u ∈W.

We can write a := d− k with a continuous sesqui-linear form d that is V -elliptic on
W , and a compact sesqui-linear form k :W ×W → C. The family of closed subspaces
Wh ⊂ V , h ∈ H, is to be linked to V by two bridge mappings: We assume the existence
of families of linear, continuous operators Hh : Wh → W and Fh : W → Wh, h ∈ H,
that satisfy

‖Id− Hh‖Wh→V → 0 ∀u ∈W : ‖u− Fhu‖V → 0 as h→ 0.
Then, there is h∗ > 0 and a constant C > 0 such that

sup
uh∈Wh

|a(vh, uh)|
‖uh‖V

≥ C ‖vh‖V ∀vh ∈Wh, h < h∗.(11.1)

The assumptions of the abstract theory that seem to be most critical concern
the existence of appropriate bridge mappings Hh : Gh → G and Fh : G → Gh. For
their construction the components of G will be targeted separately. It turns out that
the same tools used in the definition of the decomposition are also very useful for
building bridge mappings. We remark that existence of appropriate bridge mappings
is equivalent to the assumptions (A1) and (A2) in [14, sect. 4.1].

First, we define HΩ
h : Xh(curl,Ωh) → X(curl,Ωs) by HΩ

hUh := PUh, Uh ∈
Xh(curl,Ωh). The projection property stated in Lemma 10.2 shows

Π1
hH

Ω
hUh = Π

1
hPUh = PhUh = Uh ∀Uh ∈ Xh(curl,Ωh).

As curlHΩ
hUh = curlUh ∈ F1

ν(Ωh), Lemma 10.1 permits us to estimate∥∥Uh − HΩ
hUh

∥∥
L2(Ωs)

=
∥∥(Π1

h − Id)HΩ
hUh

∥∥
L2(Ωs)

≤ C̃h∥∥HΩ
hUh

∥∥
H1(Ωs)

≤ C̃h ‖curlUh‖L2(Ωs)
.

(11.2)

The same construction works for Xh(divΓ,Γh). We introduce HΓ
h : Xh(divΓ,Γh) →

X(divΓ,Γ) through HΓ
hµh := PΓµh, µh ∈ Xh(divΓ,Γh). As above, now appealing to

Lemma 10.4, we get

ΠΓ
hH

Γ
hµh = Π

Γ
hP

Γµh = PΓ
hµh = µh ∀µh ∈ Xh(divΓ,Γh).

Then, divΓHΓ
hµh = divΓµh, along with Lemma 10.3, shows∥∥µh − HΓ

hµh
∥∥

L2(Γ)
=
∥∥(ΠΓ

h − Id)HΓ
hµh

∥∥
L2(Γ)

≤ C̃h 1
2

∥∥HΓ
hµh

∥∥
H

1
2
⊥(Γ)

≤ C̃h 1
2 ‖divΓµh‖H− 1

2 (Γ)
.

(11.3)

The kernels pose no difficulties, as Nh(curl,Ωh) ⊂ N(curl,Ωs) and Nh(divΓ,Γh) ⊂
N(divΓ,Γ). Therefore, we can finally define Hh : Gh → G through

Hh(µ
⊥
h ,V

0
h,µ

0
h,V

⊥
h ) := (H

Γ
hµ
⊥
h ,V

0
h,µ

0
h,H

Ω
hV
⊥
h ).
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After replacing W , Wh by G, Gh, the uniform convergence required for Theorem 11.1
holds true.

To define Fh we first consider the L
2(Ωs)-orthogonal projections Q0

h : L
2(Ωs) →

curlE1
ν+1(Ωh), h ∈ H. As C∞(Ω̄s) is dense in H(curl; Ωs) and∥∥curlU− Q0

h curlU
∥∥

L2(Ωs)
≤ ∥∥curlU−Π2

h curlU
∥∥

L2(Ωs)

=
∥∥curl(Id−Π1

h)U
∥∥

L2(Ωs)
= O(h) as h→ 0

for fixed U ∈ C∞(Ω̄s), we find
lim
h→0

∥∥(Id− Q0
h) curlU

∥∥
L2(Ωs)

= 0 ∀U ∈H(curl; Ωs).(11.4)

Then we define FΩ
h := Π

1
h ◦ L ◦ Q0

h ◦ curl. As in section 10, taking into account
curlFΩ

hU = curlΠ1
hL(Q

0
h curlU) = Π

2
hQ

0
h curlU = Q0

h curlU

and Lemma 10.1, we see that the definition makes sense. On top of that, setting
U∗ := L(Q0

h curlU) ∈ X(curl,Ωs), we get the estimate∥∥U− FΩ
hU
∥∥

L2(Ωs)
≤ ‖U−U∗‖L2(Ωs)

+
∥∥U∗ −Π1

hU
∗∥∥

L2(Ωs)

≤ C ‖curl(U−U∗)‖L2(Ωs)
+ C̃h ‖U∗‖H1(Ωs)

≤ C ∥∥(Id− Q0
h) curlU

∥∥
L2(Ωs)

+ C̃h ‖curlU‖L2(Ωs)
.

(11.5)

Combined with (11.4), pointwise convergence in the H(curl; Ωs)-norm can be in-
ferred.

On the surface Γ a similar policy succeeds. It is based on the H−
1
2 (Γ)-orthogonal

projections Q
1
2

h : H
− 1

2 (Γ) → Qν(Γh). Density of
⋃{Qν(Γh), h ∈ H} in H− 1

2 (Γ) shows

lim
h→0

∥∥∥ω − Q
1
2

hω
∥∥∥
H− 1

2 (Γ)
= 0 ∀ω ∈ H− 1

2 (Γ).(11.6)

Then, introduce FΓ
h := Π

Γ
h ◦ γ× ◦ J ◦ Q

1
2

h ◦ divΓ and observe

divΓFΓ
hλ = QΓ

h(divΓγ×J(Q
1
2

hdivΓλ)) = QΓ
hQ

1
2

hdivΓλ = Q
1
2

hλ.

According to Lemma 10.3, the definition of FΓ
h is meaningful, and as above we derive∥∥λ− FΓ

hλ
∥∥

L2(Γ)
≤ C‖(Id− Q

1
2

h )divΓλ‖H− 1
2 (Γ)

+ C̃h
1
2 ‖divΓλ‖

H− 1
2 (Γ)

.(11.7)

Again, pointwise convergence FΓ
hλ→ λ in H−

1
2 (divΓ,Γ) follows.

The kernels are easier to deal with, because we may just use L2(Ωs)/H
− 1

2 (Γ)-

orthogonal projections N0
h : N(curl,Ωs) → Nh(curl,Ωh) and N0,Γ

h : N(divΓ,Γ) →
Nh(divΓ,Γh), respectively. Simple density arguments establish their pointwise con-

vergence in L2(Ωs) and H
− 1

2 (Γ), respectively, as h → 0. Eventually, we have found
that

Fh(µ
⊥,V0,µ0,V⊥) := (FΓ

hµ
⊥,N0

hV
0,N0,Γ

h µ0,FΩ
hV
⊥) ∈ Gh

is the right bridge mapping Fh : G → Gh.
Remark 11.1. It is important to realize that the choice of both the continuous

and discrete splittings is merely a theoretical tool. It does not affect the discrete
problem at all, which remains given by (9.4). Therefore, different splittings may be
used to investigate the same numerical scheme.
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12. Convergence. The discovery of suitable bridge mappings paves the way for
a quasi-optimal asymptotic estimate of the discretization error.

Theorem 12.1. Under Assumption 1, there exists a meshwidth h∗ ∈ H, de-
pending only on Ωs, κ, ν and on the shape-regularity of the triangulations Ωh, such
that for every h < h∗ the discrete problem (9.4) has a unique solution (Eh,λh) ∈
E1
ν+1(Ωh)×F1

ν(Γh), which is quasi-optimal in the sense that

‖E−Eh‖H(curl;Ωs)
+ ‖λ− λh‖

H− 1
2 (divΓ,Γ)

≤ C̃ inf
{
‖E−Vh‖H(curl;Ωs)

+ ‖λ− µh‖H− 1
2 (divΓ,Γ)

,

(Vh,µh) ∈ E1
ν+1(Ωh)×F1

ν(Γh),

}

with a constant C̃ > 0 independent of (E,λ) and h ∈ H.
Proof. To begin with, we have to verify the assumptions of the abstract theory

of Theorem 11.1: The role of V is now played by H−
1
2 (divΓ,Γ) × H(curl; Ωs) ×

H−
1
2 (divΓ,Γ)×H(curl; Ωs). The spaces W,Wh have to be replaced by G,Gh. The

bilinear forms âκ, k̂κ, d̂κ correspond to a, k, d. Continuity, compactness, and the inf-
sup condition are clear from section 8 and, in particular, (8.3). Ultimately, we get
h-uniform stability according to (11.1) for âκ on the family Gh, h ∈ H, provided that
h is sufficiently small.

We can now use this insight, the identity (8.2), and the following h-uniform
equivalence of norms (deduced from Lemmas 10.2 and 10.4):∥∥(µ⊥h ,V0

h,µ
0
h,V

⊥
h )
∥∥

G �
∥∥(V⊥h +V0

h,µ
⊥
h + µ

0
h)
∥∥

V ∀(µ⊥h ,V0
h,µ

0
h,V

⊥
h ) ∈ Gh.

Taken together, these directly yield for h < h∗

sup
(Uh,ζh)∈E1

ν+1
(Ωh)×F1

ν(Γh)

|aκ((Vh,µh), (Uh, ζh))|
‖(Uh, ζh)‖V

(12.1)

≥ C̃ sup
(ζ⊥

h
,U0

h
,ζ0

h
,U⊥

h
)∈Gh

|âκ((µ⊥h ,V0
h,µ

0
h,V

⊥
h ), (ζ

⊥
h ,U

0
h, ζ

0
h,U

⊥
h ))|∥∥∥(ζ⊥h ,U0

h, ζ
0
h,U

⊥
h )
∥∥∥

G

≥ C̃ ∥∥(µ⊥h ,V0
h,µ

0
h,V

⊥
h )
∥∥

G ≥ C̃ ‖(Vh,µh)‖V ,

with constants independent of the functions and h ∈ H. Appealing to Babuška’s
theory [5], the error estimate of the theorem can be inferred.

Prerequisite for establishing orders of convergence of best approximations in finite
element spaces are assumptions on the smoothness of the continuous solutions. We
will take for granted that both the electric and magnetic fields E,H := 1

iωµr
curlE

belong to Hσ(Ωs) for some σ > 0. We point out that the regularity of solutions of
Maxwell’s equations depends on the discontinuities of the material parameters εr and
µr [27]. The investigations in [27] show that we have to brace for very poor regularity
with σ slightly larger than zero.

It is reasonable to demand that the discontinuities of µr and εr be resolved by
the meshes Ωh. That is, if Ωi, i = 1, . . . ,M , M ∈M, are subdomains of Ωs on which
both material parameters are smooth, then Ωh|Ωi

must supply a valid triangulation of
Ωi, i = 1, . . . ,M . Then we can exploit curlE = iκµrH to see that curlE is locally

in Hσ(Ωi), i = 1, . . . ,M . Globally, curlE is at least contained in H
min{σ, 14}(Ωs).
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Lemma 12.2. If E,H ∈ Hσ(Ωs) for some σ > 0, and if the jumps of εr, µr are
resolved by all triangulations, we find a constant C̃ > 0 depending only on εr, µr, Ωs,
ν, and the shape-regularity of the meshes Ωh such that

inf
Vh∈E1

ν+1
(Ωh)
‖E−Vh‖H(curl;Ωs)

≤ C̃hmin{ν+1,σ}
(
‖E‖Hσ(Ωs)

+

M∑
i=1

‖H‖Hσ(Ωi)

)
.

Proof. First, we restrict our attention to σ > 1
2 . Then, according to Lemma 9.1

and thanks to the strict locality of the nodal interpolation operators, we obtain

∥∥E−Π1
hE
∥∥

H(curl;Ωs)
≤ C̃hmin{σ,ν+1}

(
‖E‖Hσ(Ωs)

+

M∑
i=1

‖H‖Hσ(Ωi)

)
.

This estimate hinges on the resolution of the jumps of µr by the meshes.
Second, in order to cope with σ ≤ 1

2 , we resort to the Helmholtz-type splitting
E = E⊥ + E0 from (7.1). We start with an approximation for E⊥ ∈ X(curl,Ωs).

As X(curl,Ωs) ⊂ H1(Ωs) and curlE⊥ ∈ Hmin{σ, 14}(Ωs), nodal interpolation is an
option and it yields

∥∥E⊥ −Π1
hE
⊥∥∥

H(curl;Ωs)
≤ C̃hσ

M∑
i=1

‖H‖Hσ(Ωi)
.(12.2)

Scalar potentials are the key to the treatment of E0: It is known that the irrotational
vectorfield E0 has a representation

E0 = gradΦ+G, Φ ∈ H1(Ωs), G ∈H(Ωs),
where H(Ωs) is the space of harmonic Neumann vectorfields in Ωs (see [4, sect. 3.c]).
The dimension of H(Ωs) is finite and agrees with the first Betti number β1(Ωs) of
Ωs. Moreover, a basis can be obtained from the solutions of the variational problems
[4, Prop. 3.14]: Seek ηj ∈ H1

[](Ωs \ Σj) := {ϕ ∈ H1(Ωs \ Σj), [ϕ]Σj
= const}, j =

1, . . . , L := β1(Ωs), such that∫
Ωs\Σj

grad ηj · gradφdx = [φ]Σj
∀φ ∈ H1

[](Ωs \ Σj),

where Σj , j = 1, . . . , β1(Ωs), is a complete set of piecewise smooth Seifert surfaces
for Ωs. Hence, the ηj are fixed as solutions of Neumann problems with a jump
condition across Σj . From them we constructH(Ωs) = Span {grad η1, . . . ,grad ηL}.
As the exact position of the Seifert surface does not affect grad ηj , they can always be
assumed to be the union of faces of any mesh Ωh. Besides, the regularity of grad ηj
is determined only by the geometry of Ωs, no matter where the Σj are located. More
precisely, we find grad ηj ∈Hs(Ωs), where s+1 < eN (Ωs) and eN (Ωs) is the smallest
singular exponent for the Neumann problem for ∆ in Ωs. This exponent depends on
the angles at reentrant edges and corners of Ωs. From [30] we know that eN > 3/2
for any Lipschitz-polyhedron, and thus we can choose s = 1/2, at worst. At any rate,

H(Ωs) ⊂H 1
2 (Ωs) and H(Ωs) ⊂ Dom(Π1

h) will hold.
To deal with the scalar potential Φ we resort to continuous quasi-interpolation

operators Zh : H
1(Ωs) → Sν+1(Ωh) onto the space Sν+1(Ωh) of continuous, piece-

wise polynomial (of degree ν + 1) scalar functions on Ωh. Such operators have been
introduced, for instance, in [48].
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With these powerful tools at our disposal, we set V0
h := gradZhΦ + Π

1
hG.

Please note that another commuting diagram property [44] ensures gradSν+1(Ωh) ⊂
E1
ν+1(Ωh). Using the interpolation properties of the Zh and that curlG = 0, we end
up with∥∥E0 −V0

h

∥∥
L2(Ωs)

≤ ‖grad(Id− Zh)Φ‖L2(Ωs)
+
∥∥(Id−Π1

h)G
∥∥

L2(Ωs)

≤ C̃hσ ‖Φ‖Hσ+1(Ωs)
+ C̃hs ‖G‖Hs(Ωs)

≤ C̃hσ ∥∥E0
∥∥

Hσ(Ωs)
.(12.3)

Collecting the estimates (12.2) and (12.3), Π1
hE
⊥ +V0

h provides the desired approxi-
mation of E of order σ in H(curl; Ωs).

Next, we turn to the approximation of λ.
Lemma 12.3. Assume that the meshes Ωh resolve the discontinuities of both εr

and µr, that H,E ∈Hσ(Ωs), σ > 0, and that Einc is smooth. Then

∥∥λ−ΠΓ
hλ
∥∥

H− 1
2 (divΓ,Γ)

≤ C̃hmin{ν+1,σ}
(
‖H‖Hσ(Ωs)

+

M∑
i=1

‖E‖Hσ(Ωi)

+ ‖Einc‖Hσ+1(Ωs)

)
,

where C̃ > 0 depends neither on E,H,Einc nor on h ∈ H.
Proof. We exploit that λ = γ−t H+ γtHinc. As E = iκεr curlH, a complete role

reversal of E and H is possible in the arguments of the previous proof. The final
result is

inf
Vh∈E1

ν+1
(Ωh)
‖H−Vh‖H(curl;Ωs)

≤ C̃hmin{ν+1,σ}
(
‖H‖Hσ(Ωs)

+

M∑
i=1

‖E‖Hσ(Ωi)

)
.

Then, the trace Theorem 3.3, combined with (9.2), shows the assertion of the
lemma.

Along with Theorem 12.1 this implies convergence of the Galerkin solutions in
E1
ν+1(Ωh) × F1

ν(Γh) of the order O(h
min{ν+1,σ}) in the natural (energy) norms as

h→ 0.
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1. Introduction. We study numerical integrators for Schrödinger equations
with time-dependent Hamiltonian,

i
dψ

dt
= H(t)ψ, ψ(t0) = ψ0.(1.1)

The computational Hamiltonian H(t), which is a finite-dimensional Hermitian oper-
ator, is typically the sum of a discretized negative Laplacian and a time-dependent
potential. As the discretization of an unbounded operator, H(t) can be of arbitrarily
large norm.

Magnus integrators are an interesting class of numerical methods for such prob-
lems [3, 12]. Though the error behavior of such methods is well understood in the
case of moderately bounded H(t) (see [6, 7]), no results are so far available when
‖H(t)‖ becomes large. The present paper gives optimal-order estimates for situations
in which the product of the time step h with ‖H(t)‖ can be of arbitrary size. Even
more interesting than the error bounds themselves are the mechanisms which lead
to these bounds and which make Magnus methods perform so well for Schrödinger
equations, as compared to standard explicit or implicit numerical integrators.

In section 2 we recall the concepts underlying the construction of Magnus integra-
tors. Section 3 states the main results, which give asymptotically sharp error bounds
for Magnus integrators, in a framework that applies to time-dependent Schrödinger
equations requiring neither smallness nor bounds of h‖H(t)‖. The general procedure
for obtaining such estimates is outlined in section 4 and is carried out in detail in
sections 5 and 6 for methods of order 2 and 4, respectively. The extension to meth-
ods of arbitrary order is done in section 7. Numerical experiments illustrating the
theoretical results are given in section 8. A basic assumption for the results of this
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paper is commutator bounds; their validity for a spectral discretization is shown in
the appendix.

Magnus integrators require computing a matrix exponential multiplying a vector
in every time step. For the large matrices (or rather, operators of large dimension)
arising from the spatial discretization of Schrödinger equations, this can be done
efficiently using operator splitting or Chebyshev or Lanczos approximations. These
techniques are well documented in the literature and are not considered here. Because
of the stable error propagation, errors arising from the approximation of the matrix
exponentials could be straightforwardly included in the error analysis.

2. Magnus integrators. For the linear differential equation

ẏ = A(t)y, y(0) = y0,(2.1)

with a time-dependent matrix A(t), the approach of Magnus [9] aims at writing the
solution as

y(t) = exp(Ω(t))y0(2.2)

for a suitable matrix Ω(t). An expression for Ω(t) is obtained by using the ansatz
(2.2) and differentiating. This gives

ẏ(t) = dexpΩ(t)(Ω̇(t)) y(t),

where the dexp operator can be expressed as

dexpΩ(B) = ϕ(adΩ)(B) =
∑
k≥0

1

(k + 1)!
adkΩ(B),(2.3)

with ϕ(z) = (ez − 1)/z and adΩ(B) = [Ω, B] = ΩB −BΩ. Hence, (2.2) solves (2.1) if

A(t) = dexpΩ(t)(Ω̇(t)), Ω(0) = 0.(2.4)

As long as ‖Ω(t)‖ < π (which is not the situation of interest in this article), the
operator dexpΩ(t) is invertible, and the series

dexp−1
Ω(t)(A(t)) =

∑
k≥0

βk
k!
adkΩ(t)(A(t))(2.5)

converges. Here βk is the kth Bernoulli number appearing in the series z/(ez − 1) =∑∞
0 (βk/k!)z

k, which converges for |z| < 2π. (Note that ‖adΩ(B)‖ ≤ 2‖Ω‖ · ‖B‖,
which shows that (2.5) indeed converges for ‖Ω(t)‖ < π.) This gives an explicit
differential equation for Ω(t):

Ω̇ = A(t)− 1
2
[Ω, A(t)] +

1

12
[Ω, [Ω, A(t)]] + · · · .

Picard iteration yields the Magnus expansion

Ω(t) =

∫ t

0

A(τ)dτ − 1
2

∫ t

0

[∫ τ

0

A(σ)dσ,A(τ)

]
dτ

+
1

4

∫ t

0

[∫ τ

0

[∫ σ

0

A(µ)dµ,A(σ)

]
dσ,A(τ)

]
dτ(2.6)

+
1

12

∫ t

0

[∫ τ

0

A(σ)dσ,

[∫ τ

0

A(µ)dµ,A(τ)

]]
dτ + · · · .
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Numerical methods based on this expansion are reviewed by Iserles, et al. [6]. They
are of the form

yn+1 = exp(Ωn)yn(2.7)

to give an approximation to y(tn+1) at tn+1 = tn + h. Here Ωn is a suitable approx-
imation of Ω(h) given by (2.6), with A(tn + τ) instead of A(τ). This approximation
involves first truncating the expansion, and second approximating the integrals, e.g.,
by replacing A(t) locally by an interpolation polynomial Â(t) for the nodes tn + cjh,
so that the integrals in the Magnus expansion can be computed analytically. If Ωn is
built up in this way, then we speak of an interpolatory Magnus integrator. A method
of order p is obtained by combining a pth order truncation of the Magnus series and
interpolation of A(t) at the nodes of a pth order quadrature formula. A natural choice
is Gaussian quadrature.

For example, the midpoint rule yields a second-order scheme with

Ωn = hA

(
tn +

h

2

)
.(2.8)

The two-point Gauss quadrature rule has nodes c1,2 = 1/2 ∓ √3/6. This yields a
fourth-order scheme with

Ωn =
h

2
(A1 +A2) +

√
3h2

12
[A2, A1],(2.9)

where Aj = A(tn + cjh), j = 1, 2.
High-order interpolatory Magnus integrators require the computation of many

commutators per step. Their number can be significantly reduced in specially con-
structed (noninterpolatory) Magnus integrators as given by Blanes, Casas, and Ros [2].

For the purpose of this paper, the Magnus series approach is described only for
motivation, since we are interested in the case of large ‖hA(t)‖, for which dexpΩn

need not be invertible and the Magnus expansion need not converge. The known
convergence proofs of the Magnus series (see [1, 10]) require that the time interval be

restricted to
∫ t
0
‖A(τ)‖ dτ ≤ r with r ≈ 1, and there are actually examples of matrix

functions with divergent Magnus series for
∫ t
0
‖A(τ)‖ dτ = π. (The example of [10,

p. 30] is, admittedly, not of the type studied in this paper.) In any case, the question
of convergence of the Magnus series is irrelevant for the problem of obtaining error
bounds, much in the same way as the possible convergence or divergence of Taylor
series is of no importance for finite-order error bounds elsewhere in numerical analy-
sis. The possible noninvertibility of the dexp operator and even the nonexistence of a
representation (2.2) of the exact solution would appear to be more serious obstacles,
but we will show how this problem can be circumvented, using a modified differen-
tial equation satisfied by the approximate solution instead of directly estimating the
difference between the Magnus expansion and its truncation.

The results of Iserles and Nørsett [7] on the order of Magnus integrators are for
‖hA(t)‖ → 0 and are obtained by studying the remainder of the truncated Magnus
series (2.6). The constants in those estimates depend on norms of commutators of
A(t) for different values of t, which all become large with growing ‖A(t)‖. Therefore,
results on the classical order of a method must be viewed with caution in the case
of the Schrödinger equation, which involves discretizations of unbounded operators.
Nevertheless, Magnus integrators work extremely well even with step sizes for which
‖hA(t)‖ is large. The aim of the present paper is to explain this unexpectedly good
behavior.
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3. Statement of results. In this section we state our assumptions and main
results. Throughout the paper, ‖·‖ is the Euclidean norm or its induced matrix norm,
or occasionally the L2 norm of functions. We write

A(t) = −iH(t) = −i(U + V (t)).(3.1)

We assume, once and for all, that the Hermitian matrix-valued function V (t) and its
time derivatives are bounded by∥∥∥∥ dm

dtm
V (t)

∥∥∥∥ ≤Mm, m = 0, 1, 2, . . . .(3.2)

The matrix U is assumed to be symmetric positive definite, with ‖v‖ ≤ ‖Uv‖ for all
v, but no bound is assumed for the operator norm ‖U‖. We set

D = U1/2.(3.3)

The typical situation is given by a discretization of the spatially continuous case
where U = −∆ + I, e.g., with periodic boundary conditions on a cube Q, and V (t)
is a bounded multiplication operator, i.e., (V (t)v)(x) = V (x, t)v(x) for a real-valued
smooth potential V (x, t). In this continuous case we have

‖Dv‖2 =
∫
Q

|∇v|2dx+
∫
Q

v2dx,

so that ‖Dv‖ is the familiar H1 Sobolev norm of v. In the spatially discretized case,
‖Dv‖ can be viewed as a discrete Sobolev norm. For a space discretization with
minimal grid spacing ∆x, we note ‖U‖ ∼ ∆x−2 and ‖D‖ ∼ ∆x−1.

Our main assumptions are commutator bounds such as

‖[U, V (t)]v‖ ≤ K0‖Dv‖ and ‖[U, V̇ (t)]v‖ ≤ K1‖Dv‖(3.4)

for all t and all vectors v. Condition (3.4) is easily verified in the spatially continuous
case, with U = −∆ + I and a smooth potential V (x, t) acting as a multiplication
operator. The bound is obtained by noting that in one space dimension, with ′ = d/dx,

[U, V ]v = −((V v)′′ − V v′′) = −(2V ′v′ + V ′′v),

with the obvious generalization to higher space dimensions. Hence, [U, V ] is a first-
order differential operator, which yields (3.4). For a spectral discretization the bound
(3.4) is shown, uniformly in the discretization parameter, in [8, Lemma 3.1].

Since [A(τ), A(σ)] = [U, V (σ) − V (τ)] =
∫ σ
τ
[U, V̇ (t)] dt (when V (σ) and V (τ)

commute), the second bound of (3.4) implies, for all vectors v,

‖[A(τ), A(σ)]v‖ ≤ K1h ‖Dv‖ for |τ − σ| ≤ h.(3.5)

Theorem 3.1. If A(t) satisfies the commutator bound (3.5), then the error of
the exponential midpoint rule (2.7) with (2.8) is bounded by

‖yn − y(tn)‖ ≤ Ch2 tn max
0≤t≤tn

‖Dy(t)‖.

The constant C depends only on Mm for m ≤ 2 and on K1. In particular, C is
independent of n, h, and ‖D‖.
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This error bound is to be contrasted with the error bound of the classical implicit
midpoint rule yn+1 = yn + hA(tn+1/2)(yn + yn+1)/2, for which

‖yn − y(tn)‖ ≤ Ch2 tn max
0≤t≤tn

∥∥∥∥ d3

dt3
y(t)

∥∥∥∥ .
Since solutions of Schrödinger equations are in general highly oscillatory, the appear-
ance of higher time derivatives is unfavorable. On the other hand, ‖Dy(t)‖2 represents
essentially the quantum kinetic energy, which is bounded a priori. We remark that a
similar but weaker estimate for the exponential midpoint rule, with ‖D2y(t)‖ instead
of ‖Dy(t)‖, was previously obtained in our paper [5] with a different proof. (Unfor-
tunately, that paper also states an error bound for a third-order Magnus method,
without detailed proof and involving the operator norm ‖U‖, which is superseded by
the results of the present paper.)

For methods of order p which contain commutator products of A(tn + cjh) with
r factors (in Example 2 we have r = 2 for order p = 4, and r ≤ p − 1 holds for all
Magnus methods proposed in the literature), we assume that A satisfies, for all τj ,∥∥∥∥[A(τk), [. . . , [A(τ1), dm

dtm
V (τ0)

]]
. . .

]
v

∥∥∥∥ ≤ K ‖Dkv‖
{
0 ≤ m ≤ p,

k + 1 ≤ rp.
(3.6)

Like (3.5), condition (3.6) is easily verified in the spatially continuous case. For a
spectral space discretization of a time-dependent Schrödinger equation, we show in
the appendix that (3.6) is indeed satisfied uniformly in the discretization parameter.
Since [A(τ1), A(τ0)] = [A(τ1), A(τ0) − A(τ1)] = [A(τ1), i

∫ τ1
τ0

V̇ (τ)dτ ], condition (3.6)

implies, whenever |τ1 − τ0| ≤ h,

‖[A(τk), [. . . , [A(τ1), A(τ0)]] . . .]v‖ ≤ Kh ‖Dkv‖, k + 1 ≤ rp.(3.7)

Unlike the case of the exponential midpoint rule in Theorem 3.1, convergence of
higher-order methods is shown only in the spatially discrete case under a step size
restriction

h ‖D‖ ≤ c.(3.8)

Note that this restriction is milder than the step size restriction for explicit integrators,
such as Runge–Kutta methods, for which a more stringent condition h‖D‖2 ≤ c (i.e.,
h‖A(t)‖ ≤ γ for some constant γ) is required for stability. The classical error bounds
for implicit integrators require smallness of h‖D‖2 unless high temporal smoothness
is supposed.

The following error bound holds for pth-order interpolatory Magnus integrators,
i.e., those based on a pth-order truncation of the Magnus series and polynomial in-
terpolation of A(t) at the nodes of a pth-order quadrature formula (see section 2).

Theorem 3.2. If the commutator bounds (3.6) hold, then pth-order interpolatory
Magnus integrators satisfy the error bound

‖yn − y(tn)‖ ≤ Chp tn max
0≤t≤tn

‖Dp−1y(t)‖

for time steps h restricted by (3.8). The constant C depends only on Mm for m ≤ p,
on K, c, and on p. In particular, C is independent of n, h, and ‖D‖ as long as
h‖D‖ ≤ c.
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The error bound of Theorem 3.2 is valid also for noninterpolatory Magnus meth-
ods if the quadrature error satisfies, for all v,

‖Ωnv − Ω̃nv‖ ≤ Chp+1 ‖Dp−1v‖,(3.9)

where Ω̃n denotes the pth-order truncation of the Magnus series at tn. This general-
ization of Theorem 3.2 follows directly from the proof below.

Condition (3.8) is not required for stability. If such a condition on the step size is
not imposed, there is still pth-order convergence, though only for much smoother solu-
tions: the error is then bounded by Cph

pmax ‖Dp−1y(t)‖+Cp+1h
p+1max ‖Dpy(t)‖+

· · ·+ Cprh
prmax ‖Dpr−1y(t)‖.

Though Theorem 3.2 is formulated for arbitrary order p, we note that high-order
error bounds are of limited value in the approximation of highly oscillatory solutions,
for which (discretized) high-order derivatives Dky(t) have progressively much larger
norms.

Theorems 3.1 and 3.2 are proved in the remainder of this article. In the following
section we describe a general procedure for deriving error bounds. We will follow this
procedure in detail for the exponential midpoint rule in section 5 and for fourth-order
methods in section 6. This gives all the tools for the extension to the general case,
which is treated in section 7.

4. General procedure for deriving error bounds. The convergence anal-
ysis is done in two steps. In the first step we study the error which results from
truncating the Magnus expansion; in the second step, we discuss the error resulting
from approximating the integrals by quadrature. (In the estimates of this and the
following sections, C is a generic constant, which assumes different values on different
occurrences.)

Truncation of the Magnus expansion amounts to using a modified Ω̃ instead of Ω
in (2.2), i.e.,

ỹ(t) = exp(Ω̃(t))y0.

By differentiating, we obtain the approximate solution ỹ(t) as the solution of the
modified differential equation

˙̃y(t) = Ã(t)ỹ(t) with Ã(t) = dexp Ω̃(t)(
˙̃
Ω(t)),(4.1)

with initial value ỹ(0) = y0. Note that the truncated Magnus series Ω̃(t) and the

modified operator Ã(t) are skew Hermitian if A(t) is skew Hermitian. As the following

lemma shows, a bound on Ã−A then immediately gives a local error bound.
Lemma 4.1. Let y be a solution of (2.1) with skew Hermitian A, ỹ a solution of

(4.1). With E = Ã−A, the error satisfies

‖ ỹ(t)− y(t) ‖ ≤
∫ t

0

‖E(τ)y(τ)‖dτ.

Proof. We write (2.1) as ẏ = A(t)y = Ã(t)y − E(t)y and subtract (4.1). This
shows that the error ε̃ = ỹ − y satisfies

˙̃ε = Ã(t)ε̃+ E(t)y, ε̃(0) = 0.
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Since Ã is skew Hermitian, taking the inner product with ε̃ on both sides leads to

〈 ˙̃ε, ε̃〉 = 〈E y, ε̃〉 ≤ ‖E y‖ ‖ε̃‖.

On the other hand, 〈 ˙̃ε, ε̃〉 = 1
2
d
dt‖ε̃‖2 = d

dt‖ε̃‖ · ‖ε̃‖. Integrating the inequality proves
the lemma.

A crucial step in obtaining a bound on E = Ã− A is truncating the dexp series
(2.3) and providing a bound for the remainder. We define the remainder function rp,
for p ≥ 1, via

ez − 1
z

= 1 +
1

2
z + · · ·+ 1

(p− 1)! z
p−2 +

1

p!
zp−1rp(z),(4.2)

so that

dexpΩ(B) = B +
1

2
[Ω, B] + · · ·+ 1

(p− 1)! ad
p−2
Ω (B) +

1

p!
rp(adΩ)

(
adp−1

Ω (B)
)
.

(4.3)

For A(t) of the form (3.1) satisfying the conditions of section 3, we will bound the
remainder term by∥∥∥rp(adΩ̃(t))

(
adp−1

Ω̃(t)

( ˙̃
Ω(t)

))
v
∥∥∥ ≤ Chp ‖Dp−1v‖, 0 ≤ t ≤ h.(4.4)

In the case of p > 2, it turns out that the bound requires time steps h with (3.8),
while for p = 2, no restriction on h is necessary.

Next we incorporate the error resulting from approximating the integrals. In the
nth time step, we take Ω̃(h) corresponding to the truncated Magnus series for A(tn+t)

instead of A(t), which we denote by Ω̃n. By the quadrature approximation, Ω̃n is
replaced by Ωn, with which the actual computations are done. This approximation
typically satisfies

‖(Ω̃n − Ωn)v‖ ≤ Chp+1‖Dr−1v‖,(4.5)

where p is the order of the quadrature rule and commutator products with r factors
appear in the method. For the exponential midpoint rule (p = 2, r = 1) this bound
is independent of D. For pth-order interpolatory Magnus schemes (where r ≤ p− 1)
we will show that (4.5) holds and that this leads to the local error bound

‖ exp(Ω̃n)v − exp(Ωn)v‖ ≤ Chp+1‖Dr−1v‖.(4.6)

Putting both steps together, the exact solution y of (2.1) satisfies

y(tn+1) = exp(Ωn)y(tn) + εn,(4.7)

with εn = y(tn+1) − exp(Ω̃n)y(tn) + exp(Ω̃n)y(tn) − exp(Ωn)y(tn). By Lemma 4.1
and (4.6), this gives

‖εn‖ ≤
∫ tn+1

tn

‖E(τ)y(τ)‖dτ + Chp+1‖Dr−1y(tn)‖.

Subtracting (2.7) from (4.7) leads to the error recursion for en = yn − y(tn):

en+1 = exp(Ωn)en + εn,
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and thus

‖en‖ ≤
n−1∑
j=0

‖εj‖.(4.8)

In summary, error bounds for general Magnus methods are obtained as follows: we
have to provide a bound on E(t)y(t), which basically means proving (4.4), and we
have to show that the approximation Ωn satisfies (4.6). This program is carried out
in the following sections.

5. Error bounds for the exponential midpoint rule. In this section we
prove Theorem 3.1. The second-order truncation of the Magnus expansion is simply

Ω̃(t) =

∫ t

0

A(τ) dτ, 0 ≤ t ≤ h.

Following the approach described in section 4, we know that ỹ(t) = exp(Ω̃(t))y0 solves
(4.1) with

Ã(t) = dexp Ω̃(t)(
˙̃
Ω(t)) = A(t) +

1

2
r2(adΩ̃(t))

(
adΩ̃(t)(

˙̃
Ω(t))

)
=: A(t) + E2(t),(5.1)

where the representation (4.3) for the dexp operator was used. The remainder r2 was
defined in (4.2).

Lemma 5.1. r2 satisfies (4.4) with p = 2, where the constant C depends only on
M0 of (3.2) and K1 of (3.5).
Proof. (a) We fix an arbitrary t with 0 ≤ t ≤ h. After an orthogonal similarity

transform, we may assume that Ω := Ω̃(t) is diagonal, Ω = diag(ωk) with purely

imaginary eigenvalues ωk, and we define B =
˙̃
Ω(t). Denoting by • the entrywise

product of matrices, we can write

adΩ(B) = ΩB −BΩ = Z •B,

where Z = (ωk − ω�)k,�. This yields

rp(adΩ)
(
adp−1

Ω (B)
)
v =

(
R • adp−1

Ω (B)
)
v,

where R = (rp(ωk − ω�))k,�. We now follow the proof of Lemma 2.2 of [5]. Note that
for real x, rp(ix) = 1 + O(x), x → 0, and rp(ix) = O(x−1), |x| → ∞, and hence
rp, r

′
p ∈ L2(iR). As can be seen, e.g., from formula (2.13) in [5], rp has a Fourier

transform r̂p ∈ L1(R),

rp(ix) =

∫
R

eiξxr̂p(ξ) dξ,

with ‖r̂p‖L1(R) ≤ 2π‖rp‖1/2L2(iR)‖r′p‖1/2L2(iR). Consequently, the above expression can be
written as

rp(adΩ)
(
adp−1

Ω (B)
)
v =

∫
R

r̂p(ξ) exp(ξΩ) ad
p−1
Ω (B) exp(−ξΩ) v dξ,

so that ∥∥∥rp(adΩ)
(
adp−1

Ω (B)
)
v
∥∥∥ ≤ ‖r̂p‖L1(R) sup

ξ∈R

‖adp−1
Ω (B) exp(−ξΩ)v‖.(5.2)

So far, this holds for general p.
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(b) From now on, we set p = 2. Using

adΩ(B) = adΩ̃(t)(
˙̃
Ω(t)) = [Ω̃(t),

˙̃
Ω(t)] =

∫ t

0

[A(τ), A(t)] dτ

and (3.5), we obtain for all vectors w

‖adΩ(B)w‖ ≤ K1h
2‖Dw‖.

Hence we have ∥∥∥rp(adΩ)
(
adp−1

Ω (B)
)
v
∥∥∥ ≤ Ch2 sup

ξ∈R

‖D exp(−ξΩ)v‖.(5.3)

We now use the splitting (3.1) and write

i

t
Ω = U +

1

t

∫ t

0

V (τ)dτ =: U + Ṽ .

We choose α ≥ 0 such that U+ Ṽ +αI is symmetric and positive definite. To keep the
notation simple, we omit the constants and denote by ∼ equivalent norms. Because
of the boundedness of Ṽ and (3.3), we have for all vectors w

‖Dw‖ =
√
w∗Uw ∼

√
w∗(U + Ṽ + αI)w =

∥∥∥∥∥
(
i

t
Ω+ αI

)1/2

w

∥∥∥∥∥ .
We use this norm equivalence to bound the last factor in (5.3):

‖D exp(−ξΩ)v‖ ∼
∥∥∥∥∥
(
i

t
Ω+ αI

)1/2

exp(−ξΩ)v
∥∥∥∥∥

=

∥∥∥∥∥exp(−ξΩ)
(
i

t
Ω+ αI

)1/2

v

∥∥∥∥∥
=

∥∥∥∥∥
(
i

t
Ω+ αI

)1/2

v

∥∥∥∥∥
∼ ‖Dv‖.

Inserting this into (5.3) proves the lemma.
By definition (5.1) of E2, this immediately yields the bound

‖E2(t)y(t)‖ ≤ Ch2‖Dy(t)‖, 0 ≤ t ≤ h.

Applying Lemma 4.1 gives

‖ε̃(t)‖ ≤ Ch3 max
0≤τ≤h

‖Dy(τ)‖.(5.4)

The midpoint rule uses the approximation

Ω̃n =

∫ h

0

A(tn + τ)dτ ≈ hA(tn+1/2) =: Ωn
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in the scheme (2.7). The midpoint rule is of order 2, and since ‖Ä(t)‖ ≤ M2, the
quadrature error is bounded by

‖Ω̃n − Ωn‖ ≤ 1

24
M2h

3.

The identity

exp(Ω̃n)− exp(Ωn) =
∫ 1

0

exp((1− s)Ωn)(Ω̃n − Ωn) exp(sΩ̃n) ds

then yields

‖ exp(Ω̃n)− exp(Ωn)‖ ≤ 1

24
M2h

3.(5.5)

Combining (5.4) and (5.5) yields for the defects εj of (4.7)

‖εj‖ ≤ Ch3 max
tj≤τ≤tj+1

‖Dy(τ)‖.

By (4.8), this gives

‖en‖ ≤ Ch2 tn max
0≤t≤tn

‖Dy(t)‖,

which is just the statement of Theorem 3.1.

6. Error bounds for fourth-order Magnus methods. This section gives
the proof of Theorem 3.2 for p = 4. It provides all the machinery needed for treating
general-order p, but still gives an explicit presentation of the appearing terms.

A Magnus method of classical order 4 is constructed by setting

˙̃
Ω(t) = A(tn + t)− 1

2

∫ t

0

[A(tn + τ), A(tn + t)] dτ, Ω̃(tn) = 0,(6.1)

for 0 ≤ t ≤ h. To study the local error we simplify the notation and consider the case
n = 0. Then integration yields

Ω̃(t) =

∫ t

0

A(τ) dτ − 1
2

∫ t

0

∫ τ

0

[A(σ), A(τ)] dσdτ, 0 ≤ t ≤ h.(6.2)

In this case, ỹ(t) = exp(Ω̃(t))y0 solves (4.1) with (partly omitting the argument t)

Ã(t) =
˙̃
Ω(t) +

1

2
[Ω̃,

˙̃
Ω] +

1

6
[Ω̃, [Ω̃,

˙̃
Ω]] +

1

24
r4(adΩ̃)

(
ad3

Ω̃
(
˙̃
Ω)
)
.(6.3)

Lemma 6.1. If h‖D‖ ≤ c, then r4 defined in (4.2) satisfies (4.4) with p = 4,
where the constant C depends only on K, M0, and c.
Proof. (a) The first part of the proof is identical to part (a) of the proof of

Lemma 5.1. We write again, for fixed t with 0 ≤ t ≤ h, Ω = Ω̃(t) and B =
˙̃
Ω(t),

for Ω̃(t) of (6.2). We start with the bound (5.2) and turn to estimating ad3
Ω(B)w.

Using the commutator bound (3.7) (and previously the Jacobi identity, if necessary)
for terms such as, e.g.,∥∥∥∥[∫ t

0

A(τ)dτ,

[∫ t

0

A(τ)dτ,

[∫ t

0

∫ τ

0

[A(σ), A(τ)] dσdτ,A(t)

]]]
w

∥∥∥∥ ≤ Kh5‖D4w‖,
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it is shown under the restriction h‖D‖ ≤ c that, for all w,

‖ad3
Ω(B)w‖ ≤ Ch4‖D3w‖, 0 ≤ t ≤ h.

Inserted into (5.2), this bound yields

r4(adΩ)
(
ad3

Ω(B)
)
v ≤ Ch4 sup

ξ∈R

‖D3 exp(−ξΩ)v‖.(6.4)

(b) It remains to show that the supremum can be bounded by C‖D3v‖. We use
the splitting (3.1) and write, still for fixed t with 0 < t ≤ h,

i

t
Ω = U +

1

t

∫ t

0

V (τ)dτ − i

2t

∫ t

0

∫ τ

0

[A(σ), A(τ)] dσdτ =: U + Ṽ .

By the assumptions, Ṽ = V (0) + O(h) is a Hermitian bounded operator, and thus

there exists α ≥ 0 such that U + Ṽ +αI is positive definite. Our next aim is to show
that, for all w,

‖D4w‖ = ‖U2w‖ ∼
∥∥∥∥∥
(
i

t
Ω+ αI

)2

w

∥∥∥∥∥ .(6.5)

We have

(U + Ṽ + αI)2 − U2 = 2(Ṽ + αI)U + [U, Ṽ + αI] + (Ṽ + αI)2.

The first and the last term on the right-hand side yield bounds

‖2(Ṽ + αI)Uw‖+ ‖(Ṽ + αI)2w‖ ≤ C‖D2w‖+ C‖w‖.(6.6)

Bounds for the second term are obtained from assumption (3.7). By definition of Ṽ
and writing U = iA(τ)− V (τ), we have

[U, Ṽ ] =

[
U,
1

t

∫ t

0

V (τ)dτ − i

2t

∫ t

0

∫ τ

0

[A(σ), A(τ)] dσdτ

]
=

i

t

∫ t

0

[A(τ), V (τ)] dτ

+
1

2t

∫ t

0

∫ τ

0

[A(0), [A(σ), A(τ)]] dσdτ

+
i

2t

∫ t

0

∫ τ

0

[V (0), [A(σ), A(τ)]] dσdτ.

By the commutator bounds (3.6) and (3.7) and the Jacobi identity, we obtain for
h‖D‖ ≤ c

‖[U, Ṽ ]w‖ ≤ K‖Dw‖+ 1

2
Kh2‖D2w‖+Kh‖D2w‖ ≤ C‖Dw‖.(6.7)

Together with (6.6), this proves (6.5). Moreover, the estimates (6.6) and (6.7) show
that

‖((U + Ṽ + αI)2 − U2
)
U−1w‖ ≤ C‖w‖.
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Thus we can apply Lemma 6.2 below with µ = 1/2 and θ = 3/4 to show that (6.5)
implies

‖D3w‖ = ‖U3/2w‖ ∼
∥∥∥∥∥
(
i

t
Ω+ αI

)3/2

w

∥∥∥∥∥ .
As at the end of the proof of Lemma 5.1, we then obtain

‖D3 exp(−ξΩ)v‖ ≤ C‖D3v‖,

with a constant independent of ξ ∈ R and t with 0 < t ≤ h. Inserting this bound into
(6.4) completes the proof.

Lemma 6.2. Suppose S, T are Hermitian positive definite operators such that
‖(S − T )S−µ‖ ≤M holds with 0 ≤ µ < 1. If

‖Sv‖ ≤ ‖Tv‖ for all v,

then, for 0 < θ < 1,

‖Sθv‖ ≤ C‖T θv‖ for all v,

where C depends only on M and µ.
Proof. This is a reformulation of Theorem 1.4.6 in [4].

We are now in the position to prove a bound of Ã(t)−A(t).

Lemma 6.3. For Ã(t) defined in (6.3) and time steps h with h‖D‖ ≤ c, the error

E4(t) := Ã(t)−A(t) is bounded, for all vectors v, by

‖E4(t)v‖ ≤ Ch4‖D3v‖, 0 ≤ t ≤ h.(6.8)

The constant C depends only on K, M0, M1, and c.
Proof. We insert (6.1) and (6.2) into (6.3):

E4(t) =− 1

12

∫ t

0

∫ t

0

∫ t

0

[A(µ), [A(τ), [A(σ), A(t)]]] dσdτdµ

− 1

12

∫ t

0

∫ t

0

∫ τ

0

[A(µ), [[A(σ), A(τ)], A(t)]] dσdτdµ

+
1

24

∫ t

0

∫ µ

0

∫ t

0

[[A(σ), A(µ)], [A(τ), A(t)]]dτdσdµ+R(t)

+
1

24
r4(adΩ̃)

(
ad3

Ω̃
(
˙̃
Ω)
)
.

Here, R(t)v contains integrals of commutators which, by (3.7), are bounded by

C
(
h5‖D4v‖+ h6‖D5v‖) ≤ C ′h4‖D3v‖

for h‖D‖ ≤ c. The constant C depends only on K. Then, by (3.7),

‖E4(t)v‖ ≤ Ch4‖D3v‖+ 1

24

∥∥∥r4(adΩ̃)
(
ad3

Ω̃
(
˙̃
Ω)
)
v
∥∥∥ .

The bound (6.8) now follows from Lemma 6.1.
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Lemma 4.1 shows that ε̃ = ỹ − y is bounded by

‖ε̃(t)‖ ≤ Ch5 max
0≤τ≤h

‖D3y(τ)‖, 0 ≤ t ≤ h.

Since we want to have a fourth-order scheme, we use a quadrature formula (bi, ci)
s
i=1

of order p ≥ 4. In (6.2) we replace A by its interpolation polynomial Â in the nodes
tn+ cjh. The integrals can then be evaluated exactly. The quadrature error for n = 0
is given by

Ω̃0 − Ω0 =

∫ h

0

A(τ)dτ −
∫ h

0

Â(τ)dτ(6.9)

−
(
1

2

∫ h

0

∫ τ

0

[A(σ), A(τ)]dσdτ − 1
2

∫ h

0

∫ τ

0

[Â(σ), Â(τ)]dσdτ

)
,

and similarly for the general nth step, with A(tn + τ) instead of A(τ).
Lemma 6.4. The quadrature error in the nth step satisfies

‖(Ω̃n − Ωn)v‖ ≤ Chp+1‖Dv‖.(6.10)

The constant C depends only on Mm for m ≤ p and K1.
Proof. For ease of notation, we let n = 0. The error of the single integral in the

representation of Ω̃n − Ωn is O(hp+1). Assume that we use a quadrature rule with
s nodes. For estimating the error of the double integral we define the interpolation
error

J(t) := A(t)− Â(t) = hs
∫ 1

0

κ̂s(θ, ϑ)A
(s)(θh)dθ, 0 ≤ t = ϑh ≤ h,

where κ̂s denotes the Peano kernel. The difficulty in the remaining proof comes from
the fact that we have only J(t) = O(hs), but we need an O(hp) estimate. We use, in

addition, J(cih) = 0 and
∫ h
0
J(t) dt = O(hp+1). For the second term in (6.9) we write∫ h

0

∫ τ

0

[A(σ), A(τ)] dσdτ −
∫ h

0

∫ τ

0

[Â(σ), Â(τ)] dσdτ(6.11)

=

∫ h

0

∫ τ

0

(
[Â(σ), J(τ)] + [J(σ), Â(τ)] + [J(σ), J(τ)]

)
dσdτ.

Approximating the outer integral with the quadrature formula, the first term becomes∫ h

0

∫ τ

0

[Â(σ), J(τ)] dσdτ = hp+1

∫ 1

0

κp(θ)G
(p)(θh) dθ,

where κp is the Peano kernel, and

G(τ) =

∫ τ

0

[Â(σ), J(τ)] dσ.

Using Leibniz’ rule, it is seen that the dominant term of G(p)(τ) is p [Â(τ), J (p−1)(τ)],
so that by (3.6), for any vector v,

‖G(p)(θh)v‖ ≤ C‖Dv‖.
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This yields ∥∥∥∥∥
∫ h

0

∫ τ

0

[Â(σ), J(τ)] dσdτ v

∥∥∥∥∥ ≤ Chp+1‖Dv‖.(6.12)

For the second term, we use partial integration:∫ h

0

∫ τ

0

[J(σ), Â(τ)] dσdτ =

[∫ h

0

J(σ)dσ,

∫ h

0

Â(µ)dµ

]
−
∫ h

0

∫ τ

0

[J(τ), Â(σ)] dσdτ.

Here, for the last term, the bound was already given in (6.12). Using the quadrature
formula for the integral over J , we have for the first term[∫ h

0

J(σ)dσ,

∫ h

0

Â(µ)dµ

]
= hp+1

[∫ 1

0

κp(θ)J
(p)(θh)dθ,

∫ h

0

Â(µ)dµ

]
.

Noting J (p)(t) = A(p)(t) and using (3.6), this gives the bound∥∥∥∥∥
∫ h

0

∫ τ

0

[J(σ), Â(τ)] dσdτ v

∥∥∥∥∥ ≤ Chp+1‖Dv‖.(6.13)

Finally, since ‖J(t)‖ = O(hs),∥∥∥∥∥
∫ h

0

∫ τ

0

[J(σ), J(τ)] dσ dτ v

∥∥∥∥∥ ≤ Ch2s+2‖v‖ ≤ Chp+2‖v‖.(6.14)

Inserting the bounds (6.12)–(6.14) into (6.11) completes the proof.
Lemma 6.5. In the situation of Lemma 6.4,

‖ exp(Ω̃n)v − exp(Ωn)v‖ ≤ Chp+1‖Dv‖.
The constant C depends only on Mm for m ≤ p and K1.
Proof. The variation-of-constants formula yields

exp
(
Ω̃n
)
v − exp(Ωn)v =

∫ 1

0

exp
(
(1− s)Ωn

)(
Ω̃n − Ωn

)
exp
(
sΩ̃n

)
v ds.

By (6.10) we have

‖(Ω̃n − Ωn) exp(sΩ̃n)v‖ ≤ Chp+1‖D exp(sΩ̃n)v‖ ≤ C ′hp+1‖Dv‖,
where the last inequality is obtained as in the proof of Lemma 5.1. This gives the
stated bound.

For p ≥ 4, the local error εn of the scheme (2.7) thus satisfies (4.7) with
‖εn‖ ≤ Ch5 max

tn≤t≤tn+1

‖D3y(t)‖.

Hence, with (4.8), the global error is bounded by

‖en‖ ≤ Ctnh
4 max

0≤t≤tn
‖D3y(t)‖,

and Theorem 3.2 is proved for p = 4.
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7. Error bounds for higher-order Magnus integrators. The arguments of
the previous section can be extended rather directly to methods of arbitrary order. In
the following we describe this extension, putting the emphasis on the general structure
and on a few additional considerations that become necessary. Though it would have
been possible to present the general proof without first discussing the second- and
fourth-order cases, we believe that it is useful to have seen and understood the explicit
expressions arising in the proofs for the lower-order methods before embarking on the
general case.

Lemma 7.1. If ‖hD‖ ≤ c, then rp defined in (4.2) satisfies, for a pth-order

truncated Magnus expansion Ω̃(t), the bound (4.4), where the constant C depends
only on K, M0, c, and p.

Proof. For the truncated Magnus series Ω̃(t), the expression adp−1

Ω̃(t)
(
˙̃
Ω(t)) con-

sists (after repeated use of the Jacobi identity) of a linear combination of iterated
commutators of A(·) integrated over all but one of the independent variables over
intervals bounded by h. The appearing iterated commutators and integrals are at
least (p − 1)-fold. Together with the commutator bound (3.7) and ‖hD‖ ≤ c, this
yields the bound ∥∥∥adp−1

Ω̃(t)
(
˙̃
Ω(t))w

∥∥∥ ≤ Chp ‖Dp−1w‖.(7.1)

By (5.2), this implies∥∥∥rp(adΩ̃(t))ad
p−1

Ω̃(t)
(
˙̃
Ω(t))v

∥∥∥ ≤ Chp sup
ξ∈R

‖Dp−1 exp(ξΩ̃(t))v‖(7.2)

for all v. By a straightforward but tedious generalization of the argument in the proof
of Lemma 6.1, the supremum is bounded by

sup
ξ∈R

‖Dp−1 exp(ξΩ̃(t))v‖ ≤ C ‖Dp−1v‖,(7.3)

which yields the desired bound (4.4).

Lemma 7.2. For Ã(t) defined in (4.1) and time steps h with h‖D‖ ≤ c, the error

Ep(t) := Ã(t)−A(t) is bounded, for all vectors v, by

‖Ep(t)v‖ ≤ Chp ‖Dp−1v‖, 0 ≤ t ≤ h.(7.4)

The constant C depends only on K, M0, M1, c, and p.

Proof. By construction of the Magnus series, Ep(t) is a linear combination of at

least (p−1)-fold integrals of iterated commutators of A(·) and rp(adΩ̃(t))ad
p−1

Ω̃(t)
(
˙̃
Ω(t)).

The stated estimate thus follows from the commutator bound (3.7), the step size
bound (3.8), and Lemma 7.1.

Consider a quadrature formula with nodes ci (i = 1, . . . , s) and weights bi of order

p. Let Â(τ) be the interpolation polynomial to A(τ) in the points cih, and denote by

Ω0 the expression obtained by replacing A(τ) by Â(τ) in the expression for Ω̃0 = Ω̃(h).

Similarly, let Ω̃n and Ωn denote the corresponding expressions for the nth step, with
A(tn + τ) instead of A(τ).
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Lemma 7.3. The quadrature error in the nth step satisfies

‖(Ω̃n − Ωn)v‖ ≤ Chp+1‖Dp−2v‖.(7.5)

The constant C depends only on Mm for m ≤ p and K1.
Proof. The proof follows the lines of the proof of Lemma 6.4. The generaliza-

tion concerns the appearance of m-fold integrals of m-fold iterated commutators, for
m ≤ p − 2 , instead of the simple commutators studied in the proof of Lemma 6.4.
These terms are treated by the same techniques; they just involve more formidable
expressions. By the commutator bound (3.6), this leads to an estimate involving
‖Dp−2v‖ in the general situation.

As in Lemma 6.5, this implies

‖ exp(Ω̃n)v − exp(Ωn)v‖ ≤ Chp+1‖Dp−2v‖.(7.6)

Inserting the estimates (7.4) and (7.6) into the framework of section 4 finally yields
the error bound of Theorem 3.2.

8. Numerical experiments. To illustrate the theoretical results presented in
this paper, we consider the Schrödinger equation

i
∂ψ

∂t
= −1

2
∆ψ + b(x, t)ψ, x = (x1, . . . , xd) ∈ R

d, t > 0,(8.1)

with a smooth (C∞) potential b(x, t) that is 2π-periodic in every coordinate direction
xj . We impose periodic initial conditions ψ(x, 0) = ψ0(x). For ease of notation only,
the following discussion is for the one-dimensional case d = 1.

A standard space discretization is given by the pseudospectral method. Here, a
trigonometric polynomial

ψN (x, t) =

N/2−1∑
k=−N/2

cNk (t) e
ikx

is determined such that the equations

iψ̇N (x�, t) = −1
2
∆ψN (x�, t) + b(x�, t)ψ

N (x�, t),

ψN (x�, 0) = ψ0(x�)

are satisfied at the mesh-points x� = 2π=/N , with = = −N/2, . . . , N/2 − 1. Setting
cN (t) = (cNk (t)) the vector of Fourier coefficients, this amounts to solving

iċN = −1
2
∆̂NcN +BN (t)cN ,(8.2)

where, in the case of one space dimension,

∆̂N = (D̂N )2 with D̂N = diag (ik) (k = −N/2, . . . , N/2− 1),

and, with FN denoting the discrete Fourier transform of length N ,

BN (t) = FN diag (b(x�, t))F
−1
N .



MAGNUS INTEGRATORS FOR SCHRÖDINGER EQUATIONS 961
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Fig. 8.1. Error versus step sizes for the laser example: smooth and nonsmooth initial data on
the left, h‖D‖ = const. on the right.

We consider a one-dimensional example with data from [11], slightly modified to
make the potential periodic with respect to the space interval x ∈ [−=, =] for = = 10:

b(x, t) =
1

2

π2

=2

(
1− cos πx

=

)
+ sin2(t)

π

=
sin

πx

=
.

In the left-hand panel of Figure 8.1 we give precision step size diagrams at t = 1
for four different initial values, where we have used N = 128 Fourier modes for the
spatial discretization. As a smooth initial value, we used the eigenstate of the unforced
harmonic oscillator to the lowest energy level, Ψ(x, 0) = e−x

2/2. The convergence
curves of the exponential midpoint and the fourth-order Gauss method corresponding
to the smooth initial data are the solid lines marked with circles. For the other three
curves, initial data of finite energy is chosen as cN (0) = (I−i(D̂N )j)−1v/ρ, j = 1, 2, 3,
where v is a vector of normally distributed random numbers, and ρ is chosen such
that ‖cN (0)‖ = 1. For j = 1, the results are plotted in the dash-dotted curve marked
with × symbols; for j = 2, we have the dashed curved marked with + symbols; and
for j = 3, the curve is dotted marked with diamonds.

For the right-hand panel of Figure 8.1, we took the smooth initial state Ψ(x, 0) =

e−x
2/2 for all curves, but varied the number of Fourier modes from N = 32 to N =

2048 and the time steps such that Nh = 32. This corresponds to the situation in
which ‖hD‖ ≈ 3.5, where D = (− 1

2∆̂
N + I)1/2. The solid line marked with the

× symbols indicates the error of the midpoint rule, and the solid line marked with
circles is the error for the fourth-order Gauss method. The dotted lines in the top of
the picture represent the errors of the exponential midpoint and the Gauss method
divided by h2 and h4, respectively, up to a constant factor.

9. Appendix. Commutator bounds for a spectral discretization. We
consider the pseudospectral space discretization (8.2) of the Schrödinger equation

(8.1). Equation (8.2) is of the type studied in this paper, with U = − 1
2 (D̂

N )2+ I and
V (t) = BN (t)− I. The matrix BN (t) is circulant, with (k, l) entry equal to

b̂Nk−l(t) =
∞∑

q=−∞
b̂k−l+qN (t)

by the aliasing formula, where b̂j(t) is the jth Fourier coefficient of the 2π-periodic
(in x) function b(x, t). If (and only if) b(x, t) is a C∞ function of x, the Fourier
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coefficients b̂j(t) decay faster than any negative power of |j|. It then follows that the
entries of the matrix BN (t) = (bNk,l) are bounded by

∣∣bNkl∣∣ ≤
{

γm(|k − l|+ 1)−m, |k − l| ≤ N/2,

γm(N − |k − l|)−m, |k − l| > N/2,
(9.1)

for k, l = −N/2, . . . , N/2− 1, with γm (m = 1, 2, 3, . . . ) independent of N .
The commutator bound (3.6) is obtained as a direct consequence of the three

lemmas below, for which we need to give a further definition. We say that a sequence
of matrices B = (BN ), with BN of dimension N × N , belongs to the class Γ∞ if
the entries satisfy estimates (9.1) with all γm independent of N . We denote by
γ(B) = (γ1, γ2, γ3, . . . ) the sequence of smallest possible such numbers.

Lemma 9.1. If A = (AN ) and B = (BN ) are in Γ∞, then also AB = (ANBN )
is in Γ∞, and γ(AB) is bounded in terms of γ(A) and γ(B).

The proof is by direct estimation and is not given here. The following result is
shown in the proof of Lemma 3.1 in [8].

Lemma 9.2. If B = (BN ) is in Γ∞, then [D̂2,B] = ([(D̂N )2, BN ]) is of the form

[D̂2,B] =M0 +M1D̂,

whereM0 andM1 are in Γ
∞, with γ(M0) and γ(M1) bounded in terms of γ(B).

The next lemma is proved in the same way.
Lemma 9.3. If B = (BN ) is in Γ∞, then D̂B = (D̂NBN ) is of the form

D̂B = K0 +K1D̂,

where K0 and K1 are in Γ
∞, with γ(K0) and γ(K1) bounded in terms of γ(B).

Repeated application of these lemmas shows that[
−(D̂N )2 +BN (τk),

[
. . . ,

[
−(D̂N )2 +BN (τ1),

dm

dtm
BN (τ0)

]]
. . .

]
=

k∑
j=0

MN
j (D̂

N )j ,

with matricesMN
j bounded independently of N and τ0, . . . , τk. This gives the desired

commutator bound (3.6).
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Abstract. A nonoverlapping domain decomposition iterative procedure is developed and an-
alyzed for second order elliptic problems in R

N . Its convergence is proved. The method is based
on a Robin-type consistency condition with two parameters, called a transmission coefficient and
a penalty coefficient, as a transmission condition together with a derivative-free transmission data
updating technique on the artificial interfaces. Then the method is applied to the nonconforming
finite element problems. A nonoverlapping domain decomposition iterative procedure for solving
the nonconforming finite element problems of second order partial differential equations is developed
and analyzed, which is directly presented to the nonconforming finite element problems without
introducing any Lagrange multipliers. Its convergence is demonstrated, and the convergence rate
is derived. The convergence analyses imply that the convergence rate is independent of the finite
element meshes size while choosing the right parameters. Furthermore, the conclusions are extended
to the unstructured finite element meshes. For both continuous problems and discrete problems, the
method of this paper can be applied to general multisubdomain decompositions and implemented on
parallel machines with local communications naturally. The method also allows choosing subdomains
very flexibly, even as small as an individual element for finite element problems.

Key words. nonoverlapping, domain decomposition, iterative, parallel, transmission data,
update, transmission coefficient, penalty coefficient, Robin boundary condition, nonconforming, finite
element
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Introduction. Nonoverlapping domain decomposition methods have been stud-
ied extensively and have become very attractive for their parallelism and flexibility
(cf. [1, 2, 3, 7, 8, 10, 11, 13, 14, 17, 18, 19, 20, 21, 22, 23] and the references therein). In
nonoverlapping domain decomposition methods, the original domain is decomposed
into subdomains; then the original problems are split into a number of subproblems
over the subdomains. The subproblems could be solved in parallel or with greater
independence. The main issues to develop nonoverlapping domain decomposition it-
erative procedures are what information should be transferred between subdomains
(subproblems) and how the information is transferred. In other words, one issue is
what the transmission data are and the other is how the transmission data are ex-
changed, that is, the strategy for updating the transmission data. The transmission
data should guarantee that the solutions of subproblems could be pieced together into
a reasonable approximation of the true solution of the original given problem. The
updating strategy determines the costs and methods of the communications between
subproblems.

The objective of this paper is to develop a nonoverlapping domain decomposition
iterative procedure for second order elliptic partial differential problems and their
nonconforming finite element problems. First, a nonoverlapping domain decomposi-
tion iterative procedure is developed and analyzed for second order elliptic problems
in R

N (N = 2, 3). Its convergence is proved by a “pseudoenergy” technique. The
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method is based on a Robin-type consistency condition with two parameters, called
a transmission coefficient and a penalty coefficient, as a transmission condition and
a derivative-free transmission data updating technique on the artificial interfaces be-
tween two subdomains. Then the method is applied to the nonconforming finite
element problems. A nonoverlapping domain decomposition iterative procedure for
solving the nonconforming finite element problems of second order partial differen-
tial equations is also developed and analyzed. The method is directly presented to
the nonconforming finite element problems without introducing any Lagrange multi-
pliers. The convergence is proved, and the convergence rate of the method for the
nonconforming finite element problems is derived. The convergence analyses show
that the convergence rate is independent of the finite element mesh size, that is, opti-
mal, while choosing the right parameters. Furthermore, the conclusions are extended
to the unstructured finite element meshes.

For both continuous problems and discrete problems, the method can be applied
to general multisubdomain decompositions and implemented on parallel machines
with local simple communications naturally. The method allows choosing subdo-
mains very flexibly, even as small as individual elements for finite element problems.
For continuous problems, the transmission data and their updating techniques guar-
antee that all subproblems are always well-posed at every iteration if the initial sub-
problems are well-posed. On different iterative steps, the subproblems on the same
subdomain are the same problems with the same kind of boundary condition but dif-
ferent boundary values, that is, which have the same differential operator. Hence, for
finite element problems, the subproblems on the same subdomain, which are linear
systems, have the same system matrix but different right-hand side terms at different
iterations. Thus, we need to do only some simple operations of “matrix times vector”
to solve the subproblems on every iterative step if decomposing the system matrix
of the subproblems on every subdomain or finding its inverse matrix first. Last but
not least, we would like to mention that if we assume each subproblem is solved by
a direct method at every iterative step, then the method becomes a direct method in
the single-subdomain case, that is, without decomposing the original domain; on the
other hand, the method becomes a classic iterative method while choosing every in-
dividual element as a subdomain. Therefore, the method can be regarded as a bridge
connecting direct methods and classic iterative methods under domain decomposition
techniques. This implies that we might develop an optimal classic iterative method
for solving the nonconforming finite element problems by using the method of this
paper if every finite element is chosen as a subdomain.

The closely related works are [7, 8, 18]. In [7], a very similar nonoverlapping
domain decomposition method but with a slightly different consistency condition on
the artificial interfaces for partial differential problems is developed and analyzed. The
method in [7] can also be regarded as a variant of the famous Lions method of [18],
which uses the same kind of Robin-type transmission condition as [7] but different
techniques for updating the transmission data on the interfaces. In [8], the method
of [7] is applied into the nonconforming finite element problems, and the convergence
analyses are considered. In particular, convergence rate estimates and numerical
experiments are provided, which show that the convergence speed is dependent on
the finite element mesh size and highly dependent on the transmission coefficient
values. Other closely related work is [10, 11]. Després [10] applies the Lions method
to the mixed hybrid finite element problems of the Helmholtz problems and Douglas
et al. [12] apply the Lions method to mixed finite element problems by introducing a
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Lagrange multiplier on the interfaces. We also refer to [1, 2, 3, 13, 14, 17, 18, 19, 20,
21, 22, 23] and the references therein for other nonoverlapping domain decomposition
methods.

The outline of the paper is as follows. In section 1, some preliminaries are given.
Transmission data and updating techniques on the artificial interfaces are discussed
in section 2. In section 3, a nonoverlapping domain decomposition method for partial
differential problems is developed and analyzed. Section 4 applies the method devel-
oped in section 3 for the nonconforming finite element problems. A nonoverlapping
domain decomposition iterative procedure for solving the finite element problems is
developed and analyzed. Then the convergence rate estimates are derived in section 5.
The conclusions are extended to the unstructured finite element meshes in section 6.
Finally, a short conclusion is presented.

1. Preliminaries. For the sake of simplicity in exposition, this paper considers
the following second order elliptic problem:{

−∆u+ α(x)u = f in Ω,

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded domain in R
N (N = 2, 3), f ∈ L2(Ω), and α(x) ∈ L∞(Ω), and

is nonnegative. The problem (1.1) is a typical second order elliptic equation and also
can model heat equations and wave equations by implicit difference discrete for time.

The weak formulation of (1.1) is to find u ∈ H1
0 (Ω) such that

aΩ(u, v) = (f, v)Ω ∀v ∈ H1
0 (Ω),(1.2)

where, and in the paper, for a domain D ⊂ R
N , (·, ·)D is an inner product of L2(D)

and

aD(u, v) =

∫
D

(∇u · ∇v + α(x)uv) dx.(1.3)

It is well known that problem (1.2) has a unique solution u ∈ H1
0 (Ω) (cf. [15]).

To describe finite element approximations for (1.2), we begin with the triangula-
tion of Ω. Assume that Th is a quasi-uniform and regular finite element triangulation
of Ω and, for simplicity, Ω = ∪τ∈Thτ (cf. [5]). Also, for the sake of simplicity in
exposition, we here consider only the famous nonconforming Crouzeix–Raviart ele-
ment (cf. [6]) on the n-simplex (triangle if n = 2, tetrahedron if n = 3) triangulation
Th. However, it is not difficult to see that the analyses and conclusions of this pa-
per can be easily extended to other nonconforming finite elements (for instance, the
nonconforming finite elements for n-quadrilateral partition or n-simplex portion (cf.
[12]) and the nonconforming finite elements for n-rectangle partition (cf. [16])). Let
Sh ⊂ L2(Ω) be the nonconforming Crouzeix–Raviart finite element space over the
finite element mesh Th. Denoting Nh as the set of all face barycenters of Th’s element,
i.e., n-simplex, in the interior of Ω and Γh as the set of all face barycenters of Th’s
element on the boundary of ∂Ω, we then define the finite element space Sh as follows
(cf. [6]):

Sh = {v : v|τ ∈ P1(τ), τ ∈ Th, v continues at p ∈ Nh

and vanishes at p ∈ Γh} .
(1.4)
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Then the finite element approximate problem of (1.2) is to find u ∈ Sh such that

ahΩ(u, v) = (f, v)Ω ∀v ∈ Sh,(1.5)

where, and in this paper, for a domain D ⊂ R
N , a block (union) of elements of Th,

ahD(u, v) =
∑

τ∈Th,τ⊂D
aτ (u, v).(1.6)

It has been shown that the nonconforming finite element problem (1.5) has a unique
solution, which has the optimal H1 and L2 errors and asymptotically optimal L∞

error.
To develop a nonoverlapping domain decomposition method to solve the problem

(1.2) and the nonconforming finite element problem (1.5), we decompose Ω into an
arbitrary m(≥ 2) of disjoint subdomains (open sets) Ω1,Ω2, . . . ,Ωm; i.e., we assume
that

Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωm = Ω1 ∪ Ω2 ∪ · · · ∪ Ωm ∪ Σ,(1.7)

Σ =
⋃

1≤i �=j≤m
γij , γij = ∂Ωi ∩ ∂Ωj , Γi = ∂Ωi ∩ ∂Ω.(1.8)

Moreover, while considering the finite element problem (1.8), we also need to assume
that the above nonoverlapping domain decomposition is aligned with Th; that is, every
Ωi is a block (union) of some elements or even an individual element of Th. Finally, we
conclude this section by introducing the following notations Gr (r = 1, 2, . . . ), which
are used in the convergence analyses:{

G1 ={∪Ωk | ∂Ωk ∩ ∂Ω has positive measure},
Gr+1 = {∪Ωk | ∂Ωk ∩Gr has positive measure, ∂Ωk ∩Gl = ∅ ∀l ≤ r}.(1.9)

2. Transmission data and updating strategies. Let u ∈ H1
0 (Ω) be the solu-

tion of (1.1), and let ui = u |Ωi
∈ H1

Γi
(Ωi) , where, and in this paper, H1

Γi
(Ωi) is a sub-

space of Sobolev space H1(Ωi) whose members vanish on Γi. Then ui (i = 1, 2, . . . ,m)
satisfies the following overdetermined subproblem:

−∆ui + α(x)ui = f in Ωi,

ui = 0 on Γi,

ui = uj on γij , 1 ≤ j �= i ≤ m,

∂ui
∂ni

= −∂uj
∂nj

on γij , 1 ≤ j �= i ≤ m.

(2.1)

Conversely, let ui ∈ H1
Γi
(Ωi) (i = 1, 2, . . . ,m) be the solution of (2.1), and let u be a

function defined over Ω satisfying u |Ωi
= ui (i = 1, 2, . . . ,m); then u ∈ H1

0 (Ω) is the
solution of (1.1). This implies that a consistency condition on the artificial interface
γij of the problem (1.1) is

ui = uj on γij , 1 ≤ j �= i ≤ m,

∂ui
∂ni

= −∂uj
∂nj

on γij , 1 ≤ j �= i ≤ m.
(2.2)
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It is more convenient (cf. [7, 8, 10, 11, 18]) to replace (2.2) by the following Robin-type
boundary condition on the artificial interface γij :

∂ui
∂ni

+ λijui = −∂uj
∂nj

+ λijuj on γij , 1 ≤ j �= i ≤ m,

∂uj
∂nj

+ λjiuj = −∂ui
∂ni

+ λjiui on γij , 1 ≤ j �= i ≤ m,

(2.3)

where λij = λji > 0 (1 ≤ i �= j ≤ m). Therefore, by using (2.3), a nonoverlapping
domain decomposition iterative procedure is developed and analyzed (cf. [18]), which
is based on the following subproblems:

−∆un+1
i + α(x)un+1

i = f in Ωi,

∂un+1
i

∂ni
+ λiju

n+1
i = −∂unj

∂nj
+ λiju

n
j on γij , 1 ≤ j ≤ m, j �= i,

un+1
i = 0 on Γi.

(2.4)

This procedure can be applied to general multisubdomain decompositions and imple-
mented on parallel machines with local communications naturally. In the procedure,
the transmission data on the interfaces are uni and ∂uni /∂ni, and they are updated
by direct substitutions. In every iterate step, we have to find the extra data ∂uni /∂ni
in order to update the transmission data, which is not easy, in particular, for discrete
problems. Furthermore, this might cause ill-posed troubles of subproblems because
of the regularities of the subproblems. This also makes the method difficult to apply
to discrete problems (for instance, finite element problems (cf. [8, 10, 12])).

In order to avoid these disadvantages, a nonoverlapping domain decomposition
iterative procedure is developed and analyzed by [7, 8], which is based on the following
subproblems:

−∆uni + α(x)uni = f in Ωi,

∂uni
∂ni

+ λiju
n
i = gnij on γij ∀ 1 ≤ j ≤ m, j �= i,

uni = 0 on Γi,

(2.5)

gn+1
ij = 2λiju

n
j − gnji, 1 ≤ j �= i ≤ m, if meas(γij) > 0.(2.6)

The precise meaning of (2.5) is nothing but the usual weak formulation, which is

aΩi(u
n
i , v) +

∑
1≤j≤m

j �=i

λij

∫
γij

uni vds = (f, v)Ωi +
∑

1≤j≤m
j �=i

∫
γij

gnijvds ∀v ∈ H1
Γi
(Ωi),

(2.7)

and (2.6) is understood in L2(Ωi). This method also can be applied for general
multisubdomain decompositions and implemented on parallel machines with local
communications naturally. Like the above method, this method is also based on
the consistency condition (2.3). However, the transmission data and the updating
strategy of transmission data are different. In this procedure, the transmission data
are gnij , and the transmission data are updated by a derivative-free technique using the
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transmission data of the previous iterative step and the data obtained directly from
the previous iterative step. Moreover, since there are no derivatives in (2.6) and (2.7)
explicitly, we do not need to find any extra information (for instance, the first normal
derivatives) in the iterative process. This guarantees that all subproblems are always
well-posed in the iterative process if the initial subproblems are well-posed. This also
makes the method easy to apply to the discrete problems (cf. [7, 8]). However, it
follows from (2.6)–(2.7) that

∂un+1
i

∂ni
+ λiju

n+1
i = gn+1

ij ≡ 2λiju
n
j − gnji(2.8)

= 2λiju
n
j −

(
∂unj
∂nj

+ λjiu
n
j

)
= −∂unj

∂nj
+ λiju

n
j on γij .

This means that this procedure is essentially equivalent to the above one (cf. [7, 8]).
This procedure is applied to the nonconforming finite element problems and the con-
vergence analyses, including convergence rate estimates, and numerical experiments
are provided in [8]. The analyses have shown that the parameters λij , called transmis-
sion coefficients, are highly effected on the convergence speed, but, whatever λij are
taken, it seems that the convergence speed is always dependent on the finite element
mesh size in any case.

To improve this method and develop a method with the better convergence, we
rewrite the consistency condition (2.2) by introducing extra parameter βij . It is not
hard to check that (2.2) also can be replaced by the following condition on the artificial
interfaces:

βij
∂ui
∂ni

+ λijui = −βij
∂uj
∂nj

+ λijuj on γij , 1 ≤ i �= j ≤ m,

βji
∂uj
∂nj

+ λjiuj = −βji
∂ui
∂ni

+ λjiui on γij 1 ≤ i �= j ≤ m,

(2.9)

where {
βij = βji > 0, 1 ≤ i �= j ≤ m,

λij = λji > 0, 1 ≤ i �= j ≤ m.
(2.10)

By using the consistency condition (2.9), we can develop a nonoverlapping domain
decomposition iterative procedure based on the following subproblems:

−∆uni + α(x)uni = f in Ωi,

βij
∂uni
∂ni

+ λiju
n
i = gnij on γij ∀ 1 ≤ j ≤ m, j �= i,

uni = 0 on Γi,

(2.11)

gn+1
ij = 2λiju

n
j − gnji, 1 ≤ j �= i ≤ m, if meas(γij) > 0.(2.12)

Like (2.5)–(2.6), the subproblem (2.11) is understood as a usual weak formulation:

aΩi
(uni , v) +

∑
1≤j≤m

j �=i

λij
βij

∫
γij

uni vds = (f, v)Ωi
+
∑

1≤j≤m
j �=i

1

βij

∫
γij

gnijvds ∀v ∈ H1
Γi
(Ωi),

(2.13)
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and (2.12) is understood in L2(Ωi). It follows from (2.10)–(2.11) that

βij
∂un+1

i

∂ni
+ λiju

n+1
i = gn+1

ij ≡ 2λiju
n
j − gnji

= 2λiju
n
j −

(
βij

∂unj
∂nj

+ λjiu
n
j

)
= −βij

∂unj
∂nj

+ λiju
n
j on γij .

(2.14)

This means that the above method indeed implements the consistency condition (2.9)
by an iterative process. Then, comparing (2.5)–(2.6) and (2.11)–(2.12), we have found
that the only difference is at the second equalities of (2.5) and (2.11). That is, the
second equality of (2.11) has an extra parameter βij . We call βij the penalty coefficient
since it seems to introduce a penalty for artificial terms of the artificial interfaces of the
weak formulation of (2.11) while comparing the weak formulation (2.7) and the weak
formulation (2.13). We are going to show that this penalty coefficient can improve the
convergence speed even for unstructured finite element meshes in the next sections.

3. A nonoverlapping domain decomposition method for (1.2). Based
on the discussions of the last section, we will develop and analyze a nonoverlapping
domain decomposition method based on (2.11)–(2.13), that is, based on the Robin-
type consistency condition (2.9) actually. The nonoverlapping domain decomposition
iterative procedure is defined as follows.

Algorithm I.
(i) given g0

ij ∈ L2(γij), 1 ≤ i �= j ≤ m, meas(γij) > 0 arbitrarily;
(ii) then recursively find uni , i = 1, 2, . . . ,m, by solving the subproblems

aΩi(u
n
i , v) +

∑
1≤j≤m

j �=i

λij
βij

∫
γij

uni vds

= (f, v)Ωi
+
∑

1≤j≤m
j �=i

1

βij

∫
γij

gnijvds ∀v ∈ H1
Γi
(Ωi);

(3.1)

(iii) update the transmission condition data for i = 1, 2, . . . ,m,

gn+1
ij = 2λiju

n
j − gnji, 1 ≤ j �= i ≤ m, if meas(γij) > 0,(3.2)

where the penalty coefficient βij and the transmission coefficient λij satisfy (2.10).
By similar arguments as those in (3.1)–(3.3) of [7], we now define the error at the

iterative step n:

εn = (εni )1≤i≤m = (uni − u |Ωi
)1≤i≤m ∈

m∏
i=1

H1
Γi
(Ωi).(3.3)

Then we have

aΩi
(εni , v) +

∑
1≤j≤m

j �=i

λij
βij

∫
γij

εni vds =
∑

1≤j≤m
j �=i

1

βij

∫
γij

gnijvds ∀v ∈ H1
Γi
(Ωi),(3.4)

gn+1
ij = 2λijε

n
j − gnji on γij ∀ 1 ≤ j ≤ m, j �= i,(3.5)

where we have used gnij to replace gnij − (βij
∂u
∂ni

+ λiju).
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Lemma 3.1. There then holds the following identity:

|||gn+1|||2 = |||gn|||2 − 4

m∑
i=1

aΩi
(εni , ε

n
i ),(3.6)

where

|||gk|||2 =
∑

1≤i �=j≤m

1

βijλij

∫
γij

|gkij |2ds, gk = (gkij)1≤i �=j≤m, k = n, n+ 1.(3.7)

Proof. It follows from (3.4)–(3.5) that

|||gn+1|||2 =
∑

1≤i �=j≤m

1

βijλij

∫
γij

|gn+1
ij |2ds

=
∑

1≤i �=j≤m

1

βijλij

∫
γij

|2λijεnj − gnji|2ds

=
∑

1≤i �=j≤m

1

βijλij

∫
γij

|gnji|2ds− 4

m∑
j=1

∑
1≤i≤m

i�=j

1

βij

∫
γij

(gnji − λjiε
n
j )ε

n
j ds

= |||gn|||2 − 4

m∑
j=1

aΩj
(εnj , ε

n
j ),

where (2.10) has been used. Thus, (3.6) has been proved.
Moreover, from Lemma 3.1 and by an almost exact same argument as the proof

of Theorem 3.2 of [7], we have the following convergence theorem for Algorithm I.
Theorem 3.2. Let u ∈ H1

0 (Ω) be the weak solution of (1.2) with reasonable
regularities, and let uni ∈ H1

Γi
(Ω) (i = 1, 2, . . . ,m) be the weak solutions of (3.1)–

(3.2). Then we have that, for any initial g0
ij ∈ L2(γij),

‖un − u‖H1 =

(
m∑
i=1

‖uni − un‖2H1(Ωi)

)1/2

−→ 0, as n→∞.(3.8)

4. A nonoverlapping domain decomposition method for (1.5). This sec-
tion applies the method developed in the last section to the nonconforming finite
element problem (1.5). A parallel nonoverlapping domain decomposition method for
solving nonconforming finite element problem (1.5) is developed and analyzed. Fol-
lowing the approach to construct Algorithm I, we define the nonoverlapping domain
decomposition iterative procedure over the aligned nonoverlapping domain decompo-
sition (1.7)–(1.8) as follows.

Algorithm II.
(i) given g0

ij ∈ Sh(γij), 1 ≤ i �= j ≤ m, if meas(γij) > 0 arbitrarily;
(ii) then recursively find uni ∈ Si (i = 1, 2, . . . ,m) by solving the subproblems

ahΩi
(uni , v) +

∑
1≤j≤m

j �=i

λij
βij

∫ ∗
γij

uni vds = (f, v)Ωi +
∑

1≤j≤m
j �=i

1

βij

∫ ∗
γij

gnijvds ∀v ∈ Si;(4.1)

(iii) update data of the transmission condition on the interfaces

gn+1
ij (p) = 2λiju

n
j (p)− gnji(p), on p ∈ γij ∩Nh, 1 ≤ j �= i ≤ m,(4.2)
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where the penalty and transmission coefficients, βij and λij , satisfy (2.10), Si =
Sh |Ωi , and

Sh(γij) =

 v ∈ Sh | v =
∑

p∈γij∩Nh

ap ϕp , ap ∈ R

 ,(4.3)

∫ ∗
γij

uvds =
∑

p∈γij∩Nh

u(p) v(p)meas(sp),(4.4)

where, and in this paper, {ϕp}p∈Nh
is the node basis of the finite element space Sh

and sp is the element face with p as its barycenter. (4.4) implies that we have used
the numerical integration in (4.1) to compute the integrations on the interfaces.

We now consider the convergence of Algorithm II. Unlike the case for partial
differential boundary value problems (in detail, cf. [7, 8]), we first have to give an
equivalent splitting subproblem form with respect to the nonoverlapping domain de-
composition for finite element problem (1.5) in order to prove the convergence of
Algorithm II.

Theorem 4.1. Let u ∈ Sh be the solution of the finite element problem (1.5)
and ui = u |Ωi . The problem (1.5) can be split into an equivalent splitting subproblem
form. That is, there exist g∗ij ∈ Sh(γij), 1 ≤ i �= j ≤ m, meas(γij) > 0, such that
ui ∈ Si (i = 1, 2, . . . ,m) satisfies

ahΩi
(ui, v) +

∑
1≤j≤m

j �=i

λij
βij

∫ ∗
γij

uivds = (f, v)Ωi
+
∑

1≤j≤m
j �=i

1

βij

∫ ∗
γij

g∗ijvds ∀v ∈ Si.(4.5)

Proof. Notice that {ϕp}p∈Nh
is the node basis of the finite element space Sh.

Then the problem (1.5) is equivalent to the following system:

ahΩ(u, ϕp) = (f, ϕp)Ω ∀p ∈ Nh.(4.6)

In particular, it follows from the small support property of ϕp(x) that

ahΩi
(u, ϕp)− (f, ϕp)Ωi = − [aΩj (u, ϕp)− (f, ϕp)Ωj ] ∀p ∈ γij ∩Nh.(4.7)

For any γij , any element face sp ⊂ γij with p as its barycenter, we define Gp
ij as

follows:

Gp
ij = −

1

meas(sp)
[ahΩj

(u, ϕp)− (f, ϕp)Ωj
].

Therefore, we can construct g∗ij ∈ Sh(γij), meas(γij) > 0 (1 ≤ i �= j ≤ m),

g∗ij(x) =
∑

p∈γij∩Nh

(
λiju(p) + βijG

p
ij

)
ϕp(x).(4.8)

Thus, it follows from (4.7)–(4.8) that, for all p ∈ Ωi ∩Nh, ui = u |Ωi satisfies

ahΩi
(ui, ϕp) +

∑
1≤j≤m

j �=i

λij
βij

∫ ∗
γij

uiϕpds = (f, ϕp)Ωi +
∑

1≤j≤m
j �=i

1

βij

∫ ∗
γij

g∗ijϕpds.

Clearly, this implies (4.5). The proof is completed.
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Before discussing the convergence, we need to introduce similar notations to those
in Algorithm I. Let u be the solution of the finite element problem (1.5), and let
uni (1 ≤ i ≤ m) be the solutions of the subproblem (4.1) on the subdomain Ωi at
iterative step n. We then denote

ui = u|Ωi
, u := (ui)(1≤i≤m) ∈

m∏
i=1

Si,(4.9)

un = (uni )(1≤i≤m) ∈
m∏
i=1

Si, un|Ωi := uni ,(4.10)

en = (eni )(1≤i≤m) := (uni − ui) ∈
m∏
i=1

Si.(4.11)

Clearly, en is indeed the error at iterative step n. Then we have

ahΩi
(eni , v) +

∑
1≤j≤m

j �=i

λij
βij

∫ ∗
γij

eni vds =
∑

1≤j≤m
j �=i

1

βij

∫ ∗
γij

gnijvds ∀v ∈ Si,(4.12)

gn+1
ij (p) = 2λije

n
j (p)− gnji(p) on p ∈ γij ∩Nh, 1 ≤ j �= i ≤ m,(4.13)

where we have used gnij to replace gnij − g∗ij .
Lemma 4.2. We then have the following identity:

ahΩi
(eni , e

n
i ) =

∑
1≤j≤m

j �=i

1

βij

∫ ∗
γij

(gnij − λije
n
i )e

n
i ds.(4.14)

Lemma 4.3. There then holds the following identity:

|||gn+1|||2∗ = |||gn|||2∗ − 4

m∑
i=1

ahΩi
(eni , e

n
i ),(4.15)

where

|||gk|||2∗ =
∑

1≤i �=j≤m

1

βijλij

∫ ∗
γij

|gkij |2ds, gk = (gkij)1≤i �=j≤m, k = n, n+ 1.(4.16)

Proof. It follows from (4.13) and (4.14) that

|||gn+1|||2∗ =
∑

1≤i �=j≤m

1

βijλij

∫ ∗
γij

|gn+1
ij |2ds

=
∑

1≤i �=j≤m

1

βijλij

∫ ∗
γij

|2λijenj − gnji|2ds

=
∑

1≤i �=j≤m

1

βijλij

∫ ∗
γij

|gnji|2ds− 4

m∑
j=1

∑
1≤i≤m

i�=j

1

βij

∫ ∗
γij

(gnji − λjie
n
j )e

n
j ds

= |||gn|||2∗ − 4

m∑
j=1

ahΩj
(enj , e

n
j ),

where (2.10) has been used. Thus, (4.15) has been proved.
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Theorem 4.4. Let u ∈ Sh be the solution of the nonconforming finite element
problem (1.5), and let uni ∈ Si (i = 1, 2, . . . ,m) be the solutions of subproblem (4.1)–
(4.2) at iterative step n. Then we have

‖un − u‖h ≡
 m∑
i=1

∑
τ∈Th,τ⊂Ωi

‖uni − u‖2H1(τ)

1/2

−→ 0, as n→∞.(4.17)

Proof. Clearly, we indeed need to show that(
m∑
i=1

‖eni ‖2h(Ωi)

)1/2

≡
 m∑
i=1

∑
τ∈Th,τ⊂Ωi

‖eni ‖2H1(τ)

1/2

−→ 0, as n→∞.(4.18)

By using Lemma 4.2, we have that for any positive integer M

M∑
n=0

(
m∑
i=1

ahΩi
(eni , e

n
i )

)
=

1

4
(|||g0|||2∗ − |||gM+1|||2∗) ≥ 0.(4.19)

This implies that

ahΩi
(eni , e

n
i ) −→ 0, as n→∞, i = 1, 2, . . . ,m.(4.20)

Therefore, if α(x) ≥ α0 > 0, one then obtains (4.17) from (4.20) immediately . We
now consider the general case. Since eni vanishes at the node points of ∂Γi, it is then
easy to check that (ahΩi

(·, ·))1/2 is a norm on Si for Ωi ⊂ G1. It follows from
equivalence of norms in Si that

‖eni ‖h(Ωi) −→ 0, as n→∞ ∀ Ωi ⊂ G1.(4.21)

Clearly, (4.21) implies that∫ ∗
γij

|eni |2ds −→ 0, as n→∞ ∀ Ωi ⊂ G1, j �= i.(4.22)

Moreover, by using (4.12), (4.20), and (4.22), we can have that∫ ∗
γij

|gnij |2ds −→ 0, as n→∞ ∀ Ωi ⊂ G1, j �= i.(4.23)

Therefore, it follows from (4.13), (4.22), and (4.23) that∫ ∗
γij

|gnij |2ds −→ 0, as n→∞ ∀ Ωi ⊂ G2, Ωj ⊂ G1,(4.24)

∫ ∗
γij

|eni |2ds −→ 0, as n→∞ ∀ Ωi ⊂ G2, Ωj ⊂ G1.(4.25)

Notice that, for Ωi ⊂ G2,aΩi(·, ·) +
∑

Ωj⊂G1

∫ ∗
γij

| · |2ds
1/2

(4.26)
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is a norm on Si. Hence, (4.20), (4.25), and (4.26) imply that

‖eni ‖h(Ωi) −→ 0, as n→∞ ∀ Ωi ⊂ G2.(4.27)

Similarly, we can show that, for r ≥ 3,

‖eni ‖h(Ωi) −→ 0, as n→∞ ∀ Ωi ⊂ Gr.(4.28)

Since the number of Gr is less than m, we have proved (4.18). This finishes the proof.

5. Convergence rate estimates. This section discusses the convergence rate
of Algorithm II for quasi-uniform partition Th. Let

W =

m∏
i=1

Si, Λ =
∏

1≤i�=j≤m
meas(γij)>0

Sh(γij).(5.1)

Also, let Af : W × Λ �−→ W × Λ be an affined mapping defined by (4.1)–(4.2) of
Algorithm II. That is,

[un+1, gn+1] = Af [u
n, gn],(5.2)

where [un+1, gn+1] satisfies (3.1)–(3.2). We then have the following lemma.
Lemma 5.1. Let u ∈ Sh be the solution of the problem (1.5), and let u ≡

(u |Ωi) ∈ W . Then there exists g ∈ Λ such that [u, g] is a fixed point of Af .
Conversely, let [u, g] ∈W be a fixed point of Af and u ∈ L2(Ω) satisfying u |Ωi

= ui.
Then u ∈ Sh is the solution of the problem (1.5).

Proof. If u ∈ Sh is the solution of (1.5), we have that, by taking g = (g∗ij) ∈ Λ
in (4.5),

ahΩi
(ui, v) +

∑
1≤j≤m

j �=i

λij
βij

∫ ∗
γij

uivds = (f, v)Ωi +
∑

1≤j≤m
j �=i

1

βij

∫ ∗
γij

gijvds ∀v ∈ Si.

(5.3)

From the definition of g∗ij of Lemma 5.1, it is easy to check that

gij(p) = 2λiju(p)− gji(p) ∀p ∈ γij ∩Nh, 1 ≤ j �= i ≤ m, meas(γij) > 0.(5.4)

Therefore, (5.3) and (5.4) immediately imply that [u, g] is a fixed point of Af .
Conversely, if [u, g] is a fixed point of Af , that is, [u, g] satisfies (5.3)–(5.4), it

follows from (5.3)–(5.4) that by some direct computations

ui(p) = uj(p) ∀ p ∈ γij ∩Nh, 1 ≤ j �= i ≤ m, meas(γij) > 0,(5.5)

m∑
i=1

ahΩi
(u, v) =

m∑
i=1

(f, v)Ωi
∀ v ∈ Sh.(5.6)

It is not difficult to see from (5.5) and (5.6) that u ∈ Sh, and u is the solution of (1.5).
The proof is completed.

Furthermore, if we let A = Af |f=0, F = Af (0, 0), then A is a linear mapping,
indeed, which is the iterator (iterative matrix) of Algorithm II, and satisfies

Af [u, g] = A[u, g] + F,(5.7)

[en+1
i , gn+1] = A[eni , g

n].(5.8)
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Theorem 5.2. Let ρ(A) be the spectral radius of A. Then we have

ρ(A) < 1.(5.9)

Proof. Let µ be an eigenvalue of A, and let [e, g] �= [0, 0] be its corresponding
eigenvector. Then we have that A[e, g] = µ[e, g], that is,

ahΩi
(ei, v) +

∑
1≤j≤m

j �=i

λij
βij

∫ ∗
γij

eivds =
∑

1≤j≤m
j �=i

1

βij

∫ ∗
γij

gijvds ∀v ∈ Si,(5.10)

µgij(p) = 2λijej(p)− gji(p) ∀ p ∈ γij ∩Nh, 1 ≤ j �= i ≤ m.(5.11)

Therefore, these, together with Theorem 4.1, imply that

µ2|||g|||2∗ = |||g|||2∗ − 4

m∑
i=1

ahΩi
(ei, ei).(5.12)

This means that |µ| ≤ 1 and |µ| = 1 if and only if

ahΩi
(ei, ei) = 0 ∀ i = 1, 2, . . . ,m.(5.13)

We next show that |µ| < 1, that is, |µ| �= 1. If |µ| = 1, then (4.13) implies that
each ei is a constant over Ωi. We then have that since ei vanishes at nodal points
on ∂Ωi ∩ ∂Ω

ei = 0 in Ωi ∀ Ωi ⊂ G1.(5.14)

Moreover, from (5.10) and (5.11), we can obtain

gij = 0 on γij ∀ Ωi ⊂ G1, j �= i,(5.15)

gij = 0 on γij ∀ Ωi ⊂ G1, Ωj ⊂ G2,(5.16)

ei = 0 on γij ∀ Ωi ⊂ G1, Ωj ⊂ G2.(5.17)

Then (5.13)–(5.16) imply that

ei = 0 in Ωi ∀ Ωi ⊂ G2.(5.18)

Similarly, we can consider other Ωi ⊂ Gr(r ≥ 3). Therefore, we have shown that

ei = 0 in Ωi ∀ i = 1, 2, . . . ,m,(5.19)

gij = 0 on γij ∀ 1 ≤ i �= j ≤ m, meas(γij) > 0,(5.20)

that is, [e, g] = [0, 0]. This is a contradiction. Hence, |µ| < 1. Therefore, (5.9) is
proved.

Theorem 5.3. Assume that α(x) ≥ α0 > 0 , and{
βij = βji = β > 0 ∀ 1 ≤ i �= j ≤ m, meas(γij) > 0,

λij = λji = λ > 0 ∀ 1 ≤ i �= j ≤ m, meas(γij) > 0.
(5.21)
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We then have the following convergence rate estimates for Algorithm II:

|||gn+1|||∗ ≤
(
1− 4

Ch−1(λ−1 + β−1λ) + 2

)1/2

|||gn|||∗,(5.22)

‖un − u‖h ≤ C(α)

(
1− 4

Ch−1(λ−1 + β−1λ) + 2

)n/2
|||g0|||∗,(5.23)

where C is a constant independent of finite element mesh size h.
Proof. It follows from (4.9)–(4.14) and (5.21) that∑

j �=i

1

βijλij

∫ ∗
γij

|gnij |2ds(5.24)

=
∑
j �=i

1

βijλij

∫ ∗
γij

|(gnij − λije
n
i ) + λije

n
i |2ds

=
∑
j �=i

(
1

βijλij

∫ ∗
γij

|gnij − λije
n
i |2ds+

λij
βij

∫ ∗
γij

|eni |2ds

+
2

βij

∫ ∗
γij

(gnij − λije
n
i )e

n
i ds

)

=
∑
j �=i

(
1

βijλij

∫ ∗
γij

|gnij − λije
n
i |2ds+

λij
βij

∫ ∗
γij

|eni |2ds
)

+ 2 ahΩi
(eni , e

n
i ).

Taking v ∈ Si such that

v(p) =

{
gnij(p)− λije

n
i (p) at p ∈ γij ∩Nh, j �= i,

0 at p ∈ Nh\γij , j �= i,

and plugging v into (4.9), we have∑
j �=i

1

βij

∫ ∗
γij

|gnij − λije
n
i |2ds =

∑
j �=i

1

βij

∫ ∗
γij

(gnij − λije
n
i )vds

= ahΩi
(eni , v) ≤

(
ahΩi

(eni , e
n
i )
)1/2 (

ahΩi
(v, v)

)1/2
.

On the other hand, it follows from some direct calculations that

ahΩi
(v, v) ≤ Ch−1

∑
j �=i

∫ ∗
γij

|v|2ds.(5.25)

Then we have that∑
j �=i

1

βij

∫ ∗
γij

|gnij − λije
n
i |2ds ≤ Ch−1ahΩi

(eni , e
n
i ).(5.26)
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It also follows from α(x) > α0 > 0 and some direct calculations that∑
j �=i

∫ ∗
γij

|eni |2ds ≤ Ch−1(eni , e
n
i )Ωi ≤ Ch−1ahΩi

(eni , e
n
i ).(5.27)

Therefore, using (5.21) and (5.24)–(5.27) and summing for i = 1, 2, . . . ,m, we have

|||gnij |||2∗ ≤ (Ch−1(λ−1 + β−1λ) + 2)

m∑
i=1

ahΩi
(eni , e

n
i ).(5.28)

Thus, from (5.28) and Lemma 4.2, we have

|||gn+1
ij |||2∗ ≤

(
1− 4

Ch−1(λ−1 + β−1λ) + 2

)
|||gnij |||2∗,(5.29)

‖un − u‖2h ≤ (1 + ‖α‖L∞(Ω))

m∑
i=1

ahΩi
(eni , e

n
i )(5.30)

≤ 1

4
(1 + ‖α‖L∞(Ω))|||gnij |||2∗.

Finally, (5.29) and (5.30) imply (5.22) and (5.23) immediately. The proof is completed.
Corollary 5.4. With the assumption of Theorems 5.2 and 5.3, we then have

ρ(A) ≤
(
1− 4

Ch−1(λ−1 + β−1λ) + 2

)1/2

.(5.31)

From (5.22)–(5.23) of Theorem 5.3 and (5.31) of Corollary 5.4, it is not hard to
see that if we take

λ = O(h−1) and β = O(h−2),(5.32)

then there exists a positive constant δ independent of h such that(
1− 4

Ch−1(λ−1 + β−1λ) + 2

)1/2

≤ 1− δ.(5.33)

This means that the method has an optimal convergence rate if (5.32) holds.
Corollary 5.5. With the assumption of Theorems 5.2 and 5.3, if (5.32) holds,

there then exists a positive constant δ independent of finite element mesh size h such
that

|||gn+1|||∗ ≤ (1− δ) |||gn|||∗,(5.34)

‖un − u‖h ≤ C(α) (1− δ)
n |||g0|||∗,(5.35)

ρ(A) ≤ (1− δ) .(5.36)

Notice that Algorithm II can become a classic iterative method of linear systems if
every individual element of Th is chosen as a subdomain. Therefore, Corollary 5.5 im-
plies that Algorithm II indeed constructs a classic iterative method with a contracted
number independent of finite element mesh size h for solving the nonconforming finite
element problem (1.5). That is, an optimal iterative method can be constructed by
Algorithm II.
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6. Notes on unstructured finite element meshes. This section extends the
conclusions of Algorithm II developed in the last two sections to the unstructured
finite element meshes (cf. [4, 9]). This means that the finite element triangulation
Th is not a quasi-uniform finite element partition. First, we consider Theorem 4.4
and Theorem 5.2, which are about the convergence of Algorithm II. It is not hard to
check that the quasi-uniform and regular properties of the finite element partition Th
have never been used in the proof of Theorem 4.4 and Theorem 5.2. This means that
Theorem 4.4 and Theorem 5.2 still hold even for Th without either quasi-uniform or
regular properties.

Theorem 6.1. Assume that the finite element partition Th is not required to be
either a quasi-uniform or a regular property. Then the conclusions of Theorem 4.4
and Theorem 5.2 still hold. That is,

‖un − u‖h ≡
 m∑
i=1

∑
τ∈Th,τ⊂Ωi

‖uni − u‖2H1(τ)

1/2

−→ 0, as n→∞,(6.1)

ρ(A) < 1,(6.2)

where all of the undefined notations are the same as those in Theorem 4.4 and Theo-
rem 5.2.

We then consider the conclusions of the convergence rates, which include Theorem
5.3, Corollary 5.4, and Corollary 5.5. After carefully checking their proofs, we have
found that the quasi-uniform and regular properties of the finite element partition Th
have been used in three formulas (5.25)–(5.27). In fact, not the global quasi-uniform
and regular properties of Th but only the local quasi-uniform and regular properties
on the subdomain Ωi have been used in (5.25)–(5.27).

Let Thi
be the subpartition of Th on Ωi, where hi is the mesh size of Thi

. In
other words, Thi is the restriction of Th on Ωi. Furthermore, we assume that every
subpartition Thi

is quasi-uniform. Therefore, we have that (5.25)–(5.27) still hold.
Hence, we have that∑

j �=i

∫ ∗
γij

|gnij − λije
n
i |2ds ≤ Ch−1

i ahΩi
(eni , e

n
i ),(6.3)

∑
j �=i

∫ ∗
γij

|eni |2ds ≤ Ch−1(eni , e
n
i )Ωi ≤ Ch−1

i ahΩi
(eni , e

n
i ).(6.4)

Therefore,

|||gnij |||2∗ ≤ max
1≤i �=j≤m

[
Ch−1

i (λ−1
ij + β−1

ij λij) + 2
] m∑
i=1

ahΩi
(eni , e

n
i ).(6.5)

Assume that fij is any fixed element face on the interface γij with meas(γij) > 0.
Let {

λij = λji = O((m(fiij))
−1), 1 ≤ i �= j ≤ m,

βij = βji = O((m(fij))
−2), 1 ≤ i �= j ≤ m,

(6.6)

where

m(fij) =

{
meas(fij) if N = 2,√
meas(fij) if N = 3.

(6.7)
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Notice that the sub-partition Thi is quasi-uniform. Then, λij = O(h−1
i ) and βij =

O(h−2
i ). Thus, if (6.6) holds, there then is a positive constant δ0 independent of hi

such that

4 < Ch−1
i (λ−1

ij + β−1
ij λij) + 2 < δ0, 1 ≤ i �= j ≤ m.

This implies that there is a positive constant δ independent of hi such that(
1− 4

max1≤i �=j≤m[(Ch−1
i (λ−1

ij + β−1
ij λij) + 2]

)1/2

≤ 1− δ.(6.8)

Therefore, in view of the proof of Theorem 4.4 and (6.3)–(6.8), we have the following
convergence rate estimates for the unstructured finite element mesh Th.

Theorem 6.2. Assume that the finite element partition Th is piecewise quasi-
uniform. This means that Th is an unstructured mesh, but each of its subpartitions
Thi

is a quasi-uniform mesh. Let βij and λij satisfy (6.6). Then there is a positive
constant δ independent of hi (i = 1, 2, . . . ,m) such that

|||gn+1|||∗ ≤ (1− δ) |||gn|||∗,(6.9)

‖un − u‖h ≤ C(α) (1− δ)
n |||g0|||∗,(6.10)

ρ(A) ≤ (1− δ) ,(6.11)

where all of the undefined notations are the same as those in Corollary 5.5.
Finally, we consider a very special case, in which every individual element of Th

is chosen as a subdomain. For this special case, in the last section we mentioned that
Algorithm II indeed produces a classic iterative method with optimal convergence
if Th is quasi-uniform. We now show that this conclusion is still true even for the
unstructured finite element mesh Th, which is not quasi-uniform but regular. It is not
very difficult to see that (5.25)–(5.27) hold with the same constant C for all of the
subdomain Ωi that is an individual element of Th if Th is regular. Also, notice that,
in this special case, the element face fij of (6.6) is just the interface γij . Thus, (6.7)
can be rewritten as{

λij = λji = O((m(γij))
−1), 1 ≤ i �= j ≤ m,

βij = βji = O((m(γij))
−2), 1 ≤ i �= j ≤ m,

(6.12)

where m(γij) is defined as m(fij) in (6.6). Therefore, (6.8) still holds if λij and βij
satisfy (6.12). Thus, we have the following theorem.

Theorem 6.3. Let Th be not a quasi-uniform but a regular finite element trian-
gulation. Assume that every individual element of Th is chosen as a subdomain. If
βij and λij satisfy (6.12), then Algorithm II produces a classic iterative method with
the optimal convergence rate for the linear system (1.5). That is, there is a positive
constant δ independent of the mesh size of Th such that

ρ(A) ≤ (1− δ) ,(6.13)

where, as in Corollary 5.5, A is the iterative matrix and ρ(A) is the spectral radius
of A.
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7. Conclusion. In this paper, a parallel nonoverlapping domain decomposition
iterative procedure based on a Robin-type consistency condition on the artificial inter-
faces is developed and analyzed. The key difference between the method of this paper
and other similar methods is that an extra parameter βij , called penalty coefficient,
is introduced. For partial differential problems, it can be regarded as a variant of the
famous Lions method of [18] as well as the method of [7, 8]. However, unlike the Lions
method, it does not have the regularity trouble of subproblems. For finite element
problems, the weak formulation of this method can be formally derived from the weak
formulation of the method in [7, 8] by introducing a penalty coefficient βij into the
terms of artificial interfaces. Hence, as explained in the introduction, this method,
like the method of [7, 8], can be regarded as a bridge connecting direct methods and
iterative methods of linear systems in the sense of parallel algorithms. More impor-
tantly, because of introducing the penalty coefficient βij , this method could reach the
optimal convergence rate even for unstructured meshes while choosing the right pa-
rameters, but the method of [7, 8] could not. Furthermore, the idea of this paper can
be extended and applied to other problems and other discrete methods (for instance,
mixed finite element methods, nonsymmetric and noncoercive scalar wave problems,
etc.). We will consider some of these topics as well as the numerical experiments and
analyses including comparisons to the other similar methods in future work. Finally,
we conclude this paper with the following table of the results of two simple examples
with Ω = [0, 1]2 and exact solution u = sin(π x) sin(π y). The numerical experiments
are implemented on a group of Sun Workstations (440 MHz CPU) by using MPI to
implement the communications. In the numerical experiments, Th is a three-fixed
direction uniform triangulation with mesh size (leg’s length) h; the domain decom-
position is a uniform decomposition, in which all subdomains are congruent small
squares; each subdomain (subproblem) is assigned to its own processor (machine),
and no processor (machine) takes care of more than one subdomain (subproblem);
the stop criterion is 10−5; λij = h−1 and βij = h−2.

h α(x) Subdomains Iterations ‖un − un−1‖∞ ‖u− un‖∞ CPU time

.0125 1 16 27 9.9930E-6 6.5241E-4 4.93

.0100 1 25 26 6.4735E-6 5.4508E-4 4.81

.0125 0 16 28 4.8359E-6 7.1063E-4 5.05

.0100 0 25 26 8.5771E-6 6.5489E-4 4.76
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Abstract. The class of continuous piecewise linear (PL) functions represents a useful family
of approximants because invertibility can be readily imposed, and if a PL function is invertible,
then it can be inverted in closed form. Many applications, arising, for example, in control systems
and robotics, involve the simultaneous construction of a forward and inverse system model from
data. Most approximation techniques require that separate forward and inverse models be trained,
whereas an invertible continuous PL affords, simultaneously, the forward and inverse system model
in a single representation. The minvar algorithm computes a continuous PL approximation to data.
Local convergence of minvar is proven for the case when the data generating function is itself a PL
function and available directly rather than through data.
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1. Introduction. In this paper, we present minvar, a novel algorithm for com-
puting continuous multidimensional piecewise linear (PL) approximations to data.
The algorithm takes advantage of the structure of PL functions to provide a compu-
tationally effective approximation technique. This paper provides a local convergence
proof for the special case when the data generating function is itself PL and is available
directly rather than through discrete data.

Our interest in the PL family is driven by applications that require approximation
of both forward and inverse functions from data. In xerography, for example, the
print engine’s color space transformation is required to stabilize color reproduction,
while its inverse is required to generate printer specific color mixture commands in
response to inputs expressed in device independent color coordinates [21, 23]. The
field of robotics is rife with examples where changes of coordinates play a key role: in
mobile robot navigation [27, 32, 33]; in the representation of gaits [31, 34]; in sensor
based manipulation [8]; as well as in calibration [42]. Since a change of coordinates
is a continuous and continuously invertible function, building a custom change of
coordinates amounts to a search for the appropriate forward and inverse function.
Representations of scalar invertible functions are required for certain machine tool
calibration problems [24], for certain automobile fuel control settings [17], as well
as for probability density estimation [15]. In all such settings, most approximation
techniques require the construction of distinct forward and inverse representations,
because the approximations are not invertible in closed form. In addition to doubling
the effective training effort, accuracy suffers since the approximation of the inverse is
not exactly the inverse of the forward approximation. In contrast, invertibility of PL
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functions can be verified and even imposed geometrically, that is, by well characterized
and computationally effective techniques arising from geometric insights. Moreover,
if a PL function is invertible, it can be inverted in closed form. Thus a single PL
approximation is ideal for applications requiring the approximation of a function and
its inverse.

A substantial amount of mathematical literature on real function approximation
(see, for example, [6, 9, 29]), largely concerned with linear-in-parameters techniques,
deals extensively with algorithms, fundamental limits, convergence rates, and families
of bases in approximating functions. Recent activity has been spurred by evidence
that nonlinear-in-parameters function families offer improved approximation rates in
higher dimensions as compared to linear-in-parameters representations [3]. Recently,
approximation methods that employ collections of local approximations have received
increasing attention [1, 16, 38]. However, very little of this linear- or nonlinear-
in-parameters literature addresses the problem of function approximation under the
constraint of invertibility.

PL functions have been addressed in a number of different settings. Algebraic
topologists used PL homeomorphisms to classify topological spaces [36] but did not
address computational considerations. The study of splines, piecewise polynomials
with continuity and smoothness constraints, includes PL functions [7, 10, 35]. Splines
are typically extended to multiple dimensions by means of tensor products. The do-
main partition is then a tensor product of partitions of the individual dimensions
and the approximant is the sum of tensor products of scalar spline functions. A
multidimensional linear spline is then multilinear, that is, linear in each variable sep-
arately, rather than truly linear. General splines enjoy no invertibility properties.
Moreover, most of the spline literature assumes the domain partition to be fixed, in
which case approximation of the best L2 spline is a linear-in-parameters problem.
Allowing the partition to change introduces a nonlinear-in-parameters problem. The
multivariate adaptive regression spline (MARS) literature admits a limited nonlinear
parameterization by allowing the basis to adapt but does not allow general motion
of the domain partition [16, 38]. The piecewise polynomial literature addresses the
problem of finding (possibly discontinuous) piecewise polynomial approximations to
an explicitly known scalar function. In this setting, the domain partition is consid-
ered as part of the approximation’s parameterization. For scalar functions, there are
results for the existence of a best approximation by possibly discontinuous piecewise
polynomials under certain generalized convexity conditions [4, 18]. Algorithms simi-
lar in flavor to the scalar specialization of minvar were introduced in [2, 25, 26]. A
treatment of discontinuous piecewise polynomial approximations on two-dimensional
triangulations is provided in [39]. Also, [40] provides an algorithm for a moving mesh
finite element solution to variational problems. A specialization of this moving mesh
algorithm is finding the best Lp, p finite and even, continuous piecewise polynomial
approximation to a function. Both of these algorithms [39, 40], as well as the piecewise
polynomial literature in general [2, 25, 26], assume that the function to be approxi-
mated is available directly, and the algorithms entail steps, such as root finding, that
incorporate the function intrinsically. In contrast, the minvar algorithm is defined for
arbitrary (finite) dimension and can either use a finite set of data or directly use the
function to be approximated.

Motivated by applications that require the approximation of invertible functions,
we have developed the minvar algorithm for computing PL approximations to a set
of discrete data. In the context of these applications, PL approximations offer the
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substantial benefit of closed form invertibility. When the domain partition is fixed,
computing the best PL approximation is a linear-in-parameters problem that can be
solved using classical techniques. Treating the partition as a component of the ap-
proximation’s parameterization gives a much more powerful approximant, at the cost
of entering the nonlinear-in-parameters problem domain. In nonlinear-in-parameters
problems, one can generally expect only local, as opposed to global, convergence
properties. Moving the domain partition of a PL function, or triangulation, as for-
mally defined in the next section, has an added difficulty. A triangulation has both
continuous and combinatorial parameters that interact in complex ways. Not all com-
binations of continuous and combinatorial parameters yield a proper triangulation.
Triangulations in two and three dimensions have been studied extensively in the com-
putational geometry literature [13, 30], but results for general dimension are more
scarce, notwithstanding significant recent progress [5, 14, 28]. The price of using a
family of finitely parameterized homeomorphisms, the PL approximations, is the cost
of managing the combinatorial complexities of PL functions.

This paper is divided into five main sections. Section 2 provides a careful definition
of the concept of a triangulation, relating it to the parameterization of PL functions.
Section 3 introduces and defines the minvar algorithm. Section 4 provides a local
convergence proof for the minvar algorithm when the data generating function is
piecewise linear. Section 5 presents a numerical example.

2. Triangulations and PL functions. The ability to check invertibility of a
PL function, and to invert it in closed form, derives from the interplay between the
PL function’s combinatorial and continuous parameters. This interplay provides much
power but also creates potential pitfalls. For example, changing the continuous param-
eters inappropriately with respect to the combinatorial structure can cause “tangles”
in the domain partition. Triangulations in general dimension, the key concept in
understanding PL functions, are still an area of active research in computational ge-
ometry. While the minvar algorithm can be stated using only an intuitive notion of
triangulation, further analytical insight, such as the local convergence proof provided
in section 4, is limited without a much more careful definition. This section provides
definitions of triangulations and PL functions to facilitate the exposition. For fur-
ther background, see [41] for an introduction to concepts in convexity and [13] for an
introduction to the geometric concept of triangulations.

2.1. Simplices. An affine subspace V ⊆ R
d is a linear subspace L ⊆ R

d trans-
lated by some xo ∈ R

d, i.e., V = L + xo. The dimension of V is dim(V ) := dim(L).
The affine hull of a set U ⊆ R

d, aff(U), is the smallest affine subspace containing U .
A finite set of points U ⊆ R

d is affinely independent if for i = 1, . . . , d, no affine sub-
space of dimension i contains more than i+1 points from U . The convex hull of a set
U ⊆ R

d, conv(U), is the smallest convex set containing U . A simplex, s, is the convex
hull of a (finite) set V ⊆ R

d of affinely independent points, s = conv(V). The set of
the extreme points, or vertices, of s, V = vert(s), uniquely defines s.1 The dimension
of s is l = dim(s) = dim(aff(s)) = card (V)− 1, where card (V) is the cardinality of V,
and s is called an l-simplex. There can be at most d+1 affinely independent points in
R
d, and thus there are simplices of dimension −1, 0, 1, . . . , d, where by convention ∅ is

1vert is a pseudoinverse of conv, not a true inverse, since if U ⊆ s, then s = conv(U ∪ vert(s)).
The concept of vertices of a simplex is a special case of the more general notion of extreme points
of a convex body. The Krein–Milman theorem [41] states that any convex compact set in R

d is the
convex hull of its extreme points.
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D(S, ε)
S

D(S,−ε)
ε ε

Fig. 2.1. The 2-simplex S with its ε and −ε dilations. The point at the center is where dilation
degenerates to a single point.

considered a simplex with dim(∅) := −1. We may apply a partial order to simplices.
Given two simplices s1, s2, we say that s1 ≤ s2 if and only if vert(s1) ⊆ vert(s2), in
which case we call s1 a face of s2. If dim(s2) = d and dim(s1) = d− 1, then we also
call s1 a facet of s2. In this paper we will predominantly be interested in d-simplices,
so we adopt the convention that a capital S indicates a d-simplex, while a lowercase
s denotes a simplex of any dimension.

Let S be a d-simplex with vert(S) = {p1, . . . , pd+1}. The ε dilation of S, written
D(S, ε), is defined as

D(S, ε) :=
x =

d+1∑
j=1

αjpj

∣∣∣∣∣
d+1∑
j=1

αj = 1 ∀j, αj ≥ −ε
δ(pj , aff(vert(S)− {pj}))

 ,(2.1)

where δ(p,U) is the distance from point p to the nonempty set U . Figure 2.1 illustrates
the dilation of a 2-simplex. D(S, ε) is well defined for

ε ≥ −
d+1∑
j=1

1/δ(pj , aff(vert(S)− {pj}))
−1

.

When equality holds, D(S, ε) is a single point; otherwise it is a d-simplex with facets
parallel to Si, but distance |ε| away, with S ⊆ D(S, ε) for ε > 0, and D(S, ε) ⊆ S for
ε < 0. (See Claim 3 in Appendix A for the dilation’s properties.)

2.2. Triangulation. An abstract simplicial complex is a collection of finite sets
S satisfying the following: if α ∈ S and β ⊆ α, then β ∈ S. The vertex set of an
abstract simplicial complex is the set

{
x
∣∣x ∈ α, α ∈ S}.

A geometric simplicial complex is a collection K of simplices in R
d satisfying

1. s1 ∈ K and s2 ≤ s1 =⇒ s2 ∈ K,
2. s1, s2 ∈ K =⇒ s1 ∩ s2 ≤ s1, s2.

The vertex set of a geometric simplicial complex is vert(K) := ⋃
s∈K vert(s). The

underlying space of a geometric simplicial complex is |K| := ⋃s∈K s.
A subcomplex is a subset of a simplicial complex that is itself a simplicial complex.

The closure of a subset L ⊆ K is the smallest subcomplex that contains L,
ClL := {α ∈ K∣∣α ≤ β, β ∈ L} .

The star of a simplex s is the set of all simplices that contain s,

St s :=
{
s′ ∈ K∣∣s ≤ s′

}
.
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The star is not in general a subcomplex.
We can parameterize2 a geometric simplicial complex K in R

d by the pair (P,S),
where P is an indexed set of n unique points in R

d,

P =
{
p1, p2, . . . , pn

}
,

and S is an abstract simplicial complex with vertex set {1, 2, . . . , n}. Let3

K(P,S) = {conv(P (α))∣∣α ∈ S} .
K(P,S) is a geometric simplicial complex if

1. for all α ∈ S, the points in P (α) are affinely independent,
2. s1, s2 ∈ K(P,S) =⇒ s1 ∩ s2 ≤ s1, s2,

and, moreover, if these properties hold, then vert(K(P,S)) = P . Proofs of these
properties are provided in [20].

A triangulation4 T is a geometric simplicial complex in R
d for which the un-

derlying space is a k-manifold with boundary. Since a triangulation is a type of
geometric simplicial complex, it can be parameterized in the same manner. We write
T (P,S) := K(P,S) to indicate that the resulting geometric simplicial complex gener-
ated by the pair (P,S) is a triangulation.

In this paper, we will deal only with triangulations which are d-manifolds with
boundary that have a simply connected underlying space.

For notational convenience, we assume that the triangulation T = K(P,S) has N
d-simplices that have been indexed and named Si, i = 1, . . . , N . Let Si, Sj ∈ T . We
then define

di,j := dim(Si ∩ Sj) = card (vert(Si ∩ Sj))− 1,

the dimension of the face shared by Si and Sj . Let Ni be the number of d-simplices
in St{pi},

Ni =
∑

Sj∈St pi

1.

2.3. PL functions. A continuous PL function fP : D ⊆ R
d → R

d is parame-
terized by a triplet P = (P,Q,S). P is an indexed set of n points in the domain and
Q is an indexed set of n points in the codomain,

P =
{
p1, p2, . . . , pn

}
, Q =

{
q1, q2, . . . , qn

}
.

2This is not formally a parameterization, because there are some pairs (P,S) for which K(P,S) is
not a geometric simplicial complex. However, for any geometric simplicial complex K, we can write
down a pair (P,S) such that K = K(P,S).

3Formally, an indexed set P of n points in R
d is a map P : {1, 2, . . . , n} → R

d. The ith member
of P is P (i), which we generally write as pi for notational convenience. Here we extend the notion
of P sets. Let α ⊆ {1, 2, . . . , n}; then P (α) := {

P (i)
∣∣i ∈ α

}
.

4There is no formal definition of triangulation in geometry [13]. The definition of triangulation
used here is slightly more general than the one used in [14], which requires that the underlying space
be the convex hull of the vertex set. A triangulation as defined here which has a simply connected
underlying space may be transformed to a triangulation as defined in [14] by a PL homeomorphism.
The key concept in our definition is that a triangulation has good local volume properties everywhere.
The underlying space has no “thin” spots. In topology, a triangulation of a topological space X is
formally defined as a geometric simplicial complex K coupled with a homeomorphism between |K|
and X . The definition of triangulation used in this paper is more narrow than the topological notion.
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S is an abstract simplicial complex of indices with vert(S) = {1, . . . , n} such that
T (P,S) is a triangulation and |T (P,S)| = D. This defines a continuous PL function
fP such that fP(pi) = qi, and for any S ∈ T (P,S), fP(x) is affine on S. For a
d-simplex Si ∈ T (P,S) with vert(Si) = {pi1 , pi2 , . . . , pid+1

}, the PL function fP(x)
for x ∈ Si is given by

fP
∣∣
Si
(x) =

[
qi1 qi2 · · · qid+1

] [pi1 pi2 . . . pid+1

1 1 1

]−1 [
x
1

]
.(2.2)

Equation (2.2) uses a homogeneous representation for the rightmost two factors,
though fP |Si

can be equivalently expressed in the more typical form as Aix + bi.
The d-simplices of T (P,S) are a cover for D. If Si ∩ Sj �= ∅, and fP

∣∣
Si
(x) = Aix+ bi

and fP
∣∣
Sj
(x) = Ajx+ bj , then Aix+ bi = Ajx+ bj for x ∈ Si ∩Sj . This follows from

Claim 5 in Appendix A, which states that (Ai − Aj) has a null space of dimension
di,j parallel to aff(Si ∩ Sj).

One of the most compelling properties of PL functions is the ability to check
invertibility and invert in closed form. Let fP be a PL function parameterized by
P = (P,Q,S). If T (Q,S) is a triangulation, then the PL function is invertible, and
the inverse fP−1 is a PL function parameterized by P−1 = (Q,P,S). This is proven
in Claim 7 in Appendix A.

Another important fact applied in proving the main result of section 4 is the con-
tinuity of a PL function in its continuous parameters. This claim, stated formally in
Claim 6 in Appendix A, establishes that two PL functions with the same combina-
torial structure are close in the L∞ sense if their vertices are close in the Euclidean
sense.

We call a PL function fP parameterized by P = (P,Q,S) nondegenerate if for all
pi ∈ P such that pi �∈ ∂ |T (P,S)| the matrix Hi is full rank, where

Hi =

 1

Ni

∑
Sj∈St{pi}

Aj
TAj

−AiTAi, where Ai =
1

Ni

∑
Sj∈St{pi}

Aj .

Intuitively, nondegeneracy of fP requires that for any pi �∈ ∂ |T (P,S)| not all of the
affine functions that fP takes in the surrounding d-simplices are parallel.

3. The minvar algorithm. The minvar algorithm is an iterative scheme to gen-
erate a locally good PL approximation to data. Similar to algorithms proposed in the
possibly discontinuous piecewise polynomial approximation literature [2, 25, 26, 39],

minvar takes advantage of the structure of PL functions. Let Z = {(xi, yi)}Ns

i=1, where
xi ∈ D ⊆ R

d and yi ∈ R
d, be the set of input-output data to be approximated. The

minvar algorithm iteratively improves a PL approximation to the data, f
(k)
P , param-

eterized by P(k) = (P (k), Q(k),S), such that
∣∣T (P (k),S)∣∣ = D. (The superscript in

parentheses indicates the iteration number.) The algorithm breaks down into two
stages. The first stage partitions the data according to the d-simplices of T (P (k),S)
and computes the least squares linear approximations for each subset of the data.
This set of linear approximations is the optimal possibly discontinuous PL approx-
imation on the partition T (P (k),S). The second stage chooses (P (k+1), Q(k+1)) to

make f
(k+1)
P , a continuous PL function, be “close” to the discontinuous approxima-

tion from the first stage. The stages are then iterated.
Recall from the previous section that the domain of a PL function is |T (P,S)|,

so moving a vertex pi ∈ ∂ |T (P,S)| will change the domain of definition of the PL



MINVAR ALGORITHM FOR PIECEWISE LINEAR APPROXIMATION 989

function. Since we desire a fixed domain for the PL function, the present exposition
considers vertices on the domain boundary to be fixed. This can be relaxed to al-
low boundary vertices that are not extreme points to move in appropriately chosen
affine subspaces using a constrained version of the cost function from step 3 of the
minvar algorithm. Computational details of constrained motion will be presented in
a subsequent paper on engineering applications of minvar.

From an initial parameterization P(0) = (P (0), Q(0),S), the minvar algorithm
generates a sequence of parameterizations, P(k) = (P (k), Q(k),S), as follows:

1. Partition the data set Z into subsets Zj corresponding to the d-simplices,
S1, . . . , SN of T (P (k),S), breaking multiple memberships (data points that
lie on the boundary between d-simplices) systematically.

2. Compute the least squares affine approximation, Lj(x), for each subset Zj .
3. Update the vertex locations,

p
(k+1)
i = argmin

x∈Rd

varLi(x) + λ
∥∥∥x− p

(k)
i

∥∥∥2

∀ p(k)
i �∈ ∂

∣∣∣T (P (k),S)
∣∣∣ ,(3.1)

p
(k+1)
i = p

(k)
i otherwise,(3.2)

q
(k+1)
i =

1

Ni

∑
Sj∈St{pi}

Li
(
p
(k+1)
i

)
∀ i,(3.3)

where Lj(x) = Ajx+ bj and

varLi(x) =
∑

Sj∈St{pi}

Lj(x)− 1

Ni

∑
Sk∈St{pi}

Lk(x)

2

.

4. If the vertices are not converged, then k ← k + 1, go to 1.

Notice that (3.1) is a positive definite quadratic function of x, and thus can be mini-
mized in closed form by “completing the square,” with the solution given by

p
(k+1)
i = −Hi

−1hi,(3.4)

where

Hi =

 1

Ni

∑
Sj∈St{pi}

Aj
TAj

−AiTAi + λI,

hi =

 1

Ni

∑
Sj∈St{pi}

Aj
Tbj

−AiTbi − λp
(k)
i ,

Ai =
1

Ni

∑
Sj∈St{pi}

Aj bi =
1

Ni

∑
Sj∈St{pi}

bj .

The nonnegative quantity varLi(x) measures, as a function of location in the domain
x, how tightly clustered the range values generated from the least squares approx-
imations on d-simplices in St{pi} are. In the case of a scalar domain, an interior
vertex pi is in at most two 1-simplices. Thus, if the least squares approximations are
not parallel, then varLi(xc) = 0 at and only at xc, the domain value of the point
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at which the least squares approximations intersect. In the scalar case, the minvar

algorithm with λ = 0 moves the domain and codomain vertices to the intersection
point of the least squares approximations. We called our initial scalar algorithm the
“Graph Intersection” algorithm [22] due to this fact. For dimensions higher than 1,
there is generically no unique intersection point for the least squares approximations
surrounding pi, due to the geometry of triangulations. Rather than the intersection
point, minvar with λ = 0 picks the point where the range values are most tightly
clustered.

The λ term in (3.1) is a regularization. It guarantees that (3.1) will have a unique
minimum, even if all the least squared approximations are parallel. More importantly,
in the implementation of minvar the λ parameter can be tuned to prevent a vertex
from jumping long distances and creating a “tangle” in the domain triangulation of
the approximation. A tangle is when movement of the vertices causes T (P,S) to
no longer be a geometric simplicial complex. That is, either a simplex has been
“flattened” or there are simplices whose intersection is not another simplex from
the complex. This generally occurs when a domain vertex moves through one of its
opposing faces. Methods for detecting and correcting triangulation tangles will be
covered in a subsequent paper on using minvar in engineering applications.

In this exposition, minvar does not modify the combinatorial structure, S, of
the PL approximation. Heuristics for adapting the domain triangulation of a two-
dimensional PL function are presented in [12, 11] for interpolation and [39] for ap-
proximation. These heuristics flip edges in the domain triangulation to improve a
local goodness criterion, similar to a method for computing the planar Delaunay tri-
angulation. Generalizing these heuristics to higher dimensions is difficult because
local topological changes of the triangulation in dimensions greater than two are
more complex than edge flipping [28, 14]. Nonetheless, we find that adaptation of the
combinatorial parameters of the PL function via topological flipping provides signifi-
cant benefit in practice. Techniques for adapting the combinatorial structure will be
presented in a subsequent paper on engineering applications of minvar.

4. A local convergence proof for the minvar algorithm. We turn now to
the central result: a local convergence proof for the minvar algorithm. The result is
for the “approximation,” as opposed to “estimation,” version of the minvar algorithm.
That is, the data generating function is considered to be directly available in closed
form, rather than through a set of discrete data. In this case, the least squares
approximations from step 2 become L2 orthogonal projections of f∗P |Si

, the data
generating function restricted to Si, to the space of affine functions. Since the data
or data generating function only appear in step 2, the approximation version may
be viewed as the limit behavior of the estimation version when provided with an
unbounded quantity of uniformly distributed data.

Theorem 4.1 shows that, if the data generating function is a nondegenerate PL
function and the approximation is initialized “close enough” to the data generating
function, then the minvar algorithm with λ = 0 will cause the approximation to
converge to the data generating function in the L∞ sense. In this case, “close enough”
means that the initial approximation shares the same combinatorial structure as the
data generating function, and the vertices of the approximation start close to the
corresponding vertices of the data generating function. Examining minvar when λ = 0
admits a simpler proof while capturing the essence of the algorithm. Similar results
could be obtained for λ > 0, though the convergence rate would be slower. An
additional technical condition, that the data generating function be nondegenerate,
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is required when λ = 0 in order to guarantee existence of a unique solution to (3.1),
whereas for λ > 0 the regularized variance minimization in (3.1) is guaranteed to have
a unique solution.

In this paper, unless otherwise noted, vector norms are the standard Euclidean
norm and matrix norms are the induced two norm.

Theorem 4.1. Let f∗P be a nondegenerate PL data generating function param-
eterized by P∗ = (P ∗, Q∗,S∗). Let ε0 = ε0(P∗) be given by (4.7). Let the initial

approximation f
(0)
P be parameterized by (P (0), Q(0),S∗), satisfying for some ε < ε0,

‖p(0)
i − p∗i ‖ < ε, for all i. Then application of the minvar algorithm with λ = 0 yields

a sequence of approximations satisfying

lim
j→∞

∥∥∥f (j)
P − f∗P

∥∥∥
∞
= 0.

Proof. Proposition 4.5 shows that iteration of the minvar algorithm causes the
vertices of the approximation to converge to the vertices of the data generating func-
tion. By Claim 6 in Appendix A, a PL function is continuous in its vertices. The
theorem follows directly.

The theorem follows readily from Proposition 4.5, which likewise follows readily
from Proposition 4.4. The statements and proofs of the propositions and lemmas
follow in the next subsections, but first we offer a short sketch of the structure of the
proof. The essence of Proposition 4.4 is that when the distances between the vertices
of the approximation and the corresponding vertices of the data generating function
are bounded by ε, then after one iteration of the minvar algorithm the distances will
be bounded by a constant times ε2. This result is established by applying two lemmas
corresponding to the two stages of the algorithm. Lemma 4.2 proves that if the dis-
tances between corresponding vertices are bounded by ε, then the perturbation of the
least squares affine map over a given simplex of the approximation from the affine map
in the corresponding simplex of the data generating function is bounded by a constant
times ε2. Lemma 4.3 proves that if the perturbation of the least squares affine map
over a simplex of the approximation from the affine map in the corresponding simplex
of the data generating function is bounded by ∆, then the variance minimization will
place the new vertices of the approximation such that the distance between them and
the corresponding vertices of the data generating function are bounded by a constant
times ∆. The combination of Lemmas 4.2 and 4.3 provides Proposition 4.4.

The quadratic rate of convergence in Proposition 4.4 arises from the hypothesis
that the data generating function is piecewise linear and close to the initial approxi-
mation. Without this assumption, Lemma 4.2 would fail to provide an ε2 perturbation
in the least squares affine approximations. In this case, we suspect the convergence
rate of the algorithm to be linear. Convergence may be slower on fine triangulations,
but since this algorithm is intended primarily for use with a discrete set of data, the
fineness of the triangulation is inherently limited by the amount of data provided. In
applications, minvar can run triangulations of practical size in a few minutes.

4.1. Lemmas and propositions. This section states the lemmas and propo-
sitions, while the proofs are provided in the following section. First, we introduce
several reoccurring constants. These constants may be interpreted geometrically as
minima or maxima of different measures of the “radii” of d-simplices in the triangu-
lation T (P ∗,S∗) of the data generating function. The first measures the maximum
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inter-vertex distance between “connected” vertices,

r1 := max
S∗∈T (P∗,S∗)

p∗i ,p
∗
j∈S∗

∥∥p∗i − p∗j
∥∥ .(4.1)

The second measures the minimum distance of a vertex to its opposing hyperplanes,

r2 := min
S∗∈T (P∗,S∗)

p∗∈vert(S∗)

δ(p∗, aff(vert(S∗)− {p∗})) .(4.2)

The third measures the d-simplex which can be dilated the least before it intersects
simplices outside its immediate neighborhood.

r3 := min
S∗∈T (P∗,S∗)

sup
{
ε
∣∣∣D(S∗, ε) ⊆ |Cl StS∗|} .(4.3)

The first lemma shows that if the domain vertices of the approximation are close
to the domain vertices of the data generating function, then least squares affine fit in
a simplex Si is a perturbation away from the affine function that the data generating
function takes in S∗i . Moreover, the perturbation is quadratic in the bound on the
distance between the approximation and data generating function’s domain vertices.
We write Π(f) to denote the L2 orthogonal projection of the function f onto the space
of affine functions.

Lemma 4.2. Let f∗P be a PL data generating function parameterized by P∗ =
(P ∗, Q∗,S∗). Consider a PL approximation fP parameterized by P = (P,Q,S∗). Let
ε < εc, where

εc := min
{

1
2(d+1)r2, r3, 1

}
.(4.4)

Consider the simplices S∗i and Si. Let xc ∈ S∗i . Let f
∗
P |S∗

i
(x) = A∗i (x − xc) + b∗i .

If
∥∥pj − p∗j

∥∥ < ε for all p∗j ∈ S∗i , then the least squares approximation to f∗P on Si,

Π(f∗P |Si)(x) = Âi(x− xc) + b̂i, satisfies the property∥∥∥∥[ÂiT −A∗i
T

b̂i
T − b∗i

T

]∥∥∥∥
2

< c1,iε
2,(4.5)

where c1,i = c1,i(P∗) is given by (4.18).
The second lemma considers one set of affine functions that all intersect at a

common point and another set of affine functions which are perturbations of the first
set of functions. It is shown that performing the variance minimization, equivalent
to (3.1) with λ = 0, on the second set of functions generates a point whose distance
from the intersection point is linear in the norm of the perturbations.

Lemma 4.3. Let L∗ be a set of N affine maps, L∗1, . . . L
∗
N , such that all intersect

at (p∗, q∗) and are written as L∗i (x) = A∗i (x − p∗) + q∗, and such that H∗, given by
(4.20), is full rank. Let L be a set of perturbed affine maps, L1, . . . LN , expressed as
Li(x) = Âi(x− p∗) + q̂i, which satisfy the property∥∥∥∥[ÂiT −A∗i

T

q̂i
T − q∗T

]∥∥∥∥ < ∆(4.6)
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for ∆ < ∆0, where ∆0 = ∆0(A
∗
i , p
∗, q∗) is given by (4.19). Let p′ and q′ be given by

p′ = argmin
x

var L(x),

q′ =
1

N

N∑
i=1

L(p′).

Then p′ and q′ satisfy

‖p′ − p∗‖ < c2∆,

‖q′ − q∗‖ < c3∆,

where c2 = c2(A
∗
i , p
∗, q∗) and c3 = c3(A

∗
i , p
∗, q∗) are given by (4.23) and (4.24).

The first proposition brings the two lemmas together to show that a single step of
the minvar algorithm induces a quadratic change in the distance of the approximation
vertices to the data generating function vertices.

Proposition 4.4. Let f∗P be a nondegenerate PL data generating function pa-
rameterized by P∗ = (P ∗, Q∗,S∗). Let ε < εd,

εd := min

{
εc,

√
∆m

0

c1

}
,

where εc = εc(P∗) is given by (4.4), ∆m
0 = ∆m

0 (P∗) by (4.25), and c1 = c1(P∗) by
(4.27).

If the PL approximation fP parameterized by (P,Q,S∗) satisfies ‖pi − p∗i ‖ <
ε for all i, then one iteration of the minvar algorithm with λ = 0 gives the new
approximation f ′P parameterized by (P

′, Q′,S∗), which satisfies
‖p′i − p∗i ‖ < c4ε

2,

‖q′i − q∗i ‖ < c5ε
2,

for all i, where c4 = c4(P∗) and c5 = c5(P∗) are given by (4.31) and (4.32).
The second proposition applies the first proposition to show that iteration of

the minvar algorithm causes convergence of the vertices of the approximation to the
vertices of the data generating function.

Proposition 4.5. Let f∗P be a nondegenerate PL data generating function pa-
rameterized by (P ∗, Q∗,S∗). Let

ε0 = min

{
εd,

1

c4

}
,(4.7)

where εd and c4 are given in Proposition 4.4. If for some 0 < ε < ε0 the initial PL

approximation f
(0)
P with parameterization (P (0), Q(0),S∗) satisfies ‖p(0)

i − p∗i ‖ < ε
for all i, then iteration of the minvar algorithm with λ = 0 gives a sequence of

approximations f
(k)
P satisfying

lim
k→∞

∥∥∥p(k)
i − p∗i

∥∥∥ = 0,

lim
k→∞

∥∥∥q(k)
i − q∗i

∥∥∥ = 0

for all i.
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4.2. Proofs of lemmas and propositions. This section presents proofs of the
lemmas and propositions stated in the previous section.

Proof of Lemma 4.2. Let ϕi(x) := A∗i (x− xc) + b∗i , the extension of f
∗
P |S∗

i
to the

entire domain. Let ψi(x) := f∗P(x)− ϕi(x).
The orthogonal projection Π is a linear operator, and, moreover, for g affine,

Π(g) = g. It follows that

Π(f∗P |Si) = Π(ϕi|Si
) + Π(ψi|Si

)

= ϕi +Π(ψi|Si
).(4.8)

Let Âi and b̂i be such that Π(f∗P |Si
)(x) = Âi(x − xc) + b̂i. Then from (4.8) it

follows that Π(ψi|Si
) = (Âi − A∗i )(x − xc) + (b̂i − b∗i ). Moreover, since Π(ψi|Si

) =

Π(f∗P |Si − ϕi|Si
), we can compute (Âi − A∗i ) and (b̂i − b∗i ) using the formula for the

L2 orthogonal projection of f∗P |Si
− ϕi|Si

,[
(Âi −A∗i )

T

(b̂i − b∗i )
T

]
= Sxx,i

−1Sxy,i,

Sxx,i =

∫
Si

[
x− xc
1

] [
xT−xcT 1

]
dx, Sxy,i =

∫
Si

[
x− xc
1

]
(f∗P(x)− ϕi(x))

Tdx.

The submultiplicative property holds for the induced two norm,∥∥∥∥[(Âi −A∗i )
T

(b̂i − b∗i )
T

]∥∥∥∥ ≤ ∥∥Sxx,i−1
∥∥ ‖Sxy,i‖ ,

so we can independently establish bounds on
∥∥Sxx,i−1

∥∥ and ‖Sxy,i‖. We will proceed

to bound
∥∥Sxx,i−1

∥∥. Since Si is a d-simplex, it follows from calculus and the definition
of Sxx,i that Sxx,i is a positive definite matrix. Let M

∗
i be given by

M∗i :=
∫
D(S∗

i ,−εc)

[
x− xc
1

] [
xT−xcT 1

]
dx.

Since 0 < ε < εc by hypothesis and εc ≤ 1
2(d+1)r2 by definition, it follows from Claim 3

in Appendix A that D(S∗i ,−εc) is a d-simplex. Thus M∗i is also positive definite, and
hence invertible. Since ε < εc and the vertices or Si are all less than ε away from the
vertices of S∗i , it follows that D(S∗i ,−εc) ⊆ Si. Thus, x

TM∗i x < xTSxx,ix for all x,
which implies that λmin(M) < λmin(Sxx,i). This provides the bound on

∥∥Sxx,i−1
∥∥,∥∥Sxx,i−1

∥∥ <
∥∥M∗i −1

∥∥ .
Now we proceed to ‖Sxy,i‖. By the properties of norms,

‖Sxy,i‖ ≤
∫
Si

∥∥∥∥[x− xc
1

]∥∥∥∥ ‖ψi(x)‖ dx.(4.9)

Let C(Si, ε) = {x ∈ R
d|δ(x, Si) ≤ ε}. By hypothesis, the vertices of Si are less than

ε away from the vertices of S∗i , so vertSi ⊆ C(S∗i , ε). Moreover, since both Si and
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C(S∗i , ε) are convex, Si ⊆ D(S∗i , ε). The integrand in (4.9) is nonnegative definite, so
(4.9) is bounded by

≤
∫
C(S∗

i ,ε)

∥∥∥∥[x− xc
1

]∥∥∥∥ ‖(ψi(x))‖ dx.
By hypothesis xc ∈ S∗i . By the definition of r1 and since ε < εc, it follows that for all
x ∈ C(S∗i , ε), ‖x− xc‖ ≤ r̄ := r1 + 2εc. Thus, the integral above is further bounded
by

≤
√
1 + r̄2

∫
C(S∗

i ,ε)

‖(ψi(x))‖ dx.(4.10)

Once again the integrand is nonnegative definite, so (4.10) can be bounded by inte-
grating over D(S∗i , ε), since C(S∗i , ε) ⊆ D(S∗i , ε),

≤
√
1 + r̄2

∫
D(S∗

i ,ε)

‖(ψi(x))‖ dx(4.11)

=
√
1 + r̄2

N∑
j=1

∫
Uj

‖(ψi(x))‖ dx,(4.12)

where Uj = D(S∗i , ε) ∩ S∗j and N is the total number of d-simplices in the domain
triangulation. Since ψi(x) = 0 on S∗i , the term corresponding to j = i in (4.12) is 0.
By hypothesis ε < εc ≤ r3, so then following from the definition of r3, S

∗
j ∩D(S∗i , ε) �= ∅

if and only if S∗j ∈ StS∗i . Thus the terms in (4.12) are only nonzero for j such that
S∗j is incident to S∗i . Consider such a term,∫

Uj

‖ψi(x)‖ dx =
∫
Uj

∥∥(A∗j −A∗i
)
(x− xc) + b∗j − b∗i

∥∥ dx,
where f∗P |S∗

j
(x) = A∗j (x − xc) + b∗j . By Claim 5 in Appendix A, there exists xO ∈

S∗j ∩ S∗i ⊆ Uj such that
(
A∗j −A∗i

)
(xO − xc) + b∗j − b∗i = 0. Applying the change of

coordinates y = x− xO gives∫
Uj

‖ψi(x)‖ dx =
∫
Uj−xO

∥∥(A∗j −A∗i
)
y
∥∥ dy.(4.13)

Let L be the linear subspace parallel to aff(S∗i ∩ S∗j ). Recall that dimL = dimS∗i ∩
S∗j := di,j . By Claim 5 in Appendix A, L ⊆ N ((A∗j −A∗i

)
). Let v1, . . . , vdi,j be an

orthonormal basis for L. Let vdi,j+1, . . . , vd be an orthonormal basis for L⊥. Then
P =

[
v1 v2 · · · vd

]
is an orthogonal matrix. Rewrite (4.13) under the change of

coordinates z = PTy,

=

∫
PT(Uj−xO)

∥∥(A∗j −A∗i
)
Pz
∥∥ dz.(4.14)

Since the integrand is a nonnegative definite function, we may bound (4.14) by increas-
ing the volume over which the integrand is integrated. By Claim 4 in Appendix A,
there exists κi,j such that for all x ∈ Uj , δ

(
x, aff(S∗i ∩ S∗j )

)
< κi,jε. Equivalently

δ(y, L) < κi,jε for any y ∈ Uj − xO, from which it follows that the projection
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of y onto L⊥ must have magnitude less than κi,jε. Moreover, by the definition
of r̄, the projection of y onto L must have magnitude less than r̄. It follows that
PT(Uj − xO) ⊆ [−r̄, r̄]di,j × Bd̄i,j (κi,jε), where d̄i,j = d − di,j and Bd̄i,j (κi,jε) is the

d̄i,j-dimensional ball of radius κi,jε. Then (4.14) is bounded by

≤
∫

[−r̄,r̄]di,j×Bd̄i,j
(κi,jε)

∥∥(A∗j −A∗i
)
Pz
∥∥ dz.(4.15)

The first di,j columns of
(
A∗j −A∗i

)
P are zero, since the first di,j columns of P are

in the nullspace of
(
A∗j −A∗i

)
. Thus, the integrand in (4.15) has no dependence on

z1, z2, . . . , zdi,j , so we can integrate through for z1, . . . , zdi,j , giving

= (2r̄)di,j
∫
Bd̄i,j

(κi,jε)

∥∥∥∥(A∗j −A∗i
)
P

[
I
0

]
z̄1

∥∥∥∥ dzdi,i+1 . . . dzd,(4.16)

where z̄1
T =

[
zdi,j+1 · · · zd

]
T. Since the first di,j columns of

(
A∗j −A∗i

)
P are

zero and P is orthogonal, it follows that ‖(A∗j −A∗i
)
P
[
I 0

]T‖ ≤ ‖A∗j −A∗i ‖. Thus,
(4.16) can be further bound by

≤ (2r̄)di,j
∥∥A∗j −A∗i

∥∥∫
Bd̄i,j

(κi,jε)

‖z̄1‖ dz̄1.(4.17)

From calculus (see, for example, [37]) it can be shown that5∫
Bk(ε)

‖w‖ dw =
k

k + 1

πk/2

Γ(k/2)
εk+1.

Applying this with (4.17) to (4.12), and then simplifying using the fact that εm ≤ ε2

for m ≥ 2 since ε < εc ≤ 1, gives

‖Sxy,i‖ ≤
√
1 + r̄2 li max

j s.t. j �=i,

S∗
j ∈StS∗

i

(
(2r̄)di,j

∥∥A∗j −A∗i
∥∥κi,j1+d̄i,j d̄i,j

d̄i,j + 1

π(d̄i,j)/2

Γ((d̄i,j)/2)

)
ε2,

where li =
∑
S∗
j ∈StS∗

i
1. Then∥∥∥∥[ÂiT −A∗i

T

b̂i
T − b∗i

T

]∥∥∥∥ ≤ ∥∥Sxx,i−1
∥∥ ‖Sxy,i‖

< c1,iε
2,

where

c1,i :=
∥∥M∗i −1

∥∥√1 + r̄2 li max
j s.t. j �=i,

S∗
j ∈StS∗

i

(
(2r̄)di,j

∥∥A∗j −A∗i
∥∥κi,j1+d̄i,j d̄i,j

d̄i,j + 1

π(d̄i,j)/2

Γ((d̄i,j)/2)

)(4.18)

5For even k, Γ(k/2) = (k/2)!. For odd k, let k′ = 1
2
(k − 1); then Γ(k/2) = Γ( 1

2
+ k′) =

√
π (2k′+2)!

(k+1)!4k
′+1

.
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and d̄i,j = d− di,j , li =
∑
S∗
j ∈StS∗

i
1, and r̄ = r1 + 2εc.

Proof of Lemma 4.3. Let the constant ∆0 from the statement of the lemma be
given by

∆0 := min

 1

N

N∑
j=1

∥∥A∗j∥∥ ,

12

N

∥∥H∗−1
∥∥ N∑
j=1

∥∥A∗j∥∥
−1

 ,(4.19)

where H∗ is given by (4.20).
Solving p′ = argminx var L(x) is equivalent to solving (3.1) with λ = 0. As

with (3.1), a closed form expression for p′ can be found by “completing the square.”
Specifically, p′ = H−1h,

H :=

 1

N

N∑
j=1

Âj
TÂj

− ÂTÂ,

h :=

 1

N

N∑
j=1

Âj
T(q̂j − Âjp

∗)

− ÂTb̂,

where Â = 1
N

∑N
j=1 Âj and b̂ = 1

N

∑N
j=1(q̂j−Âjp∗). Let Ãj = Âj−A∗j and q̃j = q̂j−q∗.

Then H = H∗ + H̃ and h = h∗ + h̃, with

H∗ :=

 1

N

N∑
j=1

A∗j
TA∗j

−A∗TA∗,(4.20)

h∗ :=

 1

N

N∑
j=1

A∗j
T(q∗ −A∗jp

∗)

−A∗T,

H̃ =
1

N

 N∑
j=1

(A∗j + Ãj)
TÃj +

N∑
j=1

Ãj
TA∗j

−A∗TÃ − ÃTA∗ − ÃTÃ,

h̃ =
1

N

 N∑
j=1

(A∗j + Ãj)
T(q̃j − Ãjp

∗) +
N∑
j=1

Ãj
T(q∗ −A∗jp

∗)

−A∗Tb̃ − ÃTb∗ − ÃTb̃,

where

A∗ =
1

N

N∑
j=1

A∗j , b∗ =
1

N

N∑
j=1

(q∗ −A∗jp
∗),

Ã =
1

N

N∑
j=1

Ãj , b̃ =
1

N

N∑
j=1

(q̃j − Ãjp
∗).

Notice that H∗ and h∗ depend only on A∗j , p
∗, and q∗. Moreover, since all functions

in L∗ go through (p∗, q∗), it must be that p∗ = argminx var L∗(x), and thus p∗ =
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H∗−1h∗. Rewriting p′ = H−1h, gives (H∗ + H̃) (p∗ + (p′ − p∗)) = h∗ + h̃. Applying
H∗p∗ = h∗ and solving for p′ − p∗ yields

p′ − p∗ =
(
H∗ + H̃

)−1 (
h̃− H̃p∗

)
.

From the hypothesis it follows that ‖Ãj‖ < ∆ and ‖q̃j‖ < ∆. Applying these bounds
and the properties of norms, it follows after some computation that

∥∥∥H̃∥∥∥ ≤ 2∆2 +
4∆

N

N∑
j=1

∥∥A∗j∥∥ ,
∥∥∥h̃∥∥∥ ≤ 2 (1 + ‖p∗‖)∆2 +

2∆

N

N∑
j=1

[∥∥A∗j∥∥ (1 + ‖p∗‖) + ‖q∗‖+ ∥∥A∗j∥∥ ‖p∗‖] .
Since ∆ < ∆0 and by definition ∆0 ≤ 1

N

∑N
j=1

∥∥A∗j∥∥, the above bounds may be
further simplified to

∥∥∥H̃∥∥∥ <

 6

N

N∑
j=1

∥∥A∗j∥∥
∆,(4.21)

∥∥∥h̃∥∥∥ <

 2

N

N∑
j=1

[
2
∥∥A∗j∥∥ (1 + ‖p∗‖) + ‖q∗‖+ ∥∥A∗j∥∥ ‖p∗‖]

∆.(4.22)

Also by definition ∆0 ≤ ( 12
N ‖H∗−1‖∑N

j=1 ‖A∗j‖)−1, so the bound in (4.21) can be

simplified to ‖H̃‖ < 1
2‖H∗−1‖ , and thus ‖H∗−1H̃‖ < 1

2 . From [19], if M ∈ R
n×n and

‖M‖ < 1, then I −M is nonsingular and ‖(I −M)−1‖ ≤ 1
1−‖M‖ . Some computation

using this fact and the bound on ‖H∗−1H̃‖ provides∥∥∥(H∗ + H̃)−1
∥∥∥ < 2

∥∥H∗−1
∥∥ .

So then

‖p′ − p∗‖ ≤
∥∥∥∥(H∗ + H̃

)−1
∥∥∥∥∥∥∥h̃− H̃p∗

∥∥∥
≤ 2

∥∥H∗−1
∥∥(∥∥∥h̃∥∥∥+ ∥∥∥H̃∥∥∥ ‖p∗‖)

< c2∆,

where c2 :=
4
∥∥H∗−1

∥∥
N

N∑
j=1

(
6
∥∥A∗j∥∥ ‖p∗‖+ 2

∥∥A∗j∥∥+ ‖q∗‖) ,(4.23)

which is the first part of the desired result. Applying this bound and the definition
of q′, we find after some computation that

‖q′ − q∗‖ < c3∆,
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where c3 := 1 +
2c2
N

N∑
j=1

∥∥A∗j∥∥(4.24)

which completes the desired result.
Proof of Proposition 4.4. Let

∆m
0 = min

i s.t.
p∗i∈P∗

 1

Ni

Ni∑
j=1

∥∥∥A∗ij∥∥∥ ,

 12

Ni

∥∥H∗i −1
∥∥ Ni∑
j=1

∥∥∥A∗ij∥∥∥
−1

 ,(4.25)

where S∗i1 , . . . , S
∗
iNi

are the Ni d-simplices in St{p∗i }, and

H∗i =

 1

Ni

Ni∑
j=1

A∗ij
TA∗ij

−
 1

Ni

Ni∑
j=1

A∗ij

T

 1

Ni

Ni∑
j=1

A∗ij

 .

We will examine the effect of a single iteration of the minvar algorithm on pi ∈ P ,
qi ∈ Q. The results will hold independently of i, giving the desired result.

The first stage of the minvar algorithm calculates the least squares projection
Π(f∗P |Si) in each d-simplex Si of the approximation (step 2 of the algorithm; since
this proposition addresses the approximation version of the problem, there is no par-
titioning of data to be performed in step 1). Let Si1 , . . . , SiNi

be the d-simplices in
St{pi}. Since f∗P and fP are parameterized with the same abstract simplicial complex
S∗, S∗i1 , . . . , S∗iNi

are the d-simplices in St{p∗i }. Let f∗P |S∗
ij
(x) = A∗ij (x− p∗i ) + q∗i and

Π(f∗P |Si) = Âij (x − p∗i ) + q̂ij . Since ε < εd ≤ εc, it follows from Lemma 4.2 that for
each j = 1, . . . , Ni, ∥∥∥∥[ÂijT −A∗ij

T

q̂ij
T − q∗i

T

]∥∥∥∥ < c1,ij ε
2,(4.26)

where c1,ij is given by (4.18). Let

c1 = max
i=1,..,N

c1,i,(4.27)

where N is the total number of d-simplices in T (P,S∗). Then for j = 1 . . . , Ni,∥∥∥∥∥
[
Âij

T −A∗ij
T

b̂ij
T − b∗ij

T

]∥∥∥∥∥ < c1ε
2.(4.28)

Step 3 of minvar moves the knots taking (pi, qi) → (p′i, q
′
i). Since ε < εd ≤

√
∆m

0 /c1
by hypothesis, it follows that c1ε

2 < ∆m
0 . Thus, (4.28) implies that the bound in (4.6)

is satisfied, permitting application of Lemma 4.3, which gives

‖p′i − p∗i ‖ < c2,ic1ε
2,

‖q′i − q∗i ‖ < c3,ic1ε
2,

where

c2,i :=
4
∥∥H∗i −1

∥∥
Ni

Ni∑
j=1

(
6
∥∥∥A∗ij∥∥∥ ‖p∗i ‖+ 2

∥∥∥A∗ij∥∥∥+ ‖q∗i ‖) ,(4.29)

c3,i := 1 +
2c2,i
Ni

Ni∑
j=1

∥∥∥A∗ij∥∥∥ .(4.30)
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For each pi, qi we can compute such bounds. Let

c4 := c1 max
i

c2,i,(4.31)

c5 := c1 max
i

c3,i.(4.32)

Then, for all i, p′i and q′i satisfy

‖p′i − p∗i ‖ < c4ε
2,(4.33)

‖q′i − q∗i ‖ < c5ε
2,(4.34)

which is the desired result.
Proof of Proposition 4.5. First we establish by induction that for k ≥ 1,

1

c4
(c4ε)

2k

< εd,(4.35) ∥∥∥p(k)
i − p∗i

∥∥∥ <
1

c4
(c4ε)

2k

,(4.36) ∥∥∥q(k)
i − q∗i

∥∥∥ <
c5
c4

(c4ε)
2k

.(4.37)

For k = 1, c4ε
2 < εd since ε < ε0 ≤

√
εd/c4. For k > 1, 1

c4
(c4ε)

2k

< εd by the

induction hypothesis. Moreover, c4ε < 1 since ε < ε0 ≤ 1
c4
. Then 1

c4
(c4ε)

2(k+1)

=

( 1
c4
(c4ε)

2k

) (c4ε)
2k

< εd. This establishes (4.35). Since ε < ε0 ≤ εd, it follows that
for k = 1, after a single iteration of the minvar algorithm, (4.36) and (4.37) will hold

by Proposition 4.4. For k > 1, for all i, ‖p(k)
i − p∗i ‖ < 1

c4
(c4ε)

2k

by the induction

hypothesis. From (4.35), proven above, 1
c4
(c4ε)

2k

< εd. Since for all i, ‖p(k)
i − p∗i ‖ <

εd, it follows from Proposition 4.4 that∥∥∥p(k+1)
i − p∗i

∥∥∥ < c4

(
1

c4
(c4ε)

2k
)2

=
1

c4
(c4ε)

2(k+1)

,∥∥∥q(k+1)
i − q∗i

∥∥∥ < c5

(
1

c4
(c4ε)

2k
)2

=
c5
c4

(c4ε)
2(k+1)

,

which establishes (4.36) and (4.37). Since c4ε < 1, as argued above, it follows that
(4.36) and (4.37) go to 0 as k goes to infinity.

5. Numerical example. This section presents an example of the minvar algo-
rithm’s performance on a “test function,” f : [0, 1]2 → R

2, given by

f(x) =

[
tanh 5

8

(
2x1 − 4x2

4 + 3x2
2 − 1

)
tanh 5

8

(
2x1

2 − x1
4 + 2x2 − 1

)] ,(5.1)

which is invertible over the domain D = [0, 1]2. The implementation of minvar
constructs an approximation to a discrete set of data and includes constrained mo-
tion of boundary vertices as well as data dependent retriangulation. Since the test
function is neither piecewise linear nor directly available, Theorem 4.1 provides no
performance guarantees, but good performance under these circumstances suggests
minvar’s broader applicability. Two sets of numerical studies are presented. The first
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Fig. 5.1. Visualizations of the test function (lower right) and a series of PL approximations to
the test function. In each subfigure, the domain is displayed on the left and the range on the right.
Note that the approximations are invertible, since there are no tangles in the range triangulations.

examines the effects of varying the number of vertices in the PL approximation, and
the second examines how data set size affects approximations with a fixed number of
vertices.

The first set of experiments fits PL approximations of differing sizes to a single
data set. The data set was generated by sampling the test function on an 80×80 uni-
form grid over the domain. For each n = 2, . . . , 13, three different PL approximations
with n2 vertices were computed: (i) the least squares continuous PL approximation on
a fixed uniform triangulation of the domain (referred to as “uniform LS”), (ii) minvar,
initialized on a uniform triangulation of the domain (referred to as “minvar”), and
(iii) the least squares continuous PL approximation on the final triangulation from
minvar (referred to as “minvar LS”). Recall that when the domain triangulation
is fixed, the least squares continuous PL approximation problem becomes linear-in-
parameters and the solution can be computed directly [7, 35]. Figure 5.1 shows the
test function and several exemplars of the minvar approximations. Table 5.1 and
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Table 5.1
RMSE of approximations by uniform LS, minvar, and minvar LS.

Vertices Uniform LS minvar minvar LS

22 1.79801e-01 1.79818e-01 1.79801e-01
32 9.85617e-02 4.56123e-02 4.48297e-02
42 4.45294e-02 1.92465e-02 1.89605e-02
52 2.47517e-02 1.38427e-02 1.36523e-02
62 1.55282e-02 7.35190e-03 7.25304e-03
72 1.05933e-02 5.40420e-03 5.34596e-03
82 7.63439e-03 4.63040e-03 4.56706e-03
92 5.84815e-03 3.38636e-03 3.34218e-03
102 4.53419e-03 2.96688e-03 2.92793e-03
112 3.71421e-03 2.50778e-03 2.47792e-03
122 2.99647e-03 2.34302e-03 2.32279e-03
132 2.49846e-03 1.86386e-03 1.84316e-03

PL vertices

R
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E

uniform LS

minvar

32 42 52 62 72 82 92 102112122132

10-1

10-2

10-3

Size of data set

R
M
S
E

uniform LS

minvar

302 402 502 602 702 802 902 1002
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10-2

10-3

(a) (b)

Fig. 5.2. RMSE performance of minvar compared to a least squares continuous PL approxima-
tion on a uniform triangulation. (a) Vertices in approximation vs. RMSE for approximations to the
80×80 data set. (b) Density of training data set vs. RMSE on validation data for approximations
with 62 vertices.

Figure 5.2(a) show the root mean square error (RMSE) of the approximations as a
function of the number of vertices. For 22 domain vertices, all of them are on the
corners of the domain and must remain fixed, so minvar can change only the range
vertices. Since minvar is not guaranteed to give the least squares continuous PL
approximation for a given triangulation, it is not surprising that the uniform LS ap-
proximation’s RMSE is slightly lower than minvar’s in this case. The RMSE difference
between minvar and minvar LS approximations is less than 2%. Least squares could
be applied as a post processing step to minvar, but since the differences are relatively
small, this might not be necessary in application settings. From the triangulations
of the minvar approximations in Figure 5.1, the domain triangulations move farther
for lower numbers of vertices. As the number of vertices increases, the triangulations
visually seem to deviate less from the initial uniform triangulation. The RMSE per-
formance of minvar reflects this, giving the biggest reductions in RMSE as compared
to uniform LS for triangulations with 32 to 62 vertices. Since this study uses initial
conditions in which the vertices are on a uniform grid, approximations with large
numbers of vertices may be getting caught in local minima near their initial condi-
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tions. In this case, performance could be improved by refining converged less dense
approximations to create initial conditions for the dense approximations [39].

In the second set of experiments, PL approximations with 62 vertices were trained
using data sets of varying size. The PL approximations were chosen to have 62 vertices
because, as mentioned above, this is in the region of sizes where the performance gains
from minvar are greatest. The data sets were generated by sampling the test function
on a uniform n× n grid, n = 25, 30, 35, . . . , 100. The approximations were compared
using a validation data set generated by evaluating the test function at 1000 points
sampled from a uniform probability distribution over the domain. Figure 5.2(b) shows
the validation set RMSE for minvar and uniform LS. With a 20×20 data set, minvar
fails to run with a 62 vertex approximation, because as the vertices move, several
simplices shrink to the point that they do not contain enough data to make the linear
least squares approximation unique. Data sparsity is a serious issue in this type of
local approximation.

From this example, minvar shows marked benefit when the approximation has
relatively few vertices compared to the complexity of the test function. We expect
that minvar’s performance on higher order (more vertices) approximations could be
improved by seeding initial conditions based on lower order approximations. The
algorithm produces a consistent approximation to variously sized data sets, so long
as there is enough data for it to run.

6. Conclusion. Numerous applications require the simultaneous approximation
of a function and its inverse from a set of discrete data. While there is a substantial
literature on function approximation, very little of it addresses the constraint of in-
vertibility. The inverse of a continuous PL function can be computed in closed form,
which is ideal for applications requiring the approximation of a function and its in-
verse. In the PL literature, the partition is often fixed, in which case the minimum
squared error approximation problem is linear-in-parameters. The problem becomes
nonlinear-in-parameters when the domain partition is allowed to move.

The minvar algorithm is a novel method for computing continuous PL approx-
imations to data. Rather than using gradient descent on the parameters, minvar
takes advantage of the structure of PL functions, iteratively moving the vertices of
the approximation based on local least squares fits. The minvar algorithm is proven
to converge locally in the special case when the data generating function is itself PL
and available directly rather than through discrete data. While this result seems very
natural, complexity in the proof arises from the interaction of the domain triangula-
tions of the data generating function and its approximation. Indeed, many difficulties
in constructing PL approximations, such as triangulation tangles, arise primarily from
the combinatorial properties of PL functions. For general approximation problems,
this added complexity may cause PL approximation to appear less attractive than
other nonlinear-in-parameters approximation techniques, but for an important subset
of applications the PL function’s closed form invertibility makes the combinatorial
complexity cost effective.

The present work can be extended in several directions. The analysis here ad-
dresses the approximation rather than the estimation version of the problem. A
formal connection between the approximation and estimation versions could be con-
structed in the appropriate statistical framework. Similarly, there is no study of the
effects of noise on the convergence properties of minvar. Since data from the data
generating function are used only for computing the least squares approximations,
and least squares has good noise properties, the authors expect that the minvar al-
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gorithm will also have good noise properties. The present analytical work considers
only PL data generating functions. A desirable extension would be to show that the
algorithm converges to the locally best PL approximation, given that one exists. For
scalar functions there are generalized convexity conditions that characterize existence
and uniqueness of (possibly discontinuous) PL approximations [4, 18, 26], but the
authors are unaware of similar results for dimensions greater than one or with con-
tinuous piecewise approximations. Numerical experience suggests that minvar does
have good convergence properties on other types of functions. Practical application of
minvar raises a number of challenging issues such as constrained motion of vertices on
the boundary of the domain, methods to avoid and correct triangulation tangling, and
retriangulation or adaptation of the combinatorial parameters of the PL approxima-
tion. Due to space limitations, these topics will be addressed in detail in a subsequent
paper on the use of minvar in engineering applications.

Appendix A. Geometric properties of simplices and triangulations.
Proving properties of the minvar algorithms requires some insight into the under-
lying geometric structures upon which PL functions are constructed. This appendix
presents a number of geometry facts used in the proof of convergence. Proofs of these
facts are available in [20].

A.1. Barycentric coordinates as distances. It is often convenient to repre-
sent points in R

d using barycentric coordinates with respect to the vertices of some
d-simplex. Let p1, . . . , pd+1 be affinely independent points in R

d. Let x ∈ R
d and

let ᾱ =
[
α1 · · · αd+1

]
T be such that x =

∑d+1
i=1 αipi and

∑d+1
i=1 αi = 1. ᾱ are

called the barycentric coordinates of x with respect to p1, . . . , pd+1. If ᾱ ∈ ∆d+1 :=

{ᾱ ∈ R
d+1|αi ≥ 0,

∑d+1
i=1 αi = 1}, then x ∈ conv(p1, . . . , pd+1), and ∆d is called the

standard d-simplex.
The distance between a point x ∈ R

d and a nonempty set A ⊆ R
d is well defined

[41] and written as δ(x,A) := infz∈A ‖x− z‖. Let Hi = aff({p1, . . . , pd+1} − {pi}),
the hyperplane opposing pi. Let (ai, ci) be an implicit representation for Hi, that is,
Hi =

{
z ∈ R

d|aiTz + ci = 0
}
. The distance of a point x ∈ R

d to Hi is given by

δ(x,Hi) =

∣∣aiTx+ ci
∣∣

‖ai‖ .

We define δs(x,Hi) as the signed distance of x fromHi. That is, |δs(x,Hi)| = δ(x,Hi),
and δs(x,Hi) > 0 for x on the same side of Hi as pi, and δs(x,Hi) < 0 for x on the
opposite side of Hi as pi.

By the following claim, the barycentric coordinates of x can be interpreted as the
scaled distances of x from hyperplanes H1, . . . , Hd+1.

Claim 1. Let x ∈ R
d. Let ᾱ =

[
α1 · · · αd+1

]
T be the barycentric coordi-

nates of x with respect to the affinely independent points p1, . . . , pd+1 ∈ R
d. Then

δs(x,Hi) = αiδ(pi, Hi).
Similarly, the barycentric coordinates of x can be used to measure the distance

to an affine subspace that is the intersection of two or more of H1, . . . , Hd+1.
Claim 2. Let x ∈ R

d. Let ᾱ =
[
α1 · · · αd+1

]
T be barycentric coordinates

of x with respect to the affinely independent points p1, . . . , pd+1. The distance from
x to the affine subspace A = aff({p1, . . . pk}) is given by δ(x,A) = ᾱs

TGᾱs, where
ᾱs =

[
αk+1 αk+2 · · · αd+1

]
T and G ∈ R

(d−k+1)×(d−k+1) is a positive definite
matrix whose entries depend only on p1, . . . , pk.
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The explicit form for G, which derives from the Gram determinants used in the
proof, is provided in [20].

A.2. Properties of the dilation. The dilation arises in Lemma 4.2 in measur-
ing how the approximation’s mismatched triangulation affects the least squares affine
approximations. The first claim establishes the general properties of the dilation,
and the second claim establishes a relationship between incident d-simplices that is
required for the proof of Lemma 4.2.

Claim 3. Let S ⊆ R
d be a d-simplex with vertices p1, . . . , pd+1. Let

εmin = −
(
d+1∑
i=1

1/δ(pi, Hi)

)−1

,(A.1)

where Hi is the opposing hyperplane to pi, as defined above. D(S, εmin) is a single
point. For ε > εmin, D(S, ε) is a d-simplex, with faces parallel to and translated
distance |ε| away from the faces of S. For εmin ≤ ε ≤ 0, D(S, ε) ⊆ S, while for ε ≥ 0,
S ⊆ D(S, ε).

Claim 4. Let Sa, Sb ⊆ R
d be incident d-simplices, that is, Sa ∩ Sb = sab, where

sab ≤ Sa, Sb is a (k − 1)-simplex, 1 ≤ k < d − 1. Let vertSa = {p1, . . . , pd+1},
vertSb = {p1, . . . , pk, qk+1, . . . , qd+1}, and vert sab = {p1, . . . , pk}. Let A = aff sab.
Then ∃κa,b > 0 such that for all ε > 0, if x ∈ D(Sa, ε) ∩ Sb, then δ(x,A) < κa,bε.

A.3. Properties of PL functions. Claims pertaining to the parameterization,
continuity, and invertibility of PL functions are provided below.

Claim 5. Let fP be a continuous PL function parameterized by (P,Q,S). Let
Si, Sj ∈ T (P,S) be such that Si ∩ Sj �= ∅. Let Si ∩ Sj be a (k − 1)-simplex, so
then Si and Sj share k vertices in common. Let vertSi = {pi1 , . . . , pid+1

}, vertSj =
{pi1 , . . . , pik , pjk+1

, . . . , pjd+1
}, and vertSi ∩ Sj = {pi1 , . . . , pik}. Then,

1. fP in Si and Sj is given by

fP
∣∣
Si
(x) = UiVi

−1
[
xT 1

]
T, fP

∣∣
Sj
(x) = UjVj

−1
[
xT 1

]
T,

Ui =
[
qi1 · · · qid+1

]
, Uj =

[
qi1 · · · qik qjk+1

· · · qjd+1

]
,

Vi =

[
pi1 . . . pid+1

1 1

]
, Vj =

[
pi1 . . . pik pjk+1

. . . pjd+1

1 1 1 1

]
.

Then UiVi
−1
[
xT 1

]
T = UjVj

−1
[
xT 1

]
T for x ∈ aff(Si ∩ Sj).

2. In nonhomogeneous form, let fP
∣∣
Si
(x) = Aix + bi and fP

∣∣
Sj
(x) = Ajx + bj.

Let L be the linear subspace parallel to aff(Si ∩ Sj). Then L ⊆ N (Ai −Aj).
Claim 6 (continuity in vertices). Consider two continuous PL functions, f∗P

parameterized by P∗ = (P ∗, Q∗,S∗) and fP parameterized by (P,Q,S∗), such that
|T (P,S∗)| = |T (P ∗,S∗)|. Let c > 0. There exists c′ = c′(P∗, c) such that, for
0 < ε < r3, where

r3 = min
S∗∈T (P∗,S∗)

sup
{
ε
∣∣∣D(S∗, ε) ⊆ |Cl StS∗|} .(A.2)

If ‖pi − p∗i ‖ < ε and ‖qi − q∗i ‖ < cε for all i, then

‖fP − f∗P‖∞ < c′ε.

That is, a continuous PL function is continuous in its vertices.
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The explicit form for c′ is provided in [20].
Claim 7. Let fP be a PL function parameterized by P = (P,Q,S). If T (Q,S) is

also a triangulation, then the PL function is invertible on its range, and the inverse,
fP−1, is parameterized by P−1 = (Q,P,S).
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Abstract. We analyze a class of numerical schemes for solving the HJB equation for stochastic
control problems, which enters the framework of Markov chain approximations and generalizes the
usual finite difference method. The latter is known to be monotonic, and hence valid, only if the scaled
covariance matrix is dominant diagonal. We generalize this result by, given the set of neighboring
points allowed to enter the scheme, showing how to compute effectively the class of covariance
matrices that is consistent with this set of points. We perform this computation for several cases in
dimensions 2, 3, and 4.
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1. Motivation. This paper is devoted to the discussion of numerical algorithms
for solving stochastic optimal control problems. In order to simplify the presentation
of the main ideas, consider the following model problem (Fleming and Rishel [4] and
Lions and Bensoussan [7]):

(Px)



MinW (x, u) = E

∫ ∞
0

�(yx,u(t), u(t))e
−λtdt;{

dyx,u(t) = f(yx,u(t), u(t))dt+ σ(yx,u(t), u(t))dw(t),
yx,u(0) = x,

u(t) ∈ U, t ∈ [0,∞[.

Here yx,u(t) ∈ R
n is the state variable, u(t) ∈ R

m is the control variable that for almost
all t must belong to the set U ⊂ R

m, λ > 0 is the discounting factor, � : R
n×R

m → R

is a distributed cost, f : R
n × R

m → R
n is a deterministic dynamics, σ(·, ·) is a

mapping from R
n × R

m into the space of n × r matrices, and w is a standard r
dimensional Brownian motion. We are assuming full observation of the state, and
we are looking for a control in the class of feedback controls. In what follows we
assume f , σ, and � to be Lipschitz and bounded. Then the solution to the stochastic
differential equation and the associated cost are well defined (see, e.g., Fleming and
Soner [5]). The covariance matrix is defined as

a(x, u) := σ(x, u)σ(x, u)� ∀ (x, u) ∈ R
n × R

m,(1.1)

where by � we denote the transposition operator. It is known (see Lions [8] and
Fleming and Soner [5]) that the value function V of problem (Px), defined by V (x) =
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infuW (x, u), is the unique bounded viscosity solution of the Hamilton–Jacobi–Bellman
(HJB) equation

λV (x) = H(x, Vx(x), Vxx(x)) ∀ x ∈ R
n,(1.2)

the Hamiltonian H being defined as

H(x, p,Q) := inf
u∈U

�(x, u) + f(x, u) · p+ 1
2

n∑
i,j=1

aij(x, u)Qij

 ,(1.3)

where x ∈ R
n, p ∈ R

n, and Q is an n × n symmetric matrix. A basic idea for
discretizing this problem is as follows (an up-to-date synthesis of this approach is
given in Kushner and Dupuis [6]). Consider a regular grid Gh of discretization of
the state space R

n, with discretization steps h = (h1, . . . , hn). With the coordinate
k = (k1, . . . , kn) in Z

n is associated the point xk ∈ R
n of the form

xk := (k1h1, . . . , knhn).(1.4)

Of course the real computations should be performed on a finite grid. However, we
will not discuss this point, and we rather analyze the result of computations on this
infinite grid. Let us consider an optimal control problem for a Markov chain on the
grid Gh. Let {Xh

q , q ≥ 0} be the states of the Markov chain at time q, with transition

probabilities denoted ph(x, y | u), where u ∈ U is the canonical control value. Let

∆th be an interpolation interval satisfying ∆th → 0 as h → 0, and let E
h,u
k,q be the

conditional expectation of Xh
q+1, given that {Xh

q = xk}, and the control value u.
Suppose that the chain obeys the following local consistency conditions:

E
h,u
k,q

[
Xh
q+1 − xk

]
= ∆thf(xk, u) + o(∆th),(1.5a)

Covh,uk,q
[
Xh
q+1 − xk

]
= ∆tha(xk, u) + o(∆th),(1.5b)

sup
q

∣∣Xh
q+1 −Xh

q

∣∣→ 0.(1.5c)

A possible adaptation for the cost function to this Markov chain is the following:

Wh(x, uh) = ∆thE

∑
q≥0

�(Xh
q , u

h
q )(1 + λ∆th)−q−1

 ,(1.6)

where uh = (uhq ), and uhq ∈ U denote the random variable which represents the control
action for the chain at discrete time q. Then the dynamic programming equation for
the controlled chain {Xh

q , q ≥ 0} and the cost (1.6) is

V h(xk) = (1 + λ∆th)−1Min
u∈U

∆th�(xk, u) +
∑
y∈Gh

p(xk, y | u)V h(y)

(1.7)

for xk ∈ Gh. It is known that the function V h converges uniformly over compact sets
to the value function V for the original problem, as h→ 0, whenever the “local con-
sistency” conditions (1.5) are satisfied, the interpolation interval possibly depending
on (x, u); see Kushner and Dupuis [6].
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Now the Markov chain approximation method consists of finding a chain {Xh
q }

satisfying the “local consistency” (1.5). A standard way for the construction of such
an approximating chain is to use the finite difference approximations. However, this
works only if the matrix a has a dominant diagonal (see section 3 for details), whereas
this matrix may be an arbitrary semidefinite positive matrix. In some cases it is
possible to make a change of variables in the state space in order for this hypothesis
to be satisfied; see, e.g., Kushner and Dupuis [6, section 5.4]. However, when the
control enters the matrix σ, and hence also in a, this is no longer possible in general.
By contrast, the Markov chain approximation method is, in principle, able to handle
the case when the covariance matrix is not dominant diagonal. In fact, relation
(1.5) essentially gives linear relations (to be satisfied approximately) on the transition
probabilities, while the latter have to be nonnegative and of sum equal to 1. Several
questions then arise. First of all, since the Markov chain represents the discretization
of a partial differential equation, it is highly desirable to limit the transitions from one
point of the grid to other points that are not too far away. Also, for computational
complexity reasons, the number of transitions should be as small as possible.

We are led then to the following question. Given a point in the grid with coordi-
nate k and a control, choose a set of other points in the grid to which transitions are
allowed. For instance we may allow transitions to points for which the coordinates
k′ are such that |k′i − ki| ≤ 1 for all i. More generally, we choose a set of neighbors
defined by constraints on the difference of coordinates k′ − k. Is it possible then to
compute consistent transition probabilities? In other words, what is the class of co-
variance matrices that is compatible with such a choice of possible transitions? And
then what is the cost of computing the transition probabilities themselves? Finally,
on what basis should we choose the neighbors?

These are several delicate questions. The paper is essentially devoted to the first
of them, i.e., how to check the consistency condition. Note that our results apply also
to finite horizon problems, in which the value function depends on time and space,
since the analysis of consistency for these problems leads basically to questions of
the same nature. Similarly, we discuss only explicit schemes, but implicit schemes
(in connection to the policy iteration methods; see Kushner and Dupuis [6, section
6.2]) also lead to the same questions, and our results apply also to this case. Note
that in the case of a covariance matrix that is a smooth function of the state only,
it is possible to state a consistent approximation using finite elements; see Chung,
Hanson, and Xu [3]. However, it is not easy to extend this idea to the case when the
covariance matrix either is not differentiable or depends also on the control.

2. Generalized finite differences. Let us present a generalization of the usual
finite difference schemes; we will see later that these generalized finite differences are
in fact a particular case of Markov chain approximation. Let ϕ = {ϕk} be a real
valued function over Z

n. With ξ ∈ Z
n, associate the shift operator δξ defined by

δξϕk := ϕξ+k. Consider the finite difference operator ∆ξ = δξ + δ−ξ − 2δ0; in other
words,

∆ξϕk := ϕk+ξ + ϕk−ξ − 2ϕk = ϕk+ξ − ϕk − (ϕk − ϕk−ξ).(2.1)

If Φ is a C2 (twice continuously differentiable) function over R
n, and ϕk = Φ(xk) for

all k, then by a standard Taylor expansion we have that

∆ξϕk :=

n∑
i,j=1

hihjξiξjΦxixj + o(‖h‖2).(2.2)
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For instance, when ξ is equal to ei (the ith element of the natural basis of R
n) and

ei ± ej , respectively, we obtain{
∆eiϕk = (hi)

2Φxixi + o(‖h‖2),
∆ei±ejϕk = (hi)

2Φxixi + (hj)
2Φxjxj ± 2hihjΦxixj + o(‖h‖2).(2.3)

Denote vk the approximation of the value function V at xk. Let Du
kvk be a notation

for the upwind spatial finite difference

(Du
kvk)i =

vk+ei − vk
hi

if f(xk, u)i ≥ 0,
vk − vk−ei

hi
if not.(2.4)

Now let S be a finite set of Z
n \ {0} containing {e1, . . . , en}. We consider explicit

schemes based on the difference operators that we just discussed, namely

λvk = inf
u∈U

�(xk, u) + f(xk, u) ·Du
kvk +

∑
ξ∈S

αuk,ξ∆ξvk

(2.5)

for all k ∈ Z
n. We will see soon how to choose the coefficients αuk,ξ in order to have a

convergent approximation. Note that, since ∆ξ = ∆−ξ, we may assume without loss of
generality that either αuk,ξ or α

u
k,−ξ is zero for all ξ. In particular, we may assume that

αuk,−ei is zero for all i. Note that there are possibilities other than (2.4) for discretizing
the first-order term. For instance, it may be useful to consider centered differences in
order to obtain (if the solution is smooth enough) higher orders of accuracy. However,
since the difficulty for obtaining consistency lies in the discretization of the second-
order term in the HJB equation, we will not elaborate on this.

Let ∆th > 0 denote a fictitious time step (fictitious in the sense that the discrete
scheme involves space, but not time, so that this time step has no influence on the
solution). Multiplying (2.5) by ∆th and adding vk on both sides, we get

vk := (1 + λ∆th)−1,

inf
u∈U

vk +∆th �(xk, u) + ∆th f(xk, u) ·Du
kvk +∆th

∑
ξ∈S

αuk,ξ∆ξvk

 .
(2.6)

With straightforward calculations, we can remark that the approximation (2.6)
can be written in the form of (1.7), with the following transition probabilities:

ph(xk, xk | u) = 1−∆th
n∑
i=1

( |fi(xk, u)|
hi

+ 2
∑
ξ∈S

αuk,ξ

)
,

ph(xk, xk±ei | u) = ∆th
(
f±i (xk, u)

hi
+ αuk,ei

)
,

ph(xk, xk±ξ | u) = ∆th αuk,ξ for ξ ∈ S, ξ �= ei,

ph(xk, y) = 0 for y �∈ xk+S ,

where f+i (xk, u) = max(fi(xk, u), 0) and f−i (xk, u) = −min(fi(xk, u), 0).
Note that the sum of transition probabilities is, whatever the choice of coefficients

αuk,ξ, equal to one. However, that these transition probabilities are nonnegative adds
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the following condition on αuk,ξ :

αuk,ξ ≥ 0 ∀ (ξ, k, u) ∈ S × Z
n × U,(2.7a)

n∑
i=1

|fi(xk, u)|
hi

+ 2
∑
ξ∈S

αuk,ξ ≤
(
∆th

)−1 ∀ (k, u) ∈ Z
n × U.(2.7b)

The second condition (2.7b) is always satisfied, when ∆th is small enough, if the left-
hand side of (2.7b) is uniformly bounded. We obtain in (2.16) such a bound. Here
again we could take the more general point of view of having a time step depending
on (x, u). Again, we prefer not to be general in order to concentrate on the main
difficulties.

Assume (2.7) to be satisfied (we will see that (2.7b) is satisfied as soon as the
time step is small enough) so that the scheme is a Markov chain approximation (of
a specific type), since transition probabilities to points of the form xk±ξ are equal if
ξ �= ei for some i. We therefore concentrate on the local consistency condition (1.5).
Since the terms multiplied by each coefficient αuk,ξ have a mean equal to xk, we have
that

E
h,u
k,q

[
Xh
q+1 − xk

]
= ∆th

∑
i

f+i (xk, u)ei −∆th
∑
i

f−i (xk, u)ei = ∆thf(xk, u)(2.8)

so that condition (1.5a) is always satisfied. This in turn implies, denoting x̂ :=
xk +∆thf(xk, u),

Covh,uk,q

[
Xh
q+1 − xk

]
= E

h,u
k,q

[
(Xh

q+1 − x̂k)(X
h
q+1 − x̂k)

�]+ o(∆th)(2.9)

and, therefore,

Covh,uk,q

[
Xh
q+1 − xk

]
= ∆th

∑
ξ∈S

∑
i,j

hihjξiξjα
u
k,ξeie

�
j + o(∆th).(2.10)

In view of (2.10), and since ∆th → 0 as h→ 0, local consistency holds iff we have∑
ξ∈S

∑
i,j

hihjξiξjα
u
k,ξeie

�
j = a(xk, u) + o(1).(2.11)

In what follows, we discuss the strong consistency property∑
i,j

hihjξiξjα
u
k,ξeie

�
j = a(xk, u) ∀ k ∈ Z

n.(2.12)

Let ah denote the scaled covariance matrix {aij/hihj}. Then a condition equivalent
to (2.12) is ∑

ξ∈S
αuk,ξξξ

� = ah(xk, u) ∀ k ∈ Z
n.(2.13)

Since every αuk,ξ is nonnegative, strong consistency means that the symmetric matrix

ah(xk, u) belongs, for all k and u, to the cone generated by the set {ξξ�; ξ ∈ S} that
we denote

C(S) :=
∑
ξ∈S

αξξξ
�;α ∈ R

|S|
+

 .(2.14)
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Note that strong consistency implies a bound on the coefficients αuk,ξ, which in
turn allows us to obtain an estimate of the fictitious time step.

Lemma 2.1. Assume that the strong consistency condition holds. Then∑
ξ∈S

αuk,ξ ≤ trace ah(xk, u),(2.15)

and hence condition (2.7b) for the fictitious time step is satisfied whenever

n∑
i=1

‖fi‖∞
hi

+ 2‖ trace ah‖∞ ≤
(
∆th

)−1
.(2.16)

Proof. Taking the trace of both sides of (2.13), and since the trace of ξξ�

is greater than or equal to 1, obtain (2.15). The second part of the lemma is im-
mediate.

It follows from this lemma that, when h ↓ 0, we may take ∆th of order O(mini h
2
i ),

as expected.
Now we can summarize the results of this section in the following theorem.
Theorem 2.2. Let S be a fixed finite set of Z

n \ {0} containing {e1, . . . , en},
and let h be a fixed step size. Assume that, for every k ∈ Z

n and every u ∈ U ,
the scaled covariance matrix ah(xk, u) belongs to the cone C(S). Then the scheme
(2.6) is a consistent Markov chain approximation whenever the coefficients (αuk,ξ)
are nonnegative and satisfy condition (2.13), the time step being such that (2.16) is
satisfied.

As said before, condition (2.16) is not really restrictive since ∆th is just a fictitious
time step. Note that implicit schemes can be used, as already mentioned, in connection
with the policy iteration algorithm, and in that case it is easily seen that one can take
a time step of order O(mini hi). Similar results hold in the finite horizon case. The
most important condition in the above theorem is that the scaled matrix might belong
to the cone C(S). Before going on the characterization of C(S), we will first compare
our scheme to the classical finite differences approximations.

Remark 2.1. The results of this section are close to the analysis in section 5.4.4
of [6], where consistency for an arbitrary set of transition to neighbors is discussed.
The point of view of this paper is rather to fix the set S of the neighbors allowed to
enter the scheme and then to characterize the class of covariance matrices for which
consistency holds. We will see in sections 4 and 5 (and this is the main novelty of the
paper) how to obtain an effective characterization.

Remark 2.2. It is possible to study consistency taking the point of view of the
discretization of the HJB equation (1.2), the solution being defined in the sense of
viscosity. Barles and Souganidis [2] give a systematic way of obtaining convergent
approximation schemes for second-order partial differential equations whose solution
satisfies some strong uniqueness property. Their approach applies to (1.2) and leads
to the same conditions as those of Theorem 2.2.

3. Classical finite differences approximations. Let us show that the gener-
alized finite difference algorithm, given in the above section, is indeed a generalization
of the classical finite differences approximations that we recall now. Let Φ be a C2

function over R
n, and let ϕk := Φ(xk) for all k. Given any ξ ∈ Z

n, we can approximate
the second-order derivatives of Φ by the following finite differences:

δξ+ei+ej − δξ+ei − δξ+ej + δξ

hihj
ϕk = Φxixj (xk) + o(1).(3.1)
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Denote the corresponding operators as follows:

dξij :=
δξ+ei+ej − δξ+ei − δξ+ej + δξ

hihj
.(3.2)

Viewing i (resp., j) as the first (resp., second) coordinate, when ξ = 0, we call this

operator dξij the right upper approximation of Φxixj
. We can similarly define left

upper, right lower, and left lower approximations of Φxixj by taking ξ equal to −ei,
−ej , and −ei− ej , respectively. By combining these amounts, we can define centered
approximations; the corresponding operators are along the main and second diagonals:

D+
ij :=

1
2 (d

0
ij + d

−ei−ej
ij ), D−ij :=

1
2 (d
−ei
ij + d

−ej
ij ).(3.3)

In other words,

D+
ij =

1

2hihj
(δei+ej + δ−ei−ej + 2δ0 − δei − δ−ei − δej − δ−ej ),

D−ij =
1

2hihj
(δei + δ−ei + δej + δ−ej − δei−ej − δej−ei − 2δ0).

(3.4)

In addition, for the approximation of diagonal second-order derivatives we take
the standard centered formula

Dii :=
δei + δ−ei − 2δ0

hihi
.(3.5)

The classical finite differences approximation of (1.2) is

λvk = inf
u∈U

�(xk, u) + f(xk, u) ·Du
kvk +

1
2

n∑
i,j=1

aij(xk, u)D
±
ijvk


∀ k ∈ Z

n, q ∈ N,
y0k = 0 ∀ k ∈ Z

n,

(3.6)

where if i �= j, D±ij is equal either to D+
ij or D−ij and Du

k is the upwind spatial finite
difference defined in (2.4). The above scheme is equivalent to the following one:

vk := (1 + λ∆th)−1,

inf
u∈U

vk +∆th�(xk, u) + ∆thf(xk, u) ·Du
kvk +

1
2∆th

n∑
i,j=1

aij(xk, u)D
±
ijvk.

 .

(3.7)

It is known that this scheme is a consistent Markov chain approximation under
restrictive assumptions that we make explicit now (this is a reformulation of known
results; see, e.g., [6] or [9]).

Lemma 3.1. The classical finite differences approximation scheme can be inter-
preted as a consistent Markov chain approximation iff the following three conditions
hold:

(i) If i �= j is such that aij(xk, u) �= 0, then D±ij = D+
ij if aij(xk, u) > 0 and

D±ij = D−ij if aij(xk, u) < 0;
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(ii) The matrix ah(xk, u) is dominant diagonal or, equivalently,

aii(xk, u)

hi
≥
∑
j �=i

|aij(xk, u)|
hj

∀ i = 1, . . . , n;(3.8)

(iii) The time step ∆th satisfies the following condition:

n∑
i=1

|f(xk, u)i|
hi

+

n∑
i=1

2aii(xk, u)
h2i

−
∑
j �=i

|aij(xk, u)|
hihj

 ≤ (∆th
)−1

.(3.9)

We now make explicit the link between the two approaches by expressing the
classical finite differences approximation scheme as a Markov chain approximation
scheme. If the conditions of the above lemma are satisfied, then we can write the
approximation of second-order terms as

n∑
i,j=1

aij(xk, u)D
±
ij =

∑
i�=j

aij>0

aij
hihj

∆ei+ej −
∑
i�=j

aij<0

aij
hihj

∆ei−ej

+
∑
i

 aii
(hi)2

−
∑
j �=i

|aij |
hihj

∆ei .

(3.10)

The weights of the transitions are nonnegative iff condition (ii) of Lemma 3.1 is
satisfied. It follows that the classical finite difference scheme is equivalent to the
generalized finite difference scheme where the set S is equal to

Ŝ := {e1, . . . , en} ∪ {ei ± ej , 1 ≤ i �= j ≤ n}.

We have that C(Ŝ) is precisely the cone of dominant diagonal matrices.
4. Characterization of finitely generated cones. Let us come back to the

analysis of the generalized finite difference method. In what follows we will concentrate
on characterizations of the strong consistency condition, with special attention to the
case when S is the set Sq of neighboring points of order q, defined by

Sq := {ξ ∈ Z
n; |ξi| ≤ q, i = 1, . . . , n} .(4.1)

Characterizing a finitely generated cone happens to be a classical problem of
convex analysis and polyhedral combinatorics, and it can be solved using the notion
of polar cone. Let us recall these classical results; an excellent reference on this subject
is Pulleyblank [10].

Let C be a nonempty closed convex cone in R
p. The associated (positively) polar

cone is

C∗ = {x∗ ∈ X∗ ; 〈x∗, x〉 ≥ 0 ∀x ∈ C}.
It is known that (C∗)∗ = C. Let C be finitely generated, say, by g1, . . . , gq. Then
C∗ = ⋂i{x∗ ∈ X∗ ; 〈x∗, gi〉 ≥ 0}. It happens that the set C∗ is also finitely generated,
say, by g∗1 , . . . , g

∗
r ; this dual generator can be computed by a certain recursion. Since

C = (C∗)∗, it follows that
C = {x; 〈g∗i , x〉 ≥ 0, i = 1, . . . , r}.
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This means that the cone C is characterized by a finite number of linear inequalities
whose coefficients can be computed.

Let us specialize this result to the case of the cone C(S). Let M be the set of
symmetric matrices, and let M+ be the set of symmetric definite positive matrices.
Using the Frobenius scalar product A · B =

∑
i,j AijBij , for which B · ξξ� = ξ�Bξ,

for all square n× n symmetric matrices B and n dimensional vectors ξ, we have that
the polar cone is

C(Sq)∗ = {B ∈M ; ξ�Bξ ≥ 0 ∀ξ ∈ S} .(4.2)

Consider the example when S = Sq is defined in (4.1). Using the fact that C(Sq) is
strictly increasing with q and is a subset of the cone M+, and (M+)

∗ = M+, we
have the infinite chain of strict inclusions

C(S1) ⊂ C(S2) · · · ⊂ M+ ⊂ · · · C(S2)∗ ⊂ C(S1)∗.(4.3)

It can be noticed that, since the cone C(Sq) contains every nonnegative diagonal
matrix, each element of its dual has a nonnegative diagonal.

An important observation is that Sq, and therefore also C(Sq), are invariant
through the linear transformations in R

n that correspond to a permutation of coor-
dinates and also correspond to the change of sign of coordinates. The permutation
of coordinates i and j of ξ ∈ R

n result in the permutation of elements of ξξ� of
coordinates (i, k) and (j, k), and (k, i) and (k, j), for all k, while changing the sign of
ξi results in changing the sign of elements of ξξ

� of coordinates (i, j) for j �= i. Since
these transformations are self-adjoint, for each B ∈ C(Sq)∗, the matrices obtained by
the same (adjoint) transformations (so that the scalar product with B remains invari-
ant) also belong to C(Sq)∗. In particular, a generator of C(Sq)∗ can be partitioned into
classes of equivalence corresponding to the above mentioned transformations. This
allows us to give a compact description of the set of generators.

5. Specific examples. We have performed the computation of generators of
dual cones using the Qhull algorithm by Barber, Dobkin, and Huhdanpaa [1]. The
latter computes, given a finite set in R

m, a minimal set of linear inequalities charac-
terizing its convex hull. This computation is made using the floating-point arithmetic
of the C language. However, the risk of numerical errors due to the floating-point
arithmetic is limited, since we were able to compute a scaling of the data for which
all coefficients are small integers, up to an absolute precision of 10−10.

The link between the convex hull of a finite set and the generator of a dual cone is
as follows. Consider a generator g1, . . . , gn, and set g0 := 0. Then compute a minimal
characterization of the convex hull of g0, . . . , gn of the form 〈g∗i , ·〉 ≥ bi, i = 1, . . . , r.
A minimal generator of the dual cone is given by the homogeneous inequalities; i.e.,
the dual cone is

{g ∈ R
m; 〈g∗i , g〉 ≥ bi, i ∈ I}

with I := {1 ≤ i ≤ r; bi = 0}.
Our actual computations deal with spaces of symmetric matrices of size n. Each

of them can be represented by its upper triangular part, and thus is viewed as an
element of R

m, m = 1
2n(n + 1); in particular, m = 3, 6, and 10 for n = 2, 3, and 4,

respectively.
Once a generator of the dual cone has been obtained, it remains to identify the

classes of equivalence (defined in the previous section) in order to obtain compact
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expression. This was done by sorting the elements following the (ordered) weights of
diagonal elements (the latter being, as we already know, nonnegative). It appears that
this suffices for identifying the equivalence classes, as can be checked by generating
them using the formulas given below and comparing both sets.

Dimension 2. In the case n = 2, we computed characterizations of the sets C(Sq),
q = 1 to 10. We display detailed results for q = 1 to 7. The set C(S1) is characterized
by 4 constraints and 1 equivalence class:

aii ≥ |aij |, 1 ≤ i �= j ≤ 2.

The set C(S2) is characterized by 8 constraints and 2 equivalence classes:{
2aii ≥ |aij |,
2aii + ajj ≥ 3|aij |

for 1 ≤ i �= j ≤ 2. The set C(S3) is characterized by 16 constraints and 4 equivalence
classes: 

3aii ≥ |aij |,
3aii + 2ajj ≥ 5|aij |,
6aii + ajj ≥ 5|aij |,
6aii + 2ajj ≥ 7|aij |

for 1 ≤ i �= j ≤ 2. The set C(S4) is characterized by 24 constraints and 6 equivalence
classes: 

4aii ≥ |aij |,
4aii + 3ajj ≥ 7|aij |,
6aii + ajj ≥ 5|aij |,
6aii + 2ajj ≥ 7|aij |,
12aii + ajj ≥ 7|aij |,
12aii + 6ajj ≥ 17|aij |

for 1 ≤ i �= j ≤ 2. The set C(S5) is characterized by 40 constraints and 10 equivalence
classes:



5aii ≥ |aij |,
5aii + 4ajj ≥ 9|aij |,
10aii + 2ajj ≥ 9|aij |,
10aii + 3ajj ≥ 11|aij |,
12aii + ajj ≥ 7|aij |,
12aii + 6ajj ≥ 17|aij |,
15aii + 2ajj ≥ 11|aij |,
15aii + 6ajj ≥ 19|aij |,
20aii + ajj ≥ 9|aij |,
20aii + 12ajj ≥ 31|aij |

for 1 ≤ i �= j ≤ 2. The set C(S6) is characterized by 48 constraints and 12 equivalence



1018 J. FRÉDÉRIC BONNANS AND HOUSNAA ZIDANI

classes:



6ii ≥ |aij |,
6aii + 5ajj ≥ 11|aij |,
10aii + 2ajj ≥ 9|aij |,
10aii + 3ajj ≥ 11|aij |,
12aii + ajj ≥ 7|aij |,
12aii + 6ajj ≥ 17|aij |,
15aii + 2ajj ≥ 11|aij |,
15aii + 6ajj ≥ 19|aij |,
20aii + ajj ≥ 9|aij |,
20aii + 12ajj ≥ 31|aij |,
30aii + ajj ≥ 11|aij |,
30aii + 20ajj ≥ 49|aij |

for 1 ≤ i �= j ≤ 2. The set C(S7) is characterized by 72 constraints and 18 equivalence
classes:



7aii ≥ |aij |,
7aii + 6ajj ≥ 13|aij |,
14aii + 3ajj ≥ 13|aij |,
14aii + 4ajj ≥ 15|aij |,
15aii + 2ajj ≥ 11|aij |,
15aii + 6ajj ≥ 19|aij |,
20aii + ajj ≥ 9|aij |,
20aii + 12ajj ≥ 31|aij |,
21aii + 2ajj ≥ 13|aij |,
21aii + 10ajj ≥ 29|aij |,
28aii + 2ajj ≥ 15|aij |,
28aii + 15ajj ≥ 41|aij |,
30aii + ajj ≥ 11|aij |,
30aii + 20ajj ≥ 49|aij |,
35aii + 6ajj ≥ 29|aij |,
35aii + 12ajj ≥ 41|aij |,
42aii + ajj ≥ 13|aij |,
42aii + 30ajj ≥ 71|aij |.

Dimension 3. When n = 3, we computed characterizations of the sets C(Sq),
q = 1 to 2. The set C(S1) is characterized by

{
aii ≥ |aij |,
aii + ajj ≥ (−1)paik + (−1)qajk + 2(−1)p+q+1aij
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for i �= j �= k and p, q ∈ {1, 2}. As was expected, this cone is larger than the cone of
dominant diagonal matrices. The set C(S2) is characterized by



2aii ≥ |aij |,
2aii + ajj ≥ 3|aij |,
2aii + 2ajj ≥ 4(−1)paij + (−1)qajk − (−1)p+qaik,
2aii + 2ajj + akk ≥ 4(−1)paij + 3(−1)qajk − 3(−1)p+qaik,
3aii + 2ajj + 2akk ≥ 5(−1)paij + 4(−1)qajk − 5(−1)p+qaik,
6aii + ajj + akk ≥ 5(−1)paij + 2(−1)qajk − 5(−1)p+qaik,
6aii + 2ajj + akk ≥ 7(−1)paij + 3(−1)qajk − 5(−1)p+qaik,
6aii + 2ajj + 2akk ≥ 7(−1)paij + 4(−1)qajk − 7(−1)p+qaik,
8aii + 2ajj ≥ 8(−1)paij + (−1)qajk − 2(−1)p+qaik,
8aii + 2ajj + akk ≥ 8(−1)paij + 3(−1)qajk − 6(−1)p+qaik,
8aii + 3ajj + 2akk ≥ 10(−1)paij + 5(−1)qajk − 8(−1)p+qaik,
8aii + 6ajj + 2akk ≥ 14(−1)paij + 7(−1)qajk − 8(−1)p+qaik,
12aii + 2ajj + akk ≥ 10(−1)paij + 3(−1)qajk − 7(−1)p+qaik,
12aii + 4ajj + akk ≥ 14(−1)paij + 4(−1)qajk − 7(−1)p+qaik,
12aii + 6ajj + 2akk ≥ 17(−1)paij + 7(−1)qajk − 10(−1)p+qaik,
12aii + 6ajj + 4akk ≥ 17(−1)paij + 10(−1)qajk − 14(−1)p+qaik,
18aii + 2ajj + akk ≥ 12(−1)paij + 3(−1)qajk − 9(−1)p+qaik,
18aii + 8ajj + akk ≥ 24(−1)paij + 6(−1)qajk − 9(−1)p+qaik,
18aii + 10ajj + 2akk ≥ 27(−1)paij + 9(−1)qajk − 12(−1)p+qaik.

Dimension 4. When n = 4, the set C(S1) is characterized by



aii ≥ |aij |,
aii + ajj ≥ (−1)paik + (−1)qajk − 2(−1)p+qaij ,
aii + ajj + akk ≥ (−1)pail + (−1)qajl + (−1)rakl

−2(−1)p+qaij − 2(−1)p+raik − 2(−1)q+rajk,
2aii + ajj + akk + all ≥ 3(−1)paij + 3(−1)qaik + 3(−1)rail

−2(−1)p+qajk − 2(−1)p+rajl − 2(−1)q+rakl,
4aii + ajj + akk ≥ 2(−1)pail + (−1)qajl + (−1)rakl

−4(−1)p+qaij − 4(−1)p+raik − 2(−1)q+rajk,
4aii + 2ajj + akk + all ≥ 6(−1)paij + 4(−1)qaik + 4(−1)rail

−3(−1)p+qajk − 3(−1)p+rajl − 2(−1)q+rakl

for i �= j �= k �= l and p, q, r ∈ {1, 2}.

Summary of results. The following table summarizes the various steps of our
calculation and highlights the importance of reduction of constraints using the classes
of equivalence.
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Here S∗ is the set of matrices in S of trace not greater than 1.

n q Size of generator # of constraints # of constraints # of classes

of primal cone defining S∗ defining C of equivalence

2 1 4 6 4 1
2 2 8 13 8 2
2 3 16 27 16 4
2 4 24 39 24 6
2 5 40 67 40 10
2 6 48 87 48 12
2 7 72 123 72 18
2 8 88 159 88 22
2 9 112 203 112 28
2 10 128 239 128 32

3 1 13 31 24 2
3 2 49 563 372 19

4 1 40 476 328 6

6. Discussion of results. In this paper we have worked in the framework of
“Markov chain approximations” discussed in Kushner and Dupuis [6]. Our main re-
sult is a method for computing a characterization of the class of covariance matrices
that are strongly consistent with an a priori choice of neighboring points to which
transitions are allowed. In the computation and display of the results, we use in an
essential way the property of invariance of these cones with respect to some transfor-
mations. Although we are looking for linear inequalities with integer coefficients, the
computations were made in floating-point arithmetic. However, once properly scaled,
the results are up to a precision of 10−10 equal to very small integers, as may be seen
in the table above, and hence it seems that these results are exact, despite the fact
that our method is not a mathematical proof (we tried an exact approach based on
computer algebra, but without success, since many singularities were encountered).
So, we have performed the computations, giving explicit results, for dimensions of the
state space between 2 and 4, and when only a limited number of neighboring points
are allowed (which is a highly desirable feature). This said, it seems that we have
performed the computations for essentially all cases for which the numerical resolu-
tion of the stochastic HJB equation is of reasonable complexity. Indeed, when the
number of linear inequalities characterizing strongly consistent matrices is large, we
may expect that computing the coefficient of the algorithm will be expensive.

On the other hand, our results are only a preliminary step towards an efficient
numerical algorithm. There are two main difficulties. The first is designing fast
algorithms for computing the coefficients αuk,ξ. The latter are, by definition, solutions
of a linear programming problem, but using a linear programming solver for each
control at each point of the grid would be inefficient. The second difficulty is dealing
with the case when consistency does not hold, e.g., by approximating the matrix
a(xk, u) by a consistent matrix and then performing an error analysis. We are now
pursuing some research in these directions.

Acknowledgment. We thank the three anonymous referees for their useful re-
marks.



FINITE DIFFERENCE SCHEMES FOR THE HJB EQUATION 1021

REFERENCES

[1] C. Barber, D. Dobkin, and H. Huhdanpaa, The quickhull algorithm for convex hulls, ACM
Trans. Math. Software, 22 (1996), pp. 469–483.

[2] G. Barles and P. E. Souganidis, Convergence of approximation schemes for fully nonlinear
second order equations, Asymptotic Anal., 4 (1991), pp. 271–283.

[3] S. Chung, F. Hanson, and H. Xu, Parallel stochastic dynamic programming: Finite element
methods, Linear Algebra Appl., 172 (1992), pp. 197–218.

[4] W. H. Fleming and R. Rishel, Deterministic and Stochastic Optimal Control, Appl. Math.
1, Springer-Verlag, New York, 1975.

[5] W. H. Fleming and H. Soner, Controlled Markov Processes and Viscosity Solutions, Springer-
Verlag, New York, 1993.

[6] H. J. Kushner and P. G. Dupuis, Numerical Methods for Stochastic Control Problems in
Continuous Time, 2nd ed., Appl. Math. 24, Springer-Verlag, New York, 2001.

[7] J. L. Lions and A. Bensoussan, Application des inéquations variationnelles en contrôle
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1. Introduction and basic notations. The growth factor is an indicator of
the stability of Gaussian elimination. The classical growth factor of an n× n matrix
A = (aij)1≤i,j≤n is the number

ρW (A) :=
maxi,j,k |a(k)ij |
maxi,j |aij | .(1.1)

On p. 398 of [1], Amodio and Mazzia have introduced the growth factor

ρ(A) :=
maxk ‖A(k)‖∞
‖A‖∞(1.2)

and have shown its nice behavior for the error analysis of Gaussian elimination. Con-
ditioning is another important concept to be considered in such error analysis. The
traditional condition number of a matrix A with respect to the norm ‖ · ‖∞ is given
by κ(A) := ‖A‖∞ ‖A−1‖∞. Given a matrix B = (bij)1≤i,j≤n, we shall denote |B| the
matrix of absolute values of the entries of B. If we write A ≤ B, it means aij ≤ bij
for all i, j. The Skeel condition number (cf. [9]) of a matrix A is defined as

Cond(A) = ‖ |A−1| |A| ‖∞.
Let us mention two nice properties of Cond(A). The Skeel condition number of a
matrix A is less than or equal to κ(A), and it can be much smaller. In contrast with
κ(A), Cond(A) is invariant under row scaling.

The first topic considered in this paper is the introduction of the scaled pivots
associated with the performance of Gaussian elimination of a nonsingular n×n matrix
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with any given pivoting strategy. A scaled pivot is the quotient between the absolute
value of the pivot and the norm of the corresponding row. The computational cost
of calculating all possible scaled pivots is O(n2) elementary operations per step of
Gaussian elimination. If we have obtained n pivots after the complete performance
of a given pivoting strategy, the additional cost of calculating the corresponding n
scaled pivots is O(n2) elementary operations. In section 2 the scaled pivots are used
to obtain bounds for the growth factor (1.2). In section 3 we apply them to derive
bounds for the Skeel condition number of the upper triangular matrix U resulting after
Gaussian elimination. As a consequence of these bounds we prove in Corollary 3.3
that the Skeel condition number of an n×n upper triangular matrix which is strictly
diagonally dominant by rows is bounded above by a number which is independent
of n.

The second main topic of this paper is related to scaled partial pivoting strategies,
that is, strategies which incorporate row scaling implicitly. In [5] some properties of
these strategies with respect to the Skeel condition number of the upper triangular
matrix U resulting after Gaussian elimination were analyzed. We also proved that
if there exists a permutation matrix P such that the LU -factorization of the matrix
B = PA satisfies |LU | = |L| |U | (the property which can be used to derive small
componentwise backward errors), then P is associated with the row scaled partial
pivoting for any strictly monotone vector norm. In contrast with the usual growth
factor (1.1), in section 4 we get specific bounds for the growth factor (1.2) in the case
of row scaled partial pivoting. A disadvantage of scaled partial pivoting strategies is
their high computational cost: O(n3) elementary operations for the complete factor-
ization. However, we shall see in section 5 that, for important classes of matrices,
these strategies can be implemented without computational cost or with less compu-
tational cost than partial pivoting, and they present better stability properties than
partial pivoting. On the other hand, we also show in section 5 that the calculation
of the n scaled pivots associated with a pivoting strategy presenting nice properties
when applied to nonsingular n × n M-matrices adds O(n) elementary operations to
the complete cost of this strategy.

2. Scaled pivots and the growth factor. Given k ∈ {1, 2, . . . , n}, let α, β
be two increasing sequence of k positive integers less than or equal to n. Then we
denote A[α|β] the k× k submatrix of A containing rows numbered by α and columns
numbered by β. Gaussian elimination with a given pivoting strategy, for nonsingular
matrices A = (aij)1≤i,j≤n, consists of a succession of at most n − 1 major steps
resulting in a sequence of matrices as follows:

A = A(1) −→ Ã(1) −→ A(2) −→ Ã(2) −→ · · · −→ A(n) = Ã(n) = U,(2.1)

where A(t) = (a
(t)
ij )1≤i,j≤n has zeros below its main diagonal in the first t−1 columns.

The matrix Ã(t) = (ã
(t)
ij )1≤i,j≤n is obtained from the matrix A(t) by reordering the

rows and/or columns t, t+1, . . . , n of A(t) according to the given pivoting strategy and

satisfying ã
(t)
tt �= 0. To obtain A(t+1) from Ã(t) we produce zeros in column t below

the pivot element ã
(t)
tt by subtracting multiples of row t from the rows beneath it. If P

and/or Q are permutation matrices such that the Gaussian elimination of B = PAQ
can be performed without row exchanges, then the first row of Ã(t)[t, . . . , n] coincides
with the first row of B(t)[t, . . . , n], and the other rows coincide up to the order. If

B = PTAP , we say that we have performed symmetric pivoting. Let r
(t)
i (resp., r̃

(t)
i )

denote the ith row (t ≤ i ≤ n) of the submatrix A(t)[1, . . . , n|t, t + 1, . . . , n] (resp.,
Ã(t)[1, . . . , n|t, t+ 1, . . . , n]).
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Given a pivoting strategy which has produced the pivots ã
(1)
11 , . . . , ã

(n)
nn , let us

define the kth scaled pivot as

pk :=
|ã(k)kk |
‖r̃(k)k ‖1

(2.2)

for each k = 1, . . . , n. Calculating the n scaled pivots p1, . . . , pn associated with
the pivoting strategy adds O(n2) elementary operations to the complete cost of the
strategy. Obviously, pk ≤ 1 for all k and, if A is an n × n matrix, pn = 1. We shall
see that these numbers provide information on the growth factor ρ and on the Skeel
condition number of the upper triangular matrix U .

A row (resp., symmetric) scaled partial pivoting strategy for the norm ‖·‖1 consists
of an implicit scaling by the norm ‖ · ‖1 followed by partial (resp., symmetric and
partial) pivoting. For each t (1 ≤ t ≤ n − 1), these strategies look for an integer ît
(t ≤ ît ≤ n) such that

pt =
|a(t)
îtt
|

‖r(t)
ît
‖1

= max
t≤i≤n

|a(t)it |
‖r(t)i ‖1

(2.3)

(resp., pt =
|a(t)

îtît
|

‖r(t)
ît
‖1

= maxt≤i≤n
|a(t)

ii
|

‖r(t)
i
‖1
). Observe that the scaled pivots pk of a row

(resp., symmetric) scaled partial pivoting strategy satisfy for each i = k, k + 1, . . . , n

pk ≥ |ã(k)ik |
‖r̃(k)i ‖1

(2.4)

and, respectively,

pk ≥ |ã(k)ii |
‖r̃(k)i ‖1

.(2.5)

The scaled pivots can be calculated after performing any pivoting strategy. As
we have commented above, the calculation of the n scaled pivots associated with
a pivoting strategy adds O(n2) elementary operations to the complete cost of the
strategy.

The following result will be applied to show the usefulness of the scaled pivots in
order to estimate the growth factor.

Proposition 2.1. If A(k+1) is obtained from Ã(k) in the kth step of Gaussian
elimination with a given pivoting strategy, then one has for all i = k + 1, . . . , n,

‖r(k+1)
i ‖1 ≤ ‖r̃(k)i ‖1 +

(
1

pk
− 2

)
|ã(k)ik |,(2.6)

where pk is the scaled pivot given by (2.2), and the equality in (2.6) can be achieved.
Proof. For i = k + 1, . . . , n, j = k + 1, . . . , n, we have

|a(k+1)
ij | =

∣∣∣∣∣ã(k)ij −
ã
(k)
ik

ã
(k)
kk

ã
(k)
kj

∣∣∣∣∣ ≤ |ã(k)ij |+
∣∣∣∣∣ ã

(k)
kj

ã
(k)
kk

∣∣∣∣∣ |ã(k)ik |.(2.7)
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Therefore

‖r(k+1)
i ‖1 ≤

n∑
j=k+1

(
|ã(k)ij |+

∣∣∣∣∣ ã
(k)
kj

ã
(k)
kk

∣∣∣∣∣ |ã(k)ik |
)

and so

‖r(k+1)
i ‖1 ≤ (‖r̃(k)i ‖1 − |ã(k)ik |) + |ã(k)ik |

n∑
j=k+1

|ã(k)kj |
|ã(k)kk |

,

which can be written as

‖r(k+1)
i ‖1 ≤ (‖r̃(k)i ‖1 − |ã(k)ik |) + |ã(k)ik |

‖r̃(k)k ‖1 − |ã(k)kk |
|ã(k)kk |

.

Hence, (2.6) follows.
We can observe that inequalities (2.7) can become equalities, depending on the

sign of the elements of Ã(k). If (2.7) holds as an equality for each i = k + 1, . . . , n,
j = k+1, . . . , n, then the following inequalities become equalities and (2.6) also holds
as an equality.

Observe that the row (resp., symmetric) scaled partial pivoting chooses the max-
imal scaled pivots among all pivoting strategies interchanging rows (resp., the same
rows and columns). From Proposition 2.1 we see that maximizing the scaled pivots
is related to minimizing the quotients

‖r(k+1)
i ‖1/‖r̃(k)i ‖1.

Hence, we can say that the scaled partial pivoting strategies satisfy a “local optimal-
ity” property in the sense that the growth of row norms at a single step of Gaussian
elimination is minimized.

We now can derive from Proposition 2.1 the following consequences on the growth
factor ρ in terms of the scaled pivots.

Corollary 2.2. Let pi1 , . . . , pir be the scaled pivots less than 1/2, and let ρ be
the growth factor (1.2) of Gaussian elimination with a given pivoting strategy. Then
ρ = 1 if r = 0 and 1 ≤ ρ ≤∏1≤k≤r((1− pik)/pik) if r > 0.

Proof. If i ∈ {1, . . . , k}, then ‖r(k+1)
i ‖1 = ‖r̃(k)i ‖1. Let us assume that i ∈

{k+1, . . . , n}. If pk ≥ 1/2, then 1
pk
−2 ≤ 0 and we deduce from (2.6) that ‖r(k+1)

i ‖1 ≤
‖r̃(k)i ‖1. If pk < 1/2, it is sufficient to apply (2.6) and observe that ( 1

pk
− 2)|ã(k)ik | ≤

( 1
pk
− 2)‖r̃(k)i ‖1 in order to derive ‖r(k+1)

i ‖1 ≤ 1−pk
pk
‖r̃(k)i ‖1. Iterating the previous

arguments, we can deduce the result.
Although the bound of Corollary 2.2 is not as sharp as the bound of Proposition

2.1, it can be useful in some cases. The case r = 0 in the previous corollary corresponds
to pk ≥ 1/2 for all k = 1, . . . , n − 1, which holds if and only if the upper triangular
matrix obtained after Gaussian elimination is diagonally dominant. In this case, ρ = 1
(let us recall that, in this case, we proved in [7] that the usual growth factor satisfies
ρW ≤ n − 1). On the other hand, Corollary 2.2 can be useful if we compare it with
the estimate ‖A‖/‖U‖ used in LAPACK [2, p. 241] for the inverse of the growth
factor. Although LAPACK uses only this estimate for Gaussian elimination with row
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exchanges, if it is used without row exchanges it can be unreliable. For instance, if
we consider the matrix

A = A(1) =

 ε 1 0
0 1 0
1 0 1


and apply Gaussian elimination without row exchanges, we obtain the matrices

A(2) =

 ε 1 0
0 1 0
0 − 1

ε 1

 , A(3) = U =

 ε 1 0
0 1 0
0 0 1

 .
Then ‖U‖/‖A‖ = 1 and it does not show the growth corresponding to the matrix
A(2): in fact, ρ(A) = 1/ε. The bound provided by Corollary 2.2 is also 1/ε.

3. Scaled pivots and the condition number. Let us recall that Cond(A)
represents the Skeel condition number of a matrix A. Given the scaled pivots pk (2.6)
of a nonsingular matrix, let us consider the minimal scaled pivot p

p := min
1≤k≤n

pk.(3.1)

Let us observe that 0 < p ≤ 1.
The following result provides a bound for the Skeel condition number of the

triangular matrix resulting after Gaussian elimination in terms of the minimal scaled
pivot.

Theorem 3.1. Let U = (uij)1≤i,j≤n be the upper triangular matrix obtained after
performing Gaussian elimination on a nonsingular matrix A with a pivoting strategy

with minimal scaled pivot p (see (3.1)). Then Cond(U) ≤ 2−2p
1−2p

(
1−p
p

)n−1 − 1
1−2p if

p �= 1
2 and Cond(U) ≤ 2n− 1 if p = 1

2 .
Proof. Let V := D−1U , where D is the diagonal matrix whose (i, i)-entry is uii

for all i. Then Cond(U) = Cond(V ), and V = (Vij)1≤i,j≤n is upper triangular with
Vii = 1 and

n∑
j=i+1

|Vij | =
n∑

j=i+1

|uij |
|uii| =

∑n
j=i |uij | − |uii|
|uii| =

1

pi
− 1 =

1− pi
pi

≤ 1− p
p

(3.2)

for all i.
If we compute V −1 by Gauss–Jordan, starting from the last column, we can easily

obtain the following bound for the absolute value of (V −1)ij for any i ∈ {1, . . . , n}
and j ≥ i:
(3.3)

|(V −1)ij | ≤ |Vij |+|Vi,j−1| |(V −1)j−1,j |+|Vi,j−2| |(V −1)j−2,j |+· · ·+|Vi,i+1| |(V −1)i+1,j |.

Let us see by induction on j − i that |(V −1)ij | ≤
(

1−p
p

)j−i
. It holds when j − i = 0

because |(V −1)ii| = 1 and when j − i = 1 because |(V −1)i,i+1| = |Vi,i+1| ≤ 1−p
p by

(3.2). Let us assume that it holds when j−i ≤ k, and let us prove it when j−i = k+1.
In this case, if we apply (3.2) and the induction hypothesis to (3.3) we derive

|(V −1)ij | ≤
(
1− p
p

)k∑
j �=i
|Vij | ≤

(
1− p
p

)k+1

=

(
1− p
p

)j−i
.
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Let W := |V −1| |V |. Then, taking into account (3.2) and that, by (3.2)
∑n
j=k |Vkj | ≤

1
p , we have for each i ∈ {1, . . . , n} that

(3.4)

n∑
j=i

|wij | =
n∑
j=i

j∑
k=i

|(V −1)ik||Vkj | =
n∑
k=i

n∑
j=k

|(V −1)ik||Vkj |

=

n−1∑
k=i

 n∑
j=k

|(V −1)ik||Vkj |
+ |(V −1)in||Vnn| ≤

n−1∑
k=i

1

p

(
1− p
p

)k−i
+

(
1− p
p

)n−i
.

If p = 1/2, then we obtain from (3.4)

n∑
j=i

|wij | ≤ 2n− 2i+ 1.(3.5)

If p �= 1/2, then we can deduce from (3.4)

(3.6)
n∑
j=i

|wij | ≤ 1

p

((1− p)/p)n−i − 1

((1− p)/p)− 1
+

(
1− p
p

)n−i
=

(
1

1− 2p
+ 1

)(
1− p
p

)n−i
− 1

1− 2p

=

(
2− 2p

1− 2p

)(
1− p
p

)n−i
− 1

1− 2p
,

and the result follows.
Remark 3.2. The proof of the previous result can be applied to any nonsingular

upper triangular matrix U = (uij)1≤i,j≤n such that (|uii|/
∑n
j=i |uij |) ≥ p for all i.

An analogous result to Theorem 3.1 also can be deduced for any nonsingular lower
triangular matrix L = (lij)1≤i,j≤n such that (|lii|/

∑i
j=1 |lij |) ≥ p for all i. When

p = 1/2 the matrices are diagonally dominant by rows and the bound of Theorem
3.1 for their Skeel condition number coincides with that obtained in Proposition 2.1
of [7]. The case p > 1/2 corresponds to the case of n× n matrices which are strictly
diagonally dominant by rows. In this case 1 − 2p < 0 and so we can derive the
following result from Theorem 3.1, which provides a bound for the Skeel condition
number which does not depend on n.

Corollary 3.3. Let U = (uij)1≤i,j≤n be an upper triangular matrix which is
strictly diagonally dominant by rows, and let p := min1≤i≤n{|uii|/

∑n
j=i |uij |}. Then

Cond(U) ≤ 1
2p−1 .

In order to illustrate the use of the bound provided by Theorem 3.1, let us consider
the matrices

A =


2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

 , U =


2 −1 0 0
0 3

2 −1 0
0 0 4

3 −1
0 0 0 5

4

 .
Matrices with the structure of A often appear when applying the finite difference
method for a boundary value problem. If we perform Gaussian elimination without
row exchanges to A, we obtain the matrix U . Since U is strictly diagonally dominant



1028 J. M. PEÑA

by rows, we can apply Corollary 3.3 and obtain Cond(U) ≤ 7 (p = 4/7). However,
if we apply the bound of Theorem 3.1, we get Cond(U) ≤ 4.46875. In this case,
Cond(U) = 10/3.

In section 5 we shall include examples where we also deal with κ(U). On the
other hand, the relationship of the row scaled partial pivoting and the Skeel condition
number of U was analyzed in [5]. In the next section we provide some properties of
the row scaled partial pivoting with respect to the growth factor ρ (1.2).

4. Row scaled partial pivoting strategies. In this section, we obtain bounds
for the growth factor ρ of row scaled partial pivoting strategies.

The usual growth factor ρW (1.1) of row scaled partial pivoting cannot be bounded
above by the bound 2n−1 of partial pivoting (see [4, p. 192]). In Theorem 5.1 of [1]
it was proved that the growth factor ρ (1.2) of partial pivoting is also bounded above
by 2n−1. The following result provides an upper bound for ρ when using row scaled
partial pivoting, which is lower than that obtained from applying Corollary 2.2.

Theorem 4.1. Let pi1 , . . . , pir be the scaled pivots less than 1/2 of the row scaled
partial pivoting strategy for ‖ · ‖1 for a nonsingular n× n matrix A. Then the growth
factor ρ (1.2) for this strategy satisfies

1 ≤ ρ ≤ 2r
∏

1≤k≤r
(1− pik).

Proof. If i ∈ {1, . . . , k}, then ‖r(k+1)
i ‖1 = ‖r̃(k)i ‖1. Let us assume that i ∈

{k+1, . . . , n}. If pk ≥ 1/2, then 1
pk
−2 ≤ 0 and we deduce from (2.6) that ‖r(k+1)

i ‖1 ≤
‖r̃(k)i ‖1. Let us assume that pk < 1/2. Then 1

pk
− 2 > 0 and so 1− 2pk > 0.

Now, from (2.6) and (2.2) we deduce that for i = k + 1, . . . , n

‖r(k+1)
i ‖1 ≤ ‖r̃(k)i ‖1 + (1− 2pk)|ã(k)ik |

‖r̃(k)k ‖1
|ã(k)kk |

or, equivalently,

‖r(k+1)
i ‖1 ≤ ‖r̃(k)i ‖1 + (1− 2pk)‖r̃(k)i ‖1

|ã(k)ik |
‖r̃(k)i ‖1

‖r̃(k)k ‖1
|ã(k)kk |

.

Taking into account (2.4) and 1− 2pk > 0, we can derive

‖r(k+1)
i ‖1 ≤ ‖r̃(k)i ‖1 + (1− 2pk)‖r̃(k)i ‖1 = 2(1− pk)‖r̃(k)i ‖1.

Iterating the previous arguments, we can deduce the result.
Let us observe that, in contrast with section 2, in the following result we do not

have to assume a bound for the scaled pivots in order to obtain a bound for the
growth factor ρ. The proof in the case that there are scaled pivots less than 1/2
is a consequence of Theorem 4.1 and the fact that pn = 1. Otherwise, ρ = 1 by
Corollary 2.2.

Corollary 4.2. The growth factor ρ (1.2) of the row scaled partial pivoting
strategy for the norm ‖ · ‖1 for a nonsingular n× n matrix A satisfies

1 ≤ ρ ≤ 2n−1.
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5. Examples. This section includes some examples where the results of this
paper can be applied.

The stability of Gaussian elimination without pivoting when the coefficient matrix
is diagonally dominant is well known (see pp. 288–289 of [11] and [10, pp. 122–123]).
In Theorem 5.2 of [2] it was proved that for such matrices the growth factor ρ = 1. In
previous sections, we have obtained nice bounds in the case that all scaled pivots are
greater than or equal to 1/2 or, equivalently, when the upper triangular matrix ob-
tained after Gaussian elimination with a pivoting strategy is diagonally dominant by
rows. In this case, we have proved that, for an n× n matrix, the growth factor ρ = 1
and the Skeel condition number Cond(U) ≤ 2n−1. Let us now present some classes of
matrices and pivoting strategies satisfying the previous properties. A nonsingular ma-
trix A is an M -matrix if it has positive diagonal entries and nonpositive off-diagonal
entries, and A−1 is nonnegative. M -matrices have very important applications, for
instance, in iterative methods in numerical analysis, in the analysis of dynamical sys-
tems, in economics, and in mathematical programming. Inverses ofM -matrices arise,
for instance, in the solution of certain integral equations and in certain physical prob-
lems. Given a matrix A = (aij)1≤i,j≤n, the comparison matrixM(A) = (mij)1≤i,j≤n
is defined by mii := |aii| and mij := −|aij | if i �= j. Finally, A is an H-matrix if
its comparison matrix is an M -matrix. The following pivoting strategies were intro-
duced in [7]. A row (resp., symmetric)maximal relative diagonal dominance (m.r.d.d.)
pivoting is a pivoting (resp., symmetric pivoting) which chooses as pivot at the tth

step (1 ≤ t ≤ n − 1) a row it satisfying
|a(t)

itt
|∑

j>t
|a(t)

itj
| = maxt≤i≤n{ |a(t)

it
|∑

j>t
|a(t)

ij
|} (resp.,

|a(t)
itit
|∑

j≥t,j �=it
|a(t)

itj
| = maxt≤i≤n{ |a(t)

ii
|∑

j≥t,j �=i
|a(t)

ij
|}). By Proposition 4.5 of [7], the symmet-

ric m.r.d.d. pivoting strategy coincides with the symmetric scaled partial pivoting
strategy for ‖ · ‖1. A row (resp., symmetric) maximal absolute diagonal dominance
(m.a.d.d.) pivoting is a row (resp., symmetric) pivoting which chooses as pivot at the

tth step (1 ≤ t ≤ n − 1) a row it satisfying |a(t)itt| −
∑
j>t |a(t)itj | = maxt≤i≤n{|a(t)it | −∑

j>t |a(t)ij |} (resp., |a(t)itit | −
∑
j≥t,j �=it |a

(t)
itj
| = maxt≤i≤n{|a(t)ii | −

∑
j≥t,j �=i |a(t)ij |}).

In Proposition 4.3 of [7] it was proved that if A is a nonsingular H-matrix, then
any symmetric diagonally dominant pivoting strategy leads to an upper triangular
matrix U which is diagonally dominant by rows. If A is a nonsingular M -matrix,
then it is known (see, for instance, the proof of Theorem 4.4 of [7]) that the matrix
U is in fact strictly diagonally dominant by rows. In this case, all scaled pivots are
greater that 1/2. If p is the minimal scaled pivot (3.1), then Cond(U) ≤ (1/(2p− 1)),
which is a bound independent of n (see Remark 3.2 and Corollary 3.3).

Given a nonsingularH-matrix A and any symmetric diagonally dominant pivoting
strategy, since ρ = 1, we also have ‖U‖∞ ≤ ‖A‖∞. If A is an M -matrix, then, taking
into account that the triangular matrices L and U associated with the strategies are
also M -matrices, we can extend the arguments provided in [8] to any such strategy
in order to prove that κ(U) ≤ κ(A) (see also [1]).

As shown in Remark 4.6 and Proposition 4.7 of [7], if A is a nonsingular n × n
M -matrix, the symmetric m.a.d.d. pivoting strategy consists of choosing as pivot
row in each step the row whose elements give a maximal sum, and it adds O(n2)
elementary operations to the computational cost of complete Gaussian elimination.
Following the notations of Proposition 4.7 of [7], let e := (1, . . . , 1)T and b1 := Ae.
The symmetric m.a.d.d. pivoting strategy produces the sequence of matrices (2.1) and
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the corresponding sequence of vectors:

b1 = b
(1)
1 −→ b̃1(1) −→ b(2)1 −→ b̃1(2) −→ · · · −→ b(n)

1 = b̃1
(n)

= c.

Taking into account that each component ck of c gives the sum of the elements of the
corresponding kth row of U = (uij)1≤i,j≤n, that U is also a nonsingular M -matrix
and so it has positive diagonal entries and nonpositive off-diagonal entries, and that

ã
(k)
kk = uk, we can deduce from (2.2) that each scaled pivot pk satisfies

pk =
ukk

2ukk − ck .(5.1)

Therefore, the calculation of each scaled pivot pk requires one multiplication, one
subtraction, and one division and so the calculation of the n scaled pivots associated
with the symmetric m.a.d.d. pivoting strategy adds O(n) elementary operations to
the complete computational cost of this strategy.

In addition to the good properties of row scaled partial pivoting strategies pre-
sented in section 4, let us recall that in [5] it was proved that, given a nonsingular
matrix A, if there exists a permutation matrix P such that the LU -factorization of
the matrix B = PA satisfies |LU | = |L| |U |, then P is associated with the row scaled
partial pivoting for any strictly monotone vector norm. This can be used to derive
nice backward error bounds (see also [3] and section 9.2 of [4]). These strategies satisfy
the following property.

Proposition 5.1. Let B = (bij)1≤i,j≤n be a nonsingular matrix. If the LU -
factorization of B satisfies |LU | = |L| |U |, then |b(k)ij | ≤ |bij | for all i, j, k.

Proof. It is easy to deduce the equation

B(k)[k, . . . , n] = L[k, . . . , n]U [k, . . . , n].(5.2)

Clearly,

|L[k, . . . , n]U [k, . . . , n]| ≤ |L| |U |.(5.3)

The result follows from (5.2), (5.3), and the hypothesis.
As a consequence of the previous result, the corresponding strategies satisfy ρ = 1

and ρW = 1. Let us mention some classes of matrices for which the associated
pivoting strategies satisfy Proposition 5.1. Totally positive matrices are matrices with
all their minors nonnegative. Totally positive matrices arise naturally in many areas of
mathematics, statistics, and economics. Inverses of totally positive matrices appear,
for instance, in difference approximations of boundary value problems of fourth order
ordinary differential equations. For the following classes of matrices the row scaled
partial pivoting for any strictly monotone vector norm produces no row exchanges
and satisfies the hypothesis of Proposition 5.1 (see [5]): nonsingular totally positive
matrices, inverses of totally positive matrices, inverses of M -matrices, tridiagonal
symmetric positive definite matrices, and tridiagonal M -matrices.

Let us finish with an example in which B = PA satisfies Proposition 5.1 for
a permutation matrix P different from the identity. A class of matrices containing
totally positive matrices is given by the sign-regular matrices. An n ×m matrix A
is sign-regular if, for each k (1 ≤ k ≤ min{n,m}), all k × k submatrices of A have
a determinant with the same nonstrict sign. In [6] there was introduced a pivoting
strategy for sign-regular matrices which was called first-last pivoting due to the fact
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that we choose as pivot row at each step of Gaussian elimination either the first or the
last row among all possible rows. If A is a nonsingular n× n sign-regular matrix, the
first-last pivoting strategy adds at most 2n−2 subtractions and 4n−4 multiplications
to the computational cost of complete Gaussian elimination. By Corollary 3.7 of [6],
the matrix B = PA (where P is the permutation matrix associated with the first-last
pivoting strategy) satisfies the hypothesis of Proposition 5.1. Therefore, the first-last
pivoting produces for nonsingular sign-regular matrices the same row exchanges as
any row scaled partial pivoting for a strictly monotone vector norm.
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Abstract. We consider semidiscrete and fully discrete conservative finite volume schemes ap-
proximating the solution to one-dimensional scalar conservation law. We show that all E-schemes
are associated with a discrete kinetic formulation with a nonnegative kinetic defect measure. This
construction provides an alternative proof of the discrete local entropy inequalities with simple ex-
pressions of the discrete entropy fluxes. In contrast to the known results, which are restricted to
CFL of the form λQ ≤ 1/2, our proof holds under “sharp” CFL conditions.
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1. Introduction. We consider conservative schemes approximating the scalar
conservation law

∂

∂t
u +

∂

∂x
A(u) = 0,(1.1)

u(t = 0, x) = u0(x) ∈ L1 ∩ L∞(R).(1.2)

We assume and denote

A(0) = 0, a(·) = A′(·).

As usual [6], [17], [18], (1.1) is completed by the family of entropy inequalities; for
any convex function S, there holds

∂

∂t
S(u) +

∂

∂x
ηS(u) ≤ 0,(1.3)

with ηS(u) =
∫ u
0
S′(ξ) a(ξ) dξ.

The purpose of this paper is to give new proofs under improved CFL conditions
for discrete local entropy inequalities for a wide class of conservative entropic schemes
for (1.1), the E-schemes (see [14]), and to investigate the connection between these
schemes and the discretization of the kinetic formulation of the conservation law as
introduced in [13], [12]. In fact, the proofs of the local entropy inequalities follow (as
in the continuous case) from the positiveness of the defect measure appearing in the
discrete kinetic formulation of the schemes.

∗Received by the editors February 22, 2002; accepted for publication (in revised form) September
6, 2002; published electronically June 18, 2003. This work was partially supported by HYKE Euro-
pean Programme HPRN-CT-2002-00282.

http://www.siam.org/journals/sinum/41-3/40299.html
†Department of Applied Mathematics, University of Crete, 71409 Heraklion-Crete, Greece and

Institute of Applied and Computational Mathematics, FORTH, 71110 Heraklion-Crete, Greece
(makr@math.uoc.gr).
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In order to describe our results we introduce the following notation for the dis-
cretization. For simplicity we take a uniform mesh, but the analysis covers the nonuni-
form case with appropriate modifications; cf. Remark 3.6.

• h > 0 is the uniform mesh size,
• xi+1/2 = (i + 1/2)h, i ∈ Z, are the cell interfaces,
• Ci denotes the cell (xi−1/2, xi+1/2),
• ∆t is the time step, tn = n∆t,
• vi(t) (resp., vni ) denotes the solution to the numerical scheme,
• λ = ∆t

h .
The principle of the finite volume method consists of conservation approximations of
the solution cell-averages

ui(t) =
1

hi

∫
Ci

u(t, x) dx (semidiscrete case),

uni =
1

hi

∫
Ci

u(tn, x) dx (fully discrete case).

We study both semidiscrete and fully discrete conservative schemes based on a two
point numerical flux A = A(u, v). It is chosen so that the numerical fluxes, called
below Ai+1/2(t), approximate the exact fluxes A(u(t, xi+1/2)). We thus require the nu-
merical fluxes to be consistent, i.e., A(u, u) = A(u) [8], [9], [10], [11]. The semidiscrete
scheme is defined by

h
d

dt
vi(t)+Ai+1/2(t)−Ai−1/2(t) = 0, i ∈ Z,

vi(t = 0) = v0
i ∈ l1(Z) given,

Ai+1/2(t) = A(vi(t), vi+1(t)).

(1.4)

The corresponding fully discrete scheme that we consider is

vn+1
i − vni +λ

(
Ani+1/2 −Ani−1/2

)
= 0, i ∈ Z,

vi(t = 0) = v0
i ∈ l1(Z) given,

Ani+1/2 = A(vni , v
n
i+1),

(1.5)

where A is the same numerical flux.
Local entropy inequalities. It is well known that a key property that guarantees

the convergence of the schemes to the unique entropy solution of the conservation
law is to satisfy a discrete version of the entropy inequalities associated with (1.1).
Namely, we are interested in schemes (1.4) for which in-cell entropy inequalities hold;
i.e., for any convex function S, there holds

h
d

dt
S(vi(t) ) + ηi+1/2 − ηi−1/2 ≤ 0,

ηi+1/2 = η(S; vi(t), vi+1(t))
(1.6)

for some appropriate entropy discrete flux function η(S ; u, v). For fully discrete
schemes we require

S(vn+1
i )− S(vni ) + λ

(
ηni+1/2 − ηni−1/2

) ≤ 0, i ∈ Z.(1.7)
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A related class of schemes are the E-schemes introduced by Osher [14] in the semidis-
crete case. These are the schemes for which the Lipschitz continuous function A(u, v)
satisfies

A(u, v) ≤ A(ξ) for u ≤ ξ ≤ v,

A(u, v) ≥ A(ξ) for v ≤ ξ ≤ u.
(1.8)

In Osher [14], it was shown that (1.6) follows from the E-property for the flux. In
the fully discrete case, Tadmor [19] showed that, under certain CFL limitations, E-
schemes satisfy (1.7). Tadmor’s seminal approach requires writing (1.5) in its viscosity
form

vn+1
i = vni −

λ

2

(
A(vni+1)−A(vni−1)

)
+ Qi+1/2

(
vni+1 − vni

)−Qi−1/2

(
vni − vni−1

)
,

(1.9)

where the viscosity coefficient Qi+1/2 is

Qi+1/2 = Q(vni , v
n
i+1),

Q(u, v) = λ
A(u) + A(v)− 2A(u, v)

v − u
.

(1.10)

In [19] was shown that if A(u, v) satisfies the E-property and the CFL conditions

Qi+1/2 ≤ 1

2
,

λ max
ξ
|a(ξ)| ≤ 1

2

(1.11)

are met, then the fully discrete scheme (1.5) satisfies the in-cell entropy inequalities
(1.7). Later this proof was extended to the multidimensional finite volume setting in
[5], [1]; see also [15] for an improved version. As it was already noticed in [19], (1.11)
are stronger than one would like them to be. Indeed, consider the two limiting cases
for Q that correspond to Godunov and Lax–Friedrichs schemes (denote QG and QLF

their numerical viscosity coefficients). Then one can check that for all E-schemes [14],
[19], QG ≤ Q, but Godunov’s scheme is known to satisfy (1.7) under the following
sharp CFL: λ maxξ |a(ξ)| ≤ 1. In addition, QLF ≡ 1, i.e., (1.11), is also restrictive.
The reason behind this restricted CFL is the method of proof in [19] which splits
the numerical cell into two half subcells and reduces the numerical viscosity of any
E-scheme in a convex combination of Godunov and modified Lax–Friedrichs schemes.
This splitting into two subcells avoids analyzing the interaction of waves but leads to
the restricted CFL.

In what follows we show that indeed (1.11) can be relaxed to the “sharp” condi-
tions

Qi+1/2 ≤ 1,

λ max
ξ
|a(ξ)| ≤ 1 .(1.12)

Our proofs do not rely on the above comparison with Godunov and modified Lax–
Friedrichs; rather it is based on the kinetic formulation of E-schemes that we present
in what follows.



SHARP CFL CONDITION FOR SCALAR CONSERVATION LAWS 1035

Kinetic formulation. To each one of the schemes considered we will associate a
discrete kinetic scheme. To do that we first consider the kinetic formulation of the
conservation law (1.1) introduced in [13] (see also [16]):

∂

∂t
f(x, t, ξ) + a(ξ)

∂

∂x
f(x, t, ξ) =

∂

∂ξ
m(x, t, ξ) .(1.13)

Then f(x, t, ξ) = χ(ξ, u(x, t)), and m is a nonnegative bounded measure with compact
support with respect to ξ if and only if

u(x, t) =

∫
R

f(x, t, ξ)dξ

is the unique entropy solution of the conservation law (1.1). The kinetic equation has
incorporated all the entropy inequalities (1.3). We use the standard notation for the
signed characteristic function, a ∈ R,

χ(ξ, a) =


1, 0 < ξ ≤ a,

−1, a ≤ ξ < 0,

0 otherwise .

(1.14)

For later reference note the following key property of χ that allows us to derive (1.3)
integrating (1.13) against S′(ξ) dξ; for all the continuous functions S∫

χ(ξ, a)S′(ξ)dξ = S(a)− S(0) for all a ∈ R.(1.15)

One of the results of this paper is that, for any E-flux, an appropriate upwind
discretization of the linear transport part of (1.13) provides a discrete kinetic for-
mulation. In other words, when vi(t), i ∈ Z, is given through (1.4), then there also
holds

h
∂

∂t
χ(ξ, vi(t)) +

[
a+(ξ, vi, vi+1)χ(ξ, vi(t))− a−(ξ, vi, vi+1)χ(ξ, vi+1(t))

]
− [a+(ξ, vi−1, vi)χ(ξ, vi−1(t))− a−(ξ, vi−1, vi)χ(ξ, vi(t))

]
=

∂

∂ξ
mi(t, ξ),

(1.16)

where the functions in the right-hand side—called the kinetic defect measures—satisfy

mi(t, ξ) = m−(ξ, vi−1, vi) + m+(ξ, vi, vi+1), m±(·, u, v) ≥ 0,

m±(·, u, v) vanish outside of the nonordered interval (u, v),
(1.17)

and the numerical speeds a±, bounded by quantities of order ∂
∂uA, ∂

∂vA, or a(ξ),
satisfy

a±(ξ, u, v) ≥ 0,

a+(ξ, u, v) = max(0, a(ξ)), a−(ξ, u, v) = max(0,−a(ξ)) for ξ /∈ (u, v),

A(u, v) =

∫
R

a+(ξ, u, v)χ(ξ, u) dξ −
∫

R

a−(ξ, u, v)χ(ξ, v) dξ .

(1.18)
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Therefore a simple ξ integration shows that from a formula (1.16) one derives a
semidiscrete scheme (1.4), and the entropy flux in (1.6) follows by integrating (1.16)
against S′(ξ):

η(S;u, v) =

∫
R

a+(ξ, u, v)S′(ξ)χ(ξ, u) dξ −
∫

R

a−(ξ, u, v)S′(ξ)χ(ξ, v) dξ .(1.19)

At this level one can observe that, for an E-scheme, the S-linear entropy flux is not
unique and several choices of a+, a− are possible that lead to different discrete entropy
fluxes.

Notice that the most natural and simple example from this point of view is the
Engquist–Osher scheme [7], where (1.16) holds with

a+(ξ) = max(0, a(ξ)), a−(ξ) = max(0,−a(ξ)),

AEO(u, v) = A+(u) + A−(v),

A+(u) =

∫ u

0

a+(ξ) dξ, A−(u) =

∫ u

0

a−(ξ) dξ.

(1.20)

This case has the remarkable property that the discrete kinetic formulation (1.16) is
a linear equation on χ, a fundamental property in the continuous formulation (1.13)
which allows, for instance, a convergence proof of the Engquist–Osher scheme based
on merely L∞ bounds (see [2]). This simple case is also a model for kinetic schemes
for systems of conservation laws [3], [20], [16] and allows us to give another conver-
gence proof [21]. An alternative proof based on the framework of [13] and a kinetic
formulation of Godunov’s finite volume scheme was given in [22].

To recover fully discrete schemes (1.5) by a kinetic formulation is more intricate
and therefore we may have to introduce more general discretizations of the linear
transport part of (1.13). We thus define the following.

Definition 1.1. The function a(ξ, u, v), which is integrable and has compact
support with respect to ξ, is called a discrete kinetic flux corresponding to A(u, v) if∫

R

a(ξ, u, v)dξ = A(u, v) ,

a(ξ, u, u) = a(ξ)χ(ξ, u) = A′(ξ)χ(ξ, u) .

(1.21)

In the semidiscrete case our choice can be, e.g., a(ξ, u, v) = a+(ξ, u, v)χ(ξ, u) +
a−(ξ, u, v)χ(ξ, v), but in the fully discrete case we have to consider more general
representation formulas.

In section 2 we investigate the semidiscrete scheme (1.4), and we prove in The-
orem 2.1 that E-schemes are characterized by the existence of a semidiscrete kinetic
formulation (1.16). In fact, we show first that the existence of a more general dis-
crete kinetic formulation (cf. (2.1)) is equivalent to the fact that A(u, v) is an E-flux.
Towards this goal a crucial step is that the integrand of the discrete kinetic flux, de-
fined in (2.8), should satisfy the requirements provided by Lemma 2.5 and further by
Proposition 2.7.

In section 3 we investigate the fully discrete scheme (1.5) and the existence of a
discrete kinetic flux corresponding to A(u, v), a(ξ, u, v) such that

χ(ξ, vn+1
i )− χ(ξ, vni ) + λ[a(ξ, vni , v

n
i+1)− a(ξ, vni−1, v

n
i )]

=
∂

∂ξ
mn
i (ξ),

(1.22)
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with mn
i a nonnegative function as in (1.17). Our main result is that if A(u, v) is

an E-flux and the CFL conditions (1.12) are met, then we can construct a(ξ, u, v) =
aλ(ξ, u, v) such that (1.22) is a kinetic formulation of (1.5) with mn

i nonnegative,
Theorem 3.1. Then the in-cell entropy inequalities (1.7) follow with entropy flux
ηi+1/2 = η(λ, S ; u, v) =

∫
R
S′(ξ)aλ(ξ, u, v) dξ. The proof is constructive, and the con-

ditions on a(ξ, u, v) derived in section 2 for the semidiscrete problem are particularly
useful in the analysis.

In section 4 we give the construction, and additional explicit formulas, for the
Engquist–Osher scheme. This section can be viewed as a model for the generic con-
struction in section 2.

2. Semidiscrete schemes. In this section we investigate general three point
semidiscrete scheme (1.4) with consistent flux A(u, v). We prove the equivalence be-
tween three properties; the E-property, the possibility of writing a kinetic discretiza-
tion as (1.16), and the existence of discrete entropy fluxes in (1.6).

Namely, the main result of this section is the following theorem.
Theorem 2.1. Consider the semidiscrete scheme (1.4) with a consistent discrete

flux A(u, v). The following three properties are equivalent:
(i) A(u, v) is an E-flux as defined in (1.8);
(ii) all the in-cell entropy inequalities (1.6), i.e., for any convex function S, are

satisfied;
(iii) there exists a discrete kinetic flux a(ξ, u, v) corresponding to A(u, v), and

nonnegative functions mi satisfying (1.17), such that the kinetic formulation
of (1.4) holds:

h
∂

∂t
χ(ξ, vi(t)) + [a(ξ, vi, vi+1)− a(ξ, vi−1, vi)] =

∂

∂ξ
mi(t, ξ).(2.1)

The entropy fluxes in (1.6), as well as a(ξ, u, v), are not unique, and a possible relation
is

η(S;u, v) =

∫
R

S′(ξ) a(ξ, u, v) dξ.

In addition, a(ξ, u, v) admits an “upwind” splitting of the form (1.18).
We first recall the equivalence between properties (i) and (ii) for the sake of

completeness. The property (iii) is then derived in several steps. We conclude this
section with an explicit construction of discrete kinetic fluxes like (1.18).

Proof of Theorem 2.1. (i) ⇔ (ii). We depart from (ii). Multiplying (1.4) by
S′(vi(t)), we obtain that the in-cell entropy inequality is equivalent to the existence
of η(S, ·, ·) such that, for all values vi, vi±1 and all convex S, we have

η(S; vi, vi+1)− η(S; vi−1, vi) ≤ S′(vi)[A(vi, vi+1)−A(vi−1, vi)],

which is equivalent to{
η(S; vi, vi+1)− η(S; vi, vi) ≤ S′(vi)[A(vi, vi+1)−A(vi)],

η(S; vi, vi)− η(S; vi−1, vi) ≤ S′(vi)[A(vi)−A(vi−1, vi)],

which is again equivalent, for all u, v, and S convex, to the existence of a function
η(S, ·, ·) such that

η(S; v, v)− S′(v)[A(v)−A(u, v)] ≤ η(S;u, v) ≤ S′(u)[A(u, v)−A(u)] + η(S;u, u).
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Denoting η(S; v) = η(S; v, v), the above inequality is obviously equivalent to (and
then the choice of η(S;u, v) is anything in between)

η(S; v)− S′(v)[A(v)−A(u, v)] ≤ S′(u)[A(u, v)−A(u)] + η(S;u),

or, in other words,

η(S; v)− η(S;u) ≤ S′(v)A(v)− S′(u)A(u)−A(u, v)[S′(v)− S′(u)],

which is equivalent to
∂

∂u
η(S;u) = S′(u)a(u),∫ u

v

S′′(ζ)A(ζ)dζ ≤ A(u, v)[S′(u)− S′(v)],

and it remains to choose, as a generating family for S convex, the family S′′(ζ) =
δ(ζ − ξ) to recover the equivalence with the E-property (1.8).

We would like to conclude with noticing that the entropy fluxes are automatically
consistent; i.e., the relation ∂

∂uη(S;u, u) = S′(u)a(u) is derived from (ii).
We now introduce some steps towards the semidiscrete kinetic formulation (iii).

We start with the following lemma.
Lemma 2.2. Let a(ξ, u, v) be a discrete kinetic flux corresponding to A(u, v); then

we have

mi(t, ξ) = m+(ξ; vi, vi+1) + m−(ξ; vi−1, vi),(2.2)

with

m+(ξ;u, v) =

∫ ξ

−∞
δ(ζ − u)[A(u)−A(u, v)] dζ +

∫ ξ

−∞
[ a(ζ, u, v)− a(ζ)χ(ζ, u)] dζ,

m−(ξ;u, v) = −
∫ ξ

−∞
δ(ζ − v)[A(v)−A(u, v)] dζ −

∫ ξ

−∞
[ a(ζ, u, v)− a(ζ)χ(ζ, v) ] dζ .

(2.3)

Moreover, mi is nonnegative for any value of its arguments if and only if both m+

and m− are nonnegative for any value of their arguments.
Proof. It is a simple matter to check that

∂

∂t
χ(ξ, vi(t)) = δ(ξ − vi(t))

d

dt
vi(t) .

Then using the above formula and (1.4) in (2.1), we get

−δ(ξ − vi(t)) [Ai+1/2 −Ai−1/2] + [a(ξ, vi(t), vi+1(t))− a(ξ, vi−1(t), vi(t))]

=
∂

∂ξ
mi(ξ, t)

or, equivalently,

∂

∂ξ
mi(ξ, t) = δ(ξ − vi(t)) [ (A(vi(t))−Ai+1/2)− (A(vi(t))−Ai−1/2) ]

+ [a(ξ, vi(t), vi+1(t))− a(ξ)χ(ξ, vi(t))]

− [a(ξ, vi−1(t), vi(t))− a(ξ)χ(ξ, vi(t)) ] .
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Since we want mi to have bounded support, we can integrate to obtain

mi(ξ, t) =

∫ ξ

−∞
δ(ζ − vi(t)) [ (A(vi(t))−Ai+1/2)− (A(vi(t))−Ai−1/2) ] dζ

+

∫ ξ

−∞
[a(ζ, vi(t), vi+1(t))− a(ζ)χ(ζ, vi(t))]dζ

−
∫ ξ

−∞
[a(ζ, vi−1(t), vi(t))− a(ζ)χ(ζ, vi(t)) ] dζ

= m+(ξ, vi(t), vi+1(t)) + m−(ξ, vi−1(t), vi(t)).

By the definition of the discrete kinetic fluxes (Definition 1.1) and the consistency of
the flux A(u, v) we see that

m+(ξ, v, v) = 0, m−(ξ, v, v) = 0;

thus m is nonnegative if and only if both m+ and m− are nonnegative.
Remark 2.3. Since m±(+∞;u, v) = m±(−∞;u, v) = 0 we can see that (2.3)

takes the form

m+(ξ;u, v) =

∫ ξ

−∞
[ a(ζ, u, v)− a(ζ)χ(ζ, u) ] dζ for ξ < u,

m+(ξ;u, v) =−
∫ +∞

ξ

[ a(ζ, u, v)− a(ζ)χ(ζ, u) ] dζ for u < ξ,

m−(ξ;u, v) =−
∫ ξ

−∞
[ a(ζ, u, v)− a(ζ)χ(ζ, v) ] dζ for ξ < v,

m−(ξ;u, v) =

∫ +∞

ξ

[ a(ζ, u, v)− a(ζ)χ(ζ, v) ] dζ for v < ξ.

(2.4)

We proceed by further reducing the form of mi. We need some more notation.
For u, v ∈ R we denote Iu,v the interval that they define. Also,

Iu,v = [m,M ], where m = min{u, v} and M = max{u, v} .(2.5)

We then notice the identity

χ(ξ, u) = χ(ξ, v) for ξ ∈ R \ Iu,v .(2.6)

Then one may check the following lemma.
Lemma 2.4. Assume that a(ξ, u, v) is a discrete kinetic flux corresponding to

A(u, v). If m+ and m− are both nonnegative, then a(ξ, u, v) satisfies the consistency
condition outside the interval Iu,v:

a(ξ, u, v) = a(ξ)χ(ξ, u) = a(ξ)χ(ξ, v), ξ ∈ R \ Iu,v .(2.7)

Conversely, if (2.7) is satisfied, then m+ and m− vanish (and therefore are nonnega-
tive) outside the interval Iu,v.

Proof. Assume first that ξ < m < 0; then χ(ξ, u) = χ(ξ, v) = 0. In addition, both
m+ and m− are nonnegative; therefore (2.4) implies that∫ ξ

−∞
a(ζ, u, v) dζ = 0.
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Since ξ is arbitrary, a(ξ, u, v) = 0 for ξ < m < 0. Similarly, if ξ > M > 0, a(ξ, u, v) = 0.
In the case where M < 0 and M < ξ, again by (2.4) we have∫ +∞

ξ

[ a(ζ, u, v)− a(ζ)χ(ζ, u) ] dζ = 0.

Since M < ξ is arbitrary, we conclude that a(ξ, u, v) = a(ξ)χ(ξ, u) = a(ξ)χ(ξ, v). The
proof is similar in the case ξ < m, m > 0.

In view of Lemma 2.4 we are able to define a function A(ξ, u, v) of three variables
as

A(ξ, u, v) =

∫ ξ

−∞
a(ζ, u, v) dζ .(2.8)

It is to be noted that A(ξ, u, v) should not be confused with the discrete flux A(u, v),
although they are of course related depending on the values of ξ since by Definition 1.1

A(+∞, u, v) = A(u, v).

In the next lemma we derive conditions for the discrete kinetic flux in Iu,v by using
its integrand A(ξ, u, v).

Lemma 2.5. Assume that a(ξ, u, v) is a discrete kinetic flux corresponding to
A(u, v), and that A(ξ, u, v) is defined by (2.8). Let m+ and m− both be nonnegative.
Then the following conditions are satisfied in the interval Iu,v:

u ≤ ξ ≤ v

{
A(ξ) ≥ A(ξ, u, v) ≥ A(u, v) when ξ ≥ 0,

0 ≥ A(ξ, u, v) ≥ A(u, v)−A(ξ) when ξ < 0
(2.9)

and

v ≤ ξ ≤ u

{
A(u, v) ≥ A(ξ, u, v) ≥ A(ξ) when ξ ≥ 0,

A(u, v)−A(ξ) ≥ A(ξ, u, v) ≥ 0 when ξ < 0.
(2.10)

Conversely, if (2.9), (2.10) are satisfied, then m+ and m− are nonnegative in the
interval Iu,v.

Proof. We treat only the case u < ξ < v since the other is similar. Then equations
(2.3) imply that

m+(ξ, u, v) = A(u)−A(u, v) +A(ξ, u, v)−
∫ ξ

−∞
a(ζ)χ(ζ, u) dζ ,(2.11)

m−(ξ, u, v) = −A(ξ, u, v) +

∫ ξ

−∞
a(ζ)χ(ζ, v) dζ .(2.12)

But then it is easy to check that

−
∫ ξ

−∞
a(ζ)χ(ζ, u) dζ = A(ξ)1I{ξ<0} −A(u)(2.13)

and ∫ ξ

−∞
a(ζ)χ(ζ, v) dζ = A(ξ)1I{ξ>0}.(2.14)



SHARP CFL CONDITION FOR SCALAR CONSERVATION LAWS 1041

Since both m+ and m− should be nonnegative, (2.9) follows. The converse is also
immediate by using the above identities.

Remark 2.6. From Lemma 2.4 we deduce that both m+ and m− are supported
in Iu,v. Further, by the proof of the Lemma 2.5 we have the following formulas:

m+(ξ;u, v) = A(ξ, u, v)−A(u, v) + A(ξ)1I{ξ<0},
u ≤ ξ ≤ v :

m−(ξ;u, v) = A(ξ)1I{ξ>0} −A(ξ, u, v)

(2.15)

and

m+(ξ;u, v) = A(ξ, u, v)−A(ξ)1I{ξ>0},
v ≤ ξ ≤ u :

m−(ξ;u, v) = A(u, v)−A(ξ, u, v)−A(ξ)1I{ξ<0}.
(2.16)

We have now the following result.
Proposition 2.7. Assume that we have at our disposal a Lipschitz function

A(ξ, u, v) which satisfies (2.9) and (2.10) and the endpoint values

for u ≤ v

{
A(u, u, v) = A(u)1I{u>0},
A(v, u, v) = A(u, v)−A(v)1I{v<0}

(2.17)

and

for v ≤ u

{
A(u, u, v) = A(u, v)−A(u)1I{u<0},
A(v, u, v) = A(v)1I{v>0}.

(2.18)

Then a(ξ, u, v) is well defined by

a(ξ, u, v) =
∂

∂ξ
A(ξ, u, v) , ξ ∈ Iu,v,

a(ξ, u, v) = a(ξ)χ(ξ, u) = a(ξ)χ(ξ, v), ξ ∈ R \ Iu,v.
(2.19)

In addition, a(ξ, u, v) is a discrete kinetic flux corresponding to A(u, v) and (2.1) is a
kinetic formulation of (1.4) with mi nonnegative.

Proof. Having (2.8) and (2.6) in mind, we first extend A(ξ, u, v) outside the
interval Iu,v by letting

A(ξ, u, v) =

∫ ξ

−∞
a(ζ)χ(ζ, u)dζ, ξ ≤ m,

and

A(ξ, u, v) =

∫ m

−∞
a(ζ)χ(ζ, u)dζ+A(M,u, v)−A(m,u, v)+

∫ ξ

M

a(ζ)χ(ζ, u)dζ, ξ ≥M.

Then the function A(·, u, v) is a well defined, continuous function and a(ξ, u, v) is the
derivative of A(ξ, u, v), ξ ∈ R. Then it is easy to see that since A(ξ, u, v) satisfies (2.9)
and (2.10) with equalities at the endpoints of the interval Iu,v,

A(+∞, u, v) =

∫
R

a(ξ, u, v)dξ = A(u, v) ;
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i.e., a(ξ, u, v) is a discrete kinetic flux corresponding to A(u, v). The proof is complete
in view of Lemmas 2.4 and 2.5.

We are now ready to complete the proof of the last equivalence in Theorem 2.1.

Proof of Theorem 2.1. (i) ⇔ (iii). Assume first (i), i.e., that A(u, v) is an E-flux.
Then one can construct a discrete kinetic flux as in Lemma 2.5 and Proposition 2.7.
Indeed, one choice of A(ξ, u, v) in Iu,v is

for u ≤ ξ ≤ v : A(ξ, u, v) = max{A(u, ξ) , A(u, v)} −A(ξ)1I{ξ<0}(2.20)

and

for v ≤ ξ ≤ u : A(ξ, u, v) = min{A(ξ, v) , A(u, v)} −A(ξ)1I{ξ<0}.(2.21)

Then since A is an E-flux, it is straightforward to verify that A(ξ, u, v) satisfies (2.9)
and (2.10) with equalities at the endpoints of the interval Iu,v. Therefore Proposi-
tion 2.7 implies that (iii) holds.

Conversely, if (iii) holds with m nonnegative, then A(ξ, u, v) defined in (2.8)
should satisfy (2.9) and (2.10). But then necessarily A(u, v) satisfies

if u ≤ ξ ≤ v : A(ξ) ≥ A(u, v) ,

if v ≤ ξ ≤ u : A(u, v) ≥ A(ξ) ;

i.e., A(u, v) is an E-flux and (i) is proved.

End of the proof of Theorem 2.1. It remains to consider another choice in
Lemma 2.5 and Proposition 2.7 in order to obtain the refined kinetic formulation
(1.16) with signed speeds. We built an admissible (i.e., that satisfies (2.9), (2.10),
(2.17), (2.18)) Lipschitz function A(ξ, u, v) which is nonincreasing in ξ for u < v and
increasing in ξ for v < u. We give the formula and skip the tedious but easy proof:

u ≤ ξ ≤ v : A(ξ, u, v)=


max

{
A(u, v) , min

max(0,u)≤ζ≤ξ
A(u, ζ)

}
when ξ ≥ 0,

max
ξ≤ζ≤min(0,v)

{max(A(u, v) , A(u, ζ))−A(ζ)} when ξ < 0,

(2.22)

v ≤ ξ ≤ u : A(ξ, u, v) =


min

{
A(u, v) , max

max(0,v)≤ζ≤ξ
A(ζ, v)

}
when ξ ≥ 0,

min
ξ≤ζ≤min(0,u)

{min(A(u, v),A(ζ, v))−A(ζ)} when ξ < 0.

(2.23)

Thanks to the monotonicity of A(ξ, u, v), one readily checks that indeed (1.16) holds
with

a±(ξ, u, v) =

∣∣∣∣ ∂∂ξA(ξ, u, v)

∣∣∣∣ for ξ ∈ Iu,v,

a±(ξ, u, v) = a±(ξ) for ξ ∈ R \ Iu,v.
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3. Fully discrete schemes. For a given fully discrete scheme (1.5) we will
associate a discrete kinetic formulation as follows. Assume that we are given approx-
imations at level n : vni , i ∈ Z . Define then the approximations at the next level
as

fn+1
i = χ(ξ, vni )− λ[a(ξ, vni , v

n
i+1)− a(ξ, vni−1, v

n
i )] and

vn+1
i =

∫
fn+1
i (ξ)dξ.

(3.1)

We call (3.1) a kinetic formulation of the difference scheme (1.5) if a(ξ, u, v) is a
discrete kinetic flux corresponding to A(u, v) and there exist measures with compact
support with respect to ξ, mn

i such that

χ(ξ, vn+1
i )− fn+1

i =
∂

∂ξ
mn
i (ξ) .(3.2)

Then integrating (3.2) with respect to ξ we recover the scheme (1.5). In such a case
the discrete kinetic scheme can be written in a compact form as

χ(ξ, vn+1
i )− χ(ξ, vni ) + λ[a(ξ, vni , v

n
i+1)− a(ξ, vni−1, v

n
i )]

=
∂

∂ξ
mn
i (ξ) .

(3.3)

In this section we will investigate under what conditions on A(u, v) and a(ξ, u, v)
the scheme (3.1) is a kinetic formulation of (1.5) with nonnegative mn

i (ξ), i.e., under
what conditions (3.3) holds with mn

i (ξ) nonnegative. This will imply that the scheme
satisfies all local discrete entropy inequalities.

Theorem 3.1. Consider a conservative scheme (1.5) with a consistent discrete
flux A = A(u, v). Assume the following:

(i) A(u, v) is an E-flux;
(ii) the CFL condition (1.12) is satisfied.

Then there exists a discrete kinetic flux corresponding to A(u, v), a = aλ(ξ, u, v), and a
nonnegative measure m such that (3.3) is a kinetic formulation of (1.5). Consequently,
all the in-cell entropy inequalities, i.e., for any convex function S, hold true:

S
(
vn+1
i

)
− S

(
vni

)
+ λ
[
ηni+1/2 − ηni−1/2

]
≤ 0,

with discrete entropy flux

ηni+1/2 = η(S; vni , v
n
i+1), η(S;u, v) =

∫
R

S′(ξ) a(ξ, u, v) dξ.

Remark 3.2. In our construction, the discrete kinetic flux depends on λ. We
especially do not answer the open question to know whether, for E-schemes and under
the CFL condition (1.12), there are in-cell entropy inequalities with η(S) independent
of λ. Because of this difference, it seems that a reverse theorem is wrong; the existence
of a fully discrete kinetic formulation with aλ, or of in-cell entropy inequalities with
ηλ(S), does not imply the E-property. Note that still in the construction of [19] the
discrete entropy flux depends on λ. We recall that a weaker property, called “ordered
schemes” (restrict the E-property to ξ = u or v) is enough to have a TVD scheme;
see [16].
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As in the previous section, for u, v ∈ R we denote Iu,v the interval that they
define. We will need the following lemmas.

Lemma 3.3. Let a(ξ, u, v) be a discrete kinetic flux corresponding to A(u, v), and
assume that (3.3) is a kinetic formulation of (1.5). Setting

Ivni ,v
n+1
i

= [m,M ], where m = min{vni , vn+1
i } and M = max{vni , vn+1

i } ,(3.4)

we have for ξ ∈ R \ Ivni ,vn+1
i

m(ξ; vni−1, v
n
i , v

n
i+1) = λ

∫ ξ

−∞
[ a(ζ, vni , v

n
i+1)− a(ζ, vni−1, v

n
i )] dζ for ξ < m,

m(ξ; vni−1, v
n
i , v

n
i+1) = −λ

∫ +∞

ξ

[ a(ζ, vni , v
n
i+1)− a(ζ, vni−1, v

n
i )] dζ for M < ξ.

(3.5)

Proof. Assume first that ξ < m < 0; then χ(ξ, vn+1
i ) = χ(ξ, vni ) = 0. Also

if ξ < m and m > 0, then for ξ < 0, χ(ξ, vn+1
i ) = χ(ξ, vni ) = 0 and for ξ > 0,

χ(ξ, vn+1
i ) = χ(ξ, vni ) = 1. Therefore∫ ξ

−∞
χ(ζ, vn+1

i )− χ(ζ, vni ) dζ = 0 for ξ < m .

Similarly, we show that∫ ξ

−∞
χ(ζ, vn+1

i )− χ(ζ, vni ) dζ = vn+1
i )− vni for ξ > M ,

and therefore (3.5) follows in view of (1.5) and Definition 1.1.
Lemma 3.4. Under the assumptions of Lemma 3.3 we have for ξ ∈ Ivni ,v

n+1
i

m(ξ; vni−1, v
n
i , v

n
i+1)= ξ− vni + λ

∫ ξ

−∞
[a(ζ, vni , v

n
i+1)− a(ζ, vni−1, v

n
i )]dζ for vni < ξ,

m(ξ; vni−1, v
n
i , v

n
i+1)= vni − ξ− λ

∫ +∞

ξ

[a(ζ, vni , v
n
i+1)− a(ζ, vni−1, v

n
i )]dζ for ξ < vni .

(3.6)

Proof. Assume first that vni < ξ < vn+1
i . Then one can verify that∫ ξ

−∞
χ(ζ, vn+1

i )− χ(ζ, vni ) dζ = ξ − vni ,

which implies the first equality of (3.6). Similarly, there holds∫ ξ

−∞
χ(ζ, vn+1

i )− χ(ζ, vni ) dζ = vn+1
i − ξ for vn+1

i < ξ < vni ,

and in this case (3.6) follows again in view of (1.5) and Definition 1.1.
We are ready now to prove the main result in this section.
Proof of Theorem 3.1. For the given discrete flux A(u, v) we first observe that if

a(ξ, u, v) is a function that is constructed according to Proposition 2.7, i.e., if a(ξ, u, v)
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is a kinetic flux for the semidiscrete scheme, then m(ξ; vni−1, v
n
i , v

n
i+1) in Lemma 3.3

are nonnegative. Indeed, if ξ < m, then ξ < vni and

m(ξ; vni−1, v
n
i , v

n
i+1) = m+(ξ; vni , v

n
i+1) + m−(ξ; vni−1, v

n
i ) ,

where m+ and m− are defined in (2.4) for ξ < vni . A similar relation holds for ξ > M.
The same reasoning implies that∫ z

−∞
[ a(ζ, vni , v

n
i+1)− a(ζ, vni−1, v

n
i )] dζ ≥ 0 for all z < vni

and

−
∫ +∞

z

[ a(ζ, vni , v
n
i+1)− a(ζ, vni−1, v

n
i )] dζ ≥ 0 for all vni < z .

Therefore, in such a case, m(ξ; vni−1, v
n
i , v

n
i+1) in Lemma 3.4 will be nonnegative if we

are able to show that

ξ − vni + λ

∫ ξ

vni

[ a(ζ, vni , v
n
i+1)− a(ζ, vni−1, v

n
i )]dζ ≥ 0 for vni < ξ < vn+1

i ,

vni − ξ − λ

∫ vni

ξ

[ a(ζ, vni , v
n
i+1)− a(ζ, vni−1, v

n
i )] dζ ≥ 0 for vn+1

i < ξ < vni .

(3.7)

Next, for u, v, v ∈ R, let

u = u− λ
(A(u, v)−A(v, u)

)
.(3.8)

The proof of the theorem is therefore reduced on finding a discrete kinetic flux a(ξ, u, v)
such that

(a) a(ξ, u, v) satisfies the requirements of Proposition 2.7;
(b) for any u, v, v ∈ R

M(v, u, v) = ξ − u + λ

∫ ξ

u

[ a(ζ, u, v)− a(ζ, v, u)]dζ ≥ 0 for u < ξ < u,

M(v, u, v) = u− ξ − λ

∫ u

ξ

[ a(ζ, u, v)− a(ζ, v, u)] dζ ≥ 0 for u < ξ < u.

In what follows we show that a discrete kinetic flux that satisfies (a) and (b)
indeed exists. To motivate our construction we will consider first the cases

(I) u < ξ < u, ξ < {v, v},
(II) u < ξ < u, {v, v} < ξ.

In case (I) we have (A(ξ, u, v) is defined in (2.8))

M(v, u, v) = ξ − u + λ
(
A(ξ, u, v)−A(u, u, v)−A(ξ, v, u) +A(u, v, u)

)
= ξ − u + λ

(
A(ξ, u, v)−A(ξ, v, u)

)
=

1

2
(ξ − u) + λA(ξ, u, v)− λ

2

[
A(u) + A(ξ)

]
+

1

2
(ξ − u)− λA(ξ, v, u) +

λ

2

[
A(u) + A(ξ)

]
,
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where we have used that (cf. Proposition 2.7)

A(u, u, v) = A(u, v, u) =

∫ u

−∞
a(ζ)χ(ζ, u) dζ .

Assume for a moment that ξ > 0. Then M(v, u, v) is nonnegative if

1

2
(u− ξ) +

λ

2

[
A(u) + A(ξ)

]
≤ λA(ξ, u, v),

λA(ξ, v, u) ≤ 1

2
(ξ − u) +

λ

2

[
A(u) + A(ξ)

]
.

(3.9)

Similarly, in case (II) we have

M(v, u, v) = u− ξ − λA(u, u, v) + λA(ξ, u, v) + λA(u, v, u)− λA(ξ, v, u)

= u− ξ − λA(u, v) + λA(ξ, u, v) + λA(v, u)− λA(ξ, v, u)

=
1

2
(u− ξ)− λA(u, v) + λA(ξ, u, v) +

λ

2

[
A(u)−A(ξ)

]
+

1

2
(u− ξ) + λA(v, u)− λA(ξ, v, u)− λ

2

[
A(u)−A(ξ)

]
,

where we have used that (cf. Proposition 2.7)

A(u, u, v) = A(u, v)−
∫ +∞

u

a(ζ)χ(ζ, u) dζ ,

and the similar relation for A(u, v, u) . Still assuming ξ > 0, then M(v, u, v) will be
nonnegative if

1

2
(ξ − u) + λA(u, v)− λ

2

[
A(u)−A(ξ)

]
≤ λA(ξ, u, v),

λA(ξ, v, u) ≤ 1

2
(u− ξ) + λA(v, u)− λ

2

[
A(u)−A(ξ)

]
.

(3.10)

Relations (3.9) and (3.10) suggest the following:

for u ≤ ξ ≤ v :
1

2
(u− ξ) +

λ

2

[
A(u) + A(ξ)

]
≤ λA(ξ, u, v) ≤ 1

2
(v − ξ) + λA(u, v)− λ

2

[
A(v)−A(ξ)

](3.11)

and

for v ≤ ξ ≤ u :
1

2
(ξ − u) + λA(u, v)− λ

2

[
A(u)−A(ξ)

]
≤ λA(ξ, u, v) ≤ 1

2
(ξ − v) +

λ

2

[
A(v) + A(ξ)

]
.

(3.12)

It will be convenient to introduce the following notation:

λAv>u(ξ) =
1

2
(v − ξ) + λA(u, v)− λ

2

[
A(v)−A(ξ)

]
,

λAv>u(ξ) =
1

2
(u− ξ) +

λ

2

[
A(u) + A(ξ)

](3.13)
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and

λAu>v(ξ) =
1

2
(ξ − v) +

λ

2

[
A(v) + A(ξ)

]
,

λAu>v(ξ) =
1

2
(ξ − u) + λA(u, v)− λ

2

[
A(u)−A(ξ)

]
.

(3.14)

A crucial fact is that, despite the E-property, we have indeed

Av>u ≤ Av>u and Au>v ≤ Au>v .

This is because by (1.12),

λAv>u−λAv>u =
1

2
(v−u) +λA(u, v)− λ

2

[
A(v) +A(u)

]
=

1

2
(v−u)

[
1−Q(u, v)

] ≥ 0

and

λAu>v−λAu>v =
1

2
(u−v)−λA(u, v)+

λ

2

[
A(v)+A(u)

]
=

1

2
(u−v)

[
1−Q(u, v)

] ≥ 0.

Next, since we are looking for a flux that will satisfy (2.9) and (2.10), it is useful for
what follows to notice that (1.12) implies that for ξ ∈ Iu,v

Av>u(ξ) ≥ A(u, v), Av>u(ξ) ≤ A(ξ)(3.15)

and

Au>v(ξ) ≥ A(ξ), Au>v(ξ) ≤ A(u, v) .(3.16)

We are ready now to define

Bv>u(ξ) = min{Av>u(ξ), A(ξ)} for u ≤ ξ ≤ v,

Bu>v(ξ) = min{Au>v(ξ), A(u, v)} for v ≤ ξ ≤ u .
(3.17)

Then, since A(u, v) is an E-flux the above relationships imply that

A(u, v) ≤ Bv>u(ξ) ≤ A(ξ) and Av>u(ξ) ≤ Bv>u(ξ) ≤ Av>u(ξ) .(3.18)

In addition,

Bv>u(u)= min{Av>u(u), A(u)}= A(u) and Bv>u(v)= min{A(u, v), A(v)}= A(u, v),

(3.19)

where in the first equality in (3.19) we used λAv>u(u) − λA(u) = 1
2 (v − u)

[
1 −

Q(u, v)
] ≥ 0 . Similar relations hold for Bu>v. Hence, in the cases under consideration

and for ξ > 0, it suffices to define in Iu,v

A(ξ, u, v) =

{
Bv>u(ξ) for u ≤ ξ ≤ v, ξ > 0,

Bu>v(ξ) for v ≤ ξ ≤ u, ξ > 0 .
(3.20)

It is clear now that the right extension of A(ξ, u, v) when ξ < 0 is

A(ξ, u, v) =

{
Bv>u(ξ)−A(ξ) for u ≤ ξ ≤ v, ξ < 0,

Bu>v(ξ)−A(ξ) for v ≤ ξ ≤ u, ξ < 0 .
(3.21)
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It is straightforward to see that this choice satisfies (a) and (b) in cases (I) and (II)
and for ξ < 0.

In all the other cases the above choice of A(ξ, u, v) satisfies (a) and (b). Property
(a) is clear in any case. Property (b) is a consequence of (3.18) (and its corresponding
relation for u > v) and of the CFL condition λ maxξ |a(ξ)| ≤ 1. To illustrate this we
consider only the case u ≤ ξ ≤ u, v < ξ < 0, u < v < 0, the other cases being similar.
Indeed,

M(v, u, v) = u− ξ − λA(u, u, v) + λA(ξ, u, v) + λ

∫ u

ξ

a(ζ)χ(ζ, u)dζ

= u− ξ − λA(u, v) + λ

∫ +∞

u

a(ζ)χ(ζ, u)dζ + λA(ξ, u, v)

≥ 1

2
(u− ξ)− λ

2

[
A(u)−A(ξ)

]
− λA(ξ) + λ

∫ +∞

u

a(ζ)χ(ζ, u)dζ

=
1

2
(u− ξ)− λ

2

[
A(u)−A(ξ)

]
+ λ
[
A(u)−A(ξ)

]
=

1

2
(u− ξ) +

λ

2

[
A(u)−A(ξ)

]
≥ 0 .

The proof of the kinetic formulation is therefore complete.
The proof of the local entropy inequalities is immediate, again after integrating

(1.22) against S′(ξ) dξ.
Remark 3.5. It should be noted that in the proof of the previous theorem the

CFL condition (1.12) was used in its local form (only specific vni appear)

λQi+1/2 = λQ(vni , v
n
i+1) ≤ 1.

Indeed, tracing back in the proof we see that v, u, and v represent the values vni−1, v
n
i ,

and vni+1.
Remark 3.6. Note that in the semidiscrete case the construction of the discrete

kinetic flux is local and therefore the choice of uniform mesh is done only for notational
simplicity. In the fully discrete case more care is needed in the construction of the
discrete kinetic flux when nonuniform mesh is considered, essentially since a(ξ, u, v)
depends on λ. Indeed, denoting λ′ the CFL number corresponding to the next interval
in the construction of the previous theorem, a modification on the choice of Bv>u(ξ),
Bu>v(ξ) is needed depending of the sign of 1− λ′/λ; e.g., one may choose

Bv>u(ξ) =

{
min{Av>u(ξ), A(ξ)} for u ≤ ξ ≤ v, provided λ ≥ λ′,
max{Av>u(ξ), A(u, v)} for u ≤ ξ ≤ v, provided λ′ ≥ λ.

(3.22)

4. Engquist–Osher scheme.

4.1. Semidiscrete Engquist–Osher scheme. We give first a direct proof for
the kinetic formulation of the Engquist–Osher scheme [7]. We also give explicit for-
mulas for the kinetic defect measures m±.

Theorem 4.1. There is a unique nonnegative function mi(t, ξ) with bounded
support in ξ such that the scheme (1.4) with Engquist–Osher flux (1.20) is equivalent
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to the kinetic equation (1.16)–(1.17), with a±(ξ, u, v) = a±(ξ). Moreover, we have the
bound∑

i∈Z

h

∫ ∞
0

mi(t, ξ) dt ≤ 1I{ξ≥0}‖(v0
i − ξ)+‖l1 + 1I{ξ≤0}‖(ξ − v0)+‖l1 ≤ ‖v0‖l1 ,

and the functions m± are given by

m+(ξ;u, v) = A−(u)−A−(ξ) for u ≤ ξ ≤ v,

m+(ξ;u, v) = A−(v)−A−(ξ) for v ≤ ξ ≤ u,

m−(ξ;u, v) = A+(ξ)−A+(u) for u ≤ ξ ≤ v,

m−(ξ;u, v) = A+(ξ)−A+(v) for v ≤ ξ ≤ u.(4.1)

In other words, the Engquist–Osher scheme is nothing but a linear upwind dis-
cretization of the kinetic formulation. Also Theorem 2.1(ii) implies that the Engquist–
Osher scheme satisfies all local entropy inequalities.

Proof. As in Lemma 2.2 we see that

mi(t, ξ) = [m+(ξ; vi(t), vi+1(t)) + m−(ξ; vi−1(t), vi(t))],

where the functions m+ satisfy

∂

∂ξ
m+(ξ; vi(t), vi+1(t))

=δ(ξ−vi(t))[A(vi(t))−Ai+1/2]+[a+(ξ)χ(ξ, vi(t))−a−(ξ)χ(ξ, vi+1(t))]−a(ξ)χ(ξ, vi(t))

and

∂

∂ξ
m−(ξ; vi−1(t), vi(t))

=δ(ξ−vi(t))[−Ai−1/2−A(vi(t))]−[a+(ξ)χ(ξ, vi−1(t))−a−(ξ)χ(ξ, vi(t))]+a(ξ)χ(ξ, vi(t)).

Then, with a slight change of notation,

∂

∂ξ
m+(ξ;u, v)

= −δ(ξ − u)

∫
R

a−(ζ) [χ(ζ;u)− χ(ζ; v)] dζ + a−(ξ) [χ(ξ;u)− χ(ξ; v)].

Notice that the integral in ξ of the right-hand side of this identity vanishes. Therefore
since m+ should have compact support in ξ,

m+(ξ;u, v) = 0 for ξ /∈ [u, v] (nonordered interval).

Indeed, the brackets [χ(ζ;u) − χ(ζ; v)] and [χ(ξ;u) − χ(ξ; v)] are supported in [u, v].
Also, they have the same sign as u − v. Therefore, either v < u and ∂

∂ξm+(ξ;u, v)

is positive between v and u and thus m+(ξ;u, v) vanishes for ξ ∈] − ∞, v] or it is
nonnegative for ξ ∈ [v, u] and has a jump at ξ = u and thus vanishes for ξ > u. Either
v > u and a similar argument shows that m+(ξ;u, v) is again nonnegative. The same
argument as before shows that m−(ξ;u, v) is nonnegative also.
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Finally, the bound on the discrete kinetic defect measure is obtained as in the
continuous case. We first argue for ξ0 ≥ 0. We use Kruzkov’s entropy S+

ξ0
(ξ) =

(ξ− ξ0)+, S+′′(ξ)ξ0 = δ(ξ = ξ0), and we multiply (1.16) by S+′
ξ0

(ξ), integrate in ξ and
in time, and sum up on i. Taking into account the sign in the quantity∫

R

S+′
ξ0

(ξ)χ(ξ; vi(t)) dξ ≥ 0,

we obtain the inequality, for ξ0 ≥ 0,∑
i∈Z

h

∫ ∞
0

mi(t, ξ0) dt ≤
∑
i∈Z

h ‖(v0
i − ξ)+‖l1

≤ ‖v0‖l1 .
A similar argument for ξ0 ≤ 0 concludes the proof of the proposition.

4.2. Fully discrete Engquist–Osher scheme. As in section 3, we depart from
the fully discrete Engquist–Osher scheme (1.5) and define fn+1

i (ξ) by the formula

fn+1
i (ξ)− χ(ξ, vni ) + λ

[
a+(ξ)χ(ξ, vni )− a−(ξ)χ(ξ, vni+1)

]
− λ
[
a+(ξ)χ(ξ, vni−1)− a−(ξ)χ(ξ, vni )

]
= 0,

(4.2)

which can also be written under the kinetic form

χ(ξ, un+1
i )− χ(ξ, vni ) + λ

[
a+(ξ)χ(ξ, vni )− a−(ξ)χ(ξ, vni+1)

]
− λ
[
a+(ξ)χ(ξ, vni−1)− a−(ξ)χ(ξ, vni )

]
=

∂

∂ξ
mn
i (ξ),

(4.3)

where mn
i (ξ) vanishes at ±∞ because

un+1
i =

∫
R

fn+1
i (ξ) dξ.(4.4)

We claim that for λ small enough this is a kinetic formulation.
Theorem 4.2. Consider the scheme (1.5), (1.20), and assume the CFL condition

λmax
ξ
|a(ξ)| ≤ 1;(4.5)

then (4.3) holds with mn
i (ξ) ≥ 0 satisfying (1.17), and thus it is a kinetic formulation

of the Engquist–Osher scheme.
Proof. Using (4.4) and a variant of Brenier’s lemma ([4] or [16, Chap. 2.2]), the

property

0 ≤ sgn(ξ) fn+1
i (ξ) ≤ 1(4.6)

is enough to ensure that mn
i (ξ) ≥ 0, using the relation

∂

∂ξ
mn
i (ξ) = χ(ξ, un+1

i )− fn+1
i (ξ).

To check the signs in (4.6), we rewrite (4.2) as

fn+1
i (ξ) = χ(ξ, vni )

(
1− λa+(ξ)− λa−(ξ)

)
+ λχ(ξ, vni+1)a−(ξ) + λχ(ξ, vni+1)a+(ξ).

(4.7)

To prove the property (4.6), it is enough to notice that this is a convex combination
of χ’s, a property which follows obviously from a± ≥ 0 and (4.5).
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Abstract. This paper derives a linear convergence for the Schwarz overlapping domain decom-
position method when applied to constrained minimization problems. The convergence analysis is
based on a minimization approach to the corresponding functional over a convex set. A general
framework of convergence is established for some multiplicative Schwarz algorithm. The abstract
theory is particularly applied to some obstacle problems, which yields a linear convergence for the
corresponding Schwarz overlapping domain decomposition method of one and two levels. Numerical
experiments are presented to confirm the convergence estimate derived in this paper.

Key words. domain decomposition, variational inequalities, finite element methods, obstacle
problems

AMS subject classifications. 65N55, 65N30, 65J15

DOI. 10.1137/S0036142901393607

1. Introduction. The study of domain decomposition methods was motivated
by the increasing need of fast numerical solutions for problems in science and engineer-
ing. Such practical problems are often of very large scale and are extremely difficult
to solve by using classical approaches. The domain decomposition method has the ca-
pability of providing new numerical algorithms which are efficient and parallelizable.
The Schwarz overlapping domain decomposition method represents a typical thinking
of parallelization and shall be the main focus of this paper.

The Schwarz method consists of two categories which have been traditionally clas-
sified as multiplicative and additive methods. The multiplicative Schwarz replicates
the well-known Gauss–Seidel iteration for linear systems in a block fashion, while the
additive Schwarz method resembles the Jacobi iteration in numerical linear algebra.
Both methods have been well studied for second order elliptic problems for the last
two decades. Details can be found from [2, 4, 6, 13, 14, 15, 16, 18, 20, 32] and the
references cited therein. However, to the authors’ knowledge, there are very few ex-
isting results which are satisfactorily developed for the Schwarz method when applied
to constrained minimization problems.

The main objective of this paper is to establish a convergence rate estimate for
the overlapping domain decomposition method for variational inequalities. The result
is inspired by the classical analysis of [4] for linear second order elliptic problems and
extends some of the new techniques for nonlinear problems of [26, 27, 29, 30]. The
essential idea is to decompose the global approximating space into subspaces, which
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is the key idea behind the latest convergence analysis for domain decomposition and
multigrid methods. We shall first establish an abstract framework for the convergence
of general minimization problems and then apply it to some obstacle problems by
verifying the assumptions of the abstract theory.

A brief review of the existing work on the domain decomposition methods for
variational inequalities is as follows. In [1], Badea proved a convergence of a do-
main decomposition algorithm which is based on minimizing quadratic functionals in
a Hilbert space. A convergence rate was established there by using the maximum
principle for the problem. A similar method was later proposed and analyzed in [3]
as a new member of the additive Schwarz methods. Various one-level overlapping
domain decomposition methods have been studied in [10, 12, 17, 19, 21, 24, 25]. A
linear convergence for the one-level overlapping domain decomposition method was
derived recently in [29, 22, 33] under the condition that the iterative solution in-
creases or decreases monotonically to the true solution. It is known that we can
linearize the obstacle problem first and then apply domain decomposition methods
for the linearized problems; see, for example, [11]. Our approach is applied directly to
the obstacle problem, and no linearization is necessary in the domain decomposition
scheme.

Both the one-level and two-level domain decomposition methods are considered
in this paper. As it is well known, the two-level method makes use of a coarse level,
and its convergence is quite challenging in theory. In fact, the convergence for two-
level algorithms has not been fully understood so far in the literature. The only ones
we know are from [26, 27, 28]; see also [31] for a two-level algebraic method for the
Signorini problem. The method proposed in [26, 27] relies on a decomposition of the
convex set, which is different from the algorithm to be studied in the present paper.
For the approach to be taken here, the subproblems can be solved in parallel or se-
quentially. Numerical tests and convergence rate analysis for the parallel version have
been done in [28] for domain decomposition and multigrid methods. In this paper, we
shall give a convergence rate estimate for the sequential method and concentrate only
on the one-level and two-level domain decomposition methods. To the authors’ knowl-
edge, our result is the first that gives an explicit convergence rate estimate for this
two-level Schwarz method for variational inequalities. For the one-level method, our
estimate does not require any monotone property of the iterative solution. Moreover,
we give an explicit relation between the convergence rate and the overlapping size.
The convergence rate analysis for the multigrid method with the sequential approach
is much more difficult and remains open.

This paper is organized as follows. In section 2, we present some abstract domain
decomposition algorithms for general convex minimization problems over convex con-
straint sets. In section 3, we state an abstract result of convergence based on some
assumptions for the spatial decomposition. In section 4, we apply the abstract conver-
gence result to a specific obstacle problem by verifying all the conditions required for
the abstract theory. To validate our convergence theory, we present some numerical
results in section 5 for a two-sided obstacle problem. Finally, in section 6, we pro-
vide a complete proof for the main convergence estimate for constrained minimization
problems.

2. Algorithm description. Given a reflexive Banach space V and a convex
functional F : V �→ R, we consider the following optimization problem:

min
v∈K

F (v), K ⊂ V,(2.1)
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where K is a closed convex subset of V . We are interested in the case where the space
V can be decomposed into a sum of subspaces Vi, i.e.,

V = V1 + V2 + · · ·+ Vm =

m∑
i=1

Vi .(2.2)

This means that for any v ∈ V , there exists vi ∈ Vi such that v =
∑m
i=1 vi.

With the decomposition (2.2), there are two different ways to solve the nonlinear
problem (2.1). The first approach is to decompose K into a sum of Ki ⊂ Vi, i =
1, 2, . . . ,m, i.e.,

K = K1 +K2 + · · ·+Km =

m∑
i=1

Ki,

and then to solve a minimization problem over each subset Ki in parallel or sequen-
tially. The convergence rate analysis and numerical experiments for this approach
have been conducted in [26, 27]. The approach of [26] could handle one- and two-
level domain decomposition methods as well as the multigrid method. The second
approach does not involve any decomposition of the convex set K and is illustrated
in Algorithms 1 and 2.

Algorithm 1. For a given un ∈ K and ρ ∈ (0, 1/m), compute en+1
i ∈ Vi in

parallel for i = 1, 2, . . . ,m such that

en+1
i = arg min

vi+un∈K, vi∈Vi

G(vi) with G(vi) = F (un + vi)(2.3)

and then update

un+1 := un + ρ

m∑
i=1

en+1
i .

Algorithm 2. For a given un ∈ K, compute en+1
i ∈ Vi sequentially for i =

1, 2, . . . ,m such that

en+1
i = arg min

vi+u
n+ i−1

m ∈K, vi∈Vi

G(vi) with G(vi) = F (un+ i−1
m + vi)(2.4)

and update

un+ i
m := un+ i−1

m + en+1
i .

The algorithms introduced in [1] and [3] are in the same spirit as Algorithms 1 and
2. A convergence rate analysis for Algorithm 1 has been established in [28] for domain
decomposition and multigrid methods and in [3] for domain decomposition methods.
The objective of this paper is to study Algorithm 2 and derive a linear convergence.
The conditions for the convergence of Algorithm 2 differ from those for Algorithm 1.
In addition, the analysis turns out to be more complicated than Algorithm 1. The
techniques used in the analysis are extensions of those presented in [26, 29, 30].



CONVERGENCE RATE ANALYSIS OF A SCHWARZ METHOD 1055

3. An abstract theory of convergence. Assume that the minimization func-
tional F is Gâteaux differentiable (see [8]) and that there exists a constant κ > 0 such
that

〈F ′(w)− F ′(v), w − v〉 ≥ κ‖w − v‖2V ∀w, v ∈ V.(3.1)

Here 〈·, ·〉 is the duality pairing between V and its dual space V ′, i.e., the value of
a linear function at an element of V . Under the condition (3.1), problem (2.1) has
a unique solution; see [8, p. 35]. For some nonlinear problems, the constant κ may
depend on v and w and the analysis given here is still applicable; see [30, Rem. 2.1]
for more information. Our abstract convergence theory is based on the following two
assumptions inspired from [1].

Assumption 1. There exists a constant C1 > 0 such that for any w, v ∈ K and
si ∈ Vi with w +

∑i
j=1 sj ∈ K, i = 1, . . . ,m, there exist zi ∈ Vi satisfying

(a) v − w =
m∑
i=1

zi, (b) w +

i−1∑
j=1

sj + zi ∈ K for i = 1, . . . ,m,

(c)

( m∑
i=1

‖zi‖2V
) 1

2

≤ C1

(
‖v − w‖2V +

m∑
j=1

‖sj‖2V
) 1

2

.

(3.2)

Assumption 2. There exists a constant C2 > 0 which is the least constant satis-
fying the following inequality for any wij ∈ V, ui ∈ Vi, and vj ∈ Vj :

m∑
i,j=1

|〈F ′(wij + ui)− F ′(wij), vj〉| ≤ C2

( m∑
i=1

‖ui‖2V
) 1

2
( m∑
j=1

‖vj‖2V
) 1

2

.(3.3)

Let u be the unique solution of (2.1). Our main result of the convergence estimate
can be stated as follows.

Theorem 3.1. Assume that the space decomposition satisfies (3.2), (3.3), and
assume that the functional F satisfies (3.1). Then for the iterative approximation
{un}∞n=1 given by Algorithm 2, we have∣∣F (un+1)− F (u)

∣∣
|F (un)− F (u)| ≤ 1− 1

(
√
1 + C∗ +

√
C∗)2

(3.4)

and

||un − u| |2V ≤
2

κ

[
1− 1

(
√
1 + C∗ +

√
C∗)2

]n ∣∣F (u0)− F (u)
∣∣,(3.5)

where

C∗ =
(
(1 + C1)C2 +

(C1C2)
2

2κ

)
2

κ
.(3.6)

In order to prove the theorem, we need to combine the special assumption (3.2)
with the techniques used in [26]. The proof is tedious and rather complex, and it is
postponed to section 6.
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4. Application to obstacle problems. The objective of this section is to apply
the abstract convergence theory to obstacle problems and to derive a linear conver-
gence for the corresponding domain decomposition algorithm. To this end, let Ω ⊂ R

d

be an open bounded and connected domain with a polyhedral boundary. Consider
the problem that seeks an unknown function u = u(x) on Ω satisfying

a(u, v − u) ≥ f(v − u) ∀v ∈ K,(4.1)

where

a(v, w) =

∫
Ω

∇v · ∇w dx,

K = {v ∈ H1
0 (Ω)| α(x) ≤ v(x) ≤ β(x) a.e. in Ω},

(4.2)

α(x) and β(x) are two obstacle functions in L∞(Ω), and f(·) is a bounded linear
functional on the Sobolev space H1

0 (Ω). It is well known that the above problem is
equivalent to the following minimization problem (see [9], for instance):

min
v∈K

F (v), F (v) =
1

2
a(v, v)− f(v).(4.3)

For the obstacle problem (4.1), the reflexive Banach space is given by V = H1
0 (Ω).

Correspondingly, we have κ = 1 in assumption (3.1). We point out that our algorithms
and the convergence estimate presented in the previous section are valid for a general
class of optimization problems in which the optimization functional F is a strongly
convex functional satisfying (3.1).

We use the standard notation for Sobolev spaces Hk
0 (Ω) and W k,p

0 (Ω) and their
norms and seminorms. In particular, for a given subdomain D ⊂ Ω and v ∈ H1

0 (D),
we shall always extend v with zero in Ω\D, i.e.,

H1
0 (D) = {v| v ∈ H1(Ω), v = 0 in Ω\D}.

Throughout the paper, C will be used to denote a generic constant that does not
depend on mesh parameters of the finite element partitions introduced later.

4.1. Numerical approximation and technical tools. The domain Ω is first
partitioned into a coarse mesh denoted TH with a mesh size H. Next, we refine the
partition TH and obtain a fine mesh partition Th with a mesh size h < H. We assume
that both the coarse and fine meshes are shape-regular (see [7]).

Let SH ⊂W 1,∞
0 (Ω) and Sh ⊂W 1,∞

0 (Ω) be the continuous, piecewise linear finite
element spaces associated with TH and Th, respectively. More precisely, we have

SH =
{
v ∈W 1,∞

0 (Ω)
∣∣ v|τ ∈ P1(τ)∀τ ∈ TH

}
and

Sh =
{
v ∈W 1,∞

0 (Ω)
∣∣ v|τ ∈ P1(τ)∀τ ∈ Th

}
.

The obstacle problem (4.1) is approximated by a finite element function uh(x) ∈
K ∩ Sh satisfying

a(uh, v − uh) ≥ f(v − uh) ∀v ∈ K ∩ Sh.(4.4)
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Let {Ωi}Mi=1 be a nonoverlapping domain decomposition for Ω, and each Ωi is the
union of some coarse mesh elements. For each Ωi, we consider an enlarged subdomain
Ωδi consisting of elements τ ∈ Th with dist(τ,Ωi) ≤ δ ≤ H. The union of Ωδi covers Ω̄
with overlaps of size δ. Let us denote the piecewise linear finite element space with
vanishing values on the boundary ∂Ωδi as Sh(Ω

δ
i ). It is not hard to show that

Sh =

M∑
i=1

Sh(Ω
δ
i ) and Sh = SH +

M∑
i=1

Sh(Ω
δ
i ) .(4.5)

For the overlapping subdomains, assume that there exist m colors such that each
subdomain Ωδi can be marked with one color, and the subdomains with the same color
will not intersect with each other. For suitable decompositions, one can choose m = 2
if d = 1, m ≤ 4 if d = 2, and m ≤ 8 if d = 3. Let Ωci be the union of the subdomains
with the ith color, and

Vi = {v ∈ Sh| v(x) = 0, x �∈ Ωci}

for i = 1, 2, . . . ,m. By denoting V0 = SH and V = Sh, we see from (4.5) that

(a) V =
m∑
i=1

Vi and (b) V = V0 +

m∑
i=1

Vi.(4.6)

Associated with the subdomains, we consider some functions θij ∈ C1(Ω), i =
1, 2, . . . ,m, j = i, . . . ,m, such that for any i = 1, 2, . . . ,m we have

supp(θij) ⊂ Ω̄cj , 0 ≤ θij ≤ 1 ∀j = i, . . . ,m, and

m∑
j=i

θij = 1 in

m⋃
j=i

Ωcj .(4.7)

More precisely, θ1
j is a partition of unity with respect to the subdomains Ωcj , j =

1, 2, . . . ,m; θ2
j is a partition of unity with the subdomains Ωcj , j = 2, . . . ,m; i.e., the

subdomains with the first color are dropped. Accordingly, θij is a partition of unity
with respect to the subdomains Ωcj , j = i, . . . ,m, where the subdomains Ωcj , j =
1, 2 . . . , i− 1, are dropped. Due to the overlapping property, the preceding functions
can be constructed to satisfy

|∇θij | ≤ C/δ.(4.8)

In the following, Ih denotes the Lagrangian interpolation operator which uses the
function values at the nodes of a given mesh Th with a mesh size h. The following
estimate is correct due to the special structure of the functions θij :

‖Ih(θijv)‖0 ≤ C‖v‖0, |Ih(θijv)|1 ≤ C‖v‖1 + 1

δ
‖v‖0 ∀ i, j, ∀ v ∈ Sh.(4.9)

We also need a nonlinear interpolation operator I�H : Sh �→ SH introduced in
[26, 27]. Denote NH =

{
xi0
}n0

i=1
all the interior nodes for TH . For a given xi0, let ωi

be the union of the mesh elements of TH having xi0 as one of its vertices, i.e.,

ωi :=
⋃
{τ ∈ TH , xi0 ∈ τ̄}.
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Let
{
φi0
}n0

i=1
be the associated nodal basis functions. It is clear that ωi is the support

of φi0. Given a nodal point xi0 ∈ NH and a v ∈ Sh, let Iiv = minωi v(x). The
interpolation function is then defined as

I�Hv :=
∑

xi
0∈NH

(Iiv)φ
i
0(x).(4.10)

From the definition, it is easy to see that

I�Hv ≤ v ∀v ∈ Sh,(4.11)

I�Hv ≥ 0 ∀v ≥ 0, v ∈ Sh.(4.12)

Moreover, the interpolation for a given v ∈ Sh on a finer mesh is always no smaller
than the corresponding interpolation on a coarser mesh due to the fact that each
coarser mesh element contains several finer mesh elements, i.e.,

I�H1
v ≤ I�H2

v ∀H1 ≥ H2 ≥ h, ∀v ∈ Sh.(4.13)

Define

cd =


C if d = 1,

C(1 + | log(H/h)| 12 ) if d = 2,

C(H/h)
1
2 if d = 3.

Using Lemma 2.3 in [5], it was proven in [26, 27] that the following approximation
properties are correct for the nonlinear interpolation operator I�H .

Theorem 4.1. For any v, w ∈ Sh, it is true that

‖I�Hv − I�Hw − (v − w)‖0 ≤ cdH|v − w|1,(4.14)

‖I�Hv − v‖0 ≤ cdH|v|1,(4.15)

|I�Hv − I�Hw|1 ≤ cd|v − w|1.(4.16)

4.2. Two-level domain decomposition methods. In the two-level domain
decomposition method, the coarse level space SH is used in the iterative scheme for
correction. As a result, the analysis will be based on the space decomposition as given
in (4.6.b). Our goal is to verify Assumptions 1 and 2. Notice that the verification for
Assumption 2 is straightforward and is essentially the same as for linear problems.
We are left with the verification of Assumption 1 by finding the smallest constant C1

which satisfies (3.2). We use V0 to denote the coarse mesh and, correspondingly, all
the summation index in Assumptions 1 and 2 will start from 0 to m.

The following lemma is stated for a general convex constraint set K defined by
constraints on the function values at the fine mesh nodes, and it originates from a
similar one given in [1] for the Sobolev spaces. Assume that v, w, w +

∑i
j=0 sj ∈

K, si ∈ Vi, i = 0, 1, . . . ,m, holds true for a general convex subset. Choose a v0 ∈ V0

such that

v − v0 ∈ K, v0 + w + s0 ∈ K.(4.17)

We then define zi, i = 0, 1, 2, . . . ,m, recursively by

z0 = s0 + v0, zi = Ih

(
θii

(
v − w −

i−1∑
j=0

zj

)
+ (1− θii)si

)
, i = 1, . . . ,m.(4.18)
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Lemma 4.2. For a general convex subset K ⊂ H1
0 (Ω), assume that v, w, w +∑i

j=0 sj ∈ K, si ∈ Vi, i = 1, . . . ,m, and assume that v0 satisfies (4.17). Then the
functions zi, i = 1, . . . ,m, defined in (4.18) satisfy

zi ∈ Vi, zi + w +

i−1∑
j=0

sj ∈ K,(4.19)

v − w −
i∑

j=0

zj ∈ H1
0

 m⋃
j=i+1

Ωcj

 ,(4.20)

v −
i∑

j=0

zj +

i∑
j=0

sj ∈ K.(4.21)

Proof. The conclusion shall be proved by induction. For i = 1, we get from (4.18)
that

z1 = Ih(θ
1
1(v − w − z0) + (1− θ1

1)s1).(4.22)

Due to the fact that θ1
1 = 0, s1 = 0 in Ω\Ωc1, it is true that zi = 0 in Ω\Ωc1 and

thus z1 ∈ V1. Using (4.17), the assumption that w + s0 + s1 ∈ K, and the fact that
0 ≤ θ1

1 ≤ 1, it is not hard to see that

z1 + w + s0 = Ih(θ
1
1(v − v0) + (1− θ1

1)(w + s0 + s1)) ∈ K.
As Ih(v − w − z0) = v − w − z0, one gets from (4.22) that

v − w − z0 − z1 = Ih((1− θ1
1)(v − w − z0 − s1)).(4.23)

From (4.7), one obtains that θ1
1 = 1 in Ωc1\ ∪mj=2 Ωj . Combining it with the above

equality we get

v − w − z0 − z1 ∈ H1
0

 m⋃
j=2

Ωcj

 .(4.24)

Furthermore, one gets from (4.17), the assumption that w + s0 + s1 ∈ K, the fact
that 0 ≤ θ1

1 ≤ 1, and (4.23) that

v − z0 − z1 + s0 + s1

= Ih((1− θ1
1)(v − z0 + s0) + θ1

1(w + s0 + s1))

= Ih((1− θ1
1)(v − v0) + θ1

1(w + s0 + s1)) ∈ K.
In what follows, we shall assume that a zi defined by (4.18) satisfies (4.19)–(4.21);

then we shall prove that zi+1 also satisfies (4.19)–(4.21). From (4.18), we see that

zi+1 = Ih

(
θi+1
i+1

(
v − w −

i∑
j=0

zj

)
+ (1− θi+1

i+1)si+1

)
.(4.25)

Using the fact that

θi+1
i+1 ∈ H1

0 (Ω
c
i+1), si+1 ∈ H1

0 (Ω
c
i+1),
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and from (4.20), we see that zi+1 ∈ H1
0 (Ω

c
i+1) and thus zi+1 ∈ Vi+1. In addition,

one gets by using (4.20), (4.25), the assumption w +
∑i
j=0 sj ∈ K, and the fact that

0 ≤ θi+1
i+1 ≤ 1 that

zi+1 + w +

i∑
j=0

sj(4.26)

= Ih

(
θi+1
i+1

(
v +

i∑
j=0

sj −
i∑

j=0

zj

)
+ (1− θi+1

i+1)

(
w +

i+1∑
j=0

sj

))
∈ K.

From (4.25), it is easy to calculate that

v − w −
i+1∑
j=0

zj = v − w −
i∑

j=0

zj − zi+1

= Ih

(
(1− θi+1

i+1)

(
v − w −

i∑
j=0

zj − si+1

))
.(4.27)

Using the fact that si+1 ∈ H1
0 (Ω

c
i+1), θ

i+1
i+1 = 1 in Ωci+1\ ∪mk=i+2 Ω

c
k, and from (4.20),

one obtains

v − w −
i+1∑
j=0

zj ∈ H1
0

 m⋃
j=i+2

Ωcj

 .

To verify (4.21) for i+1, one gets from (4.27), (4.20), the assumption w+
∑i+1
j=0 sj ∈ K,

and the fact 0 ≤ θi+1
i+1 ≤ 1 that

v −
i+1∑
j=0

zj +

i+1∑
j=0

sj

= Ih

(
θi+1
i+1

(
v −

i∑
j=0

zj +

i∑
j=0

sj

)
+ (1− θi+1

i+1)

(
w +

i+1∑
j=0

sj

))
∈ K.

Thus, we have proved by induction that (4.19)–(4.21) are correct for all zi defined as
in (4.18).

Assume from now on that the convex setK is given as in (4.2). For any v, w+s0 ∈
K, let

σ⊕ = Ihmax(0, v − w − s0), σ� = Ihmax(0, w + s0 − v),

and define

v0 = I�Hσ
⊕ − I�Hσ�.(4.28)

Due to the special structure of σ� and σ⊕, it is not hard to show that

|σ⊕|1 ≤ C|v − w − s0|1, |σ�|1 ≤ C|v − w − s0|1.(4.29)
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Thus, from (4.14)–(4.16) and the fact that v − w − s0 = σ⊕ − σ� one obtains

‖v0 − (v − w − s0)‖l
≤ ‖I�Hσ⊕ − I�Hσ� − (σ⊕ − σ�)‖l(4.30)

≤ cdH
1−l|σ⊕|1 + cdH

1−l|σ�|1
≤ cdH

1−l|v − w − s0|1, l = 0, 1.

As α(x) ≤ v, w + s0 ≤ β(x), there follows that

v − w − s0 ≤ min(β − w − s0, v − α), w + s0 − v ≤ min(β − v, w + s0 − α).
Note that min(β −w− s0, v−α) ≥ 0 and min(β − v, w+ s0−α) ≥ 0. It follows from
properties (4.11) and (4.12) that

0 ≤ I�Hσ
⊕ ≤ min(β − w − s0, v − α),

0 ≤ I�Hσ
� ≤ min(β − v, w + s0 − α),

which implies that v0 = I�Hσ
⊕ − I�h σ� satisfies

max(v − β, α− w − s0) ≤ v0 ≤ min(β − w − s0, v − α).
The above inequality shows that

α(x) ≤ v0 + w + s0 ≤ β(x), α(x) ≤ v − v0 ≤ β(x),(4.31)

which means that v0, defined in (4.28), satisfies (4.17) when K is given as in (4.2).
Lemma 4.3. Let v0 be given as in (4.28). Then the functions zi, i = 0, 1, 2, . . . ,m,

defined in (4.18) satisfy

‖v − w − z0‖0 ≤ cdH (|v − w|1 + |s0|1) ,(4.32)

|v − w − z0|1 ≤ cd (|v − w|1 + |s0|1) ,(4.33) ∥∥∥∥∥∥v − w −
i∑

j=0

zj

∥∥∥∥∥∥
0

≤ cdH

(
|v − w|1 +

i∑
j=0

|sj |1
)
, i = 1, . . . ,m,(4.34)

∣∣∣∣∣∣v − w −
i∑

j=0

zj

∣∣∣∣∣∣
1

≤ cd

(
1 +

H

δ

)(
|v − w|1 +

i∑
j=0

|sj |1
)
, i = 1, . . . ,m.(4.35)

Proof. The estimates (4.32) and (4.33) follow from (4.30). We shall establish
(4.34) and (4.35) by induction. Since si ∈ H1

0 (Ω
c
i ) and Ωci , i = 1, . . . ,m, contains

many disjoint subdomains with size proportional to H, then the Friedrich–Poincaré
inequality can be employed to yield

‖si‖0 ≤ CH|si|1, i = 1, 2, . . . ,m.(4.36)

Now applying (4.9), (4.30), and (4.36) to (4.23) gives

‖v − w − z0 − z1‖0 (using (4.9) and (4.23))

≤ C‖v − w − z0 − s1‖0 (using z0 = v0 + s0 and (4.30))

≤ cdH|v − w − s0|1 + ‖s1‖0 (using (4.36))(4.37)

≤ cdH(|v − w|1 + |s0|1 + |s1|1).
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Similarly, one arrives at

|v − w − z0 − z1|1(4.38)

≤ C‖v − w − v0 − s0 − s1‖1 + C

δ
‖v − w − v0 − s0 − s1‖0

≤ C‖v − w − s0 − v0‖1 + C‖s1‖1
+

C

δ
‖v − w − s0 − v0‖0 + C

δ
‖s1‖0

≤ cd

(
1 +

H

δ

)
|v − w − s0|1 + C

(
1 +

H

δ

)
|s1|1

≤ cd

(
1 +

H

δ

)
(|v − w|1 + |s0|1 + |s1|1).

Now, let us assume that (4.35) and (4.34) are correct for i, and we shall show that
they are also correct for i+ 1. To this end, it follows from (4.9) and (4.27) that∥∥∥∥∥∥v − w −

i+1∑
j=0

zj

∥∥∥∥∥∥
0

≤ C

∥∥∥∥∥∥v − w −
i∑

j=0

zj

∥∥∥∥∥∥
0

+ ‖si+1‖0
 ,

which, with the help of (4.36), shows that (4.34) is correct for i+ 1 if it is correct for
i. Finally, using again (4.9) and (4.27), we have∣∣∣∣∣∣v − w −

i+1∑
j=0

zj

∣∣∣∣∣∣
1

≤ +C

∣∣∣∣∣∣v − w −
i∑

j=0

zj

∣∣∣∣∣∣
1

+ |si+1|1


+

(
C +

1

δ

)∥∥∥∥∥∥v − w −
i∑

j=0

zj

∥∥∥∥∥∥
0

+ ‖si+1‖0
 .

Thus, it follows from (4.34) and (4.36) that (4.35) is correct for i + 1 if it is correct
for the index i. This completes the proof of the lemma.

Theorem 4.4. The estimate (3.2) in Assumption 1 holds true for the decompo-
sition (4.6.b) with

C1 = cd

(
1 +

H

δ

)
.(4.39)

Proof. Since θmm ≡ 1, then from (4.27) we conclude that

v − w −
m∑
j=0

zj = 0 in Ω,

which shows that (3.2.a) is valid. Condition (3.2.b) has been shown to be valid for z0
and zi in (4.31) and (4.19). It follows from

‖z0‖1 ≤ ‖v − w − z0‖1 + ‖v − w‖1,

‖zi‖1 ≤
∥∥∥∥∥∥v − w −

i∑
j=0

zj

∥∥∥∥∥∥
1

+

∥∥∥∥∥∥v − w −
i−1∑
j=0

zj

∥∥∥∥∥∥
1

, i = 1, . . . ,m,
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and (4.32)–(4.35) that (3.2.c) holds true with C1 being given in (4.39). We point
out that the generic constant depends on m, which is the number of colors for the
subdomains.

The estimate (3.3) in Assumption 2 has been shown to be correct for the decom-
position (4.6.b) with C2 =

√
m+ 1 and m being the number of colors; see [30] and

[20, 32] for details. Thus, all the conditions of the abstract convergence Theorem 3.1
are verified for the proposed domain decomposition method for the obstacle problem.
As a consequence of Theorem 3.1, we see that the convergence rate of Algorithm 2
for the obstacle problem is given by

F (un+1)− F (u)

F (un)− F (u)
≤ 1− 1

1 + (cdH/δ)2

or

||un − u||21 ≤
2

κ

[
1− 1

1 + (cdH/δ)2

]n
[F (u0)− F (u)].

4.3. Domain decomposition methods without coarse levels. When no
coarse levels are used in the domain decomposition method, the finite element space
V = Sh can be decomposed into subspaces as given in (4.6.a). In this case, Algorithm
2 turns out to be the classical Schwarz alternating method for the corresponding
minimization problem. We want to show that the abstract convergence Theorem 3.1
can be applied to yield a linear convergence for the Schwarz method, in which the
rate of convergence depends only on the overlapping size. Furthermore, our result is
more useful than those presented in [22, 29, 33] since no monotonicity is assumed on
the iterative approximations.

Let v, w ∈ K and si ∈ Vi satisfy w +
∑i
j=1 sj ∈ K. We define zi recursively by

zi = Ih

(
θii

(
v − w −

i−1∑
j=1

vj

)
+ (1− θii)si

)
, i = 1, . . . ,m.(4.40)

By repeating the proof as for Lemma 4.2, we obtain the following result.

Lemma 4.5. For a general convex subset K ⊂ H1
0 (Ω), assume that v, w, w +∑i

j=1 sj ∈ K, si ∈ Vi for i = 1, . . . ,m. Let zi, i = 1, . . . ,m, be defined as in (4.40).
Then we have

zi ∈ Vi, zi + w +

i−1∑
j=1

sj ∈ K,(4.41)

v − w −
i∑

j=1

zj = 0 in H1
0

 m⋃
j=i+1

Ωcj

 ,(4.42)

v −
i∑

j=1

zj +

i∑
j=1

sj ∈ K.(4.43)

In fact, the above lemma is a consequence of Lemma 4.2 by taking v0 = 0 and
s0 = 0. Now, using (4.9), from (4.27) in which the summation index i starts from 1,
we obtain the following estimate.
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Lemma 4.6. With zi, i = 1, 2, . . . ,m, being defined in (4.40) we have∥∥∥∥∥∥v − w −
i∑

j=1

zj

∥∥∥∥∥∥
0

≤ C

(
|v − w|1 +

i∑
j=1

|sj |1
)
,(4.44)

∣∣∣∣∣∣v − w −
i∑

j=0

zj

∣∣∣∣∣∣
1

≤ C(1 + δ−1)

(
|v − w|1 +

i∑
j=1

|sj |1
)
.(4.45)

Consequently, the following result has been proved.
Theorem 4.7. The estimate (3.2) in Assumption 1 is valid for the decomposition

(4.6.a) with

C1 = C(1 + δ−1).(4.46)

An application of Theorem 3.1 indicates that the one-level Schwarz method has
the following convergence rate estimate for the obstacle problem:

F (un+1)− F (u)

F (un)− F (u)
≤ 1− 1

1 + C(1 + δ−2)

or

||un − u||21 ≤
2

κ

[
1− 1

1 + C(1 + δ−2)

]n
[F (u0)− F (u)].

5. Numerical example. To support the convergence theory developed in the
previous sections, we present some numerical results here for the obstacle problem ap-
proximated by piecewise linear finite elements. To this end, consider the homogeneous
problem (4.1) and (4.2) which seeks u ∈ H1

0 (Ω) such that

α ≤ u ≤ β :

∫
Ω

∇u∇(v − u) ≥ 0 ∀v ∈ H1
0 (Ω), α ≤ v ≤ β,(5.1)

where α(x) and β(x) are two obstacle functions and Ω = (0, 4)× (0, 3).
The two finite element partitions TH and Th contain right triangles, which are

obtained through a uniform refinement of Ω as illustrated in Figure 5.1. In Figure
5.1, the coarse partition TH comprises 6 × 6 rectangles (i.e., 72 triangles) and the
fine-level partition Th contains 30 × 30 rectangles (i.e., 1800 triangles). As for the
nonoverlapping structure {Ωi}Mi=1 for Ω, we take M = 9, and {Ωi}9i=1 is obtained
as a uniform partition of Ω into rectangles. The overlapping decomposition {Ωδi }Mi=1

is constructed by extending each Ωi with a width of two triangles in Th. Roughly
speaking, the width δ is given by 2h.

The obstacles α(x) and β(x) are shown in Figure 5.2. More precisely, we have

α(x, y) = 3 +

√
( 1
6

)2 − (x− 2)2 − (y − 1.5)2

if (x− 2)2 + (y − 1.5)2 ≤ ( 16)2, or else α(x, y) = 0;

β(x, y) = 1/6−
√(

1
6

)2 − (x− 4
3 )

2 − (y − 3
4 )

2

if (x− 4
3 )

2 + (y − 3
4 )

2 ≤ ( 16)2, or else β(x, y) = 19
6 .

(5.2)



CONVERGENCE RATE ANALYSIS OF A SCHWARZ METHOD 1065

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3
(a)

X Axis

Y
 A

xi
s

Fig. 5.1. Meshes Th and TH and domain decomposition.
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Fig. 5.2. Obstacle functions α(x) (lower one) and β(x) (upper one).

In the numerical simulations, the obstacles are replaced by their finite element ap-
proximations. Corresponding to this obstacle, the finite element solution for (5.1) is
as shown in Figure 5.3.

We have seen that the constant C1 in the convergence estimate of Theorem 4.7
depends on δ−1 as given by (4.46) when one-level domain decomposition methods are
considered. For two-level domain decomposition methods, the constant C1 depends on
H/h andH/δ as given in (4.39). One of the goals of this section is to numerically verify
this dependence by taking various values of H, h, and δ. In all of our numerical tests
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Fig. 5.3. Solution.

the iteration is stopped when the maximum error between two consecutive computed
solutions is smaller than the tolerance ε = 0.001. The solution for each subdomain
problem is calculated by using the Gauss–Seidel iteration, which itself is a particular
case of the Schwarz domain decomposition method in which each subdomain is merely
the support of a nodal basis function of the finite element space. When solving
subdomain problems, the calculation is terminated at a relative maximum error of
ε = 10−5 at the nodes of Th between two consecutive computed solutions.

For the results shown in Figure 5.4, the coarse mesh size H varies, while the ratios
H/h = 6 and H/δ = 2 stay unchanged. The plot shows the total number of iterations
in the Schwarz method when the partition TH has 20, 18, 16, . . . , 2 elements in the
x- and y-directions. Starting from six elements, the number of iterations is almost
constant for the two-level method, which is in concordance with the convergence
theory. It can also be seen that the number of iterations is a decreasing function
of H for the one-level method. Since H/δ is constant, it follows that the number of
iterations is an increasing function of 1/δ, and this is in concordance with the estimate
for C1 in (4.46).

For the results in Figure 5.5, we have takenH = 5
12 , h = 5

120 , and δ = h, 2h, . . . , 10h.
For both one- and two-level methods, the number of iterations is a decreasing function
of δ. This observation is in concordance with the estimate on the constant C1.

For the results shown in Figure 5.6, the values for H, δ are chosen as H = 5
6 and

δ = 5
12 . The value of h assumes the mesh size of the partition Th with 2× 6, 4× 6, 6×

6, . . . , 20× 6 elements in the x- and y-directions. For the one-level Schwarz method,
the number of iterations is constant for h ≤ 5

12 , and this confirms the observation
that the constant C1 does not depend on h for the one-level method. For the two-
level method, the number of iterations is an decreasing function of h, which is in
concordance with the log(H/h)-dependence estimate of C1 in (4.39).

Finally, we see from the above numerical tests that the number of iterations for
the two-level method is significantly less than for the one-level method. We remark
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Fig. 5.5. Number of iterations as a function of δ for the Schwarz method when H and h are fixed.

that for one-sided obstacle problems, numerical tests using the two-level domain de-
composition method have been shown in [28].

In the rest of this section, we make comments on the relaxation method that
was used to solve the minimization problem on each subdomain. Notice that in the
relaxation method, we have a one-dimensional minimization problem to solve on each
support of the nodal basis functions. The solution of these one-dimensional problems
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Fig. 5.6. Number of iterations of the Schwarz method as a function of h when H and δ are fixed.

was obtained by first solving the one-dimensional problem without constraint and
then projecting it to the interval that presents the constraint for this one-dimensional
problem. To be more precise, we use two vectors u(k) and e(k), where k runs from 1

to the number of interior nodes in Th for the values of un+ i−1
m and en+1

i obtained from
Algorithm 2. Naturally, we have two vectors α(k) and β(k) containing the values of the
two obstacles at the interior nodal points in Th. Assume now that we are computing
the solution on the subdomain Ωi and we are seeking the value e(k) of the correction
at the node k of Th. Let ẽ(k) be the value obtained from the one-dimensional problem
without constraint. The projection is simply given by

e(k) = min(β(k)− u(k), max(α(k)− u(k), ẽ(k))).(5.3)

For the problem associated with the coarse mesh, the minimization function (i.e.,
the correction value e) comes from the coarse mesh finite element space, with con-
straints imposed on the fine mesh. A relaxation method is employed to solve this
problems in which one-dimensional problems associated with interior coarse mesh
nodal basis functions φ0

j (x), j = 1, 2, . . . , n0, are solved. As this is a one-dimensional
minimization problem with a constraint, we can first compute the minimizer without
constraint and then project this number into the interval which represents the con-
straint. The computation of the one-dimensional problem without constraint can be
done in the same way as for the standard Schwarz method [20, 28]. The computa-
tion of the constraint interval can be done similarly as explained in [28, p. 136] for
one-sided obstacle problems. To explain the idea more clearly, let us use uold(x) to
denote the computed solution, and we need to solve the following problem to get an
updated value for a coarse mesh nodal basis function φ0

j (x):

e(j) = arg min
{λ∈R| α(x)≤uold+λφ0

j (x)≤β(x)∀x∈supp(φ0
j )}

F (uold + λφ0
j ),(5.4)
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where supp(φ0
j ) is the support set of the function φ0

j . Let ẽ(j) be the minimizer of
the one-dimensional unconstrained problem, i.e.,

ẽ(j) = argmin
λ∈R

F (uold + λφ0
j ).(5.5)

The solution ẽ(j) is found by solving the one-dimensional algebraic equation associated
with this minimization problem. Since F is convex, e(j) is the projection of ẽ(j) over
the interval

[αj , βj ] = {λ ∈ R | α(x) ≤ uold + λφ0
j (x) ≤ β(x)∀x ∈ supp(φ0

j )},
where

αj = sup
x∈supp(φ0

j )

α(x)− uold(x)
φ0
j (x)

, βj = inf
x∈supp(φ0

j )

β(x)− uold(x)
φ0
j (x)

.(5.6)

Evidently, we have

e(j) = min(βj ,max(αj , ẽ(j))).(5.7)

We notice that, since α(x) ≤ uold(x) ≤ β(x), we have 0 ∈ [αj , βj ], and, consequently,
this interval is not empty. Naturally, the above infx∈supp(φ0

j )
and supx∈supp(φ0

j )
are

calculated only for the mesh nodes of Th.
Similar relaxation methods have been employed in the domain decomposition for

unconstrained minimization problems such as the Dirichlet problem for second order
elliptic problems. For the constrained problem, the relaxation method involves an
additional step which computes the lower and upper bounds αj and βj as given in
(5.6) and the projections (5.3) and (5.7).

The projection for the two-level method is more complicated than for the one-
level method. However, since the convergence of the two-level method is much faster
than the one-level method, the two-level method is more preferable for practical use.
For instance, for H = 5.0/10, h = 5.0/60, and δ = 5.0/20, the number of iterations
is 16 for the one-level method, and it is 8 for the two-level method. The computing
CPU time on a PC with one processor (Intel Pentium III, 600MHz) is 5.2 minutes
for the one-level method, and it is 3.7 minutes for the two-level method. The finite
element discretization problem in these numerical tests involves 3481 unknowns.

We shall mention that the subproblems associated with the subdomains and the
coarse mesh problem can also be solved by methods other than the relaxation method.
In the numerical tests of [26] and [28], the subproblems are solved by the augmented
Lagrangian method, which is also rather efficient for handling the constraints both
for the subdomain and coarse mesh problems.

6. Proof of Theorem 3.1. Since en+1
i minimizes (2.4), it satisfies (see [8])

〈F ′(un+ i−1
m + en+1

i ), vi − en+1
i 〉 ≥ 0 ∀vi ∈ Vi satisfying vi + un+ i−1

m ∈ K.(6.1)

Using assumption (3.1), we can prove that (see [23, Lem. 3.2])

F (w)− F (v) ≥ 〈F ′(v), w − v〉+ κ

2
‖w − v‖2V ∀v, w ∈ V.(6.2)

Taking vi = 0 in (6.1), we get from the above two inequalities that

F (un+ i−1
m )− F (un+ i

m ) ≥ κ

2
‖en+1
i ‖2V .(6.3)
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It follows from (6.3) that

F (un)− F (un+1) =

m∑
i=1

(F (un+ i−1
m )− F (un+ i

m )) ≥ κ

2

m∑
i=1

‖en+1
i ‖2V .(6.4)

Thus, we have

F (un) ≥ F (un+1).

Denote, for a given n,

νij =


un +

i∑
k=1

en+1
k , j ≤ i;

un +

j∑
k=1

en+1
k , j > i.

It can be seen that νij satisfies

νij − νij−1 = 0, j ≤ i;

νij − νij−1 = en+1
j , j > i;

F ′(un+1)− F ′(un+ i
m ) =

m∑
j=i+1

(
F ′(νij)− F ′(νij−1)

)
.(6.5)

As u, un, un +
∑i
j=1 e

n+1
j ∈ K, i = 1, 2, . . . ,m, we get from assumption (3.2) that

there exist zni ∈ Vi such that
(a) u− un =

m∑
i=1

zni , (b) un +

i−1∑
j=1

en+1
j + zni ∈ K, i = 1, . . . ,m,

(c)

( m∑
i=1

‖zni ‖2V
) 1

2

≤ C1

(
‖un − u‖2V +

m∑
j=1

‖en+1
j ‖2V

) 1
2

.

(6.6)

We use (3.3), (6.6), and (6.1) to get

〈F ′(un+1), un+1 − u〉 =
〈
F ′(un+1),

m∑
i=1

en+1
i + un − u

〉
(6.7)

=

m∑
i=1

〈
F ′(un+1), en+1

i − zni
〉

(using (6.6.a))

≤
m∑
i=1

〈
F ′(un+1)− F ′(un+i/m), en+1

i − zni
〉

(using (6.6.b) and (6.1))

=

m∑
i=1

m∑
j=i+1

〈
F ′(νij)− F ′(νij−1), e

n+1
i − zni

〉
(using (6.5))
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≤ C2

( m∑
j=1

‖en+1
j ‖2V

) 1
2
( m∑
i=1

‖en+1
i − zni ‖2V

) 1
2

(using (3.3))

≤ C2

( m∑
j=1

‖en+1
j ‖2V

) 1
2
(
(1 + C1)

( m∑
i=1

‖en+1
i ‖2V

) 1
2

+ C1‖un − u‖V
)

(using (6.6.c) and the triangular inequality).

The rest of the proof is the same as in [26, 27]. As u is the unique minimizer for (2.1),
we use (6.2) and the optimality condition to obtain

F (un)− F (u) ≥ 〈F ′(u), un − u〉+ κ

2
‖u− un‖2V ≥

κ

2
‖u− un‖2V .(6.8)

The following estimate needs to use (6.2), (6.4), (6.7), and (6.8):

F (un+1)− F (u)

≤ 〈F ′(un+1), un+1 − u〉 (using (6.2))

≤ (1 + C1)C2
2

κ
(F (un)− F (un+1)) (using (6.4) and (6.7))

+ C1C2
2

κ

√
F (un)− F (un+1)

√
F (un)− F (u) (using (6.8) and (6.7)).

Denote dn = F (un)−F (u) for all n ≥ 0. Let µ ∈ (0, 1) be a constant to be determined
later. Apply the inequality ab ≤ 1

4µa
2 + µb2 for all a, b ∈ R to the last term of the

above estimate to get

dn+1≤ (1 + C1)
2C2

κ
(dn − dn+1) + C1C2

2

κ

√
dn − dn+1

√
dn

≤
(
(1 + C1)

2C2

κ
+

[C1C2]
2

µκ2

)
(dn − dn+1) + µdn

≤ C∗µ−1(dn − dn+1) + µdn.

As a consequence, we see that

dn+1

dn
≤ C∗µ−1 + µ

1 + C∗µ−1
= 1− µ(1− µ)

µ+ C∗
.

For a given C∗ > 0, the function g(µ) = µ(1−µ)
µ+C∗ has a unique maximizer in [0, 1],

and the maximizer is given by µ∗ =
√

(C∗)2 + C∗ − C∗ ∈ (0, 1). Moreover, the
maximum value is given by g(µ∗) = 1

(
√
C∗+1+

√
C∗)2

. Consequently, (3.4) holds. The

error estimation (3.5) is obtained using (6.8) and (3.4). This completes the proof of
the theorem.
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Abstract. In “Adaptive wavelet methods II—Beyond the elliptic case” of Cohen, Dahmen, and
DeVore [Found. Comput. Math., 2 (2002), pp. 203–245], an adaptive method has been developed
for solving general operator equations. Using a Riesz basis of wavelet type for the energy space,
the operator equation is transformed into an equivalent matrix-vector system. This system is solved
iteratively, where the application of the infinite stiffness matrix is replaced by an adaptive approxi-
mation. Assuming that the stiffness matrix is sufficiently compressible, i.e., that it can be sufficiently
well approximated by sparse matrices, it was proved that the adaptive method has optimal computa-
tional complexity in the sense that it converges with the same rate as the best N -term approximation
for the solution, assuming that the latter would be explicitly available. The condition concerning
compressibility requires that, dependent on their order, the wavelets have sufficiently many vanish-
ing moments, and that they be sufficiently smooth. However, except on tensor product domains,
wavelets that satisfy this smoothness requirement are not easy to construct.

In this paper we write the domain or manifold on which the operator equation is posed as an
overlapping union of subdomains, each of them being the image under a smooth parametrization of
the hypercube. By lifting wavelets on the hypercube to the subdomains, we obtain a frame for the
energy space. With this frame the operator equation is transformed into a matrix-vector system,
after which this system is solved iteratively by an adaptive method similar to the one from the work
of Cohen, Dahmen, and DeVore. With this approach, frame elements that have sufficiently many
vanishing moments and are sufficiently smooth, something needed for the compressibility, are easily
constructed. By handling additional difficulties due to the fact that a frame gives rise to an under-
determined matrix-vector system, we prove that this adaptive method has optimal computational
complexity.

Key words. operator equations, adaptive methods, wavelets, frames, optimal computational
complexity, best N -term approximation
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1. Introduction. For some boundedly invertible L : H → H ′, where H is some
Hilbert space with dual H ′ and some g ∈ H ′, we consider the problem of finding
u ∈ H such that

Lu = g.

As typical examples, we think of linear differential or integral equations in variational
form. Although systems of such equations also fit into the framework, for ease of
exposition in this introduction let us consider scalar equations, so that H is typically
a Sobolev space Ht of some order t ∈ R.

Assuming that we have a Riesz basis Ψ for Ht available, which we formally view
as a column vector, by writing u = uTΨ, the above problem becomes equivalent to
finding u ∈ �2 satisfying the infinite matrix-vector system

Mu = g,
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where M := 〈Ψ, LΨ〉 : �2 → �2 is boundedly invertible and g := 〈Ψ, g〉 ∈ �2. Here 〈 , 〉
denotes the duality product on (Ht, H−t).

Let us denote by uN a best N -term approximation for u, i.e., a vector with at
most N nonzero coefficients that has distance to u less than or equal to that of any
vector with a support of that size. Note that ‖u−uTNΨ‖Ht � ‖u−uN‖�2 . Considering
bases Ψ of sufficiently smooth wavelet type, the theory of nonlinear approximation
tells us [21, 4] that if both

0 < s <
d− t

n
,

where d is the order of the wavelets and n is the space dimension, and u is in the
Besov space Bsn+t

τ (Lτ ), with τ = ( 1
2 + s)−1, then

sup
N∈N

Ns‖u− uN‖�2 <∞.

The condition here involving Besov regularity is much milder that the corresponding
condition u ∈ Hsn+t involving Sobolev regularity that would be needed to guarantee
the same rate of convergence with linear approximation in the span of N wavelets
corresponding to the “coarsest levels.” Indeed, assuming a sufficiently smooth right-
hand side, for several boundary value problems it has been proved that the solution
has a much higher Besov than Sobolev regularity [13, 9]. Note that a rate higher
than d−t

n can never be expected with wavelets of order d, except when the solution u
happens to be a finite linear combination of wavelets.

So far we have discussed the approximation of u, which, however, is only implicitly
given as the solution of Mu = g. Continuing earlier work in [11], in [5, 6] an iterative
adaptive method for solving this system was developed that, given a tolerance ε > 0,
yields an approximate solution uε with ‖u−uε‖ ≤ ε, where the number of operations
and storage locations it requires is of the same order as the length of the smallest best
N -term approximation for u on distance ε, meaning that the method has optimal
computational complexity.

When L and thus M are symmetric and positive definite, the method consists
of the application of the simple damped Richardson iteration to the infinite system,
where the multiplication of M with the current finitely supported approximation
vector for u is replaced by an adaptive approximation. In each iteration, each column
ofM is replaced by a finitely supported approximation with a tolerance that decreases
as a function of the modulus of the corresponding entry in the vector. Note that even
for a differential operator the matrix M is not sparse due to the interaction between
wavelets from different levels. A second ingredient of the method is the application
after each K steps, with K being some fixed number, of a clean-up or coarsening
procedure that removes the smallest entries from the current approximation in order
to ensure an optimal work-accuracy balance.

For nonsymmetric or indefinite M, one can simply apply the adaptive method to
the normal equations, or alternatively one can apply more advanced iterations which
may lead to quantitatively better results [6, 12, 19].

The proof of the optimality of the method requires that M be sufficiently com-
pressible, meaning that, given some tolerance δ > 0, there exists another infinite
matrix on distance less than δ, which in each row and column has only a finite and
sufficiently small number of nonzero entries. For large classes of differential and inte-
gral operators this property can indeed be verified when, dependent on the order d,
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the wavelets have sufficiently many vanishing moments and are sufficiently smooth;
see [25].

The bottleneck for the application of this adaptive wavelet method is the avail-
ability of suitable wavelet bases on general nonrectangular domains or manifolds.
An approach to constructing wavelet bases is to write the domain as a nonover-
lapping union of subdomains, which are the images of the hypercube under smooth
parametrizations. Wavelets, or “initial stable completions,” living on the hypercube
are lifted to the subdomains. Since in general more than one subdomain is needed,
there is the problem of “stitching” functions over the interfaces.

The approach from [17] yields wavelet bases that in principle satisfy all of these
requirements. However, since suitable extension operators from one subdomain into
neighboring subdomains enter the construction, it seems not easy to implement. The
approaches from [16, 3, 8] yield wavelets that over the interfaces between subdomains
are only continuous. For example, thinking of a differential equation of order 2 on
a two-dimensional domain, with this restricted smoothness only for orders d ≤ 2
sufficient compressibility of the matrix M can be shown. Note that it might happen
that the solution is smooth everywhere exactly along one of these interfaces on which
the wavelets have degenerated properties. However, with these low orders d ≤ 2 an
adaptive method can give at most a small improvement in the order of convergence
compared to nonadaptive methods, which in practice might not compensate for the
overhead it requires.

Again because of their lack of smoothness beyond continuity, finite element wave-
lets as constructed in [18, 7, 24] also seem not very well suited for the adaptive method.

The approach followed in this paper is to apply an overlapping decomposition
of the domain or manifold into subdomains. By lifting wavelets on the hypercube to
those subdomains, and by multiplying them by smooth weight functions that vanish at
the internal boundaries of these subdomains, a countable set of functions is obtained,
which we again denote by Ψ, which is dense in Ht and which for each u ∈ Ht yields
some representation u = uTΨ with ‖u‖Ht � ‖u‖�2 . Such a set Ψ is called a frame
for Ht. By writing u = uTΨ, solving Lu = g is again equivalent to solving Mu = g,
where M = 〈Ψ, LΨ〉 and g = 〈Ψ, g〉. However, due to the overlapping decomposition,
the representation u = uTΨ will not be unique, and so the system Mu = g will have
more solutions, which, however, all correspond to the unique solution of Lu = g.

When L is symmetric and positive definite, M is symmetric and semipositive
definite, and Mu = g can be solved by the damped Richardson iteration. In each
iteration the norm of the defect is reduced by a constant factor less than 1. For
nonsymmetric or indefinite L, the iteration can be applied to the normal equations.

Following [6] for the Riesz basis case, in the practical algorithm the application
of M will be replaced by the adaptive approximation. To be able to prove that the
method has optimal computational complexity, it is again needed that M be suffi-
ciently compressible, i.e., that, dependent on the order d, the wavelets have sufficiently
many vanishing moments and be sufficiently smooth. Since its construction does not
involve stitching of functions over interfaces, the advantage of this frame approach
is that these conditions concerning vanishing moments and smoothness are easily
satisfied.

Furthermore, because of the multiplication with the weight functions, bound-
ary conditions at the internal boundaries of the subdomains can be chosen at one’s
convenience. In particular, in the case of a closed manifold, this gives the addi-
tional advantage that all wavelet bases on the hypercube can be chosen to satisfy
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periodic boundary conditions. Such bases are the most easy to implement, and they
have much better quantitative properties than available wavelet bases satisfying other
boundary conditions.

A final advantage is that generally an overlapping domain decomposition is much
easier to construct with simpler parametrizations than a nonoverlapping one, which
might also give a favorable quantitative effect.

The use of a frame instead of a Riesz basis also gives rise to a problem: Since in
the adaptive method the matrix-vector product is replaced by an adaptive approx-
imation, each time it is invoked it gives an error that might have a component in
the nontrivial kernel of M. Also the clean-up or coarsening step may introduce such
components. Just because these components are in the kernel of M, they will not
be affected by subsequent Richardson steps, meaning that in the cause of the itera-
tion the component of the current approximation in the kernel of M may increase.
Although this component has no influence on the obtained approximation for the so-
lution of Lu = g, that is, after forming the series with the frame elements, it might be
responsible for the major part of the computational costs of each iteration. Indeed,
recall that in the adaptive approximation of the matrix-vector product the accuracy
with which the columns of M are approximated is determined by the moduli of the
corresponding entries in the vector.

Under some technical assumption on the frame, specifically on the projector,
called Q, onto the complement of the kernel of M in �2, we will prove that the above
effect will not occur or only to such an extent that also in the frame case the adaptive
method has optimal computational complexity. Unfortunately, although we expect
it to hold more generally for our frame construction based on overlapping decom-
positions, so far we could only give a complete proof that this technical assumption
holds in the situation that t = 0 and that the wavelet bases on the hypercube are
L2-orthogonal.

The above problem leads us to introduce a modified adaptive algorithm, to which
a projection step is added that is applied before each coarsening step. This projector
affects only the redundant representation in the overlap regions in a way that the
component of the current approximation in the kernel of M is controlled. The pro-
jector itself, called P, is given by an infinite matrix, and in the algorithm, as M, it is
only applied approximately using the adaptive matrix-vector product. We show that
P is sufficiently compressible, and prove that this modified algorithm has optimal
computational complexity in the general case.

This paper is organized as follows: In section 2, we recall the concept of a frame
and show how it can be used to transform an operator equation into an infinite,
underdetermined matrix-vector equation. We discuss iterative schemes to solve such
equations. Next, we replace those ingredients of such schemes that involve infinite vec-
tors or matrices by practical realizable approximations and show that they, together
with a coarsening routine, give rise to a convergent algorithm Solve. In addition, we
introduce a convergent modified algorithm modSolve that contains the inexact ap-
plication of a projector P that explicitly controls size of the component of the current
approximation in the kernel of M.

In section 3 we study the rate of convergence and the computational costs of both
algorithms. First we recall some theory dealing with best N -term approximation.
We formulate a condition on the compressibility of the stiffness matrix M, and for
modSolve also of P, that for M is known to be satisfied for wavelets that, dependent
on their order, have sufficiently many vanishing moments and are sufficiently smooth.
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Under these conditions, it is proved that both Solve and modSolve have optimal
computational complexity, where for Solve we need the aforementioned assumption
on the projector Q.

In section 4 we outline the construction of suitable frames using overlapping
domain decompositions. Having specified the construction of a frame, we now discuss
the condition onQ. Furthermore, we define a suitableP and show that it is sufficiently
compressible.

In order to avoid the repeated use of generic but unspecified constants, in this
paper by C <∼ D we mean that C can be bounded by a multiple of D, independently

of parameters on which C and D may depend. Obviously, C >∼ D is defined as D <∼ C,

and C � D as C <∼ D and C >∼ D.

2. The basic concept.

2.1. Frames. Let H be a separable real Hilbert space. A countable collection
Ψ ⊂ H is called a frame for H when there exist two positive constants AΨ, BΨ such
that

AΨ‖f‖2H′ ≤ ‖f(Ψ)‖2 ≤ BΨ‖f‖2H′ (f ∈ H ′).(2.1)

Here with f(Ψ) we mean the sequence (f(ψ))ψ∈Ψ, with ‖f(Ψ)‖ denoting its �2-norm.
We adapted the definition of a frame given in [20, section 3] by identifying H with its
dual H ′ via the Riesz mapping. As a consequence of (2.1), the frame operators

F : H ′ → �2 : f �→ f(Ψ)

and their dual

F ′ : �2 → H : c �→ cTΨ

are bounded with norm less than or equal to B
1
2

Ψ. Here we have used cTΨ as shorthand
notation for

∑
ψ∈Ψ cψψ. The composition F ′F : H ′ → H is boundedly invertible

with ‖(F ′F )−1‖H′←H ≤ A−1
Ψ . The collection Ψ̃ := (F ′F )−1Ψ is a frame for H ′ (the

“canonical” dual frame) with frame operators

F̃ := F (F ′F )−1, F̃ ′ = (F ′F )−1F ′

and frame constants B−1
Ψ , A−1

Ψ .
The property of Ψ being a frame for H with constants AΨ, BΨ can be shown to

be equivalent to clos spanΨ = H and

B−1
Ψ ‖u‖2H ≤ inf

c∈�2, F ′c=u
‖c‖2 ≤ A−1

Ψ ‖u‖2H (u ∈ H).(2.2)

We have

�2 = RanF ⊕⊥ KerF ′,

and

Q := F (F ′F )−1F ′ : �2 → �2(2.3)

is the orthogonal projector onto RanF . The frame Ψ is a Riesz basis for H if and
only if KerF ′ = 0.
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2.2. Transformation of an operator equation to an �2-problem. Let the
linear operator L : H → H ′ be boundedly invertible, and let Ψ be a frame for H.
Given a g ∈ H ′, we consider the problem of finding u ∈ H such that

Lu = g.(2.4)

As examples, one may think of L as being a linear differential or integral operator
in variational form that defines a homeomorphism between a relevant Sobolev space,
or a closed subspace of that, and its dual. A possible construction of a frame will be
discussed in section 4.1.

In addition to scalar equations, systems of differential and/or integral equations
also fit into this framework. Examples can be found, e.g., in [6, section 3]. In this
case, H is a product of relevant Sobolev spaces, and it can be equipped with a frame
defined as the product of frames for the coordinate spaces.

Writing u = F ′u for some u ∈ �2, u satisfies

Mu = g,

where

M := FLF ′ and g := Fg.

From

F̃L−1F̃ ′FLF ′ = F̃F ′

FLF ′F̃L−1F̃ ′ = FF̃ ′

}
= Q = id on RanF,

we conclude thatM|RanF
: RanF → RanF is boundedly invertible, in particular with

‖M‖ ≤ BΨ‖L‖H′←H and ‖M|−1
RanF

‖ ≤ A−1
Ψ ‖L−1‖H←H′ , whereas KerM = KerF ′.

2.3. Iterative schemes to solve the infinite-dimensional system Mu = g.
If L is symmetric and positive definite, i.e., L′ = L and inf0 �=v∈H(Lv)(v)/‖v‖2 > 0,
then M = M∗ ≥ 0. With λmax := λmax(M) = ‖M‖ and λ+

min := λmin(M|RanF
) =

‖M|−1
RanF

‖−1, for 0 < α < 2/λmax, we consider the damped Richardson iteration

u(i+1) = u(i) − α(Mu(i) − g).(2.5)

From u− u(i+1) = (id− αM)(u− u(i)) and QM = MQ, we infer that

‖Q(u− u(i+1))‖ ≤ ρ‖Q(u− u(i))‖,(2.6)

where ρ := ‖(id − αM)|RanF
‖ = max{αλmax − 1, 1 − αλ+

min} < 1, with minimum
κ−1
κ+1 when α = 2/(λmax + λ+

min), where κ = λmax/λ
+
min. Note that u − F ′u(i) =

F ′Q(u− u(i)).
We will study an inexact version of (2.5) in which the application of the infinite

matrix M is approximated. A difficulty will be that errors made in kerF ′ are not
reduced in subsequent iterations. Although obviously these errors do not affect F ′u(i),
they might hamper a cheap but sufficiently accurate matrix-vector multiplication.
Under some condition on Q, i.e., on the frame, we will prove that this is not the case,
in the sense that these errors do not pile up too much.

For handling cases in which Q might not satisfy this condition, we consider a
modified algorithm that contains the explicit application of a projector to reduce
error components in KerF ′ : Let P : �2 → �2 be some bounded projector with

KerP = KerF ′,
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so that �2 = RanP ⊕ KerF ′ is a “stable” splitting. Let u(i+1) denote the result of
applying P to the result of K damped Richardson iterations starting with u(i). Using
MPu = g and P(id−Q) = 0, we arrive at

Pu− u(i+1) = P(id− αM)K(Pu− u(i)) = P(id− αM)KQ(Pu− u(i)),(2.7)

and so

‖Pu− u(i+1)‖ ≤ ‖P‖ρK‖Pu− u(i)‖,

showing convergence when K is chosen such that ‖P‖ρK < 1. Note that u−F ′u(i) =
F ′(Pu− u(i)).

Except when the condition number κ is close to one, the Richardson iteration is
known to converge relatively slowly, and quantitatively better results can be expected
by more advanced iterations. However, for simplicity we confine the analysis to the
easiest algorithm.

The case of L being nonsymmetric or indefinite can be treated by considering the
normal equations

M∗Mu = M∗g.(2.8)

Both M|RanF
and M∗|RanF

are boundedly invertible on RanF and so is M∗M|RanF
,

whereas M∗M(KerF ′) = 0. By redefining λmax = λmax(M
∗M) = ‖M‖2 and

λ+
min = λmin(M

∗M|RanF
) = ‖M|−1

RanF
‖−2, the damped Richardson iteration, pos-

sibly alternated with the projection step, can now be applied to solve (2.8).
In this paper, we confine the analysis to the symmetric positive definite (SPD)

case. However, following the lines of [6, section 7], everything that will be said about
the SPD case can easily be generalized to the iteration applied to (2.8).

As an alternative for saddle-point problems, in [6, 12, 19] the Uzawa algorithm
or a reformulation as a positive definite system is studied, with the aim of obtaining
quantitatively better algorithms by avoiding the squaring of the condition number κ.
It can be expected that these methods can also be based on frames.

2.4. Approximate iterations. Obviously, since in actual computations we can
neither handle the generally infinite vector g nor apply the infinite matrix M, the
damped Richardson iteration, possibly alternated with the projection, is not a prac-
tical algorithm. In this section, we study convergence of the iterations in which these
ingredients are approximated. Following [6], we assume that we have the following
routines at our disposal.

Rhs[ε,g]→ gε. This routine determines a finitely supported gε ∈ �2 satisfying

‖g − gε‖ ≤ ε.

Apply[ε,N,v] → wε. This routine determines, for a finitely supported v ∈ �2
and for N = M (or P or M∗), a finitely supported wε satisfying

‖Nv −wε‖ ≤ ε.

Coarse[ε,v]→ vε. This routine creates, for a finitely supported v ∈ �2, a vector
vε by replacing all but N coefficients of v by zeros such that

‖v − vε‖ ≤ ε,(2.9)
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whereas N is at most a constant multiple of the minimal value of N for which (2.9)
is valid.

In sections 3.1 and 3.2, we will discuss suitable realizations of Coarse and Ap-
ply, respectively. The routine Coarse will be necessary for obtaining an optimal
work/accuracy balance. The realization of Rhs depends on the problem at hand.

Based on the above routines, we consider the following inexact version of the
damped Richardson iteration.

Solve[ε,M,g]→ uε.
Let θ < 1/3 and K ∈ N be fixed such that 3ρK < θ.
i := 0, u(0) := 0, ε0 := ‖M|−1

RanF
‖ ‖g‖.

While εi > ε do
i := i+ 1
εi := 3ρKεi−1/θ

g(i) := Rhs[ θεi
6αK ,g]

v(i,0) := u(i−1)

For j = 1, . . . ,K do

v(i,j) := v(i,j−1) − α
(
Apply[ θεi

6αK ,M,v(i,j−1)]− g(i)
)

od
u(i) := Coarse[(1− θ)εi,v

(i,K)]
od
uε := u(i).

Proposition 2.1. Let u ∈ �2 be some solution of Mu = g. Then the vectors
u(i), v(i,K) produced in Solve[ε,M,g] satisfy

‖Q(u− u(i))‖ ≤ εi (i ≥ 0),(2.10)

and so, in particular, ‖Q(u− uε)‖ ≤ ε. Furthermore,

‖Qu+ (id−Q)u(i−1) − v(i,K)‖ ≤ 2

3
θεi (i ≥ 1),(2.11)

which will be used in section 3.3.
Proof. For i = 0, (2.10) follows from Qu = M|−1

RanF
g.

Now for an i ≥ 1 let ‖Q(u−u(i−1))‖ ≤ εi−1. SinceMQu = g and ‖id−αM‖ ≤ 1,
we have

‖Qu− v(i,K) − (id− αM)K(Qu− u(i−1))‖ ≤ K

(
α
θεi
6αK

+ α
θεi
6αK

)
=

θεi
3
.

From

(id− αM)K(Qu− u(i−1)) = (id− αM)KQ(u− u(i−1))− (id−Q)u(i−1)

and ‖(id − αM)KQ(u − u(i−1))‖ ≤ ρK‖Q(u − u(i−1))‖ ≤ ρKεi−1 = θεi
3 , we con-

clude (2.11). The definition of u(i) now shows that ‖Qu + (id −Q)u(i−1) − u(i)‖ ≤
( 2θ

3 + (1− θ))εi = (1− θ
3 )εi, and so ‖Q(u− u(i))‖ ≤ (1− θ

3 )εi ≤ εi.
Remark 2.2. Compared to the Riesz basis setting discussed in [6], we see that

in Solve we have to pay for working with a frame. When going from u(i) to u(i+1),
each of the “evaluation” errors made in the K intermediate steps, and in fact even
the sum, should be less than the error that is allowed in u(i+1). Indeed, since only
‖id− αM‖ ≤ 1, these errors might not be reduced by the iteration.
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The inexact version of the damped Richardson iteration, alternated with the
inexact application of the projector P, is given by the following.

modSolve[ε,M,g]→ uε.
Let θ < 1/3 and K ∈ N be fixed such that 3ρK‖P‖ < θ.
i := 0, u(0) := 0, ε0 := ‖P‖ ‖M|−1

RanF
‖ ‖g‖.

While εi > ε do
i := i+ 1
εi := 3ρK‖P‖εi−1/θ
v(i,0) := u(i−1)

For j = 1, . . . ,K do

v(i,j) := v(i,j−1) − α(Apply[ρ
jεi−1

2αK ,M,v(i,j−1)]−Rhs[ρ
jεi−1

2αK ,g])
od

z(i) := Apply[ θεi3 ,P,v(i,K)]
u(i) := Coarse[(1− θ)εi, z

(i)]
od
uε := u(i).

Proposition 2.3. Let u ∈ �2 be some solution of Mu = g. Then the vectors
u(i), z(i) produced in modSolve[ε,M,g] satisfy

‖Pu− u(i)‖ ≤ εi (i ≥ 0),(2.12)

and so, in particular, ‖Pu− uε‖ ≤ ε. Furthermore,

‖Pu− z(i)‖ ≤ θεi (i ≥ 1),(2.13)

which will be used in section 3.3.
Proof. For i = 0, (2.12) follows from Pu = PM|−1

RanF
g.

Now for an i ≥ 1, let ‖Pu− u(i−1)‖ ≤ εi−1. Since MPu = g, for 1 ≤ j ≤ K, for

some δj with ‖δj‖ ≤ ρjεi−1

K , we have

Pu− v(i,j) = (id− αM)(Pu− v(i,j−1)) + δj ,

and so

Pu− v(i,K) = (id− αM)K(Pu− u(i−1)) +

K∑
j=1

(id− αM)K−jδj .

From (id − αM)m = (id − αM)mQ + (id −Q) and P(id −Q) = 0, we obtain that
‖P(id− αM)m‖ ≤ ‖P‖ρm. We conclude that

‖Pu−Pv(i,K)‖ ≤ ‖P‖
ρKεi−1 +

K∑
j=1

ρK−j
ρjεi−1

K

 = 2ρK‖P‖εi−1,

‖Pu− z(i)‖ ≤ 2ρK‖P‖εi−1 +
θεi
3

= θεi,

and finally

‖Pu− u(i)‖ ≤ θεi + (1− θ)εi = εi.
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3. Convergence rates and computational costs.

3.1. Best N-term approximation and Coarse. To assess the efficiency of
Solve or modSolve, following [6], we will consider the following benchmark: Suppose
that for some solution u ∈ �2 of Mu = g we would have all coefficients available.
Then the most economical approximation for u on distance less than ε would be uN ,
defined by replacing all but the N largest coefficients in modulus of u by zeros, with
N = N(ε,u) being the smallest integer such that

‖u− uN‖ ≤ ε.(3.1)

For N ∈ N, the vector uN is called the best N -term approximation for u. If for some
s > 0

‖u− uN‖ <∼ N−s (N ∈ N),(3.2)

then N = N(ε,u) from (3.1) would satisfy N(ε,u) <∼ ε−1/s.
Assuming (3.2), in section 3.3 we will prove that for uε produced by (mod)Solve

it holds that #suppuε <∼ ε−1/s, whereas the number of floating point operations to
compute it is of the same order. In view of (3.2), we may conclude that (mod)Solve
is of optimal computational complexity.

The question whether, and if so, for which s (3.2) is valid, is related to properties
of the frame and the (Besov-) regularity of the solution u ∈ H of the operator equation
(2.4). This will be discussed in section 4.2.

Vectors u ∈ �2 that satisfy (3.2) can be characterized as follows (see [21]): Let
γn(u) denote the nth largest coefficient in modulus of u. For 0 < τ < 2, the space �wτ
is defined by

�wτ =

{
u ∈ �2 : |u|�wτ := sup

n
n1/τ |γn(u)| <∞

}
.

It is easily verified that �τ ↪→ �wτ ↪→ �τ+δ for any δ ∈ (0, 2 − τ ], justifying why �wτ
is called weak �τ . The expression |u|�wτ defines only a quasinorm since it does not
necessarily satisfy the triangle inequality. Yet, for each 0 < τ < 2, there exists a
C1(τ) > 0 with

|v +w|�wτ ≤ C1(τ) (|v|�wτ + |w|�wτ ) (v,w ∈ �wτ ),(3.3)

or, equivalently [2, Lemma 3.10.1], for µ = µ(τ) > 0 sufficiently small it holds that

|v +w|µ�wτ ≤ |v|
µ
�wτ

+ |w|µ�wτ (v,w ∈ �wτ ).

With these �wτ -spaces at hand, it can be shown that the property (3.2) is equivalent
to u ∈ �wτ , with τ related to s according to τ = ( 1

2 + s)−1. In particular, for each
τ ∈ (0, 2),

sup
N

Ns‖u− uN‖ � |u|�wτ ;(3.4)

e.g., see [5, Proposition 3.2].
The routine vε = Coarse[ε,v] might be defined by taking vε = vN , withN being

the smallest integer such that ‖v−vN‖ ≤ ε. However, since the determination of the
best N -term approximation requires sorting all elements of v by their modulus, this
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algorithm cannot be implemented in linear time. It requires the order of (#suppv)×
log(#suppv) operations, with #suppv denoting the number of nonzero coefficients
of v.

Following ideas from [1, 22], we use a routine Coarse with which this log-factor
is avoided.

Coarse[ε,v]→ vε.
• q := �log((#suppv)1/2‖v‖/ε)�.
• Divide the elements of v into sets V0, . . . , Vq, where, for 0 ≤ i ≤ q − 1,
Vi contains the elements with modulus in (2−i−1‖v‖, 2−i‖v‖], and possible
remaining elements are put into Vq.
• Create vε by extracting elements first from V0 and, when it is empty, from V1

and so forth, until ‖v − vε‖ ≤ ε.
The value of q is chosen such that the sum of squares of the elements in Vq is

less than or equal to ε2, meaning that the last element added to vε (assuming that
this vector is nonzero) originates from Vi for some i < q. Since then also vN with
‖v−vN‖ ≤ ε must contain elements from this Vi, and since within each Vi the squared
values of the elements differ by at most a factor of 4, we obtain the following result.

Proposition 3.1. For vε yielded by the above routine, it holds that ‖v−vε‖ ≤ ε
and

#suppvε ≤ 4min{N : ‖v − vN‖ ≤ ε},(3.5)

meaning that it defines a valid procedure Coarse. The number of operations needed
for this routine is of the order

#suppv + q <∼ #suppv + log(ε−1‖v‖).(3.6)

Later, it will appear that the latter log-term is harmless.
Below, in Proposition 3.2, we recall a crucial result proved in [5]. It shows that,

for any fixed θ < 1/3, a finitely supported approximation of a target vector in �wτ
can always be coarsened such that the resulting approximation has an error that is
at most 1/θ times the original error, whereas the size of its support is at most some
fixed multiple of that of the best N -term approximation with that error. Although
this result was proved for best N -term approximations, from (3.5) it is obvious that
it is also valid for the current routine Coarse.

Proposition 3.2 (see [5, Corollary 5.2]). Let θ < 1/3, τ ∈ (0, 2), and τ =
( 1
2 + s)−1. Then for any ε > 0, v ∈ �wτ , and finitely supported w ∈ �2 with

‖v −w‖ ≤ θε,

for w = Coarse[(1− θ)ε,w] it holds that

#suppw <∼ ε−1/s|v|1/s�wτ
,

and obviously ‖v −w‖ ≤ ε.
Remark 3.3. In [5, Corollary 5.2] this result was formulated for θ = 1/5. How-

ever, an inspection of the proof, and an easy generalization of [5, (5.4)] concerning
thresholding, shows the result for any θ < 1/3. Applying Coarse with a θ larger than
1/5 might give a quantitative improvement of (mod)Solve, since then it increases the
error with a smaller factor. It is easily seen that in any case Proposition 3.2 can not
be valid for θ > 1/2.
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Controlling the sizes of the supports of approximations of an �wτ -function relative
to their errors implies controlling their �wτ -(quasi)norms. Indeed, an easy application
of the next proposition shows that in the situation of Proposition 3.2, in addition we
have that

|w|�wτ ≤ C2(τ)|v|�wτ(3.7)

for some constant C2(τ) independent of ε.
Proposition 3.4 (see [5, Lemma 4.11]). Let τ ∈ (0, 2) and τ = ( 1

2 + s)−1. Then
for any v ∈ �wτ and finitely supported z ∈ �2 we have

|z|�wτ <∼ |v|�wτ + (#supp z)s‖v − z‖.
Proof. For convenience we recall the short proof. Let N = #supp z; then

|z|�wτ <∼ |z− vN |�wτ + |vN |�wτ <∼ (2N)s‖z− vN‖+ |v|�wτ ,
where we used #supp(z− vN ) ≤ 2N and (3.4). The proof is completed by

‖z− vN‖ ≤ ‖z− v‖+ ‖v − vN‖ ≤ 2‖z− v‖.
3.2. Requirements on the infinite-dimensional system. In order to be

able to show that (mod)Solve has optimal computational complexity, we will have
to impose some conditions on the matrix M, and for modSolve also on P, as well as
on the right-hand side g. Our treatment closely follows [5, 6], except that, following
ideas from [1, 22], we avoid some log-factors in the operations count due to sorting.

Definition 3.5. Let s∗ > 0. A bounded N : �2 → �2 is called s∗-admissible when
for a suitable routine Apply, for each s ∈ (0, s∗), τ = ( 1

2 + s)−1, for all ε > 0 and
finitely supported vectors v, with wε = Apply[ε,N,v] the following are valid:

(I) #suppwε
<∼ ε−1/s|v|1/s�wτ

;

(II) the number of arithmetic operations used to compute wε is at most a fixed

multiple of ε−1/s|v|1/s�wτ
+#suppv.

Remark 3.6. LetN be s∗-admissible. Then for any s ∈ (0, s∗), with τ = ( 1
2+s)

−1,
N : �wτ → �wτ is bounded. Indeed, let v ∈ �wτ . Part (I) from Definition 3.5 can be

written as #suppwε ≤ Cε−1/s|v|1/s�wτ
for some constant C. For any N ∈ N, take

ε = Cs|v|�wτ N−s or, equivalently, N = Cε−1/s|v|1/s�wτ
. Let (Nv)N denote the best

N -term approximation for Nv. Then

Ns‖Nv − (Nv)N‖ ≤ Ns‖Nv −wε‖ ≤ Nsε = Cs|v|�wτ ,
showing |Nv|�wτ <∼ |v|�wτ by (3.4).

Next, for any s ∈ (0, s∗) and τ = ( 1
2+s)

−1, the mapping v �→ wε := Apply[ε,N,v]
is bounded on �wτ uniformly in ε > 0. Indeed Proposition 3.4, Definition 3.5(I), and
the boundedness of N demonstrated above show that

|wε|�wτ <∼ |Nv|�wτ + (#suppwε)
s‖NV −wε‖ <∼ |Nv|�wτ + |v|�wτ <∼ |v|�wτ .

It will turn out that a matrix is s∗-admissible when it is s∗-compressible, a prop-
erty that can be verified for the matrices at hand.

Definition 3.7. Let s∗ > 0. A bounded N : �2 → �2 is called s∗-compressible,
when for each j ∈ N there exist constants αj and Cj, and an infinite matrix Nj having
at most αj2

j nonzero entries in each column, such that

‖N−Nj‖ ≤ Cj ,(3.8)
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(αj)j∈N is summable, and, for any s < s∗, (Cj2
sj)j∈N is summable.

For s∗-compressible N, we will make use of the following routine Apply.
Apply[ε,N,v]→ wε.
• q := �log((#suppv)1/2‖v‖‖N‖2/ε)�.
• Divide the elements of v into sets V0, . . . , Vq, where, for 0 ≤ i ≤ q − 1,
Vi contains the elements with modulus in (2−i−1‖v‖, 2−i‖v‖], and possible
remaining elements are put into Vq.
• For k = 0, 1, . . ., generate vectors v[k] by subsequently extracting 2k − �2k−1�

elements from ∪iVi, starting from V0 and when it is empty continuing with
V1 and so forth, until for some k = � either ∪iVi becomes empty or

‖N‖
∥∥∥∥∥v −

�∑
k=0

v[k]

∥∥∥∥∥ ≤ ε

2
.(3.9)

In both cases v[�] may contain less than 2� − �2�−1� elements.
• Compute the smallest j ≥ � such that

�∑
k=0

Cj−k‖v[k]‖ ≤ ε

2
.(3.10)

• For 0 ≤ k ≤ �, compute the nonzero entries in the matrices Nj−k which have
a column index in common with one of the entries of v[k], and compute

wε :=

�∑
k=0

Nj−kv[k].(3.11)

The sizes of the entries of v determine the accuracy with which the corresponding
columns of N are approximated, which justifies why we speak about an adaptive
solution method.

Proposition 3.8. For wε yielded by above routine, we have

‖Nv −wε‖ ≤ ε.

Moreover, when N is s∗-compressible, this Apply realizes (I), (II) of Definition 3.5,
and so N is s∗-admissible.

Proof. From (3.9), (3.8), and (3.10), we have

‖Nv −wε‖ ≤ ε

2
+

�∑
k=0

Cj−k‖v[k]‖ ≤ ε.

Let s ∈ (0, s∗) be given and τ = ( 1
2 + s)−1. The number of operations needed for

generating the vectors v[k] is of the order

#suppv + q <∼ #suppv + log(ε−1‖v‖) <∼ #suppv + ε−1/s|v|1/s�wτ
.

By the definition of s∗-compressibility, #suppwε and the number of operations needed
for the evaluation of (3.11) can be bounded by

∑�
k=0 αj−k2

j−k2k <∼ 2j , meaning that

the proof will be completed once we have shown that 2j <∼ ε−1/s|v|1/s�wτ
.

The value of q was chosen such that the sum of squares of elements in Vq is less
than or equal to (ε/(2‖N‖))2, meaning that for all k < �, v[k] contains only elements
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from Vi for i < q. Since within each of these Vi the squared values of the elements
differ by at most a factor of 4, for k ≤ � we obtain that

‖v[k]‖ ≤
∥∥∥∥∥v −

k−1∑
m=0

v[m]

∥∥∥∥∥ ≤ ‖v − v	2k−1/4
‖ <∼ 2−ks|v|�wτ ,

by (3.4).
Since � is the smallest integer for which (3.9) is valid, assuming it is nonzero, we

infer that

ε

2
< ‖N‖

∥∥∥∥∥v −
�−1∑
k=0

v[k]

∥∥∥∥∥ <∼ 2−�s|v|�wτ ‖N‖

or 2� <∼ ε−1/s|v|1/s�wτ
.

Now assume that j > �. Since j is the smallest integer for which (3.10) is valid,
we infer that

ε

2
<

�∑
k=0

Cj−1−k‖v[k]‖ <∼
�∑

k=0

Cj−1−k2−ks|v|�wτ <∼ 2−(j−1)s|v|�wτ ,

by the definition of s∗-compressibility, or 2j <∼ ε−1/s|v|1/s�wτ
.

We will consider right-hand sides g that satisfy the following definition.
Definition 3.9. A vector g ∈ �2 is called s∗-optimal when for a suitable routine

Rhs, for each s ∈ (0, s∗), τ = ( 1
2 + s)−1, and all ε > 0, with gε = Rhs[ε,g] the

following are valid:

(I) #suppgε <∼ ε−1/s|g|1/s�wτ
,

(II) the number of arithmetic operations used to compute gε is at most a multiple

of ε−1/s|g|1/s�wτ
.

Remark 3.10. A direct consequence of Proposition 3.4 and Definition 3.9(I) is
that

|gε|�wτ <∼ |g|�wτ .(3.12)

Implicitly, in the proof of Proposition 3.8 we assumed that each element of Nj

can be computed at unit costs. For a discussion of the circumstances under which
this, as well as g being s∗-optimal, can be expected, we refer to [6, section 6.2].

3.3. The complexity of (mod)Solve. We show that Solve and modSolve
are of optimal computational complexity. We start with modSolve, since for this
routine the proof follows closely that given in [6] for the Riesz basis case.

Theorem 3.11. For some s∗ > 0, assume that M and P are s∗-admissible, g is
s∗-optimal, and that for some s ∈ (0, s∗), with τ = ( 1

2 + s)−1, Mu = g has a solution
u ∈ �wτ . Then for all ε > 0, uε = modSolve[ε,M,g] satisfies the following:

(I) #suppuε <∼ ε−1/s|u|1/s�wτ
,

(II) the number of arithmetic operations used to compute uε is at most a multiple

of ε−1/s|u|1/s�wτ
.

Further, as shown in Proposition 2.3, ‖Pu− uε‖ ≤ ε, and so ‖u− F ′uε‖H ≤ B
1
2

Ψε.
Proof. It suffices to prove the statements for any ε = εi with εi = (3ρK‖P‖/θ)iε0,

as in the algorithm modSolve.
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As noted in Remark 3.6, the fact that P is s∗-admissible implies that it is bounded
on �wτ . For any i ≥ 1, from ‖Pu−z(i)‖ ≤ θεi proved in Proposition 2.3, Proposition 3.2
and the assumption u ∈ �wτ show that u(i) := Coarse[(1− θ)εi, z

(i)] satisfies

#suppu(i) <∼ ε
−1/s
i |Pu|1/s�wτ

<∼ ε
−1/s
i |u|1/s�wτ

,(3.13)

i.e., (I), and by (3.7), also

|u(i)|�wτ <∼ |Pu|�wτ <∼ |u|�wτ .(3.14)

Here we emphasize that both these results are valid uniformly in i.
To compute u(i) from u(i−1), modSolve uses one application of Rhs, K applica-

tions of Apply involving M, 2K vector updates, one application of Apply involving
P, and finally an application of Coarse. From the key estimates (3.13), (3.14), and
the fact that K is some fixed constant, in the following three paragraphs we show that

these computations take not more than a multiple of ε
−1/s
i |u|1/s�wτ

operations. Since

(εi)i is a geometrically decreasing sequence, we may therefore conclude (II).
Since M is s∗-admissible, it is bounded on �wτ . As a consequence, |g|�wτ <∼ |u|�wτ ,

and so the assumption of g being s∗-optimal gives #suppg(i) <∼ ε
−1/s
i |u|1/s�wτ

and
|g(i)|�wτ <∼ |u|�wτ by (3.12), whereas the number of operations used to compute it is

at most a multiple of ε
−1/s
i |u|1/s�wτ

.

Because of |g(i)|�wτ <∼ |u|�wτ and |u(i−1)|�wτ <∼ |u|�wτ , from the assumption that M

is s∗-admissible we have |v(i,j)|�wτ <∼ |u|�wτ by Remark 3.6. Again since M is s∗-
admissible, the latter result shows that #suppv(i,j) <∼ ε

−1/s
i |u|1/s�wτ

for 1 ≤ j ≤ K,

whereas by #suppv(i,0) <∼ ε
−1/s
i−1 |u|1/s�wτ

(see (3.13)) and #suppg(i) <∼ ε
−1/s
i |u|1/s�wτ

, its
computation takes not more than a multiple of ε

−1/s
i |u|1/s�wτ

operations.

Since |v(i,K)|�wτ <∼ |u|�wτ , #suppv(i,K) <∼ ε
−1/s
i |u|1/s�wτ

, and P is s∗-admissible, the

computation of z(i) := Apply[θεi/3,P,v
(i,K)] takes a number of operations that is at

most a multiple of ε
−1/s
i |u|1/s�wτ

, #supp z(i) <∼ ε
−1/s
i |u|1/s�wτ

, and |z(i)|�wτ <∼ |u|�wτ . Finally,
by (3.6), the latter result implies that Coarse[(1 − θ)εi, z

(i)] also needs at most a

multiple of #supp z(i) + log(ε−1
i ‖z(i)‖) <∼ ε

−1/s
i |u|1/s�wτ

operations.
The key to the proof of Theorem 3.11 is the fact that the iterands produced by

modSolve are uniformly bounded in �wτ . Unfortunately, generally this will not be
the case with Solve. Since Solve does not contain a projection onto a complement
space of kerF ′, it is not capable of reducing errors once made in kerF ′. Recall that
such errors are not reduced by the Richardson steps since they are in the kernel of
M. Although, because of the geometric decrease of the tolerances, these errors are
summable in �2, we cannot show this in �wτ , and so boundedness of the iterands in �wτ is
not guaranteed. For example, thinking of Rhs and Apply as being performed exactly,
i.e., with zero tolerances, each time Coarse[(1 − θ)εi,v

(i,K)] is invoked it gives an
error, which might be completely contained in kerF ′, for which we can say not more
than that its �wτ -norm is less than or equal to |v(i,K)|�wτ , i.e., that it is bounded.

For u(i), εi as in Solve, for some š ∈ (s, s∗), and with τ̌ = ( 1
2 + š)−1, in the proof

of Theorem 3.12 given below we will show that

ε
(š/s)−1
i |u(i)|�wτ̌ <∼ |u|š/s�wτ

, suppu(i) <∼ ε
−1/s
i |u|1/s�wτ
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and, as a consequence of these results, that the method is of optimal complexity. Note
that for any v with finite support,

|v|�wτ̌ ≤ (#suppv)š−s|v|�wτ .(3.15)

Thus |u(i)|�wτ <∼ 1 and #suppu(i) <∼ ε
−1/s
i would give ε

(š/s)−1
i |u(i)|�wτ̌ <∼ |u(i)|š/s�wτ

<∼ 1.

However, conversely, under no condition on #suppu(i), uniform boundedness of

ε
(š/s)−1
i |u(i)|�wτ̌ implies that of |u(i)|�wτ . In other words, it will turn out that uni-
form boundedness in �wτ of the iterands is not a necessary condition for obtaining an
optimal complexity result.

Theorem 3.12. For some s∗ > 0, assume that M is s∗-admissible, g is s∗-
optimal, and that for some s ∈ (0, s∗), with τ = ( 1

2 + s)−1, Mu = g has a solution
u ∈ �wτ . In addition, assume that there exists an š ∈ (s, s∗) such that, with τ̌ =
( 1
2 + š)−1,

Q is bounded on �wτ̌ .(3.16)

Then, if the parameter K in Solve is sufficiently large—sufficient is

3ρK < θmin
{
1,
[
C1(τ̌)C2(τ̌)|(id−Q)|�wτ̌←�wτ̌

]s/(š−s)}
,(3.17)

where C1(τ̌), C2(τ̌) are the constants from (3.3), (3.7) respectively—then for all ε > 0,
uε = Solve[ε,M,g] satisfies the following:

(I) #suppuε <∼ ε−1/s|u|1/s�wτ
,

(II) the number of arithmetic operations used to compute uε is at most a multiple

of ε−1/s|u|1/s�wτ
.

Further, as shown in Proposition 2.1, ‖Q(u−uε)‖ ≤ ε, and so ‖u−F ′uε‖H ≤ B
1
2

Ψε.
Proof. It suffices to prove the statements for any ε = εi with εi = (3ρK/θ)iε0, as

in the algorithm Solve.
SinceQ is bounded on �2, and by assumption it is bounded on �wτ̌ , an interpolation

argument (cf. [21, (4.24)]) shows that it is bounded on �wτ as well. Let Ni be the
smallest integer such that ‖Qu − (Qu)Ni

‖ ≤ θεi/3, where (Qu)N denotes the best
N -term approximation for Qu. Then, using the assumption u ∈ �wτ , (3.4) shows that

Ni
<∼ ε
−1/s
i |Qu|1/s�wτ

<∼ ε
−1/s
i |u|1/s�wτ

,

and so by (3.15),

ε
(š/s)−1
i |(Qu)Ni |�wτ̌ <∼ |u|(š/s)−1

�wτ
|(Qu)Ni |�wτ <∼ |u|(š/s)−1

�wτ
|Qu|�wτ <∼ |u|š/s�wτ

.(3.18)

From ‖Qu+ (id−Q)u(i−1) − v(i,K)‖ ≤ 2θεi/3 proved in Proposition 2.1, we get

‖(Qu)Ni
+ (id−Q)u(i−1) − v(i,K)‖ ≤ θεi.

From (3.7) and then (3.3), it follows that u(i) := Coarse[(1− θ)εi,v
(i,K)] satisfies

|u(i)|�wτ̌ ≤ C2(τ̌)|(Qu)Ni + (id−Q)u(i−1)|�wτ̌
≤ C1(τ̌)C2(τ̌)|(Qu)Ni |�wτ̌ + C1(τ̌)C2(τ̌)|(id−Q)|�wτ̌←�wτ̌ |u(i−1)|�wτ̌ ,
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and so by (3.18) and εi = 3ρKεi−1/θ,(
ε
(š/s)−1
i |u(i)|�wτ̌

)
≤ C|u|š/s�wτ

+ C1(τ̌)C2(τ̌)|(id−Q)|�wτ̌←�wτ̌

(
3ρK

θ

)(š/s)−1 (
ε
(š/s)−1
i−1 |u(i−1)|�wτ̌

)
for some constant C > 0. We may conclude that if K satisfies (3.17), then solutions
of the homogeneous part of this recursion converge to zero, and so

ε
(š/s)−1
i |u(i)|�wτ̌ <∼ |u|š/s�wτ

,(3.19)

which, as we emphasize here, holds uniformly in i.
Knowing (3.19), Proposition 3.2 and (3.18) show that

#suppu(i) <∼ ε
−1/š
i |(Qu)Ni

+ (id−Q)u(i−1)|1/š�wτ̌

<∼ ε
−1/s
i

(
ε
(š/s)−1
i

[|(Qu)Ni |�wτ̌ + |id−Q|�wτ̌←�wτ̌ |u(i−1)|�wτ̌
])1/š

<∼ ε
−1/s
i |u|1/s�wτ

;

i.e., (I) is valid.
The remainder of the proof resembles that of Theorem 3.11. We have to show

that the K intermediate steps that transfer u(i−1) to u(i) take a number of operations

that is bounded by some multiple of ε
−1/s
i |u|1/s�wτ

.
As in the proof of Theorem 3.11, since M is s∗-admissible and g is s∗-optimal, we

have #suppg(i) <∼ ε
−1/s
i |u|1/s�wτ

and |g(i)|�wτ <∼ |u|�wτ , and so, in addition, ε
(š/s)−1
i |g(i)|�wτ̌

<∼ |u|š/s�wτ
.

SinceM is s∗-admissible, this last result, together with ε
(š/s)−1
i−1 |u(i−1)|�wτ̌ <∼ |u|š/s�wτ

,
shows that

ε
(š/s)−1
i |v(i,j)|�wτ̌ <∼ |u|š/s�wτ

(0 ≤ j ≤ K)(3.20)

by Remark 3.6 (use š < s∗).
A new element in this proof is the observation that, instead of uniform bound-

edness in �wτ , (3.20) is already sufficient to guarantee that the supports have the
appropriate sizes. Indeed, again since M is s∗-admissible (use š < s∗), it follows that

#suppv(i,j) <∼ ε
−1/š
i |v(i,j−1)|1/š�wτ̌

<∼ ε
−1/s
i |u|1/s�wτ

(1 ≤ j ≤ K),(3.21)

whereas by #suppv(i,0) <∼ ε
−1/s
i−1 |u|1/s�wτ

(via (I)), #suppg(i) <∼ ε
−1/s
i |u|1/s�wτ

, and the sec-

ond inequality in (3.21), its computation takes not more than a multiple of ε
−1/s
i |u|1/s�wτ

operations.
Finally, by (3.6), the application of Coarse[(1 − θ)εi,v

(i,K)] needs at most a

multiple of #suppv(i,K) + log(ε−1
i ‖v(i,K)‖) <∼ ε

−1/s
i |u|1/s�wτ

operations.
Remark 3.13. The conditions imposed in Theorem 3.12 do not exclude the possi-

bility that uε ∈ RanF , and soQuε = uε. Then in a manner analogous to Remark 3.6,

the estimates ‖Q(u−uε)‖ ≤ ε and #suppuε <∼ ε−1/s|u|1/s�wτ
imply that Q : �wτ → �wτ is

bounded. In this sense, the condition imposed in Theorem 3.12 that, for some τ̌ < τ ,
Q : �wτ̌ → �wτ̌ is bounded, is an almost necessary one.
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4. Construction of frames. Recall that L : H → H ′ was assumed to be a
boundedly invertible operator, where we have in mind a linear differential or integral
operator. When L is an operator of order 2t, typically H is a Sobolev space of order
t. We also briefly discussed the case of having systems of such equations, which,
however, poses no principal additional difficulties. Thus here we restrict ourselves
to scalar equations, where in addition we assume that the equation is imposed on
a domain Ω ⊂ R

n. In particular, in connection with integral equations, it is also
relevant to study the case of the equation being formulated on a manifold. However,
in that case the construction of a frame may follow the same principles as in the
domain case that we outline here.

4.1. Overlapping domain decompositions.
Theorem 4.1. For some ΓD ⊂ ∂Ω, possibly ΓD = ∅, and t ∈ R, let

Ht =

{
Ht

0,ΓD (Ω) when t ≥ 0,

(H−t
0,ΓD (Ω))

′ when t < 0,

where for t ≥ 0

Ht
0,ΓD (Ω) = closHt(Ω){u ∈ Ht(Ω) ∩ C∞(Ω) : suppu ∩ ΓD = ∅}.

Let Ω = ∪mi=1Ωi be an open covering, by which we mean that the sets Ωi are open
and that there exists a partition of unity {χi} relative to {Ωi}; i.e., χi ∈ C∞(Ω),
0 ≤ χi ≤ 1, χi vanishes outside Ωi, and

∑
i χi = 1.

With

ΓDi =

{
∂Ωi ∩ (Ω ∪ ΓD) if t ≥ 0,

∂Ωi ∩ ΓD if t < 0,

let

Ht
i =

{
Ht

0,ΓD
i
(Ωi) if t ≥ 0,

(H−t
0,ΓD

i
(Ωi))

′ if t < 0,

and let Ψ(i) be a Riesz basis or, more generally, a frame for Ht
i.

Let {ωi}1≤i≤m be a collection of nonnegative functions on Ω, with ωi smooth on

Ωi and zero outside Ωi, such that there exists an open covering Ω = ∪mi=1Ω̂i with

Ω̂i ⊂ Ωi and ωi � 1 on Ω̂i.
Then

∪iωiΨ(i) is a frame for Ht.

Proof. First we demonstrate that for u ∈ Ht,

‖u‖2Ht � inf
ω−1

i ui∈Ht
i,
∑

i ui=u

∑
i

‖ω−1
i ui‖2Ht

i
.(4.1)

Here, by writing ω−1
i ui ∈ Ht

i, in particular we implicitly state that ui vanishes outside
suppωi.

Let ω−1
i ui ∈ Ht

i. Then, since ωi is smooth on Ωi, ui ∈ Ht
i. Furthermore, the

spaces Ht
i are selected in such a way that the trivial extension with zero of a function

on Ωi extends to a bounded mapping from Ht
i → Ht. To see this for t < 0, note that



1092 ROB STEVENSON

the restriction of a function on Ω to Ωi, which is the adjoint of the zero extension,
is a bounded mapping from H−t0,ΓD

(Ω) to H−t
0,∂Ωi∩ΓD (Ωi). We conclude that for any

ω−1
i ui ∈ Ht

i, the function u =
∑

i ui ∈ Ht, with ‖u‖2Ht
<∼
∑

i ‖ui‖2Ht
i

<∼
∑

i ‖ω−1
i ui‖2Ht

i
.

Conversely, let {χ̂i} be a partition of unity relative to {Ω̂i}. Then any u ∈ Ht

can be written as u =
∑

i χ̂iu, where, because of ωi � 1 on Ω̂i, ω
−1
i χ̂iu ∈ Ht

i and

‖ω−1
i χ̂iu‖Ht

i

<∼ ‖χ̂iu‖Ht
i

<∼ ‖u‖Ht , completing the proof of (4.1).

Since Ψ(i) is a frame forHt
i, for vi ∈ Ht

i we have ‖vi‖2Ht
i

� infci∈�2, cT
i Ψ(i)=vi ‖ci‖2�2 .

With vi of the form ω−1
i ui, c

T
i Ψ

(i) = vi is equivalent to cTi ωiΨ
(i) = ui. Now from

(4.1) we conclude that, for u ∈ Ht,

‖u‖2Ht � inf
ω−1

i ui∈Ht
i,
∑

i ui=u

∑
i

inf
ci∈�2, cT

i ωiΨ(i)=ui

‖ci‖2

= inf
(cT

1 ,... ,c
T
m)T∈�2,

∑
i cT

i ωiΨ(i)=u

∑
i

‖ci‖2,

meaning that ∪iωiΨ(i) is a frame for Ht.
Remark 4.2. If Theorem 4.1 is applied, with ωi being the characteristic function

of Ωi = Ω̂i, then it shows that ∪iΨ(i) is a frame for Ht.
If each ωi is selected such that it vanishes at the internal boundary ∂Ωi ∩Ω, then

the above proof shows that boundary conditions on that part of ∂Ωi can actually be
chosen at one’s convenience; i.e., any ∂Ωi ∩ ΓD ⊂ ΓDi ⊂ ∂Ωi ∩ (Ω ∪ ΓD) will do.

To construct collections Ψ(i) that serve as ingredients in Theorem 4.1, we may
proceed as follows: Suppose that for each 1 ≤ i ≤ m we have a sufficiently smooth
regular parametrization κi between (0, 1)n, or another reference domain, and Ωi (see

Figure 1). WithΓDi, = κ−1
i (ΓDi ), let Ψ

(i)
be a Riesz basis for Ht

0,ΓD
i,

(0, 1)n when t ≥ 0,

2

κ

κ

1

Fig. 1. Overlapping domain decomposition. (The dashed and dotted lines will be defined in
section 4.4.)
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or for (H−t
0,ΓD

i,

(0, 1)n)′ otherwise. Then we may conclude that Ψ(i) = Ψ
(i) ◦ κ−1

i is a

Riesz basis for Ht
i.

At least if the parametrizations are constructed such that the image of a face of

[0, 1]n either has empty intersection with ΓD or is fully contained in ΓD, then Ψ
(i)

of
wavelet type can easily be constructed by taking tensor products of wavelet bases on
the interval with appropriate boundary conditions.

With the construction of spline wavelets on the interval from [15], only wavelets
with supports near the endpoints depend on the boundary condition. This means
that if the weights ωi in Theorem 4.1 vanish in a sufficiently large neighborhood of the
internal boundaries ∂Ωi ∩ Ω, then boundary conditions at these internal boundaries
are irrelevant since they have no influence on the constructed frame.

Compared to the construction of wavelet bases for Ht based on a nonoverlap-
ping decomposition of the domain, the frame approach seems to have the following
advantages:

• It is easier to construct parametrizations corresponding to an overlapping
domain decomposition; only local parametrizations of ∂Ω are needed. Having
less complicated κi may also have a favorable quantitative effect on the frame
constants AΨ and BΨ.
• Constructions of wavelet bases based on nonoverlapping domain decomposi-
tions all involve a kind of “stitching” of wavelets from different subdomains
at the interfaces. The construction from [17] yields wavelets with all desired
theoretical properties, but it seems not easy to implement. The constructions
proposed in [16, 3, 8] yield near the interfaces wavelets that are only continu-
ous, which restricts the values of s∗ for which M (and P) are s∗-compressible
(see [5, Proposition 6.2.2], [25], and section 4.5).
• When a frame construction similar to that in Theorem 4.1 is applied on a

closed manifold with weights ωi that vanish at the internal boundaries, then
the wavelet bases on (0, 1)n that serve as ingredients may satisfy periodic
boundary conditions. Not only is the implementation of such bases much
easier, but also they are much better conditioned than available wavelet bases
that satisfy Dirichlet or Neumann boundary conditions.

4.2. Regularity. As we have seen, under some conditions the routine Solve
or modSolve exhibits an error decay of order N−s, with N being the number of
operations spent and coefficients stored, in case u ∈ �wτ with τ = ( 1

2 + s)−1. Recall
that u is some solution of Mu = g; that is, u = uTΨ is the solution of Lu = g.

In case Ψ is a Riesz basis for Ht of biorthogonal wavelet type of order d, meaning
that d− 1 is the order of local polynomial reproduction, then it is known that for

0 < s <
d− t

n

it holds that

u ∈ �τ if and only if u ∈ Bsn+t
τ (Lτ (Ω)),(4.2)

at least when the wavelets are contained in Bsn+t
τ (Lτ (Ω)) and s ≤ 1/2 if t < −n/2

(see Figure 2). Recall that u ∈ �τ implies u ∈ �wτ . Here, for ν ≥ 0, Bν
p (Lp(Ω)) is the

usual Besov space, in which possible boundary conditions are incorporated, measuring
“ν orders of smoothness in Lp,” and for ν < 0, Bν

p (Lp(Ω)) := (B−νp′ (Lp′(Ω))
′ with

1/p + 1/p′ = 1, and so necessarily p ≥ 1. This latter restriction induces the afore-
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−n/2

1/2 1

r+1+1/2

d

t

1/τ

n

1

1
1

Fig. 2. Bντ (Lτ (Ω)) with the line ν = sn+ t, where τ = ( 1
2

+ s)−1, and the line ν = r + 1 + 1/τ .

mentioned condition s ≤ 1/2 if t < −n/2. For details about Besov spaces and proofs
of (4.2) in various circumstances, we refer to [4].

Remark 4.3. If the wavelets are piecewise smooth globally Cr-functions for some
r ∈ N ∪ {−1}, with r = −1 meaning that they satisfy no global smoothness require-
ments, then it is known that they are contained in Bν

τ (Lτ (Ω)) when ν < r+ 1+ 1/τ ,
whereas they are not contained in this space when ν > r+1+1/τ . So if for s = (d−t)/n
with τ = (1

2 + s)−1 it holds that r + 1 + 1/τ ≥ sn+ t, i.e.,

r ≥ −3
2
+ d+

t− d

n
,(4.3)

then smoothness of the wavelets does not limit the range for which (4.2) is valid.
With spline wavelets we have r = d − 2, meaning that (4.3) reads as the mild

requirement (d− t)/n ≥ 1/2.
Remark 4.4. Note that to obtain a rate N−s with a linear nonadaptive method

it is needed that the solution u be in Hsn+t(Ω), which is a much smaller space than
Bsn+t
τ (Lτ (Ω)). Recently, a number of regularity proofs have appeared showing that

various operators have indeed a much larger regularity in the above Besov scale than
in the Sobolev scale (e.g., see [13, 10]). A particular example is the operator cor-
responding to Poisson’s equation on a two-dimensional polygonal domain, which has
been shown to have infinity regularity in the Besov scale (see [9]). This means that the
Besov regularity of the solution is only limited by the smoothness of the right-hand
side, and thus it can be arbitrarily large.

Now let Ψ = ∪iωiΨ(i) be a frame for Ht, as constructed in Theorem 4.1, where
the Ψ(i) are sufficiently smooth biorthogonal wavelet bases of order d for Ht

i. Let

{χ̂i} be a partition of unity relative to {Ω̂i}. Then u ∈ Bsn+t
τ (Lτ (Ω)) implies

χ̂iu ∈ Bsn+t
τ (Lτ (Ωi)) and also ω−1

i χ̂iu ∈ Bsn+t
τ (Lτ (Ωi)). Thus if 0 < s < (d − t)/n,

and s ≤ 1/2 if t < −n/2, then (4.2) demonstrates that each ω−1
i χ̂iu has a unique



ADAPTIVE SOLUTION OF OPERATOR EQUATIONS 1095

expansion uTi Ψ
(i), and so χ̂iu = uTi ωiΨ

(i), where ui ∈ �τ . We conclude that u has a
representation

∑
i u

T
i ωiΨ

(i) with (uT1 , . . . ,u
T
m)

T ∈ �τ ⊂ �wτ under the same condition
on u as is needed in the Riesz basis case.

4.3. Boundedness of Q, i.e., condition (3.16). Assuming that Mu = g has
a solution u ∈ �wτ , in Theorem 3.12 the optimal computational complexity of Solve
is proved when for some τ̌ < τ , Q is bounded on �wτ̌ . Recall that Q = F (F ′F )−1F ′,
where with the frame construction from Theorem 4.1 and biorthogonal wavelet bases
Ψ(i) on the subdomains, F ′ : �2 → Ht : c = (cT1 , . . . , c

T
m)

T �→ ∑
i ωic

T
i Ψ

(i), and so
F : (Ht)′ → �2 : u �→ ((〈u, ωiΨ(i)〉L2(Ω))i)

T = ((〈ωiu,Ψ(i)〉L2(Ωi))i)
T .

For wavelets that are sufficiently smooth, from (4.2) we know that ci �→ cTi Ψi is
bounded from �τ̌ → Bšn+t

τ̌ (Lτ̌ (Ωi)) when 0 < š < (d− t)/n and š ≤ 1/2 if t < −n/2.
The mapping vi �→ 〈vi,Ψ(i)〉TL2(Ωi)

is the inverse of di �→ dTi Ψ̃
(i), where Ψ̃(i) is

the dual wavelet basis. When the dual wavelets are sufficiently smooth, the latter
mapping is boundedly invertible from �τ̌ to Bšn−t

τ̌ (Lτ̌ (Ωi)) when 0 < š < (d̃ + t)/n,
where d̃ is the order of the dual multiresolution analysis and š ≤ 1/2 if −t < −n/2.

If we now, in addition, assume that the ωi vanish at the internal boundaries
∂Ωi∩Ω, and thus that these weights are globally smooth on Ω, then we may conclude
that F ′ : �τ̌ → Bšn+t

τ̌ (Lτ̌ (Ω)) and F : Bšn−t
τ̌ (Lτ̌ (Ω))→ �τ̌ are bounded when 0 < š <

min{(d− t)/n, (d̃+ t)/n} and š ≤ 1/2 if |t| > n/2.
Unfortunately, so far we can show boundedness of (F ′F )−1 : Bšn+t

τ̌ (Lτ̌ (Ω)) →
Bšn−t
τ̌ (Lτ̌ (Ω)), which in combination with the above boundedness of F ′ and F would

give the desired property of Q, only in the particular situation that t = 0 and the Ψ(i)

are L2(Ωi)-orthonormal bases. In that case, FF ′u =
∑

i ωi〈ωiu,Ψ(i)〉L2(Ωi)Ψ
(i) =

(
∑

i ω
2
i )u, and so (FF ′)−1u = (

∑
i ω

2
i )
−1u, meaning that, by the global smoothness

of the weights, (FF ′)−1 clearly has the above property for any s. Note that, on the
other hand, if we do not damp the wavelets near the internal boundaries, i.e., if ωi is
just the characteristic function of Ωi, then (F ′F )−1 will be bounded on Bšn

τ̌ (Lτ̌ (Ω))
for š in a limited range only.

Thus at least for t = 0 and with sufficiently smooth orthonormal Ψ(i) (which
implies d̃ = d) and weights ωi that vanish at internal boundaries ∂Ωi ∩ Ω, for any τ
with 0 < s = 1/τ − 1/2 < d/n (which is the full range for which one may expect that
u ∈ �wτ ), there exists a τ̌ < τ such that Q is bounded on �τ̌ . Since Q is also bounded
on �2, an interpolation argument (cf. [21, (4.24)]) shows that it is bounded on �wτ̌ .

4.4. Construction of P. The fact that we have no general answer about wheth-
er Q satisfies (3.16) was the motivation to introduce the routine modSolve, which
contains the inexact application of a suitable projector P.

In the situation of Theorem 4.1, thus with {χ̂i} a partition of unity relative to
{Ω̂i} and ωi the weights, and where Ψ(i) are biorthogonal wavelet bases for Ht

i with
duals Ψ̃(i), let us define Z : u �→ ((〈χ̂iω−1

i u, Ψ̃(i)〉L2(Ωi))i)
T , which is a bounded

mapping from Ht → �2. It holds that F ′Zu =
∑

i ωi〈χ̂iω−1
i u, Ψ̃(i)〉L2(Ωi)Ψ

(i) = u.
Thus, defining

P = ZF ′ : (cT1 , . . . , c
T
m)

T �→ ((〈χ̂iω−1
i

∑
ı̆ωı̆c

T
ı̆ Ψ

(ı̆), Ψ̃(i)〉L2(Ωi))
T
i )

T ,

we infer that P : �2 → �2 is a bounded projector with KerP = KerF ′, which are the
basic requirements onP imposed in section 2.3 and which guarantee that modSolve is
convergent, i.e., that Proposition 2.3 is valid. Note that the application of P may only
change coefficients corresponding to wavelets for which the support or the support of
the corresponding dual wavelet intersect more than one Ωi.
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To apply the above P, we need a practical construction of the partition of unity
{χ̂i}. Apart from this, we discuss here the construction of weights in Theorem 4.1
that vanish at, or even in a neighborhood of, the internal boundaries ∂Ωi ∩ Ω. As
we have seen, the application of weights that vanish at the internal boundaries seems
necessary forQ satisfying (3.16), whereas, even when the application of P is necessary,
such weights may have a favorable quantitative effect. Furthermore, weights that
vanish even in a neighborhood of the internal boundaries allow us to ignore boundary
conditions at these boundaries with the construction of wavelets on the subdomains.

Let Ω = ∪iΩi be an open covering, and κi : (0, 1)n → Ωi smooth regular
parametrizations, where we assume that the image of a face of [0, 1]n under κi
either has empty intersection with ∂Ω or is contained in ∂Ω. Then there exist

0 ≤ â
(i)
j ≤ ǎ

(i)
j < b̌

(i)
j ≤ b̂

(i)
j ≤ 1 such that ∪mi=1κi(

∏n
j=1(ǎ

(i)
j , b̌

(i)
j )) = Ω, whereas

strict inequalities 0 < â
(i)
j < ǎ

(i)
j or b̌

(i)
j < b̂

(i)
j < 1 hold if (and only if) the face

corresponds to an internal boundary (cf. dashed and dotted boundaries in Figure 1).

Now let ηi, φi∈ C∞((0, 1)n), with 0 ≤ ηi, φi ≤ 1, such that ηi � 1 on
∏

j(â
(i)
j , b̂

(i)
j ),

whereas it vanishes at, or even in a neighborhood of, faces of [0, 1]n that correspond

to internal boundaries, and φi = 1 on
∏

j(ǎ
(i)
j , b̌

(i)
j ), whereas it vanishes at faces of∏n

j=1(â
(i)
j , b̂

(i)
j ) that correspond to internal boundaries.

Defining Ω̂i = κi(
∏

j(â
(i)
j , b̂

(i)
j )) and

ωi =

{
ηi ◦ κ−1

i on Ωi,
0 on Ω\Ωi

as desired, we have that ωi ∈ C∞(Ω), 0 ≤ ωi ≤ 1, ωi � 1 on Ω̂i, and ωi vanishes at
or even in a neighborhood of ∂Ωi ∩ Ω.

Defining Ω̌i = κi(
∏

j(ǎ
(i)
j , b̌

(i)
j )) and

χ̂
(i)
i =

{
φi ◦ κ−1

i on Ωi,
0 on Ω\Ωi,

we have 0 ≤ χ̂
(i)
i ≤ 1, χ̂

(i)
i = 1 on Ω̌i, and χ̂

(i)
i vanishes outside Ω̂i. A partition of

unity relative to {Ω̂i} is now given by {χ̂(m)
i : 1 ≤ i ≤ m}, where for 2 ≤ k ≤ m,

{χ̂(k)
i : 1 ≤ i ≤ k − 1} is defined by χ̂

(k)
i := χ̂

(k−1)
i (1 − χ̂

(k)
k ). Indeed, an induction

argument shows that
∑k

i=1 χ̂
(k)
i = 1 on ∪ki=1Ω̌i, and so in particular

∑m
i=1 χ̂

(m)
i = 1

on ∪mi=1Ω̌i = Ω. Furthermore, χ̂
(m)
i ∈ C∞(Ω), 0 ≤ χ̂

(m)
i ≤ 1, and, since supp χ̂

(m)
i ⊂

supp χ̂
(i)
i , χ̂

(m)
i vanishes outside Ω̂i.

4.5. Compressibility, i.e., the value of s∗. Let Ψ = ∪mi=1ωiΨ
(i) be a frame

for Ht as constructed in Theorem 4.1, where the Ψ(i) are biorthogonal wavelet bases
for Ht

i of order d, with dual bases Ψ̃(i) of order d̃.

We write Ψ(i) = {ψ(i)
λ : λ ∈ J (i)} and Ψ̃(i) = {ψ̃(i)

λ : λ ∈ J (i)}, where we think of λ
as consisting of two coordinates referring to scale and location, respectively. Denoting
the scale associated with λ by |λ| ∈ N, we assume that the primal wavelets are local
in the sense that

diam(suppψ
(i)
λ ) <∼ 2−|λ| and sup

x∈Ωi,�∈N

#{|λ| = � : x ∈ suppψ
(i)
λ } <∞.

We set

γ = sup{s ∈ R : ‖ψ(i)
λ ‖Hs(Ωi)

<∼ 2|λ|s‖ψ(i)
λ ‖L2(Ωi), λ ∈ J (i), 1 ≤ i ≤ m},
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with an analogous definition of γ̃ involving dual wavelets. Necessarily, it holds that
t ∈ (−γ̃, γ). It is known that if the primal wavelets are piecewise smooth globally
Cr-functions for some r ∈ N ∪ {−1}, then γ = r + 3

2 . It holds that r ≤ d − 2, with
the equality sign for spline wavelets.

Now let L : Ht → (Ht)′ be boundedly invertible. Then M = FLF ′ is repre-
sented by an m × m blockmatrix with its (i, ı̆)th block equal to the infinite matrix
〈ωiΨ(i), Lωı̆Ψ

(ı̆)〉L2(Ω). Assuming that the weights ωi vanish at the internal bound-
aries so that they are globally smooth, the analysis of the compressibility of each of
these blocks can follow exactly the same lines as that of the compressibility of L with
respect to a biorthogonal wavelet basis characterized by the same tuple (d, γ, d̃, γ̃).

If for some σ > 0, L,L′ : Ht+σ → H−t+σ are bounded, then, by substituting
the estimates [14, (9.4.5), (9.4.8)] into [5, Proposition 6.6.2], we infer that M is s∗-
compressible with

s∗ =
min{σ, γ − t, t+ d̃}

n
− 1

2
,(4.4)

at least when this value is positive. (We have used the fact that the condition σ < t+γ̃
imposed for [14, (9.4.8)] can actually be relaxed to σ ≤ t+ d̃.) The above result holds
true for local operators L, i.e., 〈v, Lw〉L2(Ω) = 0 when supp v ∩ suppw = ∅, as well as
for nonlocal L of the form

(Lv)(x) =

∫
Ω

K(x, y)v(y)dy,

with a Schwarz kernel that has the Calderon–Zygmund property

|∂αx ∂βyK(x, y)| <∼ |x− y|−(n+2t+|α|+|β|), n+ 2t+ |α|+ |β| > 0.

The spaces Hr used to formulate the above continuity assumptions on L and L′ are
defined for r ≥ 0 by

Hr =

{
[L2(Ω), H

|t|
0,ΓD (Ω)]r/t, r ≤ |t|,

H
|t|
0,ΓD (Ω) ∩Hr(Ω), r ≥ |t|,

and H−r = (Hr)′.
The result given in (4.4) is not completely satisfactory. Indeed, in any case when

the primal wavelets are sufficiently smooth, we learned in section 4.2 that if the
solution u is in Bsn+t

τ (Lτ (Ω)) for some s ∈ (0, d−tn ), then it has a representation
u = uTΨ such that the best N -term approximation for u converges with a rate N−s.
On the other hand, the convergence rate of the solutions yielded by (mod)Solve is
bounded not only by the above value of s but also by s∗. Since s∗ given in (4.4) is
less than or equal to γ−t

n − 1
2 , and since, moreover, γ < d, on the basis of this result

we may conclude only that (mod)Solve has optimal computational complexity for
solutions with limited regularity.

However, in a forthcoming paper [25] it will be shown that (4.4) is actually too
pessimistic and that, when σ > d − t, with suitable wavelets for local as well as for
nonlocal operators, s∗-compressibility with s∗ > d−t

n can be shown.
Since the use of the projector P applied in modSolve seems restricted to the

frame construction from this paper, we discuss its compressibility here. Recall that
P is given by an m × m block matrix with its (i, ı̆)th block being equal to the in-
finite matrix P(i,̆ı) = 〈χ̂iωiΨ̃(i), ωı̆Ψ

(ı̆)〉L2(Ω). Thus it is sufficient to investigate the
compressibility of any of these blocks.
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For biorthogonal wavelet bases it can be shown that for r ∈ [−d̃, γ), s < γ,

‖ · ‖Hr
ı̆

<∼ 2�̆(r−s)‖ · ‖Hs
ı̆

on W
(ı̆)

�̆
:= span{ψ(ı̆)

λ̆
: |λ̆| = �̆},(4.5)

and analogously that for r ∈ [−d, γ̃), s < γ̃,

‖ · ‖Hr
i

<∼ 2�(r−s)‖ · ‖Hs
i

on W̃
(i)
� = span{ψ̃(i)

λ : |λ| = �}.(4.6)

Here Hr
ı̆ is defined as Hr with (Ω,ΓD) replaced by (Ωı̆,Γ

D
ı̆ ).

Thus, assuming that the weights vanish at the internal boundaries, for w̃
(i)
� ∈

W̃
(i)
� , w

(ı̆)

�̆
∈W (ı̆)

�̆
, and −d ≤ s− t < γ̃, −d̃ ≤ t− s < γ, i.e., s ∈ (t− γ, t+ γ̃), we have

|〈χ̂iω−1
i w̃

(i)
� , ωı̆w

(ı̆)

�̆
〉L2(Ω)| <∼ ‖χ̂iω−1

i w̃
(i)
� ‖Hs−t‖ωı̆w(ı̆)

�̆
‖Ht−s

<∼ ‖w̃(i)
� ‖Hs−t

i
‖w(ı̆)

�̆
‖Ht−s

ı̆

<∼ 2s(�−�̆)‖w̃(i)
� ‖H−t

i
‖w(ı̆)

�̆
‖Ht

ı̆
.

Let us now define P̂
(i,̆ı)
j by removing fromP(i,̆ı) all blocks[〈χ̂iωiψ̃(i)

λ , ωı̆ψ
(ı̆)

λ̆
〉L2(Ω)]|λ|=�,|λ̆|=�̆

for which � > �̆+ k1(j, n) or �̆ > �+ γ−t
γ̃+tk1(j, n), where k1(j, n) is an integer that will

be determined below. Then, using the fact that the Ψ̃(i) or Ψ(ı̆) are Riesz bases for
H−ti or Ht

ı̆, respectively, we infer that for any 0 < s < γ − t

‖P(i,̆ı) − P̂
(i,̆ı)
j ‖ <∼ 2−sk1(j,n).(4.7)

For the next step, we will assume also that the dual wavelets are local. Further-
more, we assume that the primal wavelets are piecewise smooth. By this we mean

that that suppψ
(ı̆)

λ̆
\sing suppψ(ı̆)

λ̆
is the disjoint union of m open “uniformly Lips-

chitz” domains Ξ
(ı̆,1)

λ̆
, . . . ,Ξ

(ı̆,k)

λ̆
, with ∪kq=1Ξ

(ı̆,q)

λ̆
= suppψ

(ı̆)

λ̆
, and that ψ

(ı̆)

λ̆
|Ξ(ı̆,q)

λ̆

is

smooth with

sup
x∈Ξ

(ı̆,q)

λ̆

|∂βψ(ı̆)

λ̆
(x)| <∼ 2(|β|+n

2−t)|λ|, β ∈ N
n.

From [23] we learn that ψ
(ı̆)

λ̆
|Ξ(ı̆,q)

λ
has an extension to a smooth function ξ

(ı̆,q)

λ̆
with

‖ξ(ı̆,q)

λ̆
‖Hd(Rn)

<∼ 2|λ̆|(d−t)(4.8)

(cf. also [25, Remark 4.5]).

Given λ̆, 1 ≤ q ≤ k, and � > |λ̆|, let A(i,̆ı)

�,λ̆,q
= {|λ| = � : supp ψ̃

(i)
λ ⊂ Ξ

(ı̆,q)

λ̆
}. For

some k2(j, n) ≤ k1(j, n) that will be determined below, we define P
(i,̆ı)
j by removing

all entries 〈χ̂iωiψ̃(i)
λ , ωı̆ψ

ı̆
λ̆
〉L2(Ω) from P̂

(i,̆ı)
j when |λ| − |λ̆| > k2(j, n) and λ ∈ A(i,̆ı)

|λ|,λ̆,q
for some 1 ≤ q ≤ k. Then, by using (4.8) and (4.6) with (r, s) = (−d,−t), for any
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c,d ∈ �2 we have

〈c, (P̂(i,̆ı)
j −P

(i,̆ı)
j )d〉�2 =

∣∣∣∣∣∣∣
∑

�−�̆>k2(j,n)

∑
|λ̆|=�̆

dλ̆

〈
k∑

q=1

∑
λ∈A(i,ı̆)

�,λ̆,q

cλχ̂iω
−1
i ψ̃

(i)
λ , ωı̆ξ

(ı̆,q)

λ̆

〉∣∣∣∣∣∣∣
<∼

∑
�−�̆>k2(j,n)

2−(d−t)(�−�̆) ∑
|λ̆|=�̆

|dλ̆|
k∑

q=1

∥∥∥∥∥∥∥
∑

λ∈A(i,ı̆)

�,λ̆,q

cλψ̃
(i)
λ

∥∥∥∥∥∥∥
H−t

i

<∼
∑

�−�̆>k2(j,n)

2−(d−t)(�−�̆)
√∑
|λ̆|=�̆

|dλ|2

√√√√√√√∑
|λ̆|=�̆

 k∑
q=1

√√√√ ∑
λ∈A(i,ı̆)

�,λ̆,q

|cλ|2


2

<∼
∑

�−�̆>k2(j,n)

2−(d−t)(�−�̆)
√∑
|λ̆|=�̆

|dλ|2
√∑
|λ|=�

|cλ|2 <∼ 2−(d−t)k2(j,n)‖d‖‖c‖,

where for the last line we have used that, by the locality of the primal wavelets, each

λ is contained in at most a uniformly bounded number of sets A
(i,̆ı)

|λ|,λ̆,q. We conclude

that

‖P̂(i,̆ı)
j −P

(i,̆ı)
j ‖ <∼ 2(d−t)k2(j,n).(4.9)

By the locality of both primal and dual wavelets and the piecewise smoothness of

the primal wavelets, the number of nonzeros in each column of P
(i,̆ı)
j is of the order

2nk2(j,n)+2(n−1)k1(j,n). By substituting k2(j, n) =
j+log(αj)

n and k1(j, n) =
j+log(αj)

max{n−1,1}
with, for example, αj = j−(1+ε) for some ε > 0, from (4.7) and (4.9) we infer that P
is s∗-compressible with

s∗ =
{

min{ γ−tn−1 ,
d−t
n } when n > 1,

d− t when n = 1.

Thus, if, when n > 1, r ≥ − 3
2 + d+ (t− d)/n, which was also assumed in (4.3), then

s∗ = d−t
n .
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A SMALL EDDY CORRECTION METHOD FOR NONLINEAR
DISSIPATIVE EVOLUTIONARY EQUATIONS∗
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Abstract. Considering the interaction between the large and small eddy components of solu-
tions and using the idea of the Newton iteration, a small eddy correction method is proposed for
approximating and numerically solving nonlinear dissipative PDEs of parabolic type, in particular
the Navier–Stokes equations (NSE). We assume that the large eddy approximation to the solution
is known. Formally applying the Newton iterative procedure to the small eddy equation, we then
generate approximate systems. It is shown that the first two steps in fact lead to the standard
Galerkin method (SGM) and the so-called optimum nonlinear Galerkin method (ONG), and there-
fore the small eddy correction method is actually a certain generalization of SGM and ONG. The
boundedness and convergence analysis are presented in the framework of the two-dimensional NSE.
The results show that the small eddy correction method can greatly improve the accuracy of SGM
approximate solutions.

Key words. dissipative equations, spectral methods, Newton iteration, multilevel method
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1. Introduction. Considering an evolutionary dissipative nonlinear PDE sys-
tem of parabolic type, for example, the Navier–Stokes equation (NSE), despite the
considerable increase in the available computing power during the past few years, nu-
merically solving this kind of system, especially the integration of evolutionary NSE
on large time intervals under physically realistic situations, still remains a difficult
problem whose solution is not close at hand. We thereby intend to solve dissipa-
tive evolution PDEs in dynamically nontrivial situations, i.e., when the long-term
behavior is not merely convergent to a steady state. In this case, the solution to be
simulated remains time dependent, and as time goes to infinity, it converges to a set,
an attractor, which can be a complicated set (a fractal). Studying the complicated
structure of this set, which to some extent is reflected by the long-term behavior of
the solution, is of great importance to understanding the nature of turbulent phenom-
ena. That is one of the main reasons why people are so interested in the long-term
behavior of the solution and the construction of more accurate and effective numerical
schemes.

We present this work in the context of the functional form of the two-dimensional
NSE in divergence-free Hilbert space H defined on an open bounded domain Ω ⊂ R2

with smooth boundary ∂Ω,
du

dt
+ νAu+B(u, u) = f,

u(0) = a.
(1.1)
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Here u stands for the velocity field, f is the external force which drives the flow, ν > 0
is the viscosity, and a is the initial velocity field. A and B(·, ·) are the Stokes operator
and bilinear operator whose detailed definitions will be given in section 2.

For a given positive integer m ∈ N , let us denote by Hm and Pm a finite-
dimensional subspace of H and an associated orthogonal projection from H onto
Hm, that is, Hm = PmH. Then the SGM approximate system of (1.1) reads{

dum
dt

+ νAum + PmB(um, um) = Pmf,

um(0) = Pma.
(1.2)

It follows from [6] that, for sufficiently large t0 > 0,

|u(t)− um(t)|L2(Ω) ≤ c(t)Lmλ
−1
m+1 ∀t ≥ t0,(1.3)

where λm+1 > 0 is the (m+1)th eigenvalue of the Stokes operator A, which tends to
+∞ when m tends to infinity and

Lm ∼
(
1 + log

λm
λ1

) 1
2

.(1.4)

On the other hand, if we denote Qm = I − Pm and

u = p+ q with p = Pmu, q = Qmu,

we can rewrite (1.1) in the following coupled system:

dp

dt
+ νAp+ PmB(p+ q, p+ q) = Pmf,(1.5)

dq

dt
+ νAq +QmB(p+ q, p+ q) = Qmf.(1.6)

Set

e = u− um, ep = Pme = p− um, eq = Qme = q.

Simple calculation shows that

|ep(t)|L2(Ω) ≤ cect sup
0≤s≤t

|eq(s)|L2(Ω).(1.7)

That is to say that the large eddy error and thus the total error of the standard
Galerkin method (SGM) can be controlled by the small eddy error. In other words,
to improve the accuracy of the SGM approximation, we have only to improve the
approximation of the small eddy components, which is approximated by 0 in the case
of SGM. This is the basic idea of this work.

Indeed, many authors have already applied this idea to developing new methods
and techniques. One of these new methods arises in connection with the concept of
the approximate inertial manifold (AIM) (see [7]) and is called the nonlinear Galerkin
method (NGM). For example, Marion and Temam proposed the first and the most
frequently discussed NGM in [15]:{

dpm
dt

+ νApm + PmB(pm + qm, pm + qm) = Pmf,

qm = Φ(pm),
(1.8)
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where Φ : Hm → QmH provides an approach to approximating the small eddy com-
ponents, which are determined by solving the following steady Stokes problem in
QmH:

νAqm +QmB(pm, pm) = Qmf.

It is shown that

|u(t)− (pm(t) + Φ(pm(t)))|L2(Ω) ≤ c(t)Lmλ
− 3

2
m+1 ∀t ≥ t0.(1.9)

That is, pm+Φ(pm) is a much better approximation to u than the SGM approximation
um. From that point on, many authors investigated this version of the NGM (see [1],
[5], [6], [14], [16], [17], [18], etc.) and its applications (see [3], [19], etc.). To improve
the effectiveness of numerical schemes, Garcia-Archilla, Novo, and Titi proposed a
kind of postprocessing procedure to the Galerkin method (PPGM) in [8] based on
the same mapping Φ in (1.8). For any prescribed time T , they use Φ(um(T )) to
approximate q(T ) and show that

|u(T )− (um(T ) + Φ(um(T )))|L2(Ω) ≤ c(T )L4
mλ
− 3

2
m+1 ∀T ≥ t0.(1.10)

Equations (1.9) and (1.10) indicate that both the NGM (1.8) and PPGM can greatly
improve the accuracy of the SGM approximation and be more effective than the SGM.
But there are some problems which have already been discussed in [12]. For example,
they used a steady Stokes problem to approximate the small eddy equation (1.6) and
overlooked the self evolution of the small eddy components. This is only valid when
the small eddy part of the solution varies very slowly.

To overcome this defect of NGM (1.8), some people have already given certain
modifications (see [9], [10], [11], [13], [20]). One of these modifications is the so-called
optimal nonlinear Galerkin method (ONG) (see [10], [11]):

dp̄m
dt

+ νAp̄m + PmB(p̄m + q̄m, p̄m + q̄m) = Pmf,(1.11)

dq̄m
dt

+ νAq̄m +QmB(p̄m, q̄m) +QmB(q̄m, p̄m) = Qm[f −B(p̄m, p̄m)],(1.12)

where the small eddy equation in (1.8) is replaced by a generalized unsteady Stokes
problem (1.12), and therefore the self evolution of the small eddy components is
involved. Furthermore, it is shown in this paper that

|u(t)− (p̄m + q̄m)|L2(Ω) ≤ c(t)L4
mλ
−2
m+1 ∀t ≥ t0.(1.13)

To get a reliable long-term simulation of the NSE, we still have to consider the
problem of error accumulation. Unfortunately, almost all numerical methods for the
NSE in general (including the SGM, NGM, PPGM, and ONG) will lead to an expo-
nentially increasing error, which makes the long-term simulation almost meaningless.
A possible remedy is to improve the accuracy of the approximate solution without
too much computational cost. Meanwhile, we have to mention that the rapid increase
of available computing power in the past few years as well as the rapid development
of computer networks and parallel computing techniques, which can integrate many
CPUs in a system, make the large scale computation possible. If computing facilities
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are not a problem, we want to know whether it is possible to get a reliable simulation
in a large time interval.

From the point of view of our basic idea mentioned above (the small eddy correc-
tion), the NGM, PPGM, and ONG schemes all do a small eddy correction once, and
their analysis shows that they can improve the convergence rate of the SGM without
too much computational cost. It seems that one cannot improve the convergence rate
any more if the correction is performed only once. Then it is very natural for us
to think about certain iteration methods for improving the convergence rate further.
And it is also very natural for us to think about the Newton iteration because of its
fast convergence speed. Based upon these considerations, we propose a small eddy
correction method in this paper (see the later definition (3.1)–(3.3)). Moreover, the
analysis shows that

|u(t)− ul(t)|L2(Ω) ≤ c(t)L2
m(Lmλ

−1
m+1)

2l

,(1.14)

where ul is the small eddy correction approximation and l ∈ N is the number of
iteration steps used.

This paper is arranged as follows. In section 2, the detail of a two-dimensional
NSE is given. In section 3, we introduce a small eddy correction method by formally
applying the Newton iteration to the small eddy equation (1.6). Then we prove
that this procedure is a bounded procedure and can generate a bounded approximate
solution of (1.1). In section 4, we present some error estimates of the proposed small
eddy correction method and show that it can lead to a very accurate approximation of
the solution of the NSE. Finally in section 5, for a one-dimensional Burger’s equation
and a two-dimensional NSE, we give a full discrete form of the small eddy correction
scheme and then present some numerical results to check the high accuracy and high
effectiveness of this method.

2. Navier–Stokes equations. We consider the NSE on a smooth bounded do-
main Ω ∈ R2:

∂u

∂t
− ν∆u+ (u · ∇)u+∇p = F, (x, t) ∈ Ω× (0,+∞),

∇ · u = 0, (x, t) ∈ Ω× [0,+∞),

u|t=0 = a(x), x ∈ Ω,

Dirichlet or periodic boundary conditions.

(2.1)

Here u(x, t) and p(x, t) stand for the velocity field and pressure, respectively; F (x, t)
the external force, which drives the flow; a(x) the initial velocity, which satisfies
∇ · a = 0; and ν > 0 the kinetic viscosity.

Now, we define the Hilbert space H:

H = {v ∈ (L2(Ω))2 : ∇ · v = 0, v · n|∂Ω = 0}
in the case of the homogeneous Dirichlet boundary condition, where n denotes the
unit outward normal vector to ∂Ω, or

H =

{
v ∈ (L2

per(Ω))
2 : ∇ · v = 0,

∫
Ω

vdx = 0

}
in the case of a periodic boundary condition. The space H is equipped with the usual
L2-inner product (·, ·) and norm | · | = (·, ·) 1

2 and is a closed subspace of (L2(Ω))2.
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We also define a Hilbert space

V = {v ∈ (H1
0 (Ω))

2 : ∇ · v = 0}

or

V =

{
v ∈ (H1

per(Ω))
2 : ∇ · v = 0,

∫
Ω

vdx = 0

}
depending on the use of boundary conditions. Equipped with the usual H1-inner
product and norm, it is a Hilbert space. Let us denote by P the orthogonal projection
from (L2(Ω))2 onto H and project (2.1) onto H. Then we can get the functional form
(1.1), where A = −P∆ is the Stokes operator which will be −∆ in the case of a
periodical boundary condition, B(u, u) = P [(u · ∇)u] and f = PF , which is assumed
to be time independent or in L∞(R+, H).

For the Stokes operator A, it is well known that it is a symmetric, positive defi-
nite, self-adjoint, and unbounded operator in H with compact inverse. Therefore, its
eigenvalues and the associated eigenfunctions admit

Aφi = λiφi, 0 < λ1 ≤ λ2 ≤ · · · → +∞,

and the set of eigenfunctions {φ1, φ2, . . .} forms a unit orthonormal basis of H. For
any α ∈ R, the space

D(Aα) =

{
v =

∞∑
i=1

viφi :

∞∑
i=1

v2
i λ

2α
i < +∞

}

is a Hilbert space if it is equipped with the natural inner product and norm

(·, ·)D(Aα) = (Aα·, Aα·), | · |D(Aα) = |Aα · |.

It is known that D(A
1
2 ) = V , and {φ1, φ2, . . .} is also an orthonormal basis of D(Aα).

Here and later on, we denote by | · |s the (Hs(Ω))2 norm, and by | · |∞ the (L∞(Ω))2

norm. Especially, we use |·| to denote |·|0. For the spatial periodic case, we know that
|Aα · | and | · |2α are equivalent norms for any α ∈ R, and this equivalence property
holds for the nonslip case at least for α ≤ 1.

To investigate the interaction between the large and small eddies, we define the
finite-dimensional subspace Hm as in the Introduction for given m ∈ N as

Hm = span{φ1, φ2, . . . , φm},

and define the orthogonal projection Pm from H onto Hm as

u =

∞∑
i=1

uiφi ∈ H, Pmu =

m∑
i=1

uiφi, ui ∈ R.

Also, we define Qm = I−Pm. Projecting (1.1) by Pm and Qm, we can get the coupled
system (1.5)–(1.6).

For the later analysis, we recall the Agmon inequality, the Brézis–Gallouet in-
equality [2], and the Sobolev interpolation inequality in two dimensions: there exists
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a constant c0 > 0 such that

|u|∞ ≤ c0|u| 12 |Au| 12 or c0|A 1
4u| 23 |Au| 13 ∀u ∈ D(A),

|u|∞ ≤ c0|A 1
2u|
(
1 + log |Au|

λ
1
2
1 |A

1
2 u|

) 1
2

∀u ∈ D(A),

|Asu| ≤ c0|u|(m−s)/m|Amu|s/m ∀u ∈ D(Am), 0 < s < m ≤ 1.

(2.2)

As a result of the Brézis–Gallouet inequality, we have

|u|∞ ≤ c0Lm|A 1
2u| ∀u ∈ Hm,(2.3)

where Lm is defined in (1.4). To avoid having too many symbols, we always regard
c0 as 1 in the rest of this paper, and this will not cause any significant difference.

For the projections Pm and Qm, the following properties hold (see [4]):

|AβPmu| ≤ λβ−µm |Aµu|, |AµQmu| ≤ λµ−βm+1|Aβu| ∀µ < β, u ∈ D(Aβ).(2.4)

In what follows, we often use the following orthogonal property:

|As(Pmu+Qmu)|2 = |AsPmu|2 + |AsQmu|2 ∀u ∈ D(As), s ∈ R.(2.5)

3. Small eddy correction method and its boundedness. As shown in (1.7),
the large eddy error or the total error of the SGM approximation can be controlled
by the small eddy error, the truncation error of um. This suggests that we get a
more accurate approximation by paying more attention to correcting the small eddy
approximation successively. In this section, we will construct a small eddy correction
method to NSE (1.1) by formally applying the Newton iteration to its small eddy
equation (1.6).

First of all, we define

F (p, q) =
dq

dt
+ νAq +QmB(q, q) +QmB(q, p) +QmB(p, q) +QmB(p, p)−Qmf.

Then (1.6) is equivalent to

F (p, q) = 0.

Suppose that the large eddy component p in the above abstract equation is known.
Formally applying the Newton iteration to it, we can get the following iterative pro-
cedure: supposing the initial guess of the small eddy component q0 = 0 and the kth
approximation qk(t) ∈ QmH is known for some k ∈ N , find the (k+1)th approxima-
tion qk+1(t) ∈ QmH, which should be a more accurate approximation of q(t), such
that

DqF (p, q
k)(qk+1 − qk) = −F (p, qk).

Simple calculation shows that it is the following small eddy correction procedure:

dqk+1

dt
+ νAqk+1 +QmB(p, p) +QmB(p, q

k+1) +QmB(q
k+1, p)

+QmB(q
k, qk+1) +QmB(q

k+1, qk) = Qm[f +B(qk, qk)].
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Combining the above small eddy correction with the large eddy equation (1.5), we
can obtain the desired small eddy correction method: with w0 = 0,

dv

dt
+ νAv + PmB(v + wl, v + wl) = Pmf for any fixed integer l ≥ 0,(3.1)

dwk

dt
+ νAwk +QmB(v, v) +QmB(v, w

k) +QmB(w
k, v) +QmB(w

k−1, wk)(3.2)

+ QmB(w
k, wk−1) = Qm[f +B(wk−1, wk−1)] ∀1 ≤ k ≤ l,

v(0) = Pma, wi(0) = Qma, i = 1, 2, . . . , l, l ≥ 1.(3.3)

Remark 1. The small eddy correction scheme (3.1)–(3.3) can be regarded as a
certain generalization of the SGM and ONG. In fact, if we take l = 0 in the above
approximate procedure, (3.1) admits the SGM approximate equation (1.2). And if
we take l = 1, (3.1)–(3.3) are the ONG approximate equations (1.11)–(1.12). For
the sake of simplicity of expression, we give a symbol ul = v + wl and call it the lth
approximate solution to the NSE (1.1). Thus the SGM approximate solution is the
0th approximate solution, and the ONG approximate solution is the 1st approximate
solution. Observing the above small eddy correction method, it is analogous to the
classical Newton iteration for elliptic problems. We expect that it can have the second
order convergence rate just as the usual Newton method does. Fortunately, our later
analysis gives us a positive answer. It is worth mentioning that directly applying
the Newton method to NSE (1.1) cannot reach such a second order convergence rate.
The reason is that it does not take the advantage of the fast decay property of small
eddies. For example, we refer readers to our estimates (4.11), (4.15), etc. Here
(4.11) and (4.15) show that the accuracy of the small eddy approximation is always

a half order higher (λ
− 1

2
m+1) than that of the large eddy approximation, and the small

eddy approximation converges very quickly, which is very important for us to derive
the high order convergence rate, while the direct application of Newton iteration to
NSE does not distinguish the small and large eddy components and cannot take this
advantage.

In the rest of this section, we will show that the small eddy correction method
(3.1)–(3.3) is a bounded procedure and can generate a bounded approximate solution.
Before that, we define a trilinear form

b(u, v, w) = ((u · ∇)v, w) ∀u, v, w ∈ (H1(Ω))2

and state some properties (e.g., see [21]):

b(u, v, w) = −b(u,w, v) ∀v, w ∈ (H1(Ω))2, u ∈ V,(3.4)

2|b(u, v, w)| ≤ c1|u|s1 |A
1
2 v|s2 |w|s3 ,(3.5)

where u ∈ (Hs1(Ω))2, v ∈ (Hs2+1(Ω))2, w ∈ (Hs3(Ω))2, and s1, s2, s3 ≥ 0, s1 + s2 +
s3 ≥ 1, (s1, s2, s3) �= (1, 0, 0),(0, 1, 0),(0, 0, 1), and c1 > 0 is a constant independent of
u, v, w. Especially, (3.5) is valid if we substitute the L2-norm for any two of the three
norms on the right-hand side and replace the rest of the norm by L∞-norms.

Hereafter, we use |f | to denote |f |L(R+,H) and set some dimensionless constants
throughout this section:

Reynold’s number Re = ν−1|a| if |a| �= 0,
Grashof’s number Gr = λ1ν

−2|f |.
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Theorem 3.1. For any given nonnegative integer l, there exist constants M0,
M1 independent of m, l, t and a constant M2(T ) (for any given T > 0) independent
of m and l such that, if m is so large that

λm+1 ≥ 128c21λ
−1
1 ν−2L2

mM
2
1 ,(3.6)

then (3.1)–(3.3) has a bounded solution on [0,+∞)

Um(t) = (v(t), w1(t), . . . , wl(t))

and, for any 0 ≤ k ≤ l and T > 0,

|v(t) + wk(t)| ≤M0, |A 1
2 (v(t) + wk(t))| ≤M1 ∀t ≥ 0,

∫ T

0

|A(v(s) + wk(s))|2ds ≤M2(T ),

where

M0 =
√
2ν2Re2 + 4ν2Gr2, M1 = 4λ

1
2
1 ν(Re+ 2Gr) exp(c41(2Re

2 + 5Gr2)2),

and

M2(T ) = 2ν−1M2
1 (6 + c41ν

−3M2
0M

2
1T ) + 32λ2

1ν
2TGr2.

The complex form of the constant M1 comes from the fact that we do not dis-
tinguish the types of boundary conditions. Actually, for the spatial periodic case,
the corresponding M1 will have a much simpler appearance (without the exponential
factor).

Compared with NGM, PPGM, and ONG, in which the boundedness of the approx-
imate solution is quite easy to obtain and the existence of the approximate solution
is a direct result, the boundedness and the existence of the approximate solution is
no longer obvious in our case, especially for l ≥ 2.

To prove this theorem, we first consider the following Galerkin approximation of
(3.1)–(3.3): for any given positive integer M > m, constant T > 0, and k = 1, 2, . . . , l
find

vm =

m∑
i=1

gim(t)φi ∈ Hm, wk
M =

M∑
i=m+1

gkim(t)φi ∈ (PM − Pm)H
	
= PmMH

on time interval [0, T ] such that for any fixed integer l ≥ 0 and w0
M = 0

dvm
dt

+ νAvm + PmB(vm + wl
M , vm + wl

M ) = Pmf,(3.7)

dwk
M

dt
+ νAwk

M + PmMB(vm, vm) + PmMB(vm, w
k
M )(3.8)

+ PmMB(wk
M , vm) + PmMB(wk−1

M , wk
M ) + PmMB(wk

M , wk−1
M )

= PmM [f +B(wk−1
M , wk−1

M )] ∀1 ≤ k ≤ l,

vm(0) = Pma, wi
M (0) = PmMa, i = 1, 2, . . . , l, l ≥ 1.(3.9)
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For simplicity of expression, we introduce the following notation for the rest of this
section:

ukmM = vm + wk
M , k = 0, . . . , l.

Noticing the orthogonal properties of {φ1, . . . , φm, . . .} in H and V , that is,

(φi, φj) = δij , (A
1
2φi, A

1
2φj) = (Aφi, φj) = λiδij ∀i, j = 1, . . . ,m, . . . ,

we find that the system (3.7)–(3.9) is actually a first order ODE of {gim(t)}mi=1 and
{gkim(t)}Mi=m+1, k = 1, . . . , l:

ġim + νλigim +

m∑
j,n=1

αnjigjmgnm +

m∑
j=1

M∑
n=m+1

βnjigjmg
l
nm

+

M∑
j,n=m+1

αnjig
l
jmg

l
nm = fi, i = 1, . . . ,m,

ġkim + νλig
k
im +

m∑
j,n=1

αnjigjmgnm +

m∑
j=1

M∑
n=m+1

βnjigjmg
k
nm +

M∑
j,n=m+1

βnjig
k
jmg

k−1
nm

−
M∑

j,n=m+1

αnjig
k−1
jm gk−1

nm = fi ∀i = m+ 1, . . . ,M,

gim(0) = (a, φi), gkjm(0) = (a, φj), i = 1, . . . ,m, j = m+ 1, . . . ,M.

Here {
αnji = b(φn, φj , φi), βnji = b(φn, φj , φi) + b(φj , φn, φi),
fi = (f, φi), g

0
km = 0 for k = m+ 1, . . . ,M.

Thanks to the theory of ODEs, the above nonlinear ODE has a maximal continu-
ous solution defined on some interval [0, TM ). If TM < T , then |A 1

2ukmM (t)|, for some
0 ≤ k ≤ l, must tend to +∞ as t→ TM . But we will show that this does not happen.
Therefore TM ≥ T . Furthermore, both |ukmM (t)| and |A 1

2ukmM | are bounded by some
constants independent of m,M, T , and l. To prove this, we need the following result.

Lemma 3.1. For any given tM > 0, suppose

|A 1
2ukmM (t)| ≤M1 ∀1 ≤ k ≤ l, t ∈ [0, tM ].

If the condition (3.6) is valid, we have, for k = 1, . . . , l,

|ukmM (t)| ≤M0 ∀t ∈ [0, tM ],

∫ t+r

t

|A 1
2ukmM (s)|2ds ≤ 4M2

0

ν
+

2r|f |2
λ1ν2

for any t ≥ 0, r > 0 with t+ r ≤ tM ,

where M1,M0 > 0 are defined in Theorem 3.1.
Proof. The summation of (3.7) and (3.8) implies

dukmM

dt
+ νAukmM + PMB(vm, vm) + Pm[B(vm, w

l
M ) +B(wl

M , vm) +B(wl
M , wl

M )]

+ PmM [B(vm, w
k
M ) +B(wk

M , vm) +B(wk−1
M , wk

M )

+ B(wk
M , wk−1

M )−B(wk−1
M , wk−1

M )] = PMf.(3.10)



1110 YANREN HOU AND KAITAI LI

Multiplying (3.10) by 2ukmM , integrating it on Ω, and using the property (3.4) of the
trilinear form, we get

d|ukmM |2
dt

+ 2ν|A 1
2ukmM |2 ≤ 2|b(vm, vm, wk

M )|+ 2|b(vm, wl
M , vm)|+ 2|b(wl

M , wl
M , vm)|

+ 2|b(wk
M , vm, w

k
M )|+ 2|b(wk

M , wk−1
M , wk

M )|+ 2|b(wk−1
M , wk−1

M , wk
M )|+ 2|(f, ukmM )|.

Due to (2.5) and (3.6), we know |A 1
2 vm|, |A 1

2wk
M | ≤M1, and c1M1Lmλ

− 1
2

m+1 ≤ ν
10 . By

using (2.2)–(2.4) and (3.4)–(3.5), we summarize the estimates of the seven terms on
the right-hand side of the above inequality as follows:

2|b(vm, vm, wk
M )| ≤ c1|vm|∞|A 1

2 vm| |wk
M | ≤

c1M1Lm

λ
1
2
m+1

|A 1
2 vm|2 ≤ ν

10
|A 1

2 vm|2,

2|b(vm, wl
M , vm)| = 2|b(vm, vm, wl

M )| ≤ c1|vm|∞|A 1
2 vm| |wl

M |
≤ c1M1Lm

λ
1
2
m+1

|A 1
2 vm|2 ≤ ν

10
|A 1

2 vm|2,

2|b(wl
M , wl

M , vm)| = 2|b(wl
M , vm, w

l
M )| ≤ c1|A 1

4wl
M |2|A

1
2 vm|

≤ c1

λ
1
2
m+1

|A 1
2 vm| |A 1

2wl
M |2,

2|b(wk
M , vm, w

k
M )| ≤ c1|A 1

4wk
M |2|A

1
2 vm| ≤ c1M1

λ
1
2
m+1

|A 1
2wk

M |2 ≤
ν

10
|A 1

2wk
M |2,

2|b(wk
M , wk−1

M , wk
M )| ≤ c1|A 1

4wk
M |2|A

1
2wk−1

M | ≤ c1M1

λ
1
2
m+1

|A 1
2wk

M |2 ≤
ν

10
|A 1

2wk
M |2,

2|b(wk−1
M , wk−1

M , wk
M )| = 2|b(wk−1

M , wk
M , wk−1

M )| ≤ c1

λ
1
2
m+1

|A 1
2wk

M | |A
1
2wk−1

M |2,

2|(f, ukmM )| ≤ 2|A− 1
2PMf | |A 1

2ukmM | ≤ ν|A 1
2ukmM |2 +

|f |2
λ1ν

.

Finally, we see that

d|ukmM |2
dt

+
4ν

5
|A 1

2ukmM |2(3.11)

≤ |f |
2

λ1ν
+ c1λ

− 1
2

m+1(|A
1
2wk

m| |A
1
2wk−1

M |2 + |A 1
2 vm| |A 1

2wl
M |2).

Because of |A 1
2ukmM |2 ≥ λ1|ukmM |2, we have

d|ukmM |2
dt

+
11λ1ν

20
|ukmM |2 +

ν

4
|A 1

2wk
M |2

≤ |f |
2

λ1ν
+ c1λ

− 1
2

m+1(|A
1
2wk

m| |A
1
2wk−1

M |2 + |A 1
2 vm| |A 1

2wl
M |2).

Thanks to (2.5), max0≤t≤tM |A
1
2ukmM (t)| ≤M1 implies

max
0≤t≤tM

(
max
1≤k≤l

|A 1
2wk

M (t)|2 + |A 1
2 vm(t)|2

)
≤M2

1 .
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Therefore

max
0≤t≤tM

(
max
1≤k≤l

|A 1
2wk

M (t)|+ |A 1
2 vm(t)|

)
≤
√
2M1.(3.12)

Integrating the above inequality on time interval [0, t] and noticing (3.12), we obtain

|ukmM (t)|2 + ν

4

∫ t

0

e−
11λ1ν

20 (t−s)|A 1
2wk

M (s)|2ds ≤ |a|2 + 20

11λ2
1ν

2
|f |2

+

√
2c1M1

λ
1
2
m+1

max

{∫ t

0

e−
11λ1ν

20 (t−s)|A 1
2wk−1

M (s)|2ds,
∫ t

0

e−
11λ1ν

20 (t−s)|A 1
2wl

M (s)|2ds
}
.

Because both terms on the left-hand side of the above inequality are positive, we have

|ukmM (t)|2 ≤ |a|2 + 20

11λ2
1ν

2
|f |2

+

√
2c1M1

λ
1
2
m+1

max

{∫ t

0

e−
11λ1ν

20 (t−s)|A 1
2wk−1

M (s)|2ds,
∫ t

0

e−
11λ1ν

20 (t−s)|A 1
2wl

M (s)|2ds
}
,

ν

4

∫ t

0

e−
11λ1ν

20 (t−s)|A 1
2wk

M (s)|2ds ≤ |a|2 + 20

11λ2
1ν

2
|f |2

+

√
2c1M1

λ
1
2
m+1

max

{∫ t

0

e−
11λ1ν

20 (t−s)|A 1
2wk−1

M (s)|2ds,
∫ t

0

e−
11λ1ν

20 (t−s)|A 1
2wl

M (s)|2ds
}
.

Taking the maximum value with respect to 1 ≤ k ≤ l on both sides of the above two
inequalities and noticing w0

M = 0, the summation of the results admits

max
1≤k≤l

|ukmM (t)|2 + ν

4
max
1≤k≤l

∫ t

0

e−
11λ1ν

20 (t−s)|A 1
2wk

M (s)|2ds(3.13)

≤ 2|a|2 + 4

λ2
1ν

2
|f |2 + 2

√
2c1M1λ

− 1
2

m+1 max
1≤k≤l

∫ t

0

e−
11λ1ν

20 (t−s)|A 1
2wk

M (s)|2ds.

Since we know 2
√
2c1M1λ

− 1
2

m+1 ≤ ν
4 from the condition (3.6), then (3.13) implies

|ukmM (t)| ≤
√
2|a|2 + 4|f |2

λ2
1ν

2
=
√
2ν2Re2 + 4ν2Gr2 =M0 ∀t ∈ [0, tM ], 1 ≤ k ≤ l.

From (3.11) and the result we just obtained, we have for any t ≥ 0, r > 0, and
t+ r ≤ tM

4ν

5

∫ t+r

t

|A 1
2ukmM |2ds ≤ 2M2

0 +
|f |2r
λ1ν

+ 2
√
2c1M1λ

− 1
2

m+1 max
1≤i≤l

∫ t+r

t

|A 1
2wi

M |2ds.

Noticing that |A 1
2wk

M |2 ≤ |A
1
2ukmM |2 and that (3.6) guarantees 2

√
2c1M1λ

− 1
2

m+1 ≤
ν
4 , we can easily get from the above inequality that

max
1≤k≤l

∫ t+r

t

|A 1
2ukmM (s)|2ds ≤ 4M2

0

ν
+

2r|f |2
λ1ν2

∀t ≥ 0, r > 0, t+ r ≤ tM .
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Now we are ready to prove that for the ODE system (3.7)–(3.9) there exists a
global uniformly bounded solution.

Lemma 3.2. For any given 0 < T <∞, if m is so large that the condition (3.6)
holds, we have

|A 1
2ukmM (t)| ≤M1 ∀t ∈ [0, T ], 0 ≤ k ≤ l,

and ∫ T

0

|AukmM (s)|2ds ≤M2(T ), k = 0, 1, . . . , l,

where M1 and M2(T ) are given in Theorem 3.1.
Proof. Noticing what was mentioned before, that the ODE system (3.7)–(3.9) has

a maximal continuous solution defined on some interval [0, TM ), we will prove this
lemma by contradiction.

Assuming that

TM < T,(3.14)

we then assert that |A 1
2ukmM (t)| goes to∞ as t tends to TM for certain 0 ≤ k ≤ l. Since

|A 1
2ukmM (t)| is a continuous function of t and M1 > |A 1

2 a|, there exists a constant
tM < TM such that

max
0≤k≤l

|A 1
2ukmM (t)| < M1 on [0, tM ) and max

0≤k≤l
|A 1

2ukmM (tM )| =M1.(3.15)

Multiplying (3.10) by 2AukmM and integrating it on Ω, we have

d|A 1
2ukmM |2
dt

+ 2ν|AukmM |2 ≤ 2|b(vm, vm, AukmM )|+ 2|b(vm, wl
M , Avm)|

+ 2|b(wl
M , vm, Avm)|+ 2|b(wl

M , wl
M , Avm)|+ 2|b(vm, wk

M , Awk
M )|

+ 2|b(wk
M , vm, Aw

k
M )|+ 2|b(wk−1

M , wk
M , Awk

M )|+ 2|b(wk
M , wk−1

M , Awk
M )|

+ 2|b(wk−1
M , wk−1

M , Awk
M )|+ 2|(f,AukmM )|.

Under the conditions of (3.6) and (3.15), Lemma 3.1 asserts that |ukmM | ≤ M0 on
[0, tM ] for any 0 ≤ k ≤ l. Of course, we know |vm|, |wk

mM | ≤M0 from (2.5). By using
(2.2)–(2.4), (3.4)–(3.5), and the result of Lemma 3.1, we have the following estimates
of the ten right-hand-side terms in the above inequality on [0, tM ]:

2|b(vm, vm, AukmM )| ≤ c1|vm|∞|A 1
2 vm| |AukmM | ≤ c1|vm| 12 |A 1

2 vm| |AukmM |
3
2

≤ 3ν

4
|AukmM |2 +

c41M
2
0

4ν3
|A 1

2 vm|4,

2|b(vm, wl
M , Avm)| ≤ c1|vm|∞|A 1

2wl
M | |Avm| ≤

c1Lm

λ
1
2
m+1

|A 1
2 vm| |Awl

M | |Avm|

≤ c1Lm

4λ
1
2
m+1

|A 1
2 vm| |Awl

M |2 +
c1Lm

λ
1
2
m+1

|A 1
2 vm| |Avm|2,

2|b(wl
M , vm, Avm)| ≤ c1|wl

M | |A
1
2 vm|∞|Avm| ≤ c1Lm

λ
1
2
m+1

|A 1
2wl

M | |Avm|2,
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2|b(wl
M , wl

M , Avm)| ≤ c1|wl
M |∞|A

1
2wl

M | |Avm|
≤ c1|wl

M |
1
2 |Awl

M |
1
2 |wl

M |
1
2 |Awl

M |
1
2 |Avm|

= c1|wl
M | |Awl

M | |Avm| ≤
c1

λ
1
2
m+1

|A 1
2wl

M | |Awl
M | |Avm|

≤ c1Lm

4λ
1
2
m+1

|A 1
2wl

M | |Awl
M |2 +

c1Lm

λ
1
2
m+1

|A 1
2wl

M | |Avm|2,

2|b(vm, wk
M , Awk

M )| ≤ c1|vm|∞|A 1
2wk

M | |Awk
M | ≤

c1Lm

λ
1
2
m+1

|A 1
2 vm| |Awk

M |2,

2|b(wk
M , vm, Aw

k
M )| ≤ c1|wk

M |∞|A
1
2 vm| |Awk

M | ≤ c1|wk
M |

1
2 |Awk

M |
1
2 |A 1

2 vm| |Awk
M |

≤ c1

λ
1
2
m+1

|A 1
2 vm| |Awk

M |2,

2|b(wk−1
M , wk

M , Awk
M )| ≤ c1|A 1

4wk−1
M | |A 3

4wk
M | |Awk

M | ≤
c1

λ
1
2
m+1

|A 1
2wk−1

M | |Awk
M |2,

2|b(wk
M , wk−1

M , Awk
M )| ≤ c1|wk

M |∞|A
1
2wk−1

M | |Awk
M | ≤ c1|wk

M |
1
2 |A 1

2wk−1
M | |Awk

M |
3
2

≤ c1

λ
1
2
m+1

|A 1
2wk−1

M | |Awk
M |2,

2|b(wk−1
M , wk−1

M , Awk
M )| ≤ c1|wk−1

M |∞|A 1
2wk−1

M | |Awk
M |

≤ c1|wk−1
M | 12 |Awk−1

M | 12 |wk−1
M | 12 |Awk−1

M | 12 |Awk
M |

= c1|wk−1
M | |Awk−1

M | |Awk
M | ≤

c1

λ
1
2
m+1

|A 1
2wk−1

M | |Awk−1
M | |Awk

M |

≤ c1

2λ
1
2
m+1

|A 1
2wk−1

M | |Awk
M |2 +

c1

2λ
1
2
m+1

|A 1
2wk−1

M | |Awk−1
M |2,

2|(f,AukmM )| ≤ 4

ν
|f |2 + ν

4
|AukmM |2.

Combining the above estimates yields

d|A 1
2ukmM |2
dt

+ ν|AukmM |2 ≤
4

ν
|f |2 + c41M

2
0

4ν3
|A 1

2 vm|4

+
1

4
c1Lmλ

− 1
2

m+1(|A
1
2 vm|+ |A 1

2wl
M |)|Awl

M |2

+ c1Lmλ
− 1

2
m+1(|A

1
2 vm| |Avm|2 + 2|A 1

2wl
M | |Avm|2

+ 2|A 1
2 vm| |Awk

M |2 + 2|A 1
2wk−1

M | |Awk
M |2)

+
c1
2
λ
− 1

2
m+1|A

1
2wk−1

M | |Awk
M |2 +

c1
2
λ
− 1

2
m+1|A

1
2wk−1

M | |Awk−1
M |2.

Noticing (3.15) and (3.12), we have for t ∈ [0, tM ]

|A 1
2 vm| |Avm|2 + |A 1

2wl
M | |Avm|2 + |A

1
2 vm| |Awk

M |2 + |A
1
2wk−1

M | |Awk
M |2

≤
√
2M1|AukmM |2.
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The combination of the above estimations gives

d|A 1
2ukmM |2
dt

+ ν|AukmM |2 ≤
4

ν
|f |2 + c41M

2
0

4ν3
|A 1

2 vm|4 +
√
2

4
c1M1Lmλ

− 1
2

m+1|Awl
M |2

+
2
√
2c1M1Lm

λ
1
2
m+1

|AukmM |2 +
c1M1

2λ
1
2
m+1

|Awk
M |2 +

c1M1

2λ
1
2
m+1

|Awk−1
M |2.

Thanks to (3.6), we have 2
√
2c1M1Lmλ

− 1
2

m+1 ≤ ν
4 . Then

d|A 1
2ukmM |2
dt

+
3ν

4
|AukmM |2 ≤

4

ν
|f |2 + c41M

2
0

4ν3
|A 1

2 vm|4

+
c1
2
M1Lmλ

− 1
2

m+1(|Awl
M |2 + |Awk

M |2 + |Awk−1
M |2).

For any t ≥ 0, r > 0 satisfying t+ r ≤ tM and τ ∈ [t, t+ r], integrating the above
inequality on [τ, t+ r] shows that for all 1 ≤ k ≤ l

|A 1
2ukmM (t+ r)|2 + 3ν

4

∫ t+r

τ

|AukmM (s)|2ds ≤ 4r

ν
|f |2 +

∫ t+r

τ

c41M
2
0

4ν3
|A 1

2 vm(s)|4ds

+
c1
2
M1Lmλ

− 1
2

m+1

∫ t+r

τ

[|Awl
M (s)|2 + |Awk

M (s)|2 + |Awk−1
M (s)|2]ds+ |A 1

2ukmM (τ)|2.

Now, we define

y(s) = max
1≤i≤l

|A 1
2uimM (s)|2.

By noticing that (3.6) implies 3c1M1Lmλ
− 1

2
m+1 ≤ ν

2 and using a similar method for
deriving (3.13),

y(t+ r) +
ν

4
max
1≤i≤l

∫ t+r

τ

|AuimM (s)|2ds(3.16)

≤ 2y(τ) +
8r

ν
|f |2 +

∫ t+r

τ

c41M
2
0

2ν3
y2(s)ds.

Thanks to Lemma 3.1, we know∫ t+r

t

y(s)ds ≤ 4M2
0

ν
+

2r|f |2
λ1ν2

	
= a3(r) ∀t ≥ 0, r > 0, t+ r ≤ tM .

Also, we define

a2(r) =
8r

ν
|f |2, a1(r) =

c41M
2
0

2ν3
a3(r).

It is obvious that a1(r), a2(r), and a3(r) are functions of r and independent of l and
M1. Omitting the second term on the left-hand side of (3.16) and combining it with
the above three inequalities, we can use the idea of the proof of the uniform Gronwall
inequality (see [22]) to get

y(t) ≤
(
2a3(r)

r
+ a2(r)

)
exp(a1(r))

	
= B11(r) ∀r ≤ t ≤ tM .(3.17)
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For t ∈ [0, r], by using the ordinary Gronwall inequality, (3.16) implies

y(t) ≤ (2|A 1
2 a|2 + a2(r)) exp(a1(r))

	
= B12(r).(3.18)

Now let us complete the proof in two cases.
Case 1. If tM > 1

λ1ν
, we take r = 1

λ1ν
in (3.17)–(3.18). This admits

max
1≤i≤l

|A 1
2uimM (t)| ≤

√
max

{
B11

(
1

λ1ν

)
, B12

(
1

λ1ν

)}
∀t ∈ [0, tM ].

It is easy to verify that√
max

{
B11

(
1

λ1ν

)
, B12

(
1

λ1ν

)}
< 4λ

1
2
1 ν(Re+ 2Gr) exp(c41(2Re

2 + 5Gr2)2) =M1,

and this is a contradiction of (3.15).
Case 2. If tM ≤ 1

λ1ν
, it is quite easy to verify that (3.16) is still valid with

t = τ = 0 and any r ≤ tM . Then we can use the ordinary Gronwall inequality on
(3.16) to get

max
1≤i≤l

|A 1
2uimM (r)| ≤

√
B12

(
1

λ1ν

)
< M1 ∀r ∈ [0, tM ].

In particular, max1≤i≤l |A 1
2uimM (tM )| < M1. This also leads to a contradiction with

(3.15).
Therefore the assumption (3.14) is invalid. We can thus get TM ≥ T ; that is, the

solution of (3.7)–(3.9) will not blow up in any bounded time interval. And the proof
shows that its solution is uniformly (with respect to m,M, l, and T ) bounded with
bound M1.

Furthermore, from (3.16) we can get, for k = 1, . . . , l,∫ T

0

|AukmM (s)|2ds ≤ 12ν−1M2
1 + 32Tν−2|f |2 + 2c41M

2
0M

4
1T

ν4

≤ 2ν−1M2
1 (6 + c41ν

−3M2
0M

2
1T ) + 32λ2

1ν
2TGr2 =M2

2 (T ).

Proof of Theorem 3.1. By the results of Lemma 3.2, we claim that for any fixed
m the sequence

UmM
	
= {vm, w1

M , . . . , wl
M}, M > m,(3.19)

remains in a bounded set of L2(0, T ;D(A)) ∩ L∞(0, T ;V),

where D(A) = PmD(A)× (QmD(A))l, V = PmV × (QmV )
l. And it is easy for us to

verify that

U ′mM =
dUmM

dt
remains in a bounded set of L2(0, T ;H).(3.20)

Here H = Hm × (QmH)l.
Now we define X0 = D(A), X = V, X1 = H, and

Y = {U ∈ L2(0, T ;X0), U
′ ∈ L2(0, T ;X1)}.
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From (3.20) and the second result of Lemma 3.2, we have that the sequence {UmM}M>m

remains in a bounded set of Y. Thanks to (3.19) and the compactness theorem
(see Theorem 2.1 in Chapter III of [21]), we can assert the existence of an element
Um = {ṽm, w̃1, . . . , w̃l} ∈ L∞(0, T ;V) and a subsequence {UmM ′}M ′>m such that UmM ′ → Um in L2(0, T ;D(A)) weakly, in

L∞(0, T ;V) weak star, and in
L2(0, T ;V) strongly, as M ′ →∞.

We can certainly get UmM ′ → Um weakly in L2(0, T ;V), weak star in L∞(0, T ;H),
and strongly in L2(0, T ;H). Noticing the continuity property of the trilinear form
b(·, ·, ·) (see Lemma 3.2 in Chapter III of [21]), the passage to the limit shows that Um

is the solution of system (3.1)–(3.3), which shares the same bound of UmM .
In the following theorem, we will show that the small eddy components, namely

|wk
M | and |A

1
2wk

M |, are bounded by some small quantities. This result is very impor-
tant for the error estimates in the next section.

Theorem 3.2. If |A 1
2ukmM (t)| ≤M1 for any t ≥ 0 and 1 ≤ k ≤ l and m is large

enough such that (3.6) holds, then there exists a positive constant T0 = T0(a, f, ν)
such that

|wk
M (t)| ≤ K0Lm

λm+1
, |A 1

2wk
M (t)| ≤ K1Lm

λ
1
2
m+1

∀t ≥ T0, 1 ≤ k ≤ l,

where

K0 =
2(c1M

2
1 + 2|PmMf |L−1

m )

ν
, K1 =

5(c1M
2
1 + |PmMf |L−1

m )

ν
.

Proof. Multiplying (3.8) with 2wk
M , integrating it on Ω, and using (3.4), we get

d|wk
M |2
dt

+ 2ν|A 1
2wk

M |2 + 2b(vm, vm, w
k
M ) + 2b(wk

M , vm + wk−1
M , wk

M )

= 2(f, wk
M ) + 2b(wk−1

M , wk−1
M , wk

M ).

For the trilinear forms and the force term above, using (2.2)–(2.5), (3.4)–(3.5), and

the assumption |A 1
2 (vm + wk

M )| ≤M1, we have

2b(vm, vm, w
k
M ) ≤ c1|vm|∞|A 1

2 vm| |wk
M | ≤ c1Lmλ

− 1
2

m+1|A
1
2 vm|2|A 1

2wk
M |

≤ ν

4
|A 1

2wk
M |2 +

c21L
2
m|A

1
2 vm|4

νλm+1
,

2b(wk
M , vm + wk−1

M , wk
M ) ≤ c1|A 1

4wk
M | |A

1
2 (vm + wk−1

M )| |A 1
4wk

M | ≤
c1M1

λ
1
2
m+1

|A 1
2wk

M |2,

2b(wk−1
M , wk−1

M , wk
M ) = −2b(wk−1

M , wk
M , wk−1

M ) ≤ c1|A 1
4wk−1

M | |A 1
2wk

M | |A
1
4wk−1

M |

≤ c1λ
− 1

2
m+1|A

1
2wk−1

M |2|A 1
2wk

M | ≤
ν

4
|A 1

2wk
M |2 +

c21|A
1
2wk−1

M |4
νλm+1

,

2(f, wk
M ) ≤ 2λ

− 1
2

m+1|PmMf | |A 1
2wk

M | ≤
ν

4
|A 1

2wk
M |2 +

4

νλm+1
|PmMf |2.

Thanks to (2.5), |A 1
2 vm|4 + |A 1

2wk−1
M |4 ≤ |A 1

2 (vm + wk−1
M )|4 ≤ M4

1 . By (3.6), we see

that c1M1λ
− 1

2
m+1 ≤ ν

4 . Then

d|wk
M |2
dt

+ νλm+1|wk
M |2 ≤

c21M
4
1L

2
m + 4|PmMf |2
νλm+1

.
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Integrating the above inequality on [0, t] yields

|wk
M (t)| ≤ Lm

λm+1
· c1M

2
1 + 2|PmMf |L−1

m

ν
+ e−νλm+1t/2|PmMa| ∀t ≥ 0.(3.21)

Similarly, by using equation (3.8) again, we have

d|A 1
2wk

M |2
dt

+ 2ν|Awk
M |2 + 2b(vm, vm, Aw

k
M ) + 2b(vm + wk−1

M , wk
M , Awk

M )

+ 2b(wk
M , vm + wk−1

M , Awk
M )− 2b(wk−1

M , wk−1
M , Awk

M ) = 2(f,Awk
M ).

Applying (2.2)–(2.5) and (3.5), the following estimates hold:

2b(vm, vm, Aw
k
M ) ≤ c1|vm|∞|A 1

2 vm| |Awk
M |

≤ c1Lm|A 1
2 vm|2|Awk

M | ≤
ν

8
|Awk

M |2 +
4c21L

2
mM

4
1

ν
,

2b(vm + wk−1
M , wk

M , Awk
M ) ≤ c1|vm|∞|A 1

2wk
M | |Awk

M |+ c1|A 1
4wk−1

M | |A 3
4wk

M | |Awk
M |

≤ c1

λ
1
2
m+1

(Lm|A 1
2 vm|+ |A 1

2wk−1
M |)|Awk

M |2

≤
√
2c1M1Lm

λ
1
2
m+1

|Awk
M |2,

2b(wk
M , vm + wk−1

M , Awk
M ) ≤ c1|wk

M |∞|A
1
2 (vm + wk−1

M )| |Awk
M |

≤ c1M1|wk
M |

1
2 |Awk

M |
3
2 ≤ c1M1

λ
1
2
m+1

|Awk
M |2,

2b(wk−1
M , wk−1

M , Awk
M ) ≤ c1|wk−1

M |∞|A 1
2wk−1

M | |Awk
M |

≤ c1|wk−1
M | 12 |Awk−1

M | 12 |A 1
2wk−1

M | |Awk
M |

≤ c1

λ
1
2
m+1

|A 1
2wk−1

M | |Awk−1
M | |Awk

M |

≤ ν

8
|Awk

M |2 +
4c21M

2
1

νλm+1
|Awk−1

M |2,

2(f,Awk
M ) ≤ 2|PmMf | |Awk

M | ≤
ν

4
|Awk

M |2 +
4

ν
|PmMf |2.

Thanks again to (3.6),
√
2c1M1Lmλ

− 1
2

m+1 ≤ ν
4 . Then we get

d|A 1
2wk

M |2
dt

+ ν|Awk
M |2 ≤

4

ν
|PmMf |2 + 4c21M

2
1

νλm+1
|Awk−1

M |2 + 4c21M
4
1L

2
m

ν
.(3.22)

By using (2.4), we have |Awk
M |2 ≥ 1

2 |Awk
M |2 + λm+1

2 |A
1
2wk

M |2. Then it follows that

d|A 1
2wk

M |2
dt

+
νλm+1

2
|A 1

2wk
M |2 +

ν

2
|Awk

M |2

≤ 4

ν
|PmMf |2 + 4c21M

2
1

νλm+1
|Awk−1

M |2 + 4c21M
4
1L

2
m

ν
.
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Integrating this inequality on [0, t] admits for 1 ≤ k ≤ l

|A 1
2wk

M (t)|2 + ν

2

∫ t

0

e−νλm+1(t−s)/2|Awk
M (s)|2ds ≤ 8(|PmMf |2 + c21M

4
1L

2
m)

ν2λm+1

+ e−νλm+1t/2|A 1
2PmMa|2 + 4c21M

2
1

νλm+1

∫ t

0

e−νλm+1(t−s)/2|Awk−1
M (s)|2ds.

By using the same method for deriving (3.15) again, we have

|A 1
2wk

M (t)|2 + ν

2
max
1≤i≤l

∫ t

0

e−νλm+1(t−s)/2|Awi
M (s)|2ds ≤ 16(|PmMf |2 + c21M

4
1L

2
m)

ν2λm+1

+ 2e−νλm+1t/2|A 1
2PmMa|2 + 8c21M

2
1

νλm+1
max
1≤i≤l

∫ t

0

e−νλm+1(t−s)/2|Awi
M (s)|2ds.

If m is so large that (3.6) is satisfied, we have
8c21M

2
1

νλm+1
≤ ν

2 . Therefore, we can obtain

for t ≥ 0

|A 1
2wk

M (t)| ≤ Lm

λ
1
2
m+1

· 4(|PmMf |L−1
m + c1M

2
1 )

ν
+
√
2e−νλm+1t/4|A 1

2PmMa|.(3.23)

Taking into account (3.21) and (3.23), there must exist a constant T0(a, f, ν) > 0
such that the results of the theorem are valid.

Comparing this result with the small eddy estimates of the NSE given in [8], we
find that the small eddy components obtained in the small eddy correction method
share the same properties as those of the NSE, which will be listed in the next section.

4. Convergence analysis. First of all, we recall the following property of the
NSE (see [8]). There exist constants, which will be also denoted by M0, M1, K0, K1,
and T0 = T0(a, f, ν) appearing in Theorem 3.1 and 3.2, such that for any solution
u = p+ q of (1.1) or (1.5)–(1.6),

|u(t)| ≤M0, |A 1
2u(t)| ≤M1 ∀t ≥ 0,(4.1)

and

|q(t)| ≤ K0Lmλ
−1
m+1, |A 1

2 q| ≤ K1Lmλ
− 1

2
m+1 ∀t ≥ T0.(4.2)

Lemma 4.1. Under the conditions of Theorem 3.1, there exists a constant T ′0 =
T ′0(a, f, ν) > 0 such that for any t ≥ T ′0

ν

∫ t

0

e−νλm+1(t−s)/2|Aw1(s)|2ds ≤ K2
1L

2
m

λm+1
,

ν

∫ t

0

e−ν(t−s)/2|Aw1(s)|2ds ≤ K2
1L

2
m.

Proof. Consider k = 1 in (3.2). From (3.10), we can get

d|A 1
2w1|2
dt

+ ν|Aw1|2 ≤ 3

ν
|Qmf |2 + 3c21L

2
mM

4
1

ν
.

Since ν|Aw1|2 ≥ νλm+1

2 |A 1
2w1|2 + ν

2 |Aw1|2, we have
d|A 1

2w1|2
dt

+
ν

2
|Aw1|2 + νλm+1

2
|A 1

2w1|2 ≤ 3

ν
|Qmf |2 + 3c21L

2
mM

4
1

ν
.(4.3)
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Integrating the above inequality leads to

ν

∫ t

0

e−νλm+1(t−s)/2|Aw1(s)|2ds

≤ 2e−νλm+1t/2|A 1
2Qma|2 + 6|Qmf |2

ν2λm+1
+

6c21L
2
mM

4
1

ν2λm+1

≤ 2e−νλm+1t/2|A 1
2Qma|2 + L2

m

6λm+1
× 36(L−2

m |Qmf |2 + c21M
4
1 )

ν2

≤ 2e−νλm+1t/2|A 1
2Qma|2 + L2

m

6λm+1

(
6(L−1

m |Qmf |+ c1M
2
1 )

ν

)2

= 2e−νλm+1t/2|A 1
2Qma|2 + L2

m

6λm+1
K2

1 .

Not enlarging the third term on the left-hand side of (4.3) to νλm+1

2 |A 1
2w1|2, we can

use the same procedure to get

ν

∫ t

0

e−ν(t−s)/2|Aw1(s)|2ds ≤ 2e−νt/2|A 1
2Qma|2 + L2

m

6
K2

1 .

Certainly, there is a T ′0(a, f, ν) > 0 such that the results are valid.
Now, let us introduce some notation:

e(t) = u(t)− ul(t), εk(t) = wk(t)− wk−1(t), ‖| · (t)‖| = sup
0≤s≤t

| · (s)|.

In particular, ε1(t) = w1(t).
Theorem 4.1. Under the condition of Theorem 3.1, that is, with m large enough

such that (3.6) is valid, we assume that the results of Theorem 3.2, (4.1)–(4.2), and
Lemma 4.1 hold for T0 = 0 and T ′0 = 0. Then we have for l ≥ 1

|e(t)| ≤ νK0L
2
m

2
l−4
2 c1K1

(
2

1
4 c1K1Lm

νλm+1

)2l

exp(c21M
2
1 ν
−1t/4) ∀t ≥ 0,

where the constants M1, K0, and K1 are defined in Theorems 3.1 and 3.2.
Proof. Combine (3.1) and (3.2) to see that

dul

dt
+ νAul +B(ul, ul)−QmB(ε

l, εl) = f.(4.4)

Subtracting (4.4) from (1.1) yields

de

dt
+ νAe+B(e, u) +B(ul, e) +QmB(ε

l, εl) = 0.(4.5)

Next, we give a rough estimate of |e|2 in terms of |εl|2 and |A 1
2 εl|2. Multiplying (4.5)

by 2e and integrating it on Ω, we have

d|e|2
dt

+ 2ν|A 1
2 e|2 ≤ 2|b(e, u, e)|+ 2|b(εl, εl, Qme)|.
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For the two terms on the right-hand side of the above inequality, we have

2|b(e, u, e)| ≤ c1|A 1
4 e|2|A 1

2u| ≤ c1|e| |A 1
2 e| |A 1

2u|
≤ c1M1|e| |A 1

2 e| ≤ ν|A 1
2 e|2 + c21M

2
1

4ν
|e|2,

2|b(εl, εl, Qme)| = 2|b(εl, Qme, ε
l)| ≤ c1|εl| |A 1

2 εl| |A 1
2 e| ≤ ν|A 1

2 e|2 + c21
4ν
|εl|2|A 1

2 εl|2.

Here we applied the Sobolev interpolation inequality (2.2) (the third equation) to the
second inequality of both of the above two expressions with s = 1

4 , m = 1
2 . Therefore,

we get

d|e|2
dt
≤ c21M

2
1

4ν
|e|2 + c21

4ν
|εl|2|A 1

2 εl|2.

Integrate the above inequality on [0, t] to obtain

|e(t)|2 ≤M−2
1 e(c

2
1M

2
1 ν

−1t/4)‖|εl(t)‖|2‖|A 1
2 εl(t)‖|2.(4.6)

To take advantage of the fast decay property of the small eddy components, we
estimate the large and small eddy errors |ep|2 and |eq|2 in terms of |εl|2 and |A 1

2 εl|2
by using (4.6).

Projecting (4.5) onto Hm and QmH, respectively, we have

dep
dt

+ νAep + PmB(ep + eq, u) + PmB(u
l, ep + eq) = 0,(4.7)

deq
dt

+ νAeq +QmB(ep + eq, u) +QmB(u
l, ep + eq) +QmB(ε

l, εl) = 0.(4.8)

Multiplying (4.7) by 2ep, integrating it on Ω, and noticing (3.4) lead to

d|ep|2
dt

+ 2ν|A 1
2 ep|2 ≤ 2|b(ep, u, ep)|+ 2|b(eq, u, ep)|+ 2|b(ul, eq, ep)|.

Thanks to (2.3)–(2.4), (3.5), and Lemma 1 in [8], we know that

2b(ul, ep, eq) = 2b(Pmu
l, ep, eq) + 2b(Qmu

l, ep, eq) ≤ c1M1Lm|A 1
2 ep| |eq|.(4.9)

By using (2.2)–(2.4), (3.4)–(3.5), and (4.9), we have

2b(ep, u, ep) ≤ c1M1|ep| |A 1
2 ep| ≤ ν|A 1

2 ep|2 + c21M
2
1

4ν
|ep|2,

2b(eq, u, ep) ≤ c1M1|eq| |ep|∞ ≤ c1M1Lm|eq| |A 1
2 ep| ≤ ν

2
|A 1

2 ep|2 + c21M
2
1L

2
m

2ν
|eq|2,

2b(ul, eq, ep) ≤ c1M1Lm|A 1
2 ep| |eq| ≤ ν

2
|A 1

2 ep|2 + c21M
2
1L

2
m

2ν
|eq|2.

Finally, we obtain

d|ep|2
dt

≤ c21M
2
1

4ν
|ep|2 + c21M

2
1L

2
m

ν
|eq|2.
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Integrating the above inequality on [0, t] admits

|ep(t)|2 ≤ 4L2
m exp(c21M

2
1 ν
−1t/4)‖|eq(t)|‖2.(4.10)

Multiplying (4.8) with 2eq and integrating it on Ω, we get

d|eq|2
dt

+ 2ν|A 1
2 eq|2 ≤ 2|b(ep, u, eq)|+ 2|b(eq, u, eq)|+ 2|b(ul, ep, eq)|+ 2|b(εl, εl, eq)|.

For the right-hand side terms, we have

2b(ep, u, eq) ≤ c1M1|A 1
4 ep| |A 1

4 eq| ≤ c1M1|A 1
2 eq| |ep| ≤ ν

4
|A 1

2 eq|2 + c21M
2
1

ν
|ep|2,

2b(eq, u, eq) ≤ c1M1|A 1
4 eq|2 ≤ c1M1|A 1

2 eq| |eq| ≤ ν

4
|A 1

2 eq|2 + c21M
2
1

ν
|eq|2,

2b(ul, ep, eq) ≤ c1M1Lm|A 1
2 ep| |eq| ≤ c1M1Lm|ep| |A 1

2 eq|

≤ ν

4
|A 1

2 eq|2 + c21M
2
1L

2
m

ν
|ep|2,

2b(εl, εl, eq) ≤ c1|A 1
4 εl|2|A 1

2 eq| ≤ c1|εl| |A 1
2 εl| |A 1

2 eq| ≤ ν

4
|A 1

2 eq|2 + c21
ν
|εl|2|A 1

2 εl|2.

Then we derive

d|eq|2
dt

+ νλm+1|eq|2 ≤ 3c21M
2
1L

2
m

ν
|ep|2 + c21

ν
|εl|2|A 1

2 εl|2.

Integrating this inequality on [0, t] yields

|eq(t)|2 ≤ 3c21M
2
1L

2
m

ν2λm+1
‖|ep(t)|‖2 + c21

ν2λm+1
‖|εl(t)|‖2‖|A 1

2 εl(t)|‖2.(4.11)

Thanks to (4.6), we obtain

|eq(t)|2 ≤ 4c21L
2
me

(c21M
2
1 ν

−1t)/4

ν2λm+1
‖|εl(t)|‖2‖|A 1

2 εl(t)|‖2.(4.12)

Then the combination of (4.12) and (4.10) admits

|e(t)|2 ≤ 20c21L
4
me

(c21M
2
1 ν

−1t)/2

ν2λm+1
‖|εl(t)|‖2‖|A 1

2 εl(t)|‖2.(4.13)

To complete the proof, we have to estimate the two factors on the right-hand side
of (4.13) for 2 ≤ k ≤ l. First of all, from (3.2) we find that εk(t) satisfies

dεk

dt
+ νAεk +QmB(v, ε

k) +QmB(ε
k, v) +QmB(w

k−1, εk)(4.14)

+QmB(ε
k, wk−1) +QmB(ε

k−1, εk−1) = 0 ∀2 ≤ k ≤ l.

Multiplying (4.14) by 2εk and integrating it on Ω gives

d|εk|2
dt

+ 2ν|A 1
2 εk|2 ≤ 2|b(εk, v, εk)|+ 2|b(εk, wk−1, εk)|+ 2|b(εk−1, εk−1, εk)|.
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We can summarize the estimates of the right-hand-side terms of this inequality as

2|b(εk, v, εk)| ≤ c1|A 1
4 εk|2|A 1

2 v| ≤ c1M1λ
− 1

2
m+1|A

1
2 εk|2,

2|b(εk, wk−1, εk)| ≤ c1|A 1
4 εk|2|A 1

2wk−1| ≤ c1M1λ
− 1

2
m+1|A

1
2 εk|2,

2|b(εk−1, εk−1, εk)| ≤ c1|εk−1| |A 1
2 εk−1| |A 1

2 εk| ≤ ν

3
|A 1

2 εk|2 + 3c21
4ν
|εk−1|2|A 1

2 εk−1|2,

where, in the first inequality of the last expression above, we used the interpolation
inequality in (2.2) with s = 1

4 and m = 1
2 .

By choosing m large enough such that (3.6) is valid, we have

d|εk|2
dt

+ ν|A 1
2 εk|2 ≤ 3c21

4ν
|εk−1|2|A 1

2 εk−1|2.

Finally, we get

|εk(t)|2 ≤ 3c21
4ν2λm+1

‖|εk−1(t)‖|2‖|A 1
2 εk−1(t)‖|2 ∀t ≥ 0, 2 ≤ k ≤ l.(4.15)

Now, let us estimate |A 1
2 εk(t)|2. Multiplying (4.14) by 2Aεk and integrating it

on Ω, we obtain

d|A 1
2 εk|2
dt

+ 2ν|Aεk|2

≤ 2|b(v + wk−1, εk, Aεk)|+ 2|b(εk, v + wk−1, Aεk)|+ 2|b(εk−1, εk−1, Aεk)|.

For the three terms on the right-hand side, we have

2|b(v + wk−1, εk, Aεk)| ≤ c1(|v|∞|A 1
2 εk|+ |A 1

4wk−1| |A 3
4 εk|)|Aεk| ≤ c1M1Lm

λ
1
2
m+1

|Aεk|2,

2|b(εk, v + wk−1, Aεk)| ≤ c1|εk|∞|A 1
2 (v + wk−1)| |Aεk| ≤ c1M1λ

− 1
2

m+1|Aεk|2,
2|b(εk−1, εk−1, Aεk)| ≤ c1|εk−1|∞|A 1

2 εk−1| |Aεk| ≤ c1λ
− 1

2
m+1|A

1
2 εk−1| |Aεk−1| |Aεk|

≤ ν

3
|Aεk|2 + 3c21

4νλm+1
|A 1

2 εk−1|2|Aεk−1|2.

Thanks to (3.6) again, we derive

d|A 1
2 εk|2
dt

+
νλm+1

2
|A 1

2 εk|2 + ν

2
|Aεk|2 ≤ 3c21

4νλm+1
|A 1

2 εk−1|2|Aεk−1|2.(4.16)

Integrating the above inequality on [0, t] yields

|A 1
2 εk(t)|2 + ν

2

∫ t

0

e−νλm+1(t−s)/2|Aεk(s)|2ds

≤ e−νλm+1t/2|A 1
2 εk(0)|2 + 3c21‖|A

1
2 εk−1(t)‖|2

4νλm+1

∫ t

0

e−νλm+1(t−s)/2|Aεk−1(s)|2ds.
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Thanks to (3.3), we have for 2 ≤ k ≤ l

|A 1
2 εk(t)|2 ≤ c21‖|A

1
2 εk−1(t)‖|2
νλm+1

∫ t

0

e−νλm+1(t−s)/2|Aεk−1(s)|2ds,
ν

2

∫ t

0

e−νλm+1(t−s)/2|Aεk(s)|2ds

≤ c21‖|A
1
2 εk−1(t)‖|2
νλm+1

∫ t

0

e−νλm+1(t−s)/2|Aεk−1(s)|2ds.

(4.17)

By (4.15) and (4.17), if we define

ak = ‖|εk‖|2, bk = ‖|A 1
2 εk‖|2,

ck = ν

∫ t

0

e−νλm+1(t−s)/2|Aεk(s)|2ds, α =
c21

ν2λm+1
< 1,

we have for 2 ≤ k ≤ l

ak ≤ αak−1bk−1, bk ≤ αbk−1ck−1, ck ≤ 2αbk−1ck−1.(4.18)

From the last two inequalities in (4.18), we see that

bkck ≤ 2α2(bk−1ck−1)
2.

So we get for 2 ≤ k ≤ l

bk ≤


αb1c1 (k = 2)

α

[
k−3∏
i=0

(2α2)2
i

]
(b1c1)

2k−2

(k ≥ 3)

 ≤ 2−
1
2 (
√
2α)2

k−1−1(b1c1)
2k−2

.(4.19)

The inequality for b2 is obvious, and the one for bk is obtained as follows: for 3 ≤ k ≤ l

bk ≤ αbk−1ck−1 ≤ α · (2α2)2
0

(bk−2ck−2)
21 ≤ α · (2α2)2

0 · (2α2)2
1

(bk−3ck−3)
22 ≤ · · ·

≤ α · (2α2)2
0+21+···+2k−3

(b1c1)
2k−2

= α

[
k−3∏
i=0

(2α2)2
i

]
(b1c1)

2k−2

.

Thanks to inequality (4.18), we have for 2 ≤ k ≤ l

akbk ≤ αak−1bk−1bk ≤ α2ak−2bk−2bk−1bk ≤ · · · ≤ αk−1

[
k∏

i=2

bi

]
(a1b1).

Then by using (4.19), we can finally get

akbk ≤ αk−1
k∏

i=2

[
2−

1
2 (
√
2α)2

i−1−1(b1c1)
2i−2

]
(a1b1)(4.20)

= αk−1 · 2− k−1
2 · (

√
2α)

k∑
i=2

(2i−1−1)

×(b1c1)
k∑

i=2

2i−2

· (a1b1) ≤ 21−k(
√
2α)2

k−2a1b1(b1c1)
2k−1−1.
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From the results of Theorem 3.2 and Lemma 4.1, we can finally get the result of
the theorem from (4.13) and (4.18)–(4.20) by simple calculations.

For H1-error estimates, we have the following result.
Theorem 4.2. Under the same conditions of Theorem 4.1, we have for l ≥ 1

|A 1
2 e(t)| ≤ 4M1(c1K1L

5
mν
−1)

1
2

(
2

1
4 c1K1Lm

νλm+1

)2l− 1
2

exp (c3t) ∀t ≥ 0,

where c3 = 2c31ν
−2M3

1 +2−1ν and M1, K1 are constants defined in Theorems 3.1 and
3.2.

Proof. Multiplying (4.5) by 2Ae and integrating it on Ω yields

d|A 1
2 e|2
dt

+ 2ν|Ae|2 ≤ 2|b(e, u,Ae)|+ 2|b(ul, e, Ae)|+ 2|b(εl, εl, Ae)|.

Thanks to (2.2), (2.4), and (3.5), we have

2|b(e, u,Ae)| + 2|b(ul, e, Ae)| ≤ c1M1|e|∞|Ae|+ c1M1|A 1
2+ 1

3 e| |Ae|
≤ 2c1M1|A 1

2 e| 23 |Ae| 43 ≤ ν|Ae|2 + 2c31M
3
1

ν2
|A 1

2 e|2,
2|b(εl, εl, Ae)| ≤ c1|εl|∞|A 1

2 εl| |Ae| ≤ c1|εl| 12 |Aεl| 12 |A 1
2 εl| |Ae|

≤ c1λ
− 1

2
m+1|A

1
2 εl| |Aεl| |Ae| ≤ ν|Ae|2 + c21

4νλm+1
|A 1

2 εl|2|Aεl|2.

Therefore

d|A 1
2 e|2
dt

− 2c31M
3
1

ν2
|A 1

2 e|2 ≤ c21
4νλm+1

‖|A 1
2 εl(t)|‖2|Aεl(t)|2.

Integrating the above inequality admits

|A 1
2 e(t)|2 ≤ c21‖|A

1
2 εl(t)|‖2

4νλm+1

∫ t

0

e
2c3

1
M3

1
(t−s)

ν2 |Aεl(s)|2ds.

Defining c3 = 2c31ν
−2M3

1 + 2−1ν, we can deduce from the above inequality that

|A 1
2 e(t)|2 ≤ c21e

c3t‖|A 1
2 εl(t)|‖2

4νλm+1

∫ t

0

e−
ν(t−s)

2 |Aεl(s)|2ds.(4.21)

Similarly to the proof of Theorem 4.1, we estimate |A 1
2 ep|2 and |A 1

2 eq|2, respec-
tively. Noticing (2.4) and (4.10), we have

|A 1
2 ep(t)|2 ≤ λm+1|ep|2 ≤ 4L2

mλm+1e
c2
1
M2

1
ν−1t

4 ‖|eq(t)|‖2(4.22)

≤ 4L2
me

c2
1
M2

1
ν−1t

4 ‖|A 1
2 eq(t)|‖2.

Multiplying (4.8) with 2Aeq, integrating it on Ω, doing some estimates of the cor-
responding trilinear terms, and then integrating the final differential inequality of
|A 1

2 eq|2 on [0, t], we can finally get

|A 1
2 eq|2 ≤ 5c21L

2
mM

2
1

ν2λm+1
‖|A 1

2 ep(t)|‖2(4.23)

+
5c21‖|A

1
2 ε(t)l|‖2

νλm+1

∫ t

0

e−νλm+1(t−s)/2|Aεl(s)|2ds.
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Combination of (4.21)–(4.23) admits

|A 1
2 e(t)|2 ≤ 10c41M

2
1L

4
me

2c3t‖|A 1
2 εl(t)|‖2

ν3λ2
m+1

(4.24)

×
(∫ t

0

e−
ν(t−s)

2 |Aεl(s)|2ds+ λm+1

∫ t

0

e−
νλm+1(t−s)

2 |Aεl(s)|2ds
)
.

Let us define

bk = ‖|A 1
2 εl(t)|‖2, ck = ν

∫ t

0

e−
νλm+1(t−s)

2 |Aεk(s)|2ds, α =
c21

ν2λm+1
,

and

dk = ν

∫ t

0

e−ν(t−s)/2|Aεk(s)|2ds.

We have from (4.17)–(4.18) and (4.24) that

|A 1
2 e(t)|2 ≤ 10M2

1L
4
me

2c3tα2bl(dl + λm+1cl),

bk ≤ αbk−1ck−1, ck ≤ 2αbk−1ck−1, dk ≤ 2αbk−1dk−1.

The last inequality is obvious if we substitute νλm+1

2 |A 1
2 εk|2 with ν

2 |A
1
2 εk|2 in (4.16).

From the last two inequalities we have for l ≥ 1

dl + λm+1cl ≤ 2αbl−1dl−1 + 2αλm+1bl−1cl−1 = 2αbl−1(dl−1 + λm+1cl−1)

≤ (2α)2bl−1bl−2(dl−2 + λm+1cl−2) ≤ · · · ≤ (2α)l−1

[
l−1∏
i=1

bi

]
(d1 + λm+1c1).

Now it is easy to get for l ≥ 1

bl(dl + λm+1cl) ≤ (2α)l−1

(
l∏

i=1

bi

)
(d1 + λm+1c1).(4.25)

Thanks to (4.19) and (4.25) we have for l ≥ 1

bl(dl + λm+1cl) ≤ (2α)l−1b1

[
l∏

i=2

2−
1
2 (
√
2α)2

i−1−1(b1c1)
2i−2

]
(d1 + λm+1c1)

≤
√
2(2α)l−1b1(b1c1)

−2−1

[
l∏

i=1

2−
1
2 (
√
2α)2

i−1−1(b1c1)
2i−2

]
(d1 + λm+1c1)

≤ 2−
1
2 (
√
2α)2

l−2(b1c1)
2l−1− 1

2 (d1 + λm+1c1).

Combining the above inequality with the results of Theorem 3.2, Lemma 4.1, and
(4.24) leads to the result of the theorem.

Remark 2. Compared with NGM (1.8) and PPGM (1.10), the small eddy cor-
rection method (3.1)–(3.3) involves the self evolution of the small eddy components
as well as the interaction between the large and small eddies. Therefore it is suitable
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for approximating the NSE whenever the small eddy components change slowly or
rapidly (in this case, approximating the small eddy equation with the steady Stokes
equation in both NGM (1.8) and PPGM (1.10) is not suitable) and can be expected
to yield a more accurate approximation. Actually, the result of Theorem 4.1 shows
that u1 can improve the L2-accuracy of both NGM and PPGM approximations for

almost half order (λ
− 1

2
m+1).

As is said in Remark 1, u1 is the ONG-approximate solution given in [11], in which
the authors imposed some rigorous conditions on the data of the NSE, for example,
a ∈ D(A) and f ∈ L∞(R+, V ), and for the periodic case proved for the semidiscrete
formula (3.7)–(3.9) (see (101) and (102) in [11]) that

|u− u1
mM | ≤ c(t)(λ−2

m+1 + λ−1
M+1).

From the result of Theorem 4.1, it is obvious that our conditions on the data are much
weaker. Indeed we demand only that a ∈ V and f ∈ L∞(R+, H). And we get almost
the same estimate for both periodic and nonslip boundary conditions except for the
logarithm term L4

m, which increases very slowly as m → ∞ and can be regarded as
a constant in general circumstances. A more important thing is that we provide a
successive correction procedure which can double the convergence rate of the previous
approximate solution just as the Newton method does for elliptic problems. Of course,
the larger l is, the more accurate the approximate solution is. On the other hand,
Theorem 4.1 tells us that for any fixed T > 0 and t ∈ [0, T ]

|u(t)− ul(t)| → 0 as l→∞.

That is, to ensure that ul(t) approximates u(t) uniformly (with respect to certain
prescribed error bound) in certain fixed time interval [0, T ], we have two choices:
enlarge m or choose a large l.

Remark 3. In this paper, we consider only the continuous small eddy correction
method. But some intermediate steps in the proofs of Theorems 4.1 and 4.2, i.e.,
(4.10)–(4.11) and (4.22)–(4.23), give us some suggestions for constructing its full dis-
crete form. Actually, the four inequalities listed above show that the total error |e|
(or |A 1

2 e|) of the scheme can be controlled by its small eddy error |eq| (or |A 1
2 eq|),

and the accuracy of |eq| (or |A 1
2 eq|) is always a half-order higher than the large eddy

error |ep| (or |A 1
2 ep|). To balance this kind of difference and make the full discrete

algorithm more effective, one possible choice is to use different time step lengths for
large eddy and small eddy equations.

5. Numerical examples. In this section, we will present some numerical ex-
amples of the small eddy correction method for dissipative evolutionary PDEs.

The small eddy correction method (3.1)–(3.3), proposed in section 3, is a time
continuous scheme and is defined in an infinite-dimensional Hilbert space. In practice,
we have to construct its full discrete formulations, that is, to restrict it in a finite-
dimensional subspace (for example, see (3.7)–(3.9)) and do time discretization by a
finite difference scheme. Of course, we have to investigate its corresponding numerical
stability, error analysis, and possible multilevel scheme in time discretization, as was
pointed out in Remark 3. We will address these questions elsewhere.

As the first numerical example, we integrate the following one-dimensional Burger
equation with the homogeneous Dirichlet boundary condition on [0, π]. Using notation
similar to that of the NSE, we have

du

dt
+ νAu+B(u, u) = f, u(0) = u0,(5.1)



SMALL EDDY CORRECTION METHOD 1127

where, in this case, A = − ∂2

∂x2 with domain D(A) = H2(0, π)∩H1
0 (0, π) and B(u, v) =

2
3uvx+

1
3uxv for u, v ∈ H1

0 (0, π). The eigenfunctions of A are φi =
√
2/π sin(ix) with

corresponding eigenvalues λi = i2, i = 1, 2, . . . .
We choose an exact solution ue(x, t) and then compute the time dependent forcing

term f(x, t). This makes it possible to compare the numerical solutions with the exact
solution without computing a large Galerkin approximation as an “exact” solution.
We choose

ue(x, t) =

∞∑
j=1

aj(t)

j3
sin(jx), aj(t) = 1 + γ sin(j2t).

To give a numerical implementation of the small eddy correction for (5.1), we use
a spectral method for the space discretization, and the Euler backward scheme for
the time discretization, with time step length τ > 0. For any two positive integers
M � m, we have the following two finite-dimensional subspaces:

Hm = PmH = {φ1, φ2, . . . , φm} and

ĤmM = PmMH = {φm+1, φm+2, . . . , φM}.

Then the corresponding numerical scheme for (5.1) reads: find vn+1 ∈ Hm and wk
n+1 ∈

ĤmM , for k = 1, 2, . . . , l, such that

vn+1 − vn + ντAvn+1 + τPmB(vn+1 + wl
n, vn+1 + wl

n) = τPmf((n+ 1)τ),(5.2)

wk
n+1 − wk

n + ντAwk
n+1 + τPmM [B(vn+1, vn+1) +B(vn+1, w

k
n+1)(5.3)

+ B(wk
n+1, vn+1) +B(wk−1

n+1, w
k
n+1) +B(wk

n+1, w
k−1
n+1)]

= τPmM [f((n+ 1)τ) +B(wk−1
n+1, w

k−1
n+1)] ∀1 ≤ k ≤ l,

v0 = Pmu0, w
i
0 = PmMu0, i = 1, 2, . . . , l, l ≥ 1, and w0

n = 0 for n ≥ 0.(5.4)

Owing to our limited computing resources, we compute only the u0 on Hm, u1

and u2 on [Hm, HM ]. For fixed m = 2, we choose a suitable M > m according to the
principle that the error of u1 on [Hm, HM ] will decrease no further when M increases.
Here we choose M = 254. The time step length is τ = 0.001, and it is determined
in a similar manner. That is, for fixed m and M , decreasing k will not improve the
accuracy of u1 any further. Then we can regard the error as mainly determined by
the space discretization. We computed the u0, u1, and u2 in time interval [0, 2] for
ν = 1.0. Furthermore, as a comparison, we also computed another u0 on Hm+M in
this interval. Following are the L2-error comparison graph (Figure 5.1) and the CPU
time table (Table 5.1), which indicates the CPU time used for deriving u0, u1, u2 on
Hm, [Hm, HM ] and a large scale u0 on Hm+M .

Note that the curves which represent the error of u2 on [Hm, HM ] and u0 on
Hm+M coincide.

As the second numerical example, we consider the following two-dimensional NSEs
in the bounded domain Ω = [0, 1]× [0, 1]:

∂u

∂t
− ν∆u+ (u · ∇)u+∇p = f,

div u = 0, u|t=0 = 0,

periodic boundary condition,

(5.5)
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Fig. 5.1. L2-error comparison.

Table 5.1
CPU time comparison.

u0 on Hm u1 on [Hm, HM ] u2 on [Hm, HM ] u0 on Hm+M

0.44 sec 1328.83 sec 7469.48 sec 10054.39 sec

where ν = 0.01 is the kinetic viscosity and f(t, x, y) = f1(x, y)(2 + cos(t))/3 is the
density of the external forces, where f1(x, y) = f1(r, φ) = (0, fφ)

T ,

fφ(r, φ) =


1

8r+

∫ r+

0

ρ(1 + cos(4ρ))2dρ if r+ < 1
8 ,

− 1

8r−

∫ r−

0

ρ(1 + cos(4ρ))2dρ if r− < 1
8 ,

0 otherwise,

(5.6)

r± = |x+ iy− ( 1
2 (1+ i)± 1

4e
iθ)|, and θ = 0.7. This external force f represents stirring

the fluid in opposite directions at the locations 1
2 (1 + i)± 1

4e
iθ.

In this particular case, if we denote k = (k1, k2)
T ∈ Z2,

L2(Ω)2 =

φ =
∑

k∈Z2,k �=0

cke
2πik·x, ck = c−k,

∑
k∈Z2,k �=0

|ck|2 <∞
 ,

H = PL2(Ω)2, and Hm = PmH, where, for any φ =
∑

k∈Z2,k �=0 cke
2πik·x ∈ L2(Ω)2,

Pφ =
∑

k∈Z2,k �=0

(
I − k · kT

|k|2
)
cke

2πik·x and PmPφ =
∑

0<|k|2≤m

(
I − k · kT

|k|2
)
cke

2πik·x.

Projecting the above equations onto H, we can get its functional form (1.1),
and its fully discrete form is completely the same as (5.2)–(5.4). Considering the
computing scale, we take

m = 92, M = 192, and τ = 0.005.
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Fig. 5.2. H1-error comparison.

Fig. 5.3. H1-streamline graphs.

We compute only u0 (with |k1|, |k2| ≤
√
m) and u1 (with |k1|, |k2| ≤

√
M). To get the

error of these numerical results, we compute another u0 (with |k1|, |k2| ≤
√
M̃) on

a larger finite-dimensional subspace HM̃ with M̃ = 392 and regard it as the “exact”
solution.

In Figures 5.2 and 5.3, we give the H1-error curves of u0 on Hm and HM and u1

on [Hm, HM ], and the streamline graphs of u0 on HM and u1 on [Hm, HM ] at t = 40.
Here the CPU time used by u1 on [Hm, HM ] is less than one-half of the CPU time
used by u0 on HM .

From the error comparison of Figures 5.1 and 5.2, we can easily find that both
u1 and u2 can greatly improve the accuracy of u0, the SGM approximation, with less
CPU time than the large scale SGM approximation. If the CPU time is what we care
about, we would prefer the 1st approximation u1. However, if we care more about the
accuracy of the approximate solution, we prefer a higher order approximation like u2.
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STABILIZED FINITE ELEMENTS ON ANISOTROPIC MESHES: A
PRIORI ERROR ESTIMATES FOR THE ADVECTION-DIFFUSION

AND THE STOKES PROBLEMS∗

STEFANO MICHELETTI† , SIMONA PEROTTO† , AND MARCO PICASSO‡

SIAM J. NUMER. ANAL. c© 2003 Society for Industrial and Applied Mathematics
Vol. 41, No. 3, pp. 1131–1162

Abstract. Stabilized finite elements on strongly anisotropic meshes are considered. The design
of the stability coefficients is addressed for both the advection-diffusion and the Stokes problems
when using continuous piecewise linear finite elements on triangles. Using the polar decomposition
of the Jacobian of the affine mapping from the reference triangle to the current one, K, and from a
priori error estimates, a new definition of the stability coefficients is proposed. Our analysis shows
that these coefficients do not depend on the element diameter hK but on a characteristic length
associated with K via the polar decomposition. A numerical assessment of the theoretical analysis
is carried out.

Key words. anisotropic error estimates, advection-diffusion problems, Stokes problem, stabi-
lized finite elements

AMS subject classifications. 65N12, 65N15, 65N30
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1. Introduction. Stabilized finite elements like the Galerkin least squares (GLS)
method are currently widely used in the finite element community. The goal is to em-
ploy simple finite element approximations (for instance, continuous piecewise linear)
while ensuring stability of the method through extra (consistent) terms in the weak
formulation.

Stabilized finite elements have been used, for instance, in [21] for solving the
Stokes problem and in [16, 22, 29] for the approximation of the scalar advection-
diffusion problem. Extensions to the Navier–Stokes equations have been proposed in
[11, 23, 24]. Finally, stabilized finite elements have been also successfully applied to
other complex problems such as viscoelastic flows [3, 6, 7], shells [12], magnetohydro-
dynamics [26], and semiconductors [33].

The critical issue in stabilized finite elements is the design of the so-called stability
coefficients weighting the extra terms added to the weak formulation. These coeffi-
cients typically depend on some dimensionless numbers usually tuned on benchmark
problems and on the local mesh size hK , K being a mesh element. A theoretical esti-
mation of these quantities is proposed in [25, 28] for isotropic meshes. An alternative
approach consists of stabilizing via the residual-free bubble theory [9, 10, 39]. This
method has the advantage of providing a self-consistent expression for the stability
coefficients with no tuning parameters.

As far as we know, however, few papers have dealt with the design of the stability
coefficients for strongly anisotropic meshes. In all cases, these quantities are related to
some minimum size associated with each element and whose definition varying from
work to work seems to be relevant for the anisotropic analysis. In [2] an anisotropic
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a priori error analysis is provided for the advection–diffusion-reaction problem. It is
shown that the height, say h̃K , with respect to the diameter of each element K, should
be used for the design of the stability coefficient in the case of external boundary layers.
The analysis is carried out for finite elements of arbitrary order but is restricted by a
maximal angle condition and a coordinate system condition which may be a limitation
in the framework of adaptivity. In [31] an alternative approach is proposed showing

that h̃K is again the correct choice. In this analysis, however, the interpolation
constants depend on the alignment between the stretching direction of the mesh and
the solution. In [40] an a posteriori error estimator for anisotropically refined grids
as well as interpolation estimates are introduced, in which the minimum size of the
elements parallel to the coordinate system plays a major role. In [4, 5] the authors
consider the stabilization of the Stokes problem in the case of the Q1/Q1 pair of finite
elements on anisotropic quadrilateral meshes aligned with the Cartesian coordinate
axes. The stabilizing term is a variant to the one considered in the present work and
takes into account both mesh spacings along the axes of the coordinate system; see
section 4. Furthermore, in [36] numerical experiments show that good results can be
obtained when using the minimum edge length instead of hK .

In this paper an alternative technique is introduced based on the anisotropic inter-
polation error estimates derived in [18]. The maximal angle and the coordinate system
conditions of [2] are avoided. Moreover, the interpolation constants depend only on
the reference element (or alternatively on the reference patch), and the information
about the alignment between the stretching direction of the mesh and the solution
appears explicitly in the right-hand side of the estimates through some anisotropic
weightings of the first or second order derivatives of the solution.

Namely, the scalar advection-diffusion and the Stokes problems are addressed with
approximations based on continuous piecewise linear finite elements. Following the a
priori error analysis of [20, 21, 22] and using the anisotropic interpolation estimates
of [18, 19], new definitions of the stability coefficients are proposed. Numerical results
confirm the theoretical predictions. Notice that the recipe derived in the present
paper has already been employed in anisotropic a posteriori error analyses for both
the advection-diffusion and the Stokes problem [37, 17].

The outline of the paper is as follows. In section 2 we introduce the anisotropic
framework of [18]. Next, after recalling some of the results derived in [18], we prove
some further anisotropic estimates upon which we develop the a priori analysis in
sections 3 and 4 for the advection-diffusion and the Stokes problems, respectively.
Finally, numerical results are presented in section 5.

2. Anisotropic and functional setting. Let Ω be a polygonal domain of R
2.

For any 0 < h ≤ 1, let {Th}h be a family of conforming triangulations of Ω into
triangles K of diameter hK ≤ h. Since we are working with strongly anisotropic
meshes, however, the standard regularity assumption in [13] does not hold in our

analysis. Let TK : K̂ → K be the affine transformation which maps the reference
triangle K̂ into K, where K̂ can be, e.g., the right triangle (0, 0), (1, 0), (0, 1) or the
equilateral one (−1/2, 0), (1/2, 0), (0,√3/2). In either case let MK ∈ R

2×2 be the
Jacobian of TK , that is,

x = TK(x̂) = MK x̂ + tK ,

with tK ∈ R
2, x = (x1, x2)

T ∈ K, and x̂ = (x̂1, x̂2)
T ∈ K̂. Since MK is invertible, it

admits a unique polar decomposition MK = BKZK , where BK and ZK are symmetric
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Fig. 2.1. Example of an acceptable patch (top): the size of the reference patch ∆
K̂

does
not depend on the aspect ratio H1/H2. Example of a nonacceptable patch (bottom): the size of the
reference patch ∆

K̂
now depends on the aspect ratio H1/H2. Notice that in both cases r1,K = (1, 0)T ,

r2,K = (0, 1)T , λ1,K = H1, and λ2,K = H2.

positive definite and orthogonal matrices, respectively (see, e.g., [27]). Moreover, BK

can be factorized as BK = RT
KΛKRK , where ΛK is diagonal with positive entries and

RK is orthogonal. Thus let

ΛK =

[
λ1,K 0

0 λ2,K

]
and RK =

[
rT1,K
rT2,K

]
,

where λ1,K , λ2,K (with λ1,K ≥ λ2,K) and r1,K , r2,K are the eigenvalues and the
eigenvectors of BK , respectively.

For any K ∈ Th, let us define the stretching factor sK = λ1,K/λ2,K(≥ 1), mea-

suring the deformation of K with respect to K̂ for which s
K̂
= 1, and let ∆K be the

union of all the elements sharing a vertex with K. In view of the use of Clément-type
interpolation operators, we assume throughout that the cardinality of any patch ∆K

as well as the diameter of the reference patch ∆
K̂
= T−1

K (∆K) are uniformly bounded
independently of the geometry of the mesh; i.e., for any K ∈ Th,

card(∆K) ≤ Γ and diam(∆
K̂
) ≤ Ĉ 
 O(1),(2.1)

where Ĉ ≥ h
K̂
. In particular, the latter hypothesis rules out some too distorted

reference patches (see Figure 2.1, where examples of acceptable and nonacceptable
patches are shown).

Remark 1. Throughout we express the dependence of any constant through an
explicit list. For example, C = C(K̂) is a constant depending only on the geometry

of the reference triangle K̂, and C = C(Γ, Ĉ) is a constant taking into account the
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assumptions (2.1), while C is a number not depending on any geometrical quantity
whatsoever. Moreover, notice that in what follows any constant C can take on different
values at different occurrences.

Finally, for any function v defined on K, we let v̂ be the corresponding function
defined on K̂ via the map TK , i.e., v̂(x̂) = v(TK(x̂)).

Let us introduce now the functional spaces used in what follows. First, let Ck(Ω),
where the integer k ≥ 0, be the space of functions with continuous derivatives in Ω
up to the kth order. We denote L2(Ω) the space of the Lebesgue square-integrable
functions with norm ‖ · ‖L2(Ω) and scalar product (·, ·). Moreover, the space L2

0(Ω)
denotes the subspace of L2(Ω) of functions with zero average over Ω.

Let W k,p(Ω) be the classical Sobolev spaces of Lebesgue-measurable functions,
with k a nonnegative integer and 1 ≤ p ≤ ∞ [32].

In the case of scalar valued functions, we denote Hk(Ω) the space W k,2(Ω) with
norm and seminorm ‖ · ‖Hk(Ω) and | · |Hk(Ω), respectively. Then the norm of the space
W 0,∞(Ω), i.e., L∞(Ω), is denoted ‖ · ‖L∞(Ω). When the norms or seminorms refer to
some subspace S of Ω, they are written as ‖ · ‖Hk(S), | · |Hk(S), ‖ · ‖L∞(S), while the
scalar products are denoted (·, ·)S .

In the case of functions with values in R
2, we use the same notation for the norms

and scalar products as those for the scalar case by replacing the corresponding Sobolev
spaces with (Hk(Ω))2, (L2(Ω))2, etc.

Finally, in the case k = 1 we let H1
0 (Ω) and (H1

0 (Ω))
2 be the subspaces of H1(Ω)

and (H1(Ω))2, respectively, satisfying homogeneous Dirichlet boundary conditions on
the boundary ∂Ω of Ω.

2.1. Anisotropic interpolation estimates. This subsection provides a con-
tinuation of the analysis developed in [18], where anisotropic interpolation error esti-
mates are derived starting from the decompositions described above. In more detail,
after recalling some of the results in [18] (see Lemmas 2.1–2.4), we prove some further
anisotropic inequalities in view of the convergence analysis of sections 3 and 4 (see
Propositions 2.5 and 2.6 and Corollary 2.7).

The results below can be found in the proofs of Lemmas 2.2 and 2.1 in [18].

Lemma 2.1. For any function v ∈ H1(Ω) and for any K ∈ Th, the relations

|v̂|
H1(K̂)

=

[
sK ‖∇v · r1,K‖2L2(K) +

1

sK
‖∇v · r2,K‖2L2(K)

]1/2

,(2.2)

|v|H1(K) ≤ s
1/2
K |v̂|H1(K̂)

(2.3)

can be proved.

Lemma 2.2. For any function v ∈ H2(Ω) and for any K ∈ Th, the following
identity holds:

|v̂|2
H2(K̂)

=
λ3

1,K

λ2,K
LK(r1,K , r1,K ; v) +

λ3
2,K

λ1,K
LK(r2,K , r2,K ; v)

+ 2λ1,K λ2,KLK(r1,K , r2,K ; v),

where

LK(ri,K , rj,K ; v) =

∫
K

(
rTi,K HK(v) rj,K

)2
dx, with i, j = 1, 2,(2.4)
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and HK(v) is the Hessian matrix associated with the function v (restricted to K)

HK(v) =


∂2v

∂x2
1

∂2v

∂x1∂x2

∂2v

∂x1∂x2

∂2v

∂x2
2

 .

After introducing the finite element space Wh comprising continuous affine el-
ements, let rh : C0(Ω) → Wh and Rh : L2(Ω) → Wh be the standard Lagrange
and Clément linear interpolants, respectively, and let their restrictions to each ele-
ment K ∈ Th be denoted rK and RK . Then the results below can be proved (see
Propositions 3.2, 3.1, and 2.1 in [18]).

Lemma 2.3. Let v ∈ H1(Ω). Then there exists a constant C = C(Γ, Ĉ) such
that, for any K ∈ Th,

‖v −RK(v)‖L2(K) ≤ C [λ2
1,K(r

T
1,K GK(v) r1,K) + λ2

2,K(r
T
2,K GK(v) r2,K)]

1/2,

GK(v) being the symmetric positive semidefinite matrix in R
2×2 given by

GK(v) =
∑
T∈∆K


∫
T

(
∂v

∂x1

)2

dx

∫
T

∂v

∂x1

∂v

∂x2
dx∫

T

∂v

∂x1

∂v

∂x2
dx

∫
T

(
∂v

∂x2

)2

dx

 .(2.5)

Lemma 2.4. Let v ∈ H2(Ω). Then there exist two constants C1 = C1(K̂) and

C2 = C2(K̂) such that, for any K ∈ Th,
‖v − rK(v)‖L2(K) ≤ C1 [λ

4
1,K LK(r1,K , r1,K ; v) + λ4

2,K LK(r2,K , r2,K ; v)

+ 2λ2
1,K λ2

2,K LK(r1,K , r2,K ; v)]1/2,
(2.6)

|v − rK(v)|H1(K) ≤ C2

[
λ4

1,K

λ2
2,K

LK(r1,K , r1,K ; v) + λ2
2,K LK(r2,K , r2,K ; v)

+ 2λ2
1,K LK(r1,K , r2,K ; v)

]1/2

,

(2.7)

the quantities LK(ri,K , rj,K ; v) being defined in (2.4).
We are now ready to prove the new anisotropic results used in the convergence

analysis of the advection-diffusion and the Stokes problems.
Proposition 2.5. For any v ∈ H1(Ω), there exists a constant C = C(Γ, Ĉ) such

that, for any K ∈ Th,

|v −RK(v)|H1(K) ≤ C

[
λ2

1,K

λ2
2,K

(rT1,K GK(v) r1,K) + (rT2,K GK(v) r2,K)

]1/2

,(2.8)

GK(v) being the matrix defined in (2.5).
Proof. Applying relation (2.3) to the interpolation error (v −RK(v)), we get

|v −RK(v)|H1(K) ≤ s
1/2
K |v̂ −R

K̂
(v̂)|

H1(K̂)
,(2.9)
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where [RK(v)]
̂ = R

K̂
(v̂) (see [18] for a proof of this last equality). Exploiting the

result

|v −RT (v)|H1(T ) ≤ C |v|H1(∆T ), for any v ∈ H1(Ω) and for any T ∈ Th,

of the theory of Clément [14] in the right-hand side of (2.9) (identifying T with K̂)
yields

|v −RK(v)|2H1(K) ≤ C sK |v̂|2H1(∆
K̂

) = C sK
∑
T̂∈∆

K̂

|v̂|2
H1(T̂ )

.(2.10)

By applying (2.2) to each seminorm |v̂|H1(T̂ ) in (2.10), we get

|v −RK(v)|2H1(K) ≤ C sK
∑
T∈∆K

(
sK ‖∇v · r1,K‖2L2(T ) +

1

sK
‖∇v · r2,K‖2L2(T )

)
,

that is, observing that∑
T∈∆K

‖∇v · ri,K‖2L2(T ) = rTi,K GK(v) ri,K for i = 1, 2,(2.11)

the desired inequality (2.8).
Proposition 2.6 establishes an anisotropic relation between the H2-seminorms of

v and v̂ defined on K and K̂, respectively.
Proposition 2.6. For any function v ∈ H2(K) and for any K ∈ Th, the

following inequalities hold:

λ
1/2
1,K λ

1/2
2,K

(λ2
1,K + λ2

2,K)
|v̂|

H2(K̂)
≤ |v|H2(K) ≤

(λ2
1,K + λ2

2,K)

λ
3/2
1,K λ

3/2
2,K

|v̂|
H2(K̂)

.(2.12)

Proof. Let us begin by proving the upper bound of (2.12). Let H
K̂
(v̂) and HK(v)

be the Hessian matrices associated with v̂ and v and referred to as the elements K̂
and K, respectively. Then the following relation holds:

HK(v) = (M−1
K )T H

K̂
(v̂)M−1

K .

Let us consider the Frobenius norm ‖·‖F of HK(v) while exploiting the decompositions
introduced above for the matrices MK and BK . We get

‖HK(v)‖F = ‖B−1
K ZK H

K̂
(v̂)ZT

K B−1
K ‖F = ‖Λ−1

K RK ZK H
K̂
(v̂)ZT

K RT
K Λ−1

K ‖F ,

as the Frobenius norm is invariant with respect to orthogonal matrices. Using the rela-
tion between the Frobenius norm of the Hessian matrix HK(v) and the H2-seminorm
of v on K yields

|v|2H2(K) =

∫
K

‖HK(v)‖2F dx =

∫
K

‖Λ−1
K RK ZK H

K̂
(v̂)ZT

K RT
K Λ−1

K ‖F dx

=

∫
K

‖Λ−1
K PK H

K̂
(v̂)PT

K Λ−1
K ‖F dx,

(2.13)
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where the orthogonal matrix PK = RK ZK has been introduced in order to simplify
the notation. Let us also denote QK the matrix

QK = Λ−1
K PK =

[
qT1,K
qT2,K

]
, with qi,K =

1

λi,K
pi,K(2.14)

and where pi,K are the columns of the matrix PK , with i = 1, 2. Notice that, from
a geometric viewpoint, matrix QK simply identifies a rotation followed by a rescaling
of the coordinate axes. Introducing (2.14) into (2.13), the chain of equalities below
may be inferred:

|v|2H2(K) =

∫
K

‖QK H
K̂
(v̂)QT

K‖2F dx

=

∫
K

{
(qT1,K H

K̂
(v̂)q1,K)

2 + (qT2,K H
K̂
(v̂)q2,K)

2 + 2(qT1,K H
K̂
(v̂)q2,K)

2
}

dx

=
1

λ4
1,K

∫
K

(pT1,K H
K̂
(v̂)p1,K)

2 dx +
1

λ4
2,K

∫
K

(pT2,K H
K̂
(v̂)p2,K)

2 dx

+
2

λ2
1,K λ2

2,K

∫
K

(pT1,K H
K̂
(v̂)p2,K)

2 dx

=
λ2,K

λ3
1,K

∫
K̂

(pT1,K H
K̂
(v̂)p1,K)

2 dx̂ +
λ1,K

λ3
2,K

∫
K̂

(pT2,K H
K̂
(v̂)p2,K)

2 dx̂

+
2

λ1,K λ2,K

∫
K̂

(pT1,K H
K̂
(v̂)p2,K)

2 dx̂,

(2.15)

the last sum having been obtained by expressing the integrals over the generic element
K in terms of the integrals over the reference triangle K̂.

Let us bound the integrals of the last sum in (2.15), suitably rewriting the terms
(pTi,KH

K̂
(v̂)pj,K) for i, j = 1, 2. These terms are scalar products between the vectors

pi,K and H
K̂
(v̂)pj,K ; then we have

pTi,KH
K̂
(v̂)pj,K ≤ ‖pi,K‖ ‖HK̂

(v̂)pj,K‖
≤ ‖pi,K‖ ‖HK̂

(v̂)‖F ‖pj,K‖ = ‖HK̂
(v̂)‖F ,

(2.16)

where ‖ · ‖ is the Euclidean norm and the relations ‖pi,K‖ = 1 for i = 1, 2, together
with the compatibility of the Frobenius norm with the Euclidean one, have been
used. Thus, by exploiting the relation between the Frobenius norm of H

K̂
(v̂) and the

H2-seminorm |v̂|
H2(K̂)

as in (2.13), we obtain∫
K̂

(pTi,KH
K̂
(v̂)pj,K)

2 dx̂ ≤
∫
K̂

‖H
K̂
(v̂)‖2F dx̂ = |v̂|2

H2(K̂)
(2.17)

for i, j = 1, 2. Substituting this result into (2.15), we deduce that

|v|2H2(K) ≤
[

λ2,K

λ3
1,K

+
λ1,K

λ3
2,K

+
2

λ1,K λ2,K

]
|v̂|2

H2(K̂)
=

(λ2
1,K + λ2

2,K)
2

λ3
1,K λ3

2,K

|v̂|2
H2(K̂)

,

that is, the upper bound in (2.12).



1138 STEFANO MICHELETTI, SIMONA PEROTTO, AND MARCO PICASSO

Let us verify now the lower bound of (2.12) moving from Lemma 2.2. As the
calculations in (2.16) and (2.17) can be repeated on the terms LK(ri,K , rj,K ; v)
(with i, j = 1, 2) simply by identifying ri,K with pi,K , HK(v) with H

K̂
(v̂), and K

with K̂, we obtain

|v̂|2
H2(K̂)

≤
[

λ3
1,K

λ2,K
+

λ3
2,K

λ1,K
+ 2λ1,K λ2,K

]
|v|2H2(K) ≤

(λ2
1,K + λ2

2,K)
2

λ1,K λ2,K
|v|2H2(K),

which immediately provides the inequality in the left-hand side of (2.12).
We are now in a position to bound the H2-seminorm of a generic function v ∈

H2(K) in terms of the anisotropic quantities LK(ri,K , rj,K ; v) defined in (2.4).
Corollary 2.7. For any function v ∈ H2(K) and for any K ∈ Th, we have

|v|H2(K) ≤ (λ2
1,K + λ2

2,K)

[
1

λ4
2,K

LK(r1,K , r1,K ; v)

+
1

λ4
1,K

LK(r2,K , r2,K ; v) +
2

λ2
1,K λ2

2,K

LK(r1,K , r2,K ; v)

]1/2

,

(2.18)

where the quantities LK(ri,K , rj,K ; v) are defined in (2.4).
Proof. Let us start from the upper bound in Proposition 2.6. By adding the

anisotropic information provided by Lemma 2.2, we get

|v|2H2(K) ≤
(λ2

1,K + λ2
2,K)

2

λ4
2,K

LK(r1,K , r1,K ; v) +
(λ2

1,K + λ2
2,K)

2

λ4
1,K

LK(r2,K , r2,K ; v)

+ 2
(λ2

1,K + λ2
2,K)

2

λ2
1,K λ2

2,K

LK(r1,K , r2,K ; v),

which is exactly result (2.18) after simple algebraic manipulations.
Remark 2 (anisotropic interpolation estimates for vector valued functions). All

of the interpolation estimates obtained above can be easily generalized to the case
when v : Ω → R

2. In this case, the above results still hold formally, provided that
the terms LK(ri,K , rj,K ; v) and GK(v) defined in (2.4) and (2.5), respectively, are
replaced by the new ones, LK(ri,K , rj,K ; v) and GK(v), given by

LK(ri,K , rj,K ; v) =
∑
l=1,2

∫
K

(
rTi,K HK(vl) rj,K

)2
dx, with i, j = 1, 2,(2.19)

GK(v) =
∑
l=1,2

∑
T∈∆K


∫
T

(
∂vl
∂x1

)2

dx

∫
T

∂vl
∂x1

∂vl
∂x2

dx∫
T

∂vl
∂x1

∂vl
∂x2

dx

∫
T

(
∂vl
∂x2

)2

dx



=
∑
T∈∆K


∫
T

∂v

∂x1
· ∂v

∂x1
dx

∫
T

∂v

∂x1
· ∂v

∂x2
dx∫

T

∂v

∂x1
· ∂v

∂x2
dx

∫
T

∂v

∂x2
· ∂v

∂x2
dx

 ,

where vl, for l = 1, 2, are the Cartesian components of v.
For alternative anisotropic interpolation error estimates see [1, 4, 30, 40].
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3. The advection-diffusion problem. In this section we focus our attention
on the scalar advective-diffusive model. Starting from the formulation of stabilized
methods presented in [22], we readdress the question of a careful design for the stability
coefficients, crucial for the good performance of these methods, in the framework of
anisotropic meshes.

In particular, we extend the results obtained in [22], where an expression for
the stability coefficients in the whole range varying from advective to diffusive dom-
inated flows is introduced, to the case of (possibly) highly stretched elements. In [2]
an anisotropic a priori error analysis is provided for the advection–diffusion-reaction
problem in the case of finite elements of arbitrary order, but the results obtained are
limited by a maximal angle condition and a coordinate system condition. We consider
only the case of affine finite elements so that the stabilized methods, such as GLS,
SUPG [11, 29], and the method proposed in [15], do coincide with each other.

We study the convergence of the stabilized method in a mesh dependent norm,
taking into account also the stability coefficients. The optimal value for these is
obtained by error analysis considerations by requiring that the convergence rate, in
both the advective and the diffusive dominated regimes, is of maximal order.

Theorem 3.1 is the main result of this section.

3.1. Problem statement and finite element discretization. Let us consider
the standard advection-diffusion problem for the scalar field u = u(x){ −µ∆u + a · ∇u = f in Ω,

u = 0 on ∂Ω,
(3.1)

where µ = const > 0 is the diffusivity, a = a(x) ∈ (C1(Ω))2 is the given flow velocity
with ∇ · a = 0 in Ω, and f = f(x) ∈ L2(Ω) is the source term.

The variational formulation of problem (3.1) reads as follows: find u ∈ H1
0 (Ω)

which satisfies

B(u, v) = F (v) for any v ∈ H1
0 (Ω),(3.2)

where B(·, ·) and F (·) define the bilinear and linear forms

B(u, v) = (µ∇u, ∇v) + (a · ∇u, v) and F (v) = (f, v),(3.3)

respectively, for any u and v ∈ H1
0 (Ω).

As we are interested in advection dominated problems, we discretize problem (3.2)
by a stabilized finite element approach (GLS) [29]. The discrete problem thus reads
as follows: find uh ∈Wh,0 such that

Bh(uh, vh) = Fh(vh) for any vh ∈Wh,0,(3.4)

with

Bh(uh, vh) = B(uh, vh) +
∑
K∈Th

(−µ∆uh + a · ∇uh, τK(−µ∆vh + a · ∇vh))K ,(3.5)

Fh(vh) = F (vh) +
∑
K∈Th

(f, τK(−µ∆vh + a · ∇vh))K ,(3.6)

where we let Wh,0 = Wh ∩H1
0 (Ω). In particular, as we are dealing with continuous

affine finite elements, the terms ∆uh
∣∣
K

and ∆vh
∣∣
K

in (3.5) and (3.6) are identically
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equal to zero. Finally, concerning the stability coefficients τK , we define it as

τK =
δK
2

ξ(PeK)

‖a‖L∞(K)
,(3.7)

where δK is a characteristic dimension of element K and the function ξ(·) is defined
as

ξ(PeK) =

{
PeK if PeK < 1,
1 if PeK ≥ 1.

(3.8)

This choice corresponds to considering a locally advection dominated flow when the
element Péclet number PeK , given by

PeK = δK
‖a‖L∞(K)

6µ
,(3.9)

is greater than or equal to one. Notice that recipe (3.7) generalizes the corresponding
one in [22], where δK = hK . Nevertheless, in the case of anisotropic meshes, this
choice turns out not to be the optimal one (see also, e.g., [2]). We provide in what
follows an alternative determination of δK based on the error analysis.

3.2. Error analysis. To begin with, let us recall that the stabilized scheme
(3.4) is a consistent method in the sense that if additional regularity is demanded for
the solution u of the variational problem (3.2), that is, u ∈ H2(Ω) ∩H1

0 (Ω), then the
following relation holds:

Bh(u, vh) = Fh(vh) for any vh ∈Wh,0.(3.10)

As a consequence, the well-known Galerkin orthogonality property

Bh(u− uh, vh) = 0 for any vh ∈Wh,0(3.11)

follows. In the convergence analysis provided below we endow the space H1
0 (Ω) with

the discrete norm ‖ · ‖h defined, for any w ∈ H1
0 (Ω), by

‖w‖2h = µ ‖∇w‖2L2(Ω) +
∑
K∈Th

‖τ1/2
K a · ∇w‖2L2(K).(3.12)

We anticipate the main result of this section.
Theorem 3.1 (convergence in norm ‖ · ‖h). Let u ∈ H2(Ω) ∩ H1

0 (Ω) be the
solution to (3.2), and let uh ∈ Wh,0 be the solution to (3.4). Then the anisotropic
definitions of the stability coefficients and of the local Péclet number are

τK =
λ2,K

2

ξ(PeK)

‖a‖L∞(K)
,(3.13)

PeK = λ2,K

‖a‖L∞(K)

6µ
,(3.14)

respectively, where ξ(·) is the same as in (3.8). Moreover, under this choice there

exists a constant C = C(K̂) such that it holds that

‖u− uh‖2h ≤ C
∑
K∈Th

{
λ2

2,K

(
λ2,K‖a‖L∞(K)H(PeK − 1) + µH(1− PeK)

)
[
s4
KLK(r1,K , r1,K ; u) + LK(r2,K , r2,K ; u) + 2s2

KLK(r1,K , r2,K ; u)
]}

,

(3.15)
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Fig. 3.1. An example of mesh.

where the quantities LK(ri,K , rj,K ; u) are defined by (2.4) and where H(·) is the
Heaviside function given by

H(s) =
{

0 if s < 0,
1 if s > 0.

(3.16)

Before proving Theorem 3.1, some remarks are in order. In the isotropic case
when λ1,K 
 λ2,K , (3.15) recovers Theorem 3.1 in [22] in the case of affine elements.
It is interesting to observe that the interpolation error estimates in section 2.1 and in
turn the convergence result (3.15) contain quantities related to the stretching factors
sK of the elements, but, as pointed out also in Remark 5.1 in [4], if the anisotropic
refinement is along the correct direction, i.e., where high derivatives of the solution
occur, then these terms are of smaller size than the other terms. Actually, estimate
(3.15) guarantees convergence when sK is bounded, giving a convergence rate of the

order of λ
3/2
2,K and λ2,K in the discrete norm ‖ · ‖h for the cases of PeK ≥ 1 and

PeK < 1, respectively, but convergence can be achieved even if sK is unbounded, as
we discuss in the following two examples.

Let us introduce a parameter t < 1, and let λ1,K = t and λ2,K = tj (with j > 1)
so that sK > 1. In order to study convergence, we let t → 0 (i.e., sK → ∞). This
implies that the dominant term in the second row of (3.15) is the one of the order
of s4

K = t4(1−j). Thus, the right-hand side in (3.15) behaves like λ3
2,Ks4

K = t4−j or

λ2
2,Ks4

K = t4−2j according to whether the problem is convection dominated or not,
respectively, and convergence can still be expected, provided that 1 < j < 4 in the
first case or 1 < j < 2 in the second one. This corresponds to a “directional limit,”
where λ1,K and λ2,K tend to zero in a constrained manner.

Example 1. Let us provide an instance of this situation. Consider a mesh such
as the one in Figure 3.1, referred to as Ω = (0, 1)2, and suppose that the problem is
advection dominated, i.e., PeK ≥ 1. Let Nx and Ny be the number of subdivisions in
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the x- and y-direction, respectively. Using for K̂ the right triangle (0, 0), (1, 0), (0, 1), it
can be checked that λ1,K = 1/Nx and λ2,K = 1/Ny. After introducing the parameter
t < 1 such that λ1,K = t and λ2,K = tj , we have that Nx = 1/t and Ny = N j

x for a
fixed j > 1. Notice that the parameter t should be chosen such that 1/t is an integer,
e.g., t = 1/n with n ∈ N

+.

Finally, let us introduce a family of triangulations depending on the parameter t
by recalling from the above discussion that 1 < j < 4 as the problem is convection
dominated. The sequence of numerical solutions computed on this family of triangu-

lations, as t decreases, converges at a rate t2−j/2 = λ
2−j/2
1,K in the discrete norm ‖ · ‖h

while sK diverges like t1−j for any K ∈ Th.
Example 2. Another case where convergence occurs while sK may be unbounded

is when LK(r1,K , r1,K ; u) = LK(r1,K , r2,K ; u) = 0 while LK(r2,K , r2,K ; u) is bounded

in (3.15). Starting from the same type of meshes as in Figure 3.1 and using for K̂ the
same right triangle, it can be checked that r1,K = (1, 0)T and r2,K = (0, 1)T , provided
that the number of subdivisions Nx < Ny. In this case the term LK(r1,K , r1,K ; u) =
‖∂2u/∂x2

1‖2L2(K) = 0 and LK(r1,K , r2,K ; u) = ‖∂2u/∂x1∂x2‖2L2(K) = 0. This implies

that whenever u = u(x2) with ‖∂2u/∂x2
2‖L2(Ω) bounded, convergence is guaranteed,

provided that the mesh size tends to zero in the x2-direction while no constraint is
required for the mesh size in the x1-direction (see section 5).

To summarize, in a loose sense, if the mesh is aligned with the solution, then
convergence occurs independently of the stretching factor. Otherwise, convergence
may not occur. Moving from the residual-free bubble theory [9, 10, 39], we propose
an alternative recipe taking into account the orientation of the convective field with
respect to the mesh in [34].

In order to prove Theorem 3.1 we analyze in turn the stability and the continuity
of the bilinear form Bh(·, ·) (see also [2, 22]). Let us begin with the stability result.

Lemma 3.2 (stability in norm ‖ · ‖h). For any vh ∈Wh,0,

Bh(vh, vh) = ‖vh‖2h.(3.17)

Thus (3.4) has a unique solution.

Proof. Set uh = vh in (3.5).

The next result can be obtained from the anisotropic interpolation error estimates
provided in section 2.1.

Lemma 3.3. Let us assume that the solution u to (3.2) satisfies u ∈ H2(Ω) ∩
H1

0 (Ω). Then for any K ∈ Th
(i) if PeK ≥ 1, then

‖τ−1/2
K (u− rK(u))‖2L2(K) + µ ‖∇(u− rK(u))‖2L2(K) + ‖τ1/2

K a · ∇(u− rK(u))‖2L2(K)

+ ‖τ1/2
K µ∆(u− rK(u))‖2L2(K) ≤ C

[
1

δK
+

δK
λ2

2,K

+ δ3
K

(λ2
1,K + λ2

2,K)
2

λ4
1,K λ4

2,K

]
‖a‖L∞(K)

[λ4
1,K LK(r1,K , r1,K ; u) + λ4

2,K LK(r2,K , r2,K ; u) + 2λ2
1,K λ2

2,K LK(r1,K , r2,K ; u)];

(3.18)
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(ii) if PeK < 1, then

‖τ−1/2
K (u− rK(u))‖2L2(K) + µ ‖∇(u− rK(u))‖2L2(K) + ‖τ1/2

K a · ∇(u− rK(u))‖2L2(K)

+ ‖τ1/2
K µ∆(u− rK(u))‖2L2(K) ≤ C

[
1

δ2
K

+
1

λ2
2,K

+ δ2
K

(λ2
1,K + λ2

2,K)
2

λ4
1,K λ4

2,K

]
µ

[λ4
1,K LK(r1,K , r1,K ; u) + λ4

2,K LK(r2,K , r2,K ; u) + 2λ2
1,K λ2

2,K LK(r1,K , r2,K ; u)],

(3.19)

where the quantities LK(ri,K , rj,K ; u) are defined by (2.4) and C = C(K̂).

Proof. Let us start by analyzing separately the four terms in the left-hand side
of both (3.18) and (3.19), independently of the particular values of PeK . Concerning
the first one, the inequality (2.6) in Lemma 2.4, together with the definition (3.7) of
the stability coefficients τK , yields

‖τ−1/2
K (u− rK(u))‖2L2(K) ≤ C

‖a‖L∞(K)

δK ξ(PeK)
[λ4

1,K LK(r1,K , r1,K ; u)

+λ4
2,KLK(r2,K , r2,K ; u) + 2λ2

1,K λ2
2,K LK(r1,K , r2,K ; u)].

(3.20)

The anisotropic estimate (2.7) in Lemma 2.4 derived for the H1-seminorm of the
interpolation error allows us to bound the second quantity. Indeed, we have

µ ‖∇(u− rK(u))‖2L2(K) ≤ C µ

[
λ4

1,K

λ2
2,K

LK(r1,K , r1,K ; u)

+λ2
2,KLK(r2,K , r2,K ; u) + 2λ2

1,K LK(r1,K , r2,K ; u)

]

= C
δK ‖a‖L∞(K)

λ2
2,K PeK

[λ4
1,K LK(r1,K , r1,K ; u)

+λ4
2,KLK(r2,K , r2,K ; u) + 2λ2

1,K λ2
2,K LK(r1,K , r2,K ; u)],

(3.21)

where, thanks to (3.9), the diffusivity µ has been expressed, within a constant, in
terms of the Péclet number associated with element K. Let us consider now the third
term. We have

‖τ1/2
K a · ∇(u− rK(u))‖2L2(K) =

δK ξ(PeK)

2 ‖a‖L∞(K)

∫
K

(a · ∇(u− rK(u)))
2

dx

≤ C δK ‖a‖L∞(K)ξ(PeK) ‖∇(u− rK(u))‖2L2(K) ≤ C
δK ‖a‖L∞(K) ξ(PeK)

λ2
2,K

[λ4
1,K LK(r1,K , r1,K ; u) + λ4

2,KLK(r2,K , r2,K ; u) + 2λ2
1,K λ2

2,K LK(r1,K , r2,K ; u)].

(3.22)

In the chain of inequalities above, the definition of the stability coefficients τK and the
anisotropic estimate (2.7) in Lemma 2.4 have been used. Finally, let us bound suitably
the last term in the left-hand side of (3.18) and (3.19), again using the expressions of
τK and of the diffusivity µ in terms of the Péclet number PeK together with Corollary



1144 STEFANO MICHELETTI, SIMONA PEROTTO, AND MARCO PICASSO

2.7. Thus, it can be deduced that

‖τ1/2
K µ∆(u− rK(u))‖2L2(K) ≤ τK µ2 |u|2H2(K) ≤ τK µ2(λ2

1,K + λ2
2,K)

2[
1

λ4
2,K

LK(r1,K , r1,K ; u) +
1

λ4
1,K

LK(r2,K , r2,K ; u) +
2

λ2
1,K λ2

2,K

LK(r1,K , r2,K ; u)

]
≤ C

δ3
K ‖a‖L∞(K)ξ(PeK)

Pe2K

(λ2
1,K + λ2

2,K)
2

λ4
1,K λ4

2,K

[λ4
1,K LK(r1,K , r1,K ; u) + λ4

2,KLK(r2,K , r2,K ; u) + 2λ2
1,K λ2

2,K LK(r1,K , r2,K ; u)].

(3.23)

Let us deal now with the case PeK ≥ 1, and consider each term (3.20)–(3.23)
in turn. In the first of these terms we use definition (3.8); in the second one we use
1/PeK ≤ 1; in the third we employ definition (3.8); and in the fourth one we use again
(3.8) and 1/Pe2K ≤ 1. This allows us to further bound the left-hand side of (3.18) as

‖τ−1/2
K (u− rK(u))‖2L2(K) + µ ‖∇(u− rK(u))‖2L2(K) + ‖τ1/2

K a · ∇(u− rK(u))‖2L2(K)

+ ‖τ1/2
K µ∆(u− rK(u))‖2L2(K) ≤ C

[
1

δK
+

δK
λ2

2,K

+ δ3
K

(λ2
1,K + λ2

2,K)
2

λ4
1,K λ4

2,K

]
‖a‖L∞(K)

[λ4
1,K LK(r1,K , r1,K ; u) + λ4

2,K LK(r2,K , r2,K ; u) + 2λ2
1,K λ2

2,K LK(r1,K , r2,K ; u)].

Let us now consider the case PeK < 1, where we follow a different path with
respect to the previous case. Let us analyze the four terms (3.20)–(3.23) above in
turn. We first use the definition (3.8) and then (3.9) in (3.20); on the term (3.21) we
employ (3.9); in the third one we use (3.8) and then express, within a constant, the
term ‖a‖L∞(K) as µPeK/δK from (3.9); and finally we use Pe2K < 1. In the fourth
term we employ definition (3.8) and then compute, within a constant, PeK/‖a‖L∞(K)

as δK/µ. We can then bound the left-hand side in (3.19) as

‖τ−1/2
K (u− rK(u))‖2L2(K) + µ ‖∇(u− rK(u))‖2L2(K) + ‖τ1/2

K a · ∇(u− rK(u))‖2L2(K)

+ ‖τ1/2
K µ∆(u− rK(u))‖2L2(K) ≤ C

[
1

δ2
K

+
1

λ2
2,K

+ δ2
K

(λ2
1,K + λ2

2,K)
2

λ4
1,Kλ4

2,K

]
µ

[λ4
1,K LK(r1,K , r1,K ; u) + λ4

2,K LK(r2,K , r2,K ; u) + 2λ2
1,K λ2

2,K LK(r1,K , r2,K ; u)],

and this concludes the proof.
Let us now prove the continuity of the bilinear form Bh(·, ·).
Lemma 3.4 (continuity of Bh(·, ·)). For any u ∈ H2(Ω) ∩ H1

0 (Ω) and for any
vh ∈Wh,0, there exists a constant C such that

|Bh(u, vh)| ≤ C

[
µ‖∇u‖2L2(Ω) +

∑
K∈Th

(
‖τ−1/2
K u‖2L2(K)

+ ‖τ1/2
K a · ∇u‖2L2(K) + ‖τ1/2

K µ∆u‖2L2(K)

)]1/2

‖vh‖h.

Proof. From the definition (3.5) of the bilinear form Bh(·, ·) and since ∆vh
∣∣
K
= 0

for any K ∈ Th and for any vh ∈Wh,0, we have

Bh(u, vh) = (µ∇u,∇vh) + (a · ∇u, vh) +
∑
K∈Th

(−µ∆u + a · ∇u, τK(a · ∇vh))K .
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Then integrating by parts the second term and using the Cauchy–Schwarz inequality,
we get

|Bh(u, vh)| ≤ µ‖∇u‖L2(Ω)‖∇vh‖L2(Ω) +
∑
K∈Th

‖τ1/2
K a · ∇vh‖L2(K)‖τ−1/2

K u‖L2(K)

+
∑
K∈Th

‖τ1/2
K a · ∇vh‖L2(K)

(
‖τ1/2
K a · ∇u‖L2(K) + ‖τ1/2

K µ∆u‖L2(K)

)
.

Finally, thanks to the discrete Cauchy–Schwarz inequality and some simple calcula-
tions, we obtain

|Bh(u, vh)| ≤ C

(
µ‖∇u‖2L2(Ω) +

∑
K∈Th

‖τ−1/2
K u‖2L2(K)

+
∑
K∈Th

(
‖τ1/2
K a · ∇u‖2L2(K) + ‖τ1/2

K µ∆u‖2L2(K)

))1/2

(
µ‖∇vh‖2L2(Ω) +

∑
K∈Th

‖τ1/2
K a · ∇vh‖2L2(K)

)1/2

,

that is, the desired result.
We are now in a position to state the following anisotropic a priori error estimate

with respect to the norm ‖ · ‖h defined in (3.12).
Proposition 3.5 (a priori error estimate in norm ‖·‖h). Let u ∈ H2(Ω)∩H1

0 (Ω)
be the solution to (3.2), and let uh ∈ Wh,0 be the solution to (3.4). Then there exists

a constant C = C(K̂) such that the a priori estimate

‖u− uh‖2h ≤ C
∑
K∈Th

{([
1

δK
+

δK
λ2

2,K

+ δ3
K

(λ2
1,K + λ2

2,K)
2

λ4
1,K λ4

2,K

]
‖a‖L∞(K)H(PeK − 1)

+

[
1

δ2
K

+
1

λ2
2,K

+ δ2
K

(λ2
1,K + λ2

2,K)
2

λ4
1,Kλ4

2,K

]
µH(1− PeK)

)
[
λ4

1,KLK(r1,K , r1,K ; u)+λ4
2,K LK(r2,K , r2,K ; u) + 2λ2

1,K λ2
2,K LK(r1,K , r2,K ; u)

]}

(3.24)

holds true, with LK(ri,K , rj,K ; u) defined in (2.4) and where H(·) is the Heaviside
function defined in (3.16).

Proof. The stability result (3.17), combined with the Galerkin orthogonality
property (3.11), yields the relations

‖uh − rh(u)‖2h = Bh(uh − rh(u), uh − rh(u)) = Bh(uh − u + u− rh(u), uh − rh(u))

= Bh(u− rh(u), uh − rh(u)) ≤ |Bh(u− rh(u), uh − rh(u))|.
From Lemma 3.4 we immediately get

‖uh − rh(u)‖h ≤ C

( ∑
K∈Th

[
‖τ−1/2
K (u− rK(u))‖2L2(K) + µ‖∇(u− rK(u))‖2L2(K)

+ ‖τ1/2
K a · ∇(u− rK(u))‖2L2(K) + ‖τ1/2

K µ∆(u− rK(u))‖2L2(K)

])1/2

.

(3.25)
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Using the triangle and Young inequalities, we have

‖u− uh‖2h ≤ 2(‖u− rh(u)‖2h + ‖uh − rh(u)‖2h).
As, trivially,

‖u− rh(u)‖2h ≤
∑
K∈Th

[
‖τ−1/2
K (u− rK(u))‖2L2(K) + µ ‖∇(u− rK(u))‖2L2(K)

+ ‖τ1/2
K a · ∇(u− rK(u))‖2L2(K) + ‖τ1/2

K µ∆(u− rK(u))‖2L2(K)

]
,

and from (3.25), it follows that

‖u− uh‖2h ≤ C
∑
K∈Th

[
‖τ−1/2
K (u− rK(u))‖2L2(K) + µ ‖∇(u− rK(u))‖2L2(K)

+ ‖τ1/2
K a · ∇(u− rK(u))‖2L2(K) + ‖τ1/2

K µ∆(u− rK(u))‖2L2(K)

]
.

(3.26)

Result (3.24) eventually follows by applying Lemma 3.3 to the right-hand side of
(3.26).

Proof of Theorem 3.1. Let us consider the error estimate obtained in Proposition
3.5, and, after using the definition of stretching factor, let us rewrite it as follows:

‖u− uh‖2h ≤ C
∑
K∈Th

{([
λ4

2,K

δK
+ δKλ2

2,K + δ3
K

(λ2
1,K + λ2

2,K)
2

λ4
1,K

]
︸ ︷︷ ︸

(I)

‖a‖L∞(K)H(PeK − 1)

+

[
λ4

2,K

δ2
K

+ λ2
2,K + δ2

K

(λ2
1,K + λ2

2,K)
2

λ4
1,K

]
︸ ︷︷ ︸

(II)

µH(1− PeK)

)

[
s4
K LK(r1,K , r1,K ; u) + LK(r2,K , r2,K ; u) + 2s2

K LK(r1,K , r2,K ; u)
]︸ ︷︷ ︸

(III)

}
,

(3.27)

where the term (III) is now equivalent to the H2-norm of u on K, on recalling the

definition (2.4) and that sK is a dimensionless quantity. Moreover, 1 <
(λ2

1,K+λ2
2,K)2

λ4
1,K

≤
4 so that it does not play any role in the convergence analysis. Let us first deal with
the isotropic case, where λ1,K 
 λ2,K 
 hK . By looking at term (I) of (3.27), it turns
out that the maximal order of convergence is obtained when all these terms are of
the same order. This occurs when δK 
 hK ; i.e., we recover the recipe in [22]. In the
anisotropic case, letting δK 
 λm1,Kλn2,K for some m, n ∈ Q, we find these values by
requiring that all the three terms in (I) be of the same order with respect to both λ1,K

and λ2,K . By doing so, it turns out that m = 0 and n = 1, which yields δK 
 λ2,K .
It also turns out that, under this choice, (I) behaves like λ3

2,K .
By a similar line of reasoning, it can be checked that the same value for δK is

obtained also for term (II). However, this behaves like λ2
2,K .

Having computed the value of δK , relations (3.13)–(3.14) follow immediately on
recalling (3.7) and (3.9).

Notice that in the above proof the parameter δK is determined up to a constant.
The definitions (3.13)–(3.14) are consistent with a choice of this constant equal to 1.
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4. The Stokes problem. In this section we extend the result obtained in section
3 to the case of the Stokes problem.

In the very same spirit as in the advection-diffusion case, starting from the GLS
formulation presented in [20, 21], we readdress the question of a careful design for
the stability coefficients in the anisotropic framework. With regard to this, in [4, 5]
the authors consider the stabilization of the Stokes problem in the case of the Q1/Q1

pair of finite elements on anisotropic quadrilateral meshes aligned with the Cartesian
coordinate axes.

In this section, we provide a possible generalization of the convergence results
obtained in Theorem 3.1 in [20], in the case of continuous piecewise linear finite
elements for both the velocity and the pressure, to the situation of a general anisotropic
mesh. We study the convergence of the stabilized method in a mesh dependent norm,
taking into account also the stability coefficients τK . The optimal value for this is
obtained by error analysis considerations and turns out to depend on λ2,K , as should
be expected after the analysis leading to Theorem 3.1.

The main contribution of this section is Theorem 4.1.

4.1. Problem statement and finite element discretization. Given the vis-
cosity µ = const > 0 and the source term f = f(x) ∈ (L2(Ω))2, we seek u = u(x) and
p = p(x) such that  −µ∆u +∇p = f in Ω,

∇ · u = 0 in Ω,
u = 0 on ∂Ω.

(4.1)

The variational formulation for the above problem consists of finding (u, p) ∈ V ×Q
such that

B(u, p;v, q) = F (v, q) for any (v, q) ∈ V ×Q.(4.2)

Here V = (H1
0 (Ω))

2, Q = L2
0(Ω), while B(· ; ·) and F (·) now are the symmetric

bilinear and linear forms

B(u, p;v, q) = µ(∇u,∇v)− (p,∇ · v)− (q,∇ · u) and F (v, q) = (f , v),

respectively, for any (u, p), (v, q) ∈ V × Q. Let us notice that we are using the
same notation to address the bilinear and linear forms B(· ; ·) and F (·) for both the
advection-diffusion and the Stokes problems.

As is done in the advection-diffusion case, we discretize problem (4.2) by using the
GLS method with affine finite elements [20, 21]. The discrete problem is as follows:
find (uh, ph) ∈ Vh ×Qh such that

Bh(uh, ph;vh, qh) = Fh(vh, qh) for any (vh, qh) ∈ Vh ×Qh,(4.3)

where Vh×Qh ⊂ V ×Q is the approximation space for velocity and pressure comprising
continuous affine functions over Th, namely Vh = (Wh,0)

2 and Qh = Wh∩L2
0(Ω). Here

the symmetric bilinear form Bh(· ; ·) and the linear form Fh(·) are defined by

Bh(uh, ph;vh, qh) = B(uh, ph;vh, qh)−
∑
K∈Th

(−µ∆uh +∇ph, τK(−µ∆vh +∇qh))K ,

(4.4)

Fh(vh, qh) = F (vh, qh)−
∑
K∈Th

(f , τK(−µ∆vh +∇qh))K ,
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with τK stability coefficients to be suitably chosen. The terms ∆uh
∣∣
K

and ∆vh
∣∣
K

in
(4.4) are identically equal to zero due to the choice made for the finite element space
Vh.

We point out that the technique suggested in [4, 5] is a variant with respect to
the GLS method where the stabilizing term, proportional to (∇ph,∇qh)K , is replaced
by (∇ph, S∇qh)K , with S = diag(h2

x1
, h2
x2
), hx1 , hx2

being the mesh spacings in the
coordinate directions. This term is shown to produce more satisfactory numerical
results in the case of anisotropic meshes among several choices of the stabilization
term.

4.2. Error analysis. As in [20, 21], the GLS scheme (4.3) is said to be consistent
in the following sense. If the solution (u, p) ∈ V ×Q of the weak formulation (4.2) is
regular enough, that is, if (u, p) ∈ (V ∩ (H2(Ω))2)× (Q∩H1(Ω)), then (u, p) satisfies

Bh(u, p;vh, qh) = Fh(vh, qh) for any (vh, qh) ∈ Vh ×Qh.

Consequently, if (uh, ph) ∈ Vh × Qh is the solution to (4.3), we obtain the Galerkin
orthogonality property

Bh(u− uh, p− ph;vh, qh) = 0 for any (vh, qh) ∈ Vh ×Qh.(4.5)

Likewise, as was done in section 3.2, we introduce the discrete norm ‖ · ‖h defined
for any (v, q) ∈ V × (Q ∩H1(Ω)) by

‖(v, q)‖2h = µ‖∇v‖2L2(Ω) +
∑
K∈Th

‖τ1/2
K ∇q‖2L2(K).(4.6)

We now state the main result of this section, which is an anisotropic counterpart
of Theorem 3.1 in [20] restricted to the case of (continuous) affine elements for both
the velocity and the pressure. Moreover, we provide estimates in a different norm,
namely the discrete norm ‖ · ‖h in (4.6), while in [20] the errors ‖u − uh‖(H1(Ω))2 ,
‖u− uh‖(L2(Ω))2 , and ‖p− ph‖L2(Ω) are considered.

Theorem 4.1 (convergence in norm ‖ · ‖h). Let (u, p) ∈ (V ∩ (H2(Ω))2)× (Q ∩
H1(Ω)) be the solution to (4.2), and let (uh, ph) ∈ Vh × Qh be the solution to (4.3).
Then the anisotropic definition of the stability coefficients is

τK = α
λ2

2,K

µ
,(4.7)

where α 
 O(1) is any positive constant. Moreover, under this choice there exists a

constant C = C(Γ, Ĉ, K̂) such that it holds that

‖(u− uh, p− ph)‖2h ≤

C
∑
K∈Th

{
λ2

2,K

(
µ
[
s4
K LK(r1,K , r1,K ; u) + LK(r2,K , r2,K ; u) + 2s2

KLK(r1,K , r2,K ; u)
]

+
1

µ

[
s2
K(r

T
1,KGK(p) r1,K) + (rT2,KGK(p) r2,K)

])}
.(4.8)

Remark 3. Notice that in the case when λ1,K 
 λ2,K , i.e., in the isotropic
case, (4.8) recovers Theorem 3.1 in [20] in the case of affine elements. As far as the
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term depending on the velocity in (4.8) is concerned, we note that it has the same
structure as the corresponding one in Theorem 3.1. Thus the same considerations
discussed in the case of the advection-diffusion problem carry over to the case of the
Stokes problem, provided that the contribution of the terms depending on the pressure
in (4.8) are negligible. Under this assumption we may have convergence even if sK
is unbounded. Likewise, in the case when the terms depending on u are negligible,
convergence may be achieved independently of the stretching factor, provided that
rT1,KGK(p) r1,K 
 0; i.e., the gradients of the pressure in the direction r1,K are small.
Thus, as in the case of the advection-diffusion problem, roughly speaking, if the mesh
is aligned with the solution, then convergence occurs independently of the stretching
factor. Otherwise, convergence may not occur.

Theorem 4.1 is proved by analyzing both the stability and the continuity of the
bilinear form Bh(·; ·). First let us provide the stability result.

Lemma 4.2 (stability in norm ‖ · ‖h). For any (vh, qh) ∈ Vh ×Qh, we have

Bh(vh,−qh;vh, qh) = ‖(vh, qh)‖2h.(4.9)

Therefore (4.3) has a unique solution.
Proof. Set uh = vh and ph = −qh in (4.4)1.
With the next lemma we analyze the continuity of the bilinear form Bh(· ; ·).
Lemma 4.3 (continuity of Bh(· ; ·)). For any (u, p) ∈ (V ∩(H2(Ω))2)×(Q∩H1(Ω))

and for any (vh, qh) ∈ Vh ×Qh, there exists a constant C such that

|Bh(u, p;vh, qh)| ≤ C

[
µ‖∇u‖2L2(Ω) +

1

µ
‖p‖2L2(Ω) +

∑
K∈Th

(
‖τ−1/2
K u‖2L2(K)

+ ‖τ1/2
K µ∆u‖2L2(K) + ‖τ1/2

K ∇p‖2L2(K)

)]1/2

‖(vh, qh)‖h.

Proof. From the definition of Bh(· ; ·) we have
Bh(u, p;vh, qh) = µ(∇u,∇vh)− (p,∇ · vh)− (qh,∇ · u)

−
∑
K∈Th

(−µ∆u +∇p, τK(−µ∆vh +∇qh))K .

Integrating by parts the third term in the right-hand side of the above equality
and since ∆vh

∣∣
K
= 0 on each triangle K ∈ Th, we have

Bh(u, p;vh, qh) = µ(∇u,∇vh)− (p,∇ · vh) +
∑
K∈Th

(u,∇qh)K

−
∑
K∈Th

(−µ∆u +∇p, τK∇qh)K .

Using the Cauchy–Schwarz inequality and the straightforward relation ‖∇·vh‖L2(Ω) ≤√
2‖∇vh‖L2(Ω), we obtain

|Bh(u, p;vh, qh)| ≤ µ‖∇u‖L2(Ω)‖∇vh‖L2(Ω) +
√
2 ‖p‖L2(Ω)‖∇vh‖L2(Ω)

+
∑
K∈Th

‖u‖L2(K)‖∇qh‖L2(K) +
∑
K∈Th

‖τ1/2
K ∇qh‖L2(K)

(‖τ1/2
K µ∆u‖L2(K)+‖τ1/2

K ∇p‖L2(K)

)
.
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Using the discrete Cauchy–Schwarz inequality, we thus have

|Bh(u, p;vh, qh)| ≤ C

(
µ‖∇u‖2L2(Ω) +

1

µ
‖p‖2L2(Ω) +

∑
K∈Th

(
‖τ−1/2
K u‖2L2(K)

+ ‖τ1/2
K µ∆u‖2L2(K) + ‖τ1/2

K ∇p‖2L2(K)

))1/2

(
µ‖∇vh‖2L2(Ω) +

∑
K∈Th

‖τ1/2
K ∇qh‖2L2(K)

)1/2

,

which yields the result.
The proofs of Lemmas 4.2 and 4.3 allow us to derive an anisotropic a priori error

estimate for the discretization error of both the velocity and the pressure with respect
to the discrete norm ‖ · ‖h defined in (4.6).

Proposition 4.4 (a priori error estimate in norm ‖ · ‖h). Let (u, p) ∈ (V ∩
(H2(Ω))2) × (Q ∩H1(Ω)) be the solution to (4.2), and let (uh, ph) ∈ Vh ×Qh be the

solution to (4.3). Then there exists a constant C = C(Γ, Ĉ, K̂) such that

(4.10) ‖(u− uh, p− ph)‖2h ≤ C

{ ∑
K∈Th

[
1

τK
+

µ

λ2
2,K

+
(λ2

1,K + λ2
2,K)

2

λ4
1,K λ4

2,K

τKµ2

]
[
λ4

1,K LK(r1,K , r1,K ; u) + λ4
2,K LK(r2,K , r2,K ; u) + 2λ2

1,K λ2
2,K LK(r1,K , r2,K ; u)

]
+

∑
K∈Th

[ 1
µ
+

τK
λ2

2,K

] [
λ2

1,K(r
T
1,KGK(p) r1,K) + λ2

2,K(r
T
2,KGK(p) r2,K)

]}
,

where the quantities LK(ri,K , rj,K ; u) and the matrix GK are defined in (2.19) and
(2.5), respectively.

Proof. We point out that the hypothesis (u, p) ∈ (V ∩ (H2(Ω))2)× (Q ∩H1(Ω)),
which amounts to requiring the elliptic regularity, holds, e.g., when Ω is convex. We
have

‖(u− uh, p− ph)‖h ≤ ‖(u− rh(u), p−Rh(p))‖h + ‖(rh(u)− uh, Rh(p)− ph)‖h.

Thanks to Lemma 4.2 and to the Galerkin orthogonality property (4.5), we have

‖(rh(u)− uh, Rh(p)− ph)‖2h = Bh(rh(u)− uh, Rh(p)− ph; rh(u)− uh, ph −Rh(p))

= Bh(rh(u)− u, Rh(p)− p; rh(u)− uh, ph −Rh(p)).

With Lemma 4.3 and since ∆(rh(u))
∣∣
K
= 0 on each triangle K ∈ Th, we have

‖(rh(u)− uh, Rh(p)− ph)‖h ≤ C

(
µ‖∇(u− rh(u))‖2L2(Ω) +

1

µ
‖p−Rh(p)‖2L2(Ω)

+
∑
K∈Th

(
‖τ−1/2
K (u−rK(u))‖2L2(K)+‖τ1/2

K µ∆u‖2L2(K)+‖τ1/2
K ∇(p−RK(p))‖2L2(K)

))1/2

.

By the additivity of the norms, it then suffices to use the interpolation results of
Lemmas 2.3 and Proposition 2.5, together with the vectorial extensions of Lemma 2.4
and Corollary 2.7 (see Remark 2), to conclude.
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Proof of Theorem 4.1. We proceed by mimicking what was done in the proof of
Theorem 3.1. Thus, using in (4.10) the definition of stretching factor in the terms
depending on LK(ri,K , rj,K ; u) and on rTi,KGK(p) ri,K , we obtain

(4.11) ‖(u− uh, p− ph)‖2h ≤ C
∑
K∈Th

{(
λ4

2,K

τK
+ µλ2

2,K +
(λ2

1,K + λ2
2,K)

2

λ4
1,K

µ2τK

)
︸ ︷︷ ︸

(I)[
s4
K LK(r1,K , r1,K ; u) + LK(r2,K , r2,K ; u) + 2s2

KLK(r1,K , r2,K ; u)
]

+

(
λ2

2,K

µ
+ τK

)
︸ ︷︷ ︸

(II)

[
s2
K(r

T
1,KGK(p) r1,K) + (rT2,KGK(p) r2,K)

]}
.

Now, by inspecting terms (I) and (II) above, it turns out that the optimal value for τK
is of the order of λ2

2,K/µ in both cases; i.e., τK = αλ2
2,K/µ for some α > 0. Moreover,

under this choice terms (I) and (II) behave like µλ2
2,K and λ2

2,K/µ, respectively. This
concludes the proof.

Remark 4. Under the same choice of the stability coefficients τK as obtained in
the previous analysis, i.e., τK = α λ2

2,K/µ, we can further prove a convergence result
with respect to the new norm ‖ · ‖V×Q defined, for any (v, q) ∈ V ×Q, by

‖(v, q)‖2V×Q = µ‖∇v‖2L2(Ω) +
1

µ

1(
1 + max

K∈Th
s2
K

)‖q‖2L2(Ω),(4.12)

provided that the stability result in Lemma 4.2 is replaced by the new one stated in
Lemma A.2 in the appendix. We remark that we have not been able to prove an
optimal estimate yet with respect to the norm in (4.12), since our result still depends
on the stretching factors sK while the numerical results do not. This is the reason
why we confine the proof of the new stability result to the appendix.

5. Numerical results. In this section we first show numerically that on strongly
anisotropic meshes better results are derived by using the definitions (3.13) and (4.7)
of the stability coefficients τK when compared with the ones in [20, 21, 22]. Then we
check that the convergence rate proved in Theorems 3.1 and 4.1 is confirmed by the
numerical results. We also provide a numerical assessment of an adaptive anisotropic
a posteriori error procedure based on standard gradient recovery techniques [37]. Two
test cases for the advection-diffusion problem with parabolic internal and boundary
layers, as well as with outflow boundary layers, are carried out using (3.13).

5.1. The advection-diffusion problem. Let us consider the standard one-
dimensional boundary layer problem −µ

d2v

dx2
1

+
dv

dx1
= 1 in Ω ≡ (0, 1),

v = 0 on ∂Ω,

with solution

v(x1) = x1 −
1− exp

(x1

µ

)
1− exp

( 1
µ

) .
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Fig. 5.1. The advection-diffusion problem. A 20 × 4 anisotropic mesh of the domain Ω. All
the meshes have been obtained using the BL2D library [8].

To extend this test case in the two-dimensional framework, it suffices to set Ω = (0, 1)2,
f = 1, a = (1, 0)T in (3.1), while imposing homogeneous Dirichlet and homogeneous
Neumann boundary conditions on the vertical and horizontal sides of Ω, respectively.
The solution of (3.1) is thus given by u(x1, x2) = v(x1).

Validation of the stability coefficients. We consider the stabilized formulation
(3.4), τK being defined, for any K ∈ Th, by

τK =
λ2,K

2

ξ(PeK)

‖a‖L∞(K)
with PeK = λ2,K

‖a‖L∞(K)

6µ
(5.1)

and

τK =
|K|1/2

2

ξ(PeK)

‖a‖L∞(K)
with PeK = |K|1/2 ‖a‖L∞(K)

6µ
,(5.2)

respectively. Formula (5.2) corresponds to the stabilized method in [22] where the
triangle diameter hK is replaced by |K|1/2, this replacement aiming at reducing the
numerical dissipation. On the other hand, (5.1) represents our anisotropic design.

Moreover, in all the numerical results, the reference element K̂ has been chosen as
the right triangle (0, 0), (1, 0), (0, 1), and the values of λ2,K have been computed using
a singular value decomposition routine.

In order to show that (5.1) yields better results than (5.2) in the presence of
strongly anisotropic meshes, let us consider a 1000 × 4 anisotropic mesh of Ω of the
type shown in Figure 5.1. In Figure 5.2 we have reported uh along the bottom side
of Ω for several values of the diffusivity µ. The choice (5.1) clearly turns out to be
better than (5.2), with numerical diffusion being lower inside the boundary layer.

Convergence rate. In order to check the convergence rate of the GLS method with
(5.1), we set µ = 10−2 in (3.1), select the anisotropic mesh in Figure 5.1, and refine
the mesh size in the horizontal direction only. From Table 5.1 we observe that the
order of convergence of the discretization error is equal to one with respect to the
discrete norm ‖ ·‖h defined in (3.12). This agrees with the theoretical predictions (see
Theorem 3.1). Moreover, the exact and the computed solutions along the bottom side
of Ω are shown in Figure 5.3 in the presence of three different meshes.

A posteriori validation. Let us assess the behavior of recipe (5.1) on test cases
characterized by two-dimensional anisotropic features (see also [34]). With this aim,
we have carried out an adaptive iterative procedure based on the a posteriori analysis
of [37]. With reference to (3.1), the data for the first test case (T1) are µ = 10−4,
a = (2, 1)T , f = 0, Ω = (0, 1)2, completed with Dirichlet boundary conditions, i.e.,
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Fig. 5.2. The advection-diffusion problem. Plots of uh along the bottom side of Ω when using
a 1000× 4 anisotropic mesh. Only the part of the plot corresponding to 0.94 ≤ x1 ≤ 1 is displayed.
Top: µ = 10−2; middle: µ = 10−3; bottom: µ = 10−4. Crosses: GLS plus (5.1); diamonds: GLS
plus (5.2).

u = 1 on the left and top sides and u = 0 on the remaining ones. For the second
test case (T2) we set µ = 10−4, a = (−1, 0)T , f = 1, Ω = (0, 1)2, in addition
to homogeneous Dirichlet boundary conditions on ∂Ω. Notice that we expect the
solutions of test cases (T1) and (T2) to show an internal layer and a boundary layer,
and parabolic boundary layers, respectively.
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Table 5.1
The advection-diffusion problem. Errors with respect to the discrete norm (3.12) in the presence

of different anisotropic meshes and with µ = 10−2 in (3.1).

Mesh ‖u− uh‖h
20× 4 0.95
40× 4 0.38
80× 4 0.17
160× 4 0.091
320× 4 0.045
640× 4 0.022

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0.9 0.92 0.94 0.96 0.98 1

u, uh

x1

✸ ✸

✸

+ + +
+

+

✷ ✷ ✷ ✷ ✷ ✷
✷

✷

✷

Fig. 5.3. The advection-diffusion problem. Continuous line: profile of u along the bottom side
of Ω with µ = 10−2 in (3.1). Solution obtained by GLS plus (5.1) on a: 20 × 4 mesh (diamonds);
40× 4 mesh (crosses); 80× 4 mesh (squares).

Figure 5.4 shows the isolines between 0.1 and 0.9 (on the left) along with the
adapted meshes (on the right) for both test cases. We remark that all the internal
and boundary layers are very well captured by the adapted meshes consisting of less
than 300 nodes. Moreover, it can be checked that the thickness of the internal and
parabolic boundary layers is O(

√
µ) 
 10−2, while the one of the outflow boundary

layers is O(µ) 
 10−4. Consequently, the aspect ratio of the two adapted meshes
reaches large values of the order of 105.

5.2. Stokes problem. First we consider the classical Poiseuille test case in
order to prove the superiority of the GLS method plus (4.7) compared with the one
in [21]. Then we analyze a second test case to verify the convergence rate predicted
by Theorem 4.1.

Validation of the stability coefficients. Due to the symmetry of the solution, let
us choose Ω = (0, 0.15)× (0, 0.03) (corresponding to half the physical domain) so that
the Poiseuille exact solution is given by

u(x1, x2) =

[
(0.03− x2)(0.03 + x2)

0

]
and p(x1, x2) = −0.02x1 + 0.003.

Let us choose in (4.1) f = 0 and µ = 10−2, while imposing Dirichlet and homogeneous
Neumann boundary conditions for the velocity u along the left-top and bottom-right
sides of Ω, respectively. Then we consider the stabilized formulation (4.3) with the
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Fig. 5.4. Isolines between 0.1 and 0.9 (left column) and adapted mesh (right column) for the
test case (T1) (top row) and for (T2) (bottom row).

coefficients τK defined, for any K ∈ Th, by

τK = α
λ2

2,K

µ
(5.3)

and

τK = α̃
|K|
µ

.(5.4)

While (5.3) represents our design, formula (5.4) corresponds to the stabilized method
of [21] with the triangle diameter hK replaced by |K|1/2 as was done in section 5.1.
The two dimensionless coefficients α and α̃ are tuned on the mesh of Figure 5.5 so
that both computations give a reasonably precise solution.

In Figure 5.6 (top) the exact pressure profile along the bottom side of Ω is shown
together with the stabilized approximate solutions with α = 0.1 and α̃ = 0.01 in (5.3)
and (5.4), respectively.

Then the same calculations are performed on the computational domain Ω
stretched in the horizontal direction by a factor 10 and 100, that is, on Ω = (0, 1.5)×
(0, 0.03) and Ω = (0, 15) × (0, 0.03). These new choices for the domain Ω allow us
to preserve the total number of the elements and of the nodes of the mesh while in-
creasing the maximal aspect ratio of the triangles (close to 1000 for the last mesh).
The corresponding results are summarized in Figure 5.6 (middle and bottom). We
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Fig. 5.5. Stokes problem: Poiseuille test case. A 3× 6 mesh of the domain Ω.
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Fig. 5.6. Stokes problem: Poiseuille test case. Continuous line: exact pressure profile along
the bottom side of Ω; diamonds: solution obtained by GLS plus (5.4) with α̃ = 0.01; crosses:
solution obtained by GLS plus (5.3) with α = 0.1. Top: Ω = (0, 0.15) × (0, 0.03); middle: Ω =
(0, 1.5)× (0, 0.03); bottom: Ω = (0, 15)× (0, 0.03).
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Fig. 5.7. Stokes problem: second test case. A 6× 15 mesh of the domain Ω.

Table 5.2
Stokes problem: second test case. Errors with respect to the discrete norm (4.6) in the presence

of different anisotropic meshes and for the choice µ = 10−2 in (4.1).

Mesh ‖(u − uh, p− ph)‖h ‖p− ph‖L2(Ω)

6× 30 0.83 0.9
6× 60 0.31 0.37
6× 120 0.15 0.18

observe that in all three cases the GLS method plus (5.3) yields better results than
the GLS method plus (5.4).

Convergence rate. We consider the domain Ω = (0, 0.15) × (0, 0.03) and choose
in (4.1) µ = 10−2 and f so that the solution is given by

u(x1, x2) =

[
u1(x2)

0

]
and p(x1, x2) = 0,

with

u1(x2) =


1 if 0 < x2 ≤ 0.01,

exp

(
(x2 − 0.01)2

(x2 − 0.01)2 − 0.0001

)
if 0.01 < x2 < 0.02,

0 if 0.02 ≤ x2 < 0.03.

Thus the velocity is horizontal, smooth, zero, or one valued except in a region of
width 0.01. We consider the same boundary conditions as in the previous example.
Starting from the grid in Figure 5.7, we refine such a mesh in the vertical direction
only. Then we approximate the solution of the Stokes problem by choosing as stability
coefficients those defined in (5.3) with α = 0.1. From Table 5.2 we observe that the
error in the discrete norm ‖ · ‖h defined in (4.6) is of order one in agreement with
the theoretical predictions (see Theorem 4.1). Moreover, it seems that the pressure
error in the L2-norm is of order one too. Finally, the exact and approximate velocity
profiles computed along the vertical right side of the domain Ω are shown in Figure 5.8
in the presence of two different meshes.

We point out that the numerical results seem to show that the theory developed
for homogeneous Dirichlet boundary conditions in (3.1) and (4.1) covers also the case
of more general boundary conditions.

6. Conclusions. In this paper a theoretically sound design of the stability coef-
ficients is proposed for the scalar advection-diffusion and the Stokes problems solved
on strongly anisotropic meshes. Only continuous piecewise linear stabilized finite
elements are considered.

Anisotropic adaptive finite elements have been developed with the present design
of the stability coefficients (see [17, 37] for details). The numerical method seems to
be robust since boundary layers of order 10−4 can be obtained with no more than
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Fig. 5.8. Stokes problem: second test case. Continuous line: profile of u along the vertical
right side of Ω for the choice µ = 10−2 in (4.1). Solution obtained by GLS plus (5.3) on a: 6× 30
mesh (diamonds); 6× 60 mesh (crosses).

300 vertices, the maximum aspect ratio being greater than 105. Even if the values
obtained for both the aspect ratio and the number of vertices are no surprise in the
literature (see, e.g., [35, 38]), we point out that our results have been obtained by a
completely automatic adaptive procedure (see Figure 5.4).

Appendix. Let us assume that in the definition of the stability coefficients (4.7)
α = 1. First let us recall the standard inf-sup condition.

Lemma A.1 (standard inf-sup condition). There exists a constant β > 0 (de-
pending only on the domain Ω) such that, for any p ∈ Q, we have

sup
v∈V

v �=0

−(p,∇ · v)
‖∇v‖L2(Ω)

≥ β‖p‖L2(Ω).

Now we prove the stability of the bilinear form Bh(·, ·) associated with the Stokes
problem with respect to the norm ‖ · ‖V×Q defined in (4.12).

Lemma A.2 (stability in norm ‖ ·‖V×Q). There exists a constant C = C(Γ, Ĉ, β)
such that, for any (uh, ph) ∈ Vh ×Qh, we have

sup
(vh,qh)∈Vh×Qh
(vh,qh) �=(0,0)

Bh(uh, ph;vh, qh)

‖(vh, qh)‖V×Q ≥ C‖(uh, ph)‖V×Q.

Proof. It suffices to prove that there exist two constants C1 = C1(K̂, β) and

C2 = C2(K̂, β) such that, for any (uh, ph) ∈ Vh × Qh, there is a (vh, qh) ∈ Vh × Qh

satisfying

Bh(uh, ph;vh, qh) ≥ C1‖(uh, ph)‖2V×Q, ‖(vh, qh)‖V×Q ≤ C2‖(uh, ph)‖V×Q.(A.1)

We proceed as in [20] but in the frame of anisotropic meshes. The analogue of the
so-called Verfürth’s trick [41] is used in the presence of anisotropic meshes.

From Lemma A.1 there exists a function v ∈ V such that

‖∇v‖L2(Ω) =
1

µ
‖ph‖L2(Ω)(A.2)
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and

β

µ
‖ph‖2L2(Ω) ≤ −(ph,∇ · v).(A.3)

Let Rh(v) be the Clément interpolant of v. Using the definition (4.4)1 of the stabilized
bilinear form Bh(·; ·) and integrating by parts we have

Bh(uh, ph;Rh(v), 0) = µ(∇uh,∇Rh(v))− (ph,∇ ·Rh(v))

= µ(∇uh,∇v)− (ph,∇ · v)
− µ(∇uh,∇(v −Rh(v))) + (ph,∇ · (v −Rh(v)))

= µ(∇uh,∇v)− (ph,∇ · v)
− µ

∑
K∈Th

(∇uh,∇(v −RK(v)))K −
∑
K∈Th

(∇ph, v −RK(v))K .

Notice that the stabilization term in the definition of Bh(·, ·) vanishes in this case.
We now use the Cauchy–Schwarz inequality with (A.2) and (A.3) to obtain

Bh(uh, ph;Rh(v), 0) ≥ −‖∇uh‖L2(Ω)‖ph‖L2(Ω) +
β

µ
‖ph‖2L2(Ω)

− µ
∑
K∈Th

‖∇uh‖L2(K)‖∇(v −RK(v))‖L2(K) −
∑
K∈Th

‖∇ph‖L2(K)‖v −RK(v)‖L2(K).

From the vectorial extensions of Lemma 2.3 and Proposition 2.5 (see Remark 2), there

is a constant C = C(Γ, Ĉ) such that

Bh(uh, ph;Rh(v), 0) ≥− ‖∇uh‖L2(Ω)‖ph‖L2(Ω) +
β

µ
‖ph‖2L2(Ω)

−C
∑
K∈Th

{(
µ

λ2,K
‖∇uh‖L2(K) + ‖∇ph‖L2(K)

)
[λ2

1,K(r
T
1,KGK(v)r1,K) + λ2

2,K(r
T
2,KGK(v)r2,K)]

1/2

}
.

Using Young inequality ab ≤ γa2

2 + b2

2γ , with a, b and γ > 0, we then obtain

Bh(uh, ph;Rh(v), 0) ≥ − µ

2β
‖∇uh‖2L2(Ω) +

β

2µ
‖ph‖2L2(Ω)

− C
γ

2

∑
K∈Th

(
µ‖∇uh‖2L2(K) +

λ2
2,K

µ
‖∇ph‖2L2(K)

)
− C

µ

γ

∑
K∈Th

{
1

λ2
2,K

[λ2
1,K(r

T
1,KGK(v)r1,K)

+ λ2
2,K(r

T
2,KGK(v)r2,K)]

}
,

(A.4)

where γ has still to be chosen. Recalling the relation (2.11) and the hypothesis (2.1)
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on ∆K and using (A.2) we have∑
K∈Th

{
1

λ2
2,K

[λ2
1,K(r

T
1,KGK(v)r1,K) + λ2

2,K(r
T
2,KGK(v)r2,K)]

}
≤ C

(
1 + max

K∈Th
s2
K

)
‖∇v‖2L2(Ω) = C

(
1 + max

K∈Th
s2
K

)
1

µ2
‖ph‖2L2(Ω),

(A.5)

with C = C(Γ). Replacing the above estimate in (A.4) we can then choose γ so that

Bh(uh, ph;Rh(v), 0) ≥ β

4µ
‖ph‖2L2(Ω)

−C

β

(
1 + max

K∈Th
s2
K

)(
µ‖∇uh‖2L2(Ω) +

∑
K∈Th

λ2
2,K

µ
‖∇ph‖2L2(K)

)
,

(A.6)

where C = C(Γ, Ĉ). On the other hand, from Lemma 4.2 and (4.7) we know that

Bh(uh, ph;uh,−ph) = µ‖∇uh‖2L2(Ω) +
∑
K∈Th

λ2
2,K

µ
‖∇ph‖2L2(K).(A.7)

Therefore, combining relations (A.6) and (A.7) we have

Bh(uh, ph;uh + δRh(v),−ph) ≥ δ
β

4µ
‖ph‖2L2(Ω)

+

(
1− δ

C

β

(
1 + max

K∈Th
s2
K

))(
µ‖∇uh‖2L2(Ω) +

∑
K∈Th

λ2
2,K

µ
‖∇ph‖2L2(K)

)
for any δ > 0. Choosing, for instance, δ such that

1

2
= 1− δ

C

β

(
1 + max

K∈Th
s2
K

)
,

i.e.,

δ =
β

2C

(
1 + max

K∈Th
s2
K

) ,(A.8)

we finally obtain

Bh(uh, ph;uh + δRh(v),−ph) ≥ C‖(uh, ph)‖2V×Q,

with C = C(Γ, Ĉ, β). With reference to Lemma A.2, for each pair (uh, ph) ∈ Vh ×
Qh, we can thus identify the test functions (vh, qh) ∈ Vh × Qh satisfying (A.1)1
as (vh, qh) = (uh + δRh(v),−ph), where v ∈ V satisfies Lemma A.1 for p = ph,
and δ is given, e.g., by (A.8). In order to prove (A.1), it then remains to bound
‖(uh + δRh(v),−ph)‖V×Q in terms of the norm ‖(uh, ph)‖V×Q. Young inequality
yields

‖(uh + δRh(v),−ph)‖2V×Q ≤ 2µ
(
‖∇uh‖2L2(Ω) + δ2‖∇Rh(v)‖2L2(Ω)

)
+

1

µ

1(
1 + max

K∈Th
s2
K

)‖ph‖2L2(Ω).
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Now, since

‖∇Rh(v)‖L2(Ω) ≤ ‖∇v‖L2(Ω) + ‖∇(v −Rh(v))‖L2(Ω),

using relation (A.2), the vectorial extension of Proposition 2.5 (see Remark 2), and
estimate (A.5), we obtain

‖∇Rh(v)‖L2(Ω) ≤ C

µ

(
1 + max

K∈Th
s2
K

)1/2

‖ph‖L2(Ω),

where C = C(Γ, Ĉ). Finally, using the definition (A.8) of δ we obtain

‖(uh + δRh(v),−ph)‖2V×Q ≤ C‖(uh, ph)‖2V×Q,

with C = C(Γ, Ĉ, β).
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Abstract. Numerical methods for the primitive equations (PEs) of oceanic flow are presented in
this paper. First, a two-dimensional Poisson equation with a suitable boundary condition is derived to
solve the surface pressure. Consequently, we derive a new formulation of the PEs in which the surface
pressure Poisson equation replaces the nonlocal incompressibility constraint, which is known to be
inconvenient to implement. Based on this new formulation, backward Euler and Crank–Nicolson
schemes are presented. The marker and cell scheme, which gives values of physical variables on
staggered mesh grid points, are chosen as spatial discretization. The convergence analysis of the
fully discretized scheme is established in detail. The accuracy check for the scheme is also shown.

Key words. the primitive equations, surface pressure, staggered grid, convergence analysis

AMS subject classifications. 35Q35, 65M06, 86A10

DOI. 10.1137/S0036142901396284

Introduction. The primary purpose of this paper is to propose and analyze
numerical methods for the three-dimensional (3-D) primitive equations (PEs) of large
scale oceanic flow using the surface pressure Poisson equation with a suitable boundary
condition.

The hydrostatic balance results in the decomposition of the total pressure field
into two parts: the integral of the density variable in the vertical direction, and the
pressure field at surface level z = 0, i.e., the surface pressure. It was shown by Li-
ons, Temam, and Wang [13] that the surface pressure is the Lagrange multiplier of
an incompressibility constraint (namely, the vertically averaged horizontal velocity is
divergence-free). Based on this remark, they introduced a new mathematical formu-
lation of the PEs in which the surface pressure disappears by projecting the PEs onto
the function space of the divergence-free averaged horizontal velocity field.

In this paper, the preoccupations are different: we want to develop numerical
algorithms for the solution of the PEs. Contrary to the approach in [13], the surface
pressure will play a central role in the algorithm; it is dynamically updated in the
momentum equation, instead of being treated as a Lagrange multiplier. In particular,
we will display a Poisson equation for the surface pressure and derive an approximate
boundary condition for this Poisson equation. As a result, the surface pressure Poisson
equation replaces the nonlocal constraint for the horizontal velocity field. The vertical
velocity is calculated by integrating the horizontal divergence of the horizontal velocity
field, due to the 3-D incompressibility.

Numerical methods are then proposed for the PEs formulated in the surface pres-
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sure Poisson equation. At each time step, the surface pressure field is determined
by a two-dimensional (2-D) Poisson solver after the data of the horizontal velocity
field and the density field are updated by the momentum equations and the density
equations. In turn, the gradient of the surface pressure is updated at the next time
step. The temporal discretization is implemented by either the backward Euler or the
Crank–Nicolson method. For the spatial discretization, we adopt the idea of the 3-D
marker and cell (MAC) grid. Different variables in the PEs are evaluated on different
staggered grids. The derivatives are replaced by second order centered-difference oper-
ators, while the integration in the vertical direction is implemented by the trapezoidal
rule. Following the approach related to the development of a local vorticity boundary
condition, we derive a consistent and second order accurate boundary condition for
the surface pressure at the discrete level. The main advantage of the MAC scheme can
be seen in the fact that the computed horizontal velocity field has exactly zero mean-
divergence in a discrete level. Because of such a property, the 3-D calculated velocity
field is orthogonal to the horizontal and vertical gradients of the total pressure field in
a discrete L2 space, which plays an important role in the convergence analysis. The
idea is similar to that of the finite element approach, yet it dramatically simplifies
the computation. To our knowledge, this is the first theoretical analysis of the PEs
on the MAC grid (which is usually referred to as a “C grid” in the geophysical fluid
dynamics (GFD) literature). It should be possible to use similar methods to analyze
other related GFD models.

The paper is organized as follows. In section 1 we recall the formulation of the
PEs and introduce the alternate formulation using the surface pressure Poisson equa-
tion. Backward Euler and Crank–Nicolson schemes (in temporal discretization) are
presented in section 2. The description of the 3-D MAC scheme is given in section 3,
and the detailed convergence analysis of the backward Euler method combined with
the MAC staggered grid is provided in section 4. Finally, a numerical accuracy check is
given in section 5, using a set of exact solutions to compare with the profiles computed
by our scheme.

1. The PEs and the surface pressure Poisson equation. We start with
the nondimensional PEs with proper scaling:

(1.1)

vt + (v ·∇)v + w
∂v

∂z
+

f

Ro
k × v + 1

Ro

(∫ 0

z

∇ρ(x, y, s) ds+∇ps

)
= L1v,

ρt + (v ·∇)ρ+ w
∂ρ

∂z
= L2ρ,

∇·
∫ 0

−H0

v dz = 0.

See, e.g., Pedlosky [19] and Lions, Temam, and Wang [12, 13] for a detailed derivation.
In the above system, u = (v, w) = (u, v, w) is the 3-D velocity vector field, v = (u, v)
the horizontal velocity, w = W(v) the vertical velocity in which the operator W
will be introduced in (1.7), ρ the density field, ps the surface pressure, and Ro a
Rossby number. The term fk × v corresponds to the Coriolis force in its β-plane
approximation, with the parameter f = f0 + βy. The operators ∇, ∇·, � represent
the gradient, divergence, and Laplacian in the (x, y)-plane, respectively. The diffusion
operators are given by L1 = ( 1

Re1
�+ 1

Re2
∂2
z ) and L2 = ( 1

Rt1
�+ 1

Rt2
∂2
z ). For simplicity,

we denote ν1 = 1
Re1

, ν2 = 1
Re1

, κ1 = 1
Rt1

, κ2 = 1
Rt1

. The computational domain is
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taken as M = M0 × [−H0, 0], where M0 is the surface part of the ocean. The
boundary condition for (1.1) is given by

ν2
∂v

∂z
= τ0, κ2

∂ρ

∂z
= ρf at z = 0,

ν2
∂v

∂z
= 0, κ2

∂ρ

∂z
= 0 at z = −H0,

(1.2)

v = 0 and
∂ρ

∂n
= 0 on ∂M0 × [−H0, 0],(1.3)

in which the term τ0 represents the wind stress force and ρf represents the heat flux
at the surface of the ocean.

Furthermore, the PEs (1.1) are supplemented with the following initial data:

v(x, y, z, 0) = v0(x, y, z), ρ(x, y, z, 0) = ρ0(x, y, z),(1.4)

in which v0 satisfies the mean divergence-free property as will be stated below.
The momentum equation for the horizontal velocity v comes from its original

form

vt + (v ·∇)v + w
∂v

∂z
+

1

Ro

(
fk × v +∇p

)
=
(
ν1�+ ν2∂

2
z

)
v,(1.5)

combined with the hydrostatic balance

∂p

∂z
= −ρ, which implies p(x, y, z) =

∫ 0

z

ρ(x, y, s) ds+ ps(x, y).(1.6)

We note that p denotes the total pressure field; the surface pressure ps(x, y) =
p(x, y, 0) is a 2-D field in the horizontal plane. We refer the readers to [3, 20, 24]
for other physical and numerical considerations related to surface pressure.

The representation formula for the vertical velocity w comes from the vertical
integration of the continuity equation ∇·v + ∂zw = 0, using the vanishing boundary
condition for w at the top (z = 0) and at the bottom (z = −H0):

w(x, y, z) = −∇·
∫ z

−H0

v(x, y, s) ds ≡ W(v).(1.7)

It was first observed by Lions, Temam, and Wang in [13] that the surface pressure

appears to be the Lagrange multiplier of the nonlocal constraint ∇·∫ 0

−H0
v dz = 0.

For instance, in view of studying the balance of energy of the system, we multiply the
first equation in (1.1) by v; then the integral

∫
M v ·∇ps dx vanishes.

1.1. Determination of the surface pressure variable. A major difficulty in
the numerical approximation of the PEs is the absence of a time evolution equation for
the surface pressure field. The main objective in this section is to derive an alternate
formulation equivalent to the usual formulation (1.1) such that the surface pressure
variable ps can be determined by the horizontal velocity field v and the density field ρ,
which can be updated by the momentum equations and the density equations. Some
earlier work on this issue can be found in [1, 2, 4, 5, 7, 8, 11, 14, 15, 16, 18, 21, 22,
23, 25, 26].
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1.1.1. Surface pressure Poisson equation. We now derive an equation for
the surface pressure function ps(x, y). The starting point is the nonlocal constraint

∇· ∫ 0

−H0
v dz = 0. By taking the horizontal divergence of the momentum equation

in (1.1), integrating over (−H0, 0) in the z-direction, dividing by H0, and keeping in
mind that ps is a variable in the (x, y) plane, we arrive at the following equation:

(∂t − ν1�)
(
∇·v

)
− ν2

(
∂2
z (∇·v)

)
+

1

H0

∫ 0

−H0

∇·
(
(v ·∇)v + w

∂v

∂z

)
dz

+
1

Ro
∇·
(
fk × v

)
+

1

H0

1

Ro

∫ 0

−H0

∫ 0

z

�ρ(x, y, s) ds dz +
1

Ro
�ps = 0,

(1.8)

where f represents the average of the variable f in the z-direction. The first term in
(1.8) vanishes, since ∇·v is identically 0 in the horizontal domain. The second term
turns out to be

ν2

(
∂2
z (∇·v)

)
=

ν2

H0

∫ 0

−H0

∂2
z (ux + vy) dz =

ν2

H0

(
uzx + vzy

)∣∣∣∣0
−H0

.(1.9)

The boundary condition in (1.2) indicates that (uzx + vzy) =
1
ν2
(∂x(τ0)1 + ∂y(τ0)2)

at z = 0 and (uzx + vzy) = 0 at z = −H0. Inserting (1.9) into (1.8) and setting
τd = ∇·τ0) at z = 0, which is a known function, we conclude that the surface pressure
ps solves the following Poisson equation:

�ps =
Ro

H0
∇·τ0 − Ro

H0

∫ 0

−H0

∇·
(
(v ·∇)v + w

∂v

∂z
+

1

Ro
(fk × v)

)
dz

− 1

H0

∫ 0

−H0

∫ 0

z

�ρ(x, y, s) ds dz.

(1.10)

The Poisson equation (1.10), together with the boundary condition described below,
determines the surface pressure field by the velocity field and the density field without
involving time derivative profiles.

1.1.2. Boundary condition for the surface pressure. Another point we
have to emphasize is that there should be a boundary condition imposed for the
surface pressure Poisson equation (1.10) if the Dirichlet boundary condition (1.3) for
horizontal velocity field v is imposed on the lateral boundary section ∂M0× [−H0, 0].

Integrating the momentum equation in (1.1) over (−H0, 0) in the z-direction and
dividing by H0 gives

vt +
(
(v ·∇)v + w

∂v

∂z

)
+

1

Ro
fk × v + 1

H0

1

Ro

∫ 0

−H0

∫ 0

z

∇ρ(·, s) ds dz

+
1

Ro
∇ps = ν1�v + ν2∂2

zv,

(1.11)

assuming that ps is independent of the z-variable. On the lateral boundary ∂M0 ×
[−H0, 0], the time marching term vt and all the convection terms vanish because of the
no-penetration, no-slip boundary condition (the term w ∂v

∂z disappears since ∂v
∂z is zero

on the boundary). The term ∂2
zv also vanishes, since ∂2

zv is also 0 on ∂M0× [−H0, 0].
Therefore, by taking the inner product of (1.11) with the unit normal vector field on
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the boundary ∂M0 (of the 2-D domain M0), we arrive at the following boundary
condition for the surface pressure:

∂ps
∂n

= ν1 Ro�v ·n on ∂M0.(1.12)

1.2. Alternate formulation of the PEs. We then have the following formu-

lation, in which the nonlocal constraint ∇·∫ 0

−H0
v dz = 0 is replaced by the surface

pressure Poisson equation and a mean divergence-free boundary condition for the
horizontal velocity:

vt+(v·∇)v+W(v)
∂v

∂z
+

f

Ro
k×v+ 1

Ro

(∫ 0

z

∇ρ(x, y, s) ds+∇ps

)
= L1v,(1.13a)

ρt + (v ·∇)ρ+W(v)
∂ρ

∂z
= L2ρ,(1.13b)

�ps =
Ro

H0
τd − Ro

H0

∫ 0

−H0

∇·
(
(v ·∇)v +W(v)

∂v

∂z
+

1

Ro
(fk × v)

)
dz

− 1

H0

∫ 0

−H0

∫ 0

z

�ρ(x, y, s) ds dz,

(1.13c)

∂v

∂z
=

τ0

ν2
at z = 0,

∂v

∂z
= 0 at z = −H0,

∂ρ

∂z
=

ρf
κ2

at z = 0,
∂ρ

∂z
= 0 at z = −H0,

v = 0 and
∂ρ

∂n
= 0 on ∂M0 × [−H0, 0],

(1.13d)

(∇·v) = 0 on ∂M0.(1.13e)

Proposition 1.1. For v, ρ ∈ L∞([0, T ], H3), ∂tv, ∂tρ ∈ L∞([0, T ], H1), the
original formulation (1.1)–(1.3) of the PEs is equivalent to the alternate formulation
(1.13a)–(1.13e).

Proof. Assume (v, ρ, ps) is a solution of (1.1)–(1.3). We observe that ps satisfies
the Poisson equation (1.13b), which can be obtained by taking the horizontal diver-
gence of the momentum equation in (1.1) and averaging in the vertical direction as
shown in the above derivation. In addition, taking the vertical derivative of the repre-
sentation formula for the vertical velocity in (1.1) indicates that the horizontal velocity
v satisfies the constraint ∇·v = 0. The usage of the regularity for v ∈ L∞([0, T ], H3)
shows that v satisfies the additional boundary condition (1.13e). This concludes that
(v, ρ, ps) is also a solution of (1.13).

Conversely, assume (v, ρ, ps) is a solution of (1.13). We need to show that ∇·v =
0. Taking the divergence of (1.13a) and integrating in the vertical direction leads to

∂t(∇·v)− ν1�(∇·v) = 0,(1.14a)
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since all the other terms are canceled by the surface pressure Poisson equation. Hence
the heat equation (1.14a) for the scalar quantity ∇·v, together with the homogeneous
initial data

(∇·v)(x, y, t = 0) = 0,(1.14b)

and the additional mean divergence-free boundary condition for the horizontal velocity
imposed by (1.13e),

(∇·v) = 0 on ∂M0,(1.14c)

show that (∇·v) = 0; namely, the third equation in (1.1) is satisfied for all t > 0.
Therefore, (v, ρ, ps) is also a solution of (1.1)–(1.3). That completes the proof of
Proposition 1.1.

Remark 1.2. The above arguments show that the system (1.13a)–(1.13e) implies
the original system of PEs (1.1)–(1.3), and therefore it implies (1.12), a Neumann-
type boundary condition for the surface pressure ps, since (1.12) is derived from the
momentum equation in (1.1). In other words, the boundary condition (1.12) must
be satisfied by any solution of the system (1.13a)–(1.13e). For the computations, the
additional boundary condition (1.13e), a mean divergence-free boundary condition for
the horizontal velocity, is not convenient to use. Instead, we will replace it by (1.12), a
boundary condition for the surface pressure, to solve for the Poisson equation (1.13b);
note that we are not claiming that the systems are equivalent if we replace (1.13e)
by (1.12), leaving (1.13a)–(1.13d) unchanged. However, as we show below, such an
equivalence occurs in the case of the MAC scheme, the spatially discrete scheme that
will be studied in section 3.

1.3. Analogy with the 2-D Navier–Stokes equations. It could be observed
that the boundary condition (1.13e) is coupled with the surface pressure Poisson
equation (1.13b) and the momentum equation (1.13a), (1.13d). In more detail, in the
derived formulation (1.13), four boundary conditions are prescribed for the horizontal
velocity field: ∂v

∂z = τ0
ν2

on z = 0, ∂v
∂z = 0 on z = −H0, v = 0 on ∂M0 × [−H0, 0],

and (∇·v) = 0 on ∂M0, while there is no boundary condition for the surface pressure
ps. This subtle fact appears in a similar way for the formulations of incompressible
fluid equations, such as the Navier–Stokes equation (NSE). For example, the vorticity-
stream function formulation of the 2-D NSE in a simply connected domain, which is
also a derived formulation, can be written as ∂tω + (v ·∇)ω = ν�ω,

�ψ = ω,
u = −∂yψ, v = ∂xψ,

(1.15)

where v = (u, v) denotes the 2-D velocity field, ω = ∇×u = −∂yu+ ∂xv denotes the
vorticity, and the no-penetration, no-slip boundary condition can be written in terms
of the stream function ψ:

ψ = 0,
∂ψ

∂n
= 0 on ∂M0.(1.16)

Similar to our derived formulation (1.13), in the coupled system (1.15) and (1.16),
there are two boundary conditions for the stream function ψ (both Dirichlet and
Neumann) and no explicit boundary condition for the vorticity ω. On the other
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hand, updating the dynamic equation in (1.15) requires the vorticity boundary val-
ues; see [6, 10, 17, 18, 27, 28] for detailed description, derivation, and analysis of
vorticity boundary conditions. A similar difficulty arises in the formulation (1.13):
what boundary condition should be imposed to solve surface pressure ps? Of course,
the Neumann boundary condition (1.12) is a good choice to replace (1.13e); their
equivalence is not claimed at the PDE level, as noted in Remark 1.2. However, in the
MAC spatial discretization with a staggered grid described in section 3, the boundary
condition (∇·v) |∂M0

= 0 is converted by a second order accurate realization into
the surface pressure boundary condition. Furthermore, in such a staggered grid, the
equivalence between the derived boundary condition and the nonlocal constraint on
the boundary as in (1.13e) can be fully proven.

Remark 1.3. The precise approximation of the pressure field via the pressure
Poisson equation is a well-known difficulty in the incompressible flow calculation if
the physical boundary condition is presented. The approach for solving the 2-D and
3-D NSEs by utilizing a local pressure boundary condition was recently introduced
by Johnston and Liu in [11]. Some ideas in their paper can be adapted in our work.

Remark 1.4. The PEs with general boundary conditions or noncylindric domains
were investigated in earlier literatures by Lions, Temam, and Wang [12, 13, 14, 15, 16]
in a PDE level. The corresponding numerical methods can be accordingly derived
using finite element approaches. We hope to report that issue in a future paper.

2. Temporal discretization. Two computational methods for the PEs in sur-
face pressure Poisson equation formulation (1.13) are proposed in this section. The
horizontal velocity field and the density field are updated by the momentum equation
(1.13a) and the density equation (1.13b). The surface pressure field, which is essen-
tially a Lagrange multiplier in a horizontal plane, is determined by a 2-D Poisson
solver, using the information of the velocity field and the density field at the same
time step (stage). Henceforth, the surface pressure gradient is treated as a force term
in the dynamic evolution of the momentum equation in the next time step (the stage).
As a result, the surface pressure term is decoupled from the diffusion term; thus the
Stokes solver is avoided. That dramatically simplifies the computation.

For simplicity, we use implicit treatment of the diffusion terms in the momentum
equation and the density equation, which makes the stability and convergence analysis
of the numerical scheme easier to handle. The backward Euler scheme is chosen as the
example of the first order method (in temporal discretization) and the Crank–Nicolson
scheme as the second order version.

2.1. Backward Euler method. Given the velocity field un, surface pressure
field pns , and density field ρn at time tn, we update all the profiles at the time step
tn+1 through the following procedure.

Step 1. The semi-implicit scheme for the momentum equation and the density
equation is given, leaving the convection term and the surface pressure gradient ex-
plicit: 

vn+1 − vn
�t

+ (vn ·∇)vn +W(vn)
∂vn

∂z
+

f

Ro
k × vn

+
1

Ro

∫ 0

z

∇ρn(x, y, s) d+
1

Ro
∇pns (x, y) =

(
ν1�+ ν2∂

2
z

)
vn+1,

ρn+1 − ρn

�t
+ (vn ·∇)ρn + wn ∂ρn

∂z
=
(
κ1�+ κ2∂

2
z

)
ρn+1,

(2.1a)
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which are three standard Poisson-like equations, with the boundary condition

∂vn+1

∂z
=

τ0

ν2
,

∂ρn+1

∂z
=

ρf
κ2

at z = 0,

∂vn+1

∂z
= 0,

∂ρn+1

∂z
= 0 at z = −H0,

vn+1 = 0 and
∂ρn+1

∂n
= 0 on ∂M0 × [−H0, 0].

(2.1b)

Step 2. With all the velocity field vn+1, wn+1 at hand, we can solve for the surface
pressure field at the time step tn+1 by the 2-D Poisson equation

(2.2a)

�pn+1
s =

Ro

H0
τn+1
d − 1

H0

∫ 0

−H0

∫ 0

z

�ρn+1(x, y, s) ds dz

− Ro

H0

∫ 0

−H0

∇·
(
(vn+1 ·∇)vn+1 +W(vn+1)

∂vn+1

∂z
+

1

Ro
(fk × vn+1)

)
dz,

supplemented with the derived boundary condition (1.12), as argued in Remark 1.2
and section 1.3:

∂pn+1
s

∂n
= ν1 Ro�vn+1 ·n on ∂M0.(2.2b)

2.2. Crank–Nicolson method. The updating from time step tn to tn+1 is
carried out by the following steps.

Step 1. Solve for the momentum equations and the density equations
vn+1 − vn
�t

+RHS1n+ 1
2 +

1

Ro
∇p

n+ 1
2

s =
1

2

(
ν1�+ ν2∂

2
z

)
(vn + vn+1),

ρn+1 − ρn

�t
+RHS2n+ 1

2 =
1

2

(
κ1�+ κ2∂

2
z

)
(ρn + ρn+1),

(2.3)

using the boundary condition (2.1b), where

RHS1n+ 1
2 = (vn+ 1

2 ·∇)vn+ 1
2 +W(vn+ 1

2 )
∂vn+ 1

2

∂z
+

f

Ro
k × vn+ 1

2

+
1

Ro

∫ 0

z

∇ρn+ 1
2 (x, y, s) ds,

RHS2n+ 1
2 = (vn+ 1

2 ·∇)ρn+ 1
2 +W(vn+ 1

2 )
∂ρn+ 1

2

∂z
.

(2.4)

The velocity and the density profiles (u, ρ) = (v, w, ρ), along with the surface pressure

ps, at the time step tn+ 1
2 are evaluated by second order explicit extrapolation in time

un+ 1
2 =

3

2
un − 1

2
un−1, ρn+ 1

2 =
3

2
ρn − 1

2
ρn−1, p

n+ 1
2

s =
3

2
pns −

1

2
pn−1
s .(2.5)

Note that the system (2.3) is also composed of three standard Poisson-like equa-
tions.

Step 2. The surface pressure field at the time step tn+1 is solved by the 2-D
Poisson equation (2.2a) with the derived boundary condition (2.2b), as in the second
step of the backward Euler scheme.
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3. Spatial discretization: MAC scheme. We consider hereafter the oceanic
basin given by M0 = [0, 1]2 and assume for simplicity that �x = �y = �z = h.
The analysis of the spatial discretization with regular grids is quite difficult. In this
paper, we consider the MAC staggered grid as spatial discretization. Some well-
known difficulties in the numerical simulation of NSE, such as enforcement of the
incompressibility condition and lack of proper evolutionary equation for the pressure
and associate boundary condition, were elegantly resolved in the celebrated MAC
scheme, which was first proposed by Harlow and Welch in [9]. For the system of the
PEs, the 3-D MAC staggered grid is used in the computational method.

An illustration of the MAC mesh on the section zk = (k + 1/2)�z is given
in Figure 3.1. The surface pressure variable ps is evaluated at the square points
(i±1/2, j±1/2), the velocity u is evaluated at the triangle points (i, j±1/2, k±1/2),
the velocity v is evaluated at the circle points (i± 1/2, j, k± 1/2), and the velocity w
and the density function ρ are evaluated at the dot points (i ± 1/2, j ± 1/2, k). The
advantage of such a staggered grid is the convenience to assure the divergence-free
property of the numerical velocity field, which can be observed later.

The following centered differences using different stencils at different grid points
is introduced to facilitate the description below:

Dxg(x) =
g(x+ 1

2h)− g(x− 1
2h)

h
, D̃xg(x) =

g(x+ h)− g(x− h)

2h
,

D2
xg(x) =

g(x− h)− 2g(x) + g(x+ h)

h2
,

(3.1)

which are second order approximations to ∂x, ∂2
x, respectively. The corresponding

operators in y- and z-directions, such as Dy, D̃y, D2
y, Dz, D̃z, D2

z , can be defined in
the same fashion.

The discrete divergence of the total velocity field u is evaluated at the square
points:

(∇h ·u)i+1/2,j+1/2,k+1/2 =
(
Dxu+Dyv +Dzw

)
i+1/2,j+1/2,k+1/2

.(3.2)

i−1 i i+1

j−1

j

j+1

pi+1/2,j+1/2ui,j+1/2

vi+1/2,j

� � � �

� � � �

� � � �

© © © ©

© © © ©

© © © ©

Fig. 3.1. MAC mesh at zk = (k + 1/2)�z; Harlow and Welch [9].
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The diffusion term for the velocity u is approximated by(
ν1�+ ν2∂

2
z

)
u =

(
ν1�h + ν2D

2
z

)
u =

(
ν1(D

2
x +D2

y) + ν2D
2
z

)
u(3.3)

at (i, j + 1/2, k + 1/2). The other diffusion terms, �hv, D2
zv, at the mesh point

(i + 1/2, j, k + 1/2), and �hρ, D2
zρ, at the mesh point (i + 1/2, j + 1/2, k), can be

given in the same way. The gradient of density and the surface pressure appearing in
the momentum equation is discretized by (Dxρ)i,j+1/2,k+1/2, (Dyρ)i,j+1/2,k+1/2 (and
(Dxps)i,j+1/2, (Dyps)i+1/2,j), respectively.

The approximation to the nonlinear convection term (v·∇)v+w ∂v
∂z , (v·∇)ρ+w ∂ρ

∂z
at the corresponding mesh points for u, v, ρ relies on the introduction of average value
of u, v, w at the staggered grid. For example, at the mesh point (i, j + 1/2, k + 1/2)
where u is located, the average v, w can be introduced as

vi,j+1/2,k+1/2 =
1

4
(vi−1/2,j,k+1/2 + vi+1/2,j,k+1/2

+ vi−1/2,j+1,k+1/2 + vi+1/2,j+1,k+1/2),
(3.4a)

wi,j+1/2,k+1/2 =
1

4
(wi−1/2,j+1/2,k + wi+1/2,j+1/2,k

+ wi−1/2,j+1/2,k+1 + wi+1/2,j+1/2,k+1),
(3.4b)

and the corresponding convection term for u: uux + vuy + wuz can be defined as

Nh(u, u) = uD̃xu+ vD̃yu+ wD̃zu at (i, j + 1/2, k + 1/2).(3.5)

The two other convection terms, Nh(u, v)i+1/2,j,k+1/2, Nh(u, ρ)i+1/2,j+1/2,k, which
are approximations to uvx + vvy + wvz, uρx + vρy + wρz at the corresponding mesh
points, can be similarly defined. In addition, the Coriolis force term fk × v =
(−fv, fu) is evaluated at the mesh points for u, v, respectively, by taking the av-
erage of v and u at the required grid points as in (5.4):

(−fv)i,j+1/2,k+1/2 = −fi,j+1/2vi,j+1/2,k+1/2,

(fu)i+1/2,j,k+1/2 = fi+1/2,jui+1/2,j,k+1/2.
(3.6)

Clearly, the truncation errors of these approximations are of second order. The
momentum equation for u is implemented at triangle points, the second momentum
equation is implemented at circle points, and the density equation is implemented at

the mesh points (i+1/2, j+1/2, k). The discrete version of the term
∫ 0

z
∇ρ(x, y, s) ds

appearing in the momentum equation is a discrete integral of D̃xρ, D̃yρ (which are
defined at mesh points (i, j + 1/2, k), (i + 1/2, j, k), respectively, as given in (3.3)),
in the z-direction. More accurately, PNRX is defined as the discrete version of∫ 0

z
ρx(x, y, s) ds:

(3.7a)

PNRXi,j+1/2,N−1/2 =
1

2
�z (Dxρ)i,j+1/2,N ,

PNRXi,j+1/2,k−1/2 = PNRXi,j+1/2,k+1/2 +�z (Dxρ)i,j+1/2,k, k ≤ Nz − 1,
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and PNRY can be given in a similar way:

(3.7b)

PNRY i+1/2,j,N−1/2 =
1

2
�z (Dyρ)i+1/2,j,N ,

PNRY i+1/2,j,k−1/2 = PNRY i+1/2,j,k+1/2 +�z (Dyρ)i+1/2,j,k, k ≤ Nz − 1.

Both formulae are second order approximation to the integral of the density gradient
from zk to 0.

The 2-D discrete Poisson equation for surface pressure ps is implemented at square
points. In more detail, we denote

FU = −Nh(u, u) +
1

Ro
(fv)− 1

Ro
PNRX at (i, j + 1/2, k + 1/2),

FV = −Nh(u, v)− 1

Ro
(fu)− 1

Ro
PNRY at (i+ 1/2, j, k + 1/2)

(3.8)

as the convection terms (including the Coriolis force term) for the momentum equa-
tion; therefore, the Poisson equation for surface pressure ps can be written as

(3.9)

(�hps)i+1/2,j+1/2 =
Ro

H0

(
Dxτ0,1 +Dyτ0,2

)
i+1/2,j+1/2

+RoFP i+1/2,j+1/2, where

FP i+1/2,j+1/2,k+1/2 = (DxFU)i+1/2,j+1/2,k+1/2 + (DyFV )i+1/2,j+1/2,k+1/2,

on the mesh points (i + 1/2, j + 1/2) in the 2-D regionM0 = [0, 1]2. The average of
FP , which is evaluated at the same numerical mesh grid as p, is defined as

FP i+1/2,j+1/2 =
1

H0

nz−1∑
k=0

(�zFP i+1/2,j+1/2,k+1/2),(3.10)

which is a second order approximation to the integral of FP in the z-direction. Such
an evaluation of the discrete integral in the z-direction can be applied to any variable
whose z-direction grid is indexed as k ± 1/2.

It should be remarked that some suitable boundary condition is needed to solve
the 2-D Poisson equation (3.9). Such a choice of the boundary condition assures the
discrete divergence (∇h·v) has mean zero (in the z-direction) on the boundary ∂M0.
Details will be discussed in a later section.

On the physical boundary section i = 0, the no-penetration, no-slip boundary
condition v = 0 is translated by the reflection rule, whose application in the case of
the 2-D NSE can be found in earlier work [4, 6, 7, 9],

u0,j+1/2,k+1/2 = 0, v−1/2,j,k+1/2 + v1/2,j,k+1/2 = 0,(3.11)

and the no-flux boundary condition for the density function is imposed by

(Dxρ)0,j+1/2,k = 0, which implies ρ−1/2,j+1/2,k = ρ1/2,j+1/2,k.(3.12)

Similarly, on the boundary section j = 0, the boundary condition v = 0 is imposed
by vi+1/2,0,k+1/2 = 0, ui,−1/2,k+1/2 + ui,1/2,k+1/2 = 0, and the boundary condition
∂ρ
∂n = 0 is imposed by ρi+1/2,−1/2,k = ρi+1/2,1/2,k.
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On the bottom boundary z = −H0, i.e., k = 0, the boundary condition ∂v
∂z = 0,

∂ρ
∂z = 0 can be written as

ui,j+1/2,−1/2 = ui,j+1/2,1/2, vi+1/2,j,−1/2 = vi+1/2,j,1/2,

ρi+1/2,j+1/2,−1 = ρi+1/2,j+1/2,1,
(3.13)

using a similar argument as in (3.12).

3.1. Boundary condition for surface pressure ps. The derived boundary
condition (1.12) is needed to solve the surface pressure Poisson equation (3.9). As
assumed earlier, in the case that M0 = [0, 1]2, we concentrate on the left boundary
x = 0 for simplicity of presentation. The other three boundary sections x = 1, y = 0, 1
can be dealt with in the same manner. In PDE formulation, on the left boundary
section x = 0, (1.12) indicates that

∂ps
∂x

= ν1 Ro�u = ν1 Ro∂2
xu,(3.14)

where the second step is based on the fact that the velocity u vanishes; henceforth u
vanishes on the boundary, too. The MAC mesh grid near the left boundary is shown
in Figure 3.1.

Our methodology for approximating ∂2
xu as in (3.14) follows the approach taken

by numerical methods for the 2-D NSE formulated in the vorticity-stream function,
as given in (1.15), (1.16), based on local vorticity boundary conditions. The earliest
work in this direction is due to Thom [27]. The more recent works [6], [10], [28]
revived interest in the use of local formulae for vorticity on the boundary and analyzed
the stability and convergence of a class of such formulae. The key point in these
approaches is to convert the Neumann boundary condition for the stream function ψ,
which states the no-slip velocity boundary condition, into a local vorticity boundary
condition, such as Thom’s formula.

A similar idea can be used in the approximation to ∂2
xu as in (3.14). In our scheme,

the mean divergence-free boundary condition for the horizontal velocity, (∇·v) |∂M0
=

0, can be converted into an approximation of the Neumann boundary condition for
the surface pressure as derived in (1.12). In more detail, the following finite-difference
method is applied on the boundary grid point (0, j ± 1/2):

∂2
xu0,j+1/2 =

u−1,j+1/2 − 2u0,j+1/2 + u1,j+1/2

�x2 +O(h2)

=
u−1,j+1/2 + u1,j+1/2

�x2 +O(h2),

(3.15)

where the second step is based on the fact that the velocity field v vanishes on the
boundary. The second-order approximation (5.15) requires a value for u at grid point
(−1, j+1/2), which is a “ghost” point outside the computational domain. A consistent
prescription of the value for u−1,j+1/2 relies on a second order centered difference of

the mean divergence-free boundary condition ∇·v |x=0= 0,

0 = (∂xu+ ∂yv) |x=0= 0 + ∂yv |x=0=
u1,j+1/2 − u−1,j+1/2

2�x
+O(h2),(3.16)
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where the second step is due to the boundary condition v = 0 on ∂M0. The finite-
difference identity (3.16) directs us to take

u−1,j+1/2 = u1,j+1/2,(3.17)

whose substitution into (3.15), (3.14) gives a second order approximation of the de-
rived Neumann boundary condition (1.12),

∂ps
∂n
|0,yj+1/2

=
∂ps
∂x
|0,yj+1/2

= Ro
2ν1

�x2 u1,j+1/2. (ASPBC)(3.18)

The evaluation of ∂ps
∂n at three other boundary sections can be derived in the same

fashion. We refer to the above formula as the accurate surface pressure boundary
condition (ASPBC). A similar derivation for the local pressure boundary condition in
the spatially discrete level of the incompressible NSE can be found in a recent paper
of Johnston and Liu [11]. Therefore, we have the following set of boundary conditions
for ps in the discrete version:

(ps)−1/2,j+1/2 = (ps)1/2,j+1/2 −Ro
2ν1

�x
u1,j+1/2,

(ps)i+1/2,−1/2 = (ps)i+1/2,1/2 −Ro
2ν1

�y
vi+1/2,1.

(3.19)

3.2. The MAC scheme for the PEs. Thus the system of MAC spatial dis-
cretization of the PEs can be written as

ut +Nh(u, u) +
1

Ro

(
−fv + PNRX +Dxps

)
= L1,hu at �,

vt +Nh(u, v) +
1

Ro

(
fu+ PNRY +Dyps

)
= L1,hv at ©,

Dzv |z=−H0
= 0, Dzv |z=0=

τ0

ν2
,

v ·n = 0, v ·τ = 0 on ∂M0 × [−H0, 0],

(3.20a)


(�hps)i+1/2,j+1/2 = RoFP i+1,j+1/2,

∂ps
∂n

= Roν1 (�hv)·n,
(3.20b)

wi+1/2,j+1/2,k = −�z

k−1∑
l=0

(
(Dxu)i+1/2,j+1/2,l+1/2 + (Dyv)i+1/2,j+1/2,l+1/2

)
,(3.20c)


ρt +Nh(u, ρ) = L2,hρ at (i+ 1/2, j + 1/2, k),

D̃zρ |z=0=
ρf
κ2

, D̃zρ |z=−H0= 0,

∂ρ

∂n
= 0 on ∂M0 × [−H0, 0].

(3.20d)

Hereafter we denote L1,h = (ν1�h + ν2D
2
z), L2,h = (κ1�h + κ2D

2
z) for simplicity

of presentation.
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3.3. Mean divergence-free property. In this section, we argue that the nu-
merical velocity field vh, the solution of the system (3.20), has free mean-divergence
in a discrete level; i.e.,

Dxu+Dyv = 0 on mesh point (i+ 1/2, j + 1/2),(3.21)

where u, v are defined in the same way as in (3.10). To see this, we use a similar
argument as in (1.14a), (1.14b), and (1.14c). Taking the discrete divergence of the two
momentum equations in (3.20a) at mesh points (i+1/2, j+1/2, k+1/2), summing in
the z-direction, and keeping in mind the discrete Poisson equation for ps as in (3.8),
(3.9), we have

(∇h ·v)t = ν1�h∇h ·v at (i+ 1/2, j + 1/2).(3.22)

In the derivation of (3.22), we used the fact that the composition of discrete divergence
and discrete gradient (Dx, Dy) gives exactly the five-point Laplacian in the context of
the MAC spatial discretization. Another important fact we used in the derivation of
(3.22) is that, on MAC grids, the Laplacian operator �h and the divergence operator
are commutative. These two points represents a crucial advantage of the MAC grid.

The homogeneous initial data for ∇h ·v is obvious:(
(∇h ·v)(·, t = 0)

)
i+1/2,j+1/2

= 0.(3.23)

It remains to make sure it vanishes on the lateral boundary ∂M0. We concentrate on
the boundary section x = 0. The discrete divergence of v on x = 0 can be evaluated
as

(∇h ·v)0,j+1/2 =
1

2

(
(∇h ·v)−1/2,j+1/2 + (∇h ·v)1/2,j+1/2

)
=

1

2

(u0,j+1/2 − u−1,j+1/2

�x
+

v−1/2,j+1 − v−1/2,j

�y

+
u1,j+1/2 − u0,j+1/2

�x
+

v1/2,j+1 − v1/2,j

�y

)
,

=
u1,j+1/2 − u−1,j+1/2

2�x
+

1

2

(v−1/2,j+1 − v−1/2,j

�y
+

v1/2,j+1 − v1/2,j

�y

)
,

(3.24)

where u−1,j+1/2, v−1/2,j are “ghost” point computational values for u, v. Meanwhile,
the reflection rule (3.11) (due to the no-slip boundary condition for v) gives that the
last two terms in (3.12) vanish, i.e.,

(∇h ·v)0,j+1/2 =
u1,j+1/2 − u−1,j+1/2

2�x
.(3.25)

By the identity (3.17) that u−1,j+1/2 = u1,j+1/2, which is used for the derivation
of the Neumann boundary condition for the surface pressure ps, we conclude that
the mean discrete divergence of v vanishes on the boundary x = 0. In other words,
the ASPBC (3.18) conversely indicates the choice for u−1,j+1/2 as in (3.17). The
substitution of (3.17) into (3.25) gives

(∇h ·v)0,j+1/2 = 0.(3.26)
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The combination of (3.26), (3.22), (3.23) indicates (3.21), which states that the
numerical solution vh of the system (3.20) has exactly zero discrete mean-divergence.
Henceforth, the formula (3.20c) for the determination of vertical velocity is consistent
with the combination of divergence-free property of the numerical velocity uh:

∇h ·vh +Dzw = 0,(3.27)

and the boundary condition for the vertical velocity w at z = 0 and z = −H0:

wi+1/2,j+1/2,0 = wi+1/2,j+1/2,N = 0.(3.28)

4. Convergence analysis of the fully discretized scheme using the back-
ward Euler method combined with the MAC grid. The MAC spatial dis-
cretization can be easily implemented in practical computations, combined with ei-
ther backward Euler or Crank–Nicolson schemes as outlined in section 2. For technical
simplicity, the periodic boundary condition is assumed in the horizontal (x, y)-plane
so that only the top and bottom boundary sections need to be taken into consider-
ation in the convergence analysis below. The scheme with physical lateral boundary
conditions can be dealt with in a similar fashion, with more technical details involved
in the consistency analysis. We skip it for the sake of brevity.

The fully discretized scheme using backward Euler temporal discretization is for-
mulated as below. The corresponding Crank–Nicolson method can be similarly pro-
posed and analyzed. We omit it in this article.

un+1 − un

�t
+Nh(un, un) + 1

Ro

(
−fv

n
+ PNRXn +Dxp

n
s

)
= L1,hu

n+1 at �,

vn+1 − vn

�t
+Nh(un, vn) + 1

Ro

(
fu

n
+ PNRY n +Dyp

n
s

)
= L1,hv

n+1 at ©,

Dzv |z=−H0
= 0, Dzv |z=0= 0,

(4.1a)

(�hps)
n+1
i+1/2,j+1/2 = RoFP

n+1

i+1,j+1/2,(4.1b)

wn+1
i+1/2,j+1/2,k = −�z

k−1∑
l=0

(
(Dxu)

n+1
i+1/2,j+1/2,l+1/2 + (Dyv)

n+1
i+1/2,j+1/2,l+1/2

)
,(4.1c)


ρn+1 − ρn

�t
+Nh(un, ρn) = L2,hρ

n+1 at •,
D̃zρ |z=0= 0, D̃zρ |z=−H0= 0.

(4.1d)

4.1. Main theorem and some notations. The following notations of L2

norms in a discrete level need to be introduced.
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Notation 4.1. For any pair of variables ua, ub which are defined at the mesh points
(i, j + 1/2, k + 1/2) (such as u, D̃xu, D̃yu, D̃zu, etc.), the discrete L2-inner product
is given by

〈ua, ub〉1 =
N−1∑
k=0

N−1∑
j=0

N−1∑
i=0

uai,j+1/2,k+1/2 ubi,j+1/2,k+1/2 h3.(4.2a)

For any pair of variables va, vb which are defined at the mesh points (i+1/2, j, k+1/2)
(such as v, D̃xv, D̃yv, D̃zv, etc.), the discrete L2-inner product is given by

〈va, vb〉2 =
N−1∑
k=0

N−1∑
j=0

N−1∑
i=0

vai+1/2,j,k+1/2 vbi+1/2,j,k+1/2 h3.(4.2b)

For any pair of variables ρa, ρb defined at the mesh points (i+ 1/2, j + 1/2, k) (such
as ρ, w, D̃xρ, D̃yρ, D̃zρ, etc.), the discrete L2-inner product is given by

(4.2c)

〈ρa, ρb〉3 =
N−1∑
j=0

N−1∑
i=0

(N−1∑
k=1

ρai+1/2,j+1/2,k ρbi+1/2,j+1/2,k

+
1

2
ρai+1/2,j+1/2,0 ρbi+1/2,j+1/2,0 +

1

2
ρai+1/2,j+1/2,N ρbi+1/2,j+1/2,N

)
h3.

Finally, for any pair of variables pa, pb defined at the mesh points (i+1/2, j+1/2, k+
1/2) (such as p, Dxu, Dyv, Dzw), the discrete L2-inner product is defined by

〈pa, pb〉4 =
N−1∑
k=0

N−1∑
j=0

N−1∑
i=0

pai+1/2,j+1/2,k+1/2 pbi+1/2,j+1/2,k+1/2 h3.(4.2d)

Clearly, all the discrete L2-inner products defined above are second order accurate.
The corresponding L2

h norms can be defined accordingly. In addition, we set a vector
norm for the horizontal velocity as ‖v‖2

L2
h

= ‖u‖21 + ‖v‖22, where ‖u‖21 = 〈u, u〉1,
‖v‖22 = 〈v, v〉2.

The following is the main theorem of this paper.
Theorem 4.1. Let ue = (ve, we), pe, ρe be the exact solution of the PEs

(1.1), (1.2), with periodic boundary condition in the horizontal (x, y)-plane, and let
(v�t,h, w�t,h, ρ�t,h) be the numerical solution of the backward Euler coupled with the
MAC grid in (4.1). We assume that �t ≤ Ch, in which C is an arbitrary fixed
constant. Then the following convergence result holds as �t and h go to zero:

‖ve − v�t,h‖L∞(0,T ;L2
h
) + ‖ρe − ρ�t,h‖L∞(0,T ;L2

h
) ≤ C(�t+ h2),(4.3a)

where the constant C depends only on the regularity of the exact solution

(4.3b)

C = C
(
‖ue‖L∞(0,T ;C7,α), ‖ρe‖L∞(0,T ;C7,α), ‖ue‖C4(0,T ;C2,α), ‖ρe‖C4(0,T ;C2,α)

)
.
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The rest of the paper is devoted to the proof of Theorem 4.1. The main steps
include the following: 1. The numerical horizontal velocity is shown to have vanishing
averaged divergence. 2. The leading order consistency analysis, which gives a con-
struction of approximate velocity and density profiles satisfying the numerical scheme
up to an O(�t + h2) error. Moreover, the constructed horizontal velocity satisfies
zero mean-divergence property at the discrete level. 3. Higher order expansion, up to
O(�t3+h4) expansion, of the numerical scheme. That makes the recovery of the L∞

a priori assumption possible, for both the horizontal and the vertical velocity fields
in the full nonlinear system of the PEs, by the usage of inverse inequalities. 4. The
energy estimate for the error functions. The four steps will be presented in sections
4.2–4.5 below, respectively.

4.2. Evolution for the mean divergence of v. To facilitate the proof of
Theorem 4.1, we show that the calculated horizontal velocity at each time step has
free mean-divergence at the discrete level; i.e., (3.21) is satisfied for v at each time
step. The argument is similar to the one in section 3.3. Taking the discrete divergence
of the momentum equations in (4.1a) at mesh points (i + 1/2, j + 1/2, k + 1/2) and
summing in the z-direction gives

∇h ·vn+1 −∇h ·vn
�t

= ν1�h(∇h ·vn+1) at (i+ 1/2, j + 1/2),(4.4a)

since all other terms at the time step tn were canceled by the surface pressure Poisson
equation (4.1b) at the same time step. The combination of the evolution equation in
(4.4a) and the homogeneous initial data,

∇h ·v0 = 0,(4.4b)

shows that the numerical solution vh,�t of the scheme (4.1) has exactly zero discrete
mean-divergence. As a result, the combined system (3.27), (3.28) is valid for vn, wn

at any time step tn.
Furthermore, the numerical scheme (4.1a) for the momentum equation and the

discrete Poisson equation (4.1b) can also be reformulated in a form similar to that of
(1.5), (1.6) in the PDE level, for the sake of simplicity of the convergence analysis given
below. We denote the total pressure variable p at mesh points (i+1/2, j+1/2, k+1/2)
as

pi+1/2,j+1/2,k+1/2 = PRi+1/2,j+1/2,k+1/2 + (ps)i+1/2,j+1/2,(4.5a)

where PR, a discrete realization of
∫ 0

z
ρ(x, y, s) ds, is defined in a similar way as in

(3.7):

PRi+1/2,j+1/2,N−1/2 =
1

2
�z ρi+1/2,j+1/2,N ,

PRi+1/2,j+1/2,k−1/2 = PRi+1/2,j,k+1/2 +�z ρi+1/2,j+1/2,k.
(4.5b)

Clearly, (4.5) is a discrete version of the hydrostatic equation. One obvious fact is
that

Dzp = ρ at the mesh point (i+ 1/2, j + 1/2, k).(4.6)
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Therefore the scheme (4.1) can be rewritten as the following system:

un+1 − un

�t
+Nh(un, un) + 1

Ro

(
−fv

n
+Dxp

n
)
= L1,hu

n+1 at �,

vn+1 − vn

�t
+Nh(un, vn) + 1

Ro

(
fu

n
+Dyp

n
)
= L1,hv

n+1 at ©,

Dzv
n+1 |z=−H0= 0, Dzv

n+1 |z=0= 0,

(4.7a)

Dzp
n+1 = ρn+1 at (i+ 1/2, j + 1/2, k),(4.7b)

 ∇h ·v
n+1 +Dzw

n+1 = 0,

wn+1
i+1/2,j+1/2,0 = wn+1

i+1/2,j+1/2,N = 0,
(4.7c)


ρn+1 − ρn

�t
+Nh(un, ρn) = L2,hρ

n+1 at •,
D̃zρ |z=0= 0, D̃zρ |z=−H0

= 0.
(4.7d)

We remark that the mean divergence-free property for the numerical horizontal
velocity field and the corresponding identities (3.27), (3.28) assure that the 3-D ve-
locity field is orthogonal to the horizontal and vertical gradients of the total pressure
field p in the staggered L2 space introduced in (4.2), i.e.,

〈u,Dxp〉1 + 〈v,Dyp〉2 + 〈w,Dzp〉3 = −〈(∇h ·v +Dzw), p〉4 = 0,(4.8)

by usage of summing by parts in the MAC grid and of the boundary condition for
the velocity field. This crucial point makes possible the convergence analysis of the
whole numerical scheme using the MAC spatial discretization.

4.3. Leading order consistency analysis. Our goal is to construct approxi-
mate velocity profiles V 0 = (U0, V 0), W 0 and approximate density profile Θ0, and
to show that their combination with exact pressure profile pe satisfies the numerical
scheme (4.7) up to an O(�t+ h2) error. Furthermore, the constructed V 0 has to be
assured to have zero mean-divergence in the discrete sense, i.e.,

∇h ·V 0 = 0 at (i+ 1/2, j + 1/2),(4.9)

so that the vertical velocity W 0 can be determined by the formula in the same way
as in (4.7c) consistent with its boundary condition:

W 0
i+1/2,j+1/2,k = −�z

k−1∑
l=0

(
(DxU

0)i+1/2,j+1/2,l + (DyV
0)i+1/2,j+1/2,l

)
.(4.10)

In other words, the combination of (4.9) and (4.10) gives{ ∇h ·V 0 +DzW
0 = 0,

W 0
i+1/2,j+1/2,0 =W

0
i+1/2,j+1/2,N = 0,

(4.11)

which is analogous to (4.7c).
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The construction of the leading term for the horizontal velocity field V 0 relies on
the fact that any C1 function g inM can be uniquely recovered from its average in
the z-direction and its derivative with respect to z by

g(x, y, z) =

∫ z

−H0

gz(x, y, s) ds+ g(x, y)− 1

H0

∫ 0

−H0

∫ z′

−H0

gz(x, y, s) ds dz′.(4.12)

As a result, the exact horizontal velocity field ve can be represented as

(4.13)

ue(x, y, z) =

∫ z

−H0

∂zue(x, y, s) ds+ ue(x, y)− 1

H0

∫ 0

−H0

∫ z

−H0

∂zue(x, y, s) ds dz,

ve(x, y, z) =

∫ z

−H0

∂zve(x, y, s) ds+ ve(x, y)− 1

H0

∫ 0

−H0

∫ z

−H0

∂zve(x, y, s) ds dz.

The discrete form of the recovery formula (4.13) applied to U0, V 0 can be written
as follows:

U0
i,j+1/2,k+1/2 = −PUZ0

i,j+1/2,k+1/2 + U0
i,j+1/2 + PUZ

0

i,j+1/2,

V 0
i+1/2,j,k+1/2 = −PV Z0

i+1/2,j,k+1/2 + V 0
i+1/2,j + PV Z

0

i+1/2,j ,
(4.14)

the construction of the mean velocity field U
0
, V

0
will be given later, and PUZ0,

PV Z0 represents the discrete integral of ∂zue, ∂zve from −H0 up to zk = (k+ 1
2 )�z,

respectively. Keeping in mind that ∂zue, ∂zve are defined on the numerical grids
(i, j ± 1/2, k), (i± 1/2, j, k), respectively, we express such integrals as

PUZ0
i,j+1/2,−1/2 = −

1

2
�z (∂zue)i,j+1/2,0,

PUZ0
i,j+1/2,k+1/2 = PUZ0

i,j+1/2,k−1/2 +�z (∂zue)i,j+1/2,k,
(4.15a)

PV Z0
i+1/2,j,−1/2 = −

1

2
�z (∂zve)i+1/2,j,0,

PV Z0
i+1/2,j,k+1/2 = PV Z0

i+1/2,j,k−1/2 +�z (∂zve)i+1/2,j,k.
(4.15b)

Obviously, the combination of (4.14) and (4.15) gives

Nz−1∑
k=0

(�z U0
i,j+1/2,k+1/2) = U0

i,j+1/2, (DzU
0)i,j+1/2,k = (∂zue)i,j+1/2,k,

Nz−1∑
k=0

(�z V 0
i+1/2,j,k+1/2) = V 0

i+1/2,j , (DzV
0)i+1/2,j,k = (∂zve)i+1/2,j,k.

(4.16)

We use the “mean stream function” corresponding to the exact velocity solution

ve to construct the mean velocity field V 0 appearing in the construction formula
(4.14). Since the average of the exact velocity field ve is divergence-free in the 2-D
domainM0, as shown in (1.4), there exists a mean stream function ψe such that

ve = ∇⊥ψe = (−∂yψe, ∂xψe).(4.17)
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Subsequently, the average of V 0 (in the z-direction) can be determined via second
order finite-difference of the exact “mean stream function”

U0 = −Dyψe = −
ψei,j+1 − ψei,j

�y
at (i, j + 1/2),

V 0 = Dxψe =
ψei+1,j − ψei,j

�x
at (i+ 1/2, j).

(4.18)

It should be remarked that the mean stream function is evaluated at regular mesh
points (i, j), 0 ≤ i, j ≤ N . Obviously, (4.18) gives

DxU0 +DyV 0 = −Dx(Dyψe) +Dy(Dxψe) = 0,(4.19)

which along with the identity (4.16) assures that the mean divergence-free property
is automatically satisfied for the constructed leading velocity field

∇h ·V 0 = 0 at (i+ 1/2, j + 1/2).(4.20)

Accordingly, the recovery formula analogous to (4.2) is used to construct the leading
vertical velocity

(4.21)

W 0
i+1/2,j+1/2,k = −�z

k−1∑
l=0

(
(DxU

0)i+1/2,j+1/2,l+1/2 + (DyV
0)i+1/2,j+1/2,l+1/2

)
,

which is compatible with the boundary conditionW 0
i+1/2,j+1/2,0 =W

0
i+1/2,j+1/2,N =

0.
The proposition below states that the constructed leading velocity profile, to-

gether with its temporal derivative, is within O(h2) difference with the exact velocity
ue = (ve, we). Its verification is omitted in this paper for brevity and will appear
elsewhere.

Proposition 4.2. The following estimates for V 0, W 0 hold:

‖V 0 − ve‖Wm,∞(M) ≤ Ch2‖ve‖Cm+3 for m = 0, 1, 2 . . . ,(4.22a)

‖W 0 − we‖Wm,∞(M) ≤ Ch2‖ve‖Cm+4 .(4.22b)

Here ‖ · ‖Wm,∞(M) represents the maximum value at the corresponding mesh points
of the given function up to mth order finite-difference over the 3-D domainM. Fur-
thermore, the difference between the time derivatives of V 0 and ve can be controlled
by

∂mt V
0 = ∂mt ve +O(h2)‖∂mt ve‖C3 for m ≥ 1.(4.23)

In addition, we observe that V 0 exactly satisfies the boundary condition in the
discrete form as given in (4.7) at the top z = 0 and at the bottom z = −H0:

(DzU
0)i,j+1/2,0 = 0, (DzV

0)i+1/2,j,0 = 0,

(DzU
0)i,j+1/2,N = 0, (DzV

0)i+1/2,j,N = 0,
(4.24)
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due to its construction in (4.15) and the fact that ∂zve = 0 at the two boundary
sections.

The leading order density profile is composed of the exact density and a correction
term

Θ0 = ρe + h2Θ1.(4.25)

The addition of the O(h2) correction terms h2Θ1 is due to the higher order consistency
of the approximate profile Θ with the boundary condition given in the numerical
scheme (4.7d), which is required in the error analysis presented later. The correction
function Θ1 is constructed as the solution of the Poisson equation with Neumann
boundary condition

(4.26)
�Θ1 = C1 ≡ 1

|M|
(∫
M0

1

6
∂3
zρe(x, y,−H0) dx−

∫
M0

1

6
∂3
zρe(x, y, 0) dx

)
,

∂zΘ
1(x, y,−H0) = −1

6
∂3
zρe(x, y,−H0), ∂zΘ

1(x, y, 0) = −1
6

∂3
zρe(x, y, 0).

Note that the number C1 (a function of time t) is chosen so that
∫
M C1 dx dz =∫

∂M
∂Θ1

∂n dn to maintain the consistency. The Schauder’s estimate applied to the
Poisson equation (4.26) gives that

‖Θ1‖Cm,α ≤ ‖ρe‖Cm+2,α , ‖∂kt Θ1‖Cm,α ≤ ‖∂kt ρe‖Cm+2,α for m ≥ 2.(4.27)

The choice of the boundary condition for Θ1 in (4.26) implies that the approx-
imated density Θ as given in the expansion (4.25) satisfies the discrete boundary
condition in (4.7d) to an O(h5) order. It can be seen by local Taylor expansion for
the exact density field ρe around the bottom boundary that

(4.28)

(ρe)i+1/2,j+1/2,−1 = (ρe)i+1/2,j+1/2,1−�z3

3
∂3
zρe(xi+1/2, yj+1/2,−H0)+O(h5)‖ρe‖C5 ,

in which the no-flux boundary condition is used. The insertion of the boundary
condition given by (4.26) into the Taylor expansion of Θ1, along with Schauder’s
estimate ‖Θ1‖C2 ≤ C‖ρe‖C5,α given by (4.27), leads to

(4.29)

Θ1
i+1/2,j+1/2,−1 = Θ1

i+1/2,j+1/2,1 +
�z

3
∂3
zρe(xi+1/2, yj+1/2,−H0) +O(h3)‖ρe‖C5,α .

The combination of (4.28) and (4.29) results in the following estimate for Θ0 = ρe +
h2Θ1:

Θ0
i+1/2,j+1/2,−1 = Θ0

i+1/2,j+1/2,1 +O(h5)‖ρe‖C5,α ,(4.30)

which proves our claim. The top boundary z = 0 can be dealt with in the same
manner.
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It is straightforward to verify the following local truncation estimates:

(U0)n+1 − (U0)n

�t
+Nh((U0)n, (U0)n) +

1

Ro

(
−f(V 0)n +Dxp

n
e

)
= L1,h(U

0)n+1 +�tE
u(0),n
�t + h2E

u(0),n
h at �,

(V 0)n+1 − (V 0)n

�t
+Nh((U0)n, (V 0)n) +

1

Ro

(
f(U0)n +Dyp

n
e

)
= L1,h(V

0)n+1 +�tE
v(0),n
�t + h2E

v(0),n
h at ©,

(U0)n+1
i,j+1/2,−1/2 = (U0)n+1

i,j+1/2,1/2, (V 0)n+1
i+1/2,j,−1/2 = (V 0)n+1

i+1/2,j,1/2,

(4.31a)

Dzp
n+1
e = (Θ0)n+1 + h2E

p(0),n
h at (i+ 1/2, j + 1/2, k),(4.31b)

 ∇h ·(V
0)n+1 +Dz(W

0)n+1 = 0,

(W 0)n+1
i+1/2,j+1/2,0 = (W 0)n+1

i+1/2,j+1/2,N = 0,
(4.31c)


(Θ0)n+1 − (Θ0)n

�t
+Nh((U0)n, (Θ0)n)

= L2,h(Θ
0)n+1 + (�t+ h2)Eρ(0),n at •,

(Θ0)n+1
i+1/2,j+1/2,−1 = (Θ0)n+1

i+1/2,j+1/2,1 + h5eρb,

(4.31d)

via high order Taylor expansion of the constructed solution V 0, W 0, Θ0, along with
the usage of Proposition 4.2. The local error terms satisfy

(4.32)

|Eu(0)|, |Ev(0)| ≤ C
(
‖∂tve‖C2 + ‖∂2

t ve‖C2 + ‖ue‖C6(1 + ‖ue‖C3) + ‖pe‖C4

)
,

|Ep(0)| ≤ C‖ρe‖C2 , |Eρ(0)| ≤ C
(
‖∂tρe‖C2 + ‖∂2

t ρe‖C2 + ‖ρe‖C5(1 + ‖ue‖C4)
)
.

4.4. Higher order expansion of the numerical scheme. The consistency
analysis (4.31) is not enough to recover the L∞ a priori estimates for the approximate
velocity field in the full nonlinear system of the PEs. We need to construct further
fields, (V 1

h,W
1
h,Θ

1
h, P

1
h ), (V

1
�t,W

1
�t,Θ

1
�t, P

1
�t), (V

2
�t,W

2
�t,Θ

2
�t, P

2
�t), and to in-

troduce, for the error analysis, the fields V , W , Θ, P defined by

V = V 0 + h2V 1
h +�tV 1

�t +�t2V 2
�t,

W =W 0 + h2W 1
h +�tW 1

�t +�t2W 2
�t,

Θ = Θ0 + h2Θ1
h +�tΘ1

�t +�t2Θ2
�t, P = pe + h2P 1

h +�tP 1
�t +�t2P 2

�t.
(4.33)

These new fields depend solely on (V 0,W 0,Θ0, pe), namely, on the exact solution.
Their construction is straightforward but lengthy; we omit the details. The expanded
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profiles satisfy the backward Euler scheme combined with the MAC grid up to order
O(�t3 + h4):

(4.34a)

Un+1 − Un

�t
+Nh(Un, Un) +

1

Ro

(
−fV n +DxP

n
)

= L1,hU
n+1 + (�t3 + h4)Eu,n,

V n+1 − V n

�t
+Nh(Un, V n) +

1

Ro

(
fUn +DyP

n
)

= L1,hV
n+1 + (�t3 + h4)Ev,n,

Un+1
i,j+1/2,−1/2 = Un+1

i,j+1/2,1/2 + h5eub, V n+1
i+1/2,j,−1/2 = V n+1

i+1/2,j,1/2 + h5eub,

DzP
n+1 = Θn+1 + h4Ep,n,(4.34b)

 ∇h ·V
n+1 +DzW

n+1 = 0,

W n+1
i+1/2,j+1/2,0 =W

n+1
i+1/2,j+1/2,N = 0,

(4.34c)


Θn+1 −Θn

�t
+Nh(Un,Θn) = L2,hΘ

n+1 + (�t3 + h4)Eρ,n,

Θn+1
i+1/2,j+1/2,−1 = Θn+1

i+1/2,j+1/2,1 + h5eρb,
(4.34d)

in which the local truncation error and the boundary error terms are bounded in the
L∞ norm

|Eu|, |Ev|, |Ep|, |Eρ||eub|, |evb|, |eρb| ≤ C∗,(4.34e)

with the constant C∗ depending on the exact solution. This completes the consistency
analysis.

Remark 4.3. As stated earlier, the purpose of the higher order expansion (4.33)
is to obtain the L∞ estimate of the error function via its L2 norm in higher order
accuracy by utilizing an inverse inequality in spatial discretization, which will be
shown below. Such expansion is always possible under suitable regularity assumption
of the exact solution. A detailed analysis shows that

|ve − V |+ |we −W |+ |ρe −Θ| ≤ C(�t+ h2),(4.35)

with C introduced in Theorem 4.1. This estimate will be used later.
Remark 4.4. We note that there is no O(h3) term in the higher order expansion

(4.33). This is due to the centered difference we used in the spatial discretization,
which gives local truncation errors with only even order, etc., O(h2), O(h4).

4.5. Proof of Theorem 4.1. We consider the following error functions:

ṽ = (ũ, ṽ) = V −v = (U−u, V −v), w̃ =W −w, p̃ = P−p, ρ̃ = Θ−ρ.(4.36)
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Subtracting (4.7) from (4.34), we obtain the following system for the error functions:

(4.37a)

ũn+1 − ũn

�t
+ ENLUn +

1

Ro

(
−fṽ

n
+Dxp̃

n
)
= L1,hũ

n+1 + (�t3 + h4)Eu,n,

ṽn+1 − ṽn

�t
+ ENLV n +

1

Ro

(
fũ

n
+Dyp̃

n
)
= L1,hṽ

n+1 + (�t3 + h4)Ev,n,

ũn+1
i,j+1/2,−1/2 = ũn+1

i,j+1/2,1/2 + h5eub, ṽn+1
i+1/2,j,−1/2 = ṽn+1

i+1/2,j,1/2 + h5eub,

Dz p̃
n+1 = ρ̃n+1 + h4Ep,n,(4.37b)

 ∇h ·ṽ
n+1 + D̃zw̃

n+1 = 0,

w̃n+1
i+1/2,j+1/2,0 = w̃n+1

i+1/2,j+1/2,N = 0,
(4.37c)


ρ̃n+1 − ρ̃n

�t
+ ENLRn = L2,hρ̃

n+1 + (�t3 + h4)Eρ,n,

ρ̃n+1
i+1/2,j+1/2,−1 = ρ̃n+1

i+1/2,j+1/2,1 + h5eρb ;
(4.37d)

the nonlinear error terms corresponding to the convection have the following decom-
position:

ENLU = Nh(U , U)−Nh(u, u) = Nh(ũ, U) +Nh(u, ũ),

ENLV = Nh(U , V )−Nh(u, v) = Nh(ũ, V ) +Nh(u, ṽ),

ENLR = Nh(U ,Θ)−Nh(u, ρ) = Nh(ũ,Θ) +Nh(u, ρ̃).

(4.37e)

4.5.1. Preliminary results. The following preliminary results will be needed
in the energy estimate of the system (4.37). The proofs are straightforward so that
we omit the detail.

Lemma 4.5. We have the following:
(i) Inverse inequality in 3-D:

‖f‖L∞ ≤ C

h
3
2

‖f‖L2 .(4.38a)

(ii) Suppose wi+1/2,j+1/2,0 = wi+1/2,j+1/2,N ; then

‖u‖2 ≤ ‖u‖1, ‖v‖1 ≤ ‖v‖2, ‖w‖1 ≤ ‖w‖3, ‖w‖2 ≤ ‖w‖3.(4.38b)

(iii) For w̃ determined by (4.37c), we have

‖w̃‖3 ≤ ‖D+
x ũ‖1 + ‖D+

y ṽ‖2.(4.38c)

(iv) Suppose ṽ = (ũ, ṽ) and ρ̃ satisfy the boundary condition in (4.37); then

(4.38d)

‖D̃xũ‖1 ≤ ‖D+
x ũ‖1, ‖D̃yũ‖1 ≤ ‖D+

y ũ‖1, ‖D̃zũ‖1 ≤ ‖D+
z ũ‖1 + h4,

‖D̃y ṽ‖2 ≤ ‖D+
y ṽ‖2, ‖D̃xṽ‖2 ≤ ‖D+

x ṽ‖2, ‖D̃z ṽ‖2 ≤ ‖D+
z ṽ‖+ h4,

‖D̃xρ̃‖3 ≤ ‖D+
x ρ̃‖3, ‖D̃z ρ̃‖3 ≤ ‖D+

z ρ̃‖3, ‖D̃yρ̃‖3 ≤ ‖D+
y ρ̃‖+ h4.
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(v) Suppose wi+1/2,j+1/2,0 = wi+1/2,j+1/2,N = 0; then

〈u, D̃xp〉1 + 〈v, D̃yp〉2 + 〈w, D̃zp〉3 = −〈(∇h ·v + D̃zw), p〉4.(4.38e)

4.5.2. Energy estimate for the error functions. Assume a priori that

‖ṽ‖L∞ + ‖w̃‖L∞ ≤ 1

2
.(4.39)

Such a priori assumption will be verified later using the inverse inequality (4.38a).
Taking the inner product of the first momentum error equation in (4.37a) with

ũn+1 at the mesh point (i, j + 1/2, k + 1/2), the second momentum error equation

with ṽn+1 at the mesh point (i + 1/2, j, k + 1/2), the equation in (4.37b) with w̃n+1

Ro
at the mesh point (i+ 1/2, j + 1/2, k), and summing up gives

(4.40)

1

2
· 1�t

(
‖ũn+1‖21 − ‖ũn‖21 + ‖ũn+1 − ũn‖21 + ‖ṽn+1‖22 − ‖ṽn‖22 + ‖ṽn+1 − ṽn‖22

)
+

〈
ũn+1, ENLUn

〉
1

+

〈
ṽn+1, ENLV n

〉
2

+
1

Ro

(
〈ũn+1,−fṽ

n〉1 + 〈ṽn+1, f ũ
n〉2
)

+
1

Ro

(
〈ũn+1, Dxp̃

n〉1 + 〈ṽn+1, Dyp̃
n〉2 + 〈w̃n+1, Dz p̃

n〉3
)

−
〈

ũn+1, (ν1�h + ν2D
2
z)ũ

n+1

〉
1

−
〈

ṽn+1, (ν1�h + ν2D
2
z)ṽ

n+1

〉
2

=
1

2
· 1�t

(
‖ũn+1‖21 − ‖ũn‖21 + ‖ũn+1 − ũn‖21 + ‖ṽn+1‖22 − ‖ṽn‖22

+ ‖ṽn+1 − ṽn‖22
)
+ Incu + Incv +

1

Ro
Incg +

1

Ro
Inp + In+1

du + In+1
dv

= 〈ũn+1, (�t3 + h4)Eu,n〉1 + 〈ṽn+1, (�t3 + h4)Ev,n〉2
− 1

Ro
〈w̃n+1, ρ̃n〉3 + h4

Ro
〈w̃n+1, Ep,n〉3.

A direct application of part (v) in Lemma 4.5 gives that Inp appearing in (4.40)
vanishes indeed:

Inp = 〈ũn+1, Dxp̃
n〉1 + 〈ṽn+1, Dyp̃

n〉2 + 〈w̃n+1, Dz p̃
n〉3

= −〈(∇h ·ṽn+1 +Dzw̃
n+1), p̃n〉4 = 0,

(4.41)

due to the fact that ũ = (ũ, ṽ, w̃) is identically divergence-free at the discrete level
and the vertical velocity vanishes on the top and bottom boundaries. The identity
(4.41) is analogous to (4.8), which shows that the 3-D velocity field is orthogonal to
the pressure gradient in the staggered L2 space. This represents the main advantage
of the MAC grid.

The term Incg, which corresponds to the Coriolis force, can be controlled directly
by the Cauchy inequality and the application of part (ii) in Lemma 4.5:

(4.42)

|Incg| =
∣∣∣∣〈ũn+1,−fṽ

n〉1+〈ṽn+1, f ũ
n〉2
∣∣∣∣ ≤ f0 + β

2

(
‖ũn+1‖21+‖ũn‖21+‖ṽn+1‖22+‖ṽn‖22

)
.
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Next we consider the terms In+1
du , In+1

dv corresponding to the diffusion of ũ and ṽ.
A direct calculation shows that

−〈ũn+1, D2
xũ

n+1〉1 = ‖D+
x ũn+1‖21, −〈ũn+1, D2

yũ
n+1〉1 = ‖D+

y ũn+1‖21,(4.43a)

−〈ũn+1, D2
z ũ

n+1〉1 = ‖Dzũ
n+1‖21 + Bn+1

uz ,

Bn+1
uz = h3

N−1∑
j=0

N−1∑
i=1

(
h3ũn+1

i,j+1/2,1/2eub + h3ũn+1
i,j+1/2,N−1/2eut

)
,

(4.43b)

by utilizing the boundary condition for ũn+1 given in (4.37a). The boundary error
term Bn+1

uz can be bounded from below as follows:

(4.44)

Bn+1
uz ≥ h3

N−1∑
j=0

N−1∑
i=1

(
−1
2
(ũn+1

i,j+1/2,1/2)
2 − 1

2
h6e2

ub −
1

2
(ũn+1

i,j+1/2,N−1/2)
2 − 1

2
h6e2

ut

)

≥ −1
2
‖ũn+1‖21 −

1

2
h9

N−1∑
j=0

N−1∑
i=1

(e2
ub + e

2
ut) ≥ −

1

2
‖ũn+1‖21 −

1

2
h6 ;

in the second step we absorbed the terms ũ2
i,j+1/2,1/2 and ũ2

i,j+1/2,N−1/2 into ‖ũ‖21 by
its definition. Then we obtain

(4.45)

In+1
du ≥ ν0(‖D+

x ũn+1‖21 + ‖D+
y ũn+1‖21 + ‖D+

z ũn+1‖21)−
1

2
ν2‖ũn+1‖21 −

1

2
ν2h

6,

in which ν0 = min(ν1, ν2, κ1, κ2). Similar estimates can be obtained for In+1
dv :

In+1
dv ≥ ν0(‖D+

x ṽn+1‖22 + ‖D+
y ṽn+1‖22 + ‖D+

z ṽn+1‖22)−
1

2
ν2‖ṽn+1‖22 −

1

2
ν2h

6.(4.46)

It remains to estimate Incu and Incv corresponding to the nonlinear convection
terms. Using the decomposition for ENLU as shown in (4.37e) yields

Incu =

〈
ũn+1, ENLUn

〉
1

=

〈
ũn+1,Nh(ũn, Un)

〉
1

+

〈
ũn+1,Nh(un, ũn)

〉
1

.(4.47)

The application of the Cauchy inequality to the first integral appearing on the right-
hand side of (4.47) indicates

(4.48)

−
〈

ũn+1,Nh(ũn, Un)

〉
1

≤ C̃1

(
‖ũn+1‖21+‖ũn‖21+‖ṽ

n‖21
)
+
2C̃2

1

ν0
‖ũn+1‖21+

1

8
ν0‖w̃

n‖21,

where C̃1 = ‖U‖W 1,∞ . The consistency analysis (4.35) shows that C̃1 ≤ ‖ve‖C1 + 1.
Meanwhile, the combination of parts (ii) and (iii) in Lemma 4.5 gives

‖w̃n‖21 ≤ ‖w̃n‖23 ≤ 2(‖D+
x ũn‖2 + ‖D+

y ṽn‖2), ‖ṽn‖21 ≤ ‖ṽn‖22,(4.49)
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whose insertion into (4.48) leads to

−
〈

ũn+1,Nh(ũn, Un)

〉
1

≤ 3C̃2
1

ν0
‖ũn+1‖21 + C̃1(‖ũn‖21 + ‖ṽn‖22)

+
1

4
ν0(‖D+

x ũn‖21 + ‖D+
y ṽn‖22).

(4.50)

The second inner product appearing on the right-hand side of (4.47) can be controlled
in a similar way:

(4.51)

−
〈

ũn+1,Nh(un, ũn)
〉

1

≤ 2 · C̃2
2

ν0
‖ũn+1‖21 +

1

4
ν0

(
‖D+

x ũn‖21 + ‖D+
y ũn‖21 + ‖D+

z ũn‖21
)
,

where C̃2 = ‖u‖L∞ . The a priori assumption (4.39) and the consistency analysis
(4.35) assures that

C̃2 ≤ ‖V ‖L∞ + ‖W ‖L∞ +
1

2
≤ ‖ue‖C0 + C(�t+ h2) +

1

2
≤ ‖ue‖C0 + 1,(4.52)

provided that �t and h are small enough. Applying part (iv) of Lemma 4.5 into
(4.52) results in

−
〈

ũn+1,Nh(un, ũn)
〉

1

≤ 2C̃2
2

ν0
‖ũn+1‖21 +

1

4
ν0

(
‖D+

x ũn‖21 + ‖D+
y ũn‖2 + ‖D+

z ũn‖21 + 2h6
)
.

(4.53)

Thus the combination of (4.51) and (4.53) gives

Incu ≥ −
(3C̃2

1

ν0
+

2C̃2
2

ν0

)
‖ũn+1‖21 − C̃1(‖ũn‖21 + ‖ṽn‖22)

− 1

2
ν0

(
‖D+

x ũn‖21 + ‖D+
y ũn‖21 + ‖D+

z ũn‖21
)
− h6,

(4.54)

where C̃1 ≤ ‖ve‖C1+1, C̃2 ≤ ‖ue‖C0+1. The bound for Incv can be similarly obtained:

Incv ≥ −
(3C̃2

1

ν0
+

2C̃2
2

ν0

)
‖ṽn+1‖22 − C̃1(‖ũn‖21 + ‖ṽn‖22)

− 1

2
ν0

(
‖D+

x ṽn‖22 + ‖D+
y ṽn‖22 + ‖D+

z ṽn‖22
)
− h6.

(4.55)

The four terms appearing on the right-hand side of (4.40) can be controlled by
the Cauchy inequality, together with the application of part (iii) of Lemma 4.5:

〈ũn+1, (�t3 + h4)Eu,n〉1 ≤ 1

2
‖ũn+1‖21 + (�t6 + h8)‖Eu,n‖21,

〈ṽn+1, (�t3 + h4)Ev,n〉2 ≤ 1

2
‖ṽn+1‖22 + (�t6 + h8)‖Ev,n‖22,

− 1

Ro
〈w̃n+1, ρ̃n〉3 ≤ 1

8
ν0(‖D+

x ũn+1‖2 + ‖D+
y ṽn+1‖2) + C

ν0
‖ρ̃n‖23,

h4

Ro
〈w̃n+1, Ep,n〉3 ≤ 1

8
ν0(‖D+

x ũn+1‖21 + ‖D+
y ṽn+1‖22) +

C

ν0
h8 ‖Ep,n‖23.

(4.56)
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Substituting (4.56), (4.55), (4.54), (4.46), (4.45), (4.42), and (4.41) into (4.40),
and denoting

IEV = ‖D+
x ũ‖21 + ‖D+

y ũ‖21 + ‖D+
z ũ‖21 + ‖D+

x ṽ‖22 + ‖D+
y ṽ‖22 + ‖D+

z ṽ‖22,
IER = ‖D+

x ρ̃‖23 + ‖D+
y ρ̃‖23 + ‖D+

z ρ̃‖23,(4.57)

we have the energy estimate for ṽ

1

2
· 1�t

(
‖ũn+1‖21 − ‖ũn‖21 + ‖ṽn+1‖22 − ‖ṽn‖22

)
+

3

4
ν0IEV n+1

≤
(4C̃2

1

ν0
+

4C̃2
2

ν0
+ C

)
‖ṽ‖2 + C

ν0
‖ρ̃‖23 +

1

2
ν0IEV n + Ẽn

u ,
(4.58a)

in which C̃1 ≤ ‖ve‖C1 + 1, C̃2 ≤ ‖ue‖C0 + 1, and the error term satisfies

Ẽn
u ≤

1

2
(�t6 + h8)

(
‖Eu,n‖21 + ‖Ev,n‖22) +

‖Ep,n‖23
ν0

)
+ Ch6.(4.58b)

The energy estimate for the density error function can be carried out in a similar way
(we omit the details):

(4.59)

1

2
· 1�t

(
‖ρ̃n+1‖23 − ‖ρ̃n‖23

)
+

3

4
ν0IERn+1 ≤

( C̃2
3

ν0
+

4C̃2
2

ν0
+ C

)
‖ρ̃‖23 +

1

2
‖ṽ‖2

+
1

8
ν0(‖D+

x ũn‖21 + ‖D+
y ṽn‖22) +

1

2
ν0IERn + C(�t6 + h8) ‖Eρ,n‖23,

in which C̃3 = ‖Θ‖W 1,∞ ≤ ‖ρe‖C1 + 1. By setting ‖ṽ‖2 = ‖ũ‖21 + ‖ṽ‖22, we arrive at
(4.60)

1

2
· 1�t

(
‖ṽn+1‖2 − ‖ṽn‖2 + ‖ρ̃n+1‖23 − ‖ρ̃n‖23

)
+

3

4
ν0 IEV n+1 +

3

4
ν0 IERn+1

≤
(4C̃2

1

ν0
+

4C̃2
2

ν0
+

C̃2
3

ν0
+ C

)
(‖ṽ‖2 + ‖ρ̃‖23) +

5

8
ν0 IEV n +

1

2
ν0 IERn + Ẽn, with

Ẽn ≤ C(�t6 + h8)
(
‖Eu,n‖21 + ‖Ev,n‖22 + ‖Eρ,n‖23) +

‖Ep,n‖23
ν0

)
+ Ch6,

since the term (‖D+
x ũn‖21+‖D+

y ṽn‖22) appearing on the right-hand side of (4.59) can be
absorbed into IEV n. Summing (4.60) in time and applying the Gronwall inequality
yield

‖ṽn‖2 + ‖ρ̃n‖23 ≤ C · exp
(Ct

ν0

)(
�t6 + h8

)
(C∗)2 + CTh6,(4.61)

where C was given in Theorem 4.1 and C∗ depends only on the exact solution. In
the derivation of (4.61), we drop the gradient terms since the coefficients of IEV ,
IER on the right-hand side of (4.60) are less than those on the left-hand side. The
inequality (4.61) amounts to saying

‖v�t,h − V ‖L∞(0,T ;L2
h
) + ‖ρ�t,h −Θ‖L∞(0,T ;L2

h
)

≤ CC∗
(
exp

{
CT

ν0

}
+ T

)(
�t3 + h3

)
,

(4.62)
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whose combination with the estimate (4.35) gives the convergence result (4.3a). The
inverse inequality in three dimensions as given in Lemma 4.5 shows that

‖ṽ‖L∞ ≤ C
�t3 + h3

h
3
2

,(4.63)

and this is bounded by Ch3/2, since we impose to �t a CFL-like condition �t ≤ Ch.
Moreover, we have

‖w̃‖L∞ ≤ C

h
‖ṽ‖L∞ ≤ Ch1/2,(4.64)

which comes from the determination identity for w̃ in (4.37). As a result, the a priori
assumption (4.39) is satisfied if h is small enough. Thus Theorem 4.1 is proven.

Remark 4.6. The inverse inequality (4.38a) recovers the L∞ a priori assumption
(4.39) for the velocity field. This is the main advantage in the analysis of the fully
discretized system. Since the vertical velocity is formulated as the integration of the
divergence for the horizontal velocity, the O(h

5
2 ) estimate for the L2 norm of ṽ is

required. This is the reason for the higher order consistency analysis in section 4.4.
Remark 4.7. The stability constraint in Theorem 4.1 is �t ≤ Ch. We in-

fer from (4.62) that the backward Euler scheme is unconditionally stable for the
L2(0, T ;L2) norm, as expected from a scheme with implicit treatment of the diffusion
term. The stability constraint �t ≤ Ch is introduced after (4.63), (4.64) to recover
the L∞([0, T ]×M) stability, and C is an arbitrary fixed constant; note that the usual
CFL constraint has the same form with C = |u|−1

L∞ , but in the present case C is
arbitrary, since the CFL condition is needed only to ensure additional stability.

5. Numerical accuracy check. In this section we check the numerical accuracy
of the computational scheme. The exact velocity and density are chosen to be

ue(x, y, z, t) =
1

π2
sin(πx)sin(πy)cos(πz)cost,

ve(x, y, z, t) =
1

π2
sin(πx)sin(πy)cos(πz)cost,

ρe(x, y, z, t) =
1

π2
cos(πx)cos(πy)cos(πz)cost.

(5.1)

The corresponding exact vertical velocity we and exact pressure variable pe are de-
termined by the incompressibility ∇·ve + ∂zwe and hydrostatic balance ∂pe

∂z = −ρe,
respectively:

we(x, y, z, t) = − 1

π2

(
cos(πx)sin(πy) + sin(πx)cos(πy)

)
sin(πz)cost,

pe(x, y, z, t) =
1

π3
cos(πx)cos(πy)

(
1− sin(πz)

)
cost,

(5.2)

in which we set the exact surface pressure as

pse(x, y, t) = pe(x, y, 0, t) =
1

π3
cos(πx)cos(πy)cost.(5.3)
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Table 5.1
Error and order of accuracy for velocity and density at t = 1 when the Crank–Nicolson scheme

using MAC spatial discretization is used. �t = 1
4
�x. The physical parameters: Rossby number

Ro = 0.5, Coriolis force f = 0.5 + y.

N L1 error L1 order L2 error L2 order L∞ error L∞ order

16 6.67e-05 9.15e-05 3.50e-04
32 1.66e-05 2.00 2.29e-05 1.99 9.06e-05 1.95

u 64 4.15e-06 2.00 5.71e-06 2.00 2.29e-05 1.98
128 1.03e-07 2.01 1.43e-06 2.00 5.73e-06 2.00

16 2.56e-04 3.78e-04 1.28e-03
32 6.40e-05 2.00 9.46e-05 1.99 3.23e-04 1.99

v 64 1.60e-06 2.00 2.37e-05 2.00 8.10e-05 2.00
128 4.01e-06 2.00 5.93e-06 2.00 2.03e-05 2.00

16 4.78e-05 6.17e-05 2.01e-04
32 1.19e-05 2.00 1.54e-05 2.00 5.22e-05 1.95

ρ 64 2.98e-06 2.00 3.68e-06 2.00 1.32e-05 1.98
128 7.48e-07 1.99 9.68e-07 2.00 3.30e-06 2.00

Then we arrive at the following system of PEs with force terms f , g in the
momentum equation and the density equation

(5.4a)

∂tve + (ve ·∇)ve + we
∂ve
∂z

+
1

Ro

(
fk × ve +∇pe

)
=
(
ν1�+ ν1∂

2
z

)
ve + f ,

∂pe
∂z

= −ρe,

∇·ve + ∂zwe = 0,

∂tρe + (ve ·∇)ρe + we
∂ρe
∂z

=
(
κ1�+ κ2∂

2
z

)
ρe + g,

with the boundary condition

∂ve
∂z

= 0, we = 0,
∂ρe
∂z

= 0 at z = 0,−H0,

ve = 0,
∂ρe
∂n

= 0 on ∂M0 × [−H0, 0].
(5.4b)

The computational domain is chosen as M = M0 × [−H0, 0], where M0 = [0, 1]2,
H0 = 1. The viscosity parameters are given by ν1 = ν2 = 0.005, κ1 = κ2 = 0.005.
In a usual GFD model, the Rossby number ranges from O(1) to O(10−3). We choose
Ro = 0.5 in the numerical experiment. The Coriolis force parameter is set to be
f0 = 0.5, β = 1.

The system (5.4) can be formulated in the same fashion as (1.13) such that the
surface pressure Poisson equation replaces the nonlocal incompressibility constraint
for the horizontal velocity. Note that a force term ∇ · f appears in the Poisson
equation. Based on such formulation, we apply the Crank–Nicolson method, a second
order numerical scheme with implicit diffusion terms, using the MAC spatial grid, to
solve the PEs (5.4). The force terms f , g and ∇ · f are added when we update the
momentum equation and the density equation and solve the surface pressure Poisson
equation. The final time is taken to be t = 1.0. Table 5.1 lists the absolute errors
between the numerical and exact solutions for velocity and density. All the error
functions are measured in L1, L2, and L∞ norms in a discrete level similar to that
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Fig. 5.1. The contour plot of the surface pressure at t = 1 with N = 128.

in the notation (4.2). As can be seen, exactly second order accuracy for the velocity
field v = (u, v) and the density field ρ, in both L1, L2, and L∞ norms, is obtained.

The contour plot of the surface pressure at the final time t = 1.0 (calculated
by the resolution N = 128) is also presented in Figure 5.1, which shows a smooth
numerical profile and verifies the robustness of the computational method. Such a
plot gives an accurate approximation to the exact surface pressure given by (5.3).
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1. Introduction. This paper is concerned with the finite element discretization
of Maxwell’s equations in two dimensions. Critical to the theory of such discretizations
is the so-called de Rham diagram relating two exact sequences of spaces, on both
continuous and discrete levels, and corresponding interpolation operators,

R −→ H1+ε ∇−→ Hε ∩H(curl)
∇×−→ L2 −→ 0,�id �Π �Πcurl

�P,

R −→ Pp+1
pe+1

∇−→ Pppe
∇×−→ Pp−1 −→ 0 .

(1.1)

All functional spaces are defined on the equilateral, master triangular element1

T =

{
(x1, x2) : x2 > 0, x2 <

√
3

(
x1 +

1

2

)
, x2 < −

√
3

(
x1 − 1

2

)}
.

In (1.1) and throughout this paper, ε > 0 denotes a small positive constant (always
smaller than exponent r representing regularity of functions being interpolated), and
all constants that appear in presented estimates depend, in general, on ε.

The polynomial spaces present in the diagram are defined as follows.
• Pppe—space of polynomials of order p, defined on the triangle, whose traces
to edges e reduce to (possibly lower) order pe, e = 1, 2, 3.
• P p

pe—space of vector-valued polynomials of order p, defined on triangle T ,
with traces of their tangential components on edges e of (possibly lower) order
pe.

• Pp—space of polynomials of order p, defined on triangle T .
In particular, Pp−1 denotes the space of polynomials of order p, vanishing on the
boundary of the triangle, and P p

−1 stands for the space of vector-valued polynomi-
als of order p, with the trace of the tangential component on the boundary equal
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1We shall restrict our presentation to triangular elements only.
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to zero. The assumption that edge orders pe should not exceed polynomial order
p, pe ≤ p, e = 1, 2, 3, is realized in practice by implementing the minimum rule that
sets an edge order pe to the minimum of orders p corresponding to the adjacent
elements.

The three interpolation operators present in the diagram map are H1-, H(curl)-,
and L2-conforming operators. The last operator is simply the L2-projection, and the
first two will be discussed in detail in the next sections. The operators are constructed
in such a way that, when applied elementwise to a function defined on a whole mesh,
they yield a discretization that is globally conforming. Simply speaking, if u is con-
tinuous, then the union of element H1-interpolants is continuous as well. Similarly,
if field E has a continuous tangential component across every interelement boundary,
the corresponding H(curl)-conforming interpolant will have the same property.

This paper is concerned with p interpolation error estimates, with respect to
order of approximation p, with minimum regularity assumptions that would yield
optimal convergence rates. Such estimates are critical in proving discrete compactness
property, and consequently convergence of Maxwell eigenvalues [6], which in turn
implies (and it is necessary for) the stability of finite element approximations to the
time-harmonic Maxwell equations. The p interpolation error estimates are also the
first step towards proving exponential convergence of hp discretizations; see, e.g., [19],
analysis of two-grid and multigrid algorithms, etc.

The presented H1 interpolation error estimate derives directly from the works
of Babuška and his collaborators. To the best of our knowledge, the corresponding
result for the H(curl)-conforming interpolation is new.

There are two related known results for quad edge elements. Monk [13] proved
(suboptimal) p interpolation error estimates for square and hexahedral elements using
the Nédélec interpolation [14, 15]. Stenberg and Suri [21] studied Brezzi–Douglas–
Fortin–Marini (BDFM) elements (in two dimensions H(curl)-conforming elements
can be obtained by “rotating” H(div)-conforming elements), and proved ε-optimal
L2 and H(curl) estimates for the original BDFM interpolation operator, generalizing
and improving the earlier work of Suri [22] for Brezzi–Douglas–Marini spaces.

In both cases, the proofs were based on expansions in terms of Legendre polyno-
mials and do not seem to be generalizable to the triangular elements.

For details on implementation of the variable order edge elements, see [17, 18].

2. Preliminaries.

Fundamental spaces and norms. We shall use a number of standard inner
products and the corresponding norms.

The L2 product on triangle T will be denoted (u, v), and the corresponding L2

norm will be denoted ‖u‖. The notions extend in a standard way to vector-valued
functions.

The standard H1-norm will be denoted ‖u‖H1(T ). We shall also need the corre-
sponding seminorm,

|u|H1(T ) = ‖∇u‖ .

Space H
1
2 (∂T ) will be defined as the space of traces of functions from H1(T ) to

boundary ∂T . The corresponding seminorm can be defined as

|u|2
H

1
2 (∂T )

= inf
U |∂T =u

|U |2H1(T ) = ‖∇ũ‖2 =
〈

∂ũ

∂n
, ũ

〉
.(2.1)
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Here 〈·, ·〉 stands for the duality pairing between H−
1
2 (∂T ) and H

1
2 (∂T ), ũ is the

harmonic lift of function u ∈ H
1
2 (∂T ), and the normal derivative is in the subspace

of functionals with vanishing average,

H
− 1

2
0 (∂T ) = {φ ∈ H−

1
2 (∂T ) : 〈φ, 1〉 = 0} .

The parallelogram law allows us to learn the corresponding inner product,

(u, v)
H

1
2 (∂T )

=
1

4

{
|u+ v|2

H
1
2 (∂T )

− |u− v|2
H

1
2 (∂T )

}
=

1

4
{‖∇(ũ+ ṽ)‖2 − ‖∇(ũ− ṽ‖2}

= (∇ũ,∇ṽ)

=

〈
∂ũ

∂n
, ṽ

〉
=

〈
∂ṽ

∂n
, ũ

〉
.

In an analogous way we can use the norm and inner product in H1(T ) to intro-

duce the corresponding norm and inner products in H
1
2 (∂T ). On the quotient space

H
1
2 (∂T )/R, the seminorm turns into a norm, equivalent to the standard norm for

quotient spaces. Subspace H
− 1

2
0 (∂T ) can be identified with the dual of H

1
2 (∂T )/R.

By Riesz theorem, φ ∈ H
− 1

2
0 (∂T ) can be identified with the equivalence class of

a function uφ ∈ H
1
2 (∂T ) such that

〈φ, v〉 = (∇ũφ,∇ṽ) =

〈
∂ũφ
∂n

, ṽ

〉
.

Consequently,

‖φ‖
H

− 1
2

0 (∂T )
= sup
v∈H 1

2 (∂T )

|〈φ, v〉|
|v|

H
1
2 (∂T )

= sup
v∈H 1

2 (∂T )

(∇ũφ,∇ṽ)

|∇ṽ| = |∇ũφ| ,(2.2)

and the parallelogram law again can be used to recover the scalar product,

(φ, ψ)
H

− 1
2

0 (∂T )
= (∇ũφ,∇ṽψ) .

Let e be one of the triangle edges. Space H
1
2
00(e) is defined as the collection of

restrictions of functions from H
1
2 (∂T ) vanishing along the two remaining edges,

H
1
2
00(e) = {u|e : u ∈ H

1
2 (∂T ), u = 0 on ∂T − e} .

Equivalently, u is in H
1
2
00(e) if its zero extension ũ is in H

1
2 (∂T ). The seminorm

and the corresponding product in H
1
2 (∂T ) define the norm and the scalar product in

H
1
2
00(e),

‖u‖
H

1
2
00(e)

= |ũ|
H

1
2 (∂T )

,

(u, v)
H

1
2
00(e)

= (ũ, ṽ)
H

1
2 (∂T )

.
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Sobolev spaces of fractional order. We shall need a number of technical but
standard facts about fractional order spaces; see, e.g., [12, 1, 20, 2, 19, 5].

We may use Fourier transform to introduce spaces Hr(R2), r ≥ 0. Functions from
Hr(T ), r ≥ 0, can be identified with restrictions of functions from Hr(R2). Elements

of Hr(∂T ), r > 0, can be identified with traces of functions from Hr+ 1
2 (T ). Their

duals define fractional boundary spaces with negative exponents Hr(∂T ), r < 0. For
−1 < r < 1, the boundary spaces can be defined directly using local maps, and
spaces Hr(R) can be defined through Fourier transform, and the two definitions are
equivalent.

For an edge e, spaces Hr(e), r ≥ 0, can be constructed by considering restrictions
from Hr(∂T ). They are naturally isomorphic with space Hr(I) for unit interval
I = (0, 1), which can be obtained via restrictions of functions from Hr(R). For
1
2 < r < 1, boundary spaces Hr(∂T ) can be conveniently characterized:

Hr(∂T ) = {u : u|e ∈ Hr(e), for each edge e, and u is continuous at vertices}

(Notice that, for r > 1
2 , H

r(e) is embedded in C(ē); see Lemma 1.)

Finally, space H
1
2
00(I), isomorphic with H

1
2
00(e), can be equipped with an explicit,

equivalent norm,

‖u‖2
H

1
2
00(I)

= ‖u‖2
H

1
2 (I)

+

∫ 1

0

u2

x
dx+

∫ 1

0

u2

1− x
dx.(2.3)

We shall need a couple of nonstandard results involving the fractional spaces.

Lemma 1. Let r > 1
2 . Subspace of Hr(I), consisting of functions vanishing at

the endpoints,

{u ∈ Hr(0, 1) : u(0) = u(1) = 0} ,

is continuously embedded in H
1
2
00(I).

Proof. Due to the existence of a continuous extension operator from Hr(I) into
Hr(R), r ≥ 0 [20], it is sufficient to consider functions from Hr(R).

Recall first that space H
1
2+ε(R) is continuously embedded in the space of Hölder

continuous functions Cε(R); see, e.g., [1, Thm. 7.57].

We now use the explicit norm (2.3). It is sufficient to show that the last two

terms can be bounded by the norm in H
1
2+ε(I). But this follows immediately from

the embedding into the Hölder continuous functions; e.g., for the first term we have∫ 1

0

u2

x
dx ≤ C‖u‖2

H
1
2
+ε(I)

∫ 1

0

x2ε

x
dx ≤ C‖u‖2

H
1
2
+ε(I)

.

Lemma 2. With norms (2.1) and (2.2), the tangential derivative defines an

isometry from H
1
2 (∂T )/R onto H

− 1
2

0 (∂T ),

∂

∂s
: H

1
2 (∂T )/R � u→ ∂u

∂s
∈ H

− 1
2

0 (∂T ) .

The construction extends to an isomorphism between fractional spaces,
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∂

∂s
: H

1
2+r(∂T )/R � u→ ∂u

∂s
∈ H−

1
2+r(∂T )

for 0 < r < 1
2 .

Proof. Let u1 be the harmonic lift of u, and let u2 be the harmonic function such
that ∂u2

∂n = ∂u
∂s . The first result follows from the fact that u1 and u2 are conjugate

harmonic functions and, consequently,

‖∇u1‖ = ‖∇u2‖ .
The second result follows by the standard interpolation argument applied to the first
case and an obvious case with integer order spaces,

H1(∂T )/R � u→ ∂u

∂s
∈ L2

0(T ) .

3. Discrete Friedrichs inequality. The classical Friedrichs inequalities (see,
e.g., [2] and the literature therein) formulated for Dirichlet and Neumann boundary
conditions state that there exist positive constants C1, C2 such that

‖E‖≤ C1‖curlE‖ for every E ∈H0(curl, T ) such that (E,∇φ) = 0 ∀φ ∈ H1
0 (T ),

‖E‖ ≤ C2‖curlE‖ for every E ∈H(curl, T ) such that (E,∇φ) = 0 ∀φ ∈ H1(T ).

(3.1)

Here H1
0 (T ) stands for the subspace of all functions in H1(T ), vanishing on boundary

∂T , and H0(curl, T ) is the subspace of all fields in H(curl, T ), with the tangential
component vanishing on boundary ∂T .

Both inequalities trivially extend to polynomial spaces,

‖E‖ ≤ C1‖curlE‖ for every E ∈ P p
−1 such that (E,∇φ) = 0 ∀φ ∈ Pp+1

−1 ,

‖E‖ ≤ C2‖curlE‖ for every E ∈ P p such that (E,∇φ) = 0 ∀φ ∈ Pp+1.

(3.2)

Indeed, the right-hand sides in (3.2) define equivalent norms on the involved subspace
of discrete divergence-free polynomials. The question is, How do the constants C1, C2

depend upon order p ?
Theorem 1 (discrete Friedrichs inequalities). There exist C1, C2 in (3.2) that

are independent of p.
Proof. The first two steps are identical for both cases. We shall present the

Neumann case with an obvious generalization to the Dirichlet case.
Step 1. In order to prove (3.2)2, it is sufficient to show that

min
φ∈Pp+1

‖E −∇φ‖ ≤ C‖curlE‖ ∀E ∈ P p .(3.3)

Indeed, if (E,∇φ) = 0, for all φ ∈ Pp+1, then

min
φ∈Pp+1

‖E −∇φ‖ = ‖E‖ .

Step 2. In order to prove (3.3), it is sufficient to construct a continuous left inverse
of the curl operator,

A : Pp−1 � ψ → Aψ = E ∈ Pp, curl(Aψ) = ψ ,
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with the continuity constant ‖A‖ independent of p. Indeed,
min

φ∈Pp+1
‖E −∇φ‖ ≤ ‖E − (E −A(curlE)‖ = ‖A(curlE)‖ ≤ C‖curlE‖ .

Notice that curl(E − A(curlE)) = curlE − curlE = 0 and, therefore, E − A(curlE)
is the gradient of some polynomial of order p+ 1.

Step 3. The first two steps are identical for both the Dirichlet (3.2)1 and Neumann
(3.2)2 versions of the discrete Friedrichs inequality. In the final step, we have to
consider the two cases separately.

Case of “Neumann boundary conditions.” Use Poincaré’s map for operator A,

E1(x) = − x2

∫ 1

0

tψ(tx) dt,

E2(x) = x1

∫ 1

0

tψ(tx) dt.

The map is well defined as both E1, E2 are polynomials of order p, provided ψ is a
polynomial of order p− 1. Right inverse:

curlE =
∂E2

∂x1
− ∂E1

∂x2

=

∫ 1

0

tψ(tx) dt+ x1

∫ 1

0

t
∂ψ

∂y1
t dt+

∫ 1

0

tψ(tx) dt+ x2

∫ 1

0

t
∂ψ

∂y2
t dt

= 2

∫ 1

0

tψ(tx) dt+

∫ 1

0

t2
d

dt
(ψ(tx)) dt

= 2

∫ 1

0

tψ(tx) dt−
∫ 1

0

2tψ(tx) dt+ t2ψ(tx)|10

= ψ(x).

Continuity of the operator follows from the continuity of the Poincaré map at the
continuous level. It is sufficient to demonstrate it, e.g., for the right triangle,

T = {(x1, x2) : 0 < x1 < 1, 0 < x2 < 1− x1} .
We have∫

T

(E2
1 + E2

2) dT =

∫
T

(x2
1 + x2

2)︸ ︷︷ ︸
≤1

(∫ 1

0

tψ(tx) dt

)2

dT

≤
∫
T

(∫ 1

0

t2ψ2(tx) dt

)
dT

=

∫ 1

0

t2
(∫

T

ψ2(tx) dT

)
dt ( use substitution tx = x′)

=

∫ 1

0

(∫
T ′

ψ2(x′)
)

dT ′

≤
∫
T

ψ2(x) dT ( image T ′ is contained in T ).
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Case of “Dirichlet boundary conditions.” Assume p > 2. Let ψ ∈ Pp−1. We
decompose ψ into a constant c and ψ0 with zero average,

∫
T
ψ0 dT = 0. Let E0 be

a unique polynomial E0 ∈ P 2
−1 such that curlE0 = 1, and (E0,∇φ) = 0 for all

φ ∈ P3
−1. We define the map A as follows:

Aψ = A(c+ ψ0) = cE0 +Aψ0 .

In order to define Aψ0, we first evaluate the Poincaré map at ψ0 to obtain a field
E and learn that tangential component n × E vanishes along the horizontal and
vertical edges and has a zero average along the inclined edge e2. Consequently, there
exists a polynomial φ of order p in space Pp−1(e2) such that ∂φ

∂s = n × E. By the
polynomial extension theorem of Babuška and Suri [3] and Babuška et al. [4], ψ admits
a polynomial extension φ̃, defined on T such that

‖∇φ̃‖ ≤ C‖φ‖
H

1
2
00(e2)

= C

∥∥∥∥∂φ∂s
∥∥∥∥
H− 1

2 (∂T )

= C‖n×E‖
H− 1

2 (∂T )
≤ C‖E‖H(curl,T )(3.4)

≤ C‖ψ0‖.

In the estimate above we have used Lemma 2 and the continuity of the Poincaré map.
Finally, we define

Aψ0 = E −∇φ̃ .

Adding the gradient does not change the curl of Aψ0, and the L2 boundedness follows
from (3.4).

Remark 1. The relevance of the Poincaré map in the construction of Nédélec’s
edge elements of the first type was first noticed by Hiptmair [11].

4. H1-conforming interpolation. Given a function u ∈ H1+ε(T ), we define
the corresponding interpolant Πu := up ∈ Pppe(T ) as the sum of three components,

up = u1 +

3∑
e=1

up2,e︸ ︷︷ ︸
up

2

+ up3 .(4.1)

Step 1: Linear interpolant. We construct u1 ∈ P1(T ) by the standard, linear
interpolation at the vertices,

u1 ∈ P1(T ), u1(v) = u(v) for every vertex v .

Step 2: Edge interpolants. For each edge e, we project trace of difference u− u1

onto space Ppe−1(e) of polynomials of order pe, vanishing at the edge endpoints, using

the H
1
2
00(e)-norm: 

u2,e ∈ Ppe−1(e),

‖u2,e − (u− u1)|e‖
H

1
2
00(e)

→ min .

Next, we extend u2,e to a polynomial up2,e from Pppe(T ), vanishing along the two
remaining edges. The sum of edge interpolants up2,e will be denoted up2.



1202 L. DEMKOWICZ AND I. BABUŠKA

Step 3: Interior interpolant. We project difference u−u1−up2 onto space Pp−1(T )
of polynomials of order p, vanishing on ∂T , in the H1-seminorm:{

up3 ∈ Pp−1(T ),

|up3 − (u− u1 − up2)|H1(T ) → min .

Remark 2. Notice that even though extensions up2,e are not uniquely defined, the
final interpolant is unique. To ensure the uniqueness of the extensions, we could use,
e.g., discrete harmonic extensions, i.e., request for the orthogonality

(∇up2,e,∇v) = 0 ∀v ∈ Pp−1(T ) .

Proposition 1. Operator Π : H1+ε(T ) → H1(T ) is well defined and bounded,
with the norm independent of orders p, pe.

Proof. Step 1. It follows from the continuous embedding of H1+ε(T ) into C(T̄ )
and equivalence of norms on a finite dimensional space that

‖u1‖H1(T ) ≤ ‖u1‖H1+ε(T ) ≤ C

(∑
a
|u(a)|2

) 1
2

≤ C‖u‖H1+ε(T ) ,

where a denote vertices of the triangle.

Step 2. By Lemma 1, restriction (u − u1)|e to edge e is in H
1
2
00(e), so the edge

minimization problem is well defined and

‖u2,e‖
H

1
2
00(e)

≤ ‖(u− u1)|e‖
H

1
2
00(e)

≤ C‖(u− u1)|e‖
H

1
2
+ε(e)
≤ C‖u− u1‖H1+ε(T )

≤ C‖u‖H1+ε(T ) .

By the polynomial extension theorem of Babuška and Suri [3] and Babuška et al. [4],
there exists an extension upe2,e ∈ Ppe(T ), vanishing along the two remaining edges,
such that

‖upe2,e‖H1(T ) ≤ C‖up2,e|e‖
H

1
2
00(e)

,

with constant C independent of pe.
Step 3. By Poincaré’s inequality and the results of the first two steps,

‖up3‖H1(T ) ≤ C|up3|H1(T ) ≤ C|u− (u1 + up2)|H1(T )

≤ C(‖u‖H1(T ) + ‖u1‖H1(T ) + ‖up2‖H1(T )) ≤ C‖u‖H1(T ) .

Applying the triangle inequality to the definition of the interpolant finishes the
proof.

Theorem 2 (H1-conforming interpolation error estimate). There exists a con-
stant C, dependent upon ε but independent of p, pe, such that

‖u−Πu‖H1(T ) ≤ C inf
v∈Pp

pe

‖u− v‖H1+ε(T ) ≤ Cp
−(r−ε)
min ‖u‖H1+r(T )

for every r > 1 and 0 < ε < r. Here pmin = mine pe.
Proof. It is sufficient to consider “small” ε, 0 < ε < min{r, 1

2}. As the interpola-
tion preserves polynomials ψ from Pppe(T ), we have

‖u−Πu‖H1(T ) = ‖u− ψ −Π(u− ψ)‖H1(T ) ≤ (1 + ‖Π‖)‖u− ψ‖H1+ε(T ) ,
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where ‖Π‖ is the norm of the interpolation operator in space L(H1+ε(T ), H1(T )) and
ψ is an arbitrary polynomial from Pppe(T ). Consequently, it follows from the best
approximation results for polynomial spaces (see, e.g., [4]) that

‖u−Πu‖H1(T ) ≤ C inf
ψ∈Ppmin (T )

‖u− ψ‖H1+ε(T ) ≤ Cp
−(r−ε)
min ‖u‖Hr(T ) .

Remark 3.

1. The described interpolation procedure is a generalization of the hp-interpola-
tion proposed in [16] and used in [9]. The original hp-interpolation uses
stronger H1

0 (e)-norms along the edges and requires more regularity (u ∈
H3/2+ε(T )). Consequently, it does not yield optimal (up to ε) convergence
rates.

2. According to Lemma 2, projection in the H
1
2
00(e)-norm over the edges can

be reinterpreted as the projection in the H−
1
2 (∂T )-norm of the (tangential)

derivatives,

‖u2,e − w‖
H

1
2
00(e)

= ‖ũ2,e − w̃‖
H

1
2 (∂T )

=

∥∥∥∥ ∂

∂s
(ũ2,e − w̃)

∥∥∥∥
H− 1

2 (∂T )

.

Here w = (u−u1)|e, and ũ2,e, w̃ denote zero extensions of u2,e, w to the whole
boundary ∂T .

5. H(curl)-conforming interpolation. Given a functionE∈Hε∩H(curl, T ),
we construct interpolant ΠcurlE := Ep ∈ P p

pe(T ) again in three steps,

Ep = E1 +

3∑
e=1

Ep
2,e︸ ︷︷ ︸

Ep

2

+Ep
3 .(5.1)

Step 1: Whitney’s (lowest order) interpolant. For each edge e, let φe ∈ P 1(T )
denote the vector-valued, linear polynomial such that

φet = n× φe =
{

1 along edge e,
0 along the remaining edges.

Here n is the outward normal unit vector to ∂T , and φt = n× φ = (−n2)φ1 + n1φ2

denotes the trace of the tangential component of vector-valued function φ to boundary
∂T . The Whitney interpolant is then defined as

E1 =
∑
e

(∫
e

Et

)
φe .

Step 2: Edge interpolants. It follows from the construction of the Whitney inter-
polant that the trace of tangential component n × (E − E1) has zero average over
each edge e. Thus, we can introduce a scalar-valued function ψ, defined on boundary
∂T , such that

∂ψ

∂s
= n× (E −E1), ψ = 0 at vertices.
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For each edge e then, we project restriction ψ|e in the H
1
2
00-norm onto polynomials

Ppe+1
−1 (e),  ψ2,e ∈ Ppe+1

−1 (e),

‖ψ2,e − ψ|e‖
H

1
2
00(e)

→ min .

We take then any polynomial extension ψp+1
2,e ∈ Pp+1

pe+1(T ) that vanishes along the two
remaining edges and define the edge interpolant by the gradient of the extension,

Ep
2,e = ∇ψp+1

2,e ∈ P p
pe(T ) .

Step 3: Interior interpolant. We solve the constrained minimization problem,
Ep

3 ∈ P p
−1(T ),

‖curl(Ep
3 − (E −E1 −Ep

2))‖ = ‖curl(Ep
3 − (E −E1))‖ → min,

(Ep
3 − (E −E1 −Ep

2),∇φ) = 0 ∀φ ∈ Pp+1
−1 (T ) .

Remark 4.
1. Notice again that the final interpolant is uniquely defined despite the possi-

bility of many extensions ψp+1
2,e . In fact, we can even use extensions Ep

2,e of

tangential trace ∂ψ2,e
∂s with nonzero curl.

2. The edge interpolants can again be defined directly using the projection in
H−

1
2 (∂T )-norm; compare Remark 3.

Proposition 2. Operator Πcurl : Hε(T ) ∩ H(curl, T ) → H(curl, T ) is well
defined and bounded, with a norm independent of orders p, pe.

Proof. Step 1. Consider a test function φ ∈ H1−ε(T ), φ = 1 on edge e, φ = 0 on
the two remaining edges. It follows from the integration by parts formula∫

T

curlE φ =

∫
T

E(∇× φ) +

∫
∂T

(n×E)φ

(curlE = ∂E2

∂x1
− ∂E1

∂x2
, ∇× φ = ( ∂φ∂x2

,− ∂φ
∂x1

) ) that functional

Hε(T ) ∩H(curl, T ) � E →
∫
e

Et =

∫
e

n×E

is well defined and continuous. By the finite dimensionality argument, we get

‖E1‖H(curl) ≤ (‖E1‖2Hε + ‖curlE1‖2) 1
2 ≤ C(‖E‖2Hε + ‖curlE‖2) 1

2 .

In fact, one can show directly [8] that ‖curlE1‖ ≤ ‖curlE‖.
Step 2. From the result of Step 1 and the integration by parts,∫

T

curl(E −E1)φ =

∫
T

(E −E1)(∇× φ) +

∫
∂T

n× (E −E1)φ ,

it follows that n × (E −E1) ∈ H−
1
2+ε(∂T ). From the construction of E1 it follows

that n× (E −E1) has zero average,∫
∂T

n× (E −E1) = 0 .
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Consequently, by Lemma 2, potential ψ is well defined and it lives in H
1
2+ε(∂K).

Repeating arguments from the proof of Proposition 1, we show that

‖ψp2,e‖H1(T ) ≤ C‖n× (E −E1)‖
H− 1

2
+ε(∂T )

≤ C(‖E‖2Hε(T ) + ‖curlE‖2)
1
2 .

Consequently,

‖Ep
2‖ = ‖Ep

2‖H(curl) ≤ C(‖E‖2Hε(T ) + ‖curlE‖2)
1
2 .

Step 3. We use the discrete Helmholtz decomposition,

Ep
3 = E

p
3,0 +∇ψp+1 ,(5.2)

where ψ ∈ Pp+1
−1 (T ), Ep

3,0 ∈ P p
−1, (E

p
3,0,∇φ) = 0 for all φ ∈ Pp+1

−1 (T ).
We have

‖curlEp
3,0‖ = ‖curlEp

3‖ ≤ ‖curl(E −E1)‖ ≤ 2‖curlE‖ ,
and by the discrete Friedrichs inequality (3.2),

‖Ep
3,0‖ ≤ C‖curlEp

3,0‖ ≤ 2C‖curlE‖ .
Finally, by the results of the first two steps,

‖∇ψp+1‖ ≤ ‖E −E1 −Ep
2‖ ≤ C(‖E‖2Hε + ‖curlE‖2) 1

2 .

Applying the triangle inequality to the definition of the interpolant finishes the
proof.

Proposition 3. de Rham diagram (1.1) commutes.
Proof. Both horizontal sequences in the diagram are exactl; compare [9, 10].
Commutativity of the first part of the diagram is obvious; operator Π preserves

constants.
Let nowE = ∇φ, φ ∈ H1+ε(T ). It follows from the definitions of the interpolation

operators that the Whitney interpolant of ∇φ coincides with the gradient of linear
interpolant φ1 of φ, E1 = ∇φ1. Consequently, φ− φ1 coincides with function ψ used
to define Ep

2, and extensions ψp+1
2,e and φp+1

2,e may be taken to be the same. Finally,

Ep
3,0 in the Helmholtz decomposition of Ep

3 is zero, and ψp+1 in (5.2) coincides with

φp+1
3 .

Finally, we need to show that

(curl(Ep −E), curlF ) = (curl(Ep
1 +E

p
3 −E), curlF ) = 0 ∀F ∈ P p

pe .

It follows from our discussion (see also [8]) that any F ∈ P p
pe can be decomposed as

F = F 1 + F
p
2 + F

p
3,

where F p2 is a gradient. Orthogonality with F 1 follows from the integration by parts
and the definition of the Whitney interpolant,

(curl(Ep
1+E

p
3−E), curlF 1)=

∫
∂T

n×(E1+E
p
3−E)curlF 1=

∫
∂T

n×(E1−E)curlF 1 = 0.

Orthogonality with F p3 is a consequence of the definition of Ep
3.
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Best approximation result. Let E ∈ Hr(T ) and curlE ∈ Hr(T ), 0 < r ≤ 1.
Consider the Helmholtz decomposition,

E = E0 +∇ψ (E0,∇φ) = 0 ∀φ ∈ H1(T ) .

Potential ψ is the solution of the Poisson equation,{
ψ ∈ H1(T )/R,

(∇ψ,∇φ) = (E,∇φ) ∀φ ∈ H1(T ) .

It follows from the regularity results of Costabel and Dauge [7] that
• E0 ∈H1+r(T ) and

‖E0‖H1+r ≤ C‖curlE0‖Hr = ‖curlE‖Hr ;

• ψ ∈ H1+r(T ) and

‖ψ‖H1+r ≤ C‖E‖Hr .

Consequently, there exists a vector-valued polynomial Ep
0 ∈ P p(T ) such that

‖E0 −Ep
0‖H1 ≤ Cp−r‖curlE‖Hr

and, consequently,

(‖E0 −Ep
0‖2Hε + ‖curl(E0 −Ep

0)‖2)
1
2 ≤ Cp−r‖curlE‖Hr .

Also, there exists a polynomial ψp+1 ∈ Pp+1 such that

‖∇ψp+1 −∇ψ‖Hε ≤ Cp−(r−ε)‖ψ‖H1+r(T ) .

Summing up Ep
0 and ∇ψp+1,

Ep = Ep
0 +∇ψp+1 ,

and using the triangle inequality we get

(‖E −Ep‖2Hε + ‖curl(E −Ep)‖2) 1
2 ≤ Cp−(r−ε)(‖E‖2Hr + ‖curlE‖2Hr )

1
2 .

Theorem 3 (H(curl)-conforming interpolation error estimate). There exists
C > 0, dependent upon ε but independent of p, pe, such that

‖E −ΠcurlE‖H(curl,T ) ≤ C inf
F∈P p

pe

(‖E − F ‖2Hε + ‖curl(E − F )‖2) 1
2

≤ Cp
−(r−ε)
min (‖E‖2Hr + ‖curlE‖2Hr )

1
2

(5.3)

for every 0 < r < 1 and 0 < ε < r. Here pmin = mine pe.
Proof. Combining Proposition 2 with the best approximation error estimate, we

have

‖E −ΠcurlE‖H(curl,T ) = ‖E − F −Πcurl(E − F )‖H(curl,T ) (∀F ∈ P p
pe)

≤ (1 + ‖Πcurl‖) inf
F∈P p

pe

(‖E − F ‖2Hε + ‖curl(E − F )‖2) 1
2

C ≤ p−(r−ε)(‖E‖2Hr + ‖curlE‖2Hr )
1
2 .
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6. Final remarks.

First family of Nédélec’s elements. Results concerning the H(curl)-conforming
interpolation extend automatically to the diagram corresponding to the first family
of Nédélec’s family of triangular elements [14]:

H1+ε ∇−→ Hε ∩H(curl)
∇×−→ L2,�Π �Πcurl

�P,

Pp+1
pe+1

∇−→ Pppe ⊕ P̃p+1
pe

∇×−→ Pp .

(6.1)

Here P̃
p+1

pe+1 corresponds to the direct sum decompositions,

Pp+2
pe+1 = Pp+1

pe+1 ⊕ P̃p+1
pe ,

P p+1
pe = P p

pe ⊕∇P̃p+2
pe+1 ⊕ P̃

p+1

pe ;

see [10] for a more detailed discussion. Contrary to the original diagram, order p may

now be equal to zero, except for p = 0 (when P̃2
1 is trivial, space P p

pe ⊕ P̃
p+1

pe is not

uniquely defined and depends upon the choice of algebraic component P̃
p+1

pe , unless
one requests additionally for orthogonality of the components [10]).

The advantage of using the first Nédélec family is that both E and curl E are
now interpolated with polynomials of the same order.

Extensions. An extension to the case of square elements in two dimensions seems
to be straightforward. As the interpolation takes place on the master element, the
results extend automatically to the case of curvilinear, parametric elements [9]. The
results extend also to three-dimensional tetrahedral elements with a minimum regu-
larity of H

3
2+ε(T ) for the H1-conforming interpolation. The limitation comes from

the definition of the linear, vertex interpolant. It looks like the analysis for three-
dimensional elements (nD differential forms in general [11]) will require nonlocal in-
terpolation operators. The question of how to define them so that the de Rham
diagram will commute is open.
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Appl. Math., 53 (1994), pp. 117–137.
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Abstract. A restricted additive Schwarz (RAS) preconditioning technique was introduced re-
cently for solving general nonsymmetric sparse linear systems. In this paper, we provide one-level
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1. Introduction. A restricted additive Schwarz (RAS) preconditioning tech-
nique was introduced recently for solving general nonsymmetric sparse linear systems
[1, 5, 7, 14, 16, 17, 20]. RAS outperforms the classical additive Schwarz (AS) pre-
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CG method cannot be used [15]. Although a symmetrized version was constructed
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show in both theory and numerical experiments that this new variant works well for
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the linear systems of the form

Aδiw = Rδi v(1.1)

on each extended subdomain, where Aδi is the extended subdomain stiffness matrix
and Rδi is the restriction operator for the extended subdomain. (Formal definitions
will be given later in the paper.) The key idea of RAS is that (1.1) is replaced by

Aδiw =

{
v inside the unextended subdomain,
0 in the overlapping part of the subdomain.

(1.2)

Note that the solution of (1.2) is discrete harmonic in the overlapping part of the
subdomain and therefore carries minimum energy in some sense. Setting part of the
right-hand-side vector to zero reduces the energy of the solution and also destroys
the symmetry of the additive Schwarz operator. In this paper, we further explore the
idea of “harmonic overlap” and at the same time keep the symmetry of the Schwarz
preconditioner. We mention that other approaches can also be taken to modifying
the Schwarz algorithm in the overlapping regions, such as allowing the functions to
be discontinuous [4].

The algorithm to be discussed below is applicable for general symmetric positive
definite problems. However, in order to provide a complete mathematical analysis, we
restrict our discussion to a finite element problem [3]. We consider a simple variational
problem: Find u ∈ H1

0 (Ω) such that

a(u, v) = f(v) ∀ v ∈ H1
0 (Ω),(1.3)

where

a(u, v) =

∫
Ω

∇u · ∇v dx and f(v) =

∫
Ω

fv dx for f ∈ L2(Ω).

For simplicity, let Ω be a bounded polygonal region in �2 with a diameter of size
O(1). The extension of the results to �3 can be carried out easily by using the theory
developed here in this paper and the well-known three-dimensional AS techniques; see
[9, 10, 12]. Let T h(Ω) be a shape-regular quasi-uniform triangulation of size O(h) of
Ω, and V ⊂ H1

0 (Ω) the finite element space consisting of continuous piecewise linear
functions associated with the triangulation. We are interested in solving the following
discrete problem associated with (1.3): Find u∗ ∈ V such that

a(u∗, v) = f(v) ∀ v ∈ V.(1.4)

Using the standard basis functions, (1.4) can be rewritten as a linear system of equa-
tions

Au∗ = f.(1.5)

For simplicity, we understand u∗ and f both as functions and vectors, depending on
the situation.

The paper is organized as follows. In section 2, we introduce notation. The new
algorithm is described in section 3. Section 4 is devoted to the mathematical analysis
of the new algorithm. We conclude the paper in section 5 by providing some numerical
results and final remarks. Throughout this paper, C is a positive generic constant
that is independent of any of the mesh parameters and the number of subdomains.
All the domains and subdomains are assumed to be open; i.e., boundaries are not
included in their definitions.
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2. Notation. Let n be the total number of interior nodes of T h(Ω), and W the
set containing all the interior nodes. We assume that a node-based partitioning has
been applied and has resulted in N nonoverlapping subsets W 0

i , i = 1, . . . , N , whose
union is W . For each W 0

i , we define a subregion ΩRi to be the union of all elements of
T h(Ω) that have all three vertices in W 0

i ∪ ∂Ω. Note that ∪Ω̄Ri is not equal to Ω̄; see
Figure 2.1(b). We denote by H the representative size (diameter) of the subregion
ΩRi .

We define the overlapping partition of W as follows. Let {W 1
i } be the one-

overlap partition of W , where W 1
i ⊃ W 0

i is obtained by including all the immediate
neighboring vertices of all vertices inW 0

i ; see Figure 2.1(c). Using the idea recursively,
we can define a δ-overlap partition of W ,

W =

N⋃
i=1

W δ
i .

Here the integer δ indicates the level of overlap with its neighboring subdomains, and
δh is approximately the length of the extension. The definition of W δ

i , as well as
many other subsets, can be found in an illustrative picture, Figure 2.1.

We next define a subregion of Ω induced by a subset of nodes of T h(Ω) as follows.
Let Z be a subset of W . The induced subregion, denoted by Ω(Z), is defined as
the union of (1) the set Z itself, (2) the union of all the open elements (triangles)
of T h(Ω) that have at least one vertex in Z, and (3) the union of the open edges
of these triangles that have at least one endpoint as a vertex of Z. Note that Ω(Z)
is always an open region. The extended subregion Ωδi is defined as Ω(W δ

i ), and the
corresponding subspace as

Vδi ≡ V ∩H1
0 (Ω

δ
i ) extended by zero to Ω\Ωδi .

It is easy to verify that

V = Vδ1 + Vδ2 + · · ·+ VδN .

This decomposition is used in defining the classical one-level AS algorithm [8]. Note
that for δ = 0 this decomposition is a direct sum. Let us define P δi : V → Vδi by the
following: For any u ∈ V,

a(P δi u, v) = a(u, v) ∀v ∈ Vδi .(2.1)

Then, the classical one-level AS operator has the form

P δ = P δ1 + · · ·+ P δN .

In the classical AS as defined above, all the nodes of W δ
i are treated equally even

through some subsets of the nodes play different roles in determining the convergence
rate of the AS-preconditioned CG. To further understand the issue, we classify the
nodes as follows. Let Γδi = ∂Ωδi \∂Ω, i.e., the part of the boundary of Ωδi that does not
belong to the Dirichlet part of the physical boundary ∂Ω. We define the interface-
overlapping boundary Γδ as the union of all Γδi ; i.e., Γ

δ = ∪Ni=1Γ
δ
i . We also need to

define the following subsets of W (see, for example, Figure 2.1, where δ = 1):

• WΓδ ≡W
⋂
Γδ (interface nodes),

• WΓδ

i ≡WΓδ ⋂
W δ
i (local interface nodes),



1212 X.-C. CAI, M. DRYJA, AND M. SARKIS

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 2.1. The partition of a finite element mesh into nine subdomains with the overlapping
factor δ = 1. (a) The finite element mesh and nodal points; (b) a node-based partition of the mesh

into nine nonoverlapping subsets, and the collection of “ •” forms the set W 0
i ; (c) W δ

i ; (d) WΓδ
;

(e) WΓδ

i ; (f) WΓδ

i,in; (g) WΓδ

i,cut; (h) W δ
i,ovl; (i) W δ

i,non; (j) W δ
i,in; (k) W̃ δ

i ; (l) the shadowed area is

Ωδi .
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• WΓδ

i,in ≡WΓδ ⋂
W 0
i (local internal interface nodes),

• WΓδ

i,cut ≡WΓδ

i \WΓδ

i,in (local cut interface nodes),

• W δ
i,ovl ≡ (W δ

i \WΓδ

i )
⋂
(
⋃
j �=iW

δ
j ) (local overlapping nodes),

• W δ
i,non ≡W δ

i \(WΓδ

i

⋃
W δ
i,ovl) (local nonoverlapping nodes),

• W δ
i,in ≡W δ

i,non

⋃
WΓδ

i,in (internal nodes).
We note that the most northwest and the southeast nodes in Figure 2.1(c) were

added to Γδi in order to make Ωδi a rectangle. This is just to simplify the presentation,
and it is not required in the implementation of the algorithms.

We frequently use functions that are discrete harmonic at certain nodes. Let
xk ∈ W be a mesh point and φxk

(x) ∈ V the finite element basis function associated
with xk; i.e., φxk

(xk) = 1, and φxk
(xj) = 0, j �= k. We say that u ∈ V is discrete

harmonic at xk if

a(u, φxk
) = 0.

If u is discrete harmonic at a set of nodal points Z, we say that u is discrete harmonic
in Ω(Z).

Our new algorithm will be built on the subspace Ṽδi defined as a subspace of Vδi .
Ṽδi consists of all functions that vanish on the cutting nodes WΓδ

i,cut and are discrete

harmonic at the nodes of W δ
i,ovl. Note that the degrees of freedom associated with

the subspace Ṽδi are

W̃ δ
i ≡W δ

i \WΓδ

i,cut,

and, since the values at the harmonic nodes are not independent, they cannot be
counted toward the degrees of freedom. The dimension of Ṽδi is

dim(Ṽδi ) = |W δ
i,in|.

Let Ω(W̃ δ
i ) be the induced domain. It is easy to see that Ω(W̃ δ

i ) is the same as Ωδi but

with cuts. We denote Ω(W̃ δ
i ) by Ω̃δi . We then have Ṽδi = V ∩H1

0 (Ω̃
δ
i ), and hence the

functions in Ṽδi are discrete harmonic on Ω(W δ
i,ovl). We denote Ω(W δ

i,ovl) by Ωδi,ovl.

We define Ṽδ ⊂ Vδ as

Ṽδ = Ṽδ1 ⊕ · · · ⊕ ṼδN ,
which is a direct sum. We remark that functions in Ṽδ are, by definition, the sum of
functions ui ∈ Ṽδi , i = 1, . . . , N . Functions in Ṽδ can, in fact, be characterized easily
as in the following lemma.

Lemma 2.1. If u ∈ V and u is discrete harmonic at all the overlapping nodes,
i.e., on ∪Ni=1W

δ
i,ovl, then u ∈ Ṽδ.

Proof. To prove that u ∈ Ṽδ, all we need is to find a decomposition

u =

N∑
i=1

ui, with ui ∈ Ṽδi , i = 1, . . . , N.

For the given u, we define ui piece by piece as follows. On the nodes in W δ
i,in we let

ui = u. On the nodes in W δ
i,cut we let ui be zero. On the nodes outside W δ

i we set

ui to zero. We now need only to define ui on the nodes belonging to W δ
i,ovl. There,

we extend ui as a discrete harmonic function with boundary data given by ui just
defined.
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3. One-level RASHO method. Using notation introduced in the previous
section, we now describe a new method, namely a RASHO.

We first define P̃ δi : Ṽδ → Ṽδi as a projection operator such that, for any u ∈ Ṽδ,

a(P̃ δi u, v) = a(u, v) ∀v ∈ Ṽδi .(3.1)

The RASHO operator can then be defined as

P̃ δ = P̃ δ1 + · · ·+ P̃ δN .(3.2)

Note, however, that the solution u∗ of (1.4) (see also (1.5)), is not, generally speaking,

in the subspace Ṽδ; therefore, the operator P̃ δ cannot be used to solve the linear
system (1.5) directly. We will need to modify the right-hand side of system (1.5).
A reformulated (1.5) will be presented in Lemma 3.1 below. We will show that the
elimination of the variables associated with the overlapping nodes is not needed in
order to apply P̃ δ to any given vector v ∈ P̃ δ.

We now introduce a matrix form of (3.2). We define the restriction operator,

or a matrix, R̃δi as follows. Let v = (v1, . . . , vn)
T be a vector corresponding to the

nodal values of a function u ∈ V; namely, for any node xk ∈ W , vk = u(xk). For

convenience, we say “v is defined on W .” Its restriction on W̃ δ
i , R̃

δ
i v is defined as

(R̃δi v)(xk) =

{
vk if xk ∈ W̃ δ

i ,

0 otherwise.
(3.3)

The matrix representation of R̃δi is given by a diagonal matrix, with 1 for nodal points

in W̃ δ
i and 0 for the remaining nodal points. We remark that, by way of definition,

the operator R̃δi is symmetric; i.e., (R̃δi )
T = R̃δi . Using this restriction operator, we

define the subdomain stiffness matrix as

Ãδi = R̃δi A (R̃δi )
T ,

which can also be obtained by the discretization of the original finite element problem
on W̃ δ

i with zero Dirichlet data on nodes W \ W̃ δ
i . The matrix Ãδi is block diagonal

with blocks corresponding to the structure of R̃δi , and its inverse is understood as an

inverse of the nonzero block. A matrix representation of P̃ δi , denoted also by P̃ δi , is
equal to

P̃ δi = (Ãδi )
−1 A

and

P̃ δ = ((Ãδ1)
−1 + · · ·+ (ÃδN )−1) A.(3.4)

Using the matrix notations, the next lemma shows how to modify system (1.5)

so that its solution belongs to Ṽδ.
Lemma 3.1. Let u∗ and f be the exact solution and the right-hand side of (1.5),

and

w =
N∑
i=1

(Ãδi )
−1R̃0

i f ;(3.5)
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then we have ũ∗ = u∗−w ∈ Ṽδ, which is the solution of the modified linear system of
equations

Aũ∗ = f −Aw = f̃ .

Proof. If we can show that

a(w, φk) = f(φk)

for a regular basis function associated with an arbitrary overlapping node xk ∈W δ
i,ovl,

for some i, then we will have

a(u∗ − w, φk) = f(φk)− f(φk) = 0,(3.6)

which says that ũ∗ = u∗−w is discrete harmonic at the overlapping node xk. We can
then use Lemma 2.1 to conclude the proof. Let us now consider

wi = (Ãδi )
−1R̃0

i f,

which, by definition, is the same as

a(wi, φj) = (φj , R̃
0
i f) ∀xj ∈ W̃ δ

i .

Here and in the rest of the proof, φj is the basis function associated with the node

xj ∈ W̃ δ
i . Using that R̃0

i is symmetric and

(φj , R̃
0
i f) = (f, R̃0

iφj) = a(u∗, R̃0
iφj),

we get

a(wi, φj) = a(u∗, R̃0
iφj).(3.7)

Let us compute a(wi, φk). Since xk is an overlapping node, it cannot be on the

boundary of Ω̃δi . This leaves us with the following two cases.

Case 1. The support of φk(x) belongs to the exterior of Ω̃δi . Since the supports
of wi and φk do not overlap, we have

a(wi, φk) = 0.

Case 2. The support of φk(x) belongs to the interior of Ω̃δi . In this case, we have

a(wi, φk) = a(u∗, R̃0
iφk).

Taking the sum of the above equality for i = 1, . . . , N , we get

a(w, φk) = a

(
N∑
i=1

wi, φk

)
= a

(
u∗,

N∑
i=1

R̃0
iφk

)
= a(u∗, φk),

which proves (3.6). Here the fact that
∑N
i=1 R̃

0
i = I has been used.

There are basically two ways to compute w in practice. Suppose that subdomain
problems are solved using some LU factorization–based method. One can use the
same factorization of Ãδi to modify the right-hand side of the system and to solve
subdomain problems in the preconditioning steps as that suggested in Lemma 3.1.
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Alternatively, one can obtain w by solving several small Dirichlet problems on each
subdomain with zero Dirichlet boundary conditions in the overlapping regions Ωδi,ovl.
In both strategies, the computation can be done in parallel, and no communication is
needed in a distributed memory implementation. In the first approach, ũ∗ is discrete
harmonic in W δ

i,ovl∪W δ
i,non, and in the second approach, ũ∗ is discrete harmonic only

in W δ
i,ovl. We note that the discrete harmonicity of ũ∗ on W δ

i,non is not required for
the algorithms and for the corresponding theory developed in this paper.

Let f̃ = f−Aw; then ũ∗ is the solution of the following linear system of equations:

Aũ∗ = f̃ .(3.8)

Since ũ∗ ∈ Ṽδ,
g ≡ P̃ δũ∗

is well defined and can be computed without knowing ũ∗ by using the following
relations:

a(P̃ δi ũ
∗, v) = a(ũ∗, v) = (f̃ , v) ∀v ∈ Ṽδi and i = 1, . . . , N.

More precisely, we can obtain g by solving the subdomain problems

a(gi, v) = (f̃ , v) ∀v ∈ Ṽδi
for i = 1, . . . , N and taking g = g1 + · · · + gN . With such a right-hand side, we
introduce a new linear system

P̃ δũ∗ = g,(3.9)

which is equivalent to the linear system (3.8); see Theorem 5.1. The system (3.9) is a
symmetric positive definite system under the usual energy inner product and therefore
can be solved using the CG method. RASHO has a few advantages over the classical
AS preconditioner. Let us recall AS briefly. Let

(
Rδi v

)
(xk) =

{
vk if xk ∈W δ

i ,

0 otherwise.
(3.10)

Then the AS operator takes the following matrix form:

P δ =
(
(Aδ1)

−1 + · · ·+ (AδN )−1
)
A,(3.11)

where Aδi = RδiA(R
δ
i )
T . Because of the inclusion of the cut interface nodes, the size

of the matrix Aδi is |W δ
i |, which is slightly larger than the size of the matrix Ãδi ,

which is |W̃ δ
i |. In a distributed memory implementation, the operation Rδi v involves

moving data from one processor to another, but the operation R̃δi v does not involve

any communication. More precisely, in RASHO, if u ∈ Ṽδ, then it is easy to see that

R̃δiAu = R̃δi,inAu,(3.12)

where R̃δi,in is defined as

(R̃δi,inv)(xk) =

{
vk if xk ∈W δ

i,in,

0 otherwise.
(3.13)
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Therefore, for functions in Ṽδ we can rewrite P̃ δ, as in (3.4), in the following
form:

P̃ δ = ((Ãδ1)
−1R̃δ1,in + · · ·+ (ÃδN )−1R̃δN,in) A.(3.14)

Although the operator (3.14) does not look like a symmetric operator, it is indeed

symmetric when applied to functions in the subspace Ṽδ. The form (3.12) takes

advantage of the fact that the operator R̃δi,in is communication-free in the sense that

it needs only the residual associated with nodes in W δ
i,in ⊂ Ω0

i .
We make some further comments on how the residual Au can be calculated in a

distributed memory environment for a given vector u ∈ Ṽδ. In a typical implemen-
tation, the matrix A is constructed and stored in the form {Ãδi }; each processor has

one or several of the subdomain matrix Ãδi . Similarly, u is stored in the form {ui},
where ui ∈ Ṽδi . We note, however, that to compute the residual at nodes WΓδ

i,in some

communications are required. The processor associated with subdomain Ωδi needs
to obtain the local solution from the neighboring subdomains at nodes connected to

WΓδ

i,in. It is important to note that the amount of communication does not depend on
the size of the overlap, since only one layer of nodes is required. This shows that in
terms of communication, the RASHO is superior to AS and RAS.

4. Some two-level versions. As with other domain decomposition methods,
the convergence rate of the single-level method depends on the number of subdomains.
To make the algorithm more scalable with respect to the number of subdomains, we
next introduce two two-level versions of RASHO in this section. This includes an
additive version and a hybrid version using the same coarse space.

Standard coarse spaces cannot be used since they are usually not discrete har-
monic in the overlapping regions. To construct a coarse subspace Ṽ0 of Ṽ, we introduce
the coarse basis functions φi(x), i = 1, . . . , N , based on a partition of unity [21] on the

interface nodes WΓδ

. For each subdomain, we define the nodal values of φi(x) ∈ Ṽi
as follows:

φi(xk) =


1 if xk ∈WΓδ

i,in,

discrete harmonic if xk ∈W δ
i,ovl ∪W δ

i,non,

0 if xk ∈W\W̃ δ
i .

(4.1)

Let us denote Ω(W δ
i,non) by Ωδi,non. Then φi(xk) = 1 at xk ∈ W δ

i,non for the case

Ωδi,non ∩ ∂Ω = ∅ since all the boundary nodal values of Ωδi,non belong to WΓδ

i,in and

therefore have nodal values equal to one. For the case Ωδi,non∩∂Ω �= ∅, we have chosen
to define φi(Ωδi,non) as the discrete harmonic extension with boundary nodal values

equal to one on WΓδ

i,in and equal to zero at Ω̄δi,non ∩∂Ω; note, however, that we do not

require that Ṽδ0 be discrete harmonic on Ωδi,non. If we had chosen φi equal to one at

all nodes of Ωδi,non also for the Ωδi,non ∩ ∂Ω �= ∅ case, φi would have a jump from one
to zero on the neighboring elements of ∂Ω. This jump would give lower bounds that
depend on the factor h/H, and such bounds would be poor if the overlap were very
small. Another possibility for avoiding the discrete harmonicity of φi on Ωδi,non in the

Ωδi,non ∩ ∂Ω �= ∅ case would be the use of the boundary layer technique developed in
[21]. We note, however, that the bounds of Theorem 5.1 would remain the same as
well as the analysis, with some minor modifications.
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The coarse space Ṽδ0 is simply the space spanned by all linear combinations of the

coarse basis functions φi, i = 1, . . . , N . We define P̃ δ0 : V → Ṽδ0 as the operator such
that, for any u ∈ V,

a(P̃ δ0 u, v) = a(u, v) ∀v ∈ Ṽδ0 .
A two-level additive version of RASHO can now be introduced with the operator

P̃ δC =

N∑
i=0

P̃ δi .(4.2)

The convergence properties of this two-level algorithm will be studied in the next
section. To describe the computational aspects of the coarse problem, we rewrite the
above definitions in matrix notation. Recall that n is the total number of nodes in W ,
N is the total number of subdomains, and φi is the coarse basis function. We write
the fine-to-coarse restriction operator as an N × n matrix

(R̃0)N×n =
(
φi(xk)

)
i=1,N ;k=1,n

.

The matrix form of the coarse projection operator P̃ δ0 is

P̃ δ0 = R̃T0 Ã
−1
0 R̃0A,(4.3)

where Ã0 = R̃0AR̃
T
0 is an N ×N matrix.

We remark that Ã0 is more sparse than coarse space matrices that appear in other
methods such as Neumann–Neumann or FETI-type algorithms [12, 13, 18, 23], since
only connections with the neighboring subdomains appear in the stencils associated
with a coarse basis function. Another feature of this coarse space problem is that the
computation of the right-hand side, i.e., R̃0Au for some u, can be done inside each
Ωδi ; this is a clear advantage over regular coarse spaces.

The two-level additive algorithm (4.2) is easy to code, but the performance isn’t
as good as expected. Some examples are given in the numerical experiments section
of this paper. We next introduce another two-level algorithm—a hybrid Schwarz
operator (see [19]) with the error propagation operator given by

(
I − P̃ δ0

)(
I −

N∑
i=1

P̃ δi

)(
I − P̃ δ0

)
.(4.4)

This is a symmetric operator with which we can work essentially without any extra
cost, since, when forming powers of the operator (4.4) on building the Krylov space

on the PCG, we can use the fact that I− P̃ δ0 is a projection, and therefore (I− P̃ δ0 )2 =

I − P̃ δ0 . Subtracting the operator (4.4) from the identity operator I, we obtain the
operator

P̃ δhyb = P̃ δ0 +
(
I − P̃ δ0

)( N∑
i=1

P̃ δi

)(
I − P̃ δ0

)
.(4.5)

The spectral properties of P̃ δhyb will be studied in the next section. Some numerical
results obtained using the additive and the hybrid two-level methods will be presented
in the numerical experiments section of the paper, and they will both be compared
with the single-level method.
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5. Theoretical analysis. The algorithm presented in the previous section is
applicable for general sparse, symmetric positive definite linear systems. The notions
of subdomains, harmonic overlaps, the classification of the nodal points, etc. can all
be defined in terms of the graph of the sparse matrix. In this section we provide
a nearly optimal estimate for a Poisson equation discretized with a piecewise linear
finite element method. We estimate the condition number of the RASHO operators
P̃ δ and P̃ δC in terms of the fine mesh size h, the subdomain size H, and the overlapping
factor δ. We shall follow the abstract AS theory [24] in what follows.

Lemma 5.1. Suppose that the following assumptions hold:
(i) There exists a constant C0 such that for any u ∈ Ṽδ there exists a

decomposition

u =
N∑
i=0

ui,

where ui ∈ Ṽδi , and
N∑
i=0

|ui|2H1(Ω) ≤ C2
0 |u|2H1(Ω).

(ii) There exist constants εij , i, j = 1, . . . , N , such that

a(ui, uj) ≤ εij a(ui, ui)
1/2a(uj , uj)

1/2 ∀ui ∈ Ṽδi , ∀uj ∈ Ṽδj .
Then P̃ δC is invertible, symmetric; i.e., a(P̃ δCu, v) = a(u, P̃ δCv),

C−2
0 a(u, u) ≤ a(P̃ δCu, u) ≤ (ρ(E) + 1)a(u, u) ∀u ∈ Ṽδ.(5.1)

Here ρ(E) is the spectral radius of E, which is an (N)× (N) matrix made of {εij}.
It is trivial to see that ρ(E) ≤ C. Thus our focus in the rest of the section is

on bounding C0. For the case of the single-level RASHO, the lemma above can be
modified by replacing u =

∑N
i=0 ui, P̃

δ
C , and (ρ(E) + 1) with u =

∑N
i=1 ui, P̃

δ, and
ρ(E), respectively.

To analyze the hybrid algorithm, we use a result due to Mandel [19, Lemma 3.2],
which in our context is given by the following.

Lemma 5.2. The extreme eigenvalues of P̃ δhyb, P̃
δ
C , and P̃ δ satisfy

λmin(P̃
δ
hyb) ≥ λmin(P̃

δ
C) and λmax(P̃

δ
hyb) ≤ λmax(P̃

δ).

5.1. The partition of unity and a comparison function. The construction
of a partition of unity is one of the key steps in an AS analysis. Consider φi(x) defined

in (4.1). It is easy to see that {φi(x), i = 1, . . . , N} restricted to WΓδ

forms a partition
of unity.

In addition to φi(x), we also need to construct a comparison function θi(x) for
each subdomain Ωδi . Comparison functions, or barrier functions, are very useful for
many Schwarz algorithms, such as these on nonmatching grids [6]. We will show that,

even though θi(x) ∈ Vδi , and is not in Ṽδi as we wished, it can still be used to bound

functions in Ṽδi . Both θi(x) and φi(x) depend on the overlapping factor δ. Because
φi(x) is discrete harmonic at W δ

i,ovl ∪ W δ
i,non and identical to θi at the remaining

nodes, we have

a(φi, φi) ≤ a(θi, θi).
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Fig. 5.1. The partition of Ωδi into the union of four types of subregions. This is a “floating”
subdomain with δ = 2. The collection of “ •” forms the set W 0

i .

To construct the function θi(x), we first consider the case in which Ω0
i is a floating

square subdomain. “Floating” refers to the fact that the subdomain doesn’t touch
the boundary ∂Ω. The extension to cases in which Ωδi touches the boundary is simple,
and we will comment on it later. To further simplify our arguments, we assume that
Ωδi and its neighboring extended subdomains Ωδj are squares of the same size, i.e.,
sides of length equal to H + 2(δ + 1)h. This assumption is equivalent to claiming
that ΩR has size H and that δ levels of overlap are applied; see Figure 5.1. We also
assume that the overlap is not too large; for the analysis given below, δh no larger
than H/4 is enough. Our techniques can be modified to consider larger overlaps and
more complex subdomains, although too large of an overlap has little practical value.

Roughly speaking, θi(x) is equal to φ
i(x) on W\W δ

i,ovl. On the overlapping region

W δ
i,ovl, we need to define θi(x) carefully so that we can control its energy in the H1

seminorm. For this purpose, we decompose Ωδi into subregions of four types (see

Figure 5.1), Ωδi,non (Type (1)), Ωδδi (Type (2)), ΩδHi (Type (3)), and Ωδδ̃i (Type (4)),
and define θi(x) on each piece of the subregion separately.

Type (1). The first subregion is Ωδi,non, which is a square with sides of sizeH−2δh.
Type (2). The second subregion Ωδδi is the area in which Ωδi overlaps simultane-

ously with three neighbors Ωδj . Ωδδi therefore represents the union of the four corner

pieces of Ωδi , i.e., four squares with sides of size (2δ + 1)h.
Types (3) and (4). The area in which Ωδi overlaps only one neighbor is four
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rectangles of size H−2δh× (2δ+1)h. We further partition each of the four rectangles

into three smaller rectangles; i.e., two of them are of Ωδδ̃i type and one of them of ΩδHi
type. For instance, without lost of generality, let us consider the intersection of Ωδi
with its right-hand neighbor Ωδj , excluding the corner parts. In this case, the subregion
to be partitioned is a rectangle of size (2δ + 1)h in the x direction and H − 2δh in

the y direction. The partition of this rectangles gives two smaller rectangles of Ωδδ̃i
type with dimensions 2(δ + 1)h × δh, and each one has an edge in common with a
square of Ωδδi type. We define them as transition subregions because they are placed
between a corner-type subregion Ωδδi and a face-type subregion ΩδHi . The ΩδHi face-
type subregions are the smaller rectangles that are placed between the two smaller

rectangles of Ωδδ̃i type. ΩδHi face-type regions are of size (2δ + 1)h by H − 4δh.
For any node x belonging to a Type (1) region Ωδi,non, we define θi(x) to be equal

to one, i.e., equal to φi(x). Therefore

|φi(x)|2H1(Ωδ
i,non

) = |θi(x)|2H1(Ωδ
i,non

) = 0.

We next define θi(x), node by node, in Ωδi,ovl, which is the union of corner-,
transition-, and face-type regions defined above.

For a Type (2) region Ωδδi , let Q be such a square with vertices V1 = (a, b), V2 =
(a + (2δ + 1)h, b), V3 = (a, b + (2δ + 1)h), and V4 = (a + (2δ + 1)h, b + (2δ + 1)h).
We assume that V1, V2, and V4 belong to ∂Ωδi . In other words, Q is located on

the southeast corner of Ωδi . Let us also introduce another square region Q̃, with

vertices V3 = (a, b + (2δ + 1)h), Ṽ1 = (a, b + δh), Ṽ2 = (a + (δ + 1)h, b + δh), and

Ṽ4 = (a + (δ + 1)h, b + (2δ + 1)h). Note that Q̃ is contained in Q, with V3 as the

common vertex. To define θi(x) on Q, we set θi(V3) = 1, θi(Ṽ1) = 0, θi(Ṽ2) = 0,

θi(Ṽ4) = 0. At the remaining nodes x on the edges Ṽ1Ṽ2 and Ṽ2Ṽ4 we set θi(x) = 0,

and on the edges V3Ṽ1 and V3Ṽ4 we set θi(x) = 1. For nodes on Q\Q̃ we set θi(x) = 0.

It remains only to define θi(x) for nodes x in the interior of Q̃. To define θi(x) there,
we use a well-known cutoff function technique, such as the one introduced in Lemma
4.4 of [10], but for two-dimensional square regions. An illustrative picture of θi(x) in
a typical region Ωδδi is shown in Figure 5.2. For the completeness of this paper, we

include the construction below. Let C be the center of the square Q̃. The construction
of θi(x) is defined by the following steps:

(1) Define θi(V3) = 1, θi(Ṽ2) = 0, θi(Ṽ1) = 0, and θi(Ṽ4) = 0.

(2) For a point P that belongs to the segments V3Ṽ4 or V3Ṽ1, define θi(P ) = 1.

For a point P that belongs to the segments Ṽ4Ṽ2 or Ṽ1Ṽ2, define θi(P ) = 0.
(3) For a point Y that belongs to the line segment connecting C to V3, define

θi(Y ) by linear interpolation between values θi(C) = 1/2 and θi(V3) = 1. For

a point Y that belongs to the line segment connecting C to Ṽ2, define θi(Y )

by linear interpolation between values θi(C) = 1/2 and θi(Ṽ2) = 0.
(4) For a point S that belongs to a line segment connecting a point Y to a vertex

Ṽ1 or Ṽ4, define θi(S) = θi(Y ).

(5) Note that the θi is defined everywhere on Q̃∪∂Q̃. θi is continuous everywhere

except at the points Ṽ1 and Ṽ4. We redefine θi as the continuous piecewise
linear finite element function given by the standard pointwise interpolation.

The most important observation of the construction of θi(x) inside Q̃ is that

|∇θi(x)| ≤ C/r near Ṽ1 or Ṽ4. Here r is the distance of x from Ṽ1 or Ṽ4. Therefore,
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Fig. 5.2. An illustrative picture of θi(x) in a typical region Ωδδi .

we obtain (see [10] and [23])

|θi(x)|2H1(Q) = |θi(x)|2H1(Q̃)
≤ C

(
1 + log

(
(δ + 1)h

h

))
= C(1 + log(δ + 1)).

Since inside of Ωδi there are four of those squares, we obtain

|θi(x)|2H1(Ωδδ
i

) ≤ C (1 + log(δ + 1)) .

Type (3) regions consist of transition-type rectangles. Let us consider one of them
and denote it by T , which we assume has vertices at V3 = (a, b + (2δ + 1)h), V4 =
(a+(2δ+1)h, b+(2δ+1)h), V5 = (a, b+(3δ+1)h), and V6 = (a+(2δ+1)h, b+(3δ+1)h).
Note that T stands on top of the square Q introduced above and has the common edge
V3V4. We define θi(x) over the edge V3V4 to be equal to φi(x). Over the edge V3V5,
we set θi(x) = 1. Over the edge V4V6, we set θi(x) = 0. And over the edge V5V6 we let
θi(x) decrease linearly from the value 1 to 0. What remains is to define θi(x) inside T .
Let us define the nodes Vl = (a+δh, b+(2δ+1)h) and Vr = (a+(δ+1)h, b+(2δ+1)h),

which is the same as the node Ṽ4 used in the description of Type (2) regions. The
nodes Vl and Vr are exactly the places on the edge V3V4 where φi(x) jumps from 1 to
0. On the triangle V3VlV5 we set θi(x) = 1. On the triangle VrV4V6 we set θi(x) = 0.
On the region VlVrV6V5, we let θi(x) decrease linearly in the x direction from the
value 1 to 0. We note that next to the nodes VlVr, θi(x) has a singular behavior
similar to |∇θi(x)| ≤ C/r, where r is the distance from x to the line Vl Vr. Similarly,
we have

|θi(x)|2H1(T ) ≤ C (1 + log(δ + 1)) .
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Since there are eight rectangles of Type (3) inside Ωδδ̃i , we obtain

|θi(x)|2H1(Ωδδ̃
i

)
≤ C (1 + log(δ + 1)) .

Type (4) regions are rectangles of face type. Let R be one of them, and assume
that the vertices are given by V5 = (a, b+(3δ+1)h), V6 = (a+(2δ+1)h, b+(3δ+1)h),
V7 = (a, b+H − (δ− 1)h), and V8 = (a+ (2δ+1)h, b+H − (δ− 1)h). Note that R is
on the top of the rectangle T defined above, and its height is H − 4δh. The vertices
V6 and V8 are the vertices that belong to ∂Ωδi . We define θi(x) = 1 if x is on the
edge V5V7, and θi(x) = 0 if x is on the edge V6V8, and θi(x) is linear in the horizontal
direction for the remaining points. We then obtain

|θi(x)|2H1(R) ≤
H − 4δh

(2δ + 1)h
.

Since there are four of those rectangles inside ΩδHi , we obtain

|θi(x)|H1(ΩδH
i

) ≤ C
H − 4δh

(2δ + 1)h
≤ C

H

(2δ + 1)h
.

For the cases in which Ω0
i touches the boundary ∂Ω, the analysis needs to be

modified slightly. The first modification is because the shape of the overlapping region
changes slightly, i.e., the longer side is shorter; it is easy to see that we get similar
bounds as before. The other modification is because φi on Ωδi,non is not identically
equal to one and therefore the corresponding energy is not necessarily zero; for this
case we can design θi similarly and obtain

|θi(x)|2H1(Ωδ
i,non

) ≤ C

(
1 + log

(
H

h

))
.

Putting all the pieces of θi(x) together, we see that θi(x) ∈ Vδi , and it is equal to

φi(x) on WΓδ

. Adding all the estimates on subregions of the four types, we arrive at
the following lemma.

Lemma 5.3. For i = 1, . . . , N , θi(x) ∈ Vδi , φi(x) ∈ Ṽδi , and the following hold:
(1) |φi|2

H1(Ωδ
i
)
≤ |θi|2H1(Ωδ

i
)
.

(2)

|θi|2H1(Ωδ
i
\Ωδ

i,non
) ≤ C

(
1 + log(δ + 1) +

H

(2δ + 1)h

)
.

(3) If Ωδi,non ∩ ∂Ω = ∅, then |θi|2H1(Ωδ
i,non

)
= 0.

(4) If Ωδi,non ∩ ∂Ω �= ∅, then

|θi|2H1(Ωδ
i,non

) ≤ C

(
1 + log

(
H

h

))
.

Here C > 0 is independent of the parameters h, H, and δ.

5.2. A bounded partition lemma. To obtain the parameter C0 of assumption
(i) of the abstract AS theory (see Lemma 5.1), we construct a decomposition of Ṽδ
and prove its boundedness below.
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Lemma 5.4. There exists a constant C > 0, independent of h, H, and δ, such
that for any u ∈ Ṽδ there exist vi ∈ Ṽδi such that

u =

N∑
i=0

vi(5.2)

and

N∑
i=0

|vi|2H1(Ω) ≤ C

((
H

(2δ + 1)h

))
|u|2H1(Ω)

+ C(1 + log(δ + 1))

(
1 + log

(
H

h

))
|u|2H1(Ω).

(5.3)

In addition, there exist ui ∈ Ṽδi such that

u =

N∑
i=1

ui(5.4)

and

N∑
i=1

|ui|2H1(Ω) ≤ C (1 + log(δ + 1))

(
1 + log

(
H

h

))
|u|2H1(Ω)

+ C
1

H2

(
1 + log(δ + 1) +

H

(2δ + 1)h

)
|u|2H1(Ω).

(5.5)

Proof. We first construct the decomposition (5.4). For any given u ∈ Ṽδ we define
ui ∈ Ṽδi as

ui(xk) =


u(xk) if xk ∈W δ

i,in,

discrete harmonic if xk ∈W δ
i,ovl,

0 if xk ∈W\W̃ δ
i .

It is easy to see that (5.4) holds. We next construct the decomposition (5.2). For

i = 1, . . . , N , let us define vi ∈ Ṽδi by

vi = ui − ūiφ
i ∈ Ṽδi ,

where

ūi =
1

|Ωδi |
∫

Ωδ
i

udx

is the average of u on the extended region Ωδi . Here |Ωδi | is the area of the region Ωδi .
We also define

v0 =

N∑
i=1

ūiφ
i.

It is easy to see that (5.2) holds.
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The next step is to bound
∑N
i=1 |vi|2H1(Ω). To bound each term |vi|2H1(Ω), i =

1, . . . , N , we use θi(x), i = 1, . . . , N , introduced before. Consider ṽi ∈ Vδi defined as
follows:

ṽi(x) = Ih(θi(x)(u(x)− ūi)).

Note that ṽi(x) is equal to vi(x) on WΓδ

i and on ∂Ωδi . On Ωδi,ovl, vi is discrete
harmonic. Therefore, we have

|vi|2H1(Ωδ
i,ovl

) ≤ |ṽi|2H1(Ωδ
i,ovl

).

In addition, vi(x) is identical to ṽi on Ωδi,non whenever Ωδi,non does not touch ∂Ω. For

such cases, we next devote the proof to the estimate of |ṽi|2H1(Ωδ
i
)
in terms of |u|2

H1(Ωδ
i
)
.

The estimate of |vi|2H1(Ωδ
i,non

)
for the case in which Ωδi,non does not touch ∂Ω is done

afterwards in (5.10).
Let K be an element of Ωδi , and let us define wi = u− ūi; then

|ṽi|2H1(K) = |Ih(θiwi)|2H1(K) ≤ 2|θ̄iwi|2H1(K) + 2|Ih((θ̄i − θi)wi)|2H1(K).(5.6)

Here, θ̄i is the average of θi on K, and Ih is the standard pointwise interpolation. To
estimate the first part of (5.6) we use the fact that |θ̄i| ≤ 1 to obtain

|θ̄iwi|2H1(K) = |θ̄i(u− ūi)|2H1(K) ≤ |u− ūi|2H1(K) = |u|2H1(K).

The last equality comes from the fact that ūi is a constant. For the second part of
(5.6), according to an inverse inequality, we have

|Ih((θ̄i − θi)wi)|2H1(K) ≤ C
1

h2
‖Ih((θ̄i − θi)wi)‖2L2(K).(5.7)

To obtain the bound for the right-hand side of (5.7), we consider the element K in
four different situations corresponding to the four types of subregions into which the

the subregion Ωδi is split, i.e., Ωδi,non, Ω
δH
i , Ωδδ̃i , and Ωδδi .

The proof for the cases K ⊂ ΩδHi and K ⊂ Ωδδ̃i are nearly the same, so we only
consider one of them here. For K ⊂ ΩδHi , since

‖θ̄i − θi‖2L∞(K) ≤ C

(
h

(2δ + 1)h

)2

,

we obtain

1

h2
‖Ih((θ̄i − θi)wi)‖2L2(K) ≤ C

1

((2δ + 1)h)2
‖wi‖2L2(K).

Applying a technique developed in Dryja and Widlund [11], we obtain

1

((2δ + 1)h)2
‖wi‖2L2(ΩδH

i
) ≤ C

(
H

(2δ + 1)h
|wi|2H1(Ωδ

i
) +

1

H((2δ + 1)h)
‖wi‖2L2(Ωδ

i
)

)
.(5.8)

Using the fact that |wi|2H1(Ωδ
i
)
= |u|2

H1(Ωδ
i
)
and a Friedrichs inequality, we have

‖wi‖2L2(Ωδ
i
) ≤ CH2|u|2H1(Ωδ

i
).(5.9)
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Combining the estimates (5.8) and (5.9), we obtain

1

((2δ + 1)h)2
‖wi‖2L2(ΩδH

i
) ≤ C

H

(2δ + 1)h
|u|2H1(Ωδ

i
).

For the case when K ⊂ Ωδδi , we use similar arguments as in Dryja, Smith, and
Widlund [10] to obtain∑

K∈Ωδδ
i

1

h2
‖Ih((θ̄i − θi)wi)‖2L2(K) ≤

∑
K∈Ωδδ

i

C
1

r2
‖wi‖2L2(K),(5.10)

where ch ≤ r ≤ C((δ + 1)h) is the distance to those “cut pieces.” We have used here
that θi(x) has the singular behavior C/r on Ωδδi . We then have

∑
K∈Ωδδ

i

1

r2
‖wi‖2L2(K) ≤ C

∫ C(δ+1)h

ch

∫
α

r−2r‖wi‖2L∞(Ωδδ
i

)dαdr(5.11)

and

‖wi‖2L∞(Ωδδ
i

) ≤ C

(
1 + log

(
H

h

))
|u|2H1(Ωδ

i
).(5.12)

For the inequality (5.12), we have used a well-known result (see Bramble [2])

‖u− ūi‖2L∞(Ωδδ
i

) ≤ ‖u− ūi‖L∞(Ωδ
i
) ≤ C

(
1 + log

(
H

h

))
‖u− ūi‖2H1(Ωδ

i
)

and that ūi is the average of u on Ωδi , i.e., a Friedrichs inequality,

‖u− ūi‖2H1(Ωδ
i
) ≤ C|u|2H1(Ωδ

i
).

Putting (5.11) and (5.12) together, we obtain

∑
K∈Ωδδ

i

1

r2
‖wi‖2L2(K) ≤ C

(
(1 + log(δ + 1))

(
1 + log

(
H

h

)))
|u|2H1(Ωδ

i
).(5.13)

For the case K ⊂ Ωδi,non, if Ω
0
i is a floating subdomain, which is to say that Ωδi,non

does not touch ∂Ω, then θ̄i − θi is zero. If Ω
δ
i,non touches the boundary ∂Ω, then the

estimate becomes

|vi|2H1(Ωδ
i,non

)
≤ C

(
|u|2

H1(Ωδ
i,non

)
+ |ūi|2|φi|2H1(Ωδ

i,non
)

)
≤ C

(
1 + log

(
H

h

))
|u|2

H1(Ωδ
i
)
.

(5.14)

Here we have used Lemma 5.3 and that for the cases i ∈ ∂Ω we can use a Poincaré
inequality to obtain∑

i∈∂Ω

|ūi|2 ≤ C
∑
i∈∂Ω

1

H2
‖u‖2L2(Ωδ

i
) ≤ C

∑
i∈∂Ω

|u|2H1(Ωδ
i
) ≤ C|u|2H1(Ω).(5.15)
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Here we have introduced the notation i ∈ ∂Ω to denote the subdomains Ω0
i that touch

the boundary ∂Ω with a face.
Putting everything together, we have shown that

N∑
i=1

|vi|2H1(Ω)

≤ C

((
H

(2δ + 1)h

))
|u|2H1(Ω) + C(1 + log(δ + 1))

(
1 + log

(
H

h

))
|u|2H1(Ω).

(5.16)

We remark that the bound (5.3) follows from (5.16). To see this, we use that v0 =
u−∑i vi, the triangular inequalities, and (5.16) to obtain (5.3).

We now consider the bound for the one-level RASHO method, i.e., to bound∑N
i=1 ui. Note that

N∑
i=1

ui =

N∑
i=1

vi +

N∑
i=1

ūiφ
i.

For the second sum above, we first use Lemma 5.3 to obtain

N∑
i=1

|ūiφi|2H1(Ω)

≤ C

(
1 + log

(
H

h

)) ∑
i∈∂Ω

|ūi|2 + C

(
1 + log(δ + 1) +

H

(2δ + 1)h

) N∑
i=1

|ūi|2.

We then use the Cauchy–Schwarz and Friedrichs inequalities to obtain

N∑
i=1

|ūi|2 =

N∑
i=1

(
1

|Ωδi |
∫

Ωδ
i

udx

)2

≤ C

N∑
i=1

1

H2
‖u‖2L2(Ωδ

i
)

≤ C
1

H2
‖u‖2L2(Ω) ≤ C

1

H2
|u|2H1(Ω).

For the cases i ∈ ∂Ω, we use (5.15). The inequality (5.5) then follows.

5.3. The main theorem. We state the main theorem of this paper here. The
proof follows directly from all the abstract Schwarz theory given by Lemmas 5.1, 5.2,
and 5.4.

Theorem 5.1. The RASHO operators P̃ δ, P̃ δC , and P̃ δhyb are symmetric in the
inner product a(·, ·), nonsingular, and bounded from below and above:

C−2
0 a(u, u) ≤ a(P̃ δCu, u) ≤ C1a(u, u) ∀u ∈ Ṽδ,

Ĉ−2
0 a(u, u) ≤ a(P̃ δu, u) ≤ Ĉ1a(u, u) ∀u ∈ Ṽδ,

and

κ(P̃ δhyb) ≤ κ(P̃ δC).

Here

C2
0 = C

(
H

(2δ + 1)h
+ (1 + log(δ + 1))

(
1 + log

(
H

h

)))
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and

Ĉ2
0 = C

(
(1 + log(δ + 1))

(
1 + log

(
H

h

))
+

1

H2

(
1 + log(δ + 1) +

H

(2δ + 1)h

))
.

The constants C,C1, Ĉ1 > 0 are independent of h, H, and δ.
We remark that the corresponding convergence rate estimate for the regular one-

level AS methods [11], in terms of the constant Ĉ0, is

Ĉ2
0 = C

(
1 +

1

H(2δ + 1)h

)
,

and that for the two-level additive Schwarz method is

C2
0 = C

(
1 +

H

δh

)
.

The lower bound Ĉ2
0 of the one-level RASHO algorithm is theoretically slightly worse

than the lower bound of regular AS algorithm in the case of large overlap, but roughly
the same for small overlap. For small overlap, the lower bounds of both algorithms
behave like O(H/h). When the overlap gets larger, the RASHO scheme starts to feel
the factor log(H/h), and the performance gets worse than the additive version for
large overlap. On the other hand, the upper bound C1 of RASHO is smaller than
the upper bounds of AS. We can see this since Ṽδk ⊂ Vδk ∀k implies that the positive
numbers εij defined in Lemma 5.1 are smaller for RASHO than the corresponding
εij for AS. Consequently, the spectral radius E of RASHO is smaller. Because C1

of RASHO is smaller, the numerical performance of RASHO presented in the next
section is better than that of AS for the practical cases. Similar considerations also
apply to the two-level RASHO methods.

6. Numerical experiments. In this section, we present some numerical results
for solving the Poisson equation on the unit square with zero Dirichlet boundary condi-
tions. We compare the performance of RASHO- and AS-preconditioned CG methods
in terms of the number of iterations and the condition numbers. We pay particular
attention to the dependence of the performance on the number of subdomains and
the size of overlap.

We first discuss a few implementation issues related to the new preconditioner.
In order to apply the RASHO/CG method, it is necessary to force the solution to

belong to Ṽδ. To do this, a pre-CG-computation is needed, and it is done through
the formula (3.5). We note that u = u∗ − w ∈ Ṽδ (see Lemma 3.1), and therefore we
can apply the regular preconditioned CG to the RASHO-preconditioned system (3.9).
The AS/CG is the classical AS preconditioned CG as described in [8]. We note that
in the case δ = 0, i.e., ovlp = h, RASHO and AS are the same.

The stopping condition for the CG method is to reduce the initial residual by a
factor of 10−6. The exact solution of the equation is u(x, y) = e5(x+y) sin(πx) sin(πy).
All subdomain problems are solved exactly. The iteration counts (iter), condition
numbers (cond), maximum (max) and minimum (min) eigenvalues of the precondi-
tioned matrix are summarized in Tables 6.1–6.5.

From Tables 6.1, 6.2, and 6.3, it is clear that for overlap not too large and for
mesh not too small, which is the case of practical interest, the one-level RASHO/CG
outperforms the classical one-level AS/CG in terms of the iteration counts and con-
dition numbers. In this case of small overlap, the condition number of RASHO is
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Table 6.1
One-level RASHO- and AS-preconditioned CG for solving the Poisson equation on a 128× 128

mesh decomposed into 2× 2 = 4 subdomains with overlap = ovlp. The AS/CG results are shown in
( ). The “+1” is for the preprocessing step needed for RASHO.

ovlp iter cond max min
h 42 (42) 129.(129.) 1.98 (1.98) 0.0154 (0.0154)
3h 24+1 (28) 48.4 (86.3) 1.94 (4.00) 0.0402 (0.0464)
5h 20+1 (23) 33.3 (51.8) 1.91 (4.00) 0.0574 (0.0773)
7h 18+1 (20) 27.2 (37.0) 1.89 (4.00) 0.0694 (0.1081)

Table 6.2
One-level RASHO- and AS-preconditioned CG for solving the Poisson equation on a 32 ∗

DOM × 32 ∗ DOM mesh decomposed into DOM × DOM subdomains with overlap = 3h, i.e.,
δ = 1.

DOM ×DOM iter cond max min
2 × 2 19+1 (20) 26.8 (43.7) 1.89 (4.00) 0.0708 (0.0916)
4 × 4 39+1 (42) 86.9 (145.) 1.95 (4.00) 0.0225 (0.0276)
8 × 8 75+1 (78) 328. (550.) 1.97 (4.00) 0.0060 (0.0073)

16 × 16 147+1 (156) 1295 (2168.) 1.98 (4.00) 0.0015 (0.0018)

Table 6.3
One-level RASHO-and AS-preconditioned CG for solving the Poisson equation on an n × n

mesh decomposed into 4 × 4 subdomains with overlap = 3h, i.e., δ = 1.

DOM ×DOM iter cond max min
64 × 64 30+1 (29) 50.1 (72.2) 1.91 (4.00) 0.0382 (0.0554)

128 × 128 39+1 (40) 86.9 (145.) 1.95 (4.00) 0.0225 (0.0276)
256 × 256 53+1 (56) 159.9 (290.7) 1.98 (4.00) 0.0124 (0.0138)
512 × 512 74+1 (77) 305.6 (582.1) 1.99 (4.00) 0.0065 (0.00069)

Table 6.4
Two-level hybrid and additive RASHO for solving the Poisson equation on a 32 ∗DOM × 32 ∗

DOM mesh decomposed into DOM×DOM subdomains with overlap = 3h, i.e., δ = 1; the two-level
additive RASHO results are shown in ( ).

DOM ×DOM iter cond max min
2 × 2 27+1 (30+1) 24.2 (45.9) 1.82 (2.90) 0.0751 (0.0634)
4 × 4 32+1 (46+1) 27.2 (53.3) 1.80 (2.93) 0.0662 (0.0551)
8 × 8 33+1 (52+1) 28.4 (55.3) 1.80 (2.94) 0.0634 (0.0533)

16 × 16 33+1 (52+1) 28.8 (55.8) 1.80 (2.94) 0.0625 (0.0528)

Table 6.5
Two-level hybrid and additive RASHO CG for solving the Poisson equation on a 512×512 mesh

decomposed into 16 × 16 = 256 subdomains with overlap = ovlp. The two-level additive RASHO
results are shown in ( ).

ovlp iter cond max min
h 86 +1 (109+1) 307 (275.7) 1.96 (3.74) 0.0064 (0.0136)
3h 44 +1 ( 68+1) 48.0 ( 95.7) 1.87 (2.98) 0.0391 (0.0312)
5h 36 +1 ( 58+1) 32.8 ( 70.1) 1.83 (2.95) 0.0558 (0.0421)
7h 31 +1 ( 53+1) 27.3 ( 59.8) 1.80 (2.93) 0.0662 (0.0491)

almost twofold smaller than AS. This is an important result since it is easy to modify
a (parallel) one-level AS/CG code to obtain a one-level RASHO/CG implementation.
Although we do not have any parallel results to report here, we confidently predict
that RASHO/CG would be even better than AS/CG on a parallel computer with dis-
tributed memory, since many less communications are required. Also the local solvers
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in RASHO are slightly cheaper, since the local solvers have slightly smaller numbers
of unknowns than for the regular AS. From Table 6.4 we see that both the two-level
hybrid and additive versions of RASHO attain scalability in terms of number of iter-
ations when the number of subdomains becomes large; the hybrid version reaches the
asymptotic behavior sooner than the additive version. The hybrid version is superior
to the additive version since the number of iterations is much smaller. Finally, from
Table 6.5 we see that larger overlap reduces dramatically the number of iterations.
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Abstract. A first order method is considered for the discretization in time of an integro-
differential equation, which can be written as Dαu(t) = Au(t) + f(t), 1 < α < 2, where A : D(A) ⊂
X → X is a sectorial operator in a Banach space X. Qualitative properties of the numerical solution,
such as contractivity and positivity, are studied. A numerical illustration is provided.
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1. Introduction. In the present paper we consider a numerical method for the
time discretization of the problem u′(t) =

1

Γ(α− 1)

∫ t

0

(t− s)α−2Au(s) ds + f(t), 0 ≤ t ≤ T,

u(0) = u0 ∈ D(A),

(1)

where A : D(A) ⊂ X → X is a linear, closed operator in a complex Banach space X
and f : [0, T ]→ X. The parameter α lies in the open interval (1, 2). The operator A
is assumed to be sectorial, and the precise hypothesis concerning A is given in section
2.

These equations with memory are of interest in connection with several applica-
tions (see [1, 12]). Formally, the equation in (1) can be viewed as (see [5, 6])

Dαu(t) = Au(t) + Dα−1f(t),

where Dα and Dα−1 stand for the fractional time derivatives, defined in terms of
the Riemann–Liouville operator (see [5, 7, 11, 13]). Thus, the equation in (1) is
intermediate between the one with α = 1,{

u′(t) = Au(t) + f(t),

u(0) = u0,

and the one with α = 2, 
u′′(t) = Au(t) + f ′(t),

u(0) = u0,

ut(0) = 0.
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†Departamento Matemática Aplicada y Computación, Universidad de Valladolid, 47005 Val-

ladolid, Spain (eduardo@mat.uva.es, palencia@mac.cie.uva.es).

1232



A METHOD FOR AN EQUATION WITH MEMORY 1233

Numerical methods for (1) have been considered in [10, 14] in the context of self-
adjoint operators in Hilbert spaces and in [3] in the context of sectorial operators in
Banach spaces. Here we consider the method introduced in [10] and [14]. This scheme
combines the backward Euler method with an appropriate quadrature rule for the
integral (see [8]). The analysis in [10] can be extended to the present framework of
sectorial operators and Banach spaces. Moreover, as remarked at the end of section 3,
the convergence can also be proved from the results in [8, 9]. Because of this, we focus
only on some qualitative properties of the method.

A brief review of the continuous problem (1) is given in section 2, where some
new qualitative properties are also deduced. The numerical method is presented in
section 3. It is shown, in section 4, that the values provided by the method can be
expressed as certain averages of the continuous solution under discretization. From
this representation we deduce that the numerical method inherits qualitative proper-
ties such as contractivity and positivity from the continuous solution. A numerical
illustration is given in section 5.

2. Continuous problem. In this section, for the convenience of the reader, we
recall some basic facts about the solutions of (1). We also derive some new results
concerning their qualitative behavior.

Notice that problem (1) is well posed (see [2, 12]) when A is sectorial and its
spectral angle is small enough. To be precise, when there exist ω ∈ R, 0 < θ <
π(2− α)/2, and M ≥ 1 such that, for z ∈ C outside the sector

ω + Sθ = ω + {µ ∈ C / | arg(−µ)| ≤ θ},

the resolvent (z −A)−1 : X → X exists and

‖(z −A)−1‖ ≤ M

|z − ω| , z /∈ ω + Sθ.(2)

In the rest of the paper we assume that A is sectorial in this sense.
Suppose first that f = 0, and let u : [0, T ]→ X be a solution of (1). Assume that

u is of exponential growth. Then taking the Laplace transform on both sides of (1)
leads to (see [2, 6])

U(z) = zα−1(zα −A)−1u0, | arg(z − ω)| < (π − θ)/α,(3)

where U stands for the Laplace transform of u. Thus, by the inversion formula, it
turns out that

u(t) = Eα(t)u0, t ≥ 0,(4)

where Eα(t) : X → X, t > 0, is the bounded operator

Eα(t) :=
1

2πi

∫
Γ

etzzα−1(zα −A)−1 dz,

Γ being a suitable path connecting −i∞ with +i∞.
For arbitrary u0 ∈ X we define the generalized solution of the corresponding

Cauchy problem (1) by the expression in (4). The above discussion shows that a
solution of exponential growth is necessarily the generalized solution corresponding
to its initial value.
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If f �= 0, then it is well known that the solution is represented by means of the
variation-of-constant formula

u(t) = Eα(t)u0 +

∫ t

0

Eα(t− s)f(s) ds, t ≥ 0.(5)

For ω = 0 and t > 0 we can take Γ = Γt as the positive boundary of the union of
Sθ and the circle |z| = 1/tα. Then, by (2), it is straightforward to prove that

‖Eα(t)‖ ≤ CM,(6)

where C > 0 stands for a constant depending only on α and θ. This estimate can also
be proved by other means (see [12, Corollary 6.4]).

For ω < 0 we can choose Γ = Γ̃t to be the boundary of the sector Sθ. Using again
(2), this time we obtain

‖Eα(t)‖ ≤ CM

(2− α)|ω|tα , t > 0,

which combined with (6) results finally in

‖Eα(t)‖ ≤ CM

1 + (2− α)|ω|tα .(7)

The case ω > 0 is a bit more cumbersome. By arguments similar to the ones used in
[2] we can establish now that

‖Eα(t)‖ ≤ CM(1 + ln+(tω1/α))etω
1/α

.(8)

In the remainder of the paper, for simplicity, we will assume that ω = 0. When
ω �= 0 the estimates we will derive are affected by similar factors to those appearing
in (7) or (8).

It is also true that the family Eα(t), t > 0, is strongly continuous. Continuity at
0+ holds in the case where A is densely defined.

To end this section we present some new estimates relating the qualitative behav-
ior of Eβ(t) to the ones of Eα(t), 1 < β < α < 2.

Lemma 2.1. For 0 < µ < 1, let Kµ : (0,+∞) × (0,+∞) → C be the mapping
defined by

Kµ(σ, t) :=
1

2πi

∫ +i∞

−i∞
est−σs

µ

ds, σ > 0, t > 0.

Then there exist constants c = c(µ) > 0 and C = C(µ) > 0 such that, for any a > 0,

Kµ(σ, t) ≤ C min

{
1

t
,
eat−ca

µσ

σ1/µ

}
, σ > 0, t > 0.

Moreover,

Kµ(σ, t) ≥ 0, σ > 0, t > 0.

Proof. The positivity of Kµ is provided by Proposition 2 in Chapter IX of [16].
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On the other hand, for a > 0 fixed, let Γ1 be the positive boundary of a sector
Sϕ with 0 < ϕ < π/2 and (π − ϕ)µ ≥ π/2. Notice that there exists C = C(µ) > 0
such that

|est−σsµ | ≤ Ce−|s|t cosϕ, s ∈ Γ1.

Therefore,

|Kµ(σ, t)| ≤ C

2π

∫
Γ1

e−|s|t cosϕ |ds| ≤ C

πt cosϕ
.

Besides, let us consider the path Γ2(ξ) = a + iξ, −∞ < ξ < +∞. Now, for s =
a + iξ ∈ Γ2, we have

|sµ| = (a2 + ξ2)µ/2 ≥ 2µ/2−1(aµ + |ξ|µ)

and | arg(sµ)| ≤ πµ/2 so that

|est−σsµ | ≤ eate−ca
µσe−c|ξ|

µσ,

where c = cos(πµ/2)/2µ/2−1. Therefore,

|Kµ(σ, t)| ≤ 1

π
eat e−ca

µσ

∫ +∞

0

e−cσξ
µ

dξ =
1

π
eat e−ca

µσ Γ(1/µ)

µ(cσ)1/µ
.

Theorem 2.2. For 1/α < µ < 1 and t > 0 there holds

Eαµ(t) =
1

Γ(1− µ)

∫ t

0

1

(t− τ)µ

[∫ +∞

0

Kµ(σ, τ)Eα(σ) dσ

]
dτ.(9)

Proof. Set hµ(t) = t−µ/Γ(1− µ) and

Eµ
α(t) =

∫ +∞

0

Kµ(σ, t)Eα(σ) dσ, t > 0.

Since the integrand is strongly continuous and, because of the previous lemma, abso-
lutely convergent (this is true even for ω �= 0), it turns out that the integral exists in
the strong sense and that the operators Eµ

α(t) are uniformly bounded in t > 0.
Notice that for fixed σ > 0 the Laplace transform of t→ Kµ(σ, t) is the mapping

s→ e−σs
µ

. Therefore, the Laplace transform of t→ Eµ
α(t) is

LEµ
α(s) =

∫ +∞

0

e−σs
µ

Eα(σ) dσ, �(s) > 0.

Recalling (3) we deduce that

LEµ
α(s) = sµ(α−1)(sαµ −A)−1, �(s) > 0,

so that the Laplace transform of hµ ∗ Eµ
α is

L(hµ ∗ Eµ
α)(s) = sµ−1sµ(α−1)(sαµ −A)−1 = sµα−1(sαµ −A)−1, �(s) > 0,

which, by (3) applied to αµ, is the Laplace transform of Eαµ.
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Corollary 2.3. Let u0 ∈ X, and assume that ‖Eα(t)u0‖ ≤ H for t > 0. Then,
for 1/α < µ < 1, there holds

‖Eαµ(t)u0‖ ≤ H, t > 0.

Proof. Notice that the equation in (2.2) with A = 0 reduces to

1

Γ(1− µ)

∫ t

0

1

(t− τ)µ

[∫ +∞

0

Kµ(σ, τ) dσ

]
dτ = 1.

Then, since Kµ ≥ 0, taking norms in (9) leads to

‖Eµα(t)u0‖ ≤ H

Γ(1− µ)

∫ t

0

1

(t− τ)µ

[∫ +∞

0

Kµ(σ, τ) dσ

]
dτ ≤ H.

In the same way we can prove the next corollary.
Corollary 2.4. Assume that X is an ordered Banach lattice (see [15]). If

u0 ∈ X is such that

Eα(t)u0 ≥ 0, t > 0,

then, for 1/α < µ < 1, we also have

Eαµ(t)u0 ≥ 0, t > 0.

It is possible to prove that Theorem 2.2 and its corollaries are valid even for
α = 2, under the hypothesis that now A generates a cosine family (see [4]). Thus, for
instance, since the one-dimensional wave equation with Dirichlet conditions

utt(t, x) = uxx(t, x), 0 ≤ x ≤ L, t ≥ 0,

u(0, x) = u0(x), 0 ≤ x ≤ L,

ut(0, x) = 0, 0 ≤ x ≤ L,

u(t, 0) = 0, t ≥ 0,

u(t, L) = 0, t ≥ 0,

is contractive with respect to the maximum norm, i.e.,

‖u(t, ·)‖∞ ≤ ‖u0‖∞, t ≥ 0,

Corollary 2.3 shows that ‖Eβ(t)‖ ≤ 1, t ≥ 0, 1 < β < 2, with respect to the maximum
norm, where Eβ(t) is the evolution operator corresponding to (1) and the operator
Aφ := φ′′ acting on the domain

D(A) = {φ ∈ C[0, L] / φ′′ ∈ C[0, L] and φ(0) = φ(L) = 0} .

In the case of Neumann boundary conditions, the one-dimensional wave equation
preserves positivity. Therefore, by Corollary 2.4, this property remains valid for the
corresponding Eβ(t), t > 0, for 1 < β < 2. These qualitative results extend those in
[5, 6].
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3. The numerical method. The numerical method we propose for (1) has
already been considered in [10] and [14] in the context of Hilbert spaces and self-
adjoint operators. The basic idea is to combine the classical backward Euler method
with a suitable quadrature rule for approximating the integral term, which is the
fractional quadrature rule generated by the rectangle rule (see [2, 8]). The resulting
numerical method reads

Un − Un−1

τ
=

n∑
j=1

q
(α−1)
n−j AUj + τf(tn), 0 < n ≤ [T/τ ],(10)

where τ > 0 stands for the step size, tn = nτ , and Un ∈ X are the approximations to

u(tn) we are looking for. The weights q
(α−1)
n are given by

+∞∑
n=0

q(α−1)
n zn :=

(
τ

δ(z)

)α−1

,

where

δ(z) := 1− z.

Therefore, the weights turn out to be

q(α−1)
n := τα−1(−1)n

(
1− α

n

)
.

As starting value U0 we can take either u0 or an available approximation to u0.
Notice that (10) is an implicit scheme. To obtain Un from U0, U1, . . . , Un−1 we

must solve the linear equation

(I − ταA)Un = Un−1 + τ

n−1∑
j=1

q
(α−1)
n−j AUj + τf(tn),(11)

which, since ω = 0, possesses a unique solution (in general, for ω �= 0, a sufficient
condition for the uniqueness and solvability of (11) is max{ω, 0} · τα < 1).

For the analysis of the method it is convenient to rewrite (10) in terms of gener-
ating functions. To this end, without loss of generality, we assume that f and u are
defined on [0,+∞). Thus, set

U(z) :=

+∞∑
n=1

Unz
n, F (z) :=

+∞∑
n=1

f(tn)zn, Q(z) :=
τ

δ(z)
.

Multiplying (10) by zn and summing up in n we obtain

U(z)− zU(z)− zU0 = τQ(z)α−1AU(z) + τF (z)

or

(I −Q(z)αA)U(z) =
z

1− z
U0 +

τ

1− z
F (z).

Therefore, since

I −Q(z)αA = Q(z)α
(

1

Q(z)α
−A

)
,
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and since, for |z| = r < 1, we have �((1 − z)/τ) > 0, it is clear that I − Q(z)αA is
invertible and that

(I −Q(z)αA)−1 =
1

Q(z)α

(
1

Q(z)α
−A

)−1

is a holomorphic operator-valued mapping. Cauchy’s formula shows now that

z

1− z
(I −Q(z)αA)−1 =

+∞∑
n=1

D(α)
n zn, |z| < 1,

where the bounded operators D
(α)
n : X → X, n ≥ 1, are given by

D(α)
n =

1

2πi

∫
|z|=r

1

(1− z)zn
(I −Q(z)αA)−1 dz, 0 < r < 1.

Going back to (11) we obtain the following expression for the numerical approxima-
tion:

Un = D(α)
n U0 + τ

n∑
j=1

D
(α)
n+1−jf(tj), n ≥ 1.(12)

The above representation shows that the numerical scheme makes sense even for
starting values u0 ∈ X which are not in D(A).

It is also of interest to connect this method with the approach in [8, 9]. Assume
that U0 = 0. Now, in view of (5), we have

u(t) =

∫ t

0

Eα(t− s)f(s) ds, t ≥ 0.

Discretizing this convolution by the method in [8, 9] leads to approximations

Un = τ

n∑
j=0

L
(α)
n−jf(tj) � u(tn),(13)

where the operators L
(α)
n : X → X are defined by

+∞∑
n=0

L(α)
n zn :=

1

τ
Fα

(
δ(z)

τ

)
,(14)

and Fα stands for the Laplace transform of Eα, i.e.,

Fα(ξ) :=

∫ +∞

0

e−ξtEα(t) dt = ξα−1(ξα −A)−1.

Since

1

τ
Fα

(
δ(z)

τ

)
=

1

1− z
(I −Q(z)αA)−1,

comparison of (13) with (12) shows readily that

D(α)
n = L

(α)
n−1, n ≥ 1,(15)

a useful result we use later.
Finally, notice that (15), together with the stability of the method (see the next

section), allows us to prove that the method is convergent of first order just by using
Theorem 3.1 in [8]. Besides, Theorem 4.1 in [8] yields an optimal estimate in the case
where u0 /∈ D(A).
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4. Qualitative behavior of the numerical solutions. The next theorem

provides a representation of the discrete evolution operators D
(α)
n as an average of the

continuous ones Eα(t), t > 0. This, combined with (12), allows us to obtain several
interesting properties concerning the qualitative behavior of Un.

For fixed τ > 0, we set

ρn(t) := e−t/τ
(
t

τ

)n−1
1

τ(n− 1)!
, t ≥ 0, n ≥ 1.

Notice that ρn(t) ≥ 0 and that∫ +∞

0

ρn(t) dt = 1.

Theorem 4.1. For n ≥ 1 there holds

D(α)
n =

∫ +∞

0

Eα(t)ρn(t) dt.

Proof. By definition (14), we have

+∞∑
n=0

L(α)
n zn =

1

τ

∫ +∞

0

Eα(t)e−tδ(z)/τ dt.

Then, since

1

τ
e−tδ(z)/τ =

+∞∑
n=0

ρn+1(t)zn, t > 0,

we obtain

L(α)
n =

∫ +∞

0

ρn+1(t)Eα(t) dt, n ≥ 0,

and the theorem is now clear because of (15).
From this theorem we derive several corollaries whose proofs are obvious. For

simplicity, we consider only f = 0. Related results for nonhomogeneous problems
could be obtained by using (12).

Corollary 4.2. Let U0 ∈ X, and assume that ‖Eα(t)U0‖ ≤ H, t > 0. Then

‖D(α)
n U0‖ ≤ H, n ≥ 1.

In particular, the previous corollary shows that

‖D(α)
n ‖ ≤ sup

t≥0
‖Eα(t)‖, n ≥ 1,

i.e., that the numerical scheme is stable. Using (6), we see that the stability constant
is less than or equal to CM . Finally, notice that if Eα(t), t > 0, are contractions

(recall Theorem 2.2), we also have that D
(β)
n , n ≥ 1, are contractions for 1 < β ≤ α.

Corollary 4.3. Assume that X is an ordered Banach lattice (see [15]) and that
for some U0 ∈ X we have Eα(t)U0 ≥ 0, t ≥ 0. Then

D(α)
n U0 ≥ 0, n ≥ 1.
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Corollary 4.3 shows in particular that if Eα(t) ≥ 0, t ≥ 0 (i.e. the operators Eα(t)

are order-preserving), then D
(α)
n ≥ 0, n ≥ 1. To illustrate the scope of Corollary 4.3 in

situations where Eα(t) are not order-preserving let us consider the three-dimensional
wave equation. For radial initial data

u0(r) =
f(r)

r

the solution of 
utt(t, r) = c2∆u(t, r),

u(0, r) = u0(r),

ut(0, r) = 0

turns out to be

u(t, r) =
1

2r
[f(r + ct) + f(r − ct)] .

Therefore, if u0 ≥ 0, we have that u(r, t) ≥ 0. Then, by Theorem 2.2, we deduce that
Eα(t)u0 ≥ 0, 1 < α < 2, where Eα(t) is the evolution operator that corresponds to

A = ∆ in (1). Now Corollary 4.3 shows that D
(α)
n u0 ≥ 0, n ≥ 1.

5. Numerical illustration. Let us consider the two-dimensional problem ut(t, x, y) =
1

Γ(α− 1)

∫ t

0

(t− s)α−2∆u(s, x, y) ds, (x, y) ∈ Ω,

u(0, x, y) = u0(x, y), (x, y) ∈ Ω,

in the square Ω = [0, 1]× [0, 1] with homogeneous Neumann boundary condition

Dnu(t, x, y), (x, y) ∈ ∂Ω, t ≥ 0.

As an initial condition we take the indicator mapping of the subsquare [1/3, 1/7] ×
[1/3, 1/7]. Notice that, by the maximum principle, for α = 1 the solution is nonneg-
ative. This problem is fully discretized by using first centered finite differences in
space, with parameter h, and then applying method (10) to the resulting semidiscrete
problem with step size τ .

Let Ah be the matrix corresponding to the discrete Laplacian, and denote by
Eα,h(t) the corresponding evolution operators. Since Ah is symmetric, nonpositive,
and diagonally dominant, it is well known that E1,h(t) = etAh preserves the positivity.
For α = 1.1, h = 1/50, and τ = 1/200 it turns out that minU6 = −0.1164. Because
of Theorem 4.1 we deduce that Eα,h(t) cannot be positive for 1.1 ≤ α < 2. Thus, in
view of Corollary 4.3, this experiment suggests that Eα(t) is not positive either for
1.1 ≤ α < 2. It is reasonable to conjecture that, in fact, Eα(t) does not preserve the
positivity for 1 < α < 2.

Acknowledgment. The authors wish to express their gratitude to Prof. Ch.
Lubich for several remarks which greatly improved the presentation of the paper.
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Abstract. The aim of this paper is to develop stepwise variable preconditioning for the iterative
solution of monotone operator equations in Hilbert space and apply it to nonlinear elliptic problems.
The paper is built up to reflect the common character of preconditioned simple iterations and quasi-
Newton methods. The main feature of the results is that the preconditioners are chosen via spectral
equivalence. The latter can be executed in the corresponding Sobolev space in the case of elliptic
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1. Introduction. The aim of this paper is to develop stepwise variable precon-
ditioning for the iterative solution of monotone operator equations

F (u) = 0(1)

in Hilbert space and apply it to nonlinear elliptic boundary value problems.
Nonlinear elliptic problems arise in many applications in physics and other fields,

for instance in elastoplasticity, magnetic potential equations, and flow problems. The
most frequently used numerical methods for nonlinear elliptic problems rely on some
discretized form of the problem, whose solution is obtained by an iterative method.
Simple iteration is often able to yield favorable speed of global convergence if supplied
with suitable preconditioning, and in these cases its usage can be justified versus
Newton’s method owing to the extra work of forming the Jacobians (see, e.g., [2, 5]).
Hence, similarly to linear problems, preconditioning is most times a crucial element of
the construction of the iterative method. The choice of preconditioners is often helped
by Hilbert space background, which helps both the construction of methods and the
study of convergence. A typical example of this is the Sobolev gradient technique
[25, 26]. (For the authors’ related results see, e.g., [6, 15, 20].) In the case of monotone
operators a natural kind of preconditioning is based on spectral equivalence, in an
analogous way to symmetric linear equations. Namely, preconditioners are chosen to
be globally spectrally equivalent to the derivatives F ′(u) of the operator in each point.
A Hilbert space framework has been developed for this in [21], in which preconditioners
for the discretized elliptic systems are found as projections of linear operators chosen
as preconditioners for the original nonlinear differential operator.

The above described simple iterations are globally preconditioned in the sense
that the preconditioners are the same in each step and rely on the global behavior of
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F ′(u). However, this may be insufficient since the global convergence quotient may
be very poor, as it is, e.g., for magnetic potential equations [23]. This insufficiency
demands the stepwise improvement of contractivity, which necessarily involves the
local properties of the Jacobians during the iteration. The stepwise comparison to
F ′(un) leads to the framework of Newton-like or inexact Newton methods.

Inexact Newton methods, coupled with damping when global convergence is re-
quired, form a class that encompasses most iterative methods. A general descrip-
tion of these methods is found, e.g., in [10, 12], and with applications to BVPs in
[1, 14]. The scope of these methods involves two main areas. In the first case the
auxiliary equations contain exactly F ′(un) and inexactness comes from solving them
approximately, often by an inner iteration. The other area (quasi-Newton methods)
involves approximate Jacobians when they are not known exactly or in order to reduce
work. (Several related methods are discussed in [13].) The generalization of Newton’s
method to Hilbert spaces has long been known [19], and many inexact versions can
be put through as well.

The problem of preconditioning is connected to the second (quasi-Newton or ap-
proximate Jacobian) approach of inexact Newton methods. In both cases the iterative
sequences are of the form

un+1 = un −B−1
n F (un) (n ∈ N)(2)

(which in fact contains all reasonable one-step iterative methods for (1)). The differ-
ence in approach is that preconditioning uses Bn to improve contractivity, whereas
in quasi-Newton methods Bn has to approximate F ′(un). However, for elliptic prob-
lems, Bn required by the two methods may be similar, as is suggested by the preceding
considerations and will be the case in our investigations. (Concerning the one-step
sequence (2), we note that CG-type multistep methods in this context are in general
unable to increase the order of convergence [9].)

Our investigation concerns variable preconditioning of iterations in Hilbert space,
motivated by Sobolev space methods for nonlinear elliptic problems. The main feature
of our results is that the preconditioners are chosen via spectral equivalence. This
construction exploits the ellipticity properties of the equation. We note that our
results also reflect more directly the way in which (2) shares equally the characters of
simple and Newton iterations.

The main difficulty encountered in the convergence proof is that the variable
preconditioners yield natural contractivity in stepwise different norms that are unable
to produce a common estimate. Hence a transition is required to norms that can be
compared to a common one. This will involve background investigations of suitable
energy norms.

The approximate Jacobian approach, to which our investigation belongs, is rele-
vant in applications to elliptic problems. Although the linear elliptic operators F ′(u)
are then known exactly, it is worth looking for suitable approximations of F ′(un)
in order to have simpler auxiliary equations. The use of Sobolev space background
for such preconditioners seems an efficient approach for elliptic problems. This is
the main scope of application for our method, the idea being analogous to the one
suggested in [21] for simple iterations. Namely, preconditioning matrices can be ob-
tained as projections of linear preconditioning operators chosen for the BVP itself
on the continuous level, i.e., in the corresponding Sobolev space. In this way the
original properties of the differential operator (mostly, those of its coefficients) can
be exploited before discretization, and the obtained conditioning properties are mesh
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independent. As a main example, the operators Bn can be close to the Laplacian
regarding their structure: for this purpose one may look for them as diagonal (scalar)
coefficient operators with piecewise constant coefficients. (We note that the solution
of the auxiliary linear systems in the steps of the iteration can rely on efficient stan-
dard methods, since these are highly developed; see, e.g., [3, 22]. In [3, 8] there is also
discussed variable preconditioning in the context of linear equations.) We note that
a summary on preconditioning operators is given in the book [16].

The paper is organized as follows. In section 2, first a result on simple iterations
is quoted as a starting point; then some required properties of linear operators are
given. The Hilbert space results on variable preconditioning are found in sections 3
and 4. First, section 3 provides local linear convergence using fixed spectral bounds
for preconditioning. Although this theorem might be essentially derived from the one
to come in section 4, it is worth formulating for two reasons. First of all, it illustrates
more lucidly the preconditioning role of quasi-Newton methods, the result being an
exact analogue of the quoted theorem on simple iterations in section 2. Besides,
technical background is clearer when developed first for this simpler case. Section 4
contains the general method: global convergence up to second order is obtained using
damped iteration and variable spectral bound preconditioning. Its proof is provided
using the preceding technical background in the framework of damped quasi-Newton
methods. Finally, in section 5 we apply the results to nonlinear elliptic boundary value
problems. First we derive a general convergence result in Sobolev space and then
give the construction of piecewise constant coefficient preconditioning operators using
suitable domain decomposition. A numerical example illustrates the convergence
results.

2. Preliminaries. Let H be a Hilbert space with norm ‖ . ‖. The notation
〈u, v〉A = 〈Au, v〉

will be used for the energy inner product of a self-adjoint positive operator. The
corresponding norm has the obvious notation ‖ . ‖A.

2.1. Motivation: Simple preconditioning. The following theorem gives a
linear convergence result for preconditioned simple iterations.

Theorem 2.1. Let H be a real Hilbert space. Let the nonlinear operator F :
H → H have a Gâteaux derivative satisfying the following properties:

(i) For any u ∈ H the operator F ′(u) is self-adjoint.
(ii) (Ellipticity.) There exist constants Λ ≥ λ > 0 satisfying

λ‖h‖2 ≤ 〈F ′(u)h, h〉 ≤ Λ‖h‖2 (u, h ∈ H).

Denote u∗ the unique solution of equation F (u) = 0. Assume that B is a self-adjoint
linear operator satisfying

m〈Bh, h〉 ≤ 〈F ′(u)h, h〉 ≤M〈Bh, h〉 (u, h ∈ H)(3)

with some constants M ≥ m > 0. Then for any u0 ∈ H, the following sequence
converges linearly to u∗:

un+1 = un − 2

M +m
B−1F (un) (n ∈ N).

Namely,

‖un − u∗‖ ≤ C ·
(
M −m

M +m

)n
(n ∈ N)(4)
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with some constant C > 0.
Proof. The theorem is a special case of Theorem 3.2 in [21], where F itself is

not assumed to be Gâteaux differentiable. Incidentally, in this form it follows easily
from the well-known special case (see, e.g., [17]) when B = I and (3) is no more than
condition (ii). Namely, B−1F inherits the properties of F in the energy space HB of
the operator B (i.e., w.r.t. the inner product 〈u, v〉B = 〈Bu, v〉).

We note that the basis of the convergence estimate (4) is the contractivity of the
operator I − 2

M+m B−1F with constant M−m
M+m w.r.t. the energy norm ‖ . ‖B , which

implies (4) in the ‖ . ‖B-norm. The equivalence of the two norms then yields (4).
Theorem 2.1 can be used for the preconditioning of the iterative solution of non-

linear elliptic BVPs. The straightforward application is to consider the discretized
version of the problem and use the finite dimensional case of the theorem with a suit-
able preconditioning matrix B. The Hilbert space setting can be applied if F is the
weak form of the differential operator and B is a weak linear elliptic operator defined
in H1

0 (Ω) by

〈Bh, v〉 =
∫

Ω

G(x)∇h · ∇v (h, v ∈ H1
0 (Ω)),

where the coefficient matrix G(x) can be chosen following the properties of F ′(u).
Then for any discretization of the BVP, a suitable preconditioning matrix can be ob-
tained as the projection of B under the same discretization, and this yields a mesh
independent convergence estimate. Preconditioning strategies of this kind are summa-
rized in [21]. (We note that often B = I is already suitable in H1

0 (Ω); i.e., the original
operator in strong form is preconditioned by the minus Laplacian. This works, e.g., for
problems in plasticity [15]. The discrete Laplacian preconditioner is connected to the
Sobolev gradient idea, developed for least-squares methods [25].) In both approaches
the preconditioners so obtained are favorable, provided that M/m is not very large.

However, this kind of preconditioning is insufficient ifM/m is large, and the latter
may be unimprovable globally. This insufficiency demands the stepwise improvement
of contractivity, i.e., varying B during the iteration to produce better spectral bounds.
Since this modification involves the local properties of the Jacobians during the itera-
tion (i.e., stepwise comparison to F ′(un)), it leads to the framework of quasi-Newton
methods.

As mentioned in the introduction, the following difficulty is encountered in this
generalization. The variable preconditioners Bn yield contractivity in the above way
in the stepwise different ‖ . ‖Bn norms; hence we must verify contractivity in other
norms that can be compared to a common one. Some properties required for this are
given in the next subsection.

2.2. Properties of spectrally equivalent operators. We formulate two lem-
mas for operators in a Hilbert space H satisfying the following spectral equivalence
condition:
(C1) A and B be are self-adjoint linear operators in H with positive lower bound,

and there exist constants M ≥ m > 0 such that

m〈Bh, h〉 ≤ 〈Ah, h〉 ≤M〈Bh, h〉 (h ∈ H).

Lemma 2.2. Let the operators A and B satisfy condition (C1). Then

m〈A−1h, h〉 ≤ 〈B−1h, h〉 ≤M〈A−1h, h〉 (h ∈ H).(5)
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Proof. We prove only the right side of (5); the left one is similar. Let v ∈ H.
Setting h = B−1/2v, condition (C1) yields

‖A1/2B−1/2v‖2 = ‖A1/2h‖2 ≤M‖B1/2h‖2 =M‖v‖2.
Using also that for arbitrary bounded linear operator C there holds

‖C‖ = ‖C∗‖
and setting C = B−1/2A1/2, we obtain

‖B−1/2A1/2‖2 = ‖(B−1/2A1/2)∗‖2 = ‖A1/2B−1/2‖2 ≤M,

which implies that

〈B−1h, h〉 = ‖B−1/2A1/2A−1/2h‖2 ≤M‖A−1/2h‖2 =M〈A−1h, h〉 (h ∈ H).

Lemma 2.3. Let the operators A and B satisfy condition (C1). Then∥∥∥∥I − 2

M +m
AB−1

∥∥∥∥
A−1

≤ M −m

M +m
,(6)

where I is the identity operator.
Proof. Let C = M+m

2 B. The operator I − AC−1 is self-adjoint w.r.t. the energy
norm of A−1, since

〈AC−1h, v〉A−1 = 〈C−1h, v〉 = 〈h,C−1v〉 = 〈h,AC−1v〉A−1 (h, v ∈ H).

Hence

‖I −AC−1‖A−1 = sup
h�=0

|〈(I −AC−1)h, h〉A−1 |
‖h‖2A−1

= sup
h�=0

|〈(A−1 − C−1)h, h〉|
〈A−1h, h〉 .(7)

Since C−1 = 2
M+mB−1, condition (C1) and Lemma 2.2 imply

2m

M +m
〈A−1h, h〉 ≤ 〈C−1h, h〉 ≤ 2M

M +m
〈A−1h, h〉.

Hence for any h ∈ H

−M −m

M +m
〈A−1h, h〉 ≤ 〈(A−1 − C−1)h, h〉 ≤ M −m

M +m
〈A−1h, h〉;

i.e., the supremum in (7) is indeed at most M−mM+m .

3. Linear convergence by variable preconditioning. The following theorem
provides local linear convergence using fixed spectral bounds for preconditioning. The
result being locally an exact analogue of Theorem 2.1, it illustrates the preconditioning
role of quasi-Newton methods.

Theorem 3.1. Let H be a real Hilbert space. Assume that the nonlinear operator
F : H → H has a Gâteaux derivative satisfying the following properties:

(i) For any u ∈ H the operator F ′(u) is self-adjoint.
(ii) (Ellipticity.) There exist constants Λ ≥ λ > 0 satisfying

λ‖h‖2 ≤ 〈F ′(u)h, h〉 ≤ Λ‖h‖2 (u, h ∈ H).
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(iii) (Lipschitz continuity.) There exists L > 0 such that

‖F ′(u)− F ′(v)‖ ≤ L‖u− v‖ (u, v ∈ H).

Denote u∗ the unique solution of equation F (u) = 0. We fix constants M ≥ m > 0.
Then there exists a neighborhood V of u∗ such that for any u0 ∈ V, the sequence

un+1 = un − 2

M +m
B−1
n F (un) (n ∈ N),

with self-adjoint linear operators Bn satisfying

m〈Bnh, h〉 ≤ 〈F ′(un)h, h〉 ≤M〈Bnh, h〉 (n ∈ N, h ∈ H),(8)

converges linearly to u∗. Namely,

‖un − u∗‖ ≤ C ·
(
M −m

M +m

)n
(n ∈ N)(9)

with some constant C > 0.
(We note that constructive estimates are provided in the proof for the neighbor-

hood V; cf. (22) and Remark 1(b), and for the constant C, cf. (25).)
The proof of Theorem 3.1 is preceded by some required properties.
Lemma 3.2. Let conditions (i)–(iii) of Theorem 3.1 hold. Then for any u, v, h ∈

H,

〈F ′(u)h, h〉 ≤ 〈F ′(v)h, h〉 (1 + Lλ−2‖F (u)− F (v)‖) .(10)

Proof. Condition (ii) of Theorem 3.1 implies that ‖F (u) − F (v)‖ ≥ λ‖u − v‖.
Hence

〈F ′(u)h, h〉 ≤ 〈F ′(v)h, h〉+L‖u−v‖‖h‖2 ≤ 〈F ′(v)h, h〉+Lλ−2‖F (u)−F (v)‖〈F ′(v)h, h〉.
Applying Lemma 3.2 to u and u∗, we obtain the following corollary.
Corollary 3.3. If F (u∗) = 0, then for any u ∈ H there holds

1

1 + µ(u)
≤ 〈F

′(u∗)h, h〉
〈F ′(u)h, h〉 ≤ 1 + µ(u),

where µ(u) = Lλ−2‖F (u)‖ ≤ LΛ1/2λ−2〈F ′(u∗)F (u), F (u)〉1/2.
We introduce the norms

‖h‖u = 〈F ′(u)−1h, h〉1/2 (u, h ∈ H).(11)

Then Corollary 3.3 and Lemma 2.2 imply directly the following corollary.
Corollary 3.4. If F (u∗) = 0, then for any u ∈ H there holds

1

1 + µ(u)
≤ ‖h‖

2
u∗

‖h‖2u
≤ 1 + µ(u),

where µ(u) is from Corollary 3.3.
Proof of Theorem 3.1. Assumption (ii) and Lemma 2.2 imply that Λ−1‖h‖2 ≤

〈F ′(u)−1h, h〉 ≤ λ−1‖h‖2 for any u, h ∈ H. Hence the norms (11) satisfy

λ1/2‖h‖u ≤ ‖h‖ ≤ Λ1/2‖h‖u (u, h ∈ H),(12)
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and there also holds

‖F ′(u)−1/2‖ ≤ λ−1/2 (u ∈ H).(13)

Since the assumptions imply that λM−1‖h‖2 ≤ 〈Bnh, h〉 for any h ∈ H, we obtain
similarly to (13) that

‖B−1/2
n ‖ ≤ λ−1/2M1/2.(14)

The following norms (special cases of (11)) will be used throughout the proof:

‖ . ‖n = ‖ . ‖un (n ∈ N), ‖ . ‖∗ = ‖ . ‖u∗ .(15)

The Lipschitz continuity of F implies that

F (un+1) = F (un) + F ′(un)(un+1 − un) +R(un),(16)

where

‖R(un)‖ ≤ L

2
‖un+1 − un‖2.(17)

Here

F (un) + F ′(un)(un+1 − un) = F (un)− 2

M +m
F ′(un)B−1

n F (un);

hence (8) and Lemma 2.3 imply that

‖F (un) + F ′(un)(un+1 − un)‖n ≤
∥∥∥∥I − 2

M +m
F ′(un)B−1

n

∥∥∥∥
n

‖F (un)‖n

≤ M −m

M +m
‖F (un)‖n.(18)

Further, (12) and (17) yield

‖R(un)‖n ≤ 2L

λ1/2(M +m)2
‖B−1

n F (un)‖2.

Here, using (14), (8), and Lemma 2.2, we have

‖B−1
n F (un)‖2 ≤ ‖B−1/2

n ‖2‖B−1/2
n F (un)‖2 ≤Mλ−1〈B−1

n F (un), F (un)〉

≤M2λ−1〈F ′(un)−1F (un), F (un)〉 =M2λ−1‖F (un)‖2n.
Hence

‖R(un)‖n ≤ 2LM2

λ3/2(M +m)2
‖F (un)‖2n.(19)

Altogether, (16), (18), and (19) yield

‖F (un+1)‖n ≤
(
M −m

M +m
+

2LM2

λ3/2(M +m)2
‖F (un)‖n

)
‖F (un)‖n .
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Finally, using Corollary 3.4, we obtain

‖F (un+1)‖∗ ≤ (1+µ(un))

(
M −m

M +m
+

2LM2

λ3/2(M +m)2
(1 + µ(un))

1/2‖F (un)‖∗
)
‖F (un)‖∗ ,

where µ(un) = LΛ1/2λ−2‖F (un)‖∗. That is,
‖F (un+1)‖∗ ≤ ϕ(‖F (un)‖∗) ‖F (un)‖∗ ,(20)

where

ϕ(t) = (1 + βΛ1/2t)

(
Q+M2βα−2λ1/2(t/2)

(
1 + βΛ1/2t

)1/2
)

(21)

and the notations

α =
M +m

2
, β =

L

λ2
, Q =

M −m

M +m

are used. Then ϕ : R+ → R+ is a strictly increasing continuous function and ϕ(0) =
Q.

Estimate (20) puts us in the position to prove the required convergence estimate
(9), provided that the assumption

r := ϕ(‖F (u0)‖∗) < 1(22)

is satisfied for the initial guess.
First, we obtain by induction that

‖F (un+1)‖∗ ≤ r‖F (un)‖∗ (n ∈ N).(23)

Namely, ‖F (u1)‖∗ = r‖F (u0)‖∗. Further, the assumption ‖F (uk+1)‖∗ ≤ r‖F (uk)‖∗
(k = 0, . . . , n− 1) yields ‖F (un)‖∗ < ‖F (u0)‖∗; hence
‖F (un+1)‖∗ ≤ ϕ(‖F (un)‖∗) ‖F (un)‖∗ ≤ ϕ(‖F (u0)‖∗) ‖F (un)‖∗ = r‖F (un)‖∗ .
Inequality (23) implies that ‖F (un)‖∗ ≤ rn‖F (u0)‖∗ → 0, ϕ(‖F (un)‖∗) → Q,

and hence

lim sup
‖F (un+1)‖∗
‖F (un)‖∗ ≤ limϕ(‖F (un)‖∗) = Q.

From now on we use the notation

en = ‖F (un)‖∗ .
Then (20) implies that

en ≤
(
n−1∏
k=0

ϕ(ek)

)
e0 =

(
n−1∏
k=0

ϕ(ek)

Q

)
Qne0 (n ∈ N).(24)

Using (21) and the notations c = βΛ1/2, d = (M2βα−2λ1/2)/2, we have

ϕ(t) = (1 + ct)
(
Q+ dt (1 + ct)

1/2
)
.
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Here

ϕ(ek)

Q
= (1 + cek)

(
1 +

d

Q
ek (1 + cek)

1/2

)

≤ (1 + cek)

(
1 +

d

Q
ek

(
1 +

c

2
ek

))
= 1 +

(
c+

d

Q

)
ek +

cd

Q
e2
k +

c2d

2Q
e3
k

≤ 1 +
(
c+

d

Q

)
e0r

k +
cd

Q
e2
0r

2k +
c2d

2Q
e3
0r

3k.

Since for any sequence (ak) ⊂ R+ there holds
∏n−1
k=0(1 + ak) ≤

∏n−1
k=0 exp(ak) ≤

exp(
∑∞
k=0 ak), we obtain

n−1∏
k=0

ϕ(ek)

Q
≤ exp

{(
c+

d

Q

)
e0

1− r
+

cd

Q

e2
0

1− r2
+

c2d

2Q

e3
0

1− r3

}
=: E .

Therefore (24) yields

en ≤ e0E ·Qn (n ∈ N).

Finally, using condition (ii) and (12), this implies

‖un − u∗‖ ≤ λ−1‖F (un)‖ ≤ λ−1Λ1/2e0E ·Qn (n ∈ N),(25)

which coincides with the required convergence estimate with C = λ−1Λ1/2e0E.
Remark 1. The convergence has been proved under the sufficient condition

ϕ(‖F (u0)‖∗) < 1(26)

for the initial guess, with ϕ defined in (21). In connection with this we note the
following:

(a) The condition (26) is satisfied if

K
L

λ2
‖F (u0)‖∗ < 1 ,

where K = Λ1/2(M/m)max
{
1, 2(M −m)−1(λ/Λ)1/2

}
. (This is proved in

the appendix.) Relating this to the well-known sufficient condition L
2λ2 ‖F (u0)‖

< 1 of the exact Newton iteration, we observe that the order is similar (al-
though K is obviously somewhat larger than 1/2).

(b) The sufficient condition of convergence can be given using the original norm as
follows. Since the theoretical norm ‖ . ‖∗ satisfies ‖F (u0)‖∗ ≤ λ−1/2‖F (u0)‖
by (12), and ϕ increases, therefore we obtain the condition

ϕ(λ−1/2‖F (u0)‖) < 1

to be checked for u0.
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4. Damped quasi-Newton method as variable preconditioning. We re-
call the following definitions of norms (see (15)), where (un) is an iterative sequence
and u∗ is the solution of F (u) = 0:

‖h‖n = 〈F ′(un)−1h, h〉1/2 (n ∈ N), ‖h‖∗ = 〈F ′(u∗)−1h, h〉1/2.(27)

The following theorem generalizes Theorem 3.1. Using damped iteration and
variable spectral bound preconditioning, it provides global convergence up to second
order.

Theorem 4.1. Let H be a real Hilbert space. Let the operator F : H → H have
a Gâteaux derivative satisfying the properties (i)–(iii) of Theorem 3.1.

Denote u∗ the unique solution of equation F (u) = 0. For arbitrary u0 ∈ H let
(un) be the sequence defined by

un+1 = un − 2τn
Mn +mn

B−1
n F (un) (n ∈ N),(28)

where the following conditions hold:
(iv) Mn ≥ mn > 0 and the self-adjoint linear operators Bn satisfy

mn〈Bnh, h〉 ≤ 〈F ′(un)h, h〉 ≤Mn〈Bnh, h〉 (n ∈ N, h ∈ H);

further, using notation µ(un) = Lλ−2‖F (un)‖, there exist constants K > 1
and ε > 0 such that Mn/mn ≤ 1 + 2/(ε+Kµ(un)).

(v) We define

τn = min

{
1,
1−Qn

2ρn

}
,(29)

where Qn =
Mn−mn

Mn+mn
(1+µ(un)), ρn = 2LM2

nλ
−3/2(Mn+mn)

−2‖F (un)‖n(1+
µ(un))

1/2, µ(un) is as in condition (iv), and ‖ . ‖n is defined in (27). (This
value of τn ensures optimal contractivity in the nth step in the ‖ . ‖∗-norm.)

Then there holds

‖un − u∗‖ ≤ λ−1‖F (un)‖ → 0;

namely,

lim sup
‖F (un+1)‖∗
‖F (un)‖∗ ≤ lim sup

Mn −mn

Mn +mn
< 1 .(30)

Moreover, if in addition we assume Mn/mn ≤ 1 + c1‖F (un)‖γ (n ∈ N) with some
constants c1 > 0 and 0 < γ ≤ 1, then

‖F (un+1)‖∗ ≤ d1‖F (un)‖1+γ∗ (n ∈ N)(31)

with some constant d1 > 0.
Owing to the equivalence of the norms ‖ . ‖ and ‖ . ‖∗, the orders of convergence

corresponding to the estimates to (30) and (31) can be formulated with the original
norm.

Corollary 4.2 (rate of convergence in the original norm).
(a) If lim supMn/mn = K > 1, then

‖un − u∗‖ ≤ λ−1‖F (un)‖ ≤ const. · ρn

with ρ = (K − 1)/(K + 1).
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(b) In the case Mn/mn ≤ 1+ c1‖F (un)‖γ (with constants c1 > 0, 0 < γ ≤ 1)
there holds

‖un − u∗‖ ≤ λ−1‖F (un)‖ ≤ const. · ρ(1+γ)n

with some constant 0 < ρ < 1.
Proof of Theorem 4.1. Using (16) and (28), we obtain

F (un+1) = (1− τn)F (un)− τn

(
F (un)− 2

Mn +mn
F ′(un)B−1

n F (un)

)
+R(un).

Hence

‖F (un+1)‖∗ ≤ (1−τn)‖F (un)‖∗+τn

∥∥∥∥(I − 2

Mn +mn
F ′(un)B−1

n

)
F (un)

∥∥∥∥
∗
+‖R(un)‖∗ .

Here, using Corollary 3.4 and Lemma 2.3,∥∥∥∥(I − 2

Mn +mn
F ′(un)B−1

n

)
F (un)

∥∥∥∥
∗
≤ (1 + µ(un))

1/2Mn −mn

Mn +mn
‖F (un)‖n

≤ (1 + µ(un))
Mn −mn

Mn +mn
‖F (un)‖∗ ,

where µ(un) = Lλ−2‖F (un)‖. Further, from (12) and (17) there follows

‖R(un)‖∗ ≤ L

2λ1/2
‖un+1 − un‖2 = τ2

n

2L

λ1/2(M +m)2
‖B−1

n F (un)‖2;

hence, using the estimate preceding (19) and then Corollary 3.4, we obtain

‖R(un)‖∗ ≤ τ2
n

2LM2

λ3/2(M +m)2
‖F (un)‖2n

≤ τ2
n(1 + µ(un))

1/2 2LM2

λ3/2(M +m)2
‖F (un)‖n‖F (un)‖∗.

Summing up, we obtain

‖F (un+1)‖∗ ≤
(
1− τn + τn(1 + µ(un))

Mn −mn

Mn +mn

+ τ2
n(1 + µ(un))

1/2 2LM2

λ3/2(M +m)2
‖F (un)‖n

)
‖F (un)‖∗ .

That is,

‖F (un+1)‖∗ ≤
(
1− τn(1−Qn) + τ2

nρn
) ‖F (un)‖∗ ,(32)

where Qn and ρn are as in condition (v).
There exists Q̃ < 1 such that

Qn ≤ Q̃ (n ∈ N).(33)
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Namely, the assumption Mn/mn ≤ 1+2/(ε+Kµ(un)) with K > 1 and ε > 0 implies
that

1 + ε+Kµ(un) ≤ 1 + 2

(Mn/mn)− 1 =
Mn +mn

Mn −mn
;

hence

1 + µ(un) ≤ Q̃
Mn +mn

Mn −mn

with Q̃ := max{1/K, 1/(1 + ε)} < 1.
Let us introduce the function p : [0, 1]→ R, p(t) := 1− (1−Qn)t+ ρnt

2. Here
p′(t) = −(1−Qn) + 2ρnt yields that τn defined in (29) satisfies

p(τn) = min
t∈[0,1]

p(t) < 1,

since p′(0) = −(1−Qn) < 0. Hence from (32)

‖F (un+1)‖∗ ≤ p(τn)‖F (un)‖∗ < ‖F (un)‖∗ .(34)

Moreover, if τn = 1 (i.e., when 1 ≤ (1−Qn)/2ρn), then

p(τn) = Qn + ρn ≤ Qn + (1−Qn)/2 = (1 +Qn)/2 ≤ (1 + Q̃)/2 < 1.

In the case τn = (1−Qn)/2ρn we have

p(τn) = 1− (1−Qn)
2/(4ρn) ≤ 1− (1− Q̃)2/(4 sup

n
ρn) =: Q

′ < 1.

The latter holds since by (34) ‖F (un)‖∗ is bounded, and hence

ρn = const. · ‖F (un)‖n (1 + const. · ‖F (un)‖)1/2(35)

is bounded, the three norms being equivalent. Altogether, from (34) we obtain

‖F (un)‖∗ ≤ const. · rn → 0,

where r = max{(1 + Q̃)/2, Q′}. This also implies that ρn → 0 and µ(un) =
Lλ−2‖F (un)‖ → 0. A brief calculation gives

p(τn) = Qn + ρn
(
1− (1− τn)

2
)

(36)

(for both τn = 1 and τn < 1); hence (34) yields

lim sup
‖F (un+1)‖∗
‖F (un)‖∗ ≤ lim supQn = lim sup

Mn −mn

Mn +mn
.

The bound Mn/mn ≤ 1 + 2/ε in assumption (iv) implies that

lim sup
Mn −mn

Mn +mn
≤ 1

1 + ε
< 1 .

Finally, letMn/mn ≤ 1+ c1‖F (un)‖γ with constants c1 > 0, 0 < γ ≤ 1. Then
Mn/mn ≤ 1 + c2‖F (un)‖γ∗ with c2 = c1Λ

1/2; hence

Mn −mn

Mn +mn
<

Mn −mn

mn
≤ c2‖F (un)‖γ∗ ,
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and therefore

Qn ≤ c3‖F (un)‖γ∗
with c3 = c2(1 + supn µ(un)). Also,

ρn ≤ c4‖F (un)‖∗
with some c4 > 0 since ‖F (un)‖∗ is bounded (cf. (35)). With the use of notation
en = ‖F (un)‖∗, we obtain from (34) and (36) that

en+1 ≤ (Qn + ρn) en ≤ (Qn + c4en) en ≤
(
c3e

γ
n + c4e0

en
e0

)
en

≤
(
c3e

γ
n + c4e0

(
en
e0

)γ)
en = d1e

1+γ
n

with d1 = c3 + c4e
1−γ
0 .

Remark 2. (a) It is worth mentioning that Theorems 3.1 and 4.1 define descent
methods, similarly to the simple iteration. Namely, conditions (i)–(iii) of Theorem
3.1 imply the existence of a potential Φ : H → R, i.e., Φ′(u) = F (u) (u ∈ H). Then
the directions −B−1

n F (un) are descent directions, since their angle is acute with the
steepest descent direction −F (un) owing to

〈B−1
n F (un), F (un)〉 > 0 .

We also note that the residuals Φ(un)−Φ(u∗) are equivalent to ‖un − u∗‖2 owing to
the ellipticity condition (ii) of Theorem 3.1.

(b) The conditions of Theorems 3.1 and 4.1 can be relaxed. Namely, since the
constructed sequences are bounded, it suffices to assume (ii) and (iii) on the corre-
sponding ball that (un) runs within. Further, the proofs can be repeated with obvious
modification if (iii) is replaced by Hölder continuity only. (See [1] for a related damped
inexact Newton result.)

(c) The value of τn need not necessarily be maximized by 1 as in (29), but suitable
overrelaxation is also feasible which may accelerate the convergence.

5. Sobolev space preconditioning for nonlinear elliptic problems. In this
section we consider the BVP {

−div f(x,∇u) = g(x),

u|∂Ω = 0
(37)

with the following conditions: Ω ⊂ RN is a bounded domain, g ∈ L2(Ω), f is measur-

able and f(x, .) ∈ C1(RN ,RN ) for all x ∈ Ω, and the Jacobians ∂f(x,η)∂η are Lipschitz
continuous in η, symmetric, and satisfy

λ|ξ|2 ≤ ∂f(x, η)

∂η
ξ · ξ ≤ Λ|ξ|2, (x, η) ∈ Ω×RN , ξ ∈ RN ,(38)

with constants Λ ≥ λ > 0 independent of (x, η).
An important special case of f is of the form f(x, η) = a(|η|)η, where 0 < λ ≤

a(r) ≤ (ra(r))′ ≤ Λ (r > 0). This kind of operator arises, e.g., in plasticity theory
or in connection with magnetic potential (see, e.g., [23, 24]).
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Owing to uniform ellipticity, problem (37) has a unique weak solution u∗ ∈ H1
0 (Ω),

and the finite element approximations converge to u∗.
Let Vh ⊂ H1

0 (Ω) be a finite element subspace, and denote uh ∈ Vh the solution of
the discretized problem∫

Ω

f(x,∇uh) · ∇v =

∫
Ω

gv (v ∈ Vh).(39)

Our aim is to find preconditioners for the iterative solution of (39) based on Theo-
rem 4.1.

5.1. Variable preconditioning operators for nonlinear elliptic problems.
In order to fit in the operator framework of Theorem 4.1, we first formulate the
properties of the operator corresponding to (39). Namely, let F : Vh → Vh denote the
operator defined by

〈F (u), v〉 =
∫

Ω

(
f(x,∇u) · ∇v − gv

)
(u, v ∈ Vh),(40)

where 〈u, v〉 = ∫
Ω
∇u · ∇v . Then F has a Gâteaux derivative satisfying properties

(i)–(iii) of Theorem 3.1. Namely,

〈F ′(u)v, w〉 =
∫

Ω

∂f

∂η
(x,∇u)∇v · ∇w (u, v, w ∈ Vh);(41)

hence (38) implies that F ′(u) is self-adjoint and

λ‖v‖2 ≤ 〈F ′(u)v, v〉 ≤ Λ‖v‖2 (u, v ∈ Vh).

Further, (41) implies that F ′ inherits the Lipschitz continuity of ∂f(x,η)∂η in η.
Our approach is Sobolev space preconditioning, which means that we will find

preconditioners by considering (39) as the projection of the exact equation (with u∗

and all v ∈ H1
0 (Ω)), instead of viewing the actual form of the nonlinear algebraic

system that (39) is. This means defining linear operators in weak form, spectrally
equivalent to F ′(un), relying directly on the properties of the matrices ∂f

∂η (x,∇un).
The required variable preconditioners are the matrices that these linear operators
define in Vh. (Since these matrices are the projections of operators in H1

0 (Ω), defined
by the same integral, the spectral bounds can be obtained in a mesh uniform way.)

The above idea is the analogue of the one developed in [21] for fixed precondi-
tioners. We note that the Sobolev space framework is also useful in the context of
exact Newton iterations; namely, (41) yields the Jacobians without numerical differ-
entiation. The variable preconditioners lead to systems of possibly simpler structure
than those containing exact Jacobians.

Theorem 5.1. Let u0 ∈ Vh be arbitrary, and let (un) ⊂ Vh be the sequence
defined as follows.

If, for n ∈ N, un is obtained, then we choose constants Mn ≥ mn > 0 and a
symmetric matrix-valued function Gn ∈ L∞(Ω,RN×N ) for which there holds

mn〈Gn(x)ξ, ξ〉 ≤
〈

∂f

∂η
(x,∇un(x))ξ, ξ

〉
≤ Mn 〈Gn(x)ξ, ξ〉 (x ∈ Ω, ξ ∈ RN );

(42)
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further, Mn/mn and τn satisfy the conditions (iv)–(v) in Theorem 4.1. We define

un+1 = un − 2τn
Mn +mn

zn ,(43)

where zn ∈ Vh is the solution of∫
Ω

Gn(x)∇zn · ∇v =

∫
Ω

(
f(x,∇un) · ∇v − gv

)
(v ∈ Vh).(44)

Then un converges to uh according to the estimates of Theorem 4.1.
Proof. For any n ∈ N let Bn : Vh → Vh denote the linear operator

〈Bnv, w〉 =
∫

Ω

Gn(x)∇v · ∇w (v, w ∈ Vh).

Then Bn is self-adjoint and (42) implies that

mn〈Bnv, v〉 ≤ 〈F ′(un)v, v〉 ≤Mn〈Bnv, v〉 (v ∈ Vh).

Since F fulfills properties (i)–(iii) of Theorem 3.1, therefore all the conditions are
satisfied and the convergence results hold.

The matrices of the linear systems corresponding to problems (44) are the variable
preconditioners for the problem (39). They can also be considered as the discretiza-
tions of the auxiliary linear operators

Lnu = −div (Gn(x)∇u)

(the strong form of Bn). As mentioned above, the choice of the matrices Gn requires
only the properties of the matrices ∂f

∂η (x,∇un), instead of investigating the actual

form of the nonlinear algebraic system (39). This means that the preconditioning for
the latter is determined by that for the Jacobians of f ; hence the preconditioning
matrices are not difficult to compile. A further advantage, as mentioned before, is
that the resulting condition numbers can be obtained in a straightforward and mesh
independent way.

Remark 3. We note that preconditioning by spectral equivalence is also efficient
in other contexts (e.g., by using a rougher mesh for the same operator [5]). The raison
d’être for the proposed coupling of spectral equivalence with Sobolev space framework
is given by the advantages mentioned above.

We also remark that the idea of Theorem 5.1 can be similarly used in the setting
of multilevel iterations, i.e., when the discretization parameter h is redefined in each
step n.

The systems (44) are of simpler structure than those containing exact Jacobians if
the Gn are appropriately chosen. In what follows we give an appropriate construction
and study the properties of the obtained method. We note that other possible choices
of such preconditioners are summarized in the book [16] together with the theoretical
background for preconditioning operators.

5.2. Variable preconditioning operators with piecewise constant coef-
ficient operators. The following example illustrates an appropriate construction of
variable preconditioners: the Jacobians are replaced by the discretizations of piecewise
constant coefficient preconditioning operators.
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These operators are constructed as follows. Let un be fixed. To improve the
bounds in (38), the domain Ω is decomposed in subdomains Ωi (i = i(n) = 1, . . . , sn)
such that for all i

λi |ξ|2 ≤ ∂f

∂η
(x,∇un) ξ · ξ ≤ Λi |ξ|2 (x ∈ Ωi , ξ ∈ RN ),(45)

with λ < λi ≤ Λi < Λ. We introduce a piecewise constant weight function wn such
that

wn |Ωi
≡ ci (i = i(n) = 1, . . . , sn),(46)

where ci is some mean of λi and Λi. Let

Gn(x) := wn(x) · I ,

where I ∈ RN×N is the identity matrix. Then Gn defines the linear operator Bn
corresponding to the weight function w, i.e.,

〈Bnh, v〉 =
∫

Ω

wn∇h · ∇v .

Defining

mn := min
i

λi/ci and Mn := max
i
Λi/ci ,(47)

the left and right sides of (45) can be estimated further bymnw(x)|ξ|2 andMnw(x)|ξ|2,
respectively. This and (41) yield

mn〈Bnv, v〉 = mn

∫
Ω

w|∇v|2 ≤ 〈F ′(un)v, v〉 ≤Mn

∫
Ω

w|∇v|2 =Mn〈Bnv, v〉(48)

for all v ∈ Vh. The obtained condition number estimate of the operator B−1
n F ′(un)

satisfies

Mn/mn = max
i
Λi/λi;(49)

hence it can be decreased by the suitable refinement of decomposition.
This operator Bn was studied in [4] in the context of a standard inner-outer

iteration.
The corresponding preconditioning matrix Bn (the discretization of the operator

Bn in the subspace Vh) is the modification of the discrete Laplacian via blockwise
multiplication by the corresponding constants ci. Moreover (see [4, 7]), the matrix
Bn can be decomposed in the product form

Bn = CWnCT ,(50)

where the matrices C and CT correspond to the discretization of −div and ∇, respec-
tively, and hence are independent of n; further, Wn is a diagonal matrix consisting of
constants ci at the entries corresponding to the subdomains Ωi.

Clearly, the condition number of the preconditioned system is also estimated by
Mn/mn. This bound is mesh independent in the setting of multilevel iterations, i.e.,
independent of the discretization parameter h = hn defined in step n.
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For instance, the required decompositions are straightforward to define for the
special cases of (37) of the form{

−div (a(|∇u|)∇u) = g(x),

u|∂Ω = 0 ,
(51)

where 0 < λ ≤ a(r) ≤ a(r) + a′(r)r ≤ Λ. Here f(x, η) = a(|η|)η satisfies

a(|∇un|)|ξ|2 ≤ ∂f

∂η
(x,∇un) ξ · ξ ≤ (a(|∇un|) + a′(|∇un|)|∇un|) |ξ|2

(see, e.g., [24]); hence

λi = inf
Ωi

a(|∇un|) , Λi = sup
Ωi

(a(|∇un|) + a′(|∇un|)|∇un|) .(52)

That is, the bounds λi and Λi are determined only by the values of |∇un| (in addition
to the given function a(r)).

The above preconditioner compensates possible sharp gradients, i.e., when Λi/λi
is very large. This is the case, e.g., for magnetic potential (in stator sheets, etc.); see
[23]. The construction is also suitable to follow discontinuities of the coefficients. In
this case the decomposition is to be chosen such that the boundaries of subdomains
fit the discontinuities of f(x,∇un). A straightforward illustration of this is another
special case of (37) of the form{

−div (b(x, |∇u|)∇u) = g(x),

u|∂Ω = 0,

where Ω1 ⊂ Ω,

b(x, r) :=

{
a(r) if x ∈ Ω1,
α if x ∈ Ω \ Ω1 ,

a(r) is as in (51), and α > 0 is a constant. (This nonlinearity arises, e.g., in connection
with potential in H-shaped magnets [23].) Then an obviously suitable choice of the
weight function w is defined as above for (51) on Ω1 and as constant α on Ω \ Ω1.

5.3. Numerical experiment. Let us consider the two-dimensional magnetic
potential problem (51) with the following nonlinearity, which characterizes the re-
luctance of stator sheets in the cross-sections of an electrical motor in the case of
isotropic media [23]:

a(r) =
1

µ0

(
α+ (1− α)

r8

r8 + β

)
(r ≥ 0),(53)

where α = 3 · 10−4 and β = 1.6 · 104; further, µ0 is the vacuum permeability. (For
simplicity we can consider µ0 = 1 since µ0 does not affect the conditioning.) For the
right-hand side we set

g(x) ≡ ρ = 4 · 106,(54)

which is a realistic value for the electric current density (see also [23]). For simplicity
we consider problem (51) on the unit square domain Ω = [0, 1]× [0, 1].
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Table 1
The number of iterations to achieve error 10−4 and 10−8 under different numbers of node

points using six subdomains.

Node points: 26 28 210

# iterations for ε = 10−4: 10 10 10

# iterations for ε = 10−8: 16 16 16

We note that the function a varies in several magnitudes over the whole domain:
the bounds in (38) are λ = α = 0.0003 and Λ = max(a(r) + a′(r)r) = 2.5313; hence
the related condition number is Λ/λ = 8437.7.

We apply the variable preconditioning procedure with the above described piece-
wise constant coefficient preconditioning operators. For simplicity, we choose Vh as
the subspace of piecewise linear elements on a uniform triangulation of Ω. Then the
iteration (43)–(44) takes the form

un+1 = un − 2τn
Mn +mn

zn(55)

with zn ∈ Vh being the solution of problem∫
Ω

wn(x)∇zn · ∇v =

∫
Ω

(
a(|∇un|)∇un · ∇v − ρv

)
(v ∈ Vh),(56)

where a(r) and ρ are as above, wn is a piecewise constant weight function, and Mn

and mn are from (47). In order to define wn, we first observe that for a given number
κ > 1 satisfying κ > supr>0 (a(r)+a′(r)r)/a(r), one can recursively define subintervals
Ji = [ri−1, ri) ⊂ [0,∞) such that r0 = 0 and

sup
r∈Ji

(a(r) + a′(r)r) / inf
r∈Ji

a(r) = κ (i ∈ N).

Then the subdomains Ωi are defined as the level sets of |∇un| corresponding to Ji,
and by (52) they satisfy Λi/λi ≤ κ for all i; hence by (49) we have Mn/mn ≤ κ. In
this way one uses the minimal number of subdomains to achieve the condition number
κ, and, conversely, for a given number of subdomains one can find the subdomains
themselves that produce the lowest bound κ of Mn/mn. (For details see [4], where
this preconditioner was studied in the context of a standard inner-outer iteration.)

In the numerical experiment we have used a decomposition to six subdomains in
each step of the iteration. In each step n we have determined the subdomains that
yield the lowest value of κ for |∇un| according as above using a suitable subroutine.
We have chosen ci to be the arithmetic mean of λi and Λi for all i.

The error during the iteration was measured by the weighted residual errors cor-
responding to (40) with the inner product with weight wn. This error is obtained from
the iteration without any extra work as the weighted norm of the actual coefficient
vector w.r.t. the Gram matrix. (It is a computable approximation of the ∗-norm (27)
that appears in the convergence estimates of Theorem 4.1.)

The experiment was made using 2k node points of the mesh with k = 6, 8, and 10.
Table 1 summarizes the number of iterations that decrease the residual error ‖F (un)‖
below 10−4 and 10−8, respectively. The results exhibit mesh independence; i.e., the
number of iterations remains the same when the number of node points is increased.

We have repeated the experiment with 12 subdomains, and the results were the
same (except that for 26 node points the number of iterations for ε = 10−8 was only
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Table 2
The sequence of errors up to eight digits, using 210 node points and six subdomains.

1.0
0.32290943
0.14549087
0.06899055
0.03014214
0.01194232
0.00414995
0.00120266
0.00027565
0.00005601
0.00001047
0.00000182
0.00000033
0.00000006
0.00000001
0.00000000

15). This means that the smaller number of subdomains already suffices to achieve
the available convergence speed.

The distribution of the errors behaved much similarly for the different runs. We
give one of them below for illustration.

Finally, in order to compare the results in Table 1, we cite results from other
papers where the same or a similar problem is studied. The coefficients (53) and (54)
are quoted from [18] and [23], and a similar nonlinearity was first considered in the
early paper [11]. In the latter, Newton’s method is applied with overrelaxation for
finite difference method on a square with 90 and 870 points, and requires 20 (resp.,
98) iterations to achieve a residual error ε = 10−6. Successive overrelaxation (or
Kacanov’s frozen coefficient method) in [11] requires 18 (resp., 58) iterations for the
same error, and the variants of this method require 162 iterations for ε = 10−5 with
384 node points in [18] (on a complicated domain) and 15 iterations for ε = 10−6

with 1000 node points in [23], respectively. Compared even to this last fastest result,
the iteration (55)–(56) is less costly. Namely, since the auxiliary systems in (56) come
from a piecewise constant coefficient operator, their structure is simpler than either
for Newton’s method or for frozen coefficients. That is, (50) implies that the matrices
of the auxiliary systems are the modifications of the discrete Laplacian such that their
updating consists of updating the diagonal matrix Wn. In fact, the latter requires
only distributing the six constants ci at the entries corresponding to the subdomains
Ωi.

5.4. Conclusions. We summarize our numerical method for the solution of the
nonlinear elliptic problem (37).

Using the quasi-Newton setting in an operator framework, the Jacobians were
replaced by the discretizations of suitably chosen piecewise constant coefficient ellip-
tic operators. This has a twofold advantage. First, superlinear convergence can be
preserved, and stepwise the condition number of the preconditioned system is mesh
independent. Second, our method is less costly than either a Newton or a frozen
coefficient iteration due to the decomposition (50), which implies that the matrices of
the auxiliary systems are the modifications of the discrete Laplacian such that their
updating consists of updating the diagonal factor Wn.

Our numerical experiment has demonstrated these advantages. We have achieved
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convergence which is in accordance with the theoretical result: Table 2 exhibits the
superlinear convergence. Table 1 also suggests mesh independence of the iterations.
The convergence results are favorable in comparison with some other cited ones. Con-
cerning computational cost, the experiment with a rather ill-conditioned problem has
shown that even a coarse decomposition of the domain has been able to provide the
above described favorable convergence. Namely, Tables 1 and 2 were achieved using
six subdomains, in which case the matrix of the auxiliary system is very close to the
discrete Laplacian. Its updating required only distributing the six constants ci at
the entries corresponding to the subdomains Ωi, and this structure property slightly
increases only the complexity of a Laplacian solver.

Appendix.
Proof of Remark 1(a). We use the notations as earlier:

e0 = ‖F (u0)‖∗ , α =
M +m

2
, β =

L

λ2
, Q =

M −m

M +m
.

The estimate to be proved is

ϕ(e0) = (1 + βΛ1/2e0)

(
Q̃+M2βα−2λ1/2(e0/2)

(
1 + βΛ1/2e0

)1/2
)

< 1 ,

where β = Lλ−2, under the assumption Kβe0 < 1. We use that the estimate (1 −
x)1/2 ≤ 1− (x/2) (0 ≤ x ≤ 1) implies that

Q1/2 =

(
1− 2m

M +m

)1/2

≤ M

M +m
, Q−1/2 ≥ M +m

M
= 1 +

m

M
.

Then for the first term in ϕ(e0) we have

1 + βΛ1/2e0 < 1 +
Λ1/2

K
≤ 1 + Λ1/2

Λ1/2(M/m)
= 1 +

m

M
≤ Q−1/2.

From this, using Kβe0 < 1 and using that 2α2QK ≥Mλ1/2(M +m)/m, the second
term is estimated by

Q̃+
M2λ1/2

2α2Q1/2K
≤ Q1/2

(
M

M +m
+

m

M +m

)
= Q1/2.

Multiplying the two terms, ϕ(e0) < 1 is verified.
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[4] O. Axelsson, I. Faragó, and J. Karátson, Sobolev space preconditioning for Newton’s

method using domain decomposition, Numer. Linear Algebra Appl., 9 (2002), pp. 585–
598.

[5] O. Axelsson and I. Gustafsson, An efficient finite element method for nonlinear diffusion
problems, Bull. Greek Math. Soc., 32 (1991), pp. 45–61.
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Abstract. A fully discrete two-level finite element method (the two-level method) is presented
for solving the two-dimensional time-dependent Navier–Stokes problem. The method requires a
Crank–Nicolson extrapolation solution (uH,τ0 , pH,τ0 ) on a spatial-time coarse grid JH,τ0 and a back-

ward Euler solution (uh,τ , ph,τ ) on a space-time fine grid Jh,τ . The error estimates of optimal order
of the discrete solution for the two-level method are derived. Compared with the standard Crank–
Nicolson extrapolation method (the one-level method) based on a space-time fine grid Jh,τ , the
two-level method is of the error estimates of the same order as the one-level method in the H1-norm
for velocity and the L2-norm for pressure. However, the two-level method involves much less work
than the one-level method.
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1. Introduction. The two-grid strategy is closely related to the finite element
nonlinear Galerkin methods (see [2, 16, 26, 27]) and has been widely studied for steady
semilinear elliptic equations (see the work of Xu [34, 35]), for steady Navier–Stokes
equations (see, for example, the work of Layton [22], Layton and Lenferink [23],
Ervin and Layton [10], Ervin, Layton, and Maubach [11], Layton and Tobiska [24],
and Girault and Lions [12]), and for time-dependent Navier–Stokes equations (see the
work of Girault and Lions [13] and Olshanskii [28]). Moreover, the Crank–Nicolson
scheme with second-order accuracy is adapted to the time discretization of the Navier–
Stokes equations by Heywood and Rannacher [18]. The well-known Crank–Nicolson
extrapolation scheme with second order accuracy is applied to the time discretization
of the Navier–Stokes equations by Girault and Raviart [14] and Simo and Armero [30].
Also, the Crank–Nicolson extrapolation scheme is applied to the time discretization of
the nonlinear parabolic equations (see Douglas and Dupont [8], Cannon and Lin [6],
and Lin [25]) and the nonlinear dynamics (see Simo, Tarnow, and Wong [31]). Other
higher-order time discrete schemes are given by Baker, Dougalis, and Karakashian
[3] for the time-dependent Navier–Stokes equations and Dupont, Fairweather, and
Johnson [9] for the nonlinear parabolic equations.

In the case of the nonlinear evolution problem, the basic idea of the two-level
method is to find an approximation uH by solving a nonlinear problem on a coarse
grid with grid size H and find an approximation uh by solving a linearized prob-
lem about the known approximation uH on a fine grid with grid size h. In [13],
Girault and Lions consider the semidiscretization in space of the three-dimensional
time-dependent Navier–Stokes equations by the two-level method, where the error
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estimates are provided. If H = O(h1/2) is chosen, then the two-level method is of
the convergence rate of the same order as the standard Galerkin method. Further-
more, Olshanskii in [28] deals mainly with the full discretization in space time of the
two-dimensional and three-dimensional time-dependent Navier–Stokes equations by
the two-level method, where the local error estimates, stability, and convergence are
proved, but the global error estimates are not provided. In fact, this scheme is global
first-order accurate with respect to the time step size τ .

In this paper we want to combine this two-grid strategy with the Crank–Nicolson
extrapolation scheme with second-order accuracy to solve the two-dimensional time-
dependent Navier–Stokes equations. We set JH as a coarse grid of Ω̄ into triangles
or quadrilaterals with mesh size H, assumed to be uniformly regular in the usual
sense, and τ0 denotes a large time step size; this spatial-time grid is denoted JH,τ0 .
Next, a fine grid Jh can be thought of as generated from the coarse mesh JH by a
mesh refinement process, and therefore nested, and a small time step size τ = τ0

k
(k is a fixed integer), and this space-time grid is denoted Jh,τ . Here, the basic idea
of our two-level method is to find an approximation (uH,τ0 , pH,τ0) by solving the
linearized Navier–Stokes problem on a space-time coarse grid JH,τ0 and to then find
an approximation (uh,τ , ph,τ ) by solving the Stokes problem on a space-time fine grid
Jh,τ , where h � H, τ � τ0; here our scheme is second-order accurate with respect
to time discretization.

The finite element space pairs (XH ,MH) and (Xh,Mh) are constructed based on
the coarse mesh JH and the fine mesh Jh, which possess some approximate properties
and the so-called inf-sup condition stated in section 3. Now, let us consider the
numerical solution (uh,τ , ph,τ ) of the two-dimensional time-dependent Navier–Stokes
equations by the two-level method. In the first step, our approximation (uH,τ0 , pH,τ0)
is computed on a space-time coarse grid JH,τ0 using the Crank–Nicolson extrapolation
scheme. In the second step, an approximation (uh,τ , ph,τ ) is computed on a spatial-
time fine grid Jh,τ using the backward Euler scheme “around” uH,τ0 . Then under
quite general circumstances, we have obtained the error estimate of optimal order for
the one-level finite element solution (uh,τ , ph,τ ):

‖u(t)− uh,τ (t)‖H1
0
≤ κh+ κσ−1/2(t)τ ∀0 < t ≤ T,(1.1)

‖p(t)− ph,τ (t)‖L2 ≤ κσ−1/2(t)h+ κσ−3/2(t)τ ∀0 < t ≤ T ;(1.2)

and we have obtained the error estimate of optimal order for the two-level finite
element solution (uh,τ , ph,τ ):

‖u(t)− uh,τ (t)‖H1
0
≤ κh+ κH(1− t)σ−1/2(t)(τ +H3/2 + τ

3/2
0 )

+ κH(t− 1)(τ +H2 + τ2
0 ) ∀0 < t ≤ T,(1.3)

‖p(t)− ph,τ (t)‖L2 ≤ κσ−1/2(t)h+ κσ−3/2(t)(τ + τ2
0 +H2) ∀0 < t ≤ T(1.4)

on the fine grid Jh,τ , where σ(t) = min{1, t}, H(t) = 1 as t ≥ 0, and H(t) = 0 as

t < 0. Hence, if one chooses (H, τ0) such that τ
3/2
0 + H3/2 = O(τ) for t ∈ [0, 1]

and τ2
0 + H2 = O(τ) for t ∈ (1, T ], then the two-level solution (uh,τ , ph,τ ) is of the

convergence rate of the same order as the one-level solution (uh,τ , ph,τ ; but the velocity
uh,τ of the two-level solution is less accurate than the velocity uh,τ of the one-level
solution in the L2-norm); see Theorem 5.6 and Lemma 6.3.

Of course, the computation of (uh,τ , ph,τ ) involves much less “work” than the
direct computation of (uh,τ , ph,τ ). In fact, to find (uh,τ , ph,τ ) we need to solve the
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discrete linearized Navier–Stokes problem by using the Crank–Nicolson extrapolation
scheme on a space-time coarse grid JH,τ0 and solve the discrete Stokes problem by
using the Euler scheme on a fine space-time grid Jh,τ ; see section 6. However, the
computation of (uh,τ , ph,τ ) needs to solve a discrete linearized Navier–Stokes problem
by using the extrapolation Crank–Nicolson scheme on a space-time fine grid Jh,τ ; see
section 5.

The contents of this paper are divided into sections as follows. In section 2,
functional setting of the Navier–Stokes problem is given with some basic statements.
Finite element Galerkin approximation is recalled in section 3. Some key technical
lemmas and known results are provided in section 4. The error estimates of the one-
level finite element solution (uh,τ , ph,τ ) will be proven in section 5. The error estimates
of the two-level finite element solution (uh,τ , ph,τ ) will be derived in section 6.

2. Functional setting of the Navier–Stokes equations. Let Ω be a bounded
domain in R2 assumed to have a Lipschitz continuous boundary ∂Ω and to satisfy
a further condition stated in (A1) below. We consider the time-dependent Navier–
Stokes problem{

ut − ν∆u+ (u · ∇)u+∇p = f, div u = 0 ∀(x, t) ∈ Ω× (0, T ];

u(x, 0) = u0(x) ∀x ∈ Ω; u(x, t)|∂Ω = 0 ∀t ∈ [0, T ],
(2.1)

where u = u(x, t) = (u1(x, t), u2(x, t)) represents the velocity vector, p = p(x, t) the
pressure, f = f(x, t) the prescribed body force, u0(x) the initial velocity, ν > 0 the
viscosity, and T > 0 a finite time. For the mathematical setting of problem (2.1), we
introduce the following Hilbert spaces:

X = H1
0 (Ω)

2, Y = L2(Ω)2, M = L2
0(Ω) =

{
q ∈ L2(Ω);

∫
Ω

qdx = 0

}
.

The space L2(Ω)d, d = 1, 2, 4, is equipped with the usual L2-scalar product (·, ·) and
L2-norm ‖·‖L2 . The spacesH1

0 (Ω) andX are equipped with their usual scalar product
and equivalent norm

((u, v)) = (∇u,∇v), ‖u‖H1
0
= ‖∇u‖L2 .

Next, let the closed subset V of X be given by

V = {v ∈ X; d(v, q) = 0 ∀q ∈M} = {v ∈ X; div v = 0}

and denote H the closed subset of Y , i.e.,

H = {v ∈ Y ; div v = 0, v · n|∂Ω = 0}.

We refer the readers to [1, 15, 17, 32] for more details on these spaces. We also
denote the Stokes operator by A = −P∆, where P is the L2-orthogonal projection of
Y onto H.

As mentioned above, we need a further assumption on Ω provided in [17].
(A1). Assume that Ω is smooth so that the unique solution (v, q) ∈ (X,M) of

the steady Stokes problem

−ν∆v +∇q = g, divv = 0 in Ω, v|∂Ω = 0,
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for any prescribed g ∈ Y exists and satisfies

‖v‖H2 + ‖q‖H1 ≤ c‖g‖L2 ,

where c > 0 is a generic constant depending on Ω and ν which may stand for different
values at its different occurrences.

We remark that the validity of assumption (A1) is known (see [15, 17, 20, 32]) if
∂Ω is of C2 or if Ω is a two-dimensional convex polygon. From assumption (A1), it
is well known [1, 17, 21] that

‖v‖H2 ≤ c‖Av‖L2 ∀v ∈ D(A) = H2(Ω)2 ∩ V,(2.2)

‖v‖L2 ≤ γ0‖v‖H1
0
∀v ∈ X, ‖v‖H1

0
≤ γ0‖Av‖L2 ∀v ∈ D(A),(2.3)

where γ0 is positive constant depending only on Ω.
We usually make the following assumptions about the prescribed data for prob-

lem (2.1).
(A2). The initial velocity u0(x) and force f(x, t) satisfy that u0 ∈ D(A), f, ft,

ftt ∈ L∞(0, T ;Y ) with
‖Au0‖L2 + sup

t∈[0,T ]

{‖f(t)‖L2 + ‖ft(t)‖L2 + ‖ftt(t)‖L2} ≤ C

for some positive constant C. We also introduce the following bilinear operator:

B(u, v) = (u · ∇)v + 1

2
(divu)v ∀u, v ∈ X.

Moreover, we define the continuous bilinear forms a(·, ·) and d(·, ·) on X × X and
X ×M , respectively, by

a(u, v) = ν((u, v)) ∀u, v ∈ X,

d(v, q) = −(v,∇p) = (q,divv) ∀v ∈ X, q ∈M,

and a trilinear form on X ×X ×X by

b(u, v, w) = 〈B(u, v), w〉X′,X = ((u · ∇)v, w) + 1

2
((divu)v, w)

=
1

2
((u · ∇)v, w)− 1

2
((u · ∇)w, v) ∀u, v, w ∈ X.

With the above notations, the variational formulation of problem (2.1) reads as
follows: find (u, p) ∈ (X,M) for all t ∈ [0, T ] such that for all (v, q) ∈ (X,M),

(ut, v) + a(u, v)− d(v, p) + d(u, q) + b(u, u, v) = (f, v),(2.4)

u(0) = u0.(2.5)

3. Finite element Galerkin approximation. Let h > 0 be a real positive pa-
rameter. Finite element subspace (Xh,Mh) of (X,M) is characterized by Jh = Jh(Ω),
a partitioning of Ω̄ into triangles K or quadrilaterals K, assumed to be uniformly reg-
ular as h→ 0. For further details, the reader can refer to Ciarlet [7] and Girault and
Raviart [15].
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We define the subspace Vh of Xh given by

Vh =

{
vh ∈ Xh ; d(vh, qh) = 0 ∀qh ∈Mh

}
.(3.1)

Let Ph : Y→Vh denote the L2-orthogonal projection defined by

(Phv, vh) = (v, vh) ∀v ∈ Y, vh ∈ Vh.
We assume that the couple (Xh,Mh) satisfies the following approximation prop-

erties: for each v ∈ H2(Ω)2 ∩ X and q ∈ H1(Ω) ∩M , there exist approximations
πhv ∈ Xh and ρhq ∈Mh such that{

d(v − πhv, qh) = 0 ∀qh ∈Mh,

‖v − πhv‖H1
0
≤ ch‖v‖H2 , ‖q − ρhq‖L2 ≤ ch‖q‖H1 ,

(3.2)

together with the inverse inequality

‖vh‖H1
0
≤ ch−1‖vh‖L2 ∀vh ∈ Xh;(3.3)

and we have the so-called inf-sup inequality: for each qh ∈ Mh, there exists vh ∈
Xh, vh �= 0 such that

d(vh, qh) ≥ β‖qh‖L2‖vh‖H1
0
,(3.4)

where β > 0 is a constant depending on Ω.
The following properties are classical (see [2, 15, 17, 19]):

‖Phv‖H1
0
≤ c‖v‖H1

0
∀v ∈ X,(3.5)

‖v − Phv‖L2 + h‖v − Phv‖H1
0
≤ ch2‖Av‖L2 ∀v ∈ D(A),(3.6)

‖v − Phv‖L2 ≤ ch‖v − Phv‖H1
0
∀v ∈ X.(3.7)

The standard finite element Galerkin approximation of (2.4)–(2.5) based on (Xh,Mh)
reads as follows: find (uh, ph) ∈ (Xh,Mh) such that for all 0 < t ≤ T and (vh, qh) ∈
(Xh,Mh),

(uht, vh) + a(uh, vh)− d(vh, ph) + d(uh, qh) + b(uh, uh, vh) = (f, vh),(3.8)

uh(0) = u0h = Phu0.(3.9)

With the above statements, a discrete analogue Ah = −Ph∆h of the Stokes
operator A is defined through the condition that (−∆huh, vh) = ((uh, vh)) for all
uh, vh ∈ Xh. The restriction of Ah to Vh is invertible, with inverse denoted A

−1
h . Since

A−1
h is self-adjoint and positive definite, we may define “discrete” Sobolev norms on

Vh, of any order r ∈ R, by setting

‖vh‖r = ‖Ar/2h vh‖L2 ∀vh ∈ Vh.
These norms will be assumed to have various properties similar to their continuous
counterparts, an assumption that implicitly imposes conditions on the structure of
the spaces Xh and Mh. In particular, there holds

‖vh‖0 = ‖vh‖L2 , ‖vh‖1 = ‖vh‖H1
0
∀vh ∈ Vh.
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By the way, we derive from (2.3) that

‖vh‖0 ≤ c‖vh‖1, ‖vh‖1 ≤ c‖Ahvh‖0 ∀vh ∈ Vh.(3.10)

Under the conditions above, and with some further assumptions about the struc-
ture of the spaces Xh and Mh, it has been shown in Heywood and Rannacher [17]
that

‖u(t)− uh(t)‖L2 + h‖u(t)− uh(t)‖H1
0
+ σ1/2(t)h‖p(t)− ph(t)‖L2 ≤ κh2(3.11)

for all t ∈ (0, T ].
4. Technical preliminaries. This section considers preliminary estimates which

will be very useful in the error estimates of finite element solution (uh, ph). Now we
will provide the following estimates of the trilinear form b.

Lemma 4.1. The trilinear form b satisfies the following estimates:

b(uh, vh, wh) = −b(uh, wh, vh),(4.1)

|b(uh, vh, wh)|+ |b(wh, vh, uh)| ≤ c‖uh‖1/20 ‖uh‖1/21 ‖vh‖1‖wh‖1(4.2)

for all uh, vh, wh ∈ Xh and

|b(uh, vh, wh)|+ |b(wh, vh, uh)| ≤ c‖Ahvh‖1/20 ‖vh‖1/21 ‖uh‖1‖wh‖0,(4.3)

|b(uh, vh, wh)|+ |b(wh, vh, uh)| ≤ c‖uh‖−1‖Ahvh‖0‖Ahwh‖0(4.4)

for all uh, vh, wh ∈ Vh.
Proof. It is well known [17, 18] that (4.1)–(4.3) are valid. To prove (4.4), we need

some discrete Gagliardo–Nireberg estimates (see [19]):

‖vh‖L4 ≤ c‖vh‖1/20 ‖vh‖1/21 ∀vh ∈ Xh,(4.5)

‖∇vh‖L4 ≤ c‖vh‖1/21 ‖Ahvh‖1/20 , ‖vh‖L∞ ≤ c‖vh‖1/20 ‖Ahvh‖1/20 ∀vh ∈ Vh,(4.6)

the proof of which is identical to that given by Heywood and Rannacher [17, inequal-
ities (4.37) and (4.39), p. 298]. From the definition of b, there holds the following
estimate:

|b(uh, vh, wh)| + |b(wh, vh, uh)|

≤ 1

2
‖A−1/2

h uh‖L2‖A1/2
h ((∇vh)wh − (∇wh)vh)‖L2

+

∥∥∥∥A1/2
h ((wh · ∇)vh + 1

2
(divwh)vh)

∥∥∥∥
L2

‖A−1/2
h uh‖L2

≤ c‖uh‖−1(‖∇vh‖L4‖∇wh‖L4 + ‖Ahvh‖L2‖wh‖L∞ + ‖vh‖L∞‖Ahwh‖L2).

Combining this inequality with (4.5)–(4.6) and using (3.10) yields (4.4).

In order to obtain our error analysis for the time discretization, we will recall the
following smooth properties of (uh, ph) proved in [18].
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Theorem 4.2. Assume that assumptions (A1)–(A2) and (3.2)–(3.4) are valid.
Then the finite element solution (uh, ph) satisfies the following estimates:

‖uh(t)‖22 + ‖ph(t)‖20 ≤ κ, σr(t)‖uht(t)‖2r ≤ κ, r = 0, 1, 2,(4.7)

σr+2‖uhtt(t)‖2r ≤ κ, r = −1, 0, 1,(4.8) ∫ t

0

σr(s)‖uht(s)‖2r+1ds ≤ κ, r = 0, 1,(4.9)

∫ t

0

σr+1(s)‖uhtt(s)‖2rds ≤ κ, r = −1, 0, 1,(4.10)

∫ t

0

σr+2(s)‖uhttt(s)‖2r−1ds ≤ κ, r = −1, 0, 1(4.11)

for all t ∈ [0, T ].
We will frequently use a discrete version of the Gronwall lemmas used in [18]

and [29].
Lemma 4.3. Let C, τ , and an, bn, cn, dn, for integers n ≥ 0, be nonnegative

numbers such that

am + τ

m∑
n=0

bn ≤ τ

m∑
n=0

andn + τ

m∑
k=0

cn + C ∀m ≥ 1.(4.12)

Suppose that dnτ < 1, for all n, and set γn ≡ (1− dnτ)−1. Then

am +∆t

m∑
n=0

bn ≤ exp

(
τ

m∑
n=0

γndn

)(
τ

m∑
n=0

cn + C

)
∀m ≥ 1.(4.13)

Lemma 4.4. Let C, τ , and an, bn, cn, dn, for integers n ≥ 0, be nonnegative
numbers such that

am + τ

m∑
n=0

bn ≤ τ

m−1∑
n=0

andn + τ

m−1∑
n=0

cn + C ∀m ≥ 1.(4.14)

Then

am + τ

m∑
n=0

bn ≤ exp

(
τ

m−1∑
n=0

dn

)(
τ

m−1∑
n=0

cn + C

)
∀m ≥ 1.(4.15)

5. One-level finite element method. In this section we consider the time
discretization of the finite element Galerkin approximation (3.8)–(3.9). Let tn =
nτ(n = 0, 1, . . . , N) be the discrete point, τ = T

N the time step size, and N an integer.
The Crank–Nicolson extrapolation scheme on the space-time grid Jh,τ is to determine
function pair (uh,τ (t), ph,τ (t)) on [0, T ] such that for t ∈ (tn−1, tn], 1 ≤ n ≤ N , we
define one-level finite element solution (uh,τ (t), ph,τ (t)) as follows:

uh,τ (t) = un−1
h + (t− tn−1)dtu

n
h, ph,τ (t) = pnh,

where uh,τ (0) = u0h = u0
h , {unh}Nn=1 ⊂ Vh, {pnh}Nn=1 ⊂ Mh as the solution of the

recursive linear equation:

(dtu
n
h, vh) + a(ūnh, vh)− d(vh, pnh) + d(ūnh, qh) + b(φ(ūnh), ū

n
h, vh) = (f̄(tn), vh)(5.1)
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for all (vh, qh) ∈ (Xh,Mh). Here and after, we often use the following notations:

φ(ūnh) = H(1− n)ūnh +H(n− 2)

(
3

2
un−1
h − 1

2
un−2
h

)
,

ūnh =
1

2
(unh + un−1

h ), ūh(tn) =
1

2
(uh(tn) + uh(tn−1)), dtu

n
h =

unh − un−1
h

τ
.

From the definition of φ, (u1
h, p

1
h) = (u1

∗, p
1
∗) is defined by the Crank–Nicolson scheme,

where the scheme is as follows: find {un∗}Nn=1 ⊂ Vh and {pn∗}Nn=1 ⊂Mh such that

(dtu
n
∗ , vh) + a(ūn∗ , vh)− d(vh, pn∗ ) + d(ūn∗ , qh) + b(ūn∗ , ū

n
∗ , vh) = (f̄(tn), vh),(5.2)

with the initial value u0
∗ = u0h.

An error argument given in [18] shows the following error estimate results.
Theorem 5.1. Suppose that the assumptions (A1)–(A2) are valid and the couple

(Xh,Mh) satisfies the approximate properties (3.2)–(3.4) and τ ≤ τT , where τT is a
finite constant which can take different values at its different occurrences. Then there
hold the following error estimates:

‖uh(tm)− um∗ ‖2r + τ

m∑
n=1

‖ūh(tn)− ūn∗‖2r+1 ≤ κτ2−r, r = −2,−1, 0, 1,(5.3)

‖uh(tm)− um∗ ‖2r + τ

m∑
n=1

‖dt(uh(tn)− un∗ )‖2r−1 ≤ κτ2−r, r = −1, 0, 1, 2,(5.4)

σ(tm)‖uh(tm)− um∗ ‖2r + τ

m∑
n=1

σ(tn)‖uh(tn)− un∗‖2r+1 ≤ κτ3−r, r = 0, 1,(5.5)

σ(tm)‖uh(tm)− um∗ ‖0 ≤ κτ2, σ3/2(tm)‖ph(tm)− pm∗ ‖L2 ≤ κτ(5.6)

for all 1 ≤ m ≤ N .
Again, in determining the velocity approximation, the pressure term can be elim-

inated by restricting the test functions in (5.1) and (5.2) to Vh. That is, the velocity
can be determined from

(dtu
n
h, vh) + a(ūnh, vh) + b(φ(ūnh), ū

n
h, vh) = (f̄(tn), vh) ∀vh ∈ Vh(5.7)

or

(dtu
n
∗ , vh) + a(ūn∗ , vh) + b(ūn∗ , ū

n
∗ , vh) = (f̄(tn), vh) ∀vh ∈ Vh.(5.8)

In order to analyze the discretization error (uh(tn)−unh, p̄h(tn)−pnh), we will first
consider the discrete error (enh, µ

n
h) = (un∗ − unh, pn∗ − pnh) with (e1h, µ

1
h) = (0, 0) and

then combine this with Theorem 5.1. However, this needs the following regularity of
functions {un∗}Nn=1.

Lemma 5.2. Under the assumptions of Theorem 5.1, there holds

‖um∗ ‖2r + τ

m∑
n=1

(‖ūn∗‖2r + ‖dtun∗‖2r−1) ≤ κ, 1 ≤ m ≤ N, r = 0, 1, 2,(5.9)

σ(tm)‖dtum∗ ‖21 + τ

m∑
n=2

(‖dttun∗‖2−1 + σ(tn)‖dttun∗‖20) ≤ κ, 2 ≤ m ≤ N.(5.10)
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Proof. First, we use (4.7), (4.9) and Theorem 5.1, obtaining

‖un∗‖2r + τ

m∑
n=1

‖ūn∗‖2r ≤ 2‖un∗ − uh(tn)‖2r + 2‖uh(tn)‖2r

+ 2τ

m∑
n=1

(‖ūn∗ − ūh(tn)‖2r + ‖ūh(tn)‖2r) ≤ κ,

τ

m∑
n=1

‖dtun∗‖2r−1 ≤ 2τ

m∑
n=1

(‖dtun∗ − dtuh(tn)‖2r−1 + ‖dtuh(tn)‖2r−1)

≤ κ+ c

∫ tm

0

‖uht‖2r−1dt+ c

∫ tm

0

σ2(t)‖uhtt‖2r−1dt ≤ κ,

which yields (5.9).
Next, we derive from (5.8) that

(dttu
n
∗ , vh) + a(dtū

n
∗ , vh) + b(dtū

n
∗ , ū

n
∗ , vh) + b(ūn−1

∗ , dtū
n
∗ , vh)

= τ−1

∫ tn

tn−2

(ft(t), vh)dt ∀vh ∈ Vh.

Taking vh = 2τdttu
n
∗ in the above relation, we obtain

2τ‖dttun∗‖20 + ν(‖dtun∗‖21 − ‖dtun−1
∗ ‖21) + 2τb(dtū

n
∗ , ū

n
∗ , dttu

n
∗ )

+ 2τb(ūn−1
∗ , dtū

n
∗ , dttu

n
∗ ) ≤

τ

2
‖dttun∗‖20 + c

∫ tn

tn−2

‖ft(t)‖2L2dt.(5.11)

In view of Lemma 4.1, there holds

2τ |b(dtūn∗ , ūn∗ , dttun∗ )|+ 2τ |b(dtūn∗ , ūn∗ , dttun∗ )|
≤ τ

2
‖dttun∗‖20 + cτ‖Ahūn∗‖20‖dtūn∗‖21.

Combining this inequality with (5.11), using (5.9) with r = 2 and the fact that
σ(tn) ≤ σ(tn−1) + τ yields

τσ(tn)‖dttun∗‖20 + ν(σ(tn)‖dtun∗‖21 − σ(tn−1)‖dtun−1
∗ ‖21)

≤ ντ(‖dtun−1
∗ ‖21 + κ‖dtun∗‖21) + c

∫ tn

tn−2

‖ft(t)‖2L2dt.(5.12)

Summing this inequality from n = 2 to n = m and using (5.9), we arrive at

τ

m∑
n=2

σ(tn)‖dttun∗‖20 + νσ(tm)‖dtum∗ ‖21 ≤ κ, 2 ≤ m ≤ N.(5.13)

Finally, we derive from (4.10) and (5.4) with r = −1 that

τ
m∑
n=2

‖dttun∗‖2−1 = τ−1
m∑
n=2

‖dtun∗ − dtun−1
∗ ‖2−1 ≤ cτ−1

m∑
n=2

(‖dtun∗ − dtuh(tn)‖2−1

+ ‖dtun−1
∗ − dtuh(tn−1)‖2−1 + ‖dtuh(tn)− dtuh(tn−1)‖2−1)
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≤ κ+ cτ−3
m∑
n=2

∥∥∥∥∥
∫ tn

tn−1

(tn − t)uhttdt+
∫ tn−1

tn−2

(t− tn−2)uhttdt

∥∥∥∥∥
2

−1

≤ κ+ c

∫ tm

0

‖uhtt‖2−1dt ≤ κ,

which along with (5.13) gives (5.10).
Lemma 5.3. Under the assumptions of Theorem 5.1, there holds

‖emh ‖2r + τ

m∑
n=1

‖ēnh‖2r+1 ≤ κτ3−r, r = −1, 0, 1, 1 ≤ m ≤ N,(5.14)

‖emh ‖21 + τ

m∑
n=1

‖dtenh‖20 ≤ κτ2, 1 ≤ m ≤ N.(5.15)

Proof. Subtracting (5.7) from (5.8), we obtain

(dte
n
h, vh) + a(ēnh, vh) + b(φ(ēnh), ū

n
∗ , vh) + b(φ(ūn∗ ), ē

n
h, vh)

− b(φ(ēnh), ēnh, vh) +
1

2
H(n− 2)τ2b(dttu

n
∗ , ū

n
∗ , vh) = 0 ∀vh ∈ Vh.(5.16)

Taking vh = 2τ ēnh in (5.16) and using (4.1), we get

‖enh‖20 − ‖en−1
h ‖20 + 2ντ‖ēnh‖21 + 2τb(φ(ēnh), ū

n
∗ , ē

n
h)

+H(n− 2)τ3b(dttu
n
∗ , ū

n
∗ , ē

n
h) = 0.(5.17)

Using (4.3), it follows that

2τ |b(φ(ēnh), ūn∗ , ēnh)| ≤
ντ

2
‖ēnh‖21 + cτ‖Ahūn∗‖20‖φ(ēnh)‖20,

H(n− 2)τ3|b(dttun∗ , ūn∗ , ēnh)| ≤
ντ

2
‖ēnh‖21 + cH(n− 2)τ5‖dttun∗‖20‖Ahūn∗‖20.

Combining these inequalities with (5.17) and applying Lemma 5.2 results in

‖enh‖20 − ‖en−1
h ‖20 + ντ‖ēnh‖21 ≤ κ‖φ(ēnh)‖20 + κH(n− 2)τ5‖dttun∗‖20.(5.18)

Summing (5.18) from n = 1 to n = m leads to the following estimate:

‖emh ‖20 + ντ

m∑
n=1

‖ēnh‖21 ≤ κτ

m−1∑
n=1

‖enh‖20 + κτ4
m∑
n=2

σ(tn)‖dttun∗‖20.

Applying Lemma 4.4 and Lemma 5.2 to this inequality yields (5.14) with r = 0.
Next, by setting vh = 2τdte

n
h in (5.16) and using (4.1), we get

ν(‖enh‖21 − ‖en−1
h ‖21) + 2τ‖dtenh‖20 + 2τb(φ(ēnh), ū

n
∗ , dte

n
h)

+ 2τb(φ(ūn∗ ), e
n−1
h , dte

n
h) + 4b(φ(ēnh), ē

n
h, e

n−1
h )

+H(n− 2)τ3b(dttu
n
∗ , ū

n
∗ , dte

n
h) = 0.(5.19)
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From Lemma 4.1 and (3.10), we get

2τ |b(φ(ēnh), ūn∗ , dtenh)| ≤
τ

4
‖dtenh‖0 + cτ‖Ahūn∗‖20‖φ(ēnh)‖21,

2τ |b(φ(ūn∗ ), en−1
h , dte

n
h)| ≤

τ

4
‖dtenh‖20 + cτ‖Ahφ(ūn∗ )‖20‖en−1

h ‖21,

4|b(φ(ēnh), ēn∗ , en−1
h )| ≤ c‖φ(ēnh)‖1‖ēnh‖1‖en−1

h ‖1,

H(n− 2)τ3|b(dttun∗ , ūn∗ , Ar−1
h dte

n
h)| ≤

τ

4
‖dtenh‖20 + cH(n− 2)τ5‖dttun∗‖21‖Ahūn∗‖20.

Combining these inequalities with (5.19) and using Lemma 5.2 and (5.14) with r = 0,
we see that

ν(‖enh‖21 − ‖en−1
h ‖21) + τ‖dtenh‖20 ≤ κτ(‖en−1

h ‖21 + ‖φ(ēnh)‖21)
+H(n− 2)κτ3‖dtun∗ − dtun−1

∗ ‖21.
Summing this inequality from n = 1 to n = m and applying Lemma 5.2 results in

‖emh ‖21 + ντ

m∑
n=1

‖dtenh‖20 ≤ κτ

m−1∑
n=1

‖enh‖21 + κτ2.

Applying Lemma 4.4 to this inequality yields (5.15).
Next, we take vh = 2τArhē

n
h in (5.16) with r = −1, 1, obtaining

‖enh‖2r − ‖en−1
h ‖2r + 2ντ‖ēnh‖2r+1 + 2τb(φ(ēnh), ū

n
∗ , A

r
hē
n
h) + 2τb(φ(ūn∗ ), ē

n
h, A

r
hē
n
h)

+ 2τb(φ(ēnh), ē
n
h, A

r
hē
n
h) +H(n− 2)τ3b(dttu

n
∗ , ū

n
∗ , A

r
hē
n
h) = 0.(5.20)

From Lemma 4.1, it follows that

2τ |b(φ(ēnh), ūn∗ , Arhēnh)| ≤
ντ

4
‖ēnh‖2r+1 + cτ‖Ahūn∗‖20‖φ(ēnh)‖2r,

2τ |b(φ(ūn∗ ), ēnh, Arhēnh)| ≤
ντ

4
‖ēnh‖2r + cτ‖Ahφ(ūn∗ )‖20‖ēnh‖2r,

2τ |b(φ(ēnh), ēnh, Arhēnh)| ≤
ντ

4
‖ē‖2r+1

+ cτ‖φ(ēnh)‖1−r0 ‖φ(ēnh)‖2+2r
1 ‖ēnh‖2,

τ3|b(dttun∗ , ūn∗ , Arhēnh)| ≤
ντ

4
‖ēnh‖2r+1 + cτ5‖dttun∗‖2r‖Ahūn∗‖20.

Combining these inequalities with (5.20) and applying Lemma 5.2 yields

‖enh‖2r − ‖en−1‖2r + ντ‖ēnh‖2r+1 ≤ cτ(‖φ(ēnh)‖2r + ‖ēnh‖2r)

+ cτ‖φ(ēnh)‖1−r0 ‖φ(ēnh)‖2+2r
1 ‖ēnh‖21 + cH(n− 2)τ5‖dttun∗‖2r.(5.21)

Summing (5.21) from n = 1 to n = m and applying Lemma 5.2, (5.15), and (5.14)
with r = 0, we obtain

‖emh ‖2r + τ

m∑
n=1

‖ēnh‖2r+1 ≤ κτ3−r + κτ

m∑
n=1

‖enh‖2r.(5.22)
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Applying Lemma 4.3 to this inequality with τ ≤ τT yields (5.14) with r = −1, 1.
Lemma 5.4. Under the assumptions of Theorem 5.1, there holds

σ(tm)‖emh ‖20 + τ

m∑
n=1

σ(tn)‖ēnh‖21 ≤ κτ4, 1 ≤ m ≤ N,(5.23)

σ(tm)‖dtemh ‖20 + τ

m∑
n=1

σ(tn)‖dtēnh‖21 ≤ κτ2, 1 ≤ m ≤ N.(5.24)

Proof. Multiplying (5.18) by σ(tn) and using Lemma 5.2 and the fact that

σ(tn) ≤ σ(tn−1) + τ, en−1
h = ēn − τ

2
dte

n,(5.25)

we obtain

σ(tn)‖enh‖20 − σ(tn−1)‖en−1
h ‖20 + ντσ(tn)‖ēnh‖21

≤ 2τ‖ēnh‖20 + τ3‖dtenh‖20 + κτσ(tn)‖φ(ēnh)‖20 + cH(n− 2)τ5σ(tn)‖dttun∗‖20.
Summing this inequality from n = 1 to n = m and using Lemma 5.2, we obtain

σ(tm)‖emh ‖20 + ντ

m∑
n=1

σ(tn)‖ēnh‖21 ≤ κτ4 + κτ

m−1∑
n=0

σ(tn)‖enh‖20

+ τ

m∑
n=1

(2‖ēnh‖20 + τ3‖dtenh‖20).(5.26)

Applying Lemma 4.4 and Lemma 5.3 with r = −1 to this inequality yields

σ(tm)‖emh ‖20 + ντ

m∑
n=1

σ(tn)‖ēnh‖21 ≤ κτ4,

which gives (5.23).
Furthermore, we derive from (5.16) that

(dtte
n
h, vh) + a(dtē

n
h, vh) + b(φ(dtē

n
h), ū

n
∗ , vh)

+ b(φ(ēn−1
h ), dtū

n
∗ , vh) + b(φ(dtū

n
∗ ), ē

n
h, vh)

+ b(φ(ūn−1
∗ ), dtē

n
h, vh)− b(φ(dtēnh), ēnh, vh)(5.27)

− b(φ(ēn−1
h ), dtē

n
h, vh) +

1

2
H(n− 2)τb(dttu

n
∗ , ū

n
∗ , vh)

− 1

2
H(n− 3)τb(dttu

n−1
∗ , ūn−1

∗ , vh) = 0

for all vh ∈ Vh. We take vh = 2τdtē
n
h in (5.27) and use (4.1), obtaining

‖dtenh‖20 − ‖dten−1
h ‖20 + 2ντ‖dtēnh‖21 + 2τb(φ(dtē

n
h), ū

n
∗ , dtē

n
h)

+ 2τb(φ(ēn−1
h ), dtū

n
∗ , dtē

n
h) + 2τb(φ(dtū

n
∗ ), ē

n
h, dtē

n
h)

− 2τb(φ(dtē
n
h), ē

n
h, dtē

n
h) +H(n− 2)τ2b(dttu

n
∗ , ū

n
∗ , dtē

n
h)(5.28)

−H(n− 3)τ2b(dttu
n−1
∗ , ūn−1

∗ , dtē
n
h) = 0.
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From Lemma 4.1, it follows that

2τ |b(φ(dtēnh), ūn∗ , dtēnh)| ≤
ντ

8
‖dtēnh‖21 + cτ‖Ahūn∗‖20‖φ(dtēnh)‖20,

2τ |b(φ(ēn−1
h ), dtū

n
∗ , dtē

n
h)| ≤

ντ

8
‖dtēnh‖21 + cτ‖dtūn∗‖21‖φ(ēn−1

h )‖21,

2τ |b(φ(dtūn∗ ), ēnh, dtēnh)| ≤
ντ

8
‖dtēnh‖21 + cτ−1‖Ahφ(ūn∗ )−Ahφ(ūn−1

∗ )‖20‖ēnh‖20,

2τ |b(φ(dtēnh), ēnh, dtēnh)| ≤
ντ

4
‖dtēnh‖21 + cτ‖φ(dtēnh)‖21‖ēnh‖21,

H(n− 2)τ2|b(dttun∗ , ūn∗ , dtēnh)| + H(n− 3)τ2|b(dttun−1
∗ , ūn−1

∗ , dtē
n
h)|

≤ ντ

4
‖dtēnh‖21 + cτ3H(n− 2)‖dttun∗‖20‖Ahūn∗‖20

+ cτ3H(n− 3)‖dttun−1
∗ ‖20‖Ahūn−1

∗ ‖20.
Combining these inequalities with (5.28) and using Lemma 5.2 yields

σ(tn)‖dtenh‖20 − σ(tn−1)‖dten−1
h ‖20 + ντσ(tn)‖dtēnh‖21

≤ τ‖dten−1
h ‖20 + cσ(tn)τ‖φ(dtēnh)‖20 + cτ‖dtūn∗‖21‖ēnh‖21

+ cτ−1‖Ahφ(ūn∗ )−Ahφ(ūn−1
∗ )‖20‖ēnh‖20

+ cτ3(H(n− 2)σ(tn)‖dttun∗‖20 +H(n− 3)σ(tn−1)‖dttun−1
∗ ‖20).

Summing this inequality from n = 1 to n = m and using Lemma 5.2 and Lemma 5.3,
we obtain (5.24).

Lemma 5.5. Under the assumptions of Theorem 5.1, there holds

‖pmh − p̄(tm)‖L2 ≤ κσ−3/2(tm)τ, 1 ≤ m ≤ N.(5.29)

Proof. First, we derive from (5.1)–(5.2) that

d(vh, µ
m
h ) = (dte

m
h , vh) + a(ēmh , vh) + b(φ(ēmh ), ū

m
∗ , vh) + b(φ(ūm∗ ), ē

m
h , vh)

− b(φ(ēmh ), ē
m
h , vh) +

1

2
H(m− 2)τ2b(dttu

m
∗ , ū

m
∗ , vh) ∀vh ∈ Xh,(5.30)

where µmh = pm∗ − pmh . Hence, by using (3.4) and (4.2), we derive from (5.30) that

σ(tm)‖µmh ‖L2 ≤ cσ(tm)‖dtemh ‖0 + c(1 + ‖φ(ūm∗ )‖1 + ‖φ(ēmh )‖1)‖ēmh ‖1
+ c‖ūm∗ ‖1‖φ(ēmh )‖1 + κτ2σ(tm)‖dttum∗ ‖0.

Using Lemmas 5.2–5.4 in the above estimate yields

σ(tm)‖µmh ‖L2 ≤ κτ, 1 ≤ m ≤ N.

Combining this estimate with (5.6) in Theorem 5.1 yields (5.29).
Theorem 5.6. Under the assumptions of Theorem 5.1, there holds

‖uh(t)− uh,τ (t)‖0 ≤ κσ−1(t)τ2, ‖uh(t)− uh,τ (t)‖1 ≤ κσ−1/2(t)τ,(5.31)

‖ph(t)− ph,τ (t)‖L2 ≤ κσ−3/2(t)τ(5.32)
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for all t ∈ (0, T ].
Remark. Combining (5.31)–(5.32) with (3.11) yields (1.1)–(1.2).
Proof. First, for t ∈ (0, t1] there holds

‖uht(s)‖0 + ‖dtu1
h‖0 ≤ κ,∥∥∥∥∫ t

0

(uht(s)− dtu1
h)ds

∥∥∥∥
1

≤ τ1/2

(∫ t

0

‖uht(s)‖21ds1/2 + τ1/2σ1/2(t1)‖dtu1
h‖1
)

≤ κτ1/2.

Hence, we have

σ
2−r
2 (t)‖uh(t)− uh,τ (t)‖r = σ

2−r
2 (t)

∥∥∥∥∫ t

0

(uht(s)− dtu1
h)ds

∥∥∥∥
r

≤ κτ2−r, r = 0, 1.(5.33)

Moreover, we note that for t ∈ (tn−1, tn], 2 ≤ n ≤ N , the error uh(t) − uh,τ (t)
satisfies

uh(t)− uh,τ (t) = uh(tn−1)− un−1
h + (t− tn−1)(dtuh(tn)− dtunh)

+

∫ t

tn−1

(uht(s)− dtuh(tn))ds.(5.34)

Thus,

σ1−r/2(t)‖uh(t)− uh,τ (t)‖r ≤ σ1−r/2(t)‖uh(tn−1)− un−1
h ‖r

+ (t− tn−1)σ
2−r/2(t)‖dtuh(tn)− dtunh‖r

+ σ1−r/2(t)

∥∥∥∥∥
∫ t

tn−1

(uht(s)− dtuh(tn))ds
∥∥∥∥∥
r

, r = 0, 1.(5.35)

From Theorem 4.2 and Theorem 5.1 and Lemma 5.3 and Lemma 5.4 it follows that

σ1−r/2(t)

∥∥∥∥∥
∫ t

tn−1

(uht(s) − dtuh(tn))ds

∥∥∥∥∥
r

≤ cτ2−rσ1+r/2(tn−1)‖uhtt(ξ)‖r

≤ κτ2−r,

σ1−r/2(t)‖uh(tn−1)− un−1
h ‖r ≤ σ1−r/2(tn−1)(‖uh(tn−1)− un−1

∗ ‖r + ‖en−1
h ‖r)

≤ κτ2−r,

σ(t)‖dtuh(tn)− dtunh‖0 ≤ σ(tn)(‖dtuh(tn)− dtun∗‖0 + ‖dtenh‖0) ≤ κτ,

σ1/2(t)‖dtuh(tn)− dtunh‖1 ≤ σ1/2(tn)‖dtuh(tn)‖1 + σ1/2(tn)‖dtunh‖1 ≤ κ.

Combining (5.35) with these inequalities yields

σ
2−r
2 (t)‖uh(t)− uh,τ (t)‖r ≤ κτ2−r, r = 0, 1, t ∈ (t1, T ],(5.36)
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which along with (5.33) completes the proof of (5.31).
Now, we need the smoothness of pht. From (3.8) we have

d(vh, pht) = (uhtt, vh) + a(uht, vh) + b(uht, uh, vh) + b(uh, uht, vh)

− (ft, vh) ∀vh ∈ Xh,

which along with (3.4), (3.10), (4.2), and (4.7)–(4.8) implies that

σ(t)‖pht(t)‖L2 ≤ κ, t ∈ (0, T ].(5.37)

Now, we will prove (5.32). From (4.7) we derive that for t ∈ (0, t1],
σ3/2(t)‖ph(t)− ph,τ (t)‖L2 ≤ σ3/2(t)‖ph(t)− p̄h(t1)‖L2

+ σ3/2(t1)‖p̄h(t1)− p1
h‖L2 ≤ κτ.(5.38)

Moreover, by using (5.37), we obtain that for t ∈ (tn−1, tn], 2 ≤ n ≤ N ,

σ(t)‖ph(t)− p̄h(tn)‖L2 =
1

2
σ(t)

∥∥∥∥∥
∫ t

tn−1

pht(s)ds−
∫ tn

t

pht(s)ds

∥∥∥∥∥
L2

≤
∫ t

tn−1

σ(s)‖pht(s)‖L2ds+
1

2

∫ tn

t

σ(s)‖pht(s)‖L2ds ≤ κτ.

Hence, by virtue of Lemma 5.5, we obtain that for t ∈ (tn−1, tn], 2 ≤ n ≤ N ,

σ3/2(t)‖ph(t)− ph,τ (t)‖L2 ≤ σ3/2(t)‖ph(t)− p̄h(t)‖L2

+ σ3/2(tn)‖p̄h(tn)− pnh‖L2 ≤ κτ,(5.39)

which along with (5.38) gives (5.32).
Theorem 5.7. Under the assumptions of Theorem 5.1, there holds∫ T

0

‖uh(t)− uh,τ (t)‖2rdt ≤ κτ3−r, r = −1, 0, 1,(5.40)

∫ T

0

σr+1(t)‖uh(t)− uh,τ (t)‖2rdt ≤ κτ4, r = 0, 1.(5.41)

Proof. First, using the integration by parts and the fact that

uh(tn)− unh = ūh(tn)− ūnh +
τ

2
(dtuh(tn)− dtunh),

we derive∫ tn

tn−1

‖uh(t) − uh,τ (t)‖2rdt ≤ cτ‖uh(tn)− unh‖2r + cτ3‖uht(tn)− dtunh‖2r

+ cτ2

∫ tn

tn−1

(t− tn−1)
2‖uhtt(t)‖2rdt

≤ cτ‖ūh(tn)− ūn∗‖2r + cτ‖ēnh‖2r + cτ3‖dt(uh(tn)− un∗ )‖2r + cτ3‖dtenh‖2r(5.42)

+ cτ3−r
∫ tn

tn−1

σ1+r(t)‖uhtt(t)‖2rdt.
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Summing this inequality from n = 1 to n = m, we obtain

∫ T

0

‖uh(t)− uh,t(t)‖2rdt ≤ cτ

N∑
n=1

‖ūh(tn)− ūn∗‖2r + cτ3
N∑
n=1

‖dtuh(tn)− dtun∗‖2r

+ cτ

N∑
n=1

‖ēnh‖2r + cτ3
N∑
n=1

‖dtenh‖2r + cτ3−r
∫ T

0

σ1+r(t)‖uhtt(t)‖2rdt.(5.43)

Applying Theorem 4.2 and Theorem 5.1 and Lemma 5.3 and Lemma 5.4 in (5.43),
we obtain (5.40).

Moreover, we also have∫ tn

tn−1

σr+1(t)‖uh(t) − uh,τ (t)‖2rdt ≤ cτσr+1(tn)‖uh(tn)− unh‖2r
+ cτ3σr+1(tn)‖uht(tn)− dtunh‖2r

+ cτ2

∫ tn

tn−1

(t− tn−1)σ
r+1(t)‖uhtt(t)‖2rdt

≤ cτσr+1(tn)‖ūh(tn)− ūn∗‖2r + cτσr+1(tn)‖ēnh‖2r(5.44)

+ cτ3σr+1(tn)‖dt(uh(tn)− un∗ )‖2r + cτ3σr+1(tn)‖dtenh‖2r

+ cτ4

∫ tn

tn−1

σr+1(t)‖uhtt(t)‖2rdt.

Summing (5.44) from n = 1 to n = m, we obtain

∫ T

0

σr+1(t)‖uh(t)− uh,t(t)‖2rdt ≤ cτ

N∑
n=1

σr+1(tn)‖ūh(tn)− ūn∗‖2r

+ cτ3
N∑
n=1

σr+1(tn)‖dtuh(tn)− dtun∗‖2r + cτ

N∑
n=1

σr+1(tn)‖ēnh‖2r

+ cτ3
N∑
n=1

σr+1(tn)‖dtenh‖2r + cτ4

∫ T

0

σr+1(t)‖uhtt(t)‖2rdt.(5.45)

A further extension of some arguments provided by Heywood and Rannacher in [18]
can yield the following estimates:

τ
N∑
n=1

σr+1(tn)‖ūh(tn)− ūn∗‖2r ≤ κτ4,(5.46)

τ

N∑
n=1

σr+1(tn)‖dtuh(tn)− dtun∗‖2r ≤ κτ2(5.47)

for r = 0, 1. Using Theorem 4.2, Lemma 5.3, Lemma 5.4, and (5.46)–(5.47) in (5.45),
we obtain (5.41).
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6. Two-level finite element method. In this section we consider a two-level
finite element method for the time-dependent Navier–Stokes equations.

Given a coarse grid JH with H > h and a large time step size τ0 = kτ = T
N0

with

N0 =
N
k for some fixed integer k, the two-level finite element method applied to the

finite element Galerkin approximation (3.8)–(3.9) is described as follows:
• Calculate the one-level finite element solution uH,τ0(t) on a time-spatial coarse
grid JH,τ0 by (5.1) with h = H, τ = τ0, N = N0.
• Given uH,τ0(t) ∈ XH , t ∈ [0, T ], calculate the two-level finite element solution
uh,τ (t) = uh,n−1+(t−tn−1)dtu

h,n, ph,τ (t) = ph,k ∀t ∈ (tn−1, tn], 1 ≤ n ≤ N,

on the spatial-time fine grid Jh,τ , where {(uh,n, ph,n)}Nn=1 is mainly defined
by the backward Euler scheme as follows: for all (vh, qh) ∈ (Xh,Mh) with the
starting value uh,0 = u0h,

(dtu
h,n, vh) + a(ūh,n, vh)− d(vh, ph,n) + d(ūh,n, qh)

+ b(φ(ūh,n), ūH,τ0(tn), vh) = (f̄(tn), vh), 1 ≤ n ≤ N,(6.1)

where (6.1) is not the backward Euler scheme in the case of n = 1.
By using an exact similar argument as in the proof of Lemma 5.2, we can ob-

tain the following regularity result of the finite element solutions {(unh, pnh)}Nn=1 and
{(uh,n, ph,n)}Nn=1.

Lemma 6.1. Under the assumptions of Theorem 5.1, there holds

‖ϕmh ‖2r + τ

m∑
n=1

(‖ϕ̄nh‖2r + ‖dtϕnh‖2r−1) ≤ κ, 1 ≤ m ≤ N, r = 0, 1, 2,(6.2)

σ(tm)‖dtϕmh ‖2 + τ

m∑
n=2

(‖dttϕnh‖2−1 + σ(tn)‖dttϕnh‖20) ≤ κ, 2 ≤ m ≤ N(6.3)

for ϕnh = unh, u
h,n.

Lemma 6.2. Under the assumptions of Theorem 5.1, there holds

‖emh ‖2r + τ

m∑
n=1

‖ēnh‖2r+1 ≤ κ(H4−r(r+1) + τ3−r
0 ), r = −1, 0, 1,(6.4)

‖emh ‖2r + τ

m∑
n=1

‖dtenh‖2r−1 ≤ κ(H2 + τ2
0 )

2−r, r = 1, 2(6.5)

for 1 ≤ m ≤ N , where enh = unh − uh,n.
Proof. Subtracting (6.1) from (5.1), we obtain

(dte
n
h, vh) + a(ēnh, vh)− d(vh, µnh) + b(φ(ēnh), ū

n
h, vh)

+ b(φ(ūh,n), ūh,τ (tn)− ūH,τ0(tn), vh) = 0 ∀vh ∈ Xh,(6.6)

where unh = uh,τ (tn) and µ
n
h = pnh − ph,n. We take vh = 2τArhē

n
h ∈ Vh in (6.6) with

r = −1, 0, 1, obtaining
‖enh‖2r − ‖en−1

h ‖2r + 2ντ‖ēnh‖2r+1 + 2τb(φ(ēnh), ū
n
h, A

r
hē
n
h)

+ 2τb(φ(ūh,n), ūh,τ (tn)− ūH,τ0(tn), Arhēnh) = 0.(6.7)
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In view of Lemma 4.1, there holds

2τ |b(φ(ēnh), ūnh, Arhēnh)| ≤
ντ

4
‖ēnh‖2r+1 + cτ‖Ahūnh‖20‖φ(ēnh)‖2r,

2τ |b(φ(ūh,n), ūh,τ (tn) − ūH,τ0(tn), A
r
hē
n
h)|

≤ ντ

4
‖ēnh‖2r+1 + cτ‖Ahφ(ūh,n)‖0‖ūh,τ (tn)− ūH,τ0(tn)‖2r.

Combining these inequalities with (6.7) and using Lemma 5.2 and Lemma 6.1 yields

‖enh‖2r − ‖en−1
h ‖2r + ντ‖ēnh‖2r+1 ≤ κτ‖φ(ēnh)‖2r + κτ‖ūh,τ (tn)− ūH,τ0(tn)‖2r.(6.8)

Summing (6.8) from n = 1 to n = m yields

‖emh ‖2r + ντ

m∑
n=1

‖ēnh‖2r+1 ≤ κτ

N∑
n=1

‖φ(ēnh)‖2r + κτ

N∑
n=1

‖ūH(tn)− ūH,τ0(tn)‖2r.(6.9)

From integration by parts there holds the following formula:

ūh(tn) =
1

τ

∫ tn

tn−1

uh(t)dt+
1

2τ

∫ tn

tn−1

(tn − t)(t− tn−1)uhtt(t)dt.(6.10)

Hence, we derive from Theorem 5.7 and (3.10)–(3.11) that

τ

N∑
n=1

‖uh,τ (tn)− uH,τ0(tn)‖2r ≤
N∑
n=1

∫ tn

tn−1

‖uh,τ (t)− uH,τ0(t)‖2rdt

≤ c

∫ T

0

(‖uh(t)− uh,τ (t)‖2r + ‖uH(t)− uH,τ0(t)‖2r + ‖uh(t)− uH(t)‖2r)dt(6.11)

≤ κ(H4−r(r+1) + τ3−r
0 ),

which along with (6.9) yields

‖emh ‖2r + ντ

m∑
n=1

‖ēnh‖2r+1 ≤ κτ

m∑
n=1

‖φ(ēnh)‖2r + κ(H4−r(r+1) + τ3−r
0 ).(6.12)

Applying Lemma 4.3 with m = 1 and Lemma 4.4 with 2 ≤ m ≤ N to (6.12)
yields (6.4).

Next, we take vh = 2τAr−1
h dte

n
h in (6.6) with r = 1, 2, obtaining

2τ‖dtenh‖2r−1 + ν(‖enh‖2r − ‖en−1
h ‖2r) + 2τb(φ(ēnh), ū

n
h, A

r−1
h dte

n
h)

+ 2τb(φ(ūh,n), ūh,τ (tn)− ūH,τ0(t), Ar−1
h dte

n
h) = 0.(6.13)

In view of Lemma 4.1, there holds

2τ |b(φ(ēnh), ūnh, Ar−1
h dte

n
h)| ≤

τ

4
‖dtenh‖2r−1 + cτ‖Ahūnh‖20‖φ(ēnh)‖2r

2τ |b(φ(ūh,n), ūh,τ (tn) − ūH,τ0(t), A
r−1
h dte

n
h)|

≤ τ

4
‖dtenh‖2r−1 + κτ‖Ahφ(ūh,n)‖20‖ūh,τ (tn)− ūH,τ0(tn)‖2.
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Combining these inequalities with (6.13) and using Lemma 5.2 yields

τ‖dtenh‖2r−1 + ν(‖enh‖2r − ‖en−1
h ‖2r) ≤ κτ‖φ(ēnh)‖2r + κτ‖ūnh − ūH,τ0(tn)‖2r.(6.14)

Summing this inequality from n = 1 to n = m and using (6.11) with r = 1 and
Lemma 6.1 with r = 2, we obtain

ν‖emh ‖2r + τ

m∑
n=1

‖dtenh‖2r−1 ≤ κτ

m∑
n=1

‖φ(ēnh)‖2r + κ(H2 + τ2
0 )

2−r.(6.15)

Applying Lemma 4.3 with m = 1 and Lemma 4.4 with 2 ≤ m ≤ N to (6.15) yields
(6.5).

Lemma 6.3. Under the assumptions of Theorem 5.1, there holds

σ(tm)‖emh ‖20 + τ

m∑
n=1

σ(tn)‖ēnh‖21 ≤ κ(H4 + τ4
0 ) ∀1 ≤ m ≤ N.(6.16)

Proof. For n = 1 we derive from Lemma 6.2 that

σ(tn)‖enh‖20 + τσ(tn)‖ēnh‖21 ≤ κ(H4 + τ4
0 ).(6.17)

Multiplying (6.8) with r = 0 by σ(tn) and noting

σ(tn) ≤ σ(tn−1) + τ, en−1
h = ēnh −

τ

2
dte

n
h,(6.18)

for 2 ≤ n ≤ N , we obtain

σ(tn)‖enh‖20 − σ(tn−1)‖en−1
h ‖20 + 2ντ‖ēnh‖21 ≤ 2τ(‖ēn‖20 + τ2‖dtenh‖20)

+ κτσ(tn)‖φ(ēnh)‖20 + κτσ(tn)‖ūh,τ (tn)− ūH,τ0(tn)‖20.(6.19)

Summing (6.19) from n = 2 to n = m and using Lemma 6.2 yields

σ(tm)‖emh ‖20 + ντ

m∑
n=2

σ(tn)‖ēnh‖21 ≤ κ

m−1∑
n=2

(‖ēn‖20 + τ2‖dtenh‖20)

+ κτ

N∑
n=2

σ(tn)‖ūh,τ (tn)− ūH,τ0(tn)‖20 + κτ

m−1∑
n=1

σ(tn)‖enh‖20 + κ(H4 + τ4
0 ).(6.20)

Using Theorem 5.7, we obtain

τ

N∑
n=2

σ(tn)‖uh,τ (tn) − uH,τ0(tn)‖20 ≤
N∑
n=1

∫ tn

tn−1

σ(t)‖uh,τ (t)− uH,τ0(t)‖20dt

≤ c

∫ T

0

(σ(t)‖uh(t)− uh,τ (t)‖20 + σ(t)‖uH(t)− uH,τ0(t)‖20)dt(6.21)

+

∫ T

0

σ(t)‖uh(t)− uH,τ0(t)‖20dt ≤ κ(H4 + τ4
0 ).

Applying Lemma 4.4 and (6.21) to (6.20) and using (6.17) yields (6.16).
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Lemma 6.4. Under the assumptions of Theorem 5.1, there holds

σi(tm)‖emh ‖21 + τ

m∑
n=1

σi(tn)‖dtenh‖20 ≤ κ(τ2 +H2+i + τ2+i
0 ), i = 1, 2,(6.22)

for all 1 ≤ m ≤ N .
Proof. Multiplying (6.13) with r = 1 by σi(tn), we obtain

τσi(tn)‖dtenh‖20 + ν(σi(tn)‖enh‖21 − σi(tn−1)‖en−1
h ‖21)

≤ iντσi−1(tn)‖en−1
h ‖21 + κτσi(tn)‖φ(ēnh)‖21 + κτσi(tn)‖ūnh − ūH,τ0(tn)‖21.(6.23)

Summing this inequality from n = 1 to n = m and using Lemma 6.2 and Lemma 6.3,
Theorem 5.7, and (6.10), we obtain

σi(tm)‖emh ‖21 + τ

m∑
n=1

σi(tn)‖dtenh‖20

≤ κτ

m∑
n=1

σi(tn)‖φ(ēnh)‖21 + κτ

m∑
n=1

σi−1(tn)(‖ēnh‖21 + τ2‖dtenh‖21)

+ κτ

m∑
n=1

σi(tn)‖ūnh − ūH,τ0(tn)‖21 ≤ κ(τ2 +H2+i + τ2+i
0 ),

which is (6.22).
Lemma 6.5. Under the assumptions of Theorem 5.1, there holds

‖µmh ‖L2 ≤ κσ−3/2(tm)(τ +H2 + τ2
0 ), 1 ≤ m ≤ N.(6.24)

Proof. From (6.6) we derive

(dtte
n
h, vh) + a(dtē

n
h, vh) + b(φ(dtē

n
h), ū

n
h, vh)

+ b(φ(dtū
h,n), ūh,τ (tn)− uH,τ0(tn), vh) + b(φ(ēn−1

h ), dtū
n
h, vh)(6.25)

+ b(φ(ūh,n−1), dtūh,τ (tn)− dtuH,τ0(tn), vh) ∀vh ∈ Vh.
Next, we take vh = 2τdtē

n
h in (6.25), obtaining

‖dtenh‖20 − ‖dten−1
h ‖20 + 2τν‖dtēnh‖21 + 2τb(φ(dtē

n
h), ū

n
h, dtē

n
h)

+ 2τb(φ(dtū
h,n), ūh,τ (tn)− uH,τ0(tn), dtēnh) + 2τb(φ(ēn−1

h ), dtū
n
h, dtē

n
h)(6.26)

+ 2τb(φ(ūn−1,h), dtūh,τ (tn)− dtuH,τ0(tn), dtēnh) = 0.

From Lemma 4.1, Lemma 5.2, and Lemma 6.1, we have

2τ |b(φ(dtēnh), ūnh, dtēnh)| ≤
ντ

4
‖dtēnh‖21 + κτ‖φ(dtēnh)‖20,

2τ |b(φ(dtūh,n), ūnh − ūH,τ0(t), dtē
n
h)|

≤ ντ

4
‖dtēnh‖21 + κτ‖dtūh,n‖21‖ūnh − ūH,τ0(tn)‖21,

2τ |b(φ(ēn−1
h ), dtū

n
h, dtē

n
h)| ≤

ντ

4
‖dtēnh‖21 + c‖dtūnh‖21‖φ(ēn−1

h )‖21,

2τ |b(φ(ūh,n−1), dtūh,τ (tn) − dtuH,τ0(tn), dtē
n
h)| ≤

ντ

4
‖dtēnh‖21

+ cτ‖Ahφ(ūh,n−1)‖20‖dtūh,τ (tn)− dtūH,τ0(tn))‖20.
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Combining these inequalities with (6.26) yields

‖dtenh‖20 − ‖dten−1
h ‖20 + ντ‖dtēnh‖21 ≤ κτ‖φ(dtēnh)‖20

+ cτ‖dtūh,τ (tn)− dtūH,τ0(tn)‖20 + cτ‖φ(ēn−1
h )‖21‖dtūnh‖21(6.27)

+ cτ‖φ(dtūh,n)‖21‖ūnh − ūH,τ0(tn)‖21.

Multiplying (6.27) by σ3(tn) and applying Lemma 5.2 and Lemma 6.1 yields

σ3(tn)‖dtenh‖20 − σ3(tn−1)‖dten−1
h ‖20 + ντσ3(tn)‖dtēnh‖21

≤ 2τσ2(tn−1)‖dten−1
h ‖20 + κτσ3(tn)‖φ(dtēnh)‖20

+ cτσ3(tn)‖dtūh,τ (tn)− dtūH,τ0(tn)‖20 + cτσ2(tn)‖φ(ēn−1
h )‖21(6.28)

+ cτσ2(tn)‖ūh,τ (tn)− ūH,τ0(tn)‖21.

Summing (6.28) from n = 1 to n = m and applying Lemma 6.3 and Lemma 6.4 with
i = 2 and Theorem 5.7, we obtain

σ3(tm)‖dtemh ‖20 + τ

m∑
n=1

σ3(tn)‖dtēnh‖21

≤ κ(τ2 +H4 + τ4
0 ) + κτ

m∑
n=1

σ3(tn)‖φ(dtēnh)‖20.(6.29)

Applying Lemma 4.3 with m = 1 and Lemma 4.4 with 2 ≤ m ≤ N to (6.29) yields

σ3(tm)‖dtemh ‖20 + τ

m∑
n=1

σ3(tn)‖dtēnh‖21 ≤ κ(τ2 +H4 + τ4
0 ).(6.30)

Finally, we derive from (3.4), (6.6), (6.30), Theorem 5.7, Lemma 6.4, and (6.30)
that

‖µmh ‖L2 ≤ κ(‖dtemh ‖0 + ‖ēmh ‖1 + ‖ūh,τ (tm)− ūH,τ0(tm)‖1 + ‖φ(ēmh )‖1)
≤ σ−3/2(tm)(τ +H2 + τ2

0 ), 1 ≤ m ≤ N,

which is (6.24).

Theorem 6.6. Under the assumptions of Theorem 5.1, the following error esti-
mates hold:

‖uh(t)− uh,τ (t)‖H1
0
≤ κH(1− t)σ−1/2(t)(τ + τ

3/2
0 +H3/2)

+ κH(t− 1)(τ + τ2
0 +H2), t ∈ (0, T ],(6.31)

‖ph(t)− ph,τ (t)‖L2 ≤ κσ−3/2(t)(τ + τ2
0 +H2), t ∈ (0, T ].(6.32)

This proof can be completed by combining Theorem 5.6, Lemma 6.5, and Lemma
6.4 with i = 1 for t ∈ (0, 1] and i = 2 for t ∈ (1, T ]; it can be omitted.

Remark. Combining Theorem 6.6 with (3.11) yields (1.3)–(1.4).
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Abstract. We present a model involving a friction term and a delay term. By using results of
existence and uniqueness for maximal monotone differential inclusions, we give theoretical results for
this model. An implicit Euler numerical scheme and results related to order of convergence are also
provided from both a theoretical and a numerical point of view.
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1. Introduction. In this paper, we study models including maximal monotone
terms and delay terms. Differential inclusions involving only maximal monotone terms
have been studied in many references from the point of view of mathematics (e.g.,
[7, 6, 10, 13]), mathematics and mechanics (e.g., [20, 1, 22, 2, 5]), numerical analysis
(e.g., [25, 2, 5]), mechanics (e.g., [27, 17, 8]), and recently with friction and impact
[30]. Indeed, many applications are concerned since it could be very convenient to use
set-valued force laws in order to write models for impacts, friction, or elastoplastic
constitutive laws, for example. Existence and uniqueness for stochastic differential
inclusions have been investigated [24, 26, 11, 12] and numerical schemes of Euler type
have been considered [26, 11].

Models including smooth nonlinear terms and delay terms have been also studied
(see, e.g., [19]). But models including both maximal monotone terms and delay terms
have not been investigated from the mathematical or numerical point of view. This
is the main topic of this paper.

Motivations for introduction of delay terms can be found in [19, 29] or occur
from applications: the control of structures (see, e.g., [31] for a survey of strategies
in the frame of civil engineering) may include friction forces or elastoplastic terms
together with a control law depending on the state of the structure delayed applied
control force. The stability of systems including delay terms is also important for
applications [23].

Recently, many studies have been devoted to the analysis of the behavior of cutter-
tools (see, e.g., [18, 28, 23]). In [28], hysteresis terms lead to both maximal monotone
terms (of sign type) and delay terms. The present work is based on the Master’s thesis
of Holland [21]. The paper is organized as follows. In section 2, the models considered
are described. In section 3, mathematical background and existence and uniqueness
results are provided. In section 4, a numerical scheme is built, its convergence is
investigated, and numerical results given for a simple example.
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2. Description of the model. In the field of mechanics, one frequently con-
siders the following differential inclusion:{

mẍ(t) + f
(
ẋ(t), x(t), t

)
+ g
(
ẋ(t− τ), x(t− τ), t) � 0 on [0, T ],

x0, ẋ0 given functions on [−τ, 0].(2.1)

In the simplest case f
(
ẋ(t), x(t), t

)
can be written as

f
(
ẋ(t), x(t), t

) ∈ cẋ(t) + kx(t)−H(t) + ασ
(
ẋ(t)

)
,(2.2)

with viscous damping c, stiffness k, external force H(t) (exerted on the mass m), and
friction force of Coulomb type ασ(ẋ(t)), where σ is the full graph “sign”; it is defined
by (see Figure 1)

σ(x) =


{−1} if x < 0,

{+1} if x > 0,

[−1, 1] if x = 0.

1

y

x

σ

Fig. 1. The graph σ.

In (2.2), α depends on the normal force and Coulomb coefficient (see [4, 5]). The
function g contains delay terms. In the simplest case g is given by

g
(
ẋ(t− τ), x(t− τ), t) = β(t)ẋ(t− τ) + γ(t)x(t− τ),(2.3)

with delay τ and smooth functions β(t) and γ(t). This model is represented in Fig-
ure 2.

In the general case with n dof the following models are considered for applications.
They correspond to vectorial differential inclusions with several delays τi, 1 ≤ i ≤ N ,
written as

 MẌ(t)+f
(
Ẋ(t), X(t), t

)
+

N∑
i=1

gi

(
Ẋ(t− τi), X(t− τi), t

)
+ friction like forces �0,

X0, Ẋ0 given vector functions on [−τN , 0],
with mass matrix M (size n × n), X(t) ∈ R

n, f and gi (1 ≤ i ≤ n) similar to the
previous one dof case except that f : R

n × R
n × [0,+∞[−→ R

n and g : R
n × R

n ×
[0,+∞[−→ R

n. For practical investigation one chooses frequently N = 1.
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H(t)α

k

c

x(t)

m

delay terms

Fig. 2. The studied mechanical model, with one dof, for f defined by (2.2).

Let H be a separable Hilbert space equipped with a scalar product denoted (., .)
and a norm denoted |.|, with T a strictly positive number. A is a maximal mono-
tone multivalued operator on H, whose domain is denoted D(A). In this paper, a
mathematical problem of the form

u̇(t) +A
(
u(t)

)
+B

(
t, u(t)

)
+G

(
u(t− τ)) � 0 a.e. on ]0, T [(2.4)

∀t ∈ [−τ, 0], u(t) = z(t),(2.5)

is considered, where τ > 0, and

z ∈W 1,∞(−τ, 0;H).(2.6a)

G a mapping from H to H whose differential is locally bounded on H, i.e.,

∀R ≥ 0, Ψ(R) = sup {‖G′(x)‖ : |x| ≤ R} < +∞.(2.6b)

B is a mapping from [0, T ]×H from H, Lipschitz continuous with respect to its second
argument and whose derivative maps the bounded sets of L2(0, T ;H) into bounded
sets of L2(0, T ;H), i.e.,

∃L ≥ 0 : ∀t ∈ [0, T ], ∀x1, x2 ∈ H, |B(t, x1)−B(t, x2)| ≤ ω |x1 − x2| ,(2.6c)

and let us denote

∀R ≥ 0, Φ(R) = sup

{∥∥∥∥∂B∂t (., v)
∥∥∥∥
L2(0,T ;H)

: ‖v‖L2(0,T ;H) ≤ R
}
< +∞.(2.6d)

The case with N delay terms would be treated in the same way. For applications, H
is equal to R

n.
For numerical simulations, we consider a class of one dof mechanical systems that

can occur from a simple control problem with delayed applied control force or from a
dynamic cutting process (see, e.g., [18, 28, 29, 23]) governed by (2.1), (2.2), and (2.3)
with m = 1, β ≡ 0, and γ(t) = γ; so we studied the system:

ẍ(t) + cẋ(t) + kx(t) + ασ
(
ẋ(t)

)
+ γx(t− τ) � H(t) on [0, T ],

x(t) = x0(t) on [−τ, 0],
ẋ(t) = ẋ0(t) on [−τ, 0].

(2.7)
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3. Existence and uniqueness.

3.1. Summary of an existence and uniqueness result. In this section, we
give an existence and uniqueness result that corresponds to the generalization of
results obtained by Brezis [6] and [7]. A proof of this result can be found in [3], [2],
[5], or in [15]. We proved the existence and uniqueness of the solution to a differential
inclusion, as the by-product of convergence results for a numerical scheme. We were in
the more general frame of a Gelfand triple V ↪→ H ↪→ V ′, where we denote ↪→ a dense
and continuous inclusion. Here, it is enough to make the identification V = H = V ′ for
the mechanical models studied. This result generalizes the result of [7] for a differential
inclusion with a maximal monotone term equal to the subdifferential of the indicatrix
of a nonempty closed convex set and the result of [6, Prop. 3.13, p. 107] for a maximal
monotone term whose domain is not necessarily with a nonempty interior.

We assume now that f is a function from [0, T ] ×H to H, Lipschitz continuous
with respect to its second argument and whose derivative maps the bounded sets of
L2(0, T ;H) into bounded sets of L2(0, T ;H), i.e.,

∃L ≥ 0 : ∀t ∈ [0, T ], ∀x1, x2 ∈ H, |f(t, x1)− f(t, x2)| ≤ L |x1 − x2|(3.1)

and

∀R ≥ 0, Φ(R) = sup

{∥∥∥∥∂f∂t (., v)
∥∥∥∥
L2(0,T ;H)

: ‖v‖L2(0,T ;H) ≤ R
}
< +∞.(3.2)

The existence and uniqueness result is the following proposition.
Proposition 3.1. If A is a multivalued maximal monotone operator from H

and if assumptions (3.1) and (3.2) hold, then there exists a unique solution u ∈
W 1,∞(0, T ;H) of the differential inclusion

u̇(t) +A
(
u(t)

) � f(t, u(t)) a.e. on ]0, T [,(3.3a)

u(0) = u0.(3.3b)

3.2. Existence and uniqueness results. We now apply Proposition 3.1 to a
maximal monotone inclusion with a delay term.

Proposition 3.2. Under assumptions (2.6), there exists a unique function u ∈
W 1,∞(−τ, T ;H) solution of the differential inclusion with delay

u̇(t) +A
(
u(t)

)
+B

(
t, u(t)

)
+G

(
u(t− τ)) � 0 a.e. on ]0, T [(3.4)

∀t ∈ [−τ, 0], u(t) = z(t).(3.5)

Proof. The delay term G(u(t− τ)) is a smooth term and the maximal monotone
inclusion (3.4) is similar to the differential inclusion:

u̇(t) +A
(
u(t)

) � f̃(t, u(t)) a.e. on ]0, T [,(3.6)

u(0) = u0.(3.7)

Let τ1 be equal to τ1 = min(T, τ). Define the mapping f1 from [0, τ1] ×H to H
by

∀t ∈ [0, τ1], ∀x ∈ H, f1(t, x) = −B(t, x)−G(z(t− τ)).
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Over the interval [0, τ1], problem (3.4)–(3.5) is then equivalent to the problem

u̇(t) +A
(
u(t)

) � f1(t, u(t)) a.e. on ]0, τ1[,(3.8)

u(0) = z(−τ).(3.9)

We are in the frame of Proposition 3.1. Indeed, according to assumption (2.6c), we
have

∀t ∈ [0, τ1], ∀x1, x2 ∈ H, |f1(t, x1)− f1(t, x2)| ≤ ω |x1 − x2| ;
thus, assumption (3.1) holds on [0, τ1]. Otherwise, we have

∀t ∈ [0, τ1], ∀v ∈ L2(0, τ1;H),
∂f1
∂t

(t, v) = −∂B
∂t

(t, v)−
(
G′
(
z(t− τ)), ż(t− τ)),

and then, by integration over the interval [0, τ1],

∫ τ1

0

∣∣∣∣∂f1∂t (t, v)
∣∣∣∣2dt ≤ 2

(∫ τ1

0

∣∣∣∣∂B∂t (t, v)
∣∣∣∣2dt+ ∫ τ1

0

∣∣G′(z(t− τ))∣∣2|ż(t− τ)|2dt) ,
and according to assumptions (2.6a), (2.6b), and (2.6d), if ‖v‖L2(0,τ1;H) ≤ R,∫ τ1

0

∣∣∣∣∂f1∂t (t, v)
∣∣∣∣2dt ≤ 2

(
Φ2(R) + τ1‖ż‖2L∞(−τ,0,H)Ψ

2
(
‖z‖C0([−τ,0],H)

))
.

Thus, assumption (3.2) holds on [0, τ1]. Then, according to Proposition 3.1, there ex-
ists a unique solution u1 ∈W 1,+∞(0, τ1;H) of (3.8)–(3.9). If τ1 = T , the proposition
is proved. If τ1 < T , by setting τ2 = min(2τ, T ), we denote

∀t ∈ [τ1, τ2], ∀x ∈ H, f2(t, x) = −B(t, x)−G(u1(t− τ)
)
.

As previously, problem (3.4)–(3.5) on ]τ1, τ2[ is equivalent to the problem

u̇(t) +A
(
u(t)

) � f2(t, u(t)) a.e. on ]τ1, τ2[,(3.10)

u(τ1) = u1(τ1 − 0),(3.11)

where u1(τ1 − 0) is the value at time τ1 of the continuous function u1. So, thanks
to Proposition 3.1, there exists a unique solution u2 ∈ W 1,∞(τ1, τ2;H) of (3.10)–
(3.11). Finally, we can construct by induction two sequences (τi)0≤i≤q: 0 = τ0 <
τ1 < τ2 < · · · < τq = T and (ui)1≤i≤q such that, for all i ∈ {1, . . . , q}, ui belongs to
W 1,∞(τi−1, τi;H) and is the unique solution of

u̇i(t) +A
(
ui(t)

)
+B

(
t, ui

)
+G

(
ui−1(t− τ)

) � 0 a.e. on ]τi−1, τi[,(3.12)

ui(τi−1) = ui−1(τi−1 − 0),(3.13)

where u0 is equal to z on [−τ, 0]. We consider the unique function u from [0, T ]
to H whose restriction to each interval [τi−1, τi[ is equal to ui. It is clear that u is
the unique solution of (3.4)–(3.5). Moreover, each function ui is continuous on the
interval [τi−1, τi[. According to (3.13), u is continuous on [0, T ]. By construction,
each function u̇i belongs to L

∞(τi−1, τi;H); thus, the restriction of the function u̇ to
[0, T ] belongs to L∞(0, T ;H) and the restriction of the function u to [0, T ] belongs to
W 1,∞(0, T ;H), which concludes this proof.
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4. Numerical scheme.

4.1. Summary of results for numerical schemes. In this section, we recall
two error estimates, which are generalizations of results by Lippold [25] proved in
[3, 2, 5]; we proved that an implicit Euler numerical scheme for differential inclusion
(3.3) is of order 1/2 in the general case and of order one if the multivalued term is
equal to the subdifferential of the indicatrix of a nonempty convex set of H.

Results of convergence can also be found in [16], [15], or [9], based on general
properties of consistence. Elliot described some cases where this consistency is true
(for example if the derivative of the solution possesses only a finite number of discon-
tinuities). Our results [3], [2], or [5] are more general. In [14], a survey on numerical
methods for differential inclusions can be read as follows: results for order of conver-
gence are provided. They are obtained if the nonlinear term is compact and Lipschitz
(in the sense of a one-sided Lipschitz condition). We did not assume such a condition
in [3], [2], or [5]. References about the numerical point of view are given in [3] or [5].

Let N be an integer. Let h = T/N , and let Up be the solution of the numerical
scheme

∀p ∈ {0, . . . , N − 1}, Up+1 − Up
h

+A
(
Up+1

) � f (ph, Up) ,(4.1)

U0 = u0.(4.2)

Denote uh ∈ C0 ([0, T ], H) the linear interpolation at times tp = hp of the Up. The
solution Up of the numerical scheme (4.1) exists and is unique since A is maximal

monotone; indeed, in this case the operator (I + hA)
−1

, where I is the identity of H,
is a single-valued operator defined by all the space H, and Up+1 is defined by

∀p ∈ {0, . . . , N − 1}, Up+1 = (I + hA)
−1(

hf (tp, U
p) + Up

)
.(4.3)

See [6]. The first result of convergence reads as the following proposition.
Proposition 4.1. Under the assumptions (3.1) and (3.2), the numerical scheme

(4.1)–(4.2) is of order 1/2; i.e., there exists C such that, for all h,

∀t ∈ [0, T ], |u(t)− uh(t)| ≤ C
√
h,(4.4)

where u is the solution of (3.3).
Let K be a closed convex nonempty subset of H, and let ∂ψK be the sub-

differential of the indicatrix of K, which is given by

∀(x, y) ∈ K ×H, y ∈ ∂ψK(x)⇐⇒ ∀z ∈ K, 〈y, x− z〉 ≥ 0,(4.5)

and

∀x �∈ K, ∂ψK(x) = ∅.(4.6)

This result of convergence can be improved by the following proposition.
Proposition 4.2. Under the assumptions (3.1) and (3.2) and if A is equal to

∂ψK , the numerical scheme (4.1)–(4.2) is of order one; i.e., there exists C such that,
for all h,

∀t ∈ [0, T ], |u(t)− uh(t)| ≤ Ch,(4.7)

where u is the solution of (3.3).
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For numerical results, we will need a more general result, when the initial condi-
tion of the numerical scheme is not equal to u0.

Lemma 4.3. Let v0 belong to D(A), and let V p be the solution of the numerical
scheme

∀p ∈ {0, . . . , N − 1}, V p+1 − V p
h

+A
(
V p+1

) � f (ph, V p) ,(4.8)

V 0 = v0.(4.9)

Denote vh ∈ C0 ([0, T ], H) the linear interpolation at times tp = hp of the V p. In the
general case, there exists C such that, for all h,

∀t ∈ [0, T ], |u(t)− vh(t)| ≤ |u0 − v0| eLT + C
√
h,

and if A is equal to ∂ψK , there exists C such that, for all h,

∀t ∈ [0, T ], |u(t)− vh(t)| ≤ |u0 − v0| eLT + Ch.

Proof. Since we have, by triangle inequality,

∀t ∈ [0, T ], |u(t)− vh(t)| ≤ |u(t)− uh(t)|+ |uh(t)− vh(t)|,

it is enough to prove, according to Propositions 4.1 and 4.2, that we have

∀t ∈ [0, T ], |uh(t)− vh(t)| ≤ |u0 − v0|eLT ,

which is true if

∀p ∈ {0, . . . , N}, |Up − V p| ≤ |u0 − v0|eLT .

Numerical schemes (4.1) and (4.8) can be rewritten as

Up+1 + hA
(
Up+1

) � hf (tp, Up) + Up,(4.10)

V p+1 + hA
(
V p+1

) � hf (tp, V p) + V p.(4.11)

If we subtract (4.10) and (4.11), we obtain, by multiplication of Up+1 − V p+1 by
monotonicity of A,

∣∣Up+1−V p+1
∣∣2≤h (f (tp, Up)−f (tp, V p) , Up+1−V p+1

)
+
(
Up−V p, Up+1 − V p+1

)
,

which implies, thanks to the Cauchy–Schwarz inequality and assumption (3.1),∣∣Up+1 − V p+1
∣∣2 ≤ ∣∣Up+1 − V p+1

∣∣|Up − V p| (hL+ 1) .

We can then infer∣∣Up+1 − V p+1
∣∣ ≤ |Up − V p| (hL+ 1) ≤ ehL|Up − V p|;(4.12)

by multiplying (4.12) for k ∈ {0, . . . , p}, we obtain

∀p ∈ {0, . . . , N}, |Up − V p| ≤ ∣∣U0 − V 0
∣∣ehNL ≤ |u0 − v0|eTL.
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4.2. Definition and order of the numerical scheme. Let us now apply the
results of Propositions 4.1 and 4.2 to differential inclusion (3.4)–(3.5). In order to
simplify the presentation, we assume that

τ < T and ∃Q ∈ N
∗ : T = Qτ.(4.13)

Let N be an integer, and let

h =
τ

N
.(4.14)

So we have T = Qτ = QhN . We then have

h =
T

M
, where M = QN.(4.15)

Let (Up)−N≤p≤M be the solution of the numerical scheme

∀p ∈ {0, . . . ,M − 1}, Up+1 − Up
h

+A
(
Up+1

)
+B (ph, Up) +G

(
Up−N

) � 0,(4.16)

∀p ∈ {−N, . . . , 0}, Up = z (ph) .(4.17)

Denote uh ∈ C0 ([−τ, T ], H) the linear interpolation at times tp = hp of the Up for
−N ≤ p ≤M . The solution Up of the numerical scheme (4.16) is also defined by

∀p ∈ {0, . . . ,M − 1}, Up+1=(I+ hA)
−1

(
h
(
−B (ph, Up)−G (Up−N))+ Up

)
.

(4.18)

Proposition 4.4. Under assumptions (2.6), the numerical scheme (4.16)–(4.17)
is of order 1/2; i.e., there exists C such that, for all h,

∀t ∈ [0, T ], |u(t)− uh(t)| ≤ C
√
h,(4.19)

in the general case and if A is equal to ∂ψK , then it is of order one; i.e., there exists
C such that, for all h,

∀t ∈ [0, T ], |u(t)− uh(t)| ≤ Ch.(4.20)

Proof. We use again the notations of the proof of Proposition 3.2: we rewrite prob-
lem (3.4)–(3.5) on the interval [0, τ1] = [0, τ ] under the form (3.8)–(3.9), discretized
by the numerical scheme

∀p ∈ {0, . . . , N − 1}, Up+1 − Up
h

+A
(
Up+1

) � f1 (tp, Up) ,
U0 = z(0),

which is equivalent to

∀p ∈ {0, . . . , N − 1}, Up+1 − Up
h

+A
(
Up+1

)
+B (ph, Up) +G

(
Up−N

) � 0,(4.21)

U0 = z(0).(4.22)
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According to Propositions 4.1 and 4.2, we then have

∀t ∈ [0, τ1], |u(t)− uh(t)| ≤ Chα,(4.23)

where α = 1/2 in the general case and α = 1 if A = ∂φK . We then rewrite problem
(3.4)–(3.5) on the interval [τ1, τ2] = [τ, τ2] under the form (3.10)–(3.11), discretized
by the numerical scheme with discrete initial condition

∀p ∈ {N, . . . , 2N − 1}, Up+1 − Up
h

+A
(
Up+1

) � f2 (tp, Up) ,
UN = uh(τ1),

which is equivalent to

∀p∈{N, . . . , 2N − 1}, Up+1−Up
h

+A
(
Up+1

)
+B (ph, Up)+G

(
Up−N

) � 0,(4.24)

UN = uh(τ1).(4.25)

According to Lemma 4.3 applied on the interval [τ1, τ2] we then have

∀t ∈ [τ1, τ2], |u(t)− uh(t)| ≤ |u(τ1)− uh(τ1)| eτ1L + Chα,

where α = 1/2 in the general case and α = 1 if A = ∂φK . Thanks to estimate (4.23),
we obtain

∀t ∈ [τ1, τ2], |u(t)− uh(t)| ≤ Chα
(
1 + eτ1L

)
.

By induction, we prove easily that the numerical scheme (4.16)–(4.17) is equivalent
to, for all r ∈ {0, . . . , Q− 1},

∀p ∈{rN, . . . , (r + 1)N − 1}, Up+1 − Up
h

+A
(
Up+1

)
+B (ph, Up)+G

(
Up−N

)�0,
UrN = uh(τr),

and according to Lemma 4.3 applied on the interval [τr, τr+1] we then have

∀t ∈ [τr, τr+1], |u(t)− uh(t)| ≤
(
eτ1L + e(τ2−τ1)L + · · ·+ e(T−τQ−1)

)
Chα,

which allows us to conclude this proof since this implies that there exists M not
depending on h such that

∀t ∈ [0, T ], |u(t)− uh(t)| ≤Mhα.

4.3. Numerical simulations. We study numerically system (2.7). We assume
that

α ≥ 0, x0 ∈W 2,∞(−τ, 0), g ∈ H1(0, T ).(4.26)

We consider Hilbert space H = R
2 equipped with its canonical scalar product. We

define the multivalued operator A on H by

∀u = (u1, u2) ∈ R
2, A(u1, u2) = {0} × ασ (u2) .
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Since α ≥ 0 and σ is maximal monotone on R (see, for example, [6]), A is maximal
monotone on H. We define the functions B, G, and z by, for all u = (u1, u2) ∈ R

2,
for all t ∈ [0, T ],

B(t, u) =

( −u2

ku1 + cu2 −H(t)

)
,

G(u) =

(
0
γu1

)
,

z(t) =

(
x0(t)
ẋ0(t)

)
.

By setting u(t) = (x(t), ẋ(t)), we see that system (2.7) is equivalent to systems (3.4)
and (3.5). According to assumption (4.26), we prove easily that assumptions (2.6)
hold. Then, thanks to Proposition 3.2, system (2.7) admits a unique solution, whose
restriction to [0, T ] belongs to W 2,∞(0, T ). Moreover, thanks to Proposition 4.4, the
numerical scheme (4.16)–(4.17) is of order 1/2, i.e.,

∀t ∈ [0, T ], |u(t)− uh(t)|R2 ≤ C
√
h.(4.27)

We recall that the subdifferential of a convex proper and lower semicontinuous
function φ from H to ]−∞,+∞] is defined by

∀(x, y) ∈ H ×H, y ∈ ∂φ(x)⇐⇒ ∀z ∈ H, φ(z)− φ(x) ≥ 〈y, z − x〉.

So we see that

∀x ∈ R, σ(x) = ∂|x|.

Then

∀u = (u1, u2) ∈ R
2, A(u1, u2) = ∂ (α|u2|) .

Function α|.| is not equal to the subdifferential of a indicatrix of a closed convex set of
R

2: we cannot conclude from Proposition 4.4 that the order of the numerical scheme
is equal to 1.

We consider now the numerical scheme defined in section 4.2 and we set

∀p ∈ {−N, . . . ,M}, Up = (up, vp) .

After computation, we obtain, for all h,

∀ (u1, u2) ∈ R
2, (I + hA)

−1
(u1, u2) =

(
u1

(I + hασ)
−1

(u2)

)
,

where (see Figure 3)

∀x ∈ R, (I + hασ)
−1

(x) =


x− αh if x ≥ αh,
x+ αh if x ≤ −αh,
0 if x ∈ [−αh, αh].
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α h

y

x−α h

Fig. 3. The function (I + hασ)−1.

Numerical scheme (4.16)–(4.17) is equivalent to (4.18)–(4.17) and can then be
rewritten as

(4.28a)

∀p ∈ {0, . . . ,M − 1}, up+1 = hvp + up,

vp+1 = (I+hασ)
−1(−chvp− khup− γhup−N + hH(ph)+ vp

)
(4.28b)

(4.28c)

∀p ∈ {−N, . . . , 0}, up = x0 (ph) ,

vp = ẋ0 (ph) .(4.28d)

We choose three values of parameters c, k, γ, α, τ and functions H and x0:

c=0.1, k=0.5, γ=1.1, α=0.99, τ=1, H(t)=sin(t), x0(t)=0,(4.29)

c=0.1, k=0.5, γ=1.1, α=0.10, τ=1, H(t)=sin(t), x0(t)=0,(4.30)

c=0.1, k=0.5, γ=1.1, α=0.99, τ=1, H(t)=sin(t), x0(t)=0.5 sin(t).(4.31)

For these three simulations, we choose

Q = 100, N = 104.(4.32)

We plot the discrete abscissa and velocity computed with numerical scheme (4.28)
in Figures 4–6. In Figure 4, we observe, as in [21], a stable periodical regime after
a transition; this regime is composed of statical phases (with ẋ ≡ 0) and dynamical
phases (with sign(ẋ) ∈ {−1, 1}). In Figures 5 and 6, the behavior seems unstable and
we see only transient phases.

As in [3], we look second for an empirical order of convergence of the numerical
scheme. We expect the error to be of the form

‖u− uh‖C0([0,T ],R2) ≈ Chδ,(4.33)

and we try to identify the numbers C and δ. According to (4.13), (4.14), and (4.15),
we rewrite (4.33) under the form

‖u− uN‖C0([0,T ],R2) ≈
C

N δ
.(4.34)
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Fig. 4. Discrete abscissa and velocity for differential inclusion (2.7) with (4.29) and (4.32).
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Fig. 5. Discrete abscissa and velocity for differential inclusion (2.7) with (4.30) and (4.32).
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Fig. 6. Discrete abscissa and velocity for differential inclusion (2.7) with (4.31) and (4.32).

Define

ε(N) = ‖uN − u2N‖C0([0,T ],R2);

then, formally,

log (ε(N)) ≈ −δ log(N) + log(2C).
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Fig. 7. Log-log curves ε(N) versus N for differential inclusion (2.7) with (4.29), Q = 100, and
(4.35).
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Fig. 8. Log-log curves ε(N) versus N for differential inclusion (2.7) with (4.30), Q = 100, and
(4.35).
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Fig. 9. Log-log curves ε(N) versus N for differential inclusion (2.7) with (4.31), Q = 100, and
(4.35).

A log-log plot of ε(N) versus N gives an estimate of C and δ. We choose

p =500, Nmin= 100, Nmax= 20000 ∀i ∈ {1, . . . , p}, Ni =N
p−i
p−1

min N
i−1
p−1
max ,

(4.35)

and the same physical parameters as above (Q = 100 and (4.29), (4.30), and (4.31)).
Log-log curves ε(N) versus N are plotted in Figures 7–9, and the values of δ and the
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Table 1
Values δ and r for different values of parameters.

Parameter defined by δ r
(4.29) 0.995894134 0.999887705
(4.30) 1.0283258 0.999836087
(4.31) 1.04108214 0.999677062

correlation of set of points r are given in Table 1.
We see that the empirical order δ and the correlation r are close to one, which

is more accurate than (4.27). The numerical scheme is then of order one, but in this
case we proved only that the order is equal to 1/2. To prove that numerical scheme
(4.1) and (4.2) is of order one for all maximal monotone graphs A (not necessarily
equal to the subdifferential of the indicatrix of a closed set) is an open problem to our
knowledge.

5. Conclusion. In this paper existence and uniqueness results have been pro-
vided for differential inclusions with both maximal monotone terms and delay terms.
Even if in many interesting applications H has finite dimension, the results are very
general ones. Based on the previous works, a numerical scheme of Euler implicit type
has been proposed. This scheme has been proved to be of order 1/2 for general maxi-
mal monotone graphs and possesses order one in the case of the subdifferential of the
indicatrix of a convex set. This numerical scheme has been tested in a previous work
[21]: a good agreement is obtained with the exact solution known. Here it can be
noticed that the numerical behavior is even better than those forecasted by theory.
This is an important point for applications: the proposed scheme is the only one
available in the literature with rigorous mathematical results (existence, uniqueness,
convergence, and order), but 1/2 is a rather weak order. So it is useful to have indeed
order one in practice. This good behavior has been observed in all our simulations. As
we said, the proof of better theoretical results in the general case is an open problem.
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[6] H. Brezis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Es-
paces de Hilbert, North-Holland Math. Stud. 5, Notas de Matemática (50), North-Holland,
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École doctorale Mécanique Énergétique Génie Civil Acoustique MEGA, Vaulx-en-Velin
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Abstract. In this paper, we prove the convergence of a numerical method for solving two-phase
immiscible, incompressible flow in porous media. The method combines an upwind time implicit
finite volume scheme for the saturation equation (hyperbolic-parabolic type) and a centered finite
volume scheme for the Chavent global pressure equation (elliptic type). The capillary pressure is
not neglected, and we study the case when the diffusion term in the saturation equation is weakly
degenerated. Estimates on the approximate solution are proven; then by using compactness theorems
we obtain a limit when the size of the discretization goes to zero, and we prove that this limit is the
unique weak solution of the problem that we study.
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1. Introduction. In this paper, we define and analyze a finite volume method
for a mathematical model for the flow of two immiscible incompressible fluids in a
porous medium:

ut − div(k1(u)∇p) = q1 in Ω× (0, T ),(1)

(1− u)t − div(k2(u)∇(p+ pc(u)) ) = q2 in Ω× (0, T ),(2)

where Ω is a bounded domain of R
d (d = 1, 2 or 3) modeling the reservoir, {u, p}

are the saturation and the pressure of the wetting fluid (the water in the oil recovery
context), k1 and k2 are the reduced mobilities of the wetting and the nonwetting
fluid, and {q1, q2} are source terms which model injection or production wells inside
the reservoir.

If we introduce the global pressure of Chavent,

θ = p+

∫ u

0

k2(s)

k1(s) + k2(s)
pc
′(s)ds,(3)

and the total velocity flow,

F = −(k1(u) + k2(u))∇p− k2(u)∇pc(u),(4)

then the system (1)–(2) is equivalent to the following system of two coupled partial
differential equations for the unknowns u and θ:

ut + div(f(u)F)−∆ϕ(u) = q1,(5)

div(M(u)∇θ) = q1 + q2,(6)

(F = −M(u)∇θ),(7)
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where M = k1 + k2 is the total mobility of the two phase fluid, f = k1
k1+k2

is the

fractional flow of the wetting fluid, and ϕ(u) = − ∫ u
0

k1(s)k2(s)
k1(s)+k2(s)

pc
′(s)ds (introduced

by Arbogast in [1]) is a nonlinear function which is closely related to the capillary
pressure pc .

This model has been well known in the reservoir simulation community for more
than 30 years [3], [4], [7], [26], [24], [12]. It has been studied from the theoretical point
of view [1], [23], [8], and results on existence or uniqueness and some estimates on the
weak solution have been proved in different cases. The interest in this problem for oil
companies has resulted in early motivated investigations in numerical methods [12],
[7]. In particular, numerous works [25], [2], [15], [14], [5], [13], [16] have been done on
convergence and error estimates of numerical schemes using a mixed finite element
method [27] to approximate the total velocity flow and the pressure. Both miscible
and immiscible cases have been extensively treated where the capillary pressure is
neglected (the saturation equation is then of hyperbolic type). It is only recently
[25], [8] that equivalent studies have been done in the case of immiscible fluids with
degenerate capillary pressure.

The aim of this paper is to show that if we discretize the two equations (5)–(6)
using first order finite volume schemes (see [18], [28]), then the numerical approximate
solution converges to the exact solution of problem (5)–(6). This work takes its
originality from the fact that we consider a full finite volume method on a single
mesh, and we allow any weak degeneracy of the function ϕ. The convergence proof is
done without assuming any existence or regularity on the weak solution.

The paper is organized as follows. In section 2, we give some assumptions. In
section 3, we present the finite volume scheme and prove a priori estimates on the
discrete solution. As a corollary we obtain that the implicit scheme is well defined.
In section 4.1, we use these estimates to obtain compactness properties on the corre-
sponding piecewise constant approximate solution. In section 5, we state and prove
the main result: the convergence theorem, Theorem 5.1. Then we discuss the last
step of the proof which consists of passing to the limit in the weak formulation. In
section 6, we present some numerical results, and we end in section 7 with some
concluding remarks.

2. Assumptions. In order to close the system (5)–(6), we prescribe the following
Neumann boundary conditions:

∇θ · n = 0 on ∂Ω× (0, T ),(8)

∇ϕ(u) · n = 0 on ∂Ω× (0, T );(9)

the following initial condition:

u(·, 0) = u0 on Ω;(10)

and, since the pressure is defined only up to a constant, we prescribe the following
arbitrary condition: ∫

Ω

θ(x, ·)dx = 0 on (0, T ).(11)

The source terms depend on the saturation u and on the injection concentration
c. They are defined by
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q1 = cs− us,(12)

q2 = (1− c)s− (1− u)s.(13)

We make the following assumptions on the data:
• ϕ is an increasing Lipschitz continuous function on [0, 1], Φ will denote its
Lipschitz constant, and ϕ∗ = maxx∈[0,1] |ϕ(x)|.
• f is a nondecreasing Lipschitz continuous function on [0, 1], F will denote its
Lipschitz constant, f(0) = 0, and f(1) = 1.
• M is a continuous function on [0, 1] with 0 < M∗ ≤M(u) ≤M∗ <∞.
• The functions s and s belong to L∞(0, T, L2(Ω)). s ≥ 0 and s ≥ 0 a.e.
x ∈ Ω× (0, T ),

∫
Ω
s(x)− s(x)dx = 0 for a.e. t ∈ (0, T ).

• u0 ∈ L∞(Ω), 0 ≤ u0(x) ≤ 1 a.e. x ∈ Ω.
• c is a constant, 0 ≤ c ≤ 1.
Remark 2.1. The function c can also be taken in L∞(Q) with 0 ≤ c ≤ 1 without

any difficulty. One needs only to replace c by an approximate in the finite volume
scheme.

3. The finite volume scheme. Assume Ω is a polygonal bounded domain of
R
d and T is a mesh of Ω consisting of convex polygons. The finite volume method (cf.

[18]) consists of integrating the equations over a control volume K ∈ T and obtaining
a relation between mean values over K and fluxes on the edges of K by using the
Stokes formula. Thanks to the Neumann boundary conditions, the normal fluxes
on the boundary ∂Ω are equal to zero, so we need only to consider the interfaces
between two control volumes. For convection terms, a simple way to get stability is
to compute an upwind scheme, but the results also extend to a general monotone
scheme (see [6]). For diffusion terms, we have to approximate the normal derivative
of ϕ(u) on the interface. Without additional assumptions on the mesh, we can take
into account the values of u on control volumes other than the two neighbors K and
L of the interface (see, for example, the VF9 method in [21]). Here we make some
assumptions (see Definition 3.1) in order to ensure that the cheap discretization of
∂ϕ(u)
∂n by

ϕ(Un+1
L

)−ϕ(Un+1
K

)

dK|L
is consistent.

3.1. Definitions and notations.
Definition 3.1 (admissible mesh of Ω). An admissible mesh T of Ω is given by

a set of open bounded polygonal convex subsets of Ω called control volumes, a family
E of subsets of Ω̄ contained in hyperplanes of R

d with strictly positive measure, and a
family of points (the “centers” of control volumes) satisfying the following properties:

(i) The closure of the union of all control volumes is Ω̄.
(ii) For any (K,L) ∈ T 2 with K �= L, either the length of K̄∩ L̄ is 0 or K̄∩ L̄ = σ̄

for some σ ∈ E. Then we will denote σ = K|L.
(iii) For any K ∈ T , there exists a subset E(K) of E such that ∂K = K̄\K =

∪σ∈E(K)σ̄. Furthermore, E = ∪K∈T E(K), and we will denote N (K) the set of bound-
ary control volumes of K, that is, N (K) = {L ∈ T ,K|L ∈ E(K)}.

(iv) The family of points (xK)K∈T is such that xK ∈ K (for all K ∈ T ), and, if
σ = K|L, it is assumed that the straight line (xK , xL) is orthogonal to σ.

For a control volume K ∈ T , we denote m(K) its measure. If L ∈ N (K), then
we denote m(K|L) the measure of the interface K|L in R

d−1, dK|L the distance

between the centers of the control volumes K and L, TK|L = m(K|L)
dK|L

the discrete
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transmissibility, and nK,L the normal vector of K|L outward to K. We denote dK,K|L
the distance between the center xK of K and the interface K|L, and we define the
size of the mesh by

size(T ) = max
K∈T

diam(K).

To prove the convergence theorem, Theorem 5.1, we need uniform regularity
properties on meshes in the following sense.
Definition 3.2. An admissible mesh T is ξ-regular if for all K ∈ T ,∑

L∈N (K)

m(K|L)dK|L ≤ m(K) ξ.

3.2. The scheme. Let T be an admissible mesh, and let δt be a time step such

that T = (N + 1)δt with N ∈ N. We define S
n+1

K and Sn+1
K by

S
n+1

K =
1

δt

∫ (n+1)δt

nδt

∫
K

s,

Sn+1
K =

1

δt

∫ (n+1)δt

nδt

∫
K

s.

With the notations previously introduced, one may define a finite volume scheme
as the following set of equations for the discrete unknowns (U,Θ), where U =
(UnK)K∈T ,n∈[[0,N+1]] and Θ = (ΘnK)K∈T ,n∈[[1,N+1]]:

∀K ∈ T ,

U0
K =

1

m(K)

∫
K

u0(x)dx;(14)

∀K ∈ T ,∀n ∈ [[0, N ]],

Un+1
K − UnK

δt
m(K)−

∑
L∈N (K)

TK|L(ϕ(U
n+1
L )− ϕ(Un+1

K ))(15)

+
∑

L∈N (K)

Fn+1
K,Lf(u)

n+1
K|L = cS

n+1

K − Un+1
K Sn+1

K ;

∀K ∈ T ,∀L ∈ N (K),∀n ∈ [[0, N ]],

Fn+1
K,L = −M(u)n+1

K|LTK|L(Θ
n+1
L −Θn+1

K );(16)

∀K ∈ T ,∀n ∈ [[0, N ]], ∑
L∈N (K)

Fn+1
K,L = S

n+1

K − Sn+1
K ;(17)

∀n ∈ [[0, N ]], ∑
K∈T

m(K)Θn+1
K = 0,(18)

where f(u)n+1
K|L and M(u)n+1

K|L are, respectively, an upwind discretization of f(u) and
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a consistent approximation of M(u) on the interface K|L given by

f(u)n+1
K|L =


f(Un+1

K ) if Fn+1
K,L > 0,

f(Un+1
L ) if Fn+1

K,L < 0,

M(u)n+1
K|L =

dK|L
dK,K|L
M(Un+1

K
)
+

dL,K|L
M(Un+1

L
)

.(19)

Remark 3.1. Definition (19) of M(u)n+1
K|L by a harmonic mean ensures con-

sistency property in the general case when the function M(u) is discontinuous on
the interface K|L (see [22], [18]). However, in our proof of convergence we need only
M(u)n+1

K|L to be in the interval [M(Un+1
K ),M(Un+1

L )] since the functions used are more

regular.

3.3. A priori estimates. The scheme (14)–(18) is time implicit, so the existence
of a solution must be proven. We will first prove a priori estimates assuming existence
of a solution and then prove the existence by using the Leray–Schauder theorem (see
[11]). We also use these estimates to obtain compactness properties.
Proposition 3.1. Assume that ((UnK)K∈T ,n∈[[0,N+1]], (Θ

n+1
K )K∈T ,n∈[[0,N ]]) is a

solution to (14)–(18); then

0 ≤ Un+1
K ≤ 1 ∀K ∈ T ,∀n ∈ [[0, N + 1]].(20)

Moreover, there exist C1(u0, s, s,Φ) ≥ 0 and C2(M∗, s, s) > 0 such that

N∑
n=0

δt
1

2

∑
K∈T

∑
L∈N (K)

TK|L(ϕ(U
n+1
L )− ϕ(Un+1

K ))2 ≤ C1(21)

and ∑
K∈T

∑
L∈N (K)

TK|L(Θ
n+1
L −Θn+1

K )2 ≤ C2 ∀n ∈ [[0, N ]].(22)

Proof. Rewriting the discrete convection flux in a nondivergence form using (19)
and (17), we obtain

∀K ∈ T ,∀n ∈ [[0, N ]],

(23)∑
L∈N (K)

Fn+1
K,Lf(u)

n+1
K|L=−

∑
L∈N (K)

Fn+1
K,L

−
(f(Un+1

L )−f(Un+1
K )) +f(Un+1

K )(S
n+1

K − Sn+1
K ),

where one denotes x− = max(0,−x).
In order to prove the discrete maximum principle (20), we follow the continuous

case. If U attains its bounds on Ω× {0}, i.e., at points of type (K, 0), the definition
of U0

K in (14) gives the conclusion. By contradiction, if, for example, max(U) > 1,
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then necessarily U attains its maximum at an interior point of the parabolic domain
Q = Ω × [0, T ), i.e., at a point of type (K,n + 1). In that case, by (23) and (16) we
have

Un+1
K − UnK

δt
m(K) +

∑
L∈N (K)

TK|L(ϕ(U
n+1
K )− ϕ(Un+1

L ))

+
∑

L∈N (K)

Fn+1
K,L

−
(f(Un+1

K )− f(Un+1
L ))

+ (f(Un+1
K )− c)Sn+1

K + (Un+1
K − f(Un+1

K ))Sn+1
K = 0,

(24)

and ϕ and f are nondecreasing functions, so we have UnK ≥ Un+1
K . Consequently, also

U attains its maximum at point (K,n) and by induction the maximum is attained on
Ω× {0}, which leads to a contradiction.

Proofs of the discrete energy estimates (21) and (22) also mimic continuous ones.
Multiplying (24) by δt Un+1

K and summing the result over K ∈ T and n ∈ [[0, N ]]
yields E1 + E2 + E3 + E4 = 0 with

E1 =

N∑
n=0

∑
K∈T

m(K)(Un+1
K − UnK)Un+1

K ,

E2 =

N∑
n=0

δt
∑
K∈T

∑
L∈N (K)

TK|L(ϕ(U
n+1
K )− ϕ(Un+1

L ))Un+1
K ,

E3 =

N∑
n=0

δt
∑
K∈T

∑
L∈N (K)

Fn+1
K,L

−
(f(Un+1

K )− f(Un+1
L ))Un+1

K ,

E4 =

N∑
n=0

δt
∑
K∈T

(f(Un+1
K )− c)Un+1

K S
n+1

K + (Un+1
K − f(Un+1

K ))Un+1
K Sn+1

K .

By a discrete time integration by parts, we obtain

E1 =
1

2

∑
K∈T

m(K)(UN+1
K )2 − 1

2

∑
K∈T

m(K)(U0
K)2 +

1

2

N∑
n=0

∑
K∈T

m(K)(Un+1
K − UnK)2

≥ −1

2
‖u0‖2L2(Ω×(0,T )).

Gathering by edges we get for E2

E2 =
N∑
n=0

δt
1

2

∑
K∈T

∑
L∈N (K)

TK|L(ϕ(U
n+1
K )− ϕ(Un+1

L ))(Un+1
K − Un+1

L )

≥ 1

Φ

N∑
n=0

δt
1

2

∑
K∈T

∑
L∈N (K)

TK|L(ϕ(U
n+1
K )− ϕ(Un+1

L ))2.

To deal with E3, we need a technical lemma which is proved, for example, in [18].
Lemma 3.1. Let f be a nondecreasing continuous function on R, and define g by

g(u) = uf(u)− ∫ u
0
f(τ)dτ . Then for every (a, b) ∈ R

2,

(f(a)− f(b))a ≥ g(a)− g(b).
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By using Lemma 3.1 and the local conservation property Fn+1
K,L + qn+1

L,K = 0 we
get

E3 ≥
N∑
n=0

δt
∑
K∈T

Fn+1
K,L

−
(g(Un+1

L )− g(Un+1
K ))

=
∑
K∈T

g(Un+1
K )

∑
L∈N (K)

Fn+1
K,L

= −
∑
K∈T

g(Un+1
K )(S

n+1

K − Sn+1
K ).

Hence,

E3 + E4 ≥
N∑
n=0

δt
∑
K∈T

S
n+1

K (f(Un+1
K )Un+1

K − g(Un+1
K )− cUn+1

K )

+

N∑
n=0

δt
∑
K∈T

Sn+1
K (g(Un+1

K )− f(Un+1
K )Un+1

K + (Un+1
K )2)

≥
N∑
n=0

δt
∑
K∈T

− 2(S
n+1

K + Sn+1
K )

≥ −2(‖s‖L1(Ω×(0,T )) + ‖s‖L1(Ω×(0,T ))).

Collecting the previous inequalities yields exactly (21) with

C1 = Φ

(
1

2
‖u0‖2L2(Ω×(0,T )) + 2(‖s‖L1(Ω×(0,T )) + ‖s‖L1(Ω×(0,T )))

)
.

Now let us multiply (17) by Θn+1
K and sum over K ∈ T . Gathering by edges, we

obtain

∑
K∈T

1

2

∑
L∈N (K)

M(u)n+1
K|L(Θ

n+1
K −Θn+1

L )2=
∑
K∈T

(S
n+1

K − Sn+1
K )Θn+1

K

≤ ‖s− s‖L∞(0,T,L2(Ω))

(∑
K∈T

m(K)(Θn+1
K )2

)1
2

.

And by the discrete Poincaré inequality (see [10]), there exists C(Ω) such that

∑
K∈T

m(K)(Θn+1
K )2 ≤ C(Ω)2

∑
K∈T

1

2

∑
L∈N (K)

TK|L(Θ
n+1
K −Θn+1

L )2.

This gives (22) with C2 = C(Ω) 1
M∗
‖s− s‖2L2(Ω×(0,T )).

3.4. Existence of the approximate solution. Let E=R
[[0,N+1]]×T

R
[[1,N+1]]×T

and G : E → E such that G(U, θ) = (Ũ , θ̃), where (Ũ , θ̃) is the solution of the following
set of equations:
∀K ∈ T ,

Ũ0
K =

1

m(K)

∫
K

u0(x)dx;
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∀K ∈ T and ∀n ∈ [[0, N ]],

Ũn+1
K − ŨnK

δt
m(K)−

∑
σ∈E(K)

TK|L(ϕ(U
n+1
L )− ϕ(Un+1

K ))

−
∑

σ∈E(K)

F̃n+1+
K,L f(Un+1

K )− F̃n+1−
K,L f(Un+1

L ) = cS
n+1

K − Un+1
K Sn+1

K ;

∀K ∈ T , ∀L ∈ N (K), ∀n ∈ [[0, N ]],

F̃n+1
K,L = −M(u)n+1

K|LTK|L(Θ̃
n+1
L − Θ̃n+1

K );

∀K ∈ T ,∀n ∈ [[0, N ]], ∑
L∈N (K)

F̃n+1
K,L = S

n+1

K − Sn+1
K ;

∀n ∈ [[0, N ]], ∑
K∈T

m(K)Θ̃n+1
K = 0.

The function G is well defined only if there exists a unique solution to this set
of equations. In fact, this system of equations can be easily solved iteratively (on
the contrary to system (14)–(18)), because the diffusion term on the elliptic equa-
tion on Θ̃, which is M(u)n+1

K|L, is given and cannot degenerate since M(u)n+1
K|L ∈

[M(Un+1
K ),M(Un+1

L )] and M(u) ≥M∗ > 0 by assumption.
By using the continuity of U →M(u)n+1

K|L, x→ x+, and x→ x−, we obtain in the

same time that G is a continuous function. Now, by construction, for any α ∈ [0, 1], the
problem (U,Θ) = αG(U,Θ) has exactly the same solutions as the numerical scheme
(14)–(18) with αϕ, αu0, αs, and αs instead of ϕ, u0, s, and s.

But α ∈ [0, 1], so Φ is also a Lipschitz constant for αϕ, and we have ‖αs‖ ≤ ‖s‖,
‖αs‖ ≤ ‖s‖, ‖αu0‖ ≤ ‖u0‖. Thus estimates given in Proposition 3.1 are uniformly
satisfied for any α ∈ [0, 1] and any solution of (U,Θ) = αG(U,Θ).

Now all the assumptions of the Leray–Schauder theorem are satisfied, so there
exists a fixed point for G; i.e., there exists at least a solution to the scheme (14)–(18).

4. Compactness results. Each solution (U,Θ)T ,δt of (14)–(18) for an admissi-
ble mesh T and a time step δt corresponds to an approximate solution (uT ,δt, θT ,δt)
of problem (5)–(6) defined a.e. on Ω× (0, T ) by

uT ,δt(x, t) = Un+1
K ,x ∈ K, t ∈ (nδt, (n+ 1)δt),

θT ,δt(x, t) = Θn+1
K ,x ∈ K, t ∈ (nδt, (n+ 1)δt).

The first step toward the convergence theorem, Theorem 5.1, consists of the
proof of compactness properties on uT ,δt and θT ,δt, by using a priori estimates on the
discrete solution obtained in Proposition 3.1.

4.1. Compactness of uT ,δt. We shall prove that ϕ(uT ,δt) is relatively compact
in L2(Ω× (0, T )) for the strong topology by using Kolmogorov’s theorem and that
when size(T )→ 0 and δt→ 0, the limit of each convergent sequence of approximate
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solutions belongs to L2(0, T,H1(Ω)). Let us first recall Kolmogorov’s compactness
theorem, which is a consequence of the Ascoli compactness theorem.
Theorem 4.1 (Fréchet–Kolmogorov). Let F be a bounded subset of L2(Rd), and

let Ω be a bounded domain of R
d; then F is relatively compact in L2(Ω) if and only if

lim
|ξ|→0

sup
f∈F
‖f(·+ ξ)− f(·)‖L2(Rd) = 0.

In our case, to apply this theorem on Q = Ω× (0, T ), we need to study the space
and time translates of ϕ(uT ,δt). As a direct consequence of (21) (see [17], [18]) we
already have the following result.
Proposition 4.1 (space translates). Let C1 be defined in Proposition 3.1; then

for all ξ ∈ R
d,∫ T

0

∫
Ωξ

[ϕ(uT ,δt(x+ ξ, ·)− ϕ(uT ,δt(x, ·))]2dx ≤ CΦ|ξ|(2m(T ) + |ξ|),

where Ωξ = {x ∈ Ω, [x, x+ ξ] ⊂ Ω} and |ξ| is the Euclidean norm on R
d.

We can establish an analogue but with slightly different results for time translates
estimates. We now adapt the method of [19], but since this method is not quite well
known, we shall give the complete proof of it. Let us first state exactly the result we
shall prove.
Proposition 4.2 (time translates). There exist C ′(ε, ϕ, f,q, u0,Ω, T ) > 0 such

that for every s ∈ R
+,∫ T−s

0

∫
Ω

(ϕ(uT ,δt(x, t+ s))− ϕ(uT ,δt(x, t)) )2dxdt ≤ C ′s.

Proof. Let us define A(t) =
∫
Ω
(uT ,δt(x, t + s) − uT ,δt(x, t))(ϕ(uT ,δt(x, t + s) −

ϕ(uT ,δt(x, t)))dxdt. Then∫
Ω

(ϕ(uT ,δt(x, t+ s))− ϕ(uT ,δt(x, t)) )2dxdt ≤ A(t) Φ.

If for any t ∈ R we denote n(t) the integer part of t
δt , then for any K ∈ T and

x ∈ K,

uT ,δt(x, t+ s)− uT ,δt(x, t) =
n(t+s)−1∑
n=n(t)

Un+1
K − UnK

=
1

m(K)

n(t+s)−1∑
n=n(t)

δt
∑

L∈N (K)

TK|L(ϕ(U
n+1
K )

−ϕ(Un+1
L ))− Fn+1

K,Lf(u)
n+1
K|L.

So A(t) = A1(s, t) − A1(0, t) − A2(s, t) + A2(0, t), where for ρ = 0 or ρ = s we
denote

A1(ρ, t) =

n(t+s)−1∑
n=n(t)

δt
∑
K∈T

∑
L∈N (K)

TK|L(ϕ(U
n+1
K )− ϕ(Un+1

L ))ϕ(U
n(t+ρ)
K ),

A2(ρ, t) =

n(t+s)−1∑
n=n(t)

δt
∑
K∈T

∑
σ∈E(K)

Fn+1
K,Lf(u)

n+1
K|Lϕ(U

n(t+ρ)
K ).
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Gathering by edges and using the local conservation of the discrete fluxes, we get

A1(ρ, t)=

n(t+s)−1∑
n=n(t)

δt
1

2

∑
K∈T

∑
L∈N (K)

TK|L(ϕ(U
n+1
K )−ϕ(Un+1

L ))(ϕ(U
n(t+ρ)
K )−ϕ(Un(t+ρ)

L )),

A2(ρ, t)=

n(t+s)−1∑
n=n(t)

δt
1

2

∑
K∈T

∑
σ∈E(K)

Fn+1
K,Lf(u)

n+1
K|L(ϕ(U

n(t+ρ)
K )− ϕ(Un(t+ρ)

L )).

Now by using the Young inequality, we have

|A1(ρ, t)| ≤ 1

2

n(t+s)−1∑
n=n(t)

δt (S(n) + S(n(t+ ρ))),

|A2(ρ, t)| ≤ 1

2

n(t+s)−1∑
n=n(t)

δt (R(n) + S(n(t+ ρ))),

where

S(n) =

N∑
n=0

δt
1

2

∑
K∈T

∑
L∈N (K)

TK|L(ϕ(U
n+1
K )− ϕ(Un+1

L ))2,

R(n) =

N∑
n=0

δt
1

2

∑
K∈T

∑
L∈N (K)

1

TK|L
(Fn+1

K,Lf(u)
n+1
K|L)

2.

Let us assume the following technical results.
Lemma 4.1. Let B : N→ R

+ such that
∑N
n=0 δtB(n) ≤ C; then for all s ∈ R

+,∫ T−s
0

∑n(t+s)−1
n=n(t) δtB(n)dt ≤ C s.

Lemma 4.2. Let B : N→ R
+ such that

∑N
n=0 δtB(n) ≤ C; then for all s ∈ R

+,∫ T−s
0

∑n(t+s)−1
n=n(t) δtB(n(t+ ρ))dt ≤ C s.

According to estimates (21) and (22), S and R satisfy the assumptions of the two
lemmas, so we obtain

‖A1(ρ, t)‖ ≤ C ′,
‖A2(ρ, t)‖ ≤ C ′′,

and collecting the previous inequalities completes the proof of Proposition 4.2. Yet,
it remains only to show the two lemmas.

For Lemma 4.1,
∫ T−s
0

∑n(t+s)−1
n=n(t) δtB(n) =

∑N
n=0 δtB(n)

∫ T−s
0

11n∈[[n(t),n(t+s)−1]]dt

and n ∈ [[n(t), n(t + s) − 1]] if and only if t ∈ [(n + 1)δt − s, (n + 1)δt), so∫ T−s
0

11n∈[[n(t),n(t+s)−1]]dt ≤ s.
For Lemma 4.2,

∫ T−s
0

∑n(t+s)−1
n=n(t) δtB(n(t+ ρ))dt =

∑N
n=0 δtB(n)

∫ T−s
0

(n(t+ s)−
n(t))11n(t+ρ)=ndt, but n(t + s) − n(t) is periodic with period δt, so

∫ T−s
0

(n(t + s) −
n(t))11n(t+ρ)=ndt ≤

∫ (n+1)δt−ρ
nδt−ρ (n(t+ s)− n(t))dt ≤ ∫ δt

0
n(t+ s)dt ≤ s.

To prove compactness of ϕ(uT ,δt) in L2(Ω), let us check the hypothesis of Theorem
4.1. From Propositions 4.1 and 4.2 we easily deduce that if we extend uT ,δt by zero
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outside of Ω× (0, T ), then for every ξ ∈ R
d and s ∈ R

+ one has

‖ϕ(uT ,δt(·+ ξ, ·+ s))− ϕ(uT ,δt(·, ·))‖L2(Rm+1) ≤ 2C|ξ|(|ξ|+ 2h) + 2C ′s

+(4T |ξ|m(∂Ω) + 2m(Ω)s)(ϕ∗)2.

Let um = uTm,δtm be a sequence of approximate solutions with size(Tm) → 0
when m tends to infinity, and suppose that ϕ(um) tends to ϕ̄ in L2(Ω× (0, T )). It
remains to show that ϕ̄ is in L2(0, T,H1(Ω)). In order to prove it, we shall use space
translate estimates in the interior of Ω.

Let ω ⊂⊂ Ω. From Proposition 4.1, if (ξ, z) ∈ R
d ×R satisfies |ξ| ≤ d(ω,Rd −Ω)

and −1 ≤ z ≤ 1,∥∥∥∥ϕ(um(·+ zξ, ·))− ϕ(um(·, ·))
z

∥∥∥∥
L2(ω×(0,T ))

≤ |ξ|
√
CΦ+

√
2hm
|ξ|
|z| .

So by letting m tend to infinity, it holds that∥∥∥∥ ϕ̄(·+ zξ, ·)− ϕ̄(·, ·)
z

∥∥∥∥
L2(ω×(0,T ))

≤ |ξ|
√
CΦ,

and by letting z tend to zero we obtain finally

‖∇ϕ̄ · ξ‖L2(ω×(0,T )) ≤ |ξ|
√
CΦ.(25)

By homogeneity, inequality (25) is true for every ξ ∈ R
d, so ϕ̄ ∈ L2(0, T,H1(Ω))

and ‖∇ϕ̄‖L2((0,T )×Ω) ≤
√
CΦ. This regularity property will be useful, for example,

for writing a weak formulation for the problem (5)–(6).

4.2. Compactness of θT ,δt. In the same way as for ϕ(uT ,δt), we can show
space translate estimates on θT ,δt, but since the equation satisfied by θ does not
include time derivatives relative to θ, we do not have any time translate estimate.
Hence we cannot apply the same method to obtain compactness on θT ,δt. However,
by Poincaré inequality, (θT ,δt)T ,δt is bounded in L∞(0, T, L2(Ω)). Therefore θT ,δt is
sequentially weakly relatively compact in L2(Ω× (0, T )), and by the same arguments
as those used in the previous section, every possible limit when size(T ) tends to zero
belongs to L∞(0, T,H1(Ω)). This is sufficient for convergence under the hypothesis
that ϕ′ is strictly nondecreasing, since we get in that case the strong convergence of
uT ,δt directly from the strong convergence of ϕ(uT ,δt).

5. Convergence of the scheme.
Definition 5.1 (weak solution). (u, θ) is a weak solution of problem (5)–(6) if

u ∈ L∞(Ω × (0, T )), 0 ≤ u(x, t) ≤ 1 a.e (x, t) ∈ Ω × (0, T ), ϕ(u) ∈ L2(0, T,H1(Ω)),
θ ∈ L∞(0, T,H1(Ω)), and for any ψ ∈ (Rd × [0, T ))2 there hold∫ T

0

∫
Ω

uψt −
∫ T

0

∫
Ω

∇ϕ(u) · ∇ψ −
∫ T

0

∫
Ω

f(u)M(u)∇θ · ∇ψ +

∫
Ω

u0ψ(·, 0)(26)

= −
∫ T

0

∫
Ω

csψ +

∫ T

0

∫
Ω

usψ,∫ T

0

∫
Ω

M(u)∇θ · ∇ψ =

∫ T

0

∫
Ω

(s− s)ψ.(27)
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We shall now give and prove the main result of this paper.
Theorem 5.1 (the convergence theorem). Let (um, θm) = (uTm,δtm , θTm,δtm) be

a sequence of approximate solutions given by scheme (14)–(18) . Let us assume that
there exists ξ > 0 such that for every m ∈ N, Tm is a ξ-regular admissible mesh.
Assume also that size(Tm)→ 0 and δtm → 0 when m tends to ∞. Then there exists
a weak solution (u, θ) of problem (5)–(6) such that up to a subsequence,

um → u, strongly in L2(Ω× (0, T )) as m→∞,
θm → θ, weakly in L2(Ω× (0, T )) as m→∞.

Remark 5.1. Under the assumption that f(ϕ−1) is Holder continuous with expo-
nent 1

2 and with the additional hypothesis ‖∇θ‖ ∈ L∞(Ω× (0, T )), we can prove that
the weak solution is unique (see [9]). So the whole sequence of approximate solutions
is convergent.

Proof. From compactness properties of um and θm, we already know that up to a
subsequence ϕ(um)→ ϕ̄ strongly in L2(Ω× (0, T )), θm → p weakly in L2(Ω× (0, T ))
as m→∞. Since size(Tm)→ 0, ϕ̄ ∈ L2(0, T,H1(Ω)) and θ ∈ L∞(0, T,H1(Ω)). Now
since ϕ is strictly nondecreasing, by using, for example, the dominated convergence
theorem we deduce that um tends to u = ϕ−1(ϕ̄) strongly in L2(Ω× (0, T )). It
remains to show that u is a weak solution of problem (5)–(6).

Let (T , δt) = (Tm, δtm). We define the discretization and approximate of ψ
denoted, respectively, Ψ and ψT ,δt by the following formulas:

Ψn+1
K = ψ(xK , nδt),K ∈ T , n ∈ [[0, N ]],(28)

ψT (x, t) = Ψn+1
K ,x ∈ K, t ∈ (nδt, (n+ 1)δt).(29)

In order to prove that (u, θ) is a weak solution, we multiply (16) and (17) by
δtΨn+1

K and sum over n ∈ [[0, N ]] and K ∈ T . Then we let m tend to infinity and
show that we obtain (26) and (27) when passing to the limit.

As in [19], [28], [6], by using the consistency of fluxes, we obtain at the limit the
following terms:∫ T

0

∫
Ω

uψt +

∫
Ω

u0,

∫ T

0

∫
Ω

∇ϕ(u) · ∇ψ,
∫ T

0

∫
Ω

csψ,

∫ T

0

∫
Ω

usψ, and

∫ T

0

∫
Ω

(s− s)ψ.

But we encounter original difficulties to obtain the two remaining terms, namely∫ T

0

∫
Ω

f(u)M(u)∇θ and

∫ T

0

∫
Ω

M(u)∇θ.

Indeed, heuristically, we have to prove the weak convergence of f(um)M(um)∇θm and
M(um)∇θm to f(u)M(u)∇θ and M(u)∇θ, with um strongly converging to u and θm
bounded in L2(0, T,H1(Ω)) and weakly converging to θ. In the continuous case, this
problem can be solved since a product of two functions, the first converging strongly
and the other weakly, is weakly converging to the product of the limits. However,
the gradient of discrete function is not in general a function, so we need to use a
regularization argument that we shall detail.
Remark 5.2. Our heuristic argument justifies why the strong convergence of um

is crucial. Indeed, a product of weak convergent sequences of functions in general does
not converge to the product of the limit, even if it has a weak limit. In our case we
obtain this strong convergence by using the hypothesis that ϕ′ is a strictly increasing
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function, but our method would also work in all cases where we were able to prove
that f(um) and M(um) converge strongly.

We will restrict ourselves to the case when A =
∫
Ω

∫ T
0
f(u)M(u)∇θ · ∇ψ because

the other integral is a special case with f = 1. Let us first define AT ,δt by

AT ,δt =
N∑
n=0

δt
1

2

∑
K∈T

∑
L∈N (K)

f(u)n+1
K|LM(u)n+1

K|L(Θ
n+1
L −Θn+1

K )(Ψn+1
L −Ψn+1

K ).

AT ,δt is the term corresponding to A when we multiply (16) by δtΨn+1
K , sum over

K ∈ T and n ∈ [[0, N ]], and gather by edges. Assume first that f(u) and M(u)
are in D(Ω × (0, T )), and M(U), m(uT ,δt) and f(U), f(uT ,δt) are discretizations
and approximations of f(u) and M(u) defined in the same way as Ψ and ψT ,δt by
(28)–(29). By the Stokes formula,

A = −
∫ T

0

∫
Ω

θ div(f(u)M(u)∇ψ).

So because of the weak convergence of θm to θ, A = limm→∞BTm,δtm , where BT ,δt
is given by

BT ,δt =
∫ T

0

∫
Ω

θT ,δtdiv(f(u)M(u)∇ψ),

and by definition of the piecewise constant function θT ,δt we get

BT ,δt = −
N∑
n=0

∑
K∈T

∑
L∈N (K)

Θn+1
K

∫ (n+1)δt

nδt

∫
K|L

f(u)M(u)∇ψ · nK,L

=

N∑
n=0

1

2

∑
K∈T

∑
L∈N (K)

(Θn+1
L −Θn+1

K )

∫ (n+1)δt

nδt

∫
K|L

f(u)M(u)∇ψ · nK,L.

Now, let us compare BT ,δt and AT ,δt, using the consistency of the flux on the interfaces
K|L for regular functions. By the Cauchy–Schwarz inequality, we have

|AT ,δt −BT ,δt|2

≤
N∑
n=0

δt
1

2

∑
K∈T

∑
L∈N (K)

TK|L(Θ
n+1
K −Θn+1

L )2
N∑
n=0

δt
1

2

∑
K∈T

∑
L∈N (K)

1

TK|L
R2
K|L,

where

RK|L= |f(u)n+1
K|LM(u)n+1

K|LTK|L(Ψ
n+1
K −Ψn+1

L )− 1

δt

∫ (n+1)δt

nδt

∫
K|L

f(u)M(u)∇ψ · nK,L|.

By using the regularity of f(u), M(u), and ψ and the orthogonality property xK −
xL = dK|LnK,L, we easily get the existence of C3 > 0 depending only on f(u),
M(u), and ψ such that RK|L ≤ C3dK|Lm(σ). Then using estimate (22) we obtain
limm→∞ATm,δtm − BTm,δtm = 0 and limm→∞ATm,δtm = A, in the particular case
considered here. To extend the result to the general case by density, it suffices to
remark the continuity of A with respect to M(u), f(u) and the uniform continuity of
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AT ,δt for the L2(Ω× (0, T )) norm. The continuity of A is clear. To show uniform
continuity of AT ,δt, we use first the Cauchy–Schwarz inequality to get the following
inequalities:

‖AT ,δt‖2 ≤ ‖∇ψ‖2L2(0,T,L∞(Ω))C2

∑
δt
1

2

∑
K∈T

∑
L∈N (K)

dK|Lm(K|L)(M(u)n+1
K|L)

2,

‖AT ,δt‖2 ≤ ‖∇ψ‖2L2(0,T,L∞(Ω))(M
∗)2C2

∑
δt
1

2

∑
K∈T

∑
L∈N (K)

dK|Lm(K|L)(f(u)n+1
K|L)

2.

Then, since M(u)n+1
K|L belongs to the interval [M(Un+1

K ),M(Un+1
L )] and f(u)n+1

K|L ∈
[f(Un+1

K ), f(Un+1
L )], we have

∑
K∈T

∑
L∈N (K)

(M(u)n+1
K|L)

2dK|Lm(K|L) ≤ 2
∑
K∈T

M(Un+1
K )2

( ∑
L∈N (K)

dK|Lm(K|L)
)
,

∑
K∈T

∑
L∈N (K)

(f(u)n+1
K|L)

2dK|Lm(K|L) ≤ 2
∑
K∈T

f(Un+1
K )2

( ∑
L∈N (K)

dK|Lm(K|L)
)
.

By using the uniform ξ-regularity of meshes, we finally get

‖AT ,δt‖ ≤
√
C2ξ‖ψ‖L2(0,T,L∞(Ω))‖M(uT ,δt)‖,

‖AT ,δt‖ ≤
√
C2ξ‖ψ‖L2(0,T,L∞(Ω))M

∗‖f(uT ,δt)‖,

and we use the bilinearity of AT ,δt to conclude. This completes the proof of Theorem
5.1.

6. Numerical results. As an example of application, we perform numerical
experiments with the following data, which are realistic in the study of oil and water
flow in a homogeneous porous media:

k1(x) =
x3

2
, k2(x) =

(1− x)3
3

,

pc(x) = −0.5
√

1− x
x

.

As an initial condition we take uniformly the value u0 = 0.5 and prescribe c = 0.8.
We represent in Figure 1 the behavior of k1, k2, M , f , and pc. We can verify that
the hypotheses that we made on the data in section 2 are satisfied.

The domain of study is the open subset Ω = (0, 1)2 of R
2. If we denote D1 =

{(x, y) ∈ R
2, (x−0.5)2+(y−0.8)2 ≤ 0.01}, D2 = {(x, y) ∈ R

2, (x−0.2)2+(y−0.2)2 ≤
0.01}, D3 = {(x, y) ∈ R

2, (x − 0.8)2 + (y − 0.5)2 ≤ 0.01}, we can take sources and
sinks terms as follows:

s(x, y) = 1011D1(x, y) + 2011D2(x, y),

s(x, y) = 3011D3
(x, y).

Figures 2 and 3 represent the numerical results at time t = 2.1 and t = 9.1. As
we could expect, the saturation in the reservoir increases in mean because u0 ≤ c and
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Fig. 2. Saturation and pressure at time t = 2.1.

the gradient of the pressure is oriented from the sources to the sink. The pressure
is nearly stationary, which is not surprising since sources and sinks are stationary
and the variations of the diffusion coefficient M(u) is not very large in the interval
[0, 1]. The flow is more important at the beginning, when the difference between the
injection saturation and the mean saturation in the reservoir is the largest.

7. Concluding remarks. We have proved the convergence of an implicit fully
finite volume method using the elliptic parabolic structure of the problem after a
transformation due to Chavent (see [7]). We have made two-dimensional computations
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Fig. 3. Saturation and pressure at time t = 9.1.

that showed that it works well. It should be interesting to compare our method
with other methods in terms of accuracy and performance. In particular, we aim to
compare it to the phase by phase upwind scheme (see [20]) which consists of directly
discretizing the two mass conservation equations.
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[18] R. Eymard, T. Gallouët, and R. Herbin, The finite volume method, in Handbook for Numer-
ical Analysis, Ph. Ciarlet and J. L. Lions, eds., North-Holland, Paris, 2000, pp. 715–1022.

[19] R. Eymard, T. Gallouët, D. Hilhorst, and Y. Näıt Slimane, Finite volumes and nonlinear
diffusion equations, RAIRO Modél. Math. Anal. Numér., 32 (1998), pp. 747–761.

[20] R. Eymard, R. Herbin, and A. Michel, Mathematical study of a petroleum-engineering
scheme, M2AN Math. Model. Numer. Anal., submitted.

[21] I. Faille, A control volume method to solve an elliptic equation on a two-dimensional irregular
meshing, Comput. Methods Appl. Mech. Engrg., 100 (1992), pp. 275–290.

[22] R. Herbin, Finite volume methods for diffusion convection equations on general meshes, in
Proceedings of the 1st International Symposium on Finite Volumes for Complex Applica-
tions, Problems and Perspectives (Rouen, 1996), F. Benkhaldoun and R. Vilsmeier, eds.,
Hermes, Paris, 1996, pp. 153–160.

[23] D. Kroener and S. Luckhaus, Flow of oil and water in a porous medium, J. Differential
Equations, 55 (1984), pp. 276–288.

[24] S. N. Kruzkov and S. M. Sukorjanskii, Boundary value problems for systems of equations
of two-phase filtration type; formulation of problems, questions of solvability, justification
of approximate methods, Mat. Sb. (N.S.), 104(146) (1977), pp. 69–88, 175–176.

[25] M. Ohlberger, Convergence of a mixed finite elements–finite volume method for the two phase
flow in porous media, East-West J. Numer. Math., 5 (1997), pp. 183–210.

[26] D. W. Peaceman, Fundamentals of Numerical Reservoir Simulation, Elsevier Scientific, Am-
sterdam, 1977.

[27] P.-A. Raviart, Mixed finite element methods, in The Mathematical Basis of Finite Element
Methods (London, 1983), Inst. Math. Appl. Conf. Ser. New Ser. 2, Oxford University Press,
New York, 1984, pp. 123–156.

[28] M. H. Vignal, Convergence of a finite volume scheme for an elliptic-hyperbolic system, RAIRO
Modél. Math. Anal. Numér., 30 (1996), pp. 841–872.



AN INTERIOR ESTIMATE OF SUPERCONVERGENCE FOR
FINITE ELEMENT SOLUTIONS FOR SECOND-ORDER ELLIPTIC

PROBLEMS ON QUASI-UNIFORM MESHES BY LOCAL
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Abstract. This paper establishes some superconvergence estimates for finite element solutions
of second-order elliptic problems by a projection method depending only on local properties of the
domain and the finite element solution. The projection method is a postprocessing procedure that
constructs a new approximation by using the method of least squares. In particular, some local
superconvergence estimates in the L2 and L∞ norms are derived for the local projections of the
Galerkin finite element solution. The results have two prominent features. First, they are established
for any quasi-uniform meshes, which are of practical importance in scientific computation. Second,
they are derived on the basis of local properties of the domain and the solution for the second-order
elliptic problem. Therefore, the result of this paper can be employed to provide useful a posteriori
error estimators in practical computing.
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1. Introduction. In this paper, we are concerned with local estimates of su-
perconvergence for the Galerkin finite element solution of second-order elliptic equa-
tions. The Galerkin finite element method is known to provide numerical solutions
for partial differential equations with superconvergence upon the use of appropriately
defined postprocessing procedures which are computationally feasible. Because the
superconvergence property of the finite element solution can be used to construct a
new approximate solution with a higher order of accuracy, it naturally provides a pos-
teriori error estimators in the quality assessment of the finite element approximations
in scientific computing.

The research on superconvergence phenomena has been actively conducted by
many numerical analysts for over 30 years. Among a large number of literatures, we
mention Douglas and Dupont [5], Bramble and Schatz [2], Zlamal [38], Krizek and
Neittaanmaki [10], Wahlbin [29], Zienkiewicz and Zhu [37], Ewing, Lazarov, and Wang
[7], Zhu and Lin [35], Wheeler and Whiteman [32], Schatz, Sloan, and Wahlbin [24],
Zhang [33], Zhu [34], and the references therein. For some technical reasons in the
theoretical analysis, all the above-mentioned results on superconvergence require that
the underlying finite element meshes be uniform or almost uniform or symmetric about
a point. Recently, Wang [30] obtained a superconvergence for general quasi-uniform
meshes by using the L2 projection in the solution postprocessing. Although the results
in [30] no longer assume any mesh uniformity or symmetry, they still rely strongly on
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the smoothness of the exact solution and a certain a priori regularity of the underlying
problem globally over the whole domain. In general, the required a priori regularity
holds true for problems with sufficiently smooth data and domains. Consequently, the
superconvergence results developed in [30] have a theoretical limitation in practical
applications.

Our objective in this paper is to derive some local superconvergence error es-
timates for the projection method in which the L2 projection is defined locally on
subdomains. The new results require the exact solution to be only locally smooth,
and no global a priori regularity of the problem is assumed. However, the local su-
perconvergence estimate contains a pollution term which is the estimate of the error
measured in some negative Sobolev norms. The superconvergence error estimates of
this paper are derived in both the L2 and the maximum norms.

A brief outline of this paper follows. In section 2 we review the Galerkin finite
element method for a model second-order elliptic problem. In section 3 we derive a
global superconvergence in the L2 norm for the projection method. Section 4 contains
some global estimate in the L∞ norm. In sections 5 and 6, we establish some local
superconvergence error estimates in both the L2 and the L∞ norms. A case discussion
is made in section 7.

2. Preliminaries. Let Ω be an open bounded domain in R2. Consider the
second-order elliptic boundary value problem that seeks an unknown function u =
u(x) satisfying

Lu ≡ −
2∑

i,j=1

∂

∂xj

(
aij

∂u

∂xi

)
+

2∑
i=1

bi
∂u

∂xi
+ cu = f in Ω(2.1)

and the homogeneous Neumann boundary condition:

B ≡
2∑

i,j=0

aij
∂u

∂xi
nj = 0 on ∂Ω,

where the coefficients aij , bi, and c are given smooth functions and f is a prescribed
function; (n1, n2) denotes the unit outward normal vector on ∂Ω.

We use the standard notation for Sobolev spaces and norms (see, e.g., Adams
[1]). For nonnegative integer k and real number p ∈ [1,∞] and subdomain D ⊂ Ω,
denote

W k,p(D) =
{
v : ‖v‖Wk,p(D) <∞

}
with

‖v‖Wk,p(D) =

∑
|α|≤k

∫
D

∣∣∣∣∂αv(x)∂xα

∣∣∣∣p dx
1/p

if p <∞,

‖v‖Wk,∞(D) = max
|α|≤k

sup
x∈D

∣∣∣∣∂αv(x)∂xα

∣∣∣∣ if p =∞.

Let W k,p
0 (D) be the completion of C∞0 (D) according to the norm ‖ · ‖Wk,p(D), where

C∞0 (D) represents the space of functions with continuous derivatives of arbitrary order
and compact supports in D. We adopt the usual notation:

Hk(D) =W k,2(D), Hk
0 (D) =W k,2

0 (D), Lp(D) =W 0,p(D).
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Denote (·, ·)D the standard inner product in L2(D) given by

(u, v)D =

∫
D

uvdx.

When D = Ω, we write (·, ·) = (·, ·)Ω. The negative Sobolev norm ‖ · ‖H−k(D) is
defined as follows:

‖v‖H−k(D) = sup
ϕ∈C∞

0 (D)

(v, ϕ)

‖ϕ‖Hk(D)

,

where 〈v, ϕ〉 is the value of the linear functional v at ϕ.
To describe a weak formulation for the problem (2.1), we introduce a bilinear

form AD(·, ·) for any D ⊂ Ω as follows:

AD(u, v) =

∫
D

 2∑
i,j=1

aij(x)
∂u

∂xi

∂v

∂xj
+

2∑
i=1

bi(x)
∂u

∂xi
v + c(x)uv

 dx,

and we write A(u, v) = AΩ(u, v). The weak formulation of the problem (2.1) now
seeks u ∈ H1(Ω) such that

A(u, v) = (f, v) ∀ v ∈ H1(Ω).(2.2)

Assume that L is elliptic: there is a constant λ0 > 0 such that

2∑
i,j=1

aij(x)ξiξj ≥ λ0

2∑
i=1

ξ2i ∀ ξ = (ξ1, ξ2) ∈ R2.

Furthermore, assume that the problem (2.2) has a unique solution in H1(Ω).
For simplicity of local analysis, we assume that A is H1(Ω)-coercive: there is a

constant λ1 > 0 such that

A(v, v) ≥ λ1‖v‖2H1(Ω) ∀ v ∈ H1(Ω).

The standard finite element method for numerically solving (2.1) is associated
with the weak formulation (2.2) and a finite dimensional subspace Shr ⊂ H1(Ω) with
two parameters h ∈ (0, 1) and r ≥ 1. The space Shr is associated with a prescribed
finite element partition Th of the domain Ω and comprises continuous piecewise poly-
nomials of degree no more than r. The finite element approximation, denoted uh ∈ Shr ,
for u is determined by

A(uh, v) = (f, v) ∀ v ∈ Shr .(2.3)

By (2.2) and (2.3), we have the following error equation:

A(u− uh, v) = 0 ∀ v ∈ Shr ,(2.4)

which, due to the coercivity of A, implies the optimal order error estimate in H1 (see
Ciarlet [4] or Brenner and Scott [3] for details):

‖u− uh‖H1(Ω) ≤ C inf
v∈Vh

‖u− v‖H1(Ω).(2.5)



AN INTERIOR ESTIMATE OF SUPERCONVERGENCE 1321

Here and throughout the paper, C stands for a generic constant independent of the
functions and parameters involved.

For any subset D ⊂ Ω, let Shr (D) be the functional space consisting of the restric-
tions of functions in Shr on D. Furthermore, we introduce the notation

L2
<(D) = {v ∈ L2(D) : dist(supp(v), ∂D\∂Ω) > 0},

where supp(v) denotes the support of v. The finite element space Shr is constructed
so that the following three assumptions are satisfied:

A.1 (approximation properties). Let D1 ⊂ D2 ⊂ Ω with dist(D1, ∂D2\∂Ω) ≥ C0h
for some constant C0 > 0 and 0 ≤ i ≤ 1 ≤ j ≤ r + 1, 1 ≤ p ≤ ∞. Then, for
any v ∈W j,p(D2), there exists a χ ∈ Shr (D2) such that

‖v − χ‖W i,p(D1) ≤ Chj−i‖v‖W j,p(D2).

Moreover, if v ∈ L2
<(D1), then χ ∈ L2

<(D2). The above results also hold true
in the case of D1 = D2 = Ω.

A.2 (inverse properties). Let D1 ⊂ D2 ⊂ Ω with dist(D1, ∂D2\∂Ω) ≥ C0h for
some constant C0 > 0. Then, for 0 ≤ i ≤ j ≤ 1, 1 ≤ q ≤ p ≤ ∞, and any
vh ∈ Shr (D2),

‖vh‖W j,p(D1) ≤ Ch−(j−i)−2(1/q−1/p)‖vh‖W i,q(D2).

Furthermore, if vh ∈ Shr (Ω), then
‖vh‖W j,p(Ω) ≤ Ch−(j−i)−2(1/q−1/p)‖vh‖W i,q(Ω).

A.3 (superapproximation properties). Let D1 ⊂ D2 ⊂ D3 ⊂ D4 ⊂ Ω with
dist(D1, ∂D2\∂Ω) ≥ C0h, dist(D2, ∂D3\∂Ω) ≥ C0h, dist(D3, ∂D4\∂Ω) ≥
C0h for some constant C0 > 0. Let ω ∈ L2

<(D3) ∩ C∞(D3) satisfy ω ≡ 1 on
D2. Then, for j = 0, 1 and any vh ∈ Shr (D4), there is an η ∈ Shr (D4)∩L2

<(D4)
such that

‖ωvh − η‖L2(D3) ≤ Ch1+j‖vh‖Hj(D3\D1).

Let us now briefly review the global and local error estimates for u−uh in L2 and
L∞ norms. Under the assumptions A.1, A.2, and A.3, one has the following optimal
or suboptimal order error estimates in the L2 and L∞ norms for i = 0, 1:

‖u− uh‖Hi(Ω) ≤ Chr+1−i‖u‖Hr+1(Ω)(2.6)

and

‖u− uh‖W i,∞(Ω) ≤ Chr+1−i| lnh|r̄‖u‖W r+1,∞(Ω),(2.7)

where r̄ is defined by

r̄ =

{
1 if r = 1 and i = 0,
0 if r > 1 or i = 1.

(2.8)

For the estimate (2.6) in L2, see Ciarlet [4]. For the estimate (2.7) in L∞, see Natterer
[16], Nitsche [17], Scott [28], Rannacher [20], Rannacher and Scott [21], and Schatz
and Wahlbin [25, 26]. The error estimates (2.6) and (2.7) require that the solution u ∈
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Hr+1(Ω) and u ∈ W r+1,∞(Ω), in order to achieve the optimal order of convergence
in Hi and W i,∞, respectively.

It was shown in Nitsche and Schatz [18] and Schatz and Wahlbin [25] that if
Ω0 ⊂⊂ Ω1 ⊂ Ω, then for i = 0 or 1 we have the following interior estimates:

‖u− uh‖Hi(Ω0) ≤ C
(
hr+1−i‖u‖Hr+1(Ω1) + ‖u− uh‖H−m(Ω)

)
,

‖u− uh‖W i,∞(Ω0) ≤ C
(
hr+1−i| lnh|r̄‖u‖W r+1,∞(Ω1) + ‖u− uh‖H−m(Ω)

)
.

Here and throughout the paper, Ω0 ⊂⊂ Ω1 means that dist(Ω0, ∂Ω1) ≥ C and r̄ is de-
fined as above by (2.8). Although these estimates were established for interior regions
Ω0, they can be extended to regions up to the boundary (see Schatz and Wahlbin [26]).
We also mention that more localized error estimates have been obtained recently by
Schatz [22, 23].

We now turn to the superconvergence estimate. Any estimate that indicates
a higher order of convergence than the optimal-order is called a superconvergence.
A superconvergence is usually obtained by a postprocessing or recovery technique
applied to the original finite element approximation uh by an appropriate projection
or interpolation operator. For example, if uI is the Lagrange linear interpolation of
the exact solution u and if the mesh Th is uniform or almost uniform, then we have

‖uI − uh‖H1(Ω) ≤ Ch2‖u‖H3(Ω)(2.9)

for piecewise linear finite element solutions. The estimate (2.9) leads to a superconver-
gence estimate of order O(h2) for the partial derivatives of uh by postprocessing ∇uh
via a simple local averaging technique. For details about the definition of uniform or
almost uniform meshes and various postprocessing techniques, as well as supercon-
vergence results for other finite elements or other problems, see, for example, Krizek
and Neittaanmaki [9, 10], Levine [11], Lin and Wang [12], Lin and Xu [14], Zhu and
Lin [35], Wahlbin [29], Wang [31], Douglas and Wang [6], Ewing, Liu, and Wang [8],
Li and Zhang [13], Lin and Zhou [15], and the references therein.

To achieve a superconvergence, the exact solution u is often assumed to be more
regular than what is needed in the optimal-order error estimate. For example, the
superconvergence estimate (2.9) requires that u ∈ H3(Ω), as opposed to u ∈ H2(Ω)
in the optimal-order error estimate. Interior or local superconvergence can be found
in Wahlbin [29] with additional conditions imposed on the finite element partition Th.
The result shows that one has superconvergence locally in regions where the solution
is sufficiently smooth and the finite element partition is either translation invariant
or symmetric.

The rest of the paper will investigate the local superconvergence of the Galerkin
finite element method by the projection method proposed and studied in [30]. The
projection method is essentially an L2 projection onto a second finite element space
based on a high order of polynomials on a coarser grid. This method can be considered
as a generalization of the patch recovery technique of Zienkiewicz and Zhu [36, 37] by
employing a global patch with smooth functions. More precisely, let Tτ be a coarser
partition of Ω with τ = hα for some α ∈ (0, 1), and let Qτ be the L

2 projection
operator from L2(Ω) onto a finite element space having high order of approximation
properties. It was proved in [30] that u−Qτuh is superconvergent for general quasi-
uniform partitions Th. The superconvergence of [30] requires that both the exact
solution be sufficiently smooth and the underlying problem have sufficiently high
order of a priori regularity. Although a local L2 projection was employed to give
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a superconvergence in [30], the corresponding superconvergence estimates derived in
[30] require the same a priori estimates for the global problem just as the global
superconvergence does. Our main objective of this paper is to establish some local
superconvergence for locally defined projections.

The following regularity on local smooth subdomains shall be assumed in the
local superconvergence analysis. Let D ⊂ Ω be sufficiently smooth. Then, for any
ϕ ∈ Hk(D), there exists a unique Φ ∈ Hk+2(D) satisfying

LΦ = ϕ in D, BΦ = 0 on ∂D,(2.10)

and

‖Φ‖Hk+2(D) ≤ C‖ϕ‖Hk(D),(2.11)

where C > 0 is a constant independent of ϕ and Φ. We also assume that the above
regularity holds true for the corresponding adjoint operators of L and B. To be
convenient, we say that a subdomain D ⊂ Ω is of H�, ' ≥ 1, regularity if (2.11) holds
true for any k ≤ '− 2.

We now introduce a second family of finite dimensional subspaces. Let Sτm,s ⊂
Hm(Ω) be another family of finite dimensional subspaces with m ≥ 0, s ≥ 0, τ = Chα

for some α > 0 to be determined later. The parameter m characterizes the regularity
of the fitting space Sτm,s and is particularly reserved for this purpose in the rest of the
paper. The parameter s indicates the degree of polynomials used in the construction
of Sτm,s. For any D ⊂ Ω, let Sτm,s(D) again be the restriction of functions of S

τ
m,s in

D.
Corresponding to A.1, A.2, and A.3, we assume that the following assumptions

for spaces Sτm,s are satisfied.
B.1 Let D1 ⊂ D2 ⊂ Ω with dist(D1, ∂D2\∂Ω) ≥ C0τ for some constant C0 > 0

and 0 ≤ i ≤ j ≤ s+ 1, 1 ≤ p ≤ ∞. Then, for any v ∈ W j,p(D2), there exists
a χ ∈ Sτm,s(D2) such that

‖v − χ‖W i,p(D1) ≤ Cτ j−i‖v‖W j,p(D2).

Moreover, if v ∈ L2
<(D1), then χ ∈ L2

<(D2).
B.2 (inverse properties). Let D1 ⊂ D2 ⊂ Ω with dist(D1, ∂D2\∂Ω) ≥ C0τ for

some constant C0 > 0. Then, for 0 ≤ i ≤ j ≤ m, 1 ≤ q ≤ p ≤ ∞, and any
vτ ∈ Sτm,s(D2),

‖vτ‖W j,p(D1) ≤ Cτ−(j−i)−2(1/q−1/p)‖vτ‖W i,q(D2).

Furthermore, if vτ ∈ Sτm,s(Ω),

‖vτ‖W j,p(Ω) ≤ Cτ−(j−i)−2(1/q−1/p)‖vτ‖W i,q(Ω).

B.3 (superapproximation properties). Let D1 ⊂ D2 ⊂ D3 ⊂ D4 ⊂ Ω with
dist(D1, ∂D2\∂Ω) ≥ C0τ , dist(D2, ∂D3\∂Ω) ≥ C0τ , dist(D3, ∂D4\∂Ω) ≥
C0τ for some constant C0 > 0. Let ω ∈ L2

<(D3) ∩ C∞(D3) satisfy ω ≡ 1 on
D2. Then, for 0 ≤ j ≤ min(m, s + 1) and any vτ ∈ Sτm,s(D4), there is an
η ∈ Sτm,s(D4) ∩ L2

<(D4) such that

‖ωvτ − η‖L2(D4) ≤ Cτ1+j‖vτ‖Hj(D4\D1).



1324 HONGSEN CHEN AND JUNPING WANG

Next, we introduce the notation of L2 projection. For any D ⊂ Ω, let
QD
τ : L2(D)→ Sτm,s(D)

denote the L2 projection operator defined by

(QD
τ v, ϕ)D = (v, ϕ)D ∀ v ∈ L2(D), ϕ ∈ Sτm,s(D).

When D = Ω, we shall ignore Ω and use the notation Qτ = QΩ
τ .

Throughout this paper, we assume that assumptions A.1, A.2, and A.3 and as-
sumptions B.1, B.2, and B.3 are satisfied.

3. A global superconvergence in L2. In this section we establish a global
superconvergence in the L2 norm for the general second-order elliptic problem (2.1).
The following theorem can be considered as a generalization of the results of Wang
[30] from Laplacian to general second-order elliptic problems.

Theorem 3.1. Assume that u and uh satisfy (2.4) and that Ω is of Hk+2 reg-
ularity, k ≥ 0. If u ∈ H1+r(Ω) when r > s or u ∈ H1+s(Ω) when r ≤ s, then
for

τ = O(hα), with α =
1 + r +min(r − 1,m, k)
1 + s+min(r − 1,m, k) ,(3.1)

we have

‖u−Qτuh‖Hi(Ω) ≤ Ch
1+r+min(r−1,m,k)

1+θi

(‖u‖H1+r(Ω) + ‖u‖H1+s(Ω)

)
,

where θi is given by

θi =
i+min(m, r − 1, k)

s+ 1− i .(3.2)

Proof. The proof follows the same line as in Wang [30]. For completeness, it is
outlined as follows. Since Qτ is the L

2 projection, we have for any ϕ ∈ C∞0 (Ω),
(Qτ (u− uh), ϕ) = (u− uh, Qτϕ).(3.3)

Let Φ ∈ H1(Ω) be the unique solution of

A(ψ,Φ) = (Qτϕ,ψ) ∀ ψ ∈ H1(Ω).

Using assumption A.1, there is an χ ∈ Shr such that
‖Φ− χ‖H1(Ω) ≤ Chi−1‖Φ‖Hi(Ω), 1 ≤ i ≤ 1 + r.(3.4)

Then it follows from (3.3), Hölder’s inequality, and inequality (3.4) that

(Qτ (u− uh), ϕ) = A(u− uh,Φ) = A(u− uh,Φ−ΠhΦ)(3.5)

≤ C‖u− uh‖H1(Ω)‖Φ−ΠhΦ‖H1(Ω)

≤ Ch1+min(m,r−1,k)‖u− uh‖H1(Ω)‖Φ‖H2+min(r−1,m,k)(Ω).

An application of the a priori Hk+2 regularity, inverse property B.2, and the stability
of L2 projection yields

‖Φ‖H2+min(r−1,m,k)(Ω) ≤ C‖Qτϕ‖Hmin(r−1,m,k)(Ω)

≤ Cτ−min(r−1,m,k)‖Qτϕ‖L2(Ω)

≤ Cτ−min(r−1,m,k)‖ϕ‖L2(Ω),
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which, combined with (3.5), leads us to

‖Qτ (u− uh)‖L2(Ω) = sup
ϕ∈C∞

0 (Ω),ϕ 	=0

(Qτ (u− uh), ϕ)
‖ϕ‖L2(Ω)

(3.6)

≤ Ch1+min(r−1,m,k)τ−min(r−1,m,k)‖u− uh‖H1(Ω).

Using the optimal-order error estimate for ‖u− uh‖H1(Ω) (Ciarlet [4]),

‖u− uh‖H1(Ω) ≤ Chr‖u‖H1+r(Ω),

the best approximation property of the L2 projection, and the approximation property
B.1,

‖u−Qτu‖L2(Ω) ≤ C inf
χ∈Sτ

m,s

‖u− χ‖L2(Ω) ≤ Cτs+1‖u‖H1+s(Ω),

we conclude that

‖u−Qτuh‖L2(Ω) ≤ ‖u−Qτu‖L2(Ω) + ‖Qτ (u− uh)‖L2(Ω)(3.7)

≤ Cτs+1‖u‖H1+s(Ω) + Ch1+r+min(r−1,m,k)τ−min(r−1,m,k)‖u‖H1+r(Ω).

Now, choose τ so that

τ1+s = O(h1+r+min(r−1,m,k)τ−min(r−1,m,k));

then τ satisfies (3.1), and the desired estimate follows from (3.7). This completes the
proof.

4. A global superconvergence in L∞. This section is devoted to the deriva-
tion of a global superconvergence estimate in the L∞ norm. A traditional and stan-
dard approach for pointwise error estimates of finite element methods will be employed
here for superconvergence. This approach is based on special weighted Sobolev norms.
The main result of this section is stated as follows.

Theorem 4.1. Assume that u and uh satisfy (2.4) and that the domain Ω is of
Hk+2 regularity with k ≥ 0. If τ satisfies (3.1) and u ∈ W 1+r,∞(Ω) when r > s or
u ∈W 1+s,∞(Ω) when r ≤ s, then for i = 0 or 1 we have

‖u−Qτuh‖W i,∞(Ω) ≤ Ch
1+r+
1+θi | lnh| (‖u‖W 1+r,∞(Ω) + ‖u‖W 1+s,∞(Ω)

)
,

where θi is defined by (3.2) and

- = min(r − 1,m, k).(4.1)

The proof of this theorem is based on some technical tools in weighted Sobolev
norms. We shall develop the tools first and postpone the proof to the end of this
section.

Let us start with the weight function definition. For any fixed z ∈ Ω̄, we define
σ = σ(x, z) = (|x− z|2 + γh2)1/2,

with γ > 0 being a constant. Associated with the function σ, we introduce the
following weighted Sobolev norms:

‖v‖L2

σβ
(D) =

(∫
D

σβ |v|2dx
)1/2

,
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‖v‖Hk

σβ
(D) =

∑
|α|≤k

∣∣∣∣∣∣∣∣ ∂kv∂xα

∣∣∣∣∣∣∣∣2
L2

σβ
(D)

1/2

.

We now collect some well-known estimates associated with the weighted norms.
The first one is an analogy of A.1 in the weighted norm.

Lemma 4.2. For 0 ≤ i ≤ 1 ≤ j ≤ r + 1 and any real β, v ∈ Hj(Ω), there exists
χ ∈ Shr such that

‖v − χ‖Hi

σβ
(Ω) ≤ Chj−i‖v‖Hj

σβ
(Ω).

Lemma 4.3. For 0 ≤ i ≤ j and any ϕτ ∈ Sτm,s(Ω),

‖ϕτ‖Hj

σβ
(Ω) ≤ Cτ i−j‖ϕτ‖Hi

σβ
(Ω).

A proof of Lemmas 4.2 and 4.3 can be found in Brenner and Scott [3]. The
following lemma gives the a priori estimates for the differential operator L in the
weighted norms.

Lemma 4.4. Suppose Φ ∈ Hk+2(Ω) with k ≥ 0. Then
‖Φ‖Hk+2

σ2 (Ω) ≤ C‖LΦ‖Hk

σ2 (Ω) + C‖Φ‖Hk+1(Ω).

Proof. Let x = (x1, x2) and z = (z1, z2). For any nonnegative integers k1 and k2

such that k1 + k2 = k + 2, we have

(x1 − z1) ∂k+2Φ

∂xk1
1 ∂xk2

2

=
∂k+2((x1 − z1)Φ)

∂xk1
1 ∂xk2

2

− k1
∂k+1Φ

∂xk1−1
1 ∂xk2

2

.

Hence, it follows that∫
Ω

(x1 − z1)2
∣∣∣∣∣ ∂k+2Φ

∂xk1
1 ∂xk2

2

∣∣∣∣∣
2

dx

≤ C

∫
Ω

∣∣∣∣∣∂k+2((x1 − z1)Φ)
∂xk1

1 ∂xk2
2

∣∣∣∣∣
2

dx+ C

∥∥∥∥∥ ∂k+1Φ

∂xk1−1
1 ∂xk2

2

∥∥∥∥∥
2

L2(Ω)

≤ C‖(x1 − z1)Φ‖2Hk+2(Ω) + C‖Φ‖2Hk+1(Ω)

≤ C‖L((x1 − z1)Φ)‖2Hk(Ω) + C‖Φ‖2Hk+1(Ω)

≤ C‖(x1 − z1)LΦ‖2Hk(Ω) + C‖Φ‖2Hk+1(Ω)

≤ C‖LΦ‖2Hk

σ2 (Ω) + C‖Φ‖2Hk+1(Ω).

Similarly, we have∫
Ω

(x2 − z2)2
∣∣∣∣∣ ∂k+2Φ

∂xk1
1 ∂xk2

2

∣∣∣∣∣
2

dx ≤ C‖LΦ‖2Hk

σ2 (Ω) + C‖Φ‖2Hk+1(Ω).

Consequently,∫
Ω

|x− z|2
∣∣∣∣∣ ∂k+2Φ

∂xk1
1 ∂xk2

2

∣∣∣∣∣
2

dx ≤ C‖LΦ‖2Hk

σ2 (Ω) + C‖Φ‖2Hk+1(Ω).(4.2)
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Furthermore,

∫
Ω

γh2

∣∣∣∣∣ ∂k+2Φ

∂xk1
1 ∂xk2

2

∣∣∣∣∣
2

dx ≤ Cγh2‖LΦ‖2Hk(Ω) ≤ C‖LΦ‖2Hk

σ2 (Ω).(4.3)

Adding (4.2) and (4.3) completes the proof.
For z ∈ Ω̄, let Dτ,z ⊂ Ω be such that

z ∈ D̄τ,z, diam(Dτ,z) ≤ Cτ.

Construct δτ,z ∈ C∞0 (Dτ,z) so that

(δτ,z, ϕτ ) = ϕτ (z) ∀ ϕτ ∈ Sτm,s(Ω)

and

‖δτ,z‖W i,∞(Dτ,z) ≤ Cτ−2−i.

(See Rannacher and Scott [21] or Brenner and Scott [3].)
Further, let Gτ,z, ∂νGτ,z ∈ H1(Ω) be the solution of

A(ϕ,Gτ,z) = (Qτδτ,z, ϕ) ∀ ϕ ∈ H1(Ω)

and

A(ϕ, ∂νGτ,z) = −(Qτ (ν · ∇δτ,z), ϕ) ∀ ϕ ∈ H1(Ω),

where ν is any fixed vector. Then we have the following W 1,1 estimates for Gτ,z,
∂νGτ,z, and their finite element approximations.

Lemma 4.5. Assume that Ω is of Hk+2 regularity for k ≥ 0. Then there exist
ΠhGτ,z ∈ Sτm,s and Πh(∂νGτ,z) ∈ Sτm,s such that

‖Gτ,z −ΠhGτ,z‖W 1,1(Ω) ≤ Ch1+� τ−�| lnh|,(4.4)

‖∂νGτ,z −Πh(∂νGτ,z)‖W 1,1(Ω) ≤ Ch1+� τ−1−�| lnh|,(4.5)

where - is defined in (4.1) and ν is any fixed vector.
Proof. According to Lemma 4.2, there is an ΠhGτ,z ∈ Sτm,s satisfying

‖Gτ,z −ΠhGτ,z‖H1

σ2 (Ω) ≤ Ch1+min(r−1,m,k)‖Gτ,z‖H2+min(r−1,m,k)

σ2 (Ω)
,

which, along with Lemma 4.4, implies

‖Gτ,z −ΠhGτ,z‖H1

σ2 (Ω) ≤ Ch1+�
(
‖δτ,z‖H

σ2 (Ω) + ‖Gτ,z‖H1+(Ω)

)
.(4.6)

If - = min(r− 1,m, k) ≥ 1, using the assumption of Hk+2 a priori regularity and the
inverse property B.2 we have

‖Gτ,z‖H1+(Ω) ≤ C‖Qτδτ,z‖H−1+(Ω)(4.7)

≤ Cτ1−�‖δτ,z‖L2(Ω) ≤ Cτ−�.
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If - = min(r − 1,m, k) = 0, using the coercivity of A and the definition of Gτ,z, we
get

λ1‖Gτ,z‖2H1+(Ω) = λ1‖Gτ,z‖2H1(Ω) ≤ A(Gτ,z, Gτ,z)(4.8)

= (Qτδτ,z, Gτ,z) = QτGτ,z(z)

≤ ‖QτGτ,z‖L∞(Ω)

≤ C| ln τ |1/2‖QτGτ,z‖H1(Ω).

Here, we have also used the following estimate:

‖QτGτ,z‖L∞(Ω) ≤ C| ln τ |1/2‖QτGτ,z‖H1(Ω),

which can be found, e.g., in Ciarlet [4]. With the estimates (4.7) and (4.8) and noting
that

‖δτ,z‖H

σ2 (Ω) ≤ Cτ−�,

we conclude from (4.6) that

‖Gτ,z −ΠhGτ,z‖H1

σ2 (Ω) ≤ Ch1+�τ−�| ln τ |1/2.(4.9)

From Hölder’s inequality, it follows that

‖Gτ,z −ΠhGτ,z‖W 1,1(Ω) ≤
(∫

Ω

σ−2dx

)1/2

‖Gτ,z −ΠhGτ,z‖H1

σ2 (Ω)(4.10)

≤ C| lnh|1/2‖Gτ,z −ΠhGτ,z‖H1

σ2 (Ω).

Since | ln τ | is proportional to | lnh|, substituting (4.9) into (4.10) yields (4.4). The
estimate (4.5) can be derived in a similar way. This completes the proof.

Now we are in a position to prove the main result of this section.
Proof of Theorem 4.1. In view of the definition of Gτ,z and (2.4), we have

Qτ (u− uh)(z) = (Qτ (u− uh), δτ,z) = (u− uh, Qτδτ,z)

= A(u− uh, Gτ,z) = A(u− uh, Gτ,z −ΠhGτ,z)

≤ C‖u− uh‖W 1,∞(Ω)‖Gτ,z −ΠhGτ,z‖W 1,1(Ω),

where ΠhGτ,z is chosen according to Lemma 4.5. Applying Lemma 4.5 and the
following well-known estimate (e.g., [3], [4]),

‖u− uh‖W 1,∞(Ω) ≤ Chr‖u‖W 1+r,∞(Ω),(4.11)

we see that

|Qτ (u− uh)(z)| ≤ Ch1+r+�τ−�| ln τ |‖u‖W 1+r,∞(Ω).(4.12)

Hence, from the approximation property B.1 and (4.12), it follows that

|(u−Qτuh)(z)| ≤ |(u−Qτu)(z)|+ |Qτ (u− uh)(z)|(4.13)

≤ Cτ1+s‖u‖W 1+s,∞(Ω)

+Ch1+r+�τ−�| ln τ |‖u‖W 1+r,∞(Ω),
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which proves Theorem 4.1 for i = 0 according to the relationship (3.1) between h and
τ . To show Theorem 4.1 for i = 1, we let ν be a fixed vector and note that (with
possibly a minor modification of δτ,z)

ν · ∇Qτ (u− uh)(z) = (ν · ∇Qτ (u− uh), δτ,z) = −(Qτ (u− uh), ν · ∇δτ,z)
= −(u− uh, Qτ (ν · ∇δτ,z))
= a(u− uh, ∂νGτ,z) = a(u− uh, ∂νGτ,z −Πh(∂νGτ,z))

≤ C‖u− uh‖W 1,∞(Ω)‖∂Gτ,z −Πh(∂Gτ,z)‖W 1,1(Ω),

which, along with Lemma 4.5, yields

|ν · ∇Qτ (u− uh)(z)| ≤ Ch1+ρτ−1−ρ‖u− uh‖W 1,∞(Ω).(4.14)

Using (4.14) and the well-known estimate for L2 projection,

|ν · ∇(u−Qτu)(z)| ≤ C‖u−Qτu‖W 1,∞(Ω) ≤ Cτs‖u‖W 1+s,∞(Ω),

and (4.11) we get

|ν · ∇(u−Qτuh)(z)|(4.15)

≤ |ν · ∇(u−Qτu)(z)|+ |ν · ∇Qτ (u− uh)(z)|
≤ Cτs‖u‖W 1+s,∞(Ω) + Ch1+r+�τ−1−�| ln τ |‖u‖W 1+r,∞(Ω).

Thus, choosing a direction ν and a point z such that

‖∇(u−Qτuh)‖L∞(Ω) = |ν · ∇(u−Qτuh)(z)|,
and using (4.15), we complete the proof of Theorem 4.1.

5. A local superconvergence in L2. In this section, we establish a local su-
perconvergence in the L2 and H1 norms. The main result is stated as follows.

Theorem 5.1. Suppose u and uh satisfy (2.4) and the subdomain Ω0 ⊂ Ω1 ⊂ Ω
satisfies dist(Ω0, ∂Ω1\∂Ω) ≥ C1h for sufficiently large C1 > 1, and ∂Ω1 ∩ ∂Ω is
sufficiently smooth. Then for τ given by (3.1) and any 0 ≤ q ≤ m+ 1,

‖u−QΩ1
τ uh‖Hi(Ω0) ≤ Ch

r+1+min(m,k,r−1)
1+θi

(‖u‖H1+r(Ω1) + ‖u‖H1+s(Ω1)

)
(5.1)

+C‖u− uh‖H−q(Ω1),

where θi is given by (3.2).
Proof. Observe that

‖u−QΩ1
τ uh‖Hi(Ω0) ≤ ‖u−QΩ1

τ u‖Hi(Ω0) + ‖QΩ1
τ (u− uh)‖Hi(Ω0).(5.2)

Let Ω0 ⊂⊂ Ω2 ⊂⊂ Ω1. Using Lemma 5.3 and assumption B.1, we have

‖u−QΩ1
τ u‖L2(Ω0) ≤ C inf

χ∈Sτ
m,s

‖u− χ‖L2(Ω2) + τ1+s‖u‖L2(Ω1)(5.3)

≤ Cτ1+s‖u‖H1+s(Ω1).

Applying a well-known interior estimate in H1 norm (Nitsche and Schatz [18])

‖u− uh‖H1(Ω2) ≤ Chr‖u‖H1+r(Ω1) + C‖u− uh‖H−q(Ω1)
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and Lemma 5.5 we obtain

‖QΩ1
τ (u− uh)‖L2(Ω0)(5.4)

≤ Ch1+min(r−1,m)τ−min(r−1,m)‖u− uh‖H1(Ω2) + C‖u− uh‖H−q(Ω2)

≤ Ch1+r(h/τ)min(r−1,m)‖u‖H1+r(Ω1) + C‖u− uh‖H−q(Ω1).

The desired estimate (5.1) with i = 0 follows from (5.3), (5.4), and (5.2). With the
same procedure combined with the inverse inequality in B.2, we obtain (5.1) for i = 1.
This completes the proof.

The proof of Theorem 5.1 is based on the result of Lemma 5.5, which will be
established in the rest of this section.

Lemma 5.2. Let D1 ⊂ D2 ⊂⊂ D3 ⊂ D4 ⊂ D ⊂ Ω with dist(D1, ∂D2\∂Ω) ≥ C0h,
dist(D2, ∂D3\∂Ω) ≥ C0h, dist(D3, ∂D4\∂Ω) ≥ C0h, dist(D4, ∂D\∂Ω) ≥ C0h for
some constant C0 > 0. Let ω ∈ C∞(D3) ∩ L2

<(D3) satisfy ω ≡ 1 on D2. Then, for
0 ≤ j ≤ min(s+ 1,m) and any vτ ∈ Sτm,s(D3), we have

‖ωvτ −QD
τ (ωvτ )‖L2(D) ≤ Cτ1+j‖vτ‖Hj(D4\D1).

Proof. The lemma follows immediately from assumption B.3 and the best ap-
proximation property of the L2 projection.

The following lemma provides a local error estimate for the L2 projection. The
result shows that the local error of a “global” L2 projection Qτ is bounded by the best
local approximation plus a global pollution of order O(τM ) with arbitrary M > 0.

Lemma 5.3. For D0 ⊂ D1 ⊂ D ⊂ Ω satisfying dist(D0, ∂D1\∂Ω) ≥ C1h with
sufficiently large C1 > 0, and M > 0, there holds

‖v −QD
τ v‖L2(D0) ≤ inf

χ∈Sτ
m,s(D)

‖v − χ‖L2(D1) + CτM‖v‖L2(D).

Proof. The proof can be found in Nitsche and Schatz [19] and Schatz and Wahlbin
[27].

We now show a local a priori estimate for the differential operator L.
Lemma 5.4. Suppose D0 ⊂ D1 ⊂ D ⊂ Ω with d = dist(D0, ∂D1\∂Ω) > 0

and ∂D1 ∩ ∂Ω is sufficiently smooth. Then for k ≥ 0 and any w ∈ Hk+2(D1) with
Lw ∈ L1(D) and Bw = 0 on ∂D,

‖w‖Hk+2(D0) ≤ C
(‖Lw‖Hk(D1) + ‖Lw‖L1(D)

)
.

Proof. Let D0 ⊂ D2 ⊂ D1 ⊂ Ω with dist(D0, ∂D2\∂Ω) = dist(D2, ∂D1\∂Ω) =
d/2 and ω ∈ C∞(D2) ∩ L2

<(D2) satisfying ω ≡ 1 on D0. We assume that ∂D2 is
sufficiently smooth. Then

‖w‖Hk+2(D0) ≤ ‖ωw‖Hk+2(D2) ≤ C‖L(ωw)‖Hk(D2)(5.5)

≤ C‖Lw‖Hk(D2) + C‖w‖Hk+1(D2).

Applying (5.5) for ‖w‖Hk+1(D2) and repeating the procedure, we conclude that

‖w‖Hk+2(D0) ≤ C‖Lw‖Hk(D1) + C‖w‖L2(D1)(5.6)

≤ C‖Lw‖Hk(D1) + C‖Lw‖L1(D).

Here, in the last step of (5.6), we have used the following estimate:

‖w‖L2(D1) ≤ C‖w‖L2(D) ≤ C‖Lw‖L1(D),
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which can be verified, e.g., by using the representation of w in terms of the Green’s
function of the differential operator L on domain D. This completes the proof.

Lemma 5.5. Suppose Ω0 ⊂ Ω1 ⊂ Ω with d = dist(Ω0, ∂Ω1\∂Ω) ≥ C1h for some
sufficiently large C1 > 1; then, for any 0 ≤ q ≤ 1 +m, there holds

‖QΩ1
τ (u− uh)‖L2(Ω0) ≤ Ch1+min(r−1,m)τ−min(r−1,m)‖u− uh‖H1(Ω1)(5.7)

+C‖u− uh‖H−q(Ω1),

where the constant C > 0 depends on d but is independent of h and u.
Proof. Let Ω0 ⊂ Ω2 ⊂ Ω3 ⊂ Ω4 ⊂ Ω5 ⊂ Ω6 ⊂ Ω7 ⊂ Ω1 satisfy

dist(Ω0, ∂Ω2\∂Ω) = dist(Ω2, ∂Ω3\∂Ω) = dist(Ω3, ∂Ω4\∂Ω) = dist(Ω4, ∂Ω5\∂Ω)
= dist(Ω5, ∂Ω6\∂Ω) = dist(Ω6, ∂Ω7\∂Ω) = dist(Ω7, ∂Ω1\∂Ω) = d/7

with sufficiently smooth ∂Ω7, and let ω ∈ C∞(Ω5) ∩ L2
<(Ω5) be a function satisfying

ω ≡ 1 on Ω4. For any ϕ ∈ C∞0 (Ω0), by some elementary manipulations we have

(QΩ1
τ (u− uh), ϕ) = (ωQΩ1

τ (u− uh), ωϕ)(5.8)

= (QΩ1
τ (ω2QΩ1

τ (u− uh)), ϕ) + (ω2QΩ1
τ (u− uh)−QΩ1

τ (ω2QΩ1
τ (u− uh)), ϕ)

= (QΩ1
τ (u− uh), ω2QΩ1

τ ϕ) + (ω2QΩ1
τ (u− uh)−QΩ1

τ (ω2QΩ1
τ (u− uh)), ϕ)

= (ω2(u− uh), QΩ1
τ ϕ) + (u− uh, QΩ1

τ (ω2QΩ1
τ ϕ)− ω2QΩ1

τ ϕ)Ω1

+(ω2QΩ1
τ (u− uh)−QΩ1

τ (ω2QΩ1
τ (u− uh)), ϕ).

For the second term on the right-hand side of (5.8), using Lemma 5.2 we have

|(u− uh, QΩ1
τ (ω2QΩ1

τ ϕ)− ω2QΩ1
τ ϕ)Ω1 |(5.9)

≤ ‖u− uh‖L2(Ω1)‖ω2QΩ1
τ ϕ−QΩ1

τ (ω2QΩ1
τ ϕ)‖L2(Ω1)

≤ cτ‖u− uh‖L2(Ω1)‖QΩ1
τ ϕ‖L2(Ω6\Ω3).

Using Lemma 5.3, we obtain

‖QΩ1
τ ϕ‖L2(Ω6\Ω3) ≤ ‖ϕ‖L2(Ω6\Ω3) + ‖ϕ−QΩ1

τ ϕ‖L2(Ω6\Ω3)

≤ 0 + ‖ϕ‖L2(Ω7\Ω2) + CτM−1‖ϕ‖L2(Ω0)

≤ CτM−1‖ϕ‖L2(Ω0),

which, along with (5.9), gives

|(u− uh, QΩ1
τ (ω2QΩ1

τ ϕ)− ω2QΩ1
τ ϕ)Ω1 | ≤ cτM‖u− uh‖L2(Ω1)‖ϕ‖L2(Ω0).

For the third term on the right-hand side of (5.8), using Lemma 5.2 we have

|(ω2QΩ1
τ (u− uh)−QΩ1

τ (ω2QΩ1
τ (u− uh)), ϕ)|(5.10)

≤ ‖ω2QΩ1
τ (u− uh)−QΩ1

τ (ω2QΩ1
τ (u− uh))‖L2(Ω0)‖ϕ‖L2(Ω0)

≤ Cτ‖QΩ1
τ (u− uh)‖L2(Ω6)‖ϕ‖L2(Ω0).

Substituting (5.9) and (5.10) into (5.8), we obtain

‖QΩ1
τ (u− uh)‖L2(Ω0)(5.11)

≤ sup
ϕ∈C∞

0 (Ω0)

(ω(u− uh), ωQΩ1
τ ϕ)

‖ϕ‖L2(Ω0)

+CτM‖u− uh‖L2(Ω1) + Cτ‖QΩ1
τ (u− uh)‖L2(Ω6).
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It remains to estimate the first term on the right-hand side of (5.11). To this end, let
Φ ∈ H1(Ω7) be the solution of the following auxiliary problem:

AΩ7
(ψ,Φ) = (ωQΩ1

τ ϕ,ψ)Ω7
∀ v ∈ H1(Ω7).

Then, by (2.10), for any 0 ≤ k ≤ m,

‖Φ‖Hk+2(Ω7) ≤ C‖ωQΩ1
τ ϕ‖Hk(Ω7) ≤ C‖QΩ1

τ ϕ‖Hk(Ω5)(5.12)

and

‖Φ‖Hk+2(Ω5\Ω4) ≤ C
(‖QΩ1

τ ϕ‖Hk(Ω6\Ω3) + ‖QΩ1
τ ϕ‖L2(Ω1)

)
.(5.13)

Thus,

(ω(u− uh), ωQΩ1
τ ϕτ ) = AΩ1(ω(u− uh),Φ) = A(ω(u− uh),Φ)(5.14)

= A(u− uh, ωΦ) + Iω(u− uh,Φ),

where, for the Laplacian operator,

Iω(u, v) = (u∇ω,∇v)− (∇u, v∇ω).

By assumption A.1, there exists a χ ∈ Shr ∩ L2
<(Ω6) such that

‖ωΦ− χ‖H1(Ω6) ≤ Chi−1‖Φ‖Hi(Ω7), 1 ≤ i ≤ 1 + r.(5.15)

Thus, according to (2.4), (5.15), and (5.12), we have

A(u− uh, ωΦ) = A(u− uh, ωΦ− χ)(5.16)

≤ Ch1+min(m,r−1)‖u− uh‖H1(Ω6)‖Φ‖H2+min(m,r−1)(Ω7)

≤ Ch1+min(m,r−1)‖u− uh‖H1(Ω1)‖QΩ1
τ ϕ‖Hmin(m,r−1)(Ω5)

≤ Ch1+min(m,r−1)τ−min(m,r−1)‖u− uh‖H1(Ω1)‖QΩ1
τ ϕ‖L2(Ω6)

≤ Ch1+min(m,r−1)τ−min(m,r−1)‖u− uh‖H1(Ω1)‖ϕ‖L2(Ω0).

For the second term on the right-hand side of (5.14), we have for 0 ≤ q ≤ 1 +m

|Iω(u− uh,Φ)|(5.17)

≤ C‖u− uh‖H−q(Ω5)‖Φ‖Hq+1(Ω5\Ω4)

≤ C‖u− uh‖H−q(Ω1)

(‖QΩ1
τ ϕ‖Hq−1(Ω6\Ω3) + ‖QΩ1

τ ϕ‖L2(Ω1)

)
≤ C‖u− uh‖H−q(Ω1)

(‖ϕ‖Hq−1(Ω7\Ω2) + τM‖QΩ1
τ ϕ‖L2(Ω1)

+ ‖QΩ1
τ ϕ‖L2(Ω1)

)
≤ C‖u− uh‖H−q(Ω1)‖ϕ‖L2(Ω0).

Substituting (5.17) and (5.16) into (5.14), we have

sup
ϕ∈C∞

0 (Ω0)

(ω(u− uh), ωQΩ1
τ ϕ)

‖ϕ‖L2(Ω0)
≤ Ch1+min(m,r−1)τ−min(m,r−1)‖u− uh‖H1(Ω1)

+C‖u− uh‖H−q(Ω1),
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which, together with (5.11), implies

‖QΩ1
τ (u− uh)‖L2(Ω0)(5.18)

≤ Ch1+min(m,r−1)τ−min(m,r−1)‖u− uh‖H1(Ω1)

+CτM‖u− uh‖L2(Ω1) + ‖u− uh‖H−q(Ω1)

+Cτ‖QΩ1
τ (u− uh)‖L2(Ω6).

A repeated use of (5.18) leads to

‖QΩ1
τ (u− uh)‖L2(Ω0)(5.19)

≤ Ch1+min(m,r−1)τ−min(m,r−1)‖u− uh‖H1(Ω1)

+CτM‖u− uh‖L2(Ω1) + ‖u− uh‖H−q(Ω1)

+CτM‖QΩ1
τ (u− uh)‖L2(Ω7)

≤ Ch1+min(m,r−1)τ−min(m,r−1)‖u− uh‖H1(Ω1)

+CτM‖u− uh‖L2(Ω1) + ‖u− uh‖H−q(Ω1).

Choosing M > 0 sufficiently large so that

τM‖u− uh‖L2(Ω1) ≤ Ch1+min(m,r−1)τ−min(m,r−1)‖u− uh‖H1(Ω1)

completes the proof.

6. A local superconvergence in L∞. Our objective in this section is to derive
a local superconvergence estimate in the maximum norm. The result can be stated
as follows.

Theorem 6.1. Suppose u and uh satisfy (2.4) and the subdomains Ω0 ⊂ Ω1 ⊂ Ω
satisfy dist(Ω0, ∂Ω1\∂Ω) ≥ C1h for sufficiently large C1 > 1. If τ satisfies (3.1), then,
for any 0 ≤ q ≤ m+ 1 and i = 0, 1, we have

‖u−QΩ1
τ uh‖W i,∞(Ω0)(6.1)

≤ Ch
r+1+min(m,r−1)

1+θi

(‖u‖W 1+r,∞(Ω1) + ‖u‖W 1+s,∞(Ω1)

)
+C‖u− uh‖H−q(Ω1),

where θi is defined by (3.2).
Proof. Observe that from the triangle inequality we have

‖u−QΩ1
τ uh‖W i,∞(Ω0) ≤ ‖u−QΩ1

τ u‖W i,∞(Ω0) + ‖QΩ1
τ (u− uh)‖W i,∞(Ω0).(6.2)

The first term on the right-hand side of (6.2) can be estimated using an analogy of
Lemma 5.3 in the L∞ norm. The second term on the right-hand side of (6.2) can be
handled using Lemma 6.2, which will be established in the rest of this section. The
desired superconvergence is merely a combination of those results.

The remaining portion of this section is devoted to the establishment of a result
that has been used in the proof of Theorem 6.1.

Lemma 6.2. Suppose Ω0 ⊂ Ω1 ⊂ Ω with dist(Ω0, ∂Ω1\∂Ω) ≥ C1h for sufficiently
large C1 > 1; then, for 0 ≤ q ≤ m+ 1, there holds

‖QΩ1
τ (u− uh)‖L∞(Ω0)(6.3)

≤ Ch1+min(m,r−1)τ−min(m,r−1)‖u− uh‖W 1,∞(Ω1)

+C‖QΩ1
τ (u− uh)‖L2(Ω1) + C‖u− uh‖H−q(Ω1).
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Proof. Let z ∈ Ω̄0 be such that

|Qτ (u− uh)(z)| = max
x∈Ω0

|Qτ (u− uh)(x)|.

Let Ω0 ⊂ Ω2 ⊂ Ω3 ⊂ Ω4 ⊂ Ω5 ⊂ Ω6 ⊂ Ω7 ⊂ Ω1 satisfy

dist(Ω0, ∂Ω2\∂Ω) = dist(Ω2, ∂Ω3\∂Ω) = dist(Ω3, ∂Ω4\∂Ω) = dist(Ω4, ∂Ω5\∂Ω)
= dist(Ω5, ∂Ω6\∂Ω) = dist(Ω6, ∂Ω7\∂Ω) = dist(Ω7, ∂Ω1\∂Ω) = d/7

with sufficiently smooth ∂Ω7. Then, for ω ∈ C∞(Ω5) ∩ L2
<(Ω5) with ω ≡ 1 in Ω4,

QΩ1
τ (u− uh)(z)(6.4)

= (QΩ1
τ (u− uh), δτ,z) = (ωQΩ1

τ (u− uh), ωδτ,z)
= (ω2(u− uh), QΩ1

τ δτ,z) + (u− uh, QΩ1
τ (ω2QΩ1

τ δτ,z)− ω2QΩ1
τ δτ,z)

+ (ω2QΩ1
τ (u− uh)−QΩ1

τ (ω2QΩ1
τ (u− uh)), δτ,z).

By Lemma 5.2, we have

(u− uh, QΩ1
τ (ω2QΩ1

τ δτ,z)− ω2QΩ1
τ δτ,z)Ω1(6.5)

≤ ‖u− uh‖L2(Ω1)‖ω2QΩ1
τ δτ,z −QΩ1

τ (ω2QΩ1
τ δτ,z)‖L2(Ω1)

≤ Cτ‖u− uh‖L2(Ω1)‖QΩ1
τ δτ,z‖L2(Ω6\Ω3)

≤ CτM+1‖u− uh‖L2(Ω1)‖δτ,z‖L2(Ω1)

≤ CτM‖u− uh‖L2(Ω1)

and

(ω2QΩ1
τ (u− uh)−QΩ1

τ (ω2QΩ1
τ (u− uh)), δτ,z)(6.6)

≤ ‖ω2QΩ1
τ (u− uh)−QΩ1

τ (ω2QΩ1
τ (u− uh)‖L2(Ω1)‖δτ,z‖L2(Ω1)

≤ Cτ‖QΩ1
τ (u− uh)‖L2(Ω6)‖δτ,z‖L2(Ω1)

≤ C‖QΩ1
τ (u− uh)‖L2(Ω6).

It remains to estimate the first term on the right-hand side of (6.4). Let G ∈ H1(Ω7)
be the solution of

AΩ7(ψ,G) = (ωQ
Ω1
τ δτ,z, ψ) ∀ ψ ∈ H1(Ω7).

Then, similar to (5.14), we have

(ω(u− uh), ωQΩ1
τ δτ,z) = A(u− uh, ωG) + Iω(u− uh, G).(6.7)

Moreover, choosing χ ∈ Shr ∩ L2
<(Ω6) such that

‖ωG− χ‖W 1,1(Ω6) ≤ Chi−1‖G‖W i,1(Ω7), 1 ≤ i ≤ 1 + r,

we have

A(u− uh, ωG) = A(u− uh, ωG−Πh(ωG))(6.8)

≤ Ch1+min(m,r−1)‖u− uh‖W 1,∞(Ω6)‖G‖W 2+min(m,r−1),1(Ω7).
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To estimate ‖G‖W 2+min(m,r−1),1(Ω7), we use Lemma 4.4:

‖G‖W 2+min(m,r−1),1(Ω7) ≤ C| ln τ |1/2‖G‖
H

2+min(m,r−1)

σ2 (Ω7)
(6.9)

≤ C
(
‖QΩ1

τ δτ,z‖Hmin(m,r−1)

σ2 (Ω7)
+ ‖G‖H1+min(m,r−1)(Ω7)

)
≤ C

(
‖QΩ1

τ δτ,z‖Hmin(m,r−1)

σ2 (Ω7)
+ ‖QΩ1

τ δτ,z‖H−1+min(m,r−1)(Ω7)

)
.

For ‖QΩ1
τ δτ,z‖Hmin(m,r−1)

σ2 (Ω7)
, we have

‖QΩ1
τ δτ,z‖Hmin(m,r−1)

σ2 (Ω7)
(6.10)

≤ C‖δτ,z‖Hmin(m,r−1)

σ2 (Ω7)
+ C‖δτ,z −QΩ1

τ δτ,z‖Hmin(m,r−1)

σ2 (Ω7)

≤ Cτ−min(m,r−1) + Cτ2‖δτ,z‖H2+min(m,r−1)

σ2 (Ω1)

≤ Cτ−min(m,r−1).

For ‖QΩ1
τ δτ,z‖H−1+min(m,r−1)(Ω7), we have if min(m, r − 1) ≥ 1,

‖QΩ1
τ δτ,z‖H−1+min(m,r−1)(Ω1) ≤ Cτ1−min(m,r−1)‖QΩ1

τ δτ,z‖L2(Ω7)(6.11)

≤ Cτ−min(m,r−1),

and if min(m, r − 1) = 0,

‖QΩ1
τ δτ,z‖H−1(Ω7) ≤ C| ln τ |1/2.(6.12)

Therefore, we have

‖G‖W 2+min(m,r−1),1(Ω7) ≤ Cτ−min(m,r−1)| ln τ |r̄/2,

which, together with (6.8), implies

A(u− uh, ωG) ≤ Ch1+min(m,r−1)τ−min(m,r−1)| ln τ |r̄.(6.13)

Next, we estimate the second term Iω(u − uh, G) in (6.7). According to the formula
for Iω, we have for 0 ≤ q ≤ 1 +m

Iω(u− uh, G)(6.14)

≤ C‖u− uh‖H−q(Ω5)‖G‖Hq+1(Ω5\Ω3)

≤ C‖u− uh‖H−q(Ω1)

(‖QΩ1
τ δτ,z‖Hq−1(Ω4\Ω2) + ‖QΩ1

τ δτ,z‖L1(Ω1)

)
≤ C‖u− uh‖H−q(Ω1),

where we have employed Lemma 5.4 in the second inequality. Combining (6.13),
(6.14), and (6.7), we obtain

(ω(u− uh), ωQΩ1
τ δτ,z)(6.15)

≤ Ch1+min(m,r−1)τ−min(m,r−1)| lnh|r̄‖u− uh‖W 1,∞(Ω1)

+C‖u− uh‖H−q(Ω1).
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Therefore, (6.5), (6.6), and (6.15) conclude that

|QΩ1
τ (u− uh)(z)|(6.16)

≤ Ch1+min(m,r−1)τ−min(m,r−1)| lnh|r̄‖u− uh‖W 1,∞(Ω1)

+C‖u− uh‖H−q(Ω1) + C‖QΩ1
τ (u− uh)‖L2(Ω6)

+CτM‖u− uh‖L2(Ω1).

By choosing sufficiently large values of M , we can bound the last term by the first
term on the right-hand side of (6.16). This completes the proof.

7. Case discussions. According to the results derived in the previous sections,
the leading term of the global error u−Qτuh or the local error u−QΩ1

τ uh is of order

O
(
h(1+r+min(r−1,m,k))/(1+θ0)

)
.

Recall that the parameter m is the smoothness of the finite element projection space
Sτm,s, and k + 2 is the regularity of the second-order elliptic problem defined locally

on smooth subdomains. In practical applications, we have m > 1
2 and k ≥ 0. In view

of the optimal-order error estimate

u− uh = O
(
h1+r

)
,

we see that the projected finite element approximation has superconvergence if min(r−
1,m, k) > θ0(1+r) or, equivalently, if r < s and min(r−1,m, k) > 0. In other words, if
min(r−1,m, k) > 0 holds true, then any L2 projection of the finite element solution uh
in a higher (i.e., s > r) order finite element space Sτm,s will produce a superconvergent
new approximation.

For the gradient of the error, the leading term of the global or local errors are
bounded by

O
(
h(1+r+min(r−1,m,k))/(1+θ1)

)
.

Since the optimal-order of error estimate for the gradient is O(hr), we then obtain a
superconvergence if min(r − 1,m, k) > θ1r − 1. Equivalently speaking, the global or
local L2 projections produce superconvergent approximations if min(r−1,m, k) > −1
and r < s.

Notice that the error u − uh in negative norms can be shown to be of higher
order than O(h1+r) for k > 0 and of higher order than O(hr) for k > −1. Thus, the
following conclusions can be made without any proof:

1. u−Qτuh and its local analogy u−QΩ1
τ uh are superconvergent if s > r ≥ 2,

m > 0, and k > 0.
2. ∇(u − Qτuh) and its local analogy ∇(u − QΩ1

τ uh) are superconvergent if
s > r ≥ 1, m > −1, and k > −1.

A more detailed illustration on the exact order of superconvergence corresponding
to different indices of r, s, m can be found in Wang [30].
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Abstract. We present new third- and fifth-order Godunov-type central schemes for approxi-
mating solutions of the Hamilton–Jacobi (HJ) equation in an arbitrary number of space dimensions.
These are the first central schemes for approximating solutions of the HJ equations with an or-
der of accuracy that is greater than two. In two space dimensions we present two versions for the
third-order scheme: one scheme that is based on a genuinely two-dimensional central weighted ENO
reconstruction, and another scheme that is based on a simpler dimension-by-dimension reconstruc-
tion. The simpler dimension-by-dimension variant is then extended to a multidimensional fifth-order
scheme. Our numerical examples in one, two, and three space dimensions verify the expected order
of accuracy of the schemes.

Key words. Hamilton–Jacobi equations, central schemes, high order, WENO, CWENO

AMS subject classifications. Primary, 65M06; Secondary, 35L99

DOI. 10.1137/S0036142902408404

1. Introduction. We are interested in high-order numerical approximations for
the solution of multidimensional Hamilton–Jacobi (HJ) equations of the form

φt + H(∇φ) = 0, �x = (x1, . . . , xd) ∈ R
d,

where H is the Hamiltonian, which we assume depends on ∇φ and possibly on x and
t. In recent years, the HJ equations have attracted a lot of attention from analysts and
numerical analysts due to the important role that they play in applications such as
optimal control theory, image processing, geometric optics, differential games, calculus
of variations, etc. The main difficulty in treating these equations arises from the
discontinuous derivatives that develop in finite time even when the initial data is
smooth. Vanishing viscosity solutions provide a good tool for defining weak solutions
when the Hamiltonian is convex [15]. The celebrated viscosity solution provides a
suitable extension of weak solutions for more general Hamiltonians [3, 7, 8, 9, 10, 28,
29].

Given the importance of the HJ equations, there has been relatively little activity
in developing numerical tools for approximating their solutions. This is surprising,
given that most of the numerical ideas are based on the similarity between hyperbolic
conservation laws and the HJ equations, and that the field of numerical methods for
conservation laws has been flourishing in recent years.

Converging first-order approximations were introduced by Souganidis in [38].
High-order upwind methods were introduced by Osher and Sethian [34] and Osher
and Shu [35]. These methods are based on Harten’s essentially nonoscillatory (ENO)
reconstruction [13, 37], which is evolved in time with a monotone flux. The weighted
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ENO (WENO) interpolant of [18, 32, 36] was used for constructing high-order upwind
methods for the HJ equations in [17], and extensions of these methods for triangular
meshes were introduced in [1, 40]. We note in passing that there are other approaches
for approximating solutions of HJ equations such as discontinuous Galerkin methods
[14, 24] and relaxation schemes [20].

A different class of Godunov-type schemes for hyperbolic conservation laws, the
so-called central schemes, has recently been applied to the HJ equations. The proto-
type for these schemes is the Lax–Friedrichs scheme [11]. A second-order staggered
central scheme was developed for conservation laws by Nessyahu and Tadmor in [33].
The main advantage of central schemes is their simplicity. Since they do not require
any (approximate) Riemann solvers, they are particularly suitable for approximating
multidimensional systems of conservation laws. Lin and Tadmor applied these ideas
to the HJ equations in [31]. There, first- and second-order staggered schemes versions
of [2, 19, 33] were written in one and two space dimensions. An L1 convergence of
order one for this scheme was proved in [30]. After the introduction of a semidiscrete
central scheme for hyperbolic conservation laws in [23], a second-order semidiscrete
scheme for HJ equations was introduced by the same authors in [22]. While less
dissipative, this scheme requires the estimation of the local speed of propagation at
every grid-point, a task that is computationally intensive, particularly with problems
of high dimensionality. By considering more precise information about the local speed
of propagation, an even less dissipative scheme was generated in [21].

Recently we introduced in [5] new and efficient central schemes for multidimen-
sional HJ equations. These nonoscillatory, nonstaggered schemes were first- and
second-order accurate and were designed to scale well with an increasing dimension.
Efficiency was obtained by carefully choosing the location of the evolution points
and by using a one-dimensional projection step. Avoiding staggering by adding an
additional projection step is an idea which we already utilized in the framework of
conservation laws [16].

In this work we introduce third- and fifth-order accurate schemes for approximat-
ing solutions of multidimensional HJ equations. These are the first central schemes
for such equations of order greater than two. This work is the HJ analogue to the
corresponding works in conservation laws: an ENO-based central scheme [4] and the
central WENO (CWENO) central schemes [25, 26, 27]. We announced a preliminary
version of the one-dimensional results in a recent proceedings publication [6].

The structure of this paper is as follows. We start in section 2 with the deriva-
tion of our one-dimensional schemes. A third-order WENO reconstruction scheme
is presented in section 2.2. This scheme requires a fourth-order reconstruction of
the point-values and a third-order reconstruction of the derivatives at the evolution
points. Even though the optimal location of the evolution points in one dimension is
in the center of the interval, in order to prepare the grounds for the multidimensional
schemes we write a reconstruction for an arbitrary location of the evolution points.
A fifth-order method is then presented in section 2.3.

We turn to the multidimensional framework in section 3. Here there is flexibility
in the reconstruction step. For simplicity we carry out most of the discussion in two
space dimensions. Extensions to more than two space dimensions are presented in
section 3.4. First, we provide a brief outline of the general structure of two-dimensional
central schemes in section 3.1. The main remaining ingredient, the reconstruction
step, is then described in the following two sections. For a two-dimensional third-
order scheme we present in section 3.2 two ways to obtain a high-order reconstruction
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of the approximate solution at the evolution points. The first option in section 3.2.1
is based on a genuinely two-dimensional reconstruction. An alternative dimension-
by-dimension approach is based on a sequence of one-dimensional reconstructions
and is presented in section 3.2.2. Our numerical results show that both approaches
are essentially equivalent. Hence, the rest of the paper deals with the dimension-by-
dimension reconstruction. A fifth-order dimension-by-dimension extension of the one-
dimensional scheme in section 2.3 to two dimensions is then presented in section 3.3.
Since the solution at the next time step is computed at grid-points that are different
from those on which the data is given, we reproject the evolved solution back onto the
original grid-points. Different ways to approach this reprojection step are discussed
in section 3.2.3.

We conclude in section 4 with several numerical examples in one, two, and three
space dimensions that confirm the expected order of accuracy and the high-resolution
nature of our scheme. We compare our results with the scheme of Jiang and Peng
[17]. We also study the convergence rate after the emergence of the discontinuities in
the solution.

2. One-dimensional schemes.

2.1. One-dimensional central schemes. Consider the one-dimensional
HJ equation of the form

φt(x, t) + H (φx) = 0, x ∈ R.(2.1)

We are interested in approximating solutions of (2.1) subject to the initial data φ(x, t=
0) = φ0(x). For simplicity we assume a uniform grid in space and time with mesh
spacings ∆x and ∆t, respectively. Denote the grid-points by xi = i∆x, tn = n∆t, and
the fixed mesh ratio by λ = ∆t/∆x. Let ϕni denote the approximate value of φ (xi, t

n),
and (ϕx)

n
i denote the approximate value of the derivative φx (xi, t

n). We define the
forward and backward differencing as ∆+ϕni := ϕni+1 − ϕni and ∆−ϕni := ϕni − ϕni−1.

Assume that the approximate solution at time tn, ϕni is given. A Godunov-type
scheme for approximating the solution of (2.1) starts with a continuous piecewise-
polynomial ϕ̃(x, tn) that is reconstructed from the data ϕni :

ϕ̃(x, tn) =
∑
i

Pi+ 1
2
(x, tn)χi+ 1

2
(x).(2.2)

Here, χi+1/2(x) is the characteristic function of the interval [xi, xi+1], and Pi+1/2(x, tn)
is a polynomial of a suitable degree that satisfies the interpolation requirements

Pi+ 1
2
(xi+β , t

n) = ϕni+β , β = 0, 1.

The reconstruction (2.2) is then evolved from time tn to time tn+1 according to (2.1)
and is sampled at the half-integer grid-points {xi+1/2}, where the reconstruction is
smooth (as long as the CFL condition λ |H ′ (ϕx)| ≤ 1/2 is satisfied):

ϕn+1
i+ 1

2

= ϕni+ 1
2
−
∫ tn+1

tn
H
(
ϕ̃x

(
xi+ 1

2
, τ
))

dτ.(2.3)

The point-value ϕni+1/2 is obtained by sampling (2.2) at xi+1/2; i.e., ϕni+1/2 = ϕ̃(xi+1/2, t
n).

Since the evolution step (2.3) is done at points where the solution is smooth, we can
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approximate the time integral on the right-hand side (RHS) of (2.3) using a suffi-
ciently accurate quadrature rule. For example, for a third- and fourth-order method,
this integral can be replaced by a Simpson’s quadrature,∫ tn+1

tn
H
(
ϕ̃x

(
xi+ 1

2
, τ
))

dτ ≈ ∆t

6

[
H
(
ϕ′ ni+ 1

2

)
+ 4H

(
ϕ
′ n+ 1

2

i+ 1
2

)
+ H

(
ϕ′ n+1
i+ 1

2

)]
.(2.4)

The derivative at time tn, ϕ′ ni+1/2, is obtained by sampling the derivative of the recon-

struction (2.2), i.e., ϕ′ ni+1/2 = ϕ̃′(xi+1/2, t
n). The intermediate values of the derivative

in time, ϕ
′ n+1/2
i+1/2 and ϕ′ n+1

i+1/2, which are required in the quadrature (2.4), can be pre-

dicted using a Taylor expansion or with a Runge–Kutta (RK) method. Alternatively,
(2.1) can be treated as a semidiscrete equation by replacing the spatial derivatives
with their numerical approximations and integrating in time via an RK method.

The only remaining ingredient to specify is the reconstruction (2.2). Below we
present two reconstructions. The first is a fourth-order reconstruction of the point-
values and the derivatives, which leads to a third-order scheme, and the second is a
sixth-order reconstruction that results in a fifth-order scheme.

Remarks.

1. In order to return to the original grid, we project ϕn+1
i+1/2 back onto the integer

grid-points {xi} to end up with ϕn+1
i . This projection is accomplished with the same

reconstruction used to approximate ϕni+1/2 from ϕni .

2. In order to maximize the size of the time step, the evolution points should
be taken as far as possible from the singularities in the reconstructed piecewise poly-
nomial. In one dimension the appropriate evolution point is located at xi+1/2. In d
dimensions with a uniform grid with spacing ∆x, the optimal evolution points are
located at xi+α = xi + α∆x in each direction, where α = 1/(d +

√
d) (see [5]). One

of the multidimensional schemes we present in section 3 is based on one-dimensional
reconstructions. Hence, in order to prepare the grounds for the multidimensional
setup, we write the one-dimensional reconstruction in this section, assuming that the
evolution points are xi±α. The reader should keep in mind that in one dimension,
α = 1/2.

3. We would like to point out that one does not need to fully reconstruct the
polynomials Pi+1/2(x, tn). The only values that the scheme requires are the ap-
proximated point-values ϕni+1/2 = ϕ̃(xi+1/2, t

n) and the approximated derivatives

ϕ′i+1/2 = ϕ̃′(xi+1/2). Hence, in the rest of the paper whenever we refer to reconstruc-
tion steps we directly treat the recovery of these two quantities.

2.2. A third-order scheme. A third-order scheme is generated by combining
a third-order accurate ODE solver in time, for predicting the intermediate values of
the derivatives in (2.4), with a sufficiently high-order reconstruction in space.

Given ϕni , in order to invoke (2.3), we should compute two quantities in every
time step: the point-values at the evolution points, ϕi±α, and the derivatives ϕ′i±α. In
order to obtain a third-order scheme, the approximations of the point-values should be
fourth-order accurate, and the approximation of the derivatives should be third-order
accurate. In this scheme, the reconstruction of the point-values is done in locations
that are staggered with respect to the location of the data. The reconstruction of the
derivatives, which is required in every step of the ODE solver, is done at the same
points where the data is given. Since we need two types of reconstructions and due to
symmetry considerations, we derive a fourth-order approximation of the derivatives.



HIGH-ORDER SCHEMES FOR HJ EQUATIONS 1343

xi xi+α xi+1xi-1 xi+2

+,i+αϕ

-,i+αϕ

Fig. 2.1. The two interpolants used for the third-order reconstruction at the evolution point at
xi+α.

Obviously, this more accurate reconstruction of the derivatives does not increase the
order of accuracy of the scheme, but it does reduce the error.

2.2.1. The reconstruction of ϕi±α from ϕi. A fourth-order reconstruction
of ϕi+α can be obtained by considering a convex combination of two quadratic poly-
nomials, each of which requires the evaluation of ϕ on a three-point stencil. One
quadratic polynomial ϕ−(x) is constructed on a stencil that is left-biased with re-
spect to xi+α, {xi−1, xi, xi+1}, while the other polynomial ϕ+(x) is constructed on a
right-biased stencil, {xi, xi+1, xi+2}; see Figure 2.1. We set

ϕ−,i+α =

(−α + α2

2

)
ϕi−1 +

(
1− α2

)
ϕi +

(
α + α2

2

)
ϕi+1,(2.5)

ϕ+,i+α =

(
2− 3α + α2

2

)
ϕi +

(
2α− α2

)
ϕi+1 +

(−α + α2

2

)
ϕi+2.

For smooth ϕ, a straightforward computation shows that ϕ±,i+α = ϕ (xi+α)+O(∆x3)
and

1

3
(2− α)ϕ−,i+α +

1

3
(1 + α)ϕ+,i+α = ϕ (xi+α) + O

(
∆x4

)
.

Similarly, the reconstruction of ϕi−α is obtained using the quadratic polynomials
ϕ−(x) based on the left-biased stencil enclosing xi−α, {xi−2, xi−1, xi}, and ϕ+(x)
based on the right-biased stencil {xi−1, xi, xi+1}:

ϕ−,i−α =

(−α + α2

2

)
ϕi−2 +

(
2α− α2

)
ϕi−1 +

(
2− 3α + α2

2

)
ϕi,(2.6)

ϕ+,i−α =

(
α + α2

2

)
ϕi−1 +

(
1− α2

)
ϕi +

(−α + α2

2

)
ϕi+1.

This time, ϕ±,i−α = ϕ (xi−α) + O(∆x3) and

1

3
(1 + α)ϕ−,i−α +

1

3
(2− α)ϕ+,i−α = ϕ (xi−α) + O

(
∆x4

)
.

A fourth-order WENO estimate of ϕi±α is therefore given by the convex combination

ϕi±α = w−i±αϕ−,i±α + w+
i±αϕ+,i±α,(2.7)
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where the weights satisfy w−i±α + w+
i±α = 1, w±i±α ≥ 0, ∀i. In smooth regions we

would like to satisfy w−i+α = w+
i−α ≈ (2− α) /3 and w+

i+α = w−i−α ≈ (1 + α) /3 to
attain an O(∆x4) error. When the stencil supporting ϕi±α contains a discontinuity,
the weight of the more oscillatory polynomial should vanish. Following [18, 32], these
requirements are met by setting

wki±α =
αki±α∑
l α

l
i±α

, αki±α =
cki±α(

ε + Ski±α
)p ,(2.8)

where k, l ∈ {+,−}. The constants are independent of the grid index i and are
given by c−i+α = c+i−α = (2− α) /3, c+i+α = c−i−α = (1 + α) /3. We choose ε as 10−6

to prevent the denominator in (2.8) from vanishing, and set p = 2 (see [18]). The
smoothness measures S±i should be large when ϕ is nearly singular. Following [18],
we take Si±α to be the sum of the squares of the L2-norms of the derivatives on the
stencil supporting ϕ±. If we approximate the first derivative at xi by ∆+ϕi/∆x, the
second derivative by ∆+∆−ϕi/(∆x)2, and define the smoothness measure

Si [r, s] = ∆x

s∑
j=r

(
1

∆x
∆+ϕi+j

)2

+ ∆x

s∑
j=r+1

(
1

∆x2
∆+∆−ϕi+j

)2

,(2.9)

then we have S−i+α = Si [−1, 0], S+
i+α = Si [0, 1], S−i−α = Si [−2,−1], and S+

i−α =
Si [−1, 0].

For future reference we label the reconstruction in this section with the procedural
form

ϕi±α = reconstruct ϕ 1D 3 (i,±α,ϕ) ,(2.10)

where ϕ is the one-dimensional array (ϕ1, . . . , ϕN ). This notation will be used in the
dimension-by-dimension reconstructions in section 3.

2.2.2. The reconstruction of ϕ′
i±α from ϕi±α. The values of ϕ that we

recovered in the previous step at the regularly spaced locations {xi±α} can be used
to recover the derivative ϕ′i±α via a (noncentral) WENO reconstruction. To obtain
a fourth-order WENO approximation of ϕ′i±α, we write a convex combination of
three quadratic interpolants: ϕ′−,i±α on the stencil {xi−2±α, xi−1±α, xi±α}, ϕ′0,i±α on
{xi−1±α, xi±α, xi+1±α}, and ϕ′+,i±α on {xi±α, xi+1±α, xi+2±α}. For smooth ϕ,

ϕ′−,i±α =
1

2∆x
(ϕi−2±α − 4ϕi−1±α + 3ϕi±α) = ϕ′ (xi±α) + O

(
∆x2

)
,

ϕ′0,i±α =
1

2∆x
(ϕi+1±α − ϕi−1±α) = ϕ′ (xi±α) + O

(
∆x2

)
,(2.11)

ϕ′+,i±α =
1

2∆x
(−3ϕi±α + 4ϕi+1±α − ϕi+2±α) = ϕ′ (xi±α) + O

(
∆x2

)
.

A straightforward computation yields

1

6
ϕ′−,i±α +

2

3
ϕ′0,i±α +

1

6
ϕ′+,i±α = ϕ′ (xi±α) + O

(
∆x4

)
.

The fourth-order WENO estimate of ϕ′i±α from ϕi±α is therefore

ϕ′i±α = w−i±αϕ
′
−,i±α + w0

i±αϕ
′
0,i±α + w+

i±αϕ
′
+,i±α,(2.12)
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where the weights w are of the form (2.8), with k, l ∈ {+, 0,−}, c− = c+ = 1/6, c0 =
2/3, and the oscillatory indicators are S−i±α = Si±α [−2,−1], S0

i±α = Si±α [−1, 0], and

S+
i±α = Si±α [0, 1].

For future reference we label the above reconstruction of ϕ′i±α with the procedural
form

ϕ′i±α = reconstruct ϕ′ 1D 3 (i,±α,ϕ±α) ,(2.13)

where ϕ±α is the one-dimensional array (ϕ1±α, . . . , ϕN±α).
We would like to summarize the one-dimensional third-order algorithm in the

following, where RK(ϕni±α, ϕ
′ n
i±α,∆t) is the third-order Runge–Kutta method that

integrates (2.1) and is used to predict the intermediate values of the derivatives. Each
internal step of the RK method will require additional reconstructions of ϕ′i±α from
that step’s ϕi±α.

Algorithm 2.1. Assume that {ϕni } are given.
(a) Reconstruct:

ϕni±α = reconstruct ϕ 1D 3 (i,±α,ϕn) ,

ϕ′ ni±α = reconstruct ϕ′ 1D 3(i,±α,ϕni±α).

(b) Integrate:

ϕ
n+ 1

2
i±α = RK

(
ϕni±α, ϕ

′ n
i±α,∆t/2

)
,

ϕ
′ n+ 1

2
i±α = reconstruct ϕ′ 1D 3(i,±α,ϕn+ 1

2
i±α ),

ϕn+1
i±α = RK

(
ϕni±α, ϕ

′ n
i±α,∆t

)
,

ϕ′ n+1
i±α = reconstruct ϕ′ 1D 3

(
i,±α,ϕn+1

i±α
)
,

ϕn+1
i±α = ϕni±α +

∆t

6

[
H
(
ϕ′ ni±α

)
+ 4H(ϕ

′ n+ 1
2

i±α ) + H
(
ϕ′ n+1
i±α

)]
.

(c) Reproject:

ϕn+1
i = reconstruct ϕ 1D 3

(
i,∓α,ϕn+1

i±α
)
.

Remark. It is possible to replace the Simpson’s quadrature in the integration step
with a single RK time step, ϕn+1

i±α = RK(ϕni±α, ϕ
′ n
i±α,∆t). Our simulations show that

this choice reduces the complexity of the computation but also reduces its accuracy.

2.3. A fifth-order scheme. In order to obtain a fifth-order scheme, we need
a sixth-order approximation of the point-values of ϕ, a fifth-order approximation
of the derivative ϕ′, and a higher-order prediction of the intermediate derivatives
which appear in the quadrature formula. Due to arguments similar to those given in
section 2.2, we again derive a more accurate reconstruction of the derivatives, which
in this case is sixth-order.

We start with the reconstruction of ϕi+α from ϕi. We write sixth-order inter-
polants as a convex combination of three cubic interpolants, each of which requires
the evaluation of ϕ on a four-point stencil. We use the polynomials ϕ−(x) defined
on the left-biased stencil {xi−2, xi−1, xi, xi+1}, ϕ0(x) defined on the centered stencil
{xi−1, xi, xi+1, xi+2}, and ϕ+(x) defined on the right-biased stencil {xi, xi+1, xi+2, xi+3};
see Figure 2.2. For smooth ϕ,

ϕ−,i+α = a1ϕi−2 + a2ϕi−1 + a3ϕi + a4ϕi+1 = ϕ (xi+α) + O
(
∆x4

)
,(2.14)

ϕ0,i+α = a5ϕi−1 + a6ϕi + a7ϕi+1 + a8ϕi+2 = ϕ (xi+α) + O
(
∆x4

)
,

ϕ+,i+α = a9ϕi + a10ϕi+1 + a11ϕi+2 + a12ϕi+3 = ϕ (xi+α) + O
(
∆x4

)
,
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xi xi+α xi+1xi-1 xi+2

0ϕ

xi+3xi-2

-ϕ

+ϕ

Fig. 2.2. The three interpolants used for the fifth-order reconstruction ϕi+α at the evolution
point at xi+α. In this example, because of the large gradient between xi+1 and xi+2, the interpolant
ϕ− will have the strongest contribution to the CWENO reconstruction at xi+α.

where the constants are given by

a1 =
1

6
α− 1

6
α3, a2 = −α +

1

2
α2 +

1

2
α3,

a3 = 1 +
1

2
α− α2 − 1

2
α3, a4 =

1

3
α +

1

2
α2 +

1

6
α3,

a5 = −1

3
α +

1

2
α2 − 1

6
α3, a6 = 1− 1

2
α− α2 +

1

2
α3,

a7 = α +
1

2
α2 − 1

2
α3, a8 = −1

6
α +

1

6
α3 = −a1,

a9 = 1− 11

6
α + α2 − 1

6
α3, a10 = 3α− 5

2
α2 +

1

2
α3,

a11 = −3

2
α + 2α2 − 1

2
α3, a12 =

1

3
α− 1

2
α2 +

1

6
α3.

At xi−α we have

ϕ−,i−α = a12ϕi−3 + a11ϕi−2 + a10ϕi−1 + a9ϕi = ϕ (xi−α) + O
(
∆x4

)
,(2.15)

ϕ0,i−α = a8ϕi−2 + a7ϕi−1 + a6ϕi + a5ϕi+1 = ϕ (xi−α) + O
(
∆x4

)
,

ϕ+,i−α = a4ϕi−1 + a3ϕi + a2ϕi+1 + a1ϕi+2 = ϕ (xi−α) + O
(
∆x4

)
.

A straightforward computation yields

c−i±αϕ−,i±α + c0i±αϕ0,i±α + c+i±αϕ+,i±α = ϕ (xi±α) + O
(
∆x6

)
,

where

c−i+α = c+i−α =
1

20
α2 − 1

4
α +

3

10
,(2.16)

c0i±α = − 1

10
α2 +

1

10
α +

3

5
,

c+i+α = c−i−α =
1

20
α2 +

3

20
α +

1

10
.

A sixth-order reconstruction of ϕi±α is therefore given by

ϕi±α = w−i±αϕ−,i±α + w0
i±αϕ0,i±α + w+

i±αϕ+,i±α,(2.17)
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where the weights wk are given by (2.8) with k, l ∈ {+, 0,−}, and the constants ck

are given by (2.16). The oscillatory indicators are given via (2.9) by S−i±α = Si [−2, 0],

S0
i±α = Si [−1, 1], and S+

i±α = Si [0, 2].

A sixth-order approximation of ϕ′i±α from ϕi±α is written as a convex combination
of four cubic interpolants. This reconstruction is similar to the third-order case and
is based on a noncentral WENO reconstruction. We skip the details and summarize
the result:

ϕ′i±α = w1
i±αϕ

′
1,i±α + w2

i±αϕ
′
2,i±α + w3

i±αϕ
′
3,i±α + w4

i±αϕ
′
4,i±α,(2.18)

where

ϕ′1,i±α =
1

6∆x
(−2ϕi−3±α + 9ϕi−2±α − 18ϕi−1±α + 11ϕi±α),

ϕ′2,i±α =
1

6∆x
(ϕi−2±α − 6ϕi−1±α + 3ϕi±α + 2ϕi+1±α),

ϕ′3,i±α =
1

6∆x
(−2ϕi−1±α − 3ϕi±α + 6ϕi+1±α − ϕi+2±α),

ϕ′4,i±α =
1

6∆x
(−11ϕi±α + 18ϕi+1±α − 9ϕi+2±α + 2ϕi+3±α).

Here the weights wk are given by (2.8) with c1 = c4 = 1/20, c2 = c3 = 9/20, S1
i±α =

Si±α [−3,−1], S2
i±α = Si±α [−2, 0], S3

i±α = Si±α [−1, 1], and S4
i±α = Si±α [0, 2].

Notation.

1. We label the reconstruction of the point-values, (2.17), as

ϕi±α = reconstruct ϕ 1D 5 (i,±α,ϕ) ,(2.19)

where ϕ is the one-dimensional array (ϕ1, . . . , ϕN ).

2. We label the reconstruction of ϕ′i±α, (2.18), as

ϕ′i±α = reconstruct ϕ′ 1D 5 (i,±α,ϕ±α) ,(2.20)

where ϕ±α is the one-dimensional array (ϕ1±α, . . . , ϕN±α).

Remarks.

1. To conclude, the fifth-order method is given by Algorithm 2.1, where the
fourth-order reconstructions are replaced by the sixth-order reconstructions (2.19)–
(2.20). As is, this scheme is only fourth-order in time. A higher-order method in
time can be easily obtained by replacing Simpson’s quadrature with a more accurate
quadrature and computing the sixth-order approximations for the point-values and
the derivatives at the new quadrature points.

2. We choose to predict the intermediate values of the derivatives in time using
the fourth-order strong stability preserving (SSP) RK scheme of [12]. For s ∈ { 1

2 , 1
}

,
the SSP-RK scheme is given by

ϕ(1) = ϕn − 1

2
s∆tH (ϕnx) ,

ϕ(2) =
649

1600
ϕn +

10890423

25193600
s∆tH (ϕnx) +

951

1600
ϕ(1) − 5000

7873
s∆tH(ϕ(1)

x ),
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ϕ(3) =
53989

2500000
ϕn +

102261

5000000
s∆tH (ϕnx) +

4806213

20000000
ϕ(1)

+
5121

20000
s∆tH(ϕ(1)

x ) +
23619

32000
ϕ(2) +

7873

10000
s∆tH(ϕ(2)

x ),

ϕn+s =
1

5
ϕn − 1

10
s∆tH (ϕnx) +

6127

30000
ϕ(1) +

1

6
s∆tH(ϕ(1)

x ) +
7873

30000
ϕ(2)

+
1

3
ϕ(3) − 1

6
s∆tH(ϕ(3)

x ).

Alternatively, the natural continuous extension of the RK method [39] can be

used to produce the intermediate values ϕ′ n+ 1
2 and ϕ′ n+1 with a single RK step,

though we observe that errors are somewhat larger in this case.

3. Multidimensional schemes.

3.1. Two-dimensional central schemes. Consider the two-dimensional HJ
equation of the form

φt + H(∇φ) = 0, �x = (x1, x2) ∈ R
2,(3.1)

subject to the initial data φ(�x, t = 0) = φ0(�x). Define xi,j := (x1 + i∆x1, x2 + j∆x2).
Similarly to the one-dimensional setup, ϕi,j will denote the approximation of φ at
xi,j . We define the two sets of grid-points, I+ = {xi,j , xi+1,j , xi,j+1} and I− =
{xi,j , xi−1,j , xi,j−1}, and denote by T+, T− the triangles with vertices I+ and I−,
respectively. For simplicity we assume a uniform grid ∆x1 = ∆x2 = ∆x.

Assume that the approximate solution at time tn, ϕni,j , is given. Similarly to
the one-dimensional setup in section 2.1, a Godunov-type scheme for approximating
the solution of (3.1) starts with a continuous piecewise polynomial ϕ̃(�x, tn) that is
reconstructed from the data ϕni,j ,

ϕ̃(�x, tn) =
∑
i,j

P
T±
i,j (�x, tn)χT±(�x).(3.2)

As usual, χT±(�x) is the characteristic function of the triangle T±, and P
T±
i,j (�x, tn) is a

polynomial of a suitable degree that satisfies the interpolation requirements

P
T±
i,j (�xl, t

n) = ϕ(�xl, t
n), �xl ∈ I±

(see Figure 3.1). The reconstruction (3.2) is then evolved from time tn to time tn+1 by
(3.1) and sampled at the evolution points {xi±α,j±α}. In two dimensions the choice
α = 1/(2 +

√
2) guarantees that the solution remains smooth at the evolution point

as long as the CFL condition ∆t
∆x |H ′ (∇ϕ)| < α is satisfied. The evolved solution now

reads

ϕn+1
i±α,j±α = ϕni±α,j±α −

∫ tn+1

tn
H (∇ϕ̃ (xi±α,j±α, τ)) dτ.(3.3)

The point-values ϕni±α,j±α are obtained by sampling (3.2) at xi±α,j±α, i.e., ϕni±α,j±α =
ϕ̃(xi±α,j±α, tn). As in the one-dimensional case, the evolution points are in smooth re-
gions, and therefore the integral on the RHS of (3.3) can be replaced with a sufficiently
accurate quadrature such as the Simpson rule (2.4), which leads to a scheme that is
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xi-α,j-α

xi+α,j+α

+T

xi,j

ii-1 i+1

j+1

j

j-1
-T

Fig. 3.1. The location of the evolution points xi±α,j±α and the domain of definition of the
interpolants ϕi±α,j±α in two dimensions.

fourth-order accurate in time. The derivatives at time tn, ϕ′ ni±α,j±α, are obtained by
sampling the derivative of the reconstruction (3.2), i.e., ϕ′ ni±α,j±α = ϕ̃′(xi±α,j±α, tn).
The other intermediate values of the derivative in time that are required in the quadra-
ture can be predicted using a Taylor expansion or with a RK method in a way anal-
ogous to that for the one-dimensional case.

Remarks.
1. We present two different algorithms for constructing ϕi±α,j±α: two-dimensional

interpolants defined on two-dimensional stencils and a dimension-by-dimension ap-
proach. We present both algorithms for the third-order scheme and extend the sim-
pler dimension-by-dimension approach to fifth-order. Our numerical simulations in
section 4 indicate that both reconstructions of ϕi±α,j±α are of a comparable qual-
ity. In both approaches, the reconstruction of the derivatives ∇ϕi±α,j±α is done
dimension-by-dimension.

2. We reproject ϕn+1
i+α,j+α and ϕn+1

i−α,j−α back onto the integer grid-points, obtain-

ing ϕn+1
i,j . We present several ways to carry out this reprojection: a genuinely two-

dimensional approach, a dimension-by-dimension strategy, and a reprojection along
the diagonal line through xi−α,j−α and xi+α,j+α.

3.2. Two-dimensional third-order schemes. In order to obtain a third-order
scheme, we need a fourth-order reconstruction of the point-values at the evolution
points xi±α,j±α.

3.2.1. A two-dimensional reconstruction of ϕi±α,j±α. In this section we
present a two-dimensional fourth-order reconstruction of the point-values ϕi±α,j±α.
In principle, a two-dimensional cubic interpolant would provide a reconstruction with
the desired accuracy. Such an interpolant is based on a ten-point stencil. As usual,
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j

j+2

j+1

j-1

i-1 i+2i+1i

Fig. 3.2. The ten-point stencil for the two-dimensional reconstruction of ϕi+α,j+α. The open
circle shows the location of the evolution point at xi+α,j+α.

solving such a direct interpolation problem is unsatisfactory because spurious oscilla-
tions might develop as a result of the lack of smoothness in the solution. Instead, we
generate a two-dimensional fourth-order reconstruction as a convex combination of
four quadratic interpolants, each of which is based on a six-point stencil. We choose
compact quadratic interpolants such that the union of all the six-point stencils is a
compact ten-point stencil. Similarly to any WENO-type reconstruction, when singu-
larities are present the six-point stencils containing the singularities are suppressed.
In any case, we implicitly assume that the solution is sufficiently resolved such that
the singularities in the solution are isolated in the sense that they do not occur along
neighboring parallel cell edges. Singularities will in general occur along adjacent cell
edges. There is a lot of flexibility in choosing the ten-point stencil as well as the differ-
ent six-point stencils. Here, for the evolution point xi+α,j+α we choose the ten-point
stencil shown in Figure 3.2. We also choose to use the four six-point stencils that are
shown in Figure 3.3; obviously, the union of these stencils is the ten-point stencil in
Figure 3.2. Furthermore, they all enclose the cell containing the evolution point, and
they all cross different edges of the enclosing cell. A singularity along an edge will
suppress two of these stencils, while a singularity in a corner will suppress three of
these stencils.

Remarks.
1. The stencils for the evolution point at xi−α,j−α are obtained by a rotation of

180 degrees of the stencils in Figures 3.2–3.3.
2. We could use fewer than four stencils and still generate a scheme that will have

the desired order of accuracy.
Given the four six-point stencils in Figure 3.3, a straightforward computation

shows that third-order approximations for smooth ϕ at the evolution points xi±α,j±α,
ϕki±α,j±α = ϕ (xi±α, yj±α) + O(∆x3,∆y3) ∀k ∈ {1, 2, 3, 4} are obtained with

ϕ1
i±α,j±α = a1ϕi,j + a2ϕi±1,j + a2ϕi,j±1 + a3ϕi±1,j±1 + a4ϕi±2,j + a4ϕi,j±2,(3.4)
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1 2

3 4

j

j+2

j+1

j-1

i-1 i+2i+1i

j

j+2

j+1

j-1

i-1 i+2i+1i

j

j+2

j+1

j-1

i-1 i+2i+1i

j

j+2

j+1

j-1

i-1 i+2i+1i

Fig. 3.3. The four six-point stencils that cover the ten-point stencil for the two-dimensional
reconstruction.

ϕ2
i±α,j±α = a5ϕi,j + a6ϕi±1,j + a2ϕi,j±1 + a3ϕi±1,j±1 + a4ϕi,j±2 + a4ϕi∓1,j ,

ϕ3
i±α,j±α = a7ϕi,j + a2ϕi±1,j + a2ϕi,j±1 + a8ϕi±1,j±1 + a4ϕi±1,j∓1 + a4ϕi∓1,j±1,

ϕ4
i±α,j±α = a5ϕi,j + a2ϕi±1,j + a6ϕi,j±1 + a3ϕi±1,j±1 + a4ϕi±2,j + a4ϕi,j∓1,

where

a1 = 1− 3α + 2α2, a2 = 2α− 2α2, a3 = α2,(3.5)

a4 = −1

2
α +

1

2
α2, a5 = 1− 3

2
α +

1

2
α2, a6 =

1

2
α− 1

2
α2,

a7 = 1− 2α + α2, a8 = −α + 2α2.

The linear combination

4∑
k=1

ckϕ
k
i±α,j±α = ϕ (xi±α, yj±α) + O

(
∆x4,∆y4

)
is fourth-order accurate, provided that the constants ci are taken as

c1 =
1

3
(5α− 1) , c2 = c4 =

2

3
(−2α + 1) , c3 = α.(3.6)

A two-dimensional CWENO reconstruction is a straightforward generalization of
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the one-dimensional case (compare with (2.7), (2.8)):

ϕi±α,j±α =

4∑
k=1

wki±α,j±αϕ
k
i±α,j±α.

Here

wki±α,j±α =
αki±α,j±α∑4
l=1 α

l
i±α,j±α

, αki±α,j±α =
ck(

ε + Ski±α,j±α
)p ,

with the constants ck given by (3.6). As usual, the smoothness measure for every
stencil is taken as a normalized sum of the discrete L2-norms of the derivatives. If
we define the forward and backward differences ∆+

x ϕi,j = ϕi+1,j − ϕi,j , ∆−x ϕi,j =
ϕi,j − ϕi−1,j , ∆+

y ϕi,j = ϕi,j+1 − ϕi,j , ∆−y ϕi,j = ϕi,j − ϕi,j−1, then the smoothness
measures for the evolution point xi+α,j+α are given by

S1i+α,j+α =
(
∆+
x ϕi,j

)2
+
(
∆+
x ϕi+1,j

)2
+
(
∆+
x ϕi,j+1

)2
+
(
∆+
y ϕi,j

)2
+
(
∆+
y ϕi,j+1

)2
+
(
∆+
y ϕi+1,j

)2
+

1

∆x2

[(
∆+
x∆−

x ϕi+1,j

)2
+
(
∆+
y ∆−

y ϕi,j+1

)2]
,

S2i+α,j+α =
(
∆+
x ϕi,j

)2
+
(
∆+
x ϕi−1,j

)2
+
(
∆+
x ϕi,j+1

)2
+
(
∆+
y ϕi,j

)2
+
(
∆+
y ϕi,j+1

)2
+
(
∆+
y ϕi+1,j

)2
+

1

∆x2

[(
∆+
x∆−

x ϕi,j
)2

+
(
∆+
y ∆−

y ϕi,j+1

)2]
,

S3i+α,j+α =
(
∆+
x ϕi,j

)2
+
(
∆+
x ϕi,j+1

)2
+
(
∆+
x ϕi−1,j+1

)2
+
(
∆+
y ϕi,j

)2
+
(
∆+
y ϕi+1,j

)2
+
(
∆+
y ϕi+1,j−1

)2
+

1

∆x2

[(
∆+
x∆−

x ϕi,j+1

)2
+
(
∆+
y ∆−

y ϕi+1,j

)2]
,

S4i+α,j+α =
(
∆+
x ϕi,j

)2
+
(
∆+
x ϕi+1,j

)2
+
(
∆+
x ϕi,j+1

)2
+
(
∆+
y ϕi,j

)2
+
(
∆+
y ϕi,j−1

)2
+
(
∆+
y ϕi+1,j

)2
+

1

∆x2

[(
∆+
x∆−

x ϕi+1,j

)2
+
(
∆+
y ∆−

y ϕi,j
)2]

.

The smoothness measures for the evolution point xi−α,j−α are

S1i−α,j−α =
(
∆+
x ϕi−2,j

)2
+
(
∆+
x ϕi−1,j

)2
+
(
∆+
x ϕi−1,j−1

)2
+
(
∆+
y ϕi,j−2

)2
+
(
∆+
y ϕi,j−1

)2
+
(
∆+
y ϕi−1,j−1

)2
+

1

∆x2

[(
∆+
x∆−

x ϕi−1,j

)2
+
(
∆+
y ∆−

y ϕi,j−1

)2]
,

S2i−α,j−α =
(
∆+
x ϕi,j

)2
+
(
∆+
x ϕi−1,j

)2
+
(
∆+
x ϕi−1,j−1

)2
+
(
∆+
y ϕi−1,j

)2
+
(
∆+
y ϕi−1,j−1

)2
+
(
∆+
y ϕi,j−2

)2
+

1

∆x2

[(
∆+
x∆−

x ϕi,j
)2

+
(
∆+
y ∆−

y ϕi,j−1

)2]
,

S3i−α,j−α =
(
∆+
x ϕi−1,j

)2
+
(
∆+
x ϕi,j−1

)2
+
(
∆+
x ϕi−1,j−1

)2
+
(
∆+
y ϕi,j−1

)2
+
(
∆+
y ϕi−1,j

)2
+
(
∆+
y ϕi−1,j−1

)2
+

1

∆x2

[(
∆+
x∆−

x ϕi,j−1

)2
+
(
∆+
y ∆−

y ϕi−1,j

)2]
,

S4i−α,j−α =
(
∆+
x ϕi−2,j

)2
+
(
∆+
x ϕi−1,j

)2
+
(
∆+
x ϕi−1,j−1

)2
+
(
∆+
y ϕi,j

)2
+
(
∆+
y ϕi,j−1

)2
+
(
∆+
y ϕi−1,j−1

)2
+

1

∆x2

[(
∆+
x∆−

x ϕi−1,j

)2
+
(
∆+
y ∆−

y ϕi,j
)2]

.
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Fig. 3.4. The dimension-by-dimension reconstruction process in two dimensions. Left: the first
step, where the intermediate interpolants ϕi+α,j at xi+α,j (open squares) are computed using the
data ϕi,j (black dots). Right: the second step, where ϕi+α,j is interpolated in the j direction, giving
ϕi+α,j+α at xi+α,j+α (open circle).

3.2.2. A dimension-by-dimension reconstruction of ϕi±α,j±α. A differ-
ent way to obtain high-order approximations for the values of ϕi±α,j±α is by carrying
out a sequence of one-dimensional reconstructions from section 2.2. This dimension-
by-dimension approach for the reconstruction step is similar in spirit to that of [17],
but here, in order to generate a Godunov-type scheme (unlike [17]), we are forced to
use evolution points that are not positioned in the same locations as the data xi,j .
An appropriately chosen sequence of one-dimensional reconstructions addresses this
problem.

We use the subscript “∗” to denote the full range of an array, such that ϕ∗,j and
ϕi,∗ denote the one-dimensional arrays ϕ∗,j = (ϕ1,j , . . . , ϕN,j) and ϕi,∗ = (ϕi,1, . . . ,
ϕi,N ). With the notation for the one-dimensional third-order reconstruction, (2.10),
we can express the dimension-by-dimension reconstruction at xi+α,j+α as

1. for each i, j: ϕi+α,j = reconstruct ϕ 1D 3 (i, α, ϕ∗,j) ;
2. for each i, j: ϕi+α,j+α = reconstruct ϕ 1D 3 (j, α, ϕi+α,∗).

Here, we first interpolate along the first coordinate axis and reconstruct ϕ at xi+α,j .
The data at xi+α,j is then interpolated along the second coordinate axis to the lo-
cation xi+α,j+α to give ϕi+α,j+α (see Figure 3.4). Obviously, the order in which the
steps are performed is not important. In a similar way, a dimension-by-dimension
reconstruction at xi−α,j−α is given by

1. for each i, j: ϕi−α,j = reconstruct ϕ 1D 3 (i,−α,ϕ∗,j) ;
2. for each i, j: ϕi−α,j−α = reconstruct ϕ 1D 3 (j,−α,ϕi−α,∗).
3.2.3. The reprojection step. After evolving the solution to the next time step

at the evolution points xi±α,j±α, we would like to reproject ϕn+1
i+α,j+α back onto the in-

teger grid-points xi,j to end up with ϕn+1
i,j . There are several different ways to perform

this task, out of which we choose to present the following: a two-dimensional repro-
jection using the two-dimensional reconstruction of section 3.2.1 or the dimension-by-
dimension reconstruction of section 3.2.2, and a one-dimensional projection along the
diagonal.

I. A 2D reprojection. The evolution points at xi±α,j±α have the same geometrical
relationship to xi,j as xi,j has to xi−α,j−α. Hence, in order to reconstruct ϕn+1

i,j from
ϕi±α,j±α, we can directly utilize the projections from section 3.2.1 or section 3.2.2,
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Fig. 3.5. The evolution points used for the diagonal reconstruction of ϕi,j .

taking ϕi±α,j±α as the input data and reversing the sign of the parameter from ±α to
∓α. The final value ϕn+1

i,j is then taken as the average of the projections of ϕi+α,j+α
and ϕi−α,j−α. Hence, if we denote either the two-dimensional or the dimension-by-
dimension reconstruction described in section 3.2.1 or section 3.2.2 as

ϕi±α,j±α = reconstruct ϕ 2D 3 (i, j,±α,ϕ) ,(3.7)

where ϕ is now the two-dimensional array {ϕi,j}, then the reprojection step is
(i) for each i, j: ϕ+

i,j = reconstruct ϕ 2D 3 (i,−α,ϕi+α,j+α) ;

(ii) for each i, j: ϕ−i,j = reconstruct ϕ 2D 3 (i, α, ϕi−α,j−α) ;

(iii) for each i, j: ϕn+1
i,j = 1

2 (ϕ+
i,j + ϕ−i,j).

II. A diagonal reprojection. In this case we use one-dimensional data along the di-
agonal, {ϕi−1+α,j−1+α, ϕi−α,j−α, ϕi+α,j+α, ϕi+1−α,j+1−α}, to construct a third-order
WENO approximation of ϕn+1

i,j (see Figure 3.5).
Define

ϕ−i,j :=
α2

2α− 1
ϕi−1+α,j−1+α +

α− 1

2(2α− 1)
ϕi−α,j−α(3.8)

+
1− α

2
ϕi+α,j+α = ϕ (xi,j) + O

(
∆x3,∆y3

)
,

ϕ+
i,j :=

1− α

2
ϕi−α,j−α +

α− 1

2(2α− 1)
ϕi+α,j+α

+
α2

2α− 1
ϕi+1−α,j+1−α = ϕ (xi,j) + O

(
∆x3,∆y3

)
.
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Since (ϕ−i,j + ϕ+
i,j)/2 = ϕ (xi,j) + O(∆x4,∆y4), we can obtain ϕn+1

i,j as

ϕn+1
i,j = w−i,jϕ

−
i,j + w+

i,jϕ
+
i,j ,(3.9)

where as usual w±i,j = α±i,j/(α+
i,j + α−i,j) and α±i,j = (2(ε + S±i,j)

p)−1. The smoothness

measures are again taken as the sum of the discrete L2-norm of the derivatives, which
in this case is more complicated due to the uneven spacing of the data:

S−i,j =
1

∆x

[(
ϕi−α,j−α − ϕi−1+α,j−1+α

1− 2α

)2

+

(
ϕi+α,j+α − ϕi−α,j−α

2α

)2
]

+
4

∆x3

(
ϕi−α,j−α − ϕi−1+α,j−1+α

1− 2α
− ϕi+α,j+α − ϕi−α,j−α

2α

)2

,

S+
i,j =

1

∆x

[(
ϕi+α,j+α − ϕi−α,j−α

2α

)2

+

(
ϕi+1−α,j+1−α − ϕi+α,j+α

1− 2α

)2
]

+
4

∆x3

(
ϕi+α,j+α − ϕi−α,j−α

2α
− ϕi+1−α,j+1−α − ϕi+α,j+α

1− 2α

)2

.

Remark. Our numerical simulations in section 4.3 indicate that there is little dif-
ference between the quality of the two-dimensional reconstruction and the dimension-
by-dimension reconstruction of sections 3.2.1 and 3.2.2. We will use this fact when
extending our methods to fifth order and higher dimensions. We note that the diag-
onal reprojection significantly reduces the CFL number (see section 4.4).

3.3. A two-dimensional fifth-order scheme. Using the dimension-by-dimension
approach, it is easy to extend the above scheme to fifth order: simply replace the one-
dimensional third-order interpolations by the fifth-order interpolation in section 3.2.2.
Using the one-dimensional notation, (2.19), we obtain a fifth-order reconstruction at
xi+α,j+α as

1. for each i, j: ϕi+α,j = reconstruct ϕ 1D 5 (i, α, ϕ∗,j) ;
2. for each i, j: ϕi+α,j+α = reconstruct ϕ 1D 5 (j, α, ϕi+α,∗).

Similarly, at xi−α,j−α we have
1. for each i, j: ϕi−α,j = reconstruct ϕ 1D 5 (i,−α,ϕ∗,j) ;
2. for each i, j: ϕi−α,j−α = reconstruct ϕ 1D 5 (j,−α,ϕi−α,∗).

We denote this reconstruction as

ϕi±α,j±α = reconstruct ϕ 2D 5 (i, j,±α,ϕ) .(3.10)

For the derivatives we have
1. for each i, j: ϕ′i±α,j = reconstruct ϕ′ 1D 5 (i,±α,ϕ∗,j),
2. for each i, j: ϕ′i±α,j±α = reconstruct ϕ′ 1D 5 (j,±α,ϕi±α,∗),

which we denote as

ϕ′i±α,j±α = reconstruct ϕ′ 2D 5 (i, j,±α,ϕ) .(3.11)

Reprojection onto the original grid-points xi,j is performed using the two-dimen-
sional dimension-by-dimension reprojection option described in section 3.2.3.
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Remarks.
1. Due to the reduced stability resulting from the use of diagonal reprojection,

which is demonstrated in section 4.4, we do not develop a fifth-order analogue to the
third-order diagonal reprojection.

2. It is straightforward to develop a fifth-order two-dimensional method involving
two-dimensional stencils, extending section 3.2.1. Such a method would involve four
interpolants defined on ten-point stencils that cover a 21-point stencil.

We summarize the two-dimensional fifth-order algorithm in the following, where
RK(ϕni±α, ϕ

′ n
i±α,∆t) is now the fourth-order RK method which integrates (2.1). As

in Algorithm 2.1, each internal step of the RK method will require additional recon-
structions of ϕ′i±α from that step’s ϕi±α.

Algorithm 3.1. Let α = 1/(2 +
√

2). Assume that {ϕni,j} are given.
(a) Reconstruct:

ϕi±α,j±α = reconstruct ϕ 2D 5 (i, j,±α,ϕ) ,

ϕ′ ni±α,j±α = reconstruct ϕ′ 2D 5 (i, j,±α,ϕ) .

(b) Integrate:

ϕ
n+ 1

2
i±α,j±α = RK

(
ϕni±α,j±α, ϕ

′ n
i±α,j±α,∆t/2

)
,

ϕ
′ n+ 1

2
i±α,j±α = reconstruct ϕ′ 2D 5(i,±α,ϕn+ 1

2±α,±α),

ϕn+1
i±α,j±α = RK

(
ϕni±α,j±α, ϕ

′ n
i±α,j±α,∆t

)
,

ϕ′ n+1
i±α,j±α = reconstruct ϕ′ 2D 5

(
i,±α,ϕn+1

±α,±α
)
,

ϕn+1
i±α,j±α = ϕni±α,j±α +

∆t

6

[
H
(
ϕ′ ni±α,j±α

)
+ 4H(ϕ

′ n+ 1
2

i±α,j±α) + H
(
ϕ′ n+1
i±α,j±α

)]
.

(c) Reproject:

ϕn+1
i,j = reconstruct ϕ 2D 5

(
i, j,∓α,ϕn+1

±α,±α
)
.

3.4. Multidimensional extensions. The extension of the dimension-by-dimension
approach to more than two space dimensions is straightforward. For example, using
the notation of section 3.3, a three-dimensional fifth-order reconstruction is

1. for each i, j, k: ϕi+α,j,k = reconstruct ϕ 1D 5 (i, α, ϕ∗,j,k) ;
2. for each i, j, k: ϕi+α,j+α,k = reconstruct ϕ 1D 5 (j, α, ϕi+α,∗,k);
3. for each i, j, k: ϕi+α,j+α,k+α = reconstruct ϕ 1D 5 (k, α, ϕi+α,j+α,∗).

The reconstruction at xi−α,j−α,k−α is handled similarly, and the same for the recon-
struction of ϕ′i+α,j+α,k+α. In three dimensions, α = 1/(3 +

√
3).

A d-dimensional reconstruction based on d-dimensional stencils quickly becomes
very large. It is readily apparent that the dimension-by-dimension approach will scale
to high dimensions better than d-dimensional interpolants.

4. Numerical simulations. In this section we present simulations that test the
schemes we developed in this paper. In section 4.1 we demonstrate the third- and fifth-
order methods in one dimension. Section 4.2 focuses on the fifth-order method in two
and three space dimensions. In section 4.3 we compare the two-dimensional third-
order method based on two-dimensional stencils with the dimension-by-dimension
approach. In section 4.4 we examine, in detail, stability issues in two dimensions,
including comparisons with [17]. Some of these examples are standard test cases that
can be found, e.g., in [22, 31, 35].

We do not follow the practice in [17] of masking singular regions from our error
measurements.



HIGH-ORDER SCHEMES FOR HJ EQUATIONS 1357

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1.5

-1

-0.5

0

0.5

1

exact      
3rd-order  
fifth-order

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

exact      
3rd-order  
fifth-order

Fig. 4.1. One-dimensional convex Hamiltonian (4.1). Left: the solution before the singularity
formation, T = 0.8/π2. Right: the solution after the singularity formation, T = 1.5/π2. In both
panels N = 40. Shown are the third- and fifth-order approximations and the exact solution.

4.1. One-dimensional examples.

A convex Hamiltonian. We start by testing the performance of our schemes
on a convex Hamiltonian. We approximate solutions of the one-dimensional equation

φt +
1

2
(φx + 1)

2
= 0,(4.1)

subject to the initial data φ(x, 0) = − cos(πx) with periodic boundary conditions on
[0, 2]. The change of variables u (x, t) = φx (x, t) + 1 transforms the equation into
the Burgers equation ut + 1

2

(
u2
)
x

= 0, which can be easily solved via the method of
characteristics [35]. As is well known, the Burgers equation generally develops discon-
tinuous solutions even with smooth initial data, and hence we expect the solutions of
(4.1) to have discontinuous derivatives. In our case, the solution develops a singularity
at time t = π−2.

The results of our simulations are shown in Figure 4.1. The order of accuracy
of these methods is determined from the relative L1 error (see [30]), defined as the
L1-norm of the error divided by the L1-norm of the exact solution. These results
along with the relative L∞-norm before the singularity, at T = 0.8/π2, are given in
Table 4.1, and after the singularity, at T = 1.5/π2, in Table 4.2.

A nonconvex Hamiltonian. In this example we deal with nonconvex HJ equa-
tions. In one dimension we solve

φt − cos (φx + 1) = 0,(4.2)

subject to the initial data φ (x, 0) = − cos (πx) with periodic boundary conditions
on [0, 2]. In this case (4.2) has a smooth solution for t � 1.049/π2, after which a
singularity forms. A second singularity forms at t ≈ 1.29/π2. The results are shown
in Figure 4.2. The convergence results before and after the singularity formation are
given in Tables 4.3–4.4.

A linear advection equation. In this example (from [17], with a misprint cor-
rected in [40]) we solve the one-dimensional linear advection equation, i.e., H (φx) =
φx. We assume periodic boundary conditions on [−1, 1] and take the initial data as
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Table 4.1
Relative L1 errors for the one-dimensional convex HJ problem (4.1) before the singularity for-

mation. T = 0.8/π2.

Third-order method

N Relative L1 error L1-order Relative L∞ error L∞-order

100 9.41×10−5 – 1.77×10−5 –

200 1.13×10−5 3.06 1.33×10−6 3.73

400 1.39×10−6 3.02 9.35×10−8 3.83

800 1.74×10−7 3.00 5.94×10−9 3.00

Fifth-order method

N Relative L1 error L1-order Relative L∞ error L∞-order

100 1.41×10−5 – 2.61×10−6 –

200 4.21×10−7 5.07 4.03×10−8 6.02

400 3.31×10−8 5.00 6.53×10−10 5.95

800 4.03×10−10 5.03 1.00×10−11 6.03

Table 4.2
Relative L1 errors for the one-dimensional convex HJ problem (4.1) after the singularity for-

mation. T = 1.5/π2.

Third-order method

N Relative L1 error L1-order Relative L∞ error L∞-order

100 9.10×10−4 – 2.77×10−4 –

200 2.16×10−4 2.07 7.63×10−5 1.86

400 6.84×10−5 1.66 2.68×10−5 1.51

800 2.75×10−5 1.31 2.08×10−5 0.37

Fifth-order method

N Relative L1 error L1-order Relative L∞ error L∞-order

100 7.85×10−4 – 5.78×10−4 –

200 1.61×10−4 2.29 8.29×10−5 2.29

400 6.71×10−5 1.26 5.09×10−5 1.26

800 3.44×10−5 0.96 3.44×10−5 0.96

φ (x, 0) = g (x− 0.5) on [−1, 1], where

g (x) = −
(√

3

2
+

9

2
+

2π

3

)
(x + 1) + h(x),

h(x) =



2 cos
(

3π
2 x2

)−√3, −1 < x < − 1
3 ,

3/2 + 3 cos (2πx) , − 1
3 < x < 0,

15/2− 3 cos (2πx) , 0 < x < 1
3 ,

(28 + 4π + cos (3πx)) /3 + 6πx (x− 1) , 1
3 < x < 1.

(4.3)

The results of the fifth-order method are shown in Figure 4.3, where it is compared
with the fifth-order method of [17]. The reduced dissipation effects of our method are
visible in the reduced round-off of the corners.
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Fig. 4.2. One-dimensional nonconvex Hamiltonian (4.2). Left: The solution before the singu-
larity formation, T = 0.8/π2. Right: The solution after the singularity formation, T = 1.5/π2. In
both panels N = 40. Shown are the third- and fifth-order approximations and the exact solution.

Table 4.3
Relative L1 errors for the one-dimensional nonconvex HJ problem (4.2) before the singularity

formation. T = 0.8/π2.

Third-order method

N Relative L1 error L1-order Relative L∞ error L∞-order

100 6.47×10−5 – 9.05×10−6 –

200 7.78×10−6 3.06 1.11×10−6 3.03

400 8.77×10−7 3.15 9.27×10−8 3.58

800 9.87×10−8 3.15 6.12×10−9 3.92

Fifth-order method

N Relative L1 error L1-order Relative L∞ error L∞-order

100 1.29×10−5 – 4.97×10−6 –

200 6.52×10−7 4.31 2.38×10−7 4.38

400 2.10×10−8 4.95 6.13×10−9 5.28

800 5.96×10−10 5.14 1.03×10−10 5.90

Table 4.4
Relative L1 errors for the one-dimensional nonconvex HJ problem (4.2) after the singularity

formation. T = 1.5/π2.

Third-order method

N Relative L1 error L1-order Relative L∞ error L∞-order

100 2.81×10−4 – 9.64×10−5 –

200 1.32×10−4 1.08 5.05×10−5 0.93

400 2.31×10−5 2.52 6.00×10−6 3.07

800 8.43×10−6 1.46 3.30×10−6 0.86

Fifth-order method

N Relative L1 error L1-order Relative L∞ error L∞-order

100 1.57×10−4 – 1.12×10−4 –

200 8.34×10−5 0.91 6.60×10−5 0.77

400 1.22×10−5 2.78 8.64×10−6 2.93

800 6.67×10−5 0.87 5.23×10−6 .072



1360 STEVE BRYSON AND DORON LEVY

-1 -0.5 0 0.5 1
-6

-5

-4

-3

-2

-1
t = 2

-1 -0.5 0 0.5 1
-6

-5

-4

-3

-2

-1
t = 8

-1 -0.5 0 0.5 1
-6

-5

-4

-3

-2

-1
t = 16

-1 -0.5 0 0.5 1
-6

-5

-4

-3

-2

-1
t = 32

exact         
fifth-order   
Jiang and Peng

Fig. 4.3. One-dimensional linear advection, (4.3). T = 2, 8, 16, 32; N = 100. Crosses: our
fifth-order method. Circles: the fifth-order method of [17] with a local Lax–Friedrichs flux. Solid
line: the exact solution.

4.2. Two-dimensional examples.

A convex Hamiltonian. In two dimensions we solve a problem similar to (4.1),

φt +
1

2
(φx + φy + 1)

2
= 0,(4.4)

which can be reduced to a one-dimensional problem via the coordinate transformation
( ξη ) = 1

2 ( 1
1

1
−1 )(xy ). The results of the fifth-order calculations for the initial data

φ (x, y, 0) = − cos (π(x + y)/2) = − cos (πξ) are shown in Figure 4.4. The convergence
rates for the two-dimensional fifth-order scheme before and after the singularity are
shown in Table 4.5.

A nonconvex Hamiltonian. The two-dimensional nonconvex problem, which
is analogous to the one-dimensional problem (4.2), is

φt − cos (φx + φy + 1) = 0.(4.5)

Here we assume initial data, given by φ (x, y, 0) = − cos (π(x + y)/2), and periodic
boundary conditions. The results are shown in Figure 4.5. The convergence results
for the two-dimensional fifth-order scheme before and after the singularity formation
are given in Table 4.6.
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Fig. 4.4. Two-dimensional convex Hamiltonian, (4.4). Left: the solution before the singularity
formation, T = 0.8/π2. Right: the solution after the singularity formation, T = 1.5/π2. In both
panels N = 40× 40. The solution is computed with the fifth-order method.

Table 4.5
Relative L1 and L∞ errors for the two-dimensional convex HJ problem (4.4) before and after

singularity formation, computed via the fifth-order method.

Before singularity T = 0.8/π2

N Relative L1 error L1-order Relative L∞ error L∞-order

50 1.19×10−4 – 7.78×10−7 –

100 6.80×10−6 4.13 1.64×10−8 5.56

200 1.73×10−7 5.30 1.12×10−10 7.20

After singularity T = 1.5/π2

N Relative L1 error L1-order Relative L∞ error L∞-order

50 1.32×10−3 – 2.07×10−5 –

100 3.89×10−4 1.76 3.60×10−6 2.52

200 4.86×10−5 3.00 1.69×10−7 4.41

A fully two-dimensional example. The above two-dimensional examples are
actually one-dimensional along the diagonal. To check the performance of our methods
on fully two-dimensional problems, we solve

φt + φxφy = 0(4.6)

on [−π, π] × [−π, π], subject to the initial data φ (x, y, 0) = sin (x) + cos (y) with
periodic boundary conditions. The exact solution for this problem is given implicitly
by φ (x, y, t) = − cos (q) sin (r) + sin (q) + cos (r), where x = q − t sin (r) and y =
r + t cos (q). This solution is smooth for t < 1, continuous ∀t, and has discontinuous
derivatives for t ≥ 1. The results of our simulations at times T = 0.8, 1.5 are shown
in Figure 4.6. The convergence results for the fifth-order two-dimensional schemes
before the singularity formation are given in Table 4.7 and confirm the expected
order of accuracy of our methods.
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Fig. 4.5. Two-dimensional nonconvex Hamiltonian, (4.5). Left: the solution before the sin-
gularity formation, T = 0.8/π2. Right: the solution after the singularity formation, T = 1.5/π2.
N = 40× 40. The solution is computed with the fifth-order method.

Table 4.6
Relative L1 and L∞ errors for the two-dimensional nonconvex HJ problem (4.5) before and

after the singularity formation, computed with the fifth-order method.

Before singularity T = 0.8/π2

N Relative L1 error L1-order Relative L∞ error L∞-order

50 1.11×10−4 – 1.26×10−6 –

100 6.91×10−6 4.00 2.42×10−8 5.70

200 3.85×10−7 4.17 6.27×10−10 5.27

After singularity T = 1.5/π2

N Relative L1 error L1-order Relative L∞ error L∞-order

50 1.47×10−3 – 8.58×10−6 –

100 1.93×10−4 2.93 9.27×10−7 3.21

200 8.87×10−5 1.12 3.09×10−7 1.58

An eikonal equation in geometric optics. We consider a two-dimensional
nonconvex problem that arises in geometric optics [20]:{

φt +
√

φ2
x + φ2

y + 1 = 0,

φ (x, y, 0) = 1
4 (cos (2πx)− 1) (cos (2πy)− 1)− 1.

(4.7)

The results of our fifth-order method at time T = 0.6 are shown in Figure 4.7, where
we see the sharp corners that develop in this problem.

An optimal control problem. We solve an optimal control problem related to
cost determination [35]. Here the Hamiltonian is of the form H(x, y,∇φ):{

φt − sin (y)φx + sin (x)φy + |φy| − 1
2 sin2 (y)− 1 + cos (x) = 0,

φ (x, y, 0) = 0.
(4.8)
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Fig. 4.6. Fully two-dimensional Hamiltonian, (4.6). Left: the solution before the singularity
formation, T = 0.8. Right: the solution after the singularity formation, T = 1.5. In both panels
N = 50× 50. The solution is computed with the fifth-order method.

Table 4.7
Relative L1 errors for the two-dimensional HJ problem (4.6) before singularity formation. T =

0.8. The solution is computed with the fifth-order method.

Before singularity T = 0.8

N Relative L1 error L1-order Relative L∞ error L∞-order

50 6.10×10−6 – 8.15×10−8 –

100 2.10×10−7 4.86 7.35×10−10 6.79

200 7.53×10−9 4.80 5.59×10−12 7.04

The result of our fifth-order scheme is presented in Figure 4.8 and is in qualitative
agreement with [31].

4.3. A comparison of two-dimensional third-order interpolants. In this
section we use the examples (4.4), (4.5), and (4.6) to compare the third-order method
of section 3.2.1, based on interpolation via two-dimensional stencils, with that of
section 3.2.2, where we used a dimension-by-dimension approach. The results are
shown in Table 4.8. The dimension-by-dimension method produces errors that are
approximately twice as large as those for the genuinely two-dimensional reconstruc-
tion. However, the convergence rate is qualitatively the same in both methods. These
results motivated us to base our fifth-order scheme on the much simpler dimension-
by-dimension reconstruction.

4.4. A stability study. In this section we present a couple of stability studies
that we obtained in our simulations. We start by checking the stability properties
of the third-order scheme with different reprojection steps. The reconstruction step
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Fig. 4.8. Two-dimensional optimal control problem, (4.8). An approximation with the fifth-
order method is shown at T = 1 and N = 40× 40.
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Table 4.8
Comparison of the third-order method of section 3.2.1, using an interpolation via two-

dimensional stencils, and that of section 3.2.2, using the dimension-by-dimension approach.

2D stencils Dimension-by-dimension

N Relative L1 error L1-order Relative L1 error L1-order

Convex Hamiltonian at T = 0.8/π2

50 4.70×10−4 – 6.13×10−4 –

100 7.54×10−5 2.64 9.43×10−5 2.70

200 8.07×10−6 3.23 1.02×10−5 3.21

Convex Hamiltonian at T = 1.5/π2

50 1.23×10−3 – 2.61×10−3 –

100 4.56×10−4 1.44 8.19×10−4 1.67

200 3.70×10−5 3.62 1.22×10−4 2.74

Nonconvex Hamiltonian at T = 0.8/π2

50 2.27×10−4 – 3.92×10−4 –

100 3.75×10−5 2.60 6.97×10−5 2.49

200 3.99×10−6 3.23 7.22×10−6 3.27

Nonconvex Hamiltonian at T = 1.5/π2

50 1.23×10−3 – 1.94×10−3 –

100 2.50×10−4 2.30 4.16×10−4 2.22

200 7.63×10−5 1.71 1.20×10−4 1.79

Fully 2D example at T = 0.8

50 2.01×10−4 – 1.48×10−4 –

100 2.42×10−5 3.05 1.65×10−5 3.16

200 2.95×10−6 3.04 1.95×10−6 3.08

is done in all cases using the dimension-by-dimension interpolant. We compare the
dimension-by-dimension reprojection and the diagonal reprojection (of section 3.2.3).
In Figure 4.9 we plot the L1 error as a function of the CFL number. The test problem
is (4.6) with the fully two-dimensional Hamiltonian. The solution is computed at
T = 0.8. We see that the use of a diagonal reprojection significantly reduces the
maximum allowed CFL number.

We now turn to checking the stability properties of the two-dimensional fifth-order
method of section 3.3 by computing the L1 errors for various examples while varying
the CFL number. In Figure 4.10 we compare the results obtained with our fifth-order
scheme with the fifth-order method of [17], for which we used a local Lax–Friedrichs
flux. The numerical tests indicate that larger CFL numbers can be used with our
method.

4.5. Three-dimensional examples. We proceed with a three-dimensional gen-
eralization of the convex Hamiltonian (4.4),

φt +
1

2
(φx + φy + φz + 1)

2
= 0,(4.9)

subject to the initial data φ (x, y, z, 0) = − cos (π(x + y + z)/3). The convergence
results for the three-dimensional fifth-order scheme before and after the singularity
formation are given in Table 4.9. We also approximate the solution of the nonconvex
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Fig. 4.9. Stability of the two-dimensional third-order method with a dimension-by-dimension
reprojection (crosses) vs. a diagonal reprojection (diamonds). Fully two-dimensional Hamiltonian
(4.6). T = 0.8 (before singularity), N = 100× 100.

Table 4.9
Relative L1 and L∞ errors for the three-dimensional convex HJ problem (4.9) before and after

the singularity formation, computed with the fifth-order method.

Before singularity T = 0.5/π2

N Relative L1 error L1-order Relative L∞ error L∞-order

25 2.61×10−4 – 1.07×10−7 –

50 6.40×10−6 5.35 3.16×10−10 8.41

100 1.50×10−7 5.42 9.18×10−13 8.43

After singularity T = 1.5/π2

N Relative L1 error L1-order Relative L∞ error L∞-order

25 6.95×10−3 – 1.80×10−5 –

50 1.40×10−3 2.31 4.15×10−6 2.12

100 5.33×10−4 1.39 6.94×10−7 2.58

problem

φt − cos (φx + φy + φz + 1) = 0,(4.10)

with the same initial data. The convergence rates for the three-dimensional fifth-order
schemes are given in Table 4.10.
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Fig. 4.10. Stability of the two-dimensional fifth-order method. N = 100 × 100. Crosses: our
fifth-order method. Circles: the fifth-order method of [17] with a local Lax–Friedrichs flux. Upper left:
linear advection (H (∇ϕ) = ∇ϕ) with initial condition φ (x, y, 0) = − cos (π(x+ y)/2). Upper right:
fully 2D Hamiltonian (4.6). Middle row: convex Hamiltonian (4.4), before the singularity (left) and
after the singularity (right). Bottom row: nonconvex Hamiltonian (4.5), before the singularity (left)
and after the singularity (right).
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Table 4.10
Relative L1 and L∞ errors for the three-dimensional nonconvex HJ problem (4.10) before and

after the singularity formation, computed with the fifth-order method.

Before singularity T = 0.5/π2

N Relative L1 error L1-order Relative L∞ error L∞-order

25 7.28×10−4 – 3.70×10−7 –

50 3.71×10−5 4.29 4.06×10−9 6.51

100 1.05×10−6 5.14 2.18×10−11 7.54

After singularity T = 1.5/π2

N Relative L1 error L1-order Relative L∞ error L∞-order

25 6.74×10−3 – 3.27×10−6 –

50 1.26×10−3 2.42 6.90×10−7 2.25

100 4.21×10−4 1.59 6.84×10−8 3.33
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Abstract. The least-squares Legendre and Chebyshev pseudospectral methods are presented
for a first-order system equivalent to a second-order elliptic partial differential equation. Continu-
ous and discrete homogeneous least-squares functionals using Legendre and Chebyshev weights are
shown to be equivalent to the H1(Ω) norm and Chebyshev-weighted Div-Curl norm over appropriate
polynomial spaces, respectively. The spectral error estimates are derived. The block diagonal finite
element preconditioner is developed for the both cases. Several numerical tests are demonstrated on
the spectral discretization errors and on performances of the finite element preconditioner.
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1. Introduction. Let Ω be the square (−1, 1)2. We consider the second-order
elliptic boundary value problem −∇ · ∇p+ b · ∇p+ c0 p = f in Ω,

p = 0 on ΓD,
n · ∇p = 0 on ΓN ,

(1.1)

where ∂Ω = ΓD ∪ ΓN denotes the boundary of Ω, f is a given continuous function, b
and c0 are given constant vector and scalar, respectively, and n is the outward unit
vector normal to the boundary.

Introducing the flux variable u = ∇p, (1.1) can be written as an equivalent first-
order system of linear equations (see [4], [5], and [21], for example). For the use
of finite element methods, the least-squares approach was studied in [12], [13], and
[14], for example, and it has been widely used by combining with functionals consist-
ing of appropriate norms of residual equations (see [2], [3], [4], [5], [15], etc.). Then
the homogeneous continuous and discrete least-squares functionals were shown to be
equivalent to appropriate product norms. In this paper, the success of finite element
least-squares methods for the last decade stimulated the usage of pseudospectral meth-
ods or Legendre (Chebyshev) spectral elements with a staggered grid, which is known
to be a very accurate method (see [1], [6], [9], [10], [11], and [21]). Therefore we believe
that it is worthwhile to develop the Legendre and Chebyshev pseudospectral least-
squares methods for solving the first-order system corresponding to (1.1). Using the
Legendre–Gauss–Lobatto (LGL) and Chebyshev–Gauss–Lobatto (CGL) points with
corresponding quadrature weights, we define two discrete Legendre and Chebyshev
least-squares functionals. For the continuous Legendre least-squares functional, we
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adopt the continuous least-squares functional developed in [5]. The equivalence be-
tween the usual L2-norm and the discrete Legendre spectral norm over an appropriate
polynomial space yields that the discrete Legendre least-squares functional is equiv-
alent to a product H1-norm over a product of polynomial spaces. The continuous
Chebyshev-weighted least-squares functional is also defined as the sum of L2

w-norms
of residual equations. Then the continuous and corresponding discrete Chebyshev-
weighted least-squares functionals are shown to be equivalent to a product norm
‖u‖2L2

w(Ω)2 + ‖∇ · u‖2L2
w(Ω)2 + ‖∇ × u‖2L2

w(Ω)2 + ‖p‖2H1
w(Ω), in which we do not provide

its equivalence to the Chebyshev-weighted H1
w product norm. It is shown that the

proposed methods have spectral convergence. Based on a norm equivalence, a block
diagonal finite element preconditioner is developed for the use of an iterative method
like the conjugate gradient method. Such finite element preconditioning techniques
are discussed in [7], [8], [16], [20], and [24], for example. The finite element precondi-
tioner for the Legendre case is optimal in the sense that the condition number of the
preconditioned system behaves like O(1). We also consider the Chebyshev weighted
finite element preconditioner for the Chebyshev case. Some numerical experiments
demonstrate that such a preconditioner seems to be optimal.

This paper consists of the following. In section 2, we provide definitions, notations,
and basic known facts. In sections 3 and 4, we present Legendre and Chebyshev
pseudospectral least-squares methods, respectively, including the norm equivalences
and spectral convergences. In section 5, we explain how the linear system can be set
up, and propose a block diagonal finite element preconditioner. Finally, we provide
several numerical experiments including the condition numbers of the resulting linear
system and preconditioned linear system, and spectral convergence of discretization
errors in L2, L2

w- and H
1, H1

w-norms.

2. Preliminaries. In this section, we provide some preliminaries, definitions,
and notations for future use. The standard notations and definitions are used for
the weighted Sobolev spaces Hs

w(Ω)
2 equipped with weighted inner products (·, ·)s,w

and corresponding weighted norms ‖ · ‖s,w, s ≥ 0, where w(x, y) = ŵ(x)ŵ(y) is
the Legendre weight function when ŵ(t) = 1 or Chebyshev weight function when
ŵ(t) = 1√

1−t2 . The space H
0
w(Ω) coincides with L2

w(Ω), in which case the norm and

inner product will be denoted by ‖·‖w and (·, ·)w, respectively. For the Legendre case,
we simply write the notations without the subscript w, for example, Hs(Ω) := Hs

w(Ω),
(·, ·) := (·, ·)w, ‖ · ‖ := ‖ · ‖w if w(x, y) = 1.

Let PN be the space of all polynomials of degree less than or equal to N . Let
{ξi}Ni=0 be the LGL or CGL points on [−1, 1] such that

−1 =: ξ0 < ξ1 < · · · < ξN−1 < ξN := 1.

For the Legendre case, {ξi}Ni=0 are the zeros of (1 − t2)L′N (t), where LN is the Nth
Legendre polynomial and the corresponding quadrature weights {wi}Ni=0 are given by

wj =
2

N(N + 1)

1

[LN (ξj)]2
, 1 ≤ j ≤ N − 1,

w0 = wN =
2

N(N + 1)
.

(2.1)

For the Chebyshev case, {ξi}Ni=0 are the zeros of (1− t2)T ′N (t), where TN is the Nth
Chebyshev polynomial and the corresponding quadrature weights {wi}Ni=0 are given
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by

wj =
π

N
, 1 ≤ j ≤ N − 1,

w0 = wN =
π

2N
.

(2.2)

Then, we have the following LGL or CGL quadrature formula such that∫ 1

−1

p(t)ŵ(t) dt =

N∑
i=0

wi p(ξi) ∀ p ∈ P2N−1.(2.3)

Let {φi}Ni=0 be the set of Lagrange polynomials of degree N with respect to LGL or
CGL points {ξi}Ni=0 which satisfy

φi(ξj) = δij ∀ i, j = 0, 1, . . . , N,
where δij denotes the Kronecker delta. The two-dimensional LGL or CGL nodes {xij}
and weights {wij} are given by

xij = (ξi, ξj), wij = wiwj , i, j = 0, 1, . . . , N.

Let QN be the space of all polynomials of degree less than or equal to N with respect
to each single variable x and y. Define the basis for QN as

ψij(x, y) = φi(x)φj(y), i, j = 0, 1, . . . , N.

For any continuous functions u and v on Ω̄, the associated discrete scalar product and
norm are

〈u, v〉w,N =

N∑
i,j=0

wij u(xij) v(xij) and ‖v‖w,N = 〈v, v〉 12w,N .(2.4)

Then, by (2.3) we have

〈u, v〉w,N = (u, v)w for uv ∈ Q2N−1.(2.5)

It is well known that

‖v‖w ≤ ‖v‖w,N ≤ γ∗‖v‖w ∀ v ∈ QN ,(2.6)

where γ∗ = 2+ 1
N for the Legendre case and γ∗ = 2 for the Chebyshev case. For any

continuous function v on Ω̄, we denote by INv ∈ QN the interpolant of v at the LGL-
or CGL-points {xij} such that

INv(x) =

N∑
i,j=0

v(xij)ψij(x) ∀ x ∈ Ω̄.(2.7)

The following results are found in [1], [6], and [23]. The interpolation error estimate
is known as

‖v − INv‖k,w ≤ C Nk−s‖v‖s,w, k = 0, 1,(2.8)

provided v ∈ Hs
w(Ω) for s ≥ 2. Using (2.5)–(2.8), we can show that for any u ∈ Hs

w(Ω),
s ≥ 2, and any vN ∈ QN

|(u, vN )w − 〈u, vN 〉w,N | ≤ C N−s ‖u‖s,w ‖vN‖w.(2.9)
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3. Legendre pseudospectral least-squares method. In this section, we in-
vestigate the Legendre pseudospectral least-squares method for the first-order system
of linear equations equivalent to problem (1.1). Throughout this section, we set
w(x, y) = 1.

Let

V := {v ∈ H1(Ω) : v = 0 on ΓD}
and

W := {v ∈ H1(Ω)2 : n · v = 0 on ΓN , τ · v = 0 on ΓD},
where n and τ are unit normal and tangent vector, respectively. LetWN = Q2

N ∩W
and VN = QN ∩ V . Let ∇× denote the curl operator given by ∇×v = ∂xv2 − ∂yv1

for a vector function v = (v1, v2)
T .

Setting the flux variable u = ∇p and using the identities
∇×u = 0 in Ω and τ · u = 0 on ΓD,

we employ the first-order system of linear equations equivalent to (1.1) such that

u−∇p = 0 in Ω,
−∇ · u+ b · u+ c0 p = f in Ω,

∇× u = 0 in Ω,
p = 0 on ΓD,

n · u = 0 on ΓN ,
τ · u = 0 on ΓD.

(3.1)

Define the least-squares functional for the system (3.1) as

G(v, q; f) = ‖f +∇ · v − b · v − c0 q‖2 + ‖v −∇q‖2 + ‖∇ × v‖2(3.2)

for (v, q) ∈W×V . The first-order system least-squares variational problem for (3.1)
is to minimize the quadratic functional G(v, q; f) over W × V : find (u, p) ∈W × V
such that

G(u, p; f) = inf
(v,q)∈W×V

G(v, q; f).(3.3)

The corresponding variational problem is to find (u, p) ∈W × V such that

a(u, p;v, q) = f(v, q) ∀ (v, q) ∈W × V,(3.4)

where the bilinear form a(·; ·) is given by
a(u, p;v, q) = (∇ · u− b · u− c0 p, ∇ · v − b · v − c0 q)

+ (u−∇p, v −∇q) + (∇×u, ∇×v)(3.5)

and the linear form f(·) is given by
f(v, q) = −(f,∇ · v − b · v − c0 q).(3.6)

Theorem 3.1. For any (v, q) ∈W × V , there exists a positive constant C such
that

1

C

(‖v‖21 + ‖q‖21) ≤ a(v, q;v, q) ≤ C
(‖v‖21 + ‖q‖21).(3.7)
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Proof. The functional (3.2) is a special case of the general form given in [5]. Hence,
the continuity and ellipticity of the bilinear form a(·; ·) are immediate consequences
of [5].

Define the discrete least-squares functional using the discrete Legendre spectral
norm as

GN (v, q; f) = ‖f +∇ · v − b · v − c0 q‖2N + ‖v −∇q‖2N + ‖∇×v‖2N(3.8)

for (v, q) ∈ WN × VN . The discrete least-squares problem associated with (3.8)
is then to minimize the quadratic functional GN (v, q; f) over WN × VN , and the
corresponding variational problem (Legendre pseudospectral collocation problem) is
to find (uN , pN ) ∈WN × VN such that

aN (uN , pN ;v, q) = fN (v, q) ∀ (v, q) ∈WN × VN ,(3.9)

where the discrete bilinear form aN (·; ·) and linear form fN (·) are given by
aN (uN , pN ;v, q) = 〈∇ · uN − b · uN − c0 pN ,∇ · v − b · v − c0 q〉N

+ 〈uN −∇pN ,v −∇q〉N + 〈∇×uN ,∇×v〉N
(3.10)

and

fN (v, q) = −〈f,∇ · v − b · v − c0 q〉N .(3.11)

The continuity and ellipticity of the discrete functional GN (·; 0) are shown in the
following theorem.

Theorem 3.2. For any (v, q) ∈WN × VN , there exists a constant C such that

1

C

(‖v‖21 + ‖q‖21) ≤ GN (v, q; 0) ≤ C
(‖v‖21 + ‖q‖21) .(3.12)

Proof. Since v − ∇q ∈ Q2
N and ∇ · v − b · v − c0 q, ∇×v ∈ PN , we can easily

show from (2.6) that

G(v, q; 0) ≤ GN (v, q; 0) ≤
(
2 +

1

N

)2

G(v, q; 0).

Hence, the bounds (3.12) are an immediate consequence of the Theorem 3.1.
We show the spectral convergence in the H1 product norm for the Legendre

pseudospectral least-squares method following the same techniques used in [1] and
[23]. Similarly one may show the L2 convergence (see [1] or [23]).

Theorem 3.3. Assume that the solution (u, p) of (3.4) is in Hs(Ω)3 for some
s ≥ 1 and f ∈ H�(Ω) for some integer $ ≥ 2. Let (uN , pN ) ∈WN×VN be the discrete
solution of the problem (3.9). Then there exists a constant C such that

‖u− uN‖1 + ‖p− pN‖1 ≤ C
[
N1−s(‖u‖s + ‖p‖s) +N−�‖f‖�

]
.(3.13)

Proof. Using the first Strang lemma, which uses the coercivity of aN (·; ·) and the
continuity of a(·; ·), one may easily verify from [23] (or see in [1, p. 88]) that

C
(‖u− uN‖1 + ‖p− pN‖1

) ≤ inf
(v,q)∈WN×VN

[
‖u− v‖1 + ‖p− q‖1

+ sup
(w,r)∈WN×VN

|a(v, q;w, r)− aN (v, q;w, r)|
‖w‖1 + ‖r‖1

]
+ sup

(w,r)∈WN×VN

|f(w, r)− fN (w, r)|
‖w‖1 + ‖r‖1 .

(3.14)
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If we take v ∈WN−1 and q ∈ VN−1, we see from (2.5) that

a(v, q;w, r) = aN (v, q;w, r) ∀ (w, r) ∈WN × VN .

Using the inequality (2.9) yields

|f(w, r)− fN (w, r)| ≤ C N−� ‖f‖� ‖∇ ·w − b ·w − c0 r‖, $ ≥ 2.
Since

‖∇ ·w − b · ∇r − c0 r‖ ≤ C
(‖w‖1 + ‖r‖1) ∀ (w, r) ∈WN × VN ,

we have

|f(w, r)− fN (w, r)|
‖w‖1 + ‖r‖1 ≤ C N−� ‖f‖�, $ ≥ 2.

Now, using (2.8), we deduce the conclusion (3.13).

4. Chebyshev pseudospectral least-squares method. In this section, we
investigate the Chebyshev pseudospectral least-squares method for the first-order sys-
tem of linear equations equivalent to problem (1.1). We will use the same notation
used in the previous section, but the definitions may be different from those of the pre-
vious section. Throughout this section, we set w(x, y) = ŵ(x)ŵ(y), with ŵ(t) = 1√

1−t2
and ΓN = ∅.

We redefine the spaces V andW such that

V := {v ∈ H1
w(Ω) : v = 0 on ∂Ω}

and

W := {v ∈ L2
w(Ω)

2 : ‖v‖W <∞ and τ · v = 0 on ∂Ω},
which is a Hilbert space equipped with the norm

‖v‖W :=
(‖v‖2w + ‖∇ · v‖2w + ‖∇×v‖2w) 1

2 .

Let H−1
w (Ω) be the dual space of V equipped with the norm (see [1, p. 18])

‖u‖−1,w := sup
0 �=φ∈V

(u, φ)w
‖φ‖1,w .(4.1)

LetWN = Q2
N ∩W and VN = QN ∩ V . The first-order system (3.1) is rewritten

as 
u−∇p = 0 in Ω,

−∇ · u+ b · u+ c0 p = f in Ω,
∇× u = 0 in Ω,

p = 0 on ∂Ω,
τ · u = 0 on ∂Ω.

(4.2)

Define the least-squares functional corresponding to (4.2) using the Chebyshev
weighted L2-norms as

Gw(v, q; f) = ‖f +∇ · v − b · v − c0 q‖2w + ‖v −∇q‖2w + ‖∇ × v‖2w(4.3)
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for (v, q) ∈W× V . Then the first-order system least-squares variational problem for
(4.2) is to minimize the quadratic functional Gw(v, q; f) over W × V : find (u, p) ∈
W × V such that

Gw(u, p; f) = inf
(v,q)∈W×V

Gw(v, q; f),(4.4)

and the variational problem for (4.4) is to find (u, p) ∈W × V such that

aw(u, p;v, q) = fw(v, q) ∀ (v, q) ∈W × V,(4.5)

where the bilinear form aw(·; ·) is given by

aw(u, p;v, q) = (∇ · u− b · u− c0 p,∇ · v − b · v − c0 q)w

+ (u−∇p,v −∇q)w + (∇×u,∇×v)w
(4.6)

and the linear form fw(·) is given by

fw(v, q) = −(f,∇ · v − b · v − c0 q)w.(4.7)

From now on, we will establish the coercivity and continuity for the homogeneous
Chebyshev functional Gw(·; 0) over W × V . We recall the Poincaré–Friedrichs in-
equality such that (see [6])

‖v‖w ≤ C‖∇v‖w ∀ v ∈ V,(4.8)

where C is a positive constant.
Lemma 4.1. For φ(x, y) ∈ V , the following hold:
(a) There are two positive constants c and C such that

c‖φ‖21,w ≤
∫

Ω

∇φ · ∇(φw) dxdy ≤ C‖φ‖21,w.

(b) There is a constant C such that, with t = x or y,∣∣∣∣∫
Ω

φ2(x, y)
t2

(1− t2)2
ŵ(x)ŵ(y) dxdy

∣∣∣∣ ≤ C‖φ‖21,w.

Proof. First note that (a) is found in, for example, [6], [10], or [19]. For the proof
of (b), recall from Lemma 2 in [19] that∣∣∣∣∫ 1

−1

u2(t)
t2

(1− t2)2
ŵ(t) dt

∣∣∣∣ ≤ 4

9
|u|2H1

w(−1,1) for u ∈ H1
0,w(−1, 1).

From this estimate one may prove the conclusion (b).
Lemma 4.2. For any v ∈W, we have

‖∇ · v‖−1,w ≤ C ‖v‖w.

Proof. Using the divergence theorem yields that, for φ ∈ V and v = (v1, v2)
T ∈

W,

(∇ · v, φ)w = − (v, ∇(φw)) = −(v1, φxw + φwx)− (v2, φyw + φwy),(4.9)
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where we define φt =
∂
∂tφ(x, y) for t = x or y. By the Schwarz inequality, we have

|(vi, φtw)| = |(vi, φt)w| ≤ ‖vi‖w ‖φ‖1,w, i = 1, 2, t = x, y.(4.10)

On the other hand, with t = x or y, the Schwarz inequality and Lemma 4.1 yield

|(vi, φwt)| =
∣∣∣∣∫

Ω

vi(x, y)φ(x, y)
t

1− t2
w(x, y) dxdy

∣∣∣∣
≤
(∫

Ω

vi(x, y)
2w(x, y) dxdy

) 1
2
(∫

Ω

φ2(x, y)
t2

(1− t2)2
w(x, y) dxdy

) 1
2

≤ C ‖vi‖w ‖φ‖1,w.

(4.11)

Combining (4.9) with (4.10) and (4.11), we have

(∇ · v, φ)w ≤ C‖v‖w ‖φ‖1,w ∀φ ∈ V,
which completes the conclusion via the definition of ‖ · ‖−1,w.

Lemma 4.3. There exists a constant C such that

‖p‖1,w ≤ C ‖ −∆p‖−1,w ∀ p ∈ V.(4.12)

Proof. It is well known from Theorem 11.1 in [6] that there exists a constant C
such that

‖p‖21,w ≤ C (∇p,∇(pw)) = C (−∆p, p)w ∀ p ∈ V.
Hence, by the definition of ‖ · ‖−1,w, we have the conclusion (4.12).

Due to the above lemma, from now on we may assume that there are constant
coefficients b and c0 satisfying the following a priori estimate:

‖p‖1,w ≤ C ‖ −∆p+ b · ∇p+ c0 p‖−1,w ∀ p ∈ V.(A0)

Indeed, for the case b = 0 and c0 > 0 it is clear, and for the other case we can find
the restrictions to b and c0 following the arguments in [6].

Now, under the assumption (A0), we establish the coercivity and continuity for
the homogeneous Chebyshev least-squares functional Gw(·; 0) overW×V as follows.

Theorem 4.4. Assume that (A0) holds. Then there exists a positive constant C
such that

1

C

(‖v‖2W + ‖q‖21,w
)≤Gw(v, q, ; 0)≤C(‖v‖2W + ‖q‖21,w

) ∀ (v, q)∈W × V.(4.13)

Proof. The triangle inequality yields the upper bound. For the lower bound, let
(v, q) ∈W × V . By (A0), the triangle inequality, and Lemma 4.2, we have

‖q‖21,w ≤ C ‖∆q − b · ∇q − c0 q‖2−1,w

≤ C
(‖∇ · v − b · v − c0 q‖2−1,w + ‖∇ · (v −∇q)‖2−1,w + ‖b · (v −∇q)‖2−1,w

)
≤ C

(‖∇ · v − b · v − c0 q‖2w + ‖v −∇q‖2w
)

≤ C Gw(v, q; 0).

Using the triangle inequality together with the last inequality, we have

‖v‖2w ≤ C
(‖v −∇q‖2w + ‖∇q‖2w) ≤ C Gw(v, q; 0)
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and

‖∇ · v‖2w ≤ C
(‖∇ · v − b · v − c0 q‖2w + ‖b · v + c0 q‖w

)
≤ C (Gw(v, q; 0) + ‖v‖2w + ‖q‖2w) ≤ C Gw(v, q; 0).

Thus we have

‖v‖2W = ‖v‖2w + ‖∇ · v‖2w + ‖∇×v‖2w ≤ C Gw(v, q; 0),

which completes the theorem.
Define the discrete least-squares functionals using the discrete Chebyshev norm

as

Gw,N (v, q; f) = ‖f +∇ · v − b · v − c0 q‖2w,N + ‖v −∇q‖2w,N + ‖∇×v‖2w,N(4.14)

for (v, q) ∈ WN × VN . The discrete least-squares problem associated with (4.14)
is then to minimize the quadratic functional Gw,N (v, q; f) over WN × VN , and the
corresponding variational problem (Chebyshev pseudospectral collocation problem) is
to find (uN , pN ) ∈WN × VN such that

aw,N (uN , pN ;v, q) = fw,N (v, q) ∀ (v, q) ∈WN × VN ,(4.15)

where the discrete bilinear form aw,N (·; ·) and linear form fw,N (·) are given by

aw,N (uN , pN ;v, q) = 〈∇ · uN − b · uN − c0 pN ,∇ · v − b · v − c0 q〉w,N
+ 〈uN −∇pN ,v −∇q〉w,N + 〈∇×uN ,∇×v〉w,N

(4.16)

and

fw,N (v, q) = −〈f,∇ · v − b · v − c0 q〉w,N .(4.17)

The continuity and coercivity of the discrete functional Gw,N (·; 0) are given in
the following theorem.

Theorem 4.5. Assume that (A0) holds. There exists a constant C such that

1

C

(‖v‖2W + ‖q‖21,w
) ≤ Gw,N (v, q; 0) ≤ C

(‖v‖2W + ‖q‖21,w
)

(4.18)

for all (v, q) ∈WN × VN .
Proof. Since v − ∇q ∈ Q2

N and ∇ · v − b · v − c0 q, ∇×v ∈ PN , we can easily
show from (2.6) that

Gw(v, q; 0) ≤ Gw,N (v, q; 0) ≤ 4Gw(v, q; 0).
Now, the bounds (4.18) are an immediate consequence of Theorem 4.4.

Applying again the same techniques in [1] and [23] to our case, we show the
spectral convergence for the Chebyshev pseudospectral least-squares method.

Theorem 4.6. Assume that (A0) holds and that the solution (u, p) of (4.5) is
in Hs

w(Ω)
3 for some s ≥ 1 and f ∈ H�

w(Ω) for some integer $ ≥ 2. Let (uN , pN ) ∈
WN × VN be the discrete solution of problem (4.15). Then there exists a constant C
such that

‖u− uN‖W + ‖p− pN‖1,w ≤ C
[
N1−s(‖u‖s,w + ‖p‖s,w) +N−�‖f‖�,w

]
.(4.19)
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Proof. Using the first Strang lemma, which uses the coercivity of aw,N (·; ·) and
the continuity of aw(·; ·), one may easily verify from [23] (or see [1, p. 88]) that

C
(‖u− uN‖W + ‖p− pN‖1,w

) ≤ inf
(v,q)∈WN×VN

[
‖u− v‖W + ‖p− q‖1,w

+ sup
(w,r)∈WN×VN

|aw(v, q;w, r)− aw,N (v, q;w, r)|
‖w‖W + ‖r‖1,w

]
+ sup

(w,r)∈WN×VN

|fw(w, r)− fw,N (w, r)|
‖w‖W + ‖r‖1,w .

(4.20)

If we take v ∈WN−1 and q ∈ VN−1, we see from (2.5) that

aw(v, q;w, r) = aw,N (v, q;w, r) ∀ (w, r) ∈WN × VN .

Using the inequality (2.9) yields

|fw(w, r)− fw,N (w, r)| ≤ C N−� ‖f‖�,w ‖∇ ·w − b ·w − c0 r‖w, $ ≥ 2.

Since

‖∇ ·w − b ·w − c0 r‖w ≤ C
(‖w‖W + ‖r‖1,w

) ∀ (w, r) ∈WN × VN ,

we have

|fw(w, r)− fw,N (w, r)|
‖w‖W + ‖r‖1,w ≤ C N−� ‖f‖�,w, $ ≥ 2.

Now, using (2.8), we deduce the conclusion (4.19).

5. Implementation and preconditioning.

5.1. Implementation. The computation for problems (3.9) and (4.15) can be
easily implemented by using the one-dimensional pseudospectral matrix DN asso-
ciated with the N + 1 values {p(ξj)}Nj=0 and the N + 1 values {(∂Np)(ξj)}Nj=0 of
the pseudospectral derivative of p at LGL or CGL points (see [6], [23]). In this
section we give the implementation of Legendre pseudospectral least-squares approx-
imation. One may similarly obtain the implementation for the Chebyshev approx-
imation. First, we reorder the LGL points from bottom to top and then left to
right such that xk(N+1)+l := xkl = (ξk, ξl) for k, l = 0, 1, . . . , N . The basis func-
tions ψk(N+1)+l(x, y) := ψkl(x, y) = φk(x)φl(y) and quadrature weights wk(N+1)+l :=
wkl = wkwl are reordered accordingly. Then two-dimensional Legendre pseudospec-

tral matrices Sx and Sy related to {(∂xp)(xj)}(N+1)2−1
j=0 and {(∂yp)(xj)}(N+1)2−1

j=0 of
the pseudospectral partial derivatives of p, respectively, are given by the tensor prod-
ucts of the identity matrix IN and one-dimensional Legendre pseudospectral matrix
DN such that

Sx = DN ⊗ IN and Sy = IN ⊗DN .

Indeed, the (i, j)-entries of Sx and Sy are given by ∂xψj(xi) and ∂yψj(xi), respectively.
Let W = diag{wi} be the diagonal weight matrix.

Let AN be the matrix corresponding to the bilinear form aN (·; ·). Then AN is
a symmetric 3 × 3 block matrix. The same basis functions ψj , except for the basis
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functions corresponding to nodes on the boundaries where the solution is required to
be 0, are used to approximate all components of the function (uN , pN ) ∈WN × VN .
Thus, it is more convenient to assemble the matrix A∗N using all basis functions of QN
and ignoring the boundary conditions. Then, the matrix AN can be obtained from
A∗N by eliminating the rows and columns relative to the nodes on the appropriate
boundaries. Hence, we will hereafter regard WN × VN as Q3

N in order to give a
convenient description of assembly for AN . We denote by ŝ the vector containing the
nodal values of a continuous function s, that is,

ŝ = (s(x0), . . . , s(x(N+1)2−1))
T .

Using the expressions of

∂tp(xi) =

(N+1)2−1∑
j=0

∂tψj(xi)p(xj) = (Stp̂)i for t = x or y and p ∈ QN ,

we have that, for every p, q ∈ QN ,
〈p, q〉N = q̂T W p̂ and 〈∂t1p, ∂t2q〉N = (St2 q̂)

T W (St1 p̂),

where t1 and t2 are x or y. Then we obtain

〈u−∇p, v −∇q〉N = (v̂1 − Sxq̂)
T W (û1 − Sxp̂) + (v̂2 − Syq̂)

T W (û2 − Syp̂),

〈∇ · u− b · u− c0 p, ∇ · v − b · v − c0 q〉N
= (Sxv̂1 + Syv̂2 − b1v̂1 − b2v̂2 − c0q̂)

T W (Sxû1 + Syû2 − b1û1 − b2û2 − c0p̂),

〈∇×u, ∇×v〉N = (−Syv̂1 + Sxv̂2)
T W (−Syû1 + Sxû2),

and

〈f, ∇ · v − b · v − c0 q〉N = (Sxv̂1 + Syv̂2 − b1v̂1 − b2v̂2 − c0q̂)
T W f̂ ,

where u = (u1, u2)
T , v = (v1, v2)

T , and b = (b1, b2)
T . Now, the symmetric matrix

A∗N =
(
Aij
)
i,j=1,2,3

corresponding to aN (·; ·) consists of
A11 = STx W Sx + STy W Sy +W − b1(S

T
x W +W Sx) + b21 W,

A12 = STx W Sy − STy W Sx − b2S
T
x W + b1b2 W − b1 W Sy,

A13 = −W Sx − c0 S
T
x W + b1c0 W,

A22 = STx W Sx + STy W Sy +W − b2(S
T
y W +W Sy) + b22 W,

A23 = −W Sy − c0 S
T
y W + b2c0 W,

A33 = STx W Sx + STy W Sy + c20 W.

Also, the vector F ∗N corresponding to fN (v, q) consists of

F ∗N =

 −STx W + b1 W
−STy W + b2 W

c0 W

 f̂ .

Let AN and FN be the matrix and vector eliminated rows and columns from A∗N and
F ∗N relative to the nodes on the boundary where the solution is required to be 0. Now,
we are led to the matrix problem associated with (3.9):

AN X = FN ,(5.1)

where X = (û1, û2, p̂)
T .
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5.2. Preconditioning. The spectral system (5.1) is generally handled with it-
erative methods due to the topological structure of AN , which makes direct methods
unsuitable. One may employ a preconditioning conjugate gradient method for an ef-
ficient implementation of a linear system (5.1). In this section we use a finite element
preconditioner generated by bilinear elements based on the Gauss–Lobatto nodes,
which can be found in [7], [8], [19], [20], and [24].

Let BN be the space of continuous piecewise bilinear functions with respect to

the grid induced by the Gauss–Lobatto nodes {xi}(N+1)2−1
i=0 , and let {ϕi}(N+1)2−1

i=0 be
its nodal basis functions of BN . Define the interpolation operator JN : QN → BN by

JN q =

(N+1)2−1∑
j=0

q(xj)ϕj ∈ BN for given q =

(N+1)2−1∑
j=0

q(xj)ψj ∈ QN .

Let JN :WN × VN → B3
N be the interpolation operator given by

JN (v1, v2, q) = (JN v1, JN v2, JN q) ∀ (v1, v2, q) ∈WN × VN .

Then, for the Legendre approximation we have from [20] that

1

C
‖(v, q)‖1 ≤ ‖JN (v, q)‖1 ≤ C ‖(v, q)‖1 ∀ (v, q) ∈WN × VN ,

and for the Chebyshev approximation we have from [19] that

1

C
‖(v, q)‖1,w ≤ ‖JN (v, q)‖1,w ≤ C ‖(v, q)‖1,w ∀ (v, q) ∈WN × VN .

For the Legendre approximation, from (3.12) we have the following equivalent relation:

1

C
‖JN (v, q)‖1 ≤ aN (v, q; v, q) ≤ C ‖JN (v, q)‖1 ∀ (v, q) ∈WN × VN .(5.2)

Let BN := JN (WN × VN ) be the subspace of B
3
N . Let the linear operator L be

defined by Lp = −∆p+ xb · ∇p+ c0p. The idea of optimal preconditioning in [16] is
to consider preconditioning by the leading term Bp = −∆p+ βp for L, in which the
choice of a nonnegative β is discussed so that B remains an optimal preconditioner.
In this paper, using such ideas, we propose a finite element preconditioner. Let RN :=
diag(R1, R2, R3) be the block diagonal stiffness matrix, where Ri is the stiffness matrix
based on the continuous piecewise bilinear element space with respect to the operator
Bp := −∆p+βp, with the boundary conditions shared with the ith component space
of BN , where β is a nonnegative constant. By (5.2) the matrix RN is spectrally
equivalent to AN for any β ≥ 0, and thus the spectral condition number of the
preconditioned matrix R−1

N AN is O(1) in comparison with the spectral condition
number O(N3) of AN (see [1], [23]). In the next section, we perform some numerical
experiments to find an optimal β which leads to the smallest spectral condition number
of the preconditioned matrix R−1

N AN .
For the Chebyshev approximation, we cannot guarantee the norm equivalence

1

C
‖(v, q)‖21,w ≤ ‖v‖2W + ‖q‖21,w ≤ C ‖(v, q)‖21,w ∀ (v, q) ∈WN × VN ,(5.3)

but we will propose a block diagonal finite element preconditioner based on the
Chebyshev-weighted inner product. In the following section, we give some numer-
ical evidence that the block diagonal finite element preconditioner R−1

w,N associated
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Fig. 1. Spectral condition numbers of L16 = R−1
16 A16 for the Legendre cases (a) b = (6, 9)t,

c0 = 0, β = γ
√
b21 + b22; (b) b = (0, 0)t, c0 = −10, β = γ |c0|.

with Bp := −∆p + βp can be a good preconditioner, where the optimal choice of β
is also discussed numerically. The spectral condition number of the preconditioned
matrix R−1

w,N Aw,N seems to be bounded independently of N in comparison with the

spectral condition number O(N4) of Aw,N (see [1], [23]). Also, one may consider a

preconditioner R̃−1
w,N with respect to the norm ‖v‖2W + ‖q‖21,w. However, R̃w,N is not

a block diagonal matrix, and it is not easy to invert R̃w,N , though it is spectrally
equivalent to Aw,N .

6. Numerical results. In this section, we present numerical experiments for
the first-order system (3.1) associated with the elliptic partial differential equation −∇ · ∇p+ b · ∇p+ c0 p = f in Ω,

p = 0 on ΓD,
n · ∇p = 0 on ΓN .

Let Ω = (−1, 1)2. We take ΓD := ({−1}×[−1, 1])∪([−1, 1]×{−1}) and ΓN = ∂Ω\ΓD
for the Legendre approximation, and ΓD = ∂Ω and ΓN = ∅ for the Chebyshev
approximation. Denote by (uN , pN ) the discrete solution to (3.9) or (4.15), and by
eu = u− uN and ep = p− pN the errors.

6.1. Legendre pseudospectral approximation. We give the numerical ex-
periments by Legendre pseudospectral least-squares approximation (3.9). Using the
idea in [16], we first study the performance of the preconditioner R−1

N for the system
(5.1), where RN is the block diagonal finite element stiffness matrix based on the con-
tinuous piecewise bilinear element space associated with the operator Bp = −∆p+βp.
The constant β will be used to reduce the condition number of the preconditioned
system for our examples. Define β = γ

√
b21 + b22 if b = (b1, b2)

t �= 0, and β = γ|c0| if
b = (b1, b2)

t = 0. Let LN be the preconditioned matrix, i.e., LN =: R−1
N AN .

In Figure 1, we plot the spectral condition numbers of L16 along with γ for two
different cases: (a) b = (6, 9)t, c0 = 0 and (b) b = (0, 0)t, c0 = −10. Numerical
experiments indicate that the spectrum deforms smoothly as γ increases from zero to
one for both cases, in which the best choice of γ is near 1. With γ = 1, we report the
spectral condition numbers of LN and AN in Table 1 for several convection coefficients
b = (0, 0)t, (2, 3)t, (4, 6)t, (6, 9)t and c0 = 0, and in Table 2 for c0 = −1,−10 and
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Table 1
Condition numbers for c0 = 0 and β =

√
b21 + b22.

bt = (0, 0) bt = (2, 3) bt = (4, 6) bt = (6, 9)

N LN AN LN AN LN AN LN AN
4 11 177 28 129 87 246 199 448

8 14 710 31 393 73 503 147 689

12 15 1753 32 906 70 977 141 1172

16 15 3695 33 1864 69 1890 142 1986

20 16 6818 33 3419 69 3433 142 3541

Table 2
Condition numbers for bt = (0, 0) and β = |c0|.

c0 = −1 c0 = −10
N LN AN LN AN
4 911 7552 4080 7817

8 1094 29587 20595 69107

12 1173 71838 19165 120819

16 1215 150524 18885 202646

20 1241 277620 19107 357455

b = (0, 0)t. Both tables show that the spectral condition numbers of AN behave
like O(N3) for all cases, but those of LN are bounded regardless of the degree N of
polynomials, and they are increasing as the size

√
b21 + b22 of convection coefficient b

or the absolute value |c0| of negative reaction coefficient c0 increases.
We now present the discretization errors along with several coefficients b and c0.

The exact solutions p and u = ∇p that we take are

p = sin

(
7π

4
(x+ 1)

)
sin

(
7π

4
(y + 1)

)
,

u =


7π

4
cos

(
7π

4
(x+ 1)

)
sin

(
7π

4
(y + 1)

)
7π

4
sin

(
7π

4
(x+ 1)

)
cos

(
7π

4
(y + 1)

)
 .

The present solutions satisfy the given boundary conditions and, by substituting the
solutions into (3.1), we have the right-hand side f along with various coefficients b
and c0. Table 3 shows that the spectral errors decay exponentially with respect to N ,
independent of the coefficients b and c0.

6.2. Chebyshev pseudospectral approximation. We give the numerical ex-
periments obtained by Chebyshev pseudospectral least-squares approximation (4.15).
Let Aw,N be the matrix associated with the bilinear form aw,N (·, ·). As a precon-
ditioner for Aw,N , we similarly take the inverse of the block diagonal finite element
Chebyshev-weighted stiffness matrix Rw,N associated with the operator Bp = −∆p+
βp and based on the continuous piecewise bilinear element space with two-dimensional
CGL grid points. Define β = γ

√
b21 + b22 if b = (b1, b2)

t �= 0, and β = γ|c0| if
b = (b1, b2)

t = 0. Let Lw,N be the preconditioned matrix, i.e., Lw,N =: R−1
w,N Aw,N .

We first give the performance of the preconditioner R−1
w,N . In Figure 2, we also

plot the spectral condition numbers of Lw,16 along with γ for two different cases: (a)
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Table 3
Discretization errors for the Legendre approximation.

bt c0 N ‖ep‖N ‖∇ep‖N ‖eu‖N ‖∇eu‖N
(0,0) 0 4 1.2200e+00 4.7629e+00 9.7112e+00 5.5725e+01

8 1.3455e−02 1.5819e−01 2.2849e−01 2.3819e+00

12 5.0563e−05 7.7413e−04 7.1000e−04 1.0296e−02
16 4.8412e−08 9.3810e−07 6.2503e−07 1.1763e−05
20 7.0796e−11 7.7338e−10 4.9643e−10 7.0516e−09

(6, 9) 0 4 1.1591e+00 6.4543e+00 7.2067e+00 4.2593e+01

8 2.4715e−02 2.4829e−01 2.9515e−01 3.0774e+00

12 6.6759e−05 9.7210e−04 9.8871e−04 1.4567e−02
16 5.7087e−08 1.0802e−06 9.4188e−07 1.7996e−05
20 8.7126e−11 8.3847e−10 6.0020e−10 9.7925e−09

(0, 0) −10 4 4.3143e+00 2.6675e+01 7.8625e+00 4.8069e+01

8 1.4433e−01 1.5830e+00 2.6797e−01 2.6751e+00

12 5.4262e−04 8.0872e−03 7.9288e−04 1.1163e−02
16 5.2702e−07 1.0072e−05 6.7266e−07 1.2412e−05
20 2.2602e−10 4.9411e−09 5.8513e−10 7.7477e−09
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Fig. 2. Spectral condition numbers of Lw,16 = R−1
w,16Aw,16 for the Chebyshev cases (a) b =

(6, 9), c0 = 0, β = γ
√
b21 + b22; (b) b = (0, 0), c0 = −10, β = γ |c0|.

b = (6, 9)t, c0 = 0 and (b) b = (0, 0)
t, c0 = −10. We have the similar type of spectral

condition numbers as in the Legendre case. The figure shows that the spectrum
smoothly deforms as γ increases from zero to 0.7 for case (a) and to 0.3 for case (b);
i.e., the best choice of γ is 0.7 for case (a) and 0.3 for case (b). We report the spectral
condition numbers of Lw,N and Aw,N in Table 4 for b = (0, 0)t, (2, 3)t, (4, 6)t, (6, 9)t

and c0 = 0 with γ = 0.7, and in Table 5 for c0 = −1,−10 and b = (0, 0)t with
γ = 0.3. Both tables show that the spectral condition numbers of Aw,N behave like
O(N3) for all cases, but those of Lw,N are bounded regardless of the degree N of

polynomials, and they are increasing as the size
√
b21 + b22 of convection coefficient b

or the absolute value |c0| of negative reaction coefficient c0 increases. Tables 4 and 5
show that the condition numbers of Aw,N behave like O(N4) for all cases, but those
of Lw,N are like O(1). These numerical experiments demonstrate that R−1

w,N can be
a good preconditioner even though we could not prove the spectral equivalence (5.3).
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Table 4
Condition numbers for c0 = 0 and β = γ

√
b21 + b22 with γ = 0.7.

bt = (0, 0) bt = (2, 3) bt = (4, 6) bt = (6, 9)

N Lw,N Aw,N Lw,N Aw,N Lw,N Aw,N Lw,N Aw,N

4 18 50 135 218 103 113 109 87

8 27 541 246 2473 1684 7432 4288 9955

12 31 2508 268 10882 1805 31049 7147 63531

16 33 7645 277 32440 1851 90316 7160 180232

20 35 18305 282 76622 1877 210555 7232 415418

Table 5
Condition numbers for bt = (0, 0) and β = γ |c0| with γ = 0.3.

c0 = −1 c0 = −10
N Lw,N Aw,N Lw,N Aw,N
4 36 96 752 1315

8 51 1054 5405 39955

12 55 4904 5012 175905

16 57 14985 5059 532050

20 58 35931 5088 1269432

Table 6
Discretization errors for the Chebyshev approximation.

bt c0 N ‖ep‖w,N ‖∇ep‖w,N ‖eu‖w,N ‖∇eu‖w,N
(0,0) 0 4 2.7814e+00 1.8449e+01 3.1952e+01 1.8336e+02

8 7.1988e−02 1.0248e+00 1.5477e+00 1.9066e+01

12 3.3955e−04 9.6570e−03 9.9796e−03 1.8252e−01
16 4.8428e−07 2.1596e−05 1.6699e−05 4.1045e−04
20 2.8875e−10 1.8534e−08 1.0792e−08 3.3829e−07

(6,9) 0 4 4.5616e+00 2.2512e+01 2.8557e+01 1.8355e+02

8 2.2940e−01 1.6986e+00 2.1323e+00 2.3336e+01

12 3.4315e−04 9.3054e−03 9.4352e−03 1.7511e−01
16 4.6830e−07 2.1125e−05 1.5771e−05 3.9683e−04
20 2.9720e−10 1.8699e−08 1.0337e−08 3.3173e−07

(0,0) −10 4 2.2412e+00 1.4867e+01 2.5448e+01 1.5450e+02

8 3.6606e−01 4.1592e+00 1.9013e+00 2.1507e+01

12 1.9093e−03 3.4635e−02 1.1251e−02 1.9454e−01
16 2.6919e−06 6.5936e−05 1.8115e−05 4.2733e−04
20 1.4600e−09 4.6310e−08 1.1407e−08 3.4721e−07

Finally, we present the discretization errors with the following exact solutions p
and u = ∇p:

p = sin 2πx sin 2πy, u =

(
2π cos 2πx sin 2πy

2π sin 2πx cos 2πy

)
.

Table 6 shows that the spectral errors decay exponentially with respect to N ,
independent of the coefficients b and c0.

7. Conclusion. The analysis and computations for combining least-squares tech-
niques and collocation methods using high-order elements have been shown for elliptic
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boundary value problems like (1.1). We saw that the continuous and discrete least-
squares functionals are equivalent to a product H1-norm, and we proved the spectral
convergence consequently for the Legendre case. Hence the block finite element pre-
conditioner corresponding to −∆p+ βp was demonstrated to be numerically optimal
by emphasizing the importance of the choice of β, adopting the discussion in [16] for a
finite difference case. For the Chebyshev case, convergence analysis was provided and
the finite element preconditioner, which seems to be numerically optimal, was devel-
oped even though the continuous and discrete least-squares functionals were not shown
to be equivalent to a product H1

w-norm but to a product div-curl L2
w-norm for the flux

variable and H1
0,w-norm for a primitive variable. In the near future we believe that it

may be possible to analyze such an equivalence. The success of finite element least-
squares (or fosls) can be fused over the Legendre (Chebyshev) pseudospectral method
and the spectral method with a staggered grid for various kinds of partial differential
equations. This fusion approach opens many possible applications. In particular, a
practical application of these developed theories to transport-dominated problems by
setting c0 = 0 and making |b| large needs to be studied (see [22]). Incidentally, the
neutron transported problem was analyzed for a finite element least-squares method
in [17] and [18].

Acknowledgements. We would like to thank the referees, whose many valuable
comments and corrections improved the paper.
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Abstract. We consider the nonlinear system of equations that results from the Van Leer flux
vector-splitting discretization of the one dimensional Euler equations. This nonlinear system is
linearized at the discrete solution. The main topic of this paper is a convergence analysis of block-
Gauss–Seidel methods applied to this linear system of equations. Both the lexicographic and the
symmetric block-Gauss–Seidel method are considered. We derive results which quantify the quality
of these methods as preconditioners. These results show, for example, that for the subsonic case
the symmetric Gauss–Seidel method can be expected to be a much better preconditioner than the
lexicographic variant. Sharp bounds for the condition number of the preconditioned matrix are
derived.
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1. Introduction. In this paper we consider iterative methods for discrete sta-
tionary Euler equations. Two important solution approaches known from the liter-
ature are the following. First, one can use some “simple” explicit iterative method,
like a block nonlinear Gauss–Seidel method or a Runge–Kutta method (obtained by
introducing an artificial time variable), which then is accelerated by multigrid tech-
niques (e.g., [12, 13, 16, 20, 25, 27]). The second approach is based on linearization
combined with fast iterative solvers for large sparse linear systems, such as multigrid
solvers or (preconditioned) Krylov-subspace methods. A typical example of this is the
Newton–Krylov technique from [5, 14, 15, 18, 19, 24]. In the literature one can find
many studies in which different iterative solution techniques for solving stationary
(or instationary) discrete Euler equations are compared (e.g., [17, 26]). There are,
however, as far as we know, no rigorous theoretical results available which yield any
insight into convergence properties of certain iterative methods applied to (linearized)
discrete Euler equations. In this paper a first step towards such theoretical results is
made.

In this paper, as a model problem we consider the stationary Euler equations that
model one dimensional subsonic and transonic flows through a nozzle [11, 21], and
use the Van Leer flux vector-splitting method for discretization. The discrete non-
linear problem is linearized at the discrete solution. We apply a GMRES method
with block-Gauss–Seidel preconditioning to this Jacobian linear problem. In the
Gauss–Seidel preconditioner the three unknowns at each grid point are collected in
a block and updated simultaneously. (This is also often called a collective Gauss–
Seidel method.) Both a lexicographic (LGS) and a symmetric (SGS) Gauss–Seidel
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method are used. We emphasize that we do not recommend using such an itera-
tive method for these one dimensional linearized Euler equations, because the Jaco-
bian matrix has a block-tridiagonal structure with 3 × 3 blocks, and thus a direct
solver is efficient for this problem. Our main interest, however, is not the efficient
solution of these one dimensional Euler equations, but a better understanding of
convergence properties of the block-Gauss–Seidel method applied to discrete Euler
equations.

As is well known, direction of flow essentially influences not only the discretiza-
tion of Euler equations, but also the convergence of iterative methods. If the flow is
subsonic, then even in the one dimensional case the LGS method cannot be consis-
tent with the flow direction. In one dimensional flow one has only two directions, and
thus the SGS method can be expected to be a fast iterative solver. These elemen-
tary observations are part of common knowledge. However, even for one dimensional
flows many questions related to Gauss–Seidel preconditioning are still unanswered.
As will be illustrated by numerical experiments, for GMRES with block-Gauss–Seidel
preconditioning there are some interesting dependencies of the rate of convergence
on the Mach number and the mesh size. As far as we know, there is no analysis
available which explains these dependencies. The main topic of the paper is a theo-
retical analysis in which we try to explain some of the convergence phenomena that
are observed in the numerical experiments. In this analysis we use the technique
of “frozen coefficients”; i.e., we linearize the discrete Euler equations at a function
triple (ρ, u, p) (density, velocity, pressure) which is constant as a function of the space
variable and is such that the solution is subsonic. We consider the LGS and SGS
methods applied to this problem and derive results which quantify the quality of
these methods as a preconditioner. Our results show, for example, that the SGS
method can be expected to be a (much) better preconditioner than the LGS method.
Sharp bounds for the condition number of the preconditioned matrix are derived,
which show that in case of the SGS preconditioner for a large range of Mach num-
bers M ∈ (M0, 1) this condition number increases only (very) slowly if the grid size
decreases.

We realize that although some first theoretical results are given in this paper, we
are still far from a complete theoretical convergence analysis of Gauss–Seidel meth-
ods applied to linearized discrete one dimensional Euler equations. The theoretical
analysis presented supports the numerical observation that for many subsonic and
transonic one dimensional linearized Euler equations the SGS method is a (very) ef-
fective preconditioner. However, as already noted above, in the one dimensional case
a direct solver is the best choice. In two and three dimensional problems, however,
block-Gauss–Seidel techniques or other basic iterative methods (ILU) combined with
Krylov subspace methods can result in very efficient solvers [3, 4, 6, 19]. Clearly, in
higher dimensions flow has many directions to go and the relation between a Gauss–
Seidel-type splitting and direction of flow becomes much more complicated. This
then makes the analysis of this class of iterative methods much more difficult, as in
the one dimensional case. We do not claim that our analysis can easily be applied
to the much more interesting higher dimensional case. Nevertheless, starting from
the results presented in this paper we do see some possibilities for the analysis of a
two dimensional problem. These are briefly discussed in Remark 3 at the end of the
paper.

2. The one dimensional nozzle flow and its discretization. We consider
the stationary quasi–one dimensional Euler flow in a channel of varying cross section
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S(x) (x ∈ R). This problem can be modeled by the equations (cf. [11, 21])
d(ρuS)
dx = 0,

d(ρu2S+pS)
dx = pdSdx ,

d(ρuHS)
dx = 0,

with density ρ, velocity u, pressure p, and stagnation enthalpy H = E + p
ρ . Further

relations are

E = e+
1

2
u2, p = (γ − 1)ρe.

Here e denotes the internal energy and γ is a gas parameter (ratio of specific heats;
γ = 1.4 for air). As unknowns one can take the primitive variables V := (ρ, u, p)T . We
introduce the conservative variables U , the source term QS , and the flux function f :

U =

u1

u2

u3

 := S

 ρ
ρu
ρE

 , QS(U) :=

 0
dS
dx

0

 =

 0

(γ − 1)(u3 − 1
2
u2

2

u1
)d lnS

dx

0

,

f(U) := S

 ρu
ρu2 + p
ρuH

 =

 u2

1
2 (3− γ)

u2
2

u1
+ (γ − 1)u3

γ u2u3

u1
− 1

2 (γ − 1)
u3

2

u2
1

.
In compact form the problem can be represented as

f(U)x = QS(U).(2.1)

Note that for S(x) ≡ 1 we obtain the homogeneous one dimensional Euler equations.
Formulas for the transformation between the primitive variables V and the conser-
vative variables U are known (cf. [11]). Important quantities are the speed of sound

c = (γpρ−1)
1
2 and the Mach number M = uc−1. In our experiments we take the

following nozzle with throat at x = 1:

S(x) =

{
1 + 1 1

2

(
1− 1

5 (x+ 4)
)2

for 0 ≤ x ≤ 1,

1 + 1
2

(
1− 1

5 (x+ 4)
)2

for 1 ≤ x ≤ 4.
(2.2)

Nozzle flows are well-known test cases for steady-state computations (cf. [11, 13]).
By specifying certain problem parameters (inflow Mach number and critical throat
section), the problem (2.1) can have several types of solutions: a smooth subsonic
flow, a smooth hypersonic flow, a transonic flow without shocks, or a transonic flow
with shocks. Moreover, these solutions depend on only one parameter (for example,
the Mach number M = M(x)), and a simple procedure for computing the exact
solution of the continuous problem is available (cf. [11, section 16.6.4]). For two cases
the function x→M(x) corresponding to the exact solution of the problem (2.1), (2.2)
is shown in Figures 2.1 and 2.2. In Figure 2.1 we have a smooth subsonic flow with
critical throat section S∗ = 0.5. The solution in Figure 2.2 corresponds to a transonic
flow with a critical throat value S∗ = 1, which equals the throat value S(1), and a
shock at x = 3.
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Fig. 2.1. x → M(x) for a smooth sub-
sonic flow.
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Fig. 2.2. x → M(x) for a transonic flow
with shock.

We now outline the numerical solution method for this test problem (for which
the exact solution is available). We consider only problems with subsonic inflow and
outflow conditions (0 < M(0) < 1 and 0 < M(4) < 1). For the boundary conditions
we prescribe values for ρ and u at the inflow boundary x = 0, and for p at the outflow
boundary x = 4. We use a uniform grid xi = ih, 0 ≤ i ≤ n + 1, with a mesh size
h = 4/(n+ 1). We introduce the discrete unknowns

Ui :=

u1(xi)
u2(xi)
u3(xi)

 , U :=
(
Ui
)
0≤i≤n+1

.

For the discretization at the boundaries we use compatibility relations as discussed
in [11, section 19.1.2]; i.e., at the inflow boundary we discretize with one-sided differ-
ences the equation (u − c)

(
du
dx − 1

ρc
dp
dx

)
= ucd lnS

dx that corresponds to the left-going
characteristic. Similarly, the two right-going characteristic equations at x = 4 are
discretized using one-sided differences. Together with the prescribed boundary values
this yields equations

F0 : R
6 → R

3, F0(U0, U1) = 0,(2.3)

Fn+1 : R
6 → R

3, Fn+1(Un, Un+1) = 0.(2.4)

For the discretization in the interior grid points we use an upwind method based on
the Van Leer flux vector-splitting (see [11, 28]):

f(V ) = f+(V ) + f−(V ),

f+(V ) :=
ρ

4c
(u+ c)2

 1
(γ−1)u+2c

γ
((γ−1)u+2c)2

2(γ2−1)

 if − 1 ≤M ≤ 1,

f+ := 0 if M ≤ −1, f+ := f if M ≥ 1.

(2.5)

We use backward differences for the approximation of f+(U)x, and forward differences
for the approximation of f−(U)x. This yields the equations

Fi(Ui−1, Ui, Ui+1) := −f+(Ui−1) + f+(Ui)− f−(Ui) + f−(Ui+1)− hQS(Ui) = 0

(2.6)
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for i = 1, . . . , n. The equations (2.3), (2.4), and (2.6) yield a nonlinear system of
equations

F : R
3(n+2) → R

3(n+2), F (U) = 0.(2.7)

For the iterative solution of this problem we apply the Newton method. The Jacobian
matrices DF (U) ∈ R

3(n+2)×3(n+2) have a block-tridiagonal structure. Hence, the lin-
ear systems in the Newton iteration can be solved efficiently using a direct method.
The main topic of this paper is the analysis of block-Gauss–Seidel iterative methods
applied to these linear systems. We emphasize that we do not suggest using such
a Gauss–Seidel method as an efficient solver in this one dimensional setting. The
analysis for the one dimensional case is a first step towards a better theoretical un-
derstanding of basic iterative methods applied to two or three dimensional linearized
Euler equations.

3. Numerical experiments. In this section we show results of a few numer-
ical experiments which illustrate some interesting phenomena related to the rate of
convergence of block-Gauss–Seidel methods. Let U∗h be the solution of the discrete
problem (2.7). We consider the linear system

DF (U∗h)v = b.(3.1)

In the experiments we take b = (1, . . . , 1)T , and for the starting vector in the iterative
method we use v0 = 0. It turns out that in many cases (often due to the treatment
of the boundary conditions) the block-Gauss–Seidel method does not converge. It
turns out, however, that the method is a (very) good preconditioner. Hence, we
use the block-Gauss–Seidel method in combination with a Krylov subspace method.
We choose the GMRES(m) iterative method. Experiments with BiCGSTAB yielded
similar results.

We use the LGS and SGS methods. In the GMRES method we make a restart
after m = 20 iterations. The choice m = 20 is rather arbitrary, however; for other
values of m ∈ [10, 40] we observe similar phenomena. We use the GMRES(m) im-
plementation in MATLAB. In a first experiment, as a comparison for other results,
we consider a standard very simple model problem. We take the one dimensional
diffusion equation −uxx = g discretized by second order differences. This results in
an n×n tridiagonal matrix tridiag(−1, 2,−1). For different n-values the convergence
history of the SGS-GMRES(20) iterative solver applied to this problem is shown in
Figure 3.1. For the linearized compressible Euler equations (3.1) we show results for
the following problems.

Problem 1. We consider a problem with a smooth subsonic solution, as shown
in Figure 2.1. The convergence history of the SGS-GMRES(20) method is shown in
Figure 3.2.

Problem 2. We take a smooth subsonic flow with larger Mach numbers than in
Problem 1. The solution is shown in Figure 3.3 (with critical throat value S∗ = 0.85).
The corresponding convergence history is presented in Figure 3.4.

Problem 3. We consider a transonic flow with a shock, as shown in Figure 2.2.
The convergence behavior of the SGS-GMRES(20) solver is shown in Figure 3.5. If
instead of SGS we use the LGS preconditioner, we obtain the results in Figure 3.6.

From these experiments we observe that in all three problems the rate of conver-
gence of the SGS-GMRES(20) method is (much) higher than for the one dimensional
discrete Poisson equation. We also see that in Problem 2 (subsonic flow with rela-
tively high Mach numbers) the rate of convergence is much higher than in Problem



GAUSS–SEIDEL PRECONDITIONER FOR EULER EQUATIONS 1393

0 100 200 300 400 500 600 700
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

number of GMRES iterations

re
si

du
al

n=50

n=100
n=200

Fig. 3.1. SGS-GMRES(20) method ap-
plied to a one dimensional Poisson equation.
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Fig. 3.2. Problem 1: SGS-GMRES(20)
method for the subsonic flow in Figure 2.1.
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Fig. 3.3. Problem 2: x → M(x) for a
smooth subsonic flow.
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Fig. 3.4. Problem 2: SGS-GMRES(20)
method for the subsonic flow in Figure 3.3.
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Fig. 3.5. Problem 3: SGS-GMRES(20)
method for the transonic flow in Figure 2.2.
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Fig. 3.6. Problem 3: LGS-GMRES(20)
method for the transonic flow in Figure 2.2.

1. In the case of the transonic flow in Problem 3 the rate of convergence of the
SGS-GMRES(20) method is even higher. We also note that the results presented in
Figures 3.4 and 3.5 show a weak dependence of the rate of convergence on the mesh
size h. Finally note that in Problem 3 the LGS-GMRES(20) method is much slower
than the SGS-GMRES(20) method.
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In the next section we present an analysis which yields some theoretical results
on the quality of the block-Gauss–Seidel preconditioner. These theoretical results
yield a better understanding of the convergence phenomena that are observed in the
numerical experiments above.

4. Convergence analysis of the block-Gauss–Seidel method. For the (block)
Gauss–Seidel method many convergence results are known in the literature (e.g., see
[1, 2, 7, 8, 23]). These results apply to certain classes of matrices, like, for example,
symmetric positive definite matrices or M -matrices. We did not find a convergence
analysis which yields a satisfactory result when applied to the linearized discrete one
dimensional Euler equations. In this section we present an analysis that partly fills
this gap.

For the theoretical analysis we consider the homogeneous Euler equations f(U)x =
0 with a constant solution (ρ(x), u(x), p(x)) = (ρ, u, p) =: V̄ for all x. We consider
only data with

ρ > 0, p > 0, M ∈ (0, 1), γ := 1.4.(4.1)

The corresponding solution vector in conservative variables is denoted by Ū∗. The
Van Leer discretization method as described in section 2 results in a nonlinear system
as in (2.3), (2.4), (2.6) with QS = 0. The treatment of the boundary conditions (first
order accurate) is such that

F0(Ū
∗
0 , Ū

∗
1 ) = 0, Fn+1(Ū

∗
n, Ū

∗
n+1) = 0

holds. Hence, the discrete problem has the constant solution Ū∗h(xi) := Ū∗(xi), i =
0, . . . , n + 1. To avoid technical complications related to the specific treatment of
the boundary conditions we consider the nonlinear system in the interior points only;
i.e., as unknowns we take U = (U1, . . . , Un)

T ∈ R
3n, and the system of nonlinear

equations is given by

F1(U1, U2) := f+(U1)− f−(U1) + f−(U2) = f+(Ū∗0 ),

Fi(Ui−1, Ui, Ui+1) := −f+(Ui−1) + f+(Ui)− f−(Ui) + f−(Ui+1) = 0, 2 ≤ i ≤ n− 1,

Fn(Un−1, Un) := −f+(Un−1) + f+(Un)− f−(Un) = −f−(Ū∗n+1).

(4.2)

The vector Ū∗h(xi) = Ū∗(xi), i = 1, . . . , n, is a solution of this nonlinear system of
equations. The Jacobian system

Av = b, A := DF (Ū∗h) ∈ R
3n×3n(4.3)

has a block-tridiagonal matrix

A = blocktridiag(−A+, A+ −A−, A−)1≤i≤n,

A+ := Df+(Ū∗h) ∈ R
3×3, A− := Df−(Ū∗h) ∈ R

3×3.
(4.4)

The eigenvalues of A± are denoted by λ±i , i = 1, 2, 3. The Van Leer splitting has
been constructed in such a way that both A+ and A− have one zero eigenvalue:
λ+

1 = λ−1 = 0. The other eigenvalues λ+
2 , λ

+
3 of A+ and λ−2 , λ

−
3 of A−are strictly

positive and strictly negative, respectively. For these eigenvalues explicit formulas in
terms of c and M are known [11, 28].
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Using MAPLE, one obtains

det(A+ −A−) =
c3

24
(M6 − 15M4 + 3M2 + 11).

The polynomial in M on the right-hand side has no zeros for M ∈ (−1, 1). Hence
(cf. (4.1)) the matrix A+ −A− is nonsingular. The matrix

B = B(Ū∗h) := −(A+ −A−)−1A−(4.5)

plays an important role in the analysis. From ker(B) = ker(A−) and ker(I − B) =
ker(A+) it follows that

σ(B) = { 1, 0, µ(ρ, c,M) }.(4.6)

Using MAPLE, an explicit representation for B can be obtained. The resulting for-
mulas are rather long and not relevant here. We note only that from these formulas
it immediately follows that B can be factorized as

B = EB̃(M)E−1, E = diag(1, c, c2),(4.7)

with a matrix B̃(M) which depends only on M . Hence, the eigenvalue µ of B in (4.6)
depends only on M . A further MAPLE computation yields a representation of an
eigenvector basis of the matrix B̃:

B̃X = Xdiag(1, 0, µ(M)),

X =


1 1 1

M2+4M−5
M+9

M2−4M−5
M−9

6M
11

7M3−7M2+5M+275
14(M+9)

7M3+7M2+5M−275
14(M−9)

16M2

77

 ,(4.8)

µ(M) =
1

2

M4 − 14M2 + 24M − 11

M4 − 14M2 − 11
.(4.9)

The function M → µ(M) is shown in Figure 4.1. An important observation is that
for a large range of Mach numbers M ∈ [M0, 1] the eigenvalue µ(M) is small (e.g.,
µ(M) ∈ [0, 0.1] for M ∈ [0.5, 1]). The condition number of the matrix X is bounded
uniformly in M ∈ [0, 1]. The function M → ‖X‖2‖X−1‖2 is given in Figure 4.2.

In the remainder of this section we analyze block-Gauss–Seidel methods applied
to the system (4.3). For any block-tridiagonal matrix C = blocktridiag(Cl, Cd, Cu)
we introduce the decomposition C = D−L−U with D := blockdiag(Cd) and strictly
lower and upper triangular matrices L and U, respectively. We assume that the
matrix D is nonsingular and define the lexicographic and symmetric Gauss–Seidel
preconditioners:

WLGS
C := D− L, WSGS

C := (D− L)D−1(D−U).

Below, the symbol WC is used to denote both WLGS
C and WSGS

C ; i.e., statements
involving WC hold both for the lexicographic and the symmetric block-Gauss–Seidel
preconditioner. We apply these preconditioners to the matrix A in (4.4). The block-
Gauss–Seidel methods are invariant under block-diagonal scaling, and thus the fol-
lowing result holds.
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Fig. 4.2. Function M → ‖X‖2‖X−1‖2.

Lemma 4.1. Define

Ã := blocktridiag
(− (I −B), I,−B)

1≤i≤n, with B as in (4.5).

Then for the block-Gauss–Seidel preconditioner we have

W−1
A A = W−1

Ã
Ã.

We apply a further transformation with the well-conditioned eigenvector basis X
of the matrix B̃. For this we introduce

X := blockdiag(X)1≤i≤n, E := blockdiag

1 0 0
0 c 0
0 0 c2


1≤i≤n

, c := (γpρ−1)
1
2 .

Lemma 4.2. Define

Â := blocktridiag

−
0 ∅

1
∅ 1− µ

 ,

1 ∅
1

∅ 1

 , −
1 ∅

0
∅ µ

 ∈ R
3n×3n,

with µ = µ(M) as in (4.9). Then

W−1
A A = EXW−1

Â
ÂX−1E−1

holds.
Proof. This follows from

Ã = EXÂX−1E−1, WÃ = EXWÂX−1E−1,

and the result in Lemma 4.1.
From Lemma 4.2 it follows that σ(W−1

A A) = σ(W−1

Â
Â). However, it is well

known that in a setting with strongly nonnormal matrices the eigenvalues (spectral
radius) are in general not a good measure for the rate of convergence of an iterative

method (cf. [8, 23]). Because the blocks in the block-tridiagonal matrix Â are diagonal,
this matrix represents three decoupled systems of dimension n, and a block-Gauss–
Seidel method applied to Â is the same as a point Gauss–Seidel method. To make
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this more precise we introduce for H = D − L − U with D = diag(H), L and U
strictly lower and strictly upper triangular matrices, respectively, the point Gauss–
Seidel splittings

GLGS
H := D− L, GSGS

H := (D− L)D−1(D−U).

The symbol GH is used to denote both GLGS
H and GSGS

H . Let P ∈ R
3n×3n be the

permutation matrix given by

(Px)k+3(i−1) = x(k−1)n+i, k = 1, 2, 3, i = 1, . . . , n.

We introduce the tridiagonal n× n-matrices

L :=


1
−1 1

. . .
. . .

−1 1

 , T = Tµ :=


1 −µ

−(1− µ) 1
. . .

. . .
. . . −µ

−(1− µ) 1

 .

(4.10)

From the result in Lemma 4.2 one obtains the following.
Lemma 4.3. The following holds:

E−1W−1
A AE = XPQP−1X−1

with Q =

Q1 ∅
Q2

∅ Q3

 :=

G−1
LT LT ∅

G−1
L L

∅ G−1
T T

 .

We now consider a Krylov subspace method applied to the matrix W−1
A A. Let

Pk be the space of polynomials of degree less than or equal to k and P∗k := { p ∈
Pk | p(0) = 1 }. A Krylov subspace method can be described by a corresponding
polynomial pk ∈ P∗k . Based on the result in Lemma 4.3 we use the problem dependent
scaled Euclidean norm

‖y‖E := ‖E−1y‖2, y ∈ R
3n.

Let κ2(C) := ‖C−1‖2‖C‖2 be the spectral condition number. From Lemma 4.3 it
follows that

κ2(X)−1‖pk(Q)‖2 ≤ ‖pk(W−1
A A)‖E ≤ κ2(X)‖pk(Q)‖2.

Since κ2(X) is independent of n and uniformly (w.r.t. M) bounded, the quantity
‖pk(Q)‖2 is a reasonable measure for the rate of convergence of the Krylov subspace
method applied to W−1

A A. We therefore consider

‖pk(Q)‖2 = max
1≤i≤3

‖pk(Qi)‖2 .(4.11)

In order to derive bounds for ‖pk(C)‖2, C ∈ R
n, one usually makes the natural

assumption that the symmetric part of the matrix C is positive definite. This as-
sumption is satisfied in our case.

Lemma 4.4. The following holds:

1

2
λmin(Qi + QT

i ) := min{yTQiy |y ∈ R
n, ‖y‖2 = 1 } > 0 for i = 1, 2, 3.
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Proof. Note that for the LGS and the SGS methods we have

‖I−G−1
T T‖∞ < 1, ‖I−G−1

T T‖1 < 1.

From this it follows that

ρ

(
I− 1

2
(G−1

T T + (G−1
T T)T )

)
≤ 1

2
‖I−G−1

T T‖∞ +
1

2
‖I−G−1

T T‖1 < 1,

and thus

λmin

(
1

2
(Q3 + QT

3 )

)
> 0.

Similar arguments can be used to prove the results for i = 1 and i = 2.
In the literature one can find analyses in which for several classes of Krylov

subspace methods, under the assumption that the symmetric part of C is positive
definite, bounds for ‖pk(C)‖2 in terms of the quantity

ξ(C) :=
‖C‖2

1
2λmin(C + CT )

(4.12)

are derived (cf. [9, 10, 22]). These bounds are in general very pessimistic but indicate
that if ξ(C) is “small” (i.e., close to one), one can expect fast convergence of the
Krylov subspace method applied to C. Another interesting quantity related to the
rate of convergence is the spectral condition number κ2(C). Note that

1 ≤ κ2(C) ≤ ξ(C)

holds. Based on this and on the result in (4.11) we take

ξmax := max
1≤i≤3

ξ(Qi), κmax := max
1≤i≤3

κ2(Qi)

as measures for the quality of the block-Gauss–Seidel preconditioner.
We now distinguish between the LGS and SGS methods.
Theorem 4.5. For the lexicographic block-Gauss–Seidel method we have

G = GLGS , ξmax = max{ξ(Q1), ξ(Q3)}, κmax = max{κ2(Q1), κ2(Q3)}.(4.13)

For the symmetric block-Gauss–Seidel method we have

G = GSGS , ξmax = ξ(Q3), κmax = κ2(Q3).(4.14)

Proof. For the LGS method we have

GLT = I, GL = L,

and for the SGS method

GLT = LT , GL = L.

Hence Q2 = I for the LGS and for the SGS methods, and Q1 = I for the SGS
method.
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In Figures 4.3 and 4.4 for the SGS method the dependence of κ2(Q3) = κ2(G
−1
T T)

on µ and n is shown.
From these figures and the result in (4.14) it follows that for µ ∈ (0, µ0) with

µ0 � 1
2 the function n→ κmax(n) increases only slowly. Hence, for “small” µ-values

the SGS-preconditioned matrix has a corresponding κmax-value which is small, even
for “large” n-values. Now note that the dependence of µ on the Mach number M is
as in (4.9) (Figure 4.1), and thus for a large range of Mach numbers M ∈ [M0, 1] the
corresponding µ(M)-values are (very) small, and thus the condition number κmax is
small, too. In Figure 4.5 for the SGS method we show, for small µ-values, the de-
pendence of ξmax = ξ(G−1

T T) on µ and n. Note that for small µ-values the function
n → ξmax(n) increases slowly, too. These observations yield some theoretical expla-
nation of the fast convergence of the SGS-GMRES(20) method in Problems 1 and 2
as compared to the diffusion problem (cf. Figures 3.1, 3.2, 3.4), and of the fact that
in Problem 2 (Figure 3.4) the rate of convergence is much higher than in Problem 1
(Figure 3.2).

For the LGS method the term ξ(Q1) in (4.13) has to be taken into account. For
this term we have

ξ(Q1) =
‖LT ‖2

1
2λmin(L + LT )

≈ 4
(n
π

)2

,

which is, independently of µ, large if n is large. This gives a theoretical justification of
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the intuitive conjecture that for a subsonic or transonic one dimensional flow problem
with characteristics going in both directions the SGS method should perform (much)
better than the LGS method (cf. also the large difference in the rates of convergence
in Figures 3.5, 3.6).

The result in (4.14) relates the quality measure κmax of the SGS-method to the
condition number κ2(G

−1
T T). The behavior of the function (µ, n) → κ2(G

−1
T T)

is shown in Figures 4.3 and 4.4. An important observation is that for “small” µ-
values these condition numbers are small. The same holds for the LGS method (cf.
Figure 4.6). One can derive (fairly sharp) bounds for κ2(G

−1
T T), which show the

dependence of this condition number on n and µ. Here we present such a result for
the simplest case, namely for the LGS method. For completeness a proof is given in
the appendix. A similar result can be shown to hold for the SGS method.

Theorem 4.6. Let G = GLGS
T be the LGS preconditioner for the matrix T =

Tµ ∈ R
n×n. For the condition number of the preconditioned matrix the following

holds for µ ∈ [0, 1
2 ]:

‖G−1T‖2‖T−1G‖2 ≤
(
1 + min

{µ
h
, 1
}) 2δµ

1− 2µ

(
µ

h
+ 1 +

µδµ
1− 2µδµ

1√
h

)
,

with h =
1

n+ 1
, δµ = min

{
1,

1− 2µ

8µ

1

h

}
.

Remark 1. In our model problem we are interested in the case µ � 1
2 (e.g.,

µ ∈ (0, 0.1)) and h � 1. For this case we have δµ = 1, and we obtain the following
bound for the condition number:

‖G−1T‖2‖T−1G‖2 �
{
2(1 + µ

h )
2 if µ

h < 1,

4(1 + µ
h ) if µ

h ≥ 1.

This bound clearly shows that for small µ there is (at worst) only a slow growth in
the condition number as a function of n = h−1 − 1.

Remark 2. We briefly comment on the very high rate of convergence of the SGS-
GMRES(20) method for the transonic flow problem in section 3 (Figures 2.2 and
3.5). In part of the domain the flow is supersonic (M > 1), and in another part
of the domain the flow is subsonic with Mach numbers M ∈ (0.6, 1). The upwind
discretization in the supersonic part of the domain results in a block lower triangular
matrix. Hence in this part of the domain the information is propagated exactly by
the symmetric block-Gauss–Seidel method. In the subsonic part of the domain the
Mach numbers are ≥ 0.6, and thus the corresponding µ(M)-values lie in the interval
[0, 0.05]. The analysis in this section shows that in such a case if we freeze the
coefficients, the SGS method can be expected to be a very effective preconditioner.
At the “critical” points x = 1 and x = 3 we do not have a smooth behavior, and
this results in a low dimensional subspace in which the Gauss–Seidel preconditioner
may perform relatively poorly. Due to its very low dimension the error components
in this subspace can be reduced effectively by the GMRES method. These arguments
give some heuristic explanation of the convergence behavior shown in Figure 3.5. A
rigorous analysis for the transonic case is still lacking.

Remark 3. We briefly comment on possible topics for further research towards
two dimensional problems. Consider a stationary two dimensional Euler equation
that is discretized on a uniform square grid using the Van Leer flux vector-splitting
method. The resulting nonlinear problem is linearized at the discrete solution. For
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the analysis we assume that V = (ρ, u, v, p) is constant as a function of the space
variable. In stencil notation the discrete problem has the structure (cf. (4.4)) B−

−A+ A+ −A− +B+ −B− A−

−B+

(4.15)

with A±, B± ∈ R
4×4. For the Mach numbers in one direction we use the notation

Mu := u
c , Mv :=

v
c . We consider only Mu ≥ 0,Mv ≥ 0.

In the supersonic case Mu ≥ 1,Mv ≥ 1 we have B− = A− = 0, and thus the
matrix is block lower triangular. Hence the block-Gauss–Seidel method is a direct
solver.

For the supersonic caseMu ∈ (0, 1),Mv ≥ 1 we have that B− = 0, and thus the x-
line block-Gauss–Seidel method is a direct solver. To analyze convergence properties
of the symmetric block-Gauss–Seidel method (which is not a direct solver) one has to
investigate the SGS method applied to the matrix

blocktridiag(−A+ , A+ −A− +B+ , A−).

This corresponds to a one dimensional problem, and thus for the analysis one can
try to use the same approach used in section 4. Note, however, that the matrix
A+ ∈ R

4×4 differs from the one in (4.4).
For the subsonic case Mu = Mv ∈ (0, 1) one has nice symmetry properties. We

have PB± = A± with a simple permutation matrix P . Hence properties of the matrix
corresponding to (4.15) essentially depend only on those of A+ and A−. Suitable
transformations (as in section 4) based on the known eigenvector bases of A± may
help to determine some of these properties.

Appendix. Proof of Theorem 4.6. In this appendix we give a proof of the
result in Theorem 4.6. We consider the tridiagonal matrix T = Tµ as (4.10) with
µ ∈ (0, 1

2 ), and for the preconditioner we take the LGS method:

G = tridiag(−(1− µ), 1, 0) ∈ R
n×n.

In Figure 4.6 we showed the numerically computed values of the function (µ, n) →
κ2(G

−1T). In this section we derive a rigorous (sharp) bound for this condition
number, which shows its dependence on µ and h = 1/(n+ 1).

We use the notation

S =


0 1

0
. . .

. . . 1
0

 ∈ R
n×n, W = I− ST .

Lemma A.1. The following holds:

‖G−1T‖2 ≤ 1 + min
{µ
h
, 1
}
.

Proof. Using T = G− µS, we obtain

‖G−1T‖2 = ‖I− µG−1S‖2 ≤ 1 + µ
(‖G−1S‖∞‖G−1S‖1

) 1
2

≤ 1 + µ

n−1∑
k=0

(1− µ)k ≤ 1 + min{µn, 1},



1402 ARNOLD REUSKEN

and thus the result of this lemma holds.
We now derive a bound for ‖T−1G‖2. First we note that T = G−µS is a weakly

regular splitting; i.e., G−1 ≥ 0 and µG−1S ≥ 0 hold. Moreover, T−1 ≥ 0 holds, and
thus µρ(G−1S) < 1. From this we obtain that T−1G is a positive matrix:

T−1G = (I− µG−1S)−1 =

∞∑
k=0

(µG−1S)k ≥ 0.

In our analysis we use the numerical radius

r(A) := max{ |xHAx| |x ∈ C
n, ‖x‖2 = 1 }.

We also use the following properties:

‖A‖2 ≤ 2r(A),

r(A) =
1

2
ρ(A + AT ) if A ≥ 0.

Using G = I− (1− µ)ST = W + µST , we get

‖T−1G‖2 ≤ 2r(T−1G) = ρ(T−1G + GTT−T )

= ρ
(
(T−1W + WTT−T ) + µ(T−1ST + ST−T )

)
≤ ρ(T−1W + WTT−T ) + µρ(T−1ST + ST−T ).(A.1)

In the following two lemmas we derive bounds for the two terms in (A.1).
Lemma A.2. The following holds:

µρ(T−1ST + ST−T ) ≤ 2δµ
1− 2µ

µ

h
,

with δµ := min

{
1,

1− 2µ

8µ

1

h

}
.

Proof. Note that

ρ(T−1ST + ST−T ) ≤ ‖T−1ST + ST−T ‖∞ ≤ ‖T−1‖∞ + ‖T−T ‖∞.(A.2)

We derive a bound on ‖T−1‖∞ using T−1 ≥ 0 and an appropriate barrier function.
The difference operator corresponding to T is given by

[T ]xi
= µ[−1 2 − 1]xi

+ (1− 2µ)[−1 1 0]xi

= (1− 2µ)h

(
ε

h2
[−1 2 − 1]xi +

1

h
[−1 1 0]xi

)
,

with xi = ih, 0 ≤ i ≤ n + 1, and ε = µh
1−2µ ∈ (0,∞). To obtain a suitable barrier

function we consider the boundary value problem

−εu′′(x) + u′(x) = 1, x ∈ (0, 1), u(0) = u(1) = 0,

with solution given by

ū(x) = x− exp(xε )− 1

exp( 1
ε )− 1

∈ [0, 1].
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For x ∈ (0, 1) and m ≥ 2, ū(m)(x) ≤ 0 holds. Using this, it follows from a Taylor
expansion that

[T ]xi ū ≥ (1− 2µ)h
(− εū′′(xi) + ū′(xi)

)
= (1− 2µ)h.

From this and the fact that T is inverse positive we obtain

‖T−1‖∞ ≤
‖ū‖∞,[0,1]
(1− 2µ)h

.

We introduce the notation zε := ε(exp( 1
ε )− 1). A simple computation yields that on

[0, 1] the function ū attains its maximum at x = ε ln zε, and this maximum is given
by

‖ū‖∞,[0,1] = ε(ln zε + z−1
ε − 1) =: m(ε).

On (0,∞) the function ε→ m(ε) has the following properties:

lim
ε↓0

m(ε) = 1, m′(ε) < 0, lim
ε→∞m(ε) = 0,

lim
ε↓0

εm(ε) = 0, (εm(ε))′ > 0, lim
ε→∞ εm(ε) =

1

8
.

It follows that

‖T−1‖∞ ≤ 1

(1− 2µ)h
m(ε) ≤ 1

(1− 2µ)h
,

‖T−1‖∞ ≤ ε−1

(1− 2µ)h
εm(ε) ≤ 1

µh2

1

8
,

and thus

‖T−1‖∞ ≤ 1

(1− 2µ)h
δµ.

The same bound can be derived for ‖T−T ‖∞ if one uses the (adjoint) equation −εu′′−
u′ = 1. These bounds in combination with (A.2) prove the result.

Lemma A.3. The following holds, with δµ as in Lemma A.2:

ρ(T−1W + WTT−T ) ≤ 2δµ
1− 2µ

(
1 +

µδµ
1− 2µ+ µδµ

h−
1
2

)
.

Proof. We use the notation

ξ =
µ

1− µ
, 1 = (1, . . . , 1)T ∈ R

n, e1 = (1, 0, . . . , 0)T ∈ R
n,

x = (I− ξS)−11, y = (I− ξST )−1e1 = (1, ξ, ξ2, . . . , ξn−1)T ,

β = ‖y‖1 =
n−1∑
k=0

ξk , τ =
ξ

1 + ξβ
.
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Note that

T−1W =
(
W − µ(S− ST )

)−1
W =

(
I− µW−1(S− ST )

)−1

=
(
I− µ(I + S− 1eT1 )

)−1
=

1

1− µ
(I− ξS + ξ1eT1 )

−1

=
1

1− µ
(I + ξxeT1 )

−1(I− ξS)−1 =
1

1− µ
(I− τxeT1 )(I− ξS)−1

=
1

1− µ

(
(I− ξS)−1 − τxyT

)
.

Using

‖(I− ξS)−1‖2 ≤
(‖(I− ξS)−1‖∞‖(I− ξS)−1‖1

) 1
2 = β,

‖x‖2 ≤ ‖(I− ξS)−1‖2‖1‖2 ≤ β
√
n ≤ βh−

1
2 ,

‖y‖2 ≤ ‖(I− ξS)−1‖2‖e1‖2 ≤ β,

we obtain

ρ(T−1W + WTT−T ) =
1

1− µ
ρ
(
(I− ξS)−1 + (I− ξST )−1 − τ(xyT + yxT )

)
≤ 2

1− µ

(‖(I− ξS)−1‖2 + τ‖x‖2‖y‖2
)

≤ 2β

1− µ

(
1 +

ξβ

1 + ξβ
h−

1
2

)
.(A.3)

We use

β ≤ min

{
1

1− ξ
, n

}
≤ 1− µ

1− 2µ
min

{
1,

1− 2µ

1− µ
h−1

}
≤ 1− µ

1− 2µ
min

{
1,

1− 2µ

8µ
h−1

}
=

1− µ

1− 2µ
δµ.

Hence

2β

1− µ
≤ 2δµ

1− 2µ
(A.4)

holds. Finally, note that

ξβ

1 + ξβ
≤

µ
1−2µδµ

1 + µ
1−2µδµ

=
µδµ

1− 2µ+ µδµ
.(A.5)

Combination of (A.3), (A.4), and (A.5) yields the result.
Substitution of the results of Lemmas A.2 and A.3 into (A.1) yields

‖T−1G‖2 ≤ 2δµ
1− 2µ

(
µ

h
+ 1 +

µδµ
1− 2µ+ µδµ

1√
h

)
.

Combination of this result with the result of Lemma A.1 shows that the inequality in
Theorem 4.6 holds.
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AN EXPLICIT UNCONDITIONALLY STABLE NUMERICAL
METHOD FOR SOLVING DAMPED NONLINEAR SCHRÖDINGER

EQUATIONS WITH A FOCUSING NONLINEARITY∗

WEIZHU BAO† AND DIETER JAKSCH‡

SIAM J. NUMER. ANAL. c© 2003 Society for Industrial and Applied Mathematics
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Abstract. This paper introduces an extension of the time-splitting sine-spectral (TSSP) method
for solving damped focusing nonlinear Schrödinger equations (NLSs). The method is explicit, un-
conditionally stable, and time transversal invariant. Moreover, it preserves the exact decay rate for
the normalization of the wave function if linear damping terms are added to the NLS. Extensive
numerical tests are presented for cubic focusing NLSs in two dimensions with a linear, cubic, or
quintic damping term. Our numerical results show that quintic or cubic damping always arrests
blowup, while linear damping can arrest blowup only when the damping parameter δ is larger than
a threshold value δth. We note that our method can also be applied to solve the three-dimensional
Gross–Pitaevskii equation with a quintic damping term to model the dynamics of a collapsing and
exploding Bose–Einstein condensate (BEC).

Key words. damped nonlinear Schrödinger equation (DNLS), time-splitting sine-spectral
(TSSP) method, Gross–Pitaevskii equation (GPE), Bose–Einstein condensate (BEC), complex Ginz-
burg–Landau (CGL)
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1. Introduction. Since the first experimental realization of Bose–Einstein con-
densation (BEC) in dilute weakly interacting gases, the nonlinear Schrödinger equa-
tion (NLS) has been used extensively to describe the single particle properties of
BECs. The results obtained by solving the NLS showed excellent agreement with
most of the experiments (for a review, see [2, 3, 11, 10]). In fact, up to now there
have been very few experiments in ultracold dilute bosonic gases which could not be
described properly by using theoretical methods based on the NLS [20, 23].

Recent experiments by Donley et al. [12] provide new experimental results for
checking the validity of describing a BEC by using the NLS in the case of attractive
interactions (focusing nonlinearity) in three dimensions. Since the particle density
might become very large in the case of attractive interactions, inelastic collisions
become important and cannot be neglected. These inelastic collisions are assumed
to be accounted for by adding damping terms to the NLS. Two particle inelastic
processes are taken into account by a cubic damping term, while three particle inelastic
collisions are described by a quintic damping term. Collisions with the background gas
and feeding of the condensate can be studied by adding linear damping terms. One
of the major theoretical challenges in comparing results obtained in the experiment
with theoretical results is to find reliable methods for solving the NLS with a focusing
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nonlinearity and damping terms in the parameter regime where the experiments are
performed.

The aim of this paper is to extend the time-splitting sine-spectral (TSSP) method
for solving the focusing NLS with additional damping terms and to present extensive
numerical tests. The comparison of our numerical results with the experimental results
obtained for a collapsing BEC [12] will be presented elsewhere [8].

We consider the NLS [7, 36]

i ψt = −1

2
∆ψ + V (x) ψ − β|ψ|2σψ, t > 0, x ∈ Rd,(1.1)

ψ(x, t = 0) = ψ0(x), x ∈ Rd,(1.2)

with σ > 0 a positive constant, where σ = 1 corresponds to a cubic nonlinearity,
σ = 2 corresponds to a quintic nonlinearity, V (x) is a real-valued potential whose
shape is determined by the type of system under investigation, and β positive/negative
corresponds to the focusing/defocusing NLS. In BEC, where (1.1) is also known as the
Gross–Pitaevskii equation (GPE) [21, 26, 33], ψ is the macroscopic wave function of
the condensate, t is time, x is the spatial coordinate, and V (x) is a trapping potential
which usually is harmonic and can thus be written as V (x) = 1

2

(
γ2
1x

2
1 + · · ·+ γ2

dx
2
d

)
with γ1, . . . , γd ≥ 0. Two important invariants of (1.1) are the normalization of the
wave function

N(t) =

∫
Rd

|ψ(x, t)|2 dx, t ≥ 0,(1.3)

and the energy

E(t) =

∫
Rd

[
1

2
|∇ψ(x, t)|2 + V (x)|ψ(x, t)|2 − β

σ + 1
|ψ(x, t)|2σ+2

]
dx, t ≥ 0.(1.4)

From the theory for the local existence of the solution of (1.1), it is well known
that if ‖ψ(·, t)‖H1 is bounded, the solution exists for all t [36]. As a result, when the
NLS is defocusing (β < 0), conservation of energy implies that

∫
Rd |∇ψ(x, t)|2 dx is

bounded and the solution exists globally. On the other hand, if the NLS is focusing
(β > 0) at critical (σd = 2) or supercritical (σd > 2) dimensions and for an initial
energy E(0) < 0, then the solutions of (1.1) can self-focus and become singular in
finite time; i.e., there exists a time t∗ <∞ such that (see [36])

lim
t→t∗
|∇ψ|L2 =∞ and lim

t→t∗
|ψ|L∞ =∞.

However, the physical quantities modeled by ψ do not become infinite, which implies
that the validity of (1.1) breaks down near the singularity. Additional physical mech-
anisms, which were initially small, become important near the singular point and
prevent the formation of the singularity. In BEC, the particle density |ψ|2 becomes
large close to the critical point, and inelastic collisions between particles which are
negligible for small densities become important. Therefore, a small damping (absorp-
tion) term is introduced into the NLS (1.1) which describes inelastic processes. We are
interested in the cases where these damping mechanisms are important and therefore
restrict ourselves to the case of focusing nonlinearities β > 0, where β may also be
time dependent. We consider the damped nonlinear Schrödinger equation (DNLS)

i ψt = −1

2
∆ψ + V (x) ψ − β|ψ|2σψ − i g(|ψ|2)ψ, t > 0, x ∈ Rd,(1.5)

ψ(x, t = 0) = ψ0(x), x ∈ Rd,(1.6)
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where g(ρ) ≥ 0 for ρ = |ψ|2 ≥ 0 is a real-valued monotonically increasing function.
The general form of (1.5) covers many DNLSs arising in various different appli-

cations. In BEC, for example, when g(ρ) ≡ 0, (1.5) reduces to the usual GPE (1.1);
a linear damping term g(ρ) ≡ δ with δ > 0 describes inelastic collisions with the
background gas; cubic damping g(ρ) = δ1βρ with δ1 > 0 corresponds to two-body
loss [13, 35, 34]; and a quintic damping term of the form g(ρ) = δ2β

2ρ2 with δ2 > 0
adds three-body loss to the GPE (1.1) [1, 35, 34]. It is easy to see that the decay of
the normalization according to (1.5) due to damping is given by

N ′(t) =
d

dt

∫
Rd

|ψ(x, t)|2 dx = −2

∫
Rd

g(|ψ(x, t)|2)|ψ(x, t)|2 dx ≤ 0, t > 0.(1.7)

In particular, if g(ρ) ≡ δ with δ > 0, the normalization is given by

N(t) =

∫
Rd

|ψ(x, t)|2 dx = e−2δ tN(0) = e−2δ t

∫
Rd

|ψ0(x)|2 dx, t ≥ 0.(1.8)

There has been a series of recent studies which deals with the analysis and numeri-
cal solution of the DNLS. Fibich [14] analyzed the effect of linear damping (absorption)
on the critical self-focusing NLS, Tsutsumi [37, 38] studied the global solutions of the
NLS with linear damping, and the regularity of attractors and approximate inertial
manifolds for a weakly damped NLS were given in Goubet [17, 19, 18] and by Jolly,
Temam, and Xiong [24]. For numerically solving the linearly damped NLS, Peranich
[32] proposed a finite difference scheme, and this method was revisited recently by
Ciegis and Pakalnyte [9] and Zhang and Lu [39]. Moebs and Temam [30] presented a
multilevel method for weakly damped NLS, and Moebs applied it to solve a stochastic
weakly damped NLS in [29]. Variable mesh difference schemes for the NLS with a
linear damping term were used by Iyengar, Jayaraman, and Balasubramanian [22].

Also, the TSSP method, which we will use in this paper to solve the DNLS, was
already successfully used for solving the Schrödinger equation in the semiclassical
regime and for describing BEC using the GPE by Bao et al. [4, 5, 7]. The TSSP
method is explicit, unconditionally stable, and time transversal invariant. Moreover,
it gives the exact decay rate of the normalization when linear damping is applied to
the NLS (i.e., g(ρ) ≡ δ with δ > 0 in (1.5)) and yields spectral accuracy for spatial
derivatives and second-order accuracy for the time derivative. Thus this method is a
very good candidate for solving the DNLS, especially in two or three dimensions. We
test the novel numerical method extensively in two dimensions.

Finally, we want to emphasize that the NLS is also used in nonlinear optics, e.g.,
to describe the propagation of an intense laser beam through a medium with a Kerr
nonlinearity [16, 36]. In nonlinear optics, ψ = ψ(x, t) describes the electrical field am-
plitude, t is the spatial coordinate in the direction of propagation, x = (x1, . . . , xd)

T

is the transverse spatial coordinate, and V (x) is determined by the index of refrac-
tion. Nonlinear damping terms of the form g(ρ) = δβqρq with δ, q > 0 correspond to
multiphoton absorption processes [14].

The paper is organized as follows. In section 2, we present the TSSP approxi-
mation for the damped nonlinear Schrödinger equation. In section 3, numerical tests
are presented for the cubic focusing NLS in two dimensions with a linear, cubic, or
quintic damping term. In section 4, some conclusions are drawn.

2. Time-splitting sine-spectral method. In this section we present a time-
splitting sine-spectral (TSSP) method for solving the problem (1.5), (1.6) with homo-
geneous periodic boundary conditions. For simplicity of notation, we shall introduce
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the method for the case of one spatial dimension (d = 1). Generalizations to d > 1
are straightforward for tensor product grids, and the results remain valid without
modifications. For d = 1, the problem becomes

i ψt = −1

2
ψxx + V (x)ψ − β|ψ|2σψ − i g(|ψ|2)ψ, a < x < b, t > 0,(2.1)

ψ(x, t = 0) = ψ0(x), a ≤ x ≤ b, ψ(a, t) = ψ(b, t) = 0, t ≥ 0.(2.2)

2.1. General damping term. We choose the spatial mesh size h = ∆x > 0
with h = (b − a)/M and M an even positive integer. The time step is given by
k = ∆t > 0, and we define grid points and time steps by

xj := a+ j h, tn := n k, j = 0, 1, . . . ,M, n = 0, 1, 2, . . . .

Let ψnj be the numerical approximation of ψ(xj , tn) and ψn the solution vector at
time t = tn = nk with components ψnj .

From time t = tn to time t = tn+1, the DNLS (2.1) is solved in two steps. One
solves

i ψt = −1

2
ψxx(2.3)

for one time step, followed by solving

i ψt(x, t) = V (x)ψ(x, t)− β|ψ(x, t)|2σψ(x, t)− i g(|ψ(x, t)|2)ψ(x, t),(2.4)

again for the same time step. Equation (2.3) is discretized in space by the sine-spectral
method and integrated in time exactly. For t ∈ [tn, tn+1], multiplying the ODE (2.4)
by ψ(x, t), the conjugate of ψ(x, t), one obtains

i ψt(x, t)ψ(x, t) = V (x)|ψ(x, t)|2 − β|ψ(x, t)|2σ+2 − i g(|ψ(x, t)|2)|ψ(x, t)|2.(2.5)

Subtracting the conjugate of (2.5) from (2.5) and multiplying by −i, one obtains

d

dt
|ψ(x, t)|2 = ψt(x, t)ψ(x, t) + ψt(x, t)ψ(x, t) = −2g(|ψ(x, t)|2)|ψ(x, t)|2.(2.6)

Let

f(s) =

∫
1

s g(s)
ds, h(s, τ) =

{
f−1 (f(s)− 2τ) , s > 0, τ ≥ 0,
0, s = 0, τ ≥ 0.

(2.7)

Then, if g(s) ≥ 0 for s ≥ 0, we find

0 ≤ h(s, τ) ≤ s for s ≥ 0, τ ≥ 0,(2.8)

and the solution of the ODE (2.6) can be expressed as (with τ = t− tn)

0 ≤ ρ(t) = ρ(tn + τ) := |ψ(x, t)|2 = h
(|ψ(x, tn)|2, t− tn

)
:= h (ρ(tn), τ)

≤ ρ(tn) = |ψ(x, tn)|2, tn ≤ t ≤ tn+1.(2.9)

Combining (2.9) and (2.4), we obtain

i ψt(x, t) = V (x)ψ(x, t)− β [h (|ψ(x, tn)|2, t− tn
)]σ

ψ(x, t)

−i g (h (|ψ(x, tn)|2, t− tn
))
ψ(x, t), tn ≤ t ≤ tn+1.(2.10)
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Integrating (2.10) from tn to t, we find

ψ(x, t) = exp
{
i
[−V (x)(t− tn) +G

(|ψ(x, tn)|2, t− tn
)]− F (|ψ(x, tn)|2, t− tn

)}
× ψ(x, tn), tn ≤ t ≤ tn+1,(2.11)

where we have defined

F (s, r) =

∫ r

0

g(h(s, τ)) dτ ≥ 0, G(s, r) =

∫ r

0

β [h(s, τ)]
σ
dτ.(2.12)

To find the time evolution between t = tn and t = tn+1, we combine the splitting steps
via the standard second-order Strang splitting TSSP method for solving the DNLS
(2.1). In detail, the steps for obtaining ψn+1

j from ψnj are given by

ψ∗j = exp
{−F (|ψnj |2, k/2)+ i

[−V (xj)k/2 +G
(|ψnj |2, k/2)]} ψnj ,

ψ∗∗j =

M−1∑
l=1

e−ikµ
2
l /2 ψ̂∗l sin(µl(xj − a)), j = 1, 2, . . . ,M − 1,(2.13)

ψn+1
j = exp

{−F (|ψ∗∗j |2, k/2)+ i
[−V (xj)k/2 +G

(|ψ∗∗j |2, k/2)]} ψ∗∗j ,
where Ûl are the sine-transform coefficients of a complex vector U = (U0, U1, . . . , UM )
with U0 = UM = 0 which are defined as

µl =
πl

b− a, Ûl =
2

M

M−1∑
j=1

Uj sin(µl(xj − a)), l = 1, 2, . . . ,M − 1,(2.14)

where

ψ0
j = ψ(xj , 0) = ψ0(xj), j = 0, 1, 2, . . . ,M.(2.15)

Note that the only time discretization error of the TSSP method is the splitting
error, which is second-order in k if the integrals in (2.7) and (2.12) can be evaluated
analytically.

2.2. Most frequently used damping terms. In this subsection we present ex-
plicit formulae for using the TSSP method when solving the NLS with those damping
terms most frequently appearing in BEC and nonlinear optics.

Case I. NLS with a linear damping term. We choose g(ρ) ≡ δ with δ > 0 in (1.5).
In BEC, this damping term describes inelastic collisions of condensate particles with
the background gas. From (2.7), we find

f(s) =

∫
1

δs
ds =

1

δ
ln s and h(s, τ) = e−2δτ s.(2.16)

Substituting (2.16) into (2.9) and (2.12), we obtain

ρ(t) = e−2δ(t−tn) |ψ(x, tn)|2, tn ≤ t ≤ tn+1,(2.17)

F (s, r) = δr,(2.18)

G(s, r) =
βsσ

2δσ

(
1− e−2δσr

)
.(2.19)
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Substituting (2.18) and (2.19) into (2.13), we get the following second-order TSSP
steps for the NLS with a linear damping term:

ψ∗j = exp
{−kδ/2 + i

[−V (xj)k/2 + β|ψnj |2σ
(
1− e−δσk) /(2δσ)

]}
ψnj ,

ψ∗∗j =

M−1∑
l=1

e−ikµ
2
l /2 ψ̂∗l sin(µl(xj − a)), j = 1, 2, . . . ,M − 1,(2.20)

ψn+1
j = exp

{−kδ/2 + i
[−V (xj)k/2 + β|ψ∗∗j |2σ

(
1− e−δσk) /(2δσ)

]}
ψ∗∗j .

Case II. NLS with a damping term of the form g(ρ) = δβqρq, where δ, q > 0 in
(1.5). For q = 1 (q = 2), we obtain the damping term describing two (three) particle
inelastic collisions in BEC. From (2.7) we get

f(s) =

∫
1

δβqsq+1
ds = − 1

qδβqsq
and h(s, τ) =

s

(1 + 2qδτβqsq)
1/q
.(2.21)

Substituting (2.21) into (2.9) and (2.12), we obtain

ρ(t) =
|ψ(x, tn)|2

[1 + 2qδβq(t− tn)|ψ(x, tn)|2q]1/q
, tn ≤ t ≤ tn+1,(2.22)

F (s, r) =
1

2q
ln (1 + 2qδrβqsq) ,(2.23)

G(s, r) =


β1−q

2δq
ln (1 + 2qδrβqsq) , q = σ,

β1−qsσ−q
[−1 + (1 + 2qδrβqsq)(q−σ)/q

]
2δ(q − σ)

, σ �= q.

(2.24)

Substituting (2.23) and (2.24) into (2.13), we get the following second-order TSSP
method for the NLS:

(2.25)

ψ∗
j =



exp
{
i
[
−V (xj)k/2 + β1−q ln

(
1 + δqkβq |ψnj |2q

)
/(2δq)

]}(
1 + qδkβq |ψnj |2q

)1/2q ψnj , σ = q,

exp

{
i

[
−V (xj)k

2
+
β1−q|ψn

j |2σ−2q

2δ(q−σ)

(
−1 +

(
1 + δqkβq |ψnj |2q

) q−σ
q

)]}
(
1 + qδkβq |ψnj |2q

)1/2q ψnj , σ �= q,

ψ∗∗
j =

M−1∑
l=1

e−ikµ
2
l
/2 ψ̂∗

l sin(µl(xj − a)), j = 1, 2, . . . ,M − 1,

ψn+1
j =



exp
{
i
[
−V (xj)k/2 + β1−q ln

(
1 + δqkβq |ψ∗∗

j |2q
)
/(2δq)

]}(
1 + qδkβq |ψ∗∗

j |2q
)1/2q ψ∗∗

j , σ = q,

exp

{
i

[
−V (xj)k

2
+
β1−q|ψ∗∗

j |2σ−2q

2δ(q−σ)

(
−1 +

(
1 + δqkβq |ψ∗∗

j |2q
) q−σ

q

)]}
(
1 + qδkβq |ψ∗∗

j |2q
)1/2q ψ∗∗

j , σ �= q.

Case III. Focusing cubic NLS with a damping term that accounts for two-body
and three-body losses in a BEC [35]. We choose σ = 1, g(ρ) = δ1βρ + δ2β

2ρ2 with
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δ1, δ2 > 0, in (1.5). Using (2.7), we get

f(s) =

{
− 1
δ1βs

+ δ2
δ21

ln (δ2β + δ1/s) , s > 0,

0, s = 0.
(2.26)

Substituting (2.7) into (2.12) and changing the variable of integration, we obtain

F (s, r) =

∫ r

0

g
(
f−1(f(s)− 2τ)

)
dτ

τ=(f(s)−f(h))/2
=

∫ h(s,r)

s

−1

2
g(h)f ′(h) dh

=

∫ h(s,r)

s

− 1

2h
dh =

{ − 1
2 ln (h(s, r)/s) , s > 0,

0, s = 0,
(2.27)

where h(s, r) is the solution of

f(s)− f(h(s, r)) = 2r for any r > 0,(2.28)

with f given in (2.26). Similarly we find

G(s, r) =

∫ h(s,r)

s

− β

2g(h)
dh =

{
− 1

2δ1
ln h(s,r)(δ1+δ2βs)

s(δ1+δ2βh(s,r)) , s > 0,

0, s = 0.
(2.29)

Substituting (2.27) and (2.29) into (2.13), we get the following second-order TSSP
steps for the NLS with a combination of cubic and quintic damping terms:

(2.30)

ψ
∗
j =


√
h(|ψn

j
|2, k/2)

|ψn
j
| exp

{
i

[
−V (xj)k

2
− 1

2δ1
ln
h(|ψn

j |2, k/2)(δ1 + δ2β|ψn
j |2)

|ψn
j
|2(δ1 + δ2βh(|ψn

j
|2, k/2))

]}
ψ

n
j , ψn

j �= 0,

0, ψn
j = 0,

ψ
∗∗
j =

M−1∑
l=1

e
−ikµ2

l
/2
ψ̂

∗
l sin(µl(xj − a)), j = 1, 2, . . . ,M − 1,

ψ
n+1
j =


√
h(|ψ∗∗

j
|2, k/2)

|ψ∗∗
j
| exp

{
i

[
−V (xj)k

2
− 1

2δ1
ln
h(|ψ∗∗

j |2, k/2)(δ1+δ2β|ψ∗∗
j |2)

|ψ∗∗
j
|2(δ1+δ2βh(|ψ∗∗

j
|2, k/2))

]}
ψ

∗∗
j , ψ∗∗

j �=0,

0, ψ∗∗
j =0.

Remark 2.1. As demonstrated in this subsection, the integrals in (2.7) and (2.12)
can be evaluated analytically for the damping terms which most frequently appear in
physical applications. If the integrals in (2.7) or (2.12) cannot be evaluated analyti-
cally or the inverse of f in (2.7) cannot be expressed explicitly, e.g., if g(ρ) in (1.5) is
not a polynomial, one can solve the following ODE numerically by either the second-
or fourth-order Runge–Kutta method

dh(t)

dt
= −2g(h(t)) h(t), 0 ≤ t ≤ k/2,

h(0) = s,

to get h(s, k/2) for any given s > 0 and set h(s, k/2) = 0 for s = 0. By changing the
variable of integration in (2.12) (see detail in (2.27) and (2.29)), the first integral in
(2.12), i.e., F (s, k/2), can be evaluated exactly (see detail in (2.27)), and the second



EXPLICIT AND STABLE NUMERICAL METHOD FOR DAMPED NLS 1413

integral in (2.12), i.e., G(s, k/2) =
∫ h(s,k/2)

s
−βhσ−1

2g(h) dh, can be evaluated numerically

by using a numerical quadrature, e.g., the trapezoidal rule or Simpson’s rule.
The TSSP scheme is explicit and is unconditionally stable as we will demonstrate

in the next subsection. Another main advantage of the time-splitting method is its
time transversal invariance, which also holds for the NLS and the DNLS themselves.
If a constant α is added to the potential V , then the discrete wave functions ψε,n+1

j

obtained from the TSSP method get multiplied by the phase factor e−iα(n+1)k, which
leaves the discrete normalization unchanged. This property does not hold for finite
difference schemes.

Remark 2.2. For the focusing cubic NLS with a quintic damping term describing
three-body recombination loss and an additional feeding term for the BEC [25], we
choose σ = 1, g(ρ) = −δ1 + δ2β

2ρ2 with δ1, δ2 > 0 in (1.5). The idea of constructing
the TSSP method is also applicable to this case, although we could not prove that it
is unconditionally stable due to the feeding term. Inserting the above feeding term
into (2.7), we get

f(s) =

{
1

2δ1
ln
∣∣δ2β2 − δ1/s2

∣∣ , s > 0,

0, s = 0.
(2.31)

Inserting (2.31) into (2.9), we find

h(s, τ) =
s
√
δ1√

δ1e−4τδ1 + (1− e−4τδ1)δ2β2s2
,(2.32)

and substituting (2.32) into (2.9) and (2.12), we obtain

ρ(t) =
|ψ(x, tn)|2√δ1√

δ1e−4τδ1 + (1− e−4τδ1)δ2β2|ψ(x, tn)|4 , tn ≤ t ≤ tn+1,(2.33)

F (s, r) = −δ1r +
1

4
ln
[
1 + δ2β

2s2(e4δ1r − 1)/δ1
]
,(2.34)

G(s, r) =
1

2
√
δ1δ2

ln
βs
√
δ2e

2rδ1 +
√
δ1 + δ2β2s2 (e4rδ1 − 1)√
δ1 + βs

√
δ2

.(2.35)

Inserting (2.34) and (2.35) into (2.13), we get the following second-order TSSP steps
for the NLS with a quintic damping term and a feeding term:

(2.36)

ψ∗
j =

ekδ1/2 exp

[
i

(
−V (xj)k

2
+ 1

2
√
δ1δ2

ln
β|ψn

j |2
√
δ2e

kδ1+
√

δ1+δ2β2|ψn
j
|4(e2kδ1−1)√

δ1+β|ψn
j
|2
√
δ2

)]
[
1 + δ2β2|ψnj |4(e2kδ1 − 1)/δ1

]1/4 ψnj ,

ψ∗∗
j =

M−1∑
l=1

e−ikµ
2
l
/2 ψ̂∗

l sin(µl(xj − a)), j = 1, 2, . . . ,M − 1,

ψn+1
j =

ekδ1/2 exp

[
i

(
−V (xj)k

2
+ 1

2
√
δ1δ2

ln
β|ψ∗∗

j |2
√
δ2e

kδ1+
√

δ1+δ2β2|ψ∗∗
j

|4(e2kδ1−1)√
δ1+β|ψ∗∗

j
|2
√
δ2

)]
[
1 + δ2β2|ψ∗∗

j |4(e2kδ1 − 1)/δ1
]1/4 ψ∗∗

j .

Remark 2.3. The TSSP scheme (2.13) can easily be extended for solving the
complex Ginzburg–Landau (CGL) equation [15, 28]

i ψt = − (1− i ε) ∆ψ − |ψ|2ψ − i (δ2|ψ|2 − δ1)ψ,(2.37)
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where ε, δ1, and δ2 are positive constants. The idea of constructing the TSSP method
for the DNLS is also applicable to the CGL equation provided that we solve

i ψt = − (1− i ε) ∆ψ(2.38)

in the first step instead of (2.3). Inserting σ = 1, β = 1, and g(ρ) = δ2ρ− δ1 with δ1,
δ2 > 0 into (1.5) and using (2.7), we get

f(s) =

{
1
δ1

ln |δ2 − δ1/s| , s > 0,

0, s = 0.
(2.39)

Inserting (2.39) into (2.7), we find

h(s, τ) =
sδ1

sδ2 (1− e−2τδ1) + δ1e−2τδ1
,(2.40)

and substituting (2.40) into (2.9) and (2.12), we obtain

ρ(t) =
δ1 |ψ(x, tn)|2

δ2 |ψ(x, tn)|2 (1− e−2τδ1) + δ1e−2τδ1
, tn ≤ t ≤ tn+1,(2.41)

F (s, r) = −1

2
ln

δ1
sδ2 + (δ1 − sδ2) e−2rδ1

,(2.42)

G(s, r) =
1

2δ2
ln
δ1 − sδ2 + sδ2e

2rδ1

δ1
.(2.43)

Inserting (2.42) and (2.43) into (2.13), we get the following second-order TSSP steps
for the CGL equation (2.37):

(2.44)

ψ∗
j =

√
δ1

δ2|ψnj |2 +
(
δ1 − δ2|ψnj |2

)
e−kδ1

exp

[
i

2δ2
ln
δ1 − δ2|ψnj |2 + δ2|ψnj |2ekδ1

δ1

]
ψnj ,

ψ∗∗
j =

M−1∑
l=1

e−(ε+i)kµ2
l ψ̂∗

l sin(µl(xj − a)), j = 1, 2, . . . ,M − 1,

ψn+1
j =

√
δ1

δ2|ψ∗∗
j |2 +

(
δ1 − δ2|ψ∗∗

j |2
)
e−kδ1

exp

[
i

2δ2
ln
δ1 − δ2|ψ∗∗

j |2 + δ2|ψ∗∗
j |2ekδ1

δ1

]
ψ∗∗
j .

Remark 2.4. If the homogeneous periodic boundary conditions in (2.2) are re-
placed by the periodic boundary conditions

ψ(a, t) = ψ(b, t), ψx(a, t) = ψx(b, t), t ≥ 0,(2.45)

the TSSP scheme (2.13) still works provided that one replaces the sine-series in (2.13)
by a Fourier series [4, 5, 7].

2.3. Stability and decay rate. Let U = (U0, U1, . . . , UM )T with U0 = UM = 0
and ‖ · ‖l2 be the usual discrete l2-norm on the interval (a, b), i.e.,

‖U‖l2 =

√√√√b− a
M

M−1∑
j=1

|Uj |2.(2.46)
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For the stability of the TSSP approximations (2.13), we have the following lemma,
which shows that the total normalization does not increase.

Lemma 2.1. The TSSP schemes (2.13) are unconditionally stable if g(s) ≥ 0 for
s ≥ 0. In fact, for every mesh size h > 0 and time step k > 0,

‖ψn+1‖l2 ≤ ‖ψn‖l2 ≤ ‖ψ0‖l2 = ‖ψ0‖l2 , n = 0, 1, 2, . . . .(2.47)

Furthermore, when a linear damping term is used in (1.5), i.e., when we choose g(ρ) ≡
δ with δ > 0, the decay rate of the normalization satisfies

‖ψn‖l2 = e−2δtn‖ψ0‖l2 = e−2δtn‖ψ0‖l2 , n = 1, 2, . . . .(2.48)

In fact, (2.48) is a discretized version of the decay rate of the normalization N(t) in
(1.8).

Proof. We combine (2.13), (2.14), and (2.46) and note that F (s, τ) ≥ 0 for s ≥ 0
and τ ≥ 0 to obtain

1

b− a‖ψ
n+1‖2l2 =

1

M

M−1∑
j=1

∣∣ψn+1
j

∣∣2

=
1

M

M−1∑
j=1

exp
[−2F

(|ψ∗∗j |2, k/2)] ∣∣ψ∗∗j ∣∣2 ≤ 1

M

M−1∑
j=1

∣∣ψ∗∗j ∣∣2
=

1

M

M−1∑
j=1

∣∣∣∣∣
M−1∑
l=1

e−ikµ
2
l /2 ψ̂∗l sin(µl(xj − a))

∣∣∣∣∣
2

=
1

2

M−1∑
l=1

∣∣∣e−ikµ2
l /2 ψ̂∗l

∣∣∣2 =
1

2

M−1∑
l=1

∣∣∣ψ̂∗l ∣∣∣2

=
1

2

M−1∑
l=1

∣∣∣∣∣∣ 2

M

M−1∑
j=1

ψ∗j sin(µl(xj − a))
∣∣∣∣∣∣
2

=
1

M

M−1∑
j=1

∣∣ψ∗j ∣∣2
=

1

M

M−1∑
j=1

exp
[−2F

(|ψnj |2, k/2)] ∣∣ψnj ∣∣2 ≤ 1

M

M−1∑
j=1

∣∣ψnj ∣∣2
=

1

b− a‖ψ
n‖2l2 .

(2.49)

Here, we used the identity

M−1∑
j=1

sin

(
πr j

M

)
sin

(
πs j

M

)
=

{
0, r − s �= 2mM,
M/2, r − s = 2mM, r �= 2nM,

m, n integer.

(2.50)
When a linear damping term is added to the NLS (1.5), the equality (2.48) follows

from the above proof, (2.18), and

M−1∑
j=1

exp
[−2F

(|ψnj |2, k/2)] ∣∣ψnj ∣∣2 =

M−1∑
j=1

e−δk
∣∣ψnj ∣∣2 = e−δk

M−1∑
j=1

∣∣ψnj ∣∣2 .
3. Numerical examples. In this section, we present numerical tests of the

TSSP scheme (2.13) for solving a focusing cubic NLS appearing in nonlinear optics [16,
36] and for the GPE in BEC [7] in two dimensions with a linear, a cubic, or a quintic
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Fig. 1. Numerical results in Example 1, case I. (a) Surface plot of the density |ψ|2 at time
t = 1.25 with δ = 0.5. Normalization, energy, and central density |ψ(0, 0, t)|2 as functions of time:
(b) with δ = 0.5, (c) δ = 0.3, (d) δ = 0 (no damping). Blowup study: (e) δ = 0.3, (f) δ = 0 (no
damping).

damping term. In our computations, the initial condition (1.2) is always chosen such
that |ψ0(x)| decays to zero sufficiently fast as |x| → ∞. We choose an appropriately
large rectangle [a, b] × [c, d] in two dimensions to prevent the homogeneous periodic
boundary condition (2.2) from introducing a significant (aliasing) error relative to the
whole space problem. To quantify the numerical results of the GPE for a BEC, we
define the condensate widths along the x, y, and z axes by

σ2
α = 〈α2〉 =

1

N(t)

∫
Rd

α2|ψ(x, t)|2 dx, with α = x, y, or z.
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Fig. 2. Numerical results in Example 1, case II. Surface plot of the density |ψ|2 with δ = 0.02:
(a) At time t = 0.4, (b) t = 1.0. Normalization, energy, and central density |ψ(0, 0, t)|2 as functions
of time: (c) with δ = 0.02, (d) δ = 0.005 (with h = 1/128, k = 0.00002).

Example 1. Solution of the two-dimensional damped focusing cubic NLS. We
choose d = 2, σ = 1, and V (x, y) ≡ 0 in (1.5) and present computations for three
different damping terms (δ > 0):

I. A linear damping term; i.e., we choose g(ρ) ≡ δ.
II. A cubic damping term; i.e., we choose g(ρ) ≡ δβρ.
III. A quintic damping term; i.e., we choose g(ρ) ≡ δβ2ρ2.
The initial condition (1.6) is taken to be

ψ(x, y, 0) = ψ0(x, y) =
γ

1/4
y√
πε
e−(x2+γyy

2)/2ε, (x, y) ∈ R2.(3.1)

We assume γy = 2, ε = 0.2, and β = 8 in (1.5) such that E(0) = −0.751582 < 0 in
(1.4). We solve the NLS on the square [−16, 16]2; i.e., a = c = −16 and b = d = 16
with mesh size h = 1

32 , time step k = 0.0002, and homogeneous periodic boundary
conditions along the boundary of the square. We compare the effect of changing the
damping parameter δ in the three different cases I, II, and III.

Figure 1 shows the surface plot of the density |ψ(x, y, t)|2 at time t = 1.25 with
δ = 0.5; plots of the normalization, energy, and central density |ψ(0, 0, t)|2 are shown
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Fig. 3. Numerical results in Example 1, case III. Surface plot of the density |ψ|2 with δ = 0.01:
(a) At time t = 0.4, (b) t = 1.0. Normalization, energy, and central density |ψ(0, 0, t)|2 as functions
of time: (c) with δ = 0.01, (d) δ = 0.001.

as functions of time with δ = 0.5, 0.3, and δ = 0 (no damping) for case I. Figure 2
shows similar results for case II and Figure 3 for case III. Furthermore, Figure 4 shows
contour plots of the density |ψ|2 at different times for case III with δ = 0.01.

In the numerical computations, a blowup is detected either from the plot of the
central density |ψ(0, 0, t)|2, which at the blowup shows a very sharp spike with a peak
value that increases when the mesh size h decreases, or from the plot of the energy
E(t), which has a very sharp spike with negative values at the blowup. In fact, the
TSSP method (2.13) aims to capture the solution of the DNLS without blowup, i.e.,
physical relevant solution. If one wants to capture the blowup rate of the NLS, we
refer to [27, 31].

From the numerical results we find the following conditions for arresting a blowup
of the wave function with initial energy E(0) < 0. (1) For linear damping, the blowup
is arrested if the damping parameter is bigger than a certain threshold value which
we find to be δth ≈ 0.461 by numerical experiments. As shown in Figure 1(b), blowup
is arrested for δ = 0.5 > δth, while the wave function blows up for δ < δth, as can
be seen from Figure 1(c),(d), where we have chosen δ = 0.3 < δth and δ = 0 < δth,
respectively. The time at which the blowup of the wave function happens, however,
increases with increasing δ (cf. Figure 1(c)(d)). (2) For a cubic damping term with
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Fig. 4. Contour plots of the density |ψ|2 at different times in Example 1, case III, with δ = 0.01.
(a) t = 0, (b) t = 0.2, (c) t = 0.4, (d) t = 0.6, (e) t = 0.8, (f) t = 1.

δ > 0, the blowup of the wave function is always arrested (cf. Figure 2). (3) The
above observation (2) also holds for a quintic damping term (cf. Figure 3).

For linear damping, we also test the dependence of the threshold value of the
damping parameter δth on β and the initial data. First we take γy = 2 and ε = 0.2
in (3.1). Table 1 shows the threshold values δth for different β in (1.5), and E(0)
represents the initial energy. Then we choose β = 16 in (1.5) and γy = 2 in (3.1).
Table 2 displays the threshold values δth for different values of ε in (3.1).

From Table 1, we find by a least square fitting

δth = −0.6930E(0) or δth = 0.3872β − 2.4627.
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Fig. 5. Numerical results in Example 2, case I. Surface plot of the density |ψ|2 with δ = 1.25:
(a) At time t = 0 (ground-state solution), (b) t = 2.8. Normalization, energy, and central density
|ψ(0, 0, t)|2 as functions of time: (c) with δ = 1.25, (e) δ = 1.1, (f) δ = 0 (no damping). (d)
Condensate widths with δ = 1.25.

Table 1
Dependence of δth on β for γy = 2 and ε = 0.2 in (3.1).

β = 8 β = 16 β = 32 β = 64 β = 128
E(0) −0.7516 −5.253 −14.256 −32.263 −68.275
δth 0.461 3.655 10.35 22.15 40.05

Table 2
Dependence of δth on ε in (3.1) for β = 16 in (1.5) and γy = 2 in (3.1).

ε = 0.8 ε = 0.4 ε = 0.2 ε = 0.1 ε = 0.05
E(0) −1.3133 −2.6266 −5.2532 −10.506 −21.013
δth 0.895 1.845 3.655 7.25 14.55
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Fig. 6. Numerical results in Example 2, case II. (a) Surface plot of the density |ψ|2 with
δ = 0.15: At time t = 0.8 (left column) and t = 2.4 (right column). Normalization, energy, and
central density |ψ(0, 0, t)|2 (left column) and condensate widths (right column) as functions of time:
(b) With δ = 0.15; (c) δ = 0.04 (under h = 1/128, k = 0.00002 for (c)).

Similarly, from Table 2, we obtain

δth = −0.6922E(0).

Based on this observation, we conclude that the threshold value of the linear damping
parameter δth depends linearly on the initial energy E(0).

Example 2. Solution of the two-dimensional damped GPE with focusing nonlin-
earity. We choose d = 2, σ = 1, and V (x, y) = 1

2 (γ2
xx

2 + γ2
yy

2) to be a harmonic
oscillator potential with γx, γy > 0 in (1.5). Again, we present computations for the
same three different damping terms in (1.5) that we studied in Example 1.
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Fig. 7. Numerical results in Example 2, case III. (a) Surface plot of the density |ψ|2 with
δ = 0.15: At time t = 0.8 (left column) and t = 3.2 (right column). Normalization, energy, and
central density |ψ(0, 0, t)|2 (left column) and condensate widths (right column) as functions of time:
(b) With δ = 0.15; (c) δ = 0.005.

We take γx = 1 and γy = 4. The initial condition (1.6) is assumed to be the
ground-state solution of (1.5) with g(ρ) ≡ 0 (i.e., undamped case) and β = −40 [6].
The cubic nonlinearity is ramped linearly from β = −40 (defocusing) to β = 50 (fo-
cusing) during the time interval [0, 0.1] and afterward kept constant. The absorption
parameter was set to δ = 0 during the time interval [0, 0.1] and increased to a positive
value δ > 0 afterward.

We solve the GPE on the rectangle [−24, 24] × [−6, 6], i.e., for a = −24, b = 24,
c = −6, and d = 6 with mesh size hx = 3

64 , hy = 3
128 , time step k = 0.0005,

and homogeneous periodic boundary conditions along the boundary of the rectangle.
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Fig. 8. Contour plots of the density |ψ|2 at different times in Example 2, case III, with δ = 0.15.
(a) t = 0, (b) t = 0.4, (c) t = 0.8, (d) t = 1.2, (e) t = 1.6, (f) t = 2.4.

Again, we compare the effect of changing the damping parameter δ in the three
different cases I, II, and III.

Figure 5 shows a surface plot of the density |ψ(x, y, t)|2 at times t = 0 (ground-
state solution) and t = 2.8 with δ = 1.25; normalization, energy, and central density
|ψ(0, 0, t)|2 are shown as functions of time with δ = 1.25, 1.1, and 0 (no damping) for
case I. Figure 6 shows similar results for case II and Figure 7 for case III. Furthermore,
Figure 8 shows contour plots of the density |ψ|2 at different times for case III with
δ = 0.15.

From our numerical results we find that the observations (1)–(3) made for Ex-
ample 1 are still valid with the additional trapping potential. However, the value of
δth depends on β (or initial energy E(0)), and we find δth ≈ 1.185 for linear damping
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(cf. Figure 5).

3.1. Discussion. In this subsection, we discuss our numerical results in terms
of physical properties of a BEC described by the GPE. We concentrate on those cases
where a collapse of the wave function is arrested since this collapse leads to unphysical
processes like the negative peaks in the energy E(t) shown in Figures 1(c), (d) and
5(e), (f).

The general form of the time evolution in Example 1 is similar for all three
cases. Initially the cloud of atoms contracts due to the attractive interaction between
the particles. This contraction is accompanied by an increase in the energy due to
particle loss which is most efficient in regions of high particle density. These regions
are characterized by a negative local energy density leading to an increase in energy
for each particle lost there. After the central particle density has reached a maximum,
the cloud starts to expand due to the kinetic energy gained by the particles during
the contraction. Particles are emitted from the cloud in burst-like pulses which can
be seen in Figures 4 and 8. Such bursts have also been seen in BEC experiments
[12]. The main differences between the three cases are the behavior of the energy and
the number of particles as a function of time. In case I, where we assumed a linear
damping term, the loss rate of particles from the condensate is independent of the
shape of the condensate wave function. The energy decrease during the condensate
expansion is determined by the loss of particles (cf. Figure 1(b)). In the cases of cubic
and quintic damping, the loss term has a significant effect only on the time evolution
of the condensate during the contraction. When the condensate expands, the density
of particles is so low that the loss terms have only a very small effect and the energy
E(t) and the number of particles N(t) remain almost constant (see Figures 2(c) and
3(c), (d)).

In Example 2, we add an additional trap potential which confines the BEC, and
we assume a realistic scenario (described above) to prepare the condensate in the trap
(cf. the experiments by Donley et al. [12]). We find that the initial process of turning
on the attractive interactions between the particles leads to oscillations in the widths
of the condensate [7] as can be seen from Figures 5, 6, and 7. However, neither the
additional trap potential nor these oscillations significantly alter the behavior of the
system compared to Example 1, when the condensate is strongly contracted. Before
and after this contraction, some differences can be seen. By looking at Figures 5
and 6 we find that the first minimum in σy due to the oscillations of the condensate
causes an increase in the central density and in the energy. For cubic and quintic
damping, this is accompanied by an increased particle loss. However, an arrested
collapse of the wave function happens only when both σx and σy attain a minimum
value due to the attractive interactions (cf. Figures 5(d) and 6(b)). We also note
that the frequency of the oscillations after an arrested collapse has happened is not
significantly influenced by the damping terms. The amplitude of these oscillations is,
however, strongly dependent on δ and decreases with increasing δ. Finally, we want
to mention that a series of contractions and expansions of the condensate is possible.
In Figure 7(b), we find three contractions of the condensate where only the first one
reaches a sufficiently high particle density to lead to an increase in energy while the
next two contractions show a rather smooth decrease in energy and particle number.
For a smaller quintic damping term, we obtain two contractions of the condensate
which increase the energy (see Figure 7(c)).

4. Conclusions. We extended the explicit unconditionally stable second-order
TSSP method for solving damped focusing NLSs. We showed that this method is
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time transversal invariant and preserves the exact decay rate of the normalization for
a linear damping of the NLS. Extensive numerical tests were presented for the cubic
focusing NLS in two dimensions with linear, cubic, and quintic damping terms. Our
numerical results show that quintic and cubic damping always arrest blowup, whereas
linear damping can arrest blowup only when the damping parameter δ is bigger than
a certain threshold value δth. We will apply this novel method to solve the three-
dimensional GPE with a quintic damping term and will compare the numerical results
with the experimental dynamics [12] of collapsing and exploding BECs [8].
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Abstract. We consider a fully practical finite element approximation of the following system of
nonlinear degenerate parabolic equations:

∂u
∂t

+ 1
2
∇.(u2 ∇[σ(v)])− 1

3
∇.(u3 ∇w) = 0, w = −c∆u+ a u−3 − δ u−ν ,

∂v
∂t

+∇.(u v∇[σ(v)])− ρ∆v − 1
2
∇.(u2 v∇w) = 0.

The above models a surfactant-driven thin film flow in the presence of both attractive, a > 0, and
repulsive, δ > 0 with ν > 3, van der Waals forces, where u is the height of the film, v is the
concentration of the insoluble surfactant monolayer, and σ(v) := 1− v is the typical surface tension.
Here ρ ≥ 0 and c > 0 are the inverses of the surface Peclet number and the modified capillary
number. In addition to showing stability bounds for our approximation, we prove convergence in
one space dimension when ρ > 0 and either a = δ = 0 or δ > 0. Furthermore, iterative schemes for
solving the resulting nonlinear discrete system are discussed. Finally, some numerical experiments
are presented.

Key words. thin film flow, surfactant, fourth order degenerate parabolic system, finite elements,
convergence analysis
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1. Introduction. The study of the motion of surfactants placed on a thin layer
of a viscous fluid is motivated by applications ranging from the medical treatment
of premature infants to industrial coating and drying processes (cf. [13, 18, 24, 26,
27]). We are interested in situations in which a free surface of a thin film contains a
monolayer of a surfactant, which is a chemical that lowers the surface tension. Surface
tension gradients then lead to shear stresses which force the liquid to flow toward
regions of higher surface tension (Marangoni effect). In total, the liquid flow is driven
by capillarity and surfactant gradient induced convection (Marangoni convection).

We consider a situation in which the thin layer of a viscous fluid spreads on a
horizontal planar surface. The evolution then can be described by a free boundary
problem for the Navier–Stokes equations coupled to a convection-diffusion equation
for the surfactant, where the latter equation has to be solved only on the free surface.
Starting from this complicated free boundary problem, it is possible, under appropri-
ate assumptions, to use lubrication theory to derive a coupled set of nonlinear partial
differential equations for the two unknowns: film thickness and surfactant concentra-
tion. It is the goal of this paper to develop and analyze a finite element method for
this set of equations.
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Denoting by u the height of the film, by w the pressure, and by v the concentration
of the insoluble surfactant, the governing equations that one derives from lubrication
theory (cf. [13, 18, 31]) are

∂u
∂t +

1
2 ∇.(u2 ∇[σ(v)])− 1

3 ∇.(u3 ∇w) = 0, w = −c∆u ,(1.1a)
∂v
∂t +∇.(u v∇[σ(v)])− ρ∆v − 1

2 ∇.(u2 v∇w) = 0.(1.1b)

In the following, we will denote by the vector x the horizontal variables and by y ∈ R

the vertical variable. The functions u, v, and w are functions of x and the time t, and
all spatial operators like ∇,∇., and ∆ in this paper act on the horizontal variables
only. The given data are ρ ∈ R≥0, the inverse of the surface Peclet number, and
c ∈ R>0, the inverse of a modified capillary number. In addition, σ : [0, 1] → [0, 1] is
the constitutive equation of state relating the surface tension σ to v, e.g.,

σ(s) := (β + 1) [1 + θ(β) s]−3 − β, where θ(β) :=
(
β+1
β

) 1
3 − 1,(1.2)

and β ∈ R>0 relates to the activity of the surfactant (cf. [24, p. 262]). It is reasonable
to assume throughout that σ is a monotonically decreasing function of v, as the
surfactant lowers surface tension.

Let us now discuss some properties of the system which are important for later
developments. First, we want to show how one can recover the pressure and velocity
in the fluid if one knows a solution {u, v, w} of (1.1a,b). In lubrication theory (see
[19]), it turns out that the pressure in the fluid is independent of the vertical variable
y, and we obtain that p(x, y, t) ≡ w(x, t) = −c∆u(x, t), where the right-hand side
is an approximation to the mean curvature of the air/liquid interface. We remark
that one obtains this identity from the leading order equation in lubrication theory.
Another important quantity in lubrication theory is the horizontal component of the
velocity, �VH , which can be computed from {u(x, t), v(x, t), w(x, t)} as follows:

�VH(x, y, t) = y∇[σ(v)] +
(

1
2 y2 − y u

)∇w,(1.3)

where a no-slip condition has been assumed at y = 0. One notices that �VH is quadratic
in the y-direction. Furthermore, the fluid is driven by two effects: namely, by pres-
sure gradients due to capillarity effects, −c∇(∆u), and by surface tension gradients,
∇[σ(v)]. Equation (1.3) evaluated for y = u(x, t) yields the horizontal velocity on the
free surface, and hence the equation for the surfactant concentration, (1.1b), can be
rewritten as

∂v
∂t +∇.(v �VH(x, u(x, t), t)) = ρ∆v ,

which shows that it can be interpreted as a convection-diffusion equation, where the
surfactant is transported with the velocity of the fluid. In addition, the equation for
the film height can be expressed with the help of the fluid velocity. A straightforward
computation starting from (1.1a) shows that the change of height of the film is given
in terms of the horizontal component of the velocity as follows:

∂u
∂t = −∇.

(∫ u(x,t)

0

�VH(x, y, t) dy

)
.

A basic ingredient of our approach is an energy estimate for surfactant-driven
flows. To derive an energy estimate involving a density function F (v), we use some
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ideas from thermodynamics. First, we relate F to σ by the Gibbs identity

σ(v) = F (v)− v F ′(v) ⇒ σ′(v) = −v F ′′(v) .(1.4)

Knowing σ, the above identity determines F up to a linear term. Assuming appro-
priate boundary conditions, which will be specified later on, one can derive an energy
estimate for the surfactant-driven thin film system as

d
dt

∫
Ω

[
c
2 |∇u|2 + F (v)

]
dx+

∫
Ω

∫ u

0

|∂y �VH |2 dy dx+ ρ

∫
Ω

F ′′(v) |∇v|2 dx = 0 ,(1.5)

where Ω is a bounded domain in R
d, d = 1 or 2. To derive the above, we have used

the identity∫ u

0

|∂y �VH |2 dy = u |∇[σ(v)]|2 − u2 ∇[σ(v)] .∇w + 1
3 u3 |∇w|2 .(1.6)

The identity (1.5) directly corresponds to the energy estimate for the free boundary
value problem for the Navier–Stokes equations. The term d

dt

∫
Ω
[ c2 |∇u|2 + F (v)] dx

describes the rate of change of energy in time, and, since one neglects inertia effects,
only capillarity terms appear in the energy. The two remaining terms in (1.5) rep-
resent energy dissipation due to friction in the fluid and diffusion of the surfactant,
respectively.

On recalling that σ is monotonically decreasing, we deduce from (1.4) that F ′′

is nonnegative, and hence the identity (1.5) shows that the energy decreases in time.
This energy estimate will lead to important a priori estimates. In particular, the
identity (1.6) together with the inequality

u2 ∇[σ(v)] .∇w ≤ γ
2 u |∇[σ(v)]|2 + 1

2γ u3 |∇w|2, γ ∈ ( 3
2 , 2),(1.7)

then shows that we can control u |∇[σ(v)]|2 and u3 |∇w|2 with the help of the energy
estimate (1.5).

It is the goal of this paper to derive a finite element method that is consistent with
the energy estimate (1.5); i.e., we want to derive a method that satisfies a discrete
analogue.

To conclude the system, we need to specify initial and boundary conditions for
(1.1a–c). One possibility that leads to the above energy estimate would be to describe
periodic boundary conditions. Instead we prescribe the following conditions at the
horizontal boundary: a no-penetration condition for the velocity, a 90◦ angle condition
for the film height, and a no-flux condition for the surfactant concentration. This
implies the following conditions for x ∈ ∂Ω and 0 ≤ y ≤ u(x, t):

ν∂Ω . �VH(x, y, t) ≡ ν∂Ω .
(
y∇[σ(v)] +

(
1
2 y2 − y u

)∇w
)
= 0, ∂u

∂ν∂Ω
= 0,(1.8a)

ν∂Ω. (v �VH(x, u(x, t), t)− ρ∇v) ≡ ν∂Ω.(v (u∇[σ(v)]− 1
2 u2 ∇w)− ρ∇v) = 0,(1.8b)

where ν∂Ω is normal to ∂Ω, the Lipschitz boundary of Ω. Integrating the first equation
in (1.8a) with respect to y yields that

1
2 u2 ∂[σ(v)]

∂ν∂Ω
− 1

3 u3 ∂w
∂ν∂Ω

= 0 on ∂Ω ,(1.9)

which means that the height averaged normal component of the horizontal velocity is
zero on the boundary. Note that in the case that either ρ > 0 or v σ′(v) �= 0, it can
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be seen that the first boundary condition in (1.8a) and (1.8b) are equivalent to (1.9)
and (1.8b) (observe that (1.8a) holds for all y ∈ [0, u(x, t)], x ∈ ∂Ω).

In what follows, we will therefore specify the boundary conditions

1
2 u2 ∂[σ(v)]

∂ν∂Ω
− 1

3 u3 ∂w
∂ν∂Ω

= ∂u
∂ν∂Ω

= u v ∂[σ(v)]
∂ν∂Ω

− 1
2 u2 v ∂w

∂ν∂Ω
− ρ ∂v

∂ν∂Ω
= 0 on ∂Ω .

We remark that if either u ρ > 0 or −u v σ′(v) > 0 on ∂Ω, these boundary conditions
are equivalent to ∂u

∂ν∂Ω
= ∂w

∂ν∂Ω
= ∂v

∂ν∂Ω
= 0 on ∂Ω.

When surfactant is placed on the film, a thinning effect can be observed (see the
numerical results in section 5). If the film thickness is in the range of a few hundred
Angstroms, then molecular effects due to van der Waals forces become important. If
van der Waals forces are included, an additional conservative body force enters the
Navier–Stokes equations (see, e.g., [28]). In the thin film equations and in all the
formulae above, the pressure w, related to the height u previously by (1.1a), is then
replaced by the reduced pressure

w = −c∆u+ φ(u) , where φ(u) := a u−3 − δ u−ν , ν > 3 .(1.10)

Here a ∈ R≥0 is the scaled dimensionless Hamaker constant and δ ∈ R≥0 represents
the effect of repulsive van der Waals forces; see, e.g., [28]. When van der Waals forces
are included, the energy estimate (1.5) is replaced by

d
dt

∫
Ω

[
c
2 |∇u|2 + F (v) + Φ(u)

]
dx+

∫
Ω

∫ u

0

|∂y �VH |2 dy dx+ ρ

∫
Ω

F ′′(v) |∇v|2 dx = 0,

(1.11)

where Φ is an antiderivative of φ, i.e., Φ′ = φ, and the horizontal velocity �VH is still
given by (1.3) but with w now defined by (1.10).

Altogether, in this paper we consider the following initial boundary value problem.
(P) Find functions u, w, v : Ω× [0, T ] → R such that

∂u
∂t +

1
2 ∇.(u2 ∇[σ(v)])− 1

3 ∇.(u3 ∇w) = 0 in ΩT ,(1.12a)

w = −c∆u+ φ(u) in ΩT , where u > 0,(1.12b)
∂v
∂t +∇.(uλ(v)∇[σ(v)])− ρ∆v − 1

2 ∇.(u2 λ(v)∇w) = 0 in ΩT ,(1.12c)

u(x, 0) = u0(x), v(x, 0) = v0(x) ∀ x ∈ Ω,(1.12d)

1
2 u2 ∂[σ(v)]

∂ν∂Ω
− 1

3 u3 ∂w
∂ν∂Ω

= ∂u
∂ν∂Ω

= uλ(v) ∂[σ(v)]
∂ν∂Ω

− 1
2 u2 λ(v) ∂w

∂ν∂Ω

−ρ ∂v
∂ν∂Ω

= 0 on ∂Ω× (0, T ),(1.12e)

where ΩT := Ω× (0, T ] and T > 0 is a fixed positive time. In the above, c ∈ R>0 and
ρ ∈ R≥0 are given constants, while φ : R>0 → R is defined as in (1.10); u0 and v0 are
given nonnegative initial profiles (e.g., u0 ≡ 1 for a film of uniform thickness and u0

having support ⊂⊂ Ω for a drop). Throughout this paper, we will restrict ourselves
to the model case σ(v) := 1− v, the β → ∞ limit of (1.2). We remark that physically
relevant values of v(x, t) lie in the interval [0, 1]. Noting this, it is convenient for the
analysis in this paper to replace the terms ui v, i = 1 → 2, in (1.1b) by ui λ(v), where
λ : R → (−∞, 1] is defined as

λ(s) := [s− 1]− + 1, with [s]− := min{s, 0}.(1.13)
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As u and λ(v) can take on zero values, (P) is a degenerate parabolic system, which
is fourth order in u. This degeneracy makes the analysis/numerical analysis of (P)
particularly difficult. Although we have assumed a no-slip condition at y = 0 in the
derivation of (P) (see (1.3)) the results in this paper can easily be generalized to
models allowing slip (see [31]).

Let us mention some work on problems that also lead to degenerate parabolic
equations of fourth order. In particular, we would like to mention work on the fol-
lowing topics: thin film flow (cf. [9, 19, 10, 8, 11]), the Cahn–Hilliard equation with a
degenerate mobility (cf. [14, 16, 17]), and models that describe dislocation densities
in plasticity (cf. [20]). An existence result for the system (P) studied in this paper
has been given by Wieland [31] in the case of one space dimension.

Problem (P) with v0 ≡ 0 and φ ≡ 0 collapses to the thin film equation, i.e., a de-
generate parabolic equation of fourth order. Degenerate parabolic equations of higher
order exhibit some new characteristic features which are fundamentally different from
those for second order degenerate parabolic equations such as the porous medium
equation ∂u

∂t − ∇.(|u|α∇u) = 0 for a given α ∈ R>0. The key point is that there is
no maximum or comparison principle for parabolic equations of higher order. This
drastically complicates the analysis since many results which are known for second
order equations are proven with the help of comparison techniques. Related to this is
the fact that there is no uniqueness result known for the thin film equation. Although
there is no comparison principle, one of the main features of the thin film equation
is the fact that one can show existence of nonnegative solutions if given nonnegative
initial data. This is in contrast to linear parabolic equations of fourth order, where
solutions which are initially positive may become negative in certain regions.

There is very little work on the numerical analysis of degenerate parabolic equa-
tions of fourth order; for work on thin film flows in the absence of surfactants, see
[4, 32, 22, 21] and for work on degenerate Cahn–Hilliard systems, see [5, 6, 3].

This paper is organized as follows. In section 2 we formulate a fully practical finite
element approximation of problem (P). On the discrete level, the nonnegativity of the
approximation to u is not guaranteed when we discretize the system (1.12a–e) in a
naive way. Following [4], we impose the nonnegativity of the discrete approximation
to u as a constraint and require (1.12b) only where u is positive. In addition, in order
to derive a discrete analogue of the energy estimate (1.11), we adapt a technique
introduced in [32] and [22] for deriving a discrete entropy bound for the thin film
equation.

We can derive stability bounds in space dimensions d = 1 and 2, but we are only
able to show convergence in one space dimension. This is due to the fact that the
a priori bounds we derive guarantee in one space dimension only that the discrete
approximation to u is uniformly bounded and equicontinuous, which is necessary to
be able to pass to the limit in the discrete problem. For similar reasons, the results in
[9, 4, 22, 5, 6, 3] were restricted to one space dimension. This convergence is carried
out in section 3. A convergence result for a finite element method of the thin film
equation in two dimensions has been given recently by Grün [21]. Unfortunately a
generalization of Grün’s result to the problem presented in this paper does not seem
to be possible in a straightforward manner. In section 4, we introduce and analyze
algorithms to solve the nonlinear algebraic systems at each time level. Finally, in
section 5, we present some numerical computations in one and two space dimensions.
We compare the computed discrete solutions with results published in [24, 26] and
other papers.
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Notation and auxiliary results. We adopt the standard notation for Sobolev
spaces, denoting the norm ofWm,q(Ω) (m ∈ N, q ∈ [1,∞]) by ‖·‖m,q and the seminorm
by | · |m,q. For q = 2, Wm,2(Ω) will be denoted by Hm(Ω) with the associated norm
and seminorm written as, respectively, ‖ · ‖m and | · |m. Throughout (·, ·) denotes
the standard L2 inner product over Ω and 〈·, ·〉 denotes the duality pairing between(
H1(Ω)

)′
and H1(Ω). In addition we define∫−η := 1

m(Ω) (η, 1) ∀ η ∈ L1(Ω), where m(Ω) is the measure of Ω .(1.14)

We require also the Hölder space Cp1,p2

x,t (ΩT ) for pi ∈ (0, 1], which denotes those

functions whose time (spatial) derivative(s) is (are) Hölder continuous over ΩT with
exponent p1(p2).

For later purposes, we recall the following well-known Sobolev interpolation result
(see, e.g., [1]): Let m ≥ 1, q ∈ ( dm ,∞], r ∈ [q,∞], and µ := d

m

(
1
q − 1

r

)
. Then there is

a constant C depending only on Ω,m, q, r such that

|z|0,r ≤ C |z|1−µ0,q ‖z‖µm,q ∀ z ∈ Wm,q(Ω) .(1.15)

It is convenient to introduce the “inverse Laplacian” operator G : F → Z such
that

(∇Gz,∇η) = 〈z, η〉 ∀ η ∈ H1(Ω),(1.16)

where F :=
{
z ∈ (H1(Ω))′ : 〈z, 1〉 = 0

}
and Z := {z ∈ H1(Ω) : (z, 1) = 0}. The well-

posedness of G follows from the Lax–Milgram theorem and the Poincaré inequality

|η|0,q ≤ C ( |η|1,q + |(η, 1)| ) ∀ η ∈ W 1,q(Ω) and q ∈ [1,∞].(1.17)

One can define a norm on F by

‖z‖−1 := |Gz|1 = 〈z,Gz〉 1
2 ∀ z ∈ F .(1.18)

We note also for future reference that using Young’s inequality

r s ≤ γ
2 r2 + 1

2γ s2 ∀ r, s ∈ R, γ ∈ R>0(1.19)

yields for all γ ∈ R>0 that

〈z, η〉 = (∇Gz,∇η) ≤ ‖z‖−1|η|1 ≤ γ
2 |η|21 + 1

2γ ‖z‖2
−1 ∀ z ∈ F , η ∈ H1(Ω).(1.20)

Throughout C denotes a generic constant independent of h, τ , and ε, the mesh
and temporal discretization parameters and the regularization parameter. In addition,
C(a1, . . . , aI) denotes a constant depending on the arguments {ai}Ii=1.

2. Finite element approximation. We consider the finite element approxi-
mation of (P) at first under the following assumptions on the mesh:

(A) Let Ω be a polygonal domain if d = 2. Let {T h}h>0 be a quasi-uniform family
of partitionings of Ω into disjoint open simplices κ with hκ := diam(κ) and
h := maxκ∈T h hκ so that Ω = ∪κ∈T hκ. In addition, it is assumed for d = 2
that all simplices κ ∈ T h are right-angled.

We note that the quasi uniformity assumption can be avoided at the expense of a
mild constraint on the minimum time step; see Remark 3.5 below. Furthermore we
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note that the right-angled simplices assumption is not a severe constraint, as there
exist adaptive finite element codes that satisfy this requirement; see, e.g., [30].

Associated with T h is the finite element space Sh := {χ ∈ C(Ω) : χ |κ is linear
for all κ ∈ T h} ⊂ H1(Ω). We introduce alsoKh := {χ ∈ Sh : χ ≥ 0 in Ω} ⊂ K, where
K := {η ∈ H1(Ω) : η ≥ 0 a.e. in Ω}. Let J be the set of nodes of T h and {pj}j∈J
the coordinates of these nodes. Let {χj}j∈J be the standard basis functions for Sh;
that is, χj ∈ Kh and χj(pi) = δij for all i, j ∈ J . We introduce πh : C(Ω) → Sh,
the interpolation operator, such that (πhη)(pj) = η(pj) for all j ∈ J . A discrete
semi-inner product on C(Ω) is then defined by

(η1, η2)
h :=

∫
Ω

πh(η1(x) η2(x)) dx =
∑
j∈J

mj η1(pj) η2(pj),(2.1)

where mj := (1, χj) > 0. The induced discrete seminorm is then |η|h := [ (η, η)h ]
1
2 ,

where η ∈ C(Ω). We introduce also the L2 projection Qh : L2(Ω) → Sh defined by

(Qhη, χ)h = (η, χ) ∀ χ ∈ Sh.(2.2)

In this paper, for simplicity, we consider only the model case when the surface
tension is given by σ(s) := 1−s, which is the limit as β → ∞ in (1.2) and is commonly
used in the physics/engineering literature (cf. [27]). On recalling (1.4), we then define
a function F such that v∇[F ′(v)] = −∇[σ(v)]; that is, F ′′(s) = −s−1 σ′(s) = s−1 ⇒
F (s) = s (ln s − 1) + 1. For computational purposes, we replace F ∈ C∞(R>0) for
any ε ∈ (0, 1) by the regularized function Fε : R → R≥0 such that

Fε(s) :=


s2−ε2

2 ε + (ln ε− 1) s+ 1, s ≤ ε,
s (ln s− 1) + 1, ε ≤ s ≤ 1,
1
2 (s− 1)2, 1 ≤ s .

Hence Fε ∈ C2,1(R) with the first two derivatives of Fε given by

F ′ε(s) :=

 ε−1 s+ ln ε− 1, s ≤ ε,
ln s, ε ≤ s ≤ 1,
s− 1, 1 ≤ s,

and F ′′ε (s) :=

 ε−1, s ≤ ε,
s−1, ε ≤ s ≤ 1,
1, 1 ≤ s ,

(2.3)

respectively. For later purposes, we note that

Fε(s) ≥ s2

4 − 1
2 ∀ s ≥ 0 and Fε(s) ≥ s2

2 ε ∀ s ≤ 0 .(2.4)

This holds since

Fε(s) :=
1
2 (s− 1)2 ≥ 1

2 (s− 1)2 − ( 1
2s− 1)2 = s2

4 − 1
2 if s ≥ 1 ,

F ′ε(s) ≤ 0 ⇒ Fε(s) ≥ Fε(1) = 0 ≥ s2

4 − 1
2 if s ∈ [0, 1] ,

Fε(s) :=
s2−ε2

2 ε + (ln ε− 1) s+ 1 ≥ s2

2 ε + (1− ε
2 ) ≥ s2

2 ε if s ≤ 0 .

Similarly to the approach in [32] and [22], we introduce Λε : Sh → [L∞(Ω)]d×d

such that for all zh ∈ Sh and a.e. in Ω,

Λε(z
h) is symmetric and positive semidefinite and Λε(z

h)∇πh[F ′ε(z
h)] = ∇zh.

(2.5)
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Following [22], we now give the construction of Λε. Let {ei}di=1 be the orthonormal
vectors in R

d such that the jth component of ei is δij , i, j = 1 → d. Given nonzero
constants αi, i = 1 → d, let κ̂({αi}di=1) be the reference open simplex in R

d with
vertices {p̂i}di=0, where p̂0 is the origin and p̂i = αi ei, i = 1 → d. Given a κ ∈ T h

with vertices {pji}di=0 such that pj0 is the right-angled vertex, there exist a rotation
matrix Rκ and nonzero constants {αi}di=1 such that the mapping Rκ : x̂ ∈ R

d →
pj0 +Rκx̂ ∈ R

d maps the vertex p̂i to pji , i = 0 → d, and hence κ̂ ≡ κ̂({αi}di=1) to κ.
For any zh ∈ Sh, we then set

Λε(z
h) |κ:= Rκ Λ̂ε(ẑ

h) |̂
κ
RT
κ ,(2.6)

where ẑh(x̂) ≡ zh(Rκx̂) for all x̂ ∈ κ̂ and Λ̂ε(ẑ
h) |̂

κ
is the d× d diagonal matrix with

diagonal entries, k = 1 → d,

[Λ̂ε(ẑ
h)]kk |̂κ:=


ẑh(p̂k)−ẑh(p̂0)

F ′
ε(ẑ

h(p̂k))−F ′
ε(ẑ

h(p̂0))
≡ zh(pjk )−zh(pj0 )

F ′
ε(z

h(pjk ))−F ′
ε(z

h(pj0 ))
if zh(pjk) �= zh(pj0),

1

F ′′
ε (ẑh(p̂0))

≡ 1
F ′′

ε (zh(pj0 ))
if zh(pjk) = zh(pj0).

(2.7)

As RT
κ ≡ R−1

κ , ∇zh ≡ Rκ ∇̂ẑh, where x ≡ (x1, . . . , xd)
T , ∇ ≡ ( ∂

∂x1
, . . . , ∂

∂xd
)T ,

x̂ ≡ (x̂1, . . . , x̂d)
T , and ∇̂ ≡ ( ∂

∂x̂1

, . . . , ∂

∂x̂d

)T , it easily follows that Λε(z
h) constructed

in (2.6) and (2.7) satisfies (2.5). It is this construction that requires the right angle
constraint on the partitioning T h. Furthermore, we note from (2.3) that for all κ ∈ T h,

∇zh.∇πh[F ′ε(z
h)] |κ ≡ Rκ∇̂ẑh.Rκ∇̂π̂h[F ′ε(ẑ

h)] |̂
κ

≡ ∇̂ẑh.∇̂π̂h[F ′ε(ẑ
h)] |̂

κ
≥ |∇̂ẑh|2 |̂

κ
≡ |∇zh|2 |κ

=⇒ (∇zh,∇πh[F ′ε(z
h)]) ≥ |zh|21 ∀ zh ∈ Sh ,(2.8)

where (π̂hη̂)(x̂) ≡ (πhη)(Rκx̂) and η̂(x̂) ≡ η(Rκx̂) for all x̂ ∈ κ̂.
To define our approximation of (P), it is convenient to split Φ (recall (1.11)) into

its convex and concave parts. We have for given a, δ ∈ R≥0, and ν > 3 that for all
s ∈ R>0

Φ(s) = Φ+(s) + Φ−(s), where Φ+(s) := δ
ν−1 s1−ν , Φ−(s) := −a

2 s−2,

φ(s) = Φ′(s) = φ+(s) + φ−(s), where φ+(s) := (Φ+)′(s) = −δ s−ν ,
φ−(s) := (Φ−)′(s) = a s−3.(2.9)

For future reference, we note that the following hold for all s ∈ R>0:

Φ(s) ≥ Φ( ( δa )
1

ν−3 ) = a (3−ν)
2 (ν−1) (

a
δ )

2
ν−3 and |Φ−(s)| ≤ a (ν−3)

2 (ν−1) (
2 a
δ )

2
ν−3 + 1

2 Φ
+(s).

(2.10)

In addition to T h, let 0 = t0 < t1 < · · · < tN−1 < tN = T be a partitioning
of [0, T ] into possibly variable time steps τn := tn − tn−1, n = 1 → N . We set
τ := maxn=1→N τn. For any given ε ∈ (0, 1), we then consider the following fully
practical finite element approximation of (P) with σ(v) := 1− v and δ = 0 (φ+ ≡ 0).
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(Ph,τ
ε ) For n ≥ 1 find {Un

ε ,W
n
ε , V n

ε } ∈ Kh × [Sh]2 such that for all χ ∈ Sh,
zh ∈ Kh,

(
Un

ε −Un−1
ε

τn
, χ
)h
+ 1

3

(
πh[(Un−1

ε )3]∇Wn
ε ,∇χ

)
=− 1

2 (π
h[(Un−1

ε )2]∇V n−1
ε ,∇χ),

(2.11a)

c (∇Un
ε ,∇(zh − Un

ε )) + (φ−(Un−1
ε + ε), zh − Un

ε )
h ≥ (Wn

ε , zh − Un
ε )

h,
(2.11b)

(
V n
ε −V n−1

ε

τn
, χ
)h

+ ρ (∇V n
ε ,∇χ) + (Un

ε Λε(V
n
ε )∇V n

ε ,∇χ)

= − 1
2 (π

h[(Un
ε )

1
2 (Un−1

ε )
3
2 ] Λε(V

n
ε )∇Wn

ε ,∇χ),(2.11c)

where U0
ε ∈ Kh and V 0

ε ∈ Sh are approximations of u0 and v0, respectively; e.g.,
U0
ε ≡ πhu0 or Qhu0 and similarly V 0

ε .
If a = 0 (φ− ≡ 0), then setting V n

ε ≡ 0, n = 0 → N , (2.11a,b) collapses to the
approximation of the thin film equation, (1.12a–e) with v ≡ 0, studied in [4], except
that there πh[(Un−1

ε )3] in (2.11a) is replaced by (Un−1
ε )3 and so is less practical than

(2.11a). If δ > 0 (φ+ �≡ 0), then (Ph,τ
ε ) above is modified as follows.

(Ph,τ
δ, ε ) For n ≥ 1 find {Un

ε ,W
n
ε , V n

ε } ∈ [Sh]3 such that (2.11a,c) hold with (2.11b)
replaced by

c (∇Un
ε ,∇χ) + (φ+(Un

ε ) + φ−(Un−1
ε ), χ)h = (Wn

ε , χ)h ∀ χ ∈ Sh ,(2.12)

where in addition it is assumed that U0
ε > 0.

Note that the convex (concave) terms in Φ are approximated implicitly (explicitly)
in (2.11b) and (2.12). If δ = 0, we can guarantee only that Un−1

ε ≥ 0 and hence the
choice of φ−(Un−1

ε +ε) instead of φ−(Un−1
ε ) on the left-hand side of (2.11b). Whereas

if δ > 0 and U0
ε > 0, one can ensure that φ−(Un−1

ε ) is well defined for n ≥ 1; see
Theorem 2.6 below.

Below we recall some well-known results concerning Sh for any κ ∈ T h, χ, zh ∈
Sh, η1, η2 ∈ C(Ω) and for m = 0 or 1:

lim
h→0

|(I − πh)η1|0,∞ = 0 ,(2.13) ∫
κ
χ2 dx ≤ ∫

κ
πh[χ2] dx ≤ (d+ 2)

∫
κ
χ2 dx ,(2.14) ∫

κ
πh[η1η2]∇χ.∇zh dx ≤ [∫

κ
πh[η2

1 ] |∇χ|2 dx] 1
2
[∫

κ
πh[η2

2 ] |∇zh|2 dx] 1
2 ,(2.15)

|πh[η1η2](x) |2 ≤ |πhη1|20,∞ πh[η2
2 ](x) ∀ x ∈ Ω;(2.16)

|(χ, zh)− (χ, zh)h| ≤ |(I − πh)(χ zh)|0,1 ≤ C h1+m |χ|m |zh|1 .(2.17)

If d = 1, then we have for m = 0 or 1 that

|(I − πh)η|m,r ≤ C h1−m |η|1,r ∀ η ∈ W 1,r(Ω), for any r ∈ [1,∞];(2.18)

lim
h→0

‖(I − πh)η‖1 = 0 ∀ η ∈ H1(Ω).(2.19)

It follows from (2.2) that

(Qhη)(pj) =
(η,χj)
(1,χj)

∀ j ∈ J =⇒ |Qhη|0,∞ ≤ |η|0,∞ ∀ η ∈ L∞(Ω).(2.20)

Finally, as we have a quasi-uniform family of partitionings, it holds for m = 0 or 1
that

|(I −Qh)η|m ≤ C h1−m ‖η‖1 ∀ η ∈ H1(Ω).(2.21)
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We define Zh := {zh ∈ Sh : (zh, 1) = 0} ⊂ Fh := {z ∈ C(Ω) : (z, 1)h = 0}. Then,
similarly to (1.16), we introduce Gh : Fh → Zh such that

(∇Ghz,∇χ) = (z, χ)h ∀ χ ∈ Sh .(2.22)

It is easily established, as we have a quasi-uniform family of partitionings, that

|zh|0 ≤ C h−1 |Gzh|1 ∀ zh ∈ Zh.(2.23)

We now adapt and extend the approach in [4] to establish the existence of a
solution {Un

ε ,W
n
ε , V n

ε }Nn=1 to (Ph,τ
ε ). First, we need to introduce some notation.

In particular, we define sets Zh(Un−1
ε ) in which we seek the update Un

ε − Un−1
ε .

Given qh ∈ Kh, we set J0(q
h) := {j ∈ J : (πh[(qh)3], χj) = 0}. All other nodes

we call active nodes, and they can be uniquely partitioned so that J+(q
h) := J \

J0(q
h) =

⋃M
m=1 Im(qh), M ≥ 1, where Im(qh), m = 1 → M , are mutually disjoint

and maximally connected in the following sense: Im(qh) is said to be connected if for
all j, k ∈ Im(qh), there exist {κ-}L-=1 ⊆ T h, not necessarily distinct, such that

pj ∈ κ1, pk ∈ κL; κ- ∩ κ-+1 �= ∅, > = 1 → L− 1; qh �≡ 0 on κ-, > = 1 → L.

Im(qh) is said to be maximally connected if there is no other connected subset of
J+(q

h), which contains Im(qh). We then set

Zh(qh) := {zh ∈ Sh : zh(pj) = 0 ∀ j ∈ J0(q
h) and

(zh,Ξm(qh))h = 0, m = 1 → M },(2.24)

where Ξm(qh) :=
∑

j∈Im(qh) χj for m = 1 → M . An immediate consequence of the

above definitions is that on any κ ∈ T h either

qh ≡ 0 or Ξm�
(qh) ≡ 1 for some m/ and Ξm(qh) ≡ 0 for m �= m/.(2.25)

This follows since if qh �≡ 0 on κ, then all vertices of κ belong to the set of active
nodes J+(q

h). Using the fact that Im(qh), m = 1 → M , are maximally connected,
we can conclude that there exists an m/ such that all vertices of κ belong to Im�(q

h)
and therefore, Ξm�

(qh) ≡ 1 on κ. The desired result now follows since Im(qh), m =
1 → M , are mutually disjoint.

For later reference, we state that any zh ∈ Sh can be written as

zh ≡
∑
j∈J

zh(pj)χj ≡ zh +
∑

j∈J0(qh)

zh(pj)χj +

M∑
m=1

(zh,Ξm(qh))h

(1,Ξm(qh))
Ξm(qh),(2.26)

where zh :=
∑M

m=1

∑
j∈Im(qh)[z

h(pj) − (zh,Ξm(qh))h

(1,Ξm(qh))
]χj ∈ Zh(qh) is the projection

with respect to the (·, ·)h scalar product of zh onto Zh(qh). In order to express Wn
ε in

terms of Un
ε and Un−1

ε , we introduce for all qh ∈ Kh the discrete anisotropic Green’s
operator Ghqh : Zh(qh) → Zh(qh) such that

(πh[(qh)3]∇Ghqhzh,∇χ) = (zh, χ)h ∀ χ ∈ Sh.(2.27)

To show the well-posedness of Ghqh , we first note that on choosing χ ≡ χj , j ∈ J0(q
h), in

(2.27) leads to both sides vanishing on noting (2.24). Similarly, choosing χ ≡ Ξm(qh),
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m = 1 → M , in (2.27) leads to both sides vanishing on noting (2.25) and (2.24).
Therefore, for well-posedness, it remains to prove uniqueness as Zh(qh) has finite
dimension. If there exist two solutions Z(i), i = 1, 2, with (πh[(qh)3]∇Z(i),∇χ) =
(zh, χ)h for all χ ∈ Sh, then Z := Z(2) − Z(1) ∈ Zh(qh) satisfies, on noting (2.25),

C(qh, h)

M∑
m=1

∫
Ωm

|∇Z|2 dx ≤
M∑

m=1

∫
Ωm

πh[(qh)3] |∇Z|2 dx =

∫
Ω

πh[(qh)3] |∇Z|2 dx = 0

for some positive constant C(qh, h), where Ωm := {∪κ∈T hκ : Ξm(qh)|κ≡ 1 }. Hence
it follows that Z is constant on each Ωm. However, as Z ∈ Zh(qh), it follows that
Z ≡ 0. Finally, note that Zh(qh) ⊆ Zh for all qh ∈ Kh and in addition that Zh(qh)
defined in (2.24) is equal to Zh if qh is strictly positive.
Lemma 2.1. Let the assumptions (A) hold, and let ‖ · ‖ denote the spectral norm

on R
d×d. Then for any given ε ∈ (0, 1), the function Λε : S

h → [L∞(Ω)]d×d satisfies

ε ξT ξ ≤ ξTΛε(z
h)ξ ≤ ξT ξ ∀ ξ ∈ R

d, ∀ zh ∈ Sh(2.28)

and is continuous. In particular, it holds for all zh1 , z
h
2 ∈ Sh, κ ∈ T h that

‖[Λε(z
h
1 )− Λε(z

h
2 )] |κ ‖ = ‖[Λ̂ε(ẑ

h
1 )− Λ̂ε(ẑ

h
2 )] |̂κ ‖

≤ max
s∈R

F ′′ε (s) max
s∈R

[F ′′ε (s)]
−1 max

k=1→d

[ |zh1 (pjk)− zh2 (pjk)|+ |zh1 (pj0)− zh2 (pj0)|
]

≤ ε−1 max
k=1→d

[ |zh1 (pjk)− zh2 (pjk)|+ |zh1 (pj0)− zh2 (pj0)|
]
,

(2.29)

where we have adopted the notation of (2.6) and (2.7).
Proof. It follows immediately from (2.6), (2.7), and (2.3) that (2.28) holds. The

proof of (2.29) is a straightforward adaptation of the proof of Lemma 2.1 in [7], where
a similar inequality is shown for a slightly modified Fε.
Theorem 2.2. Let the assumptions (A) hold and Un−1

ε ∈ Kh, V n−1
ε ∈ Sh. Then

for all ε ∈ (0, 1) and for all h, τn > 0, there exists a solution {Un
ε ,W

n
ε , V n

ε } to the
nth step of (Ph,τ

ε ) with
∫−Un

ε =
∫−Un−1

ε and
∫−V n

ε =
∫−V n−1

ε . Moreover, Un
ε is unique.

In addition, Wn(pj) is unique if (π
h[(Un−1

ε )3], χj) > 0 for all j ∈ J .
Proof. For n ≥ 1, given Un−1

ε ∈ Kh, V n−1
ε ∈ Sh, we define Xn−1

ε ∈ Zh(Un−1
ε )

such that

(Xn−1
ε , χ)h := 1

2 (π
h[(Un−1

ε )2]∇V n−1
ε ,∇χ) ∀ χ ∈ Sh .(2.30)

It follows from (2.11a), (2.27), and (2.30) that we seek Un
ε ∈ Kh(Un−1

ε ), where for all
qh ∈ Kh

Sh(qh) := {χ ∈ Sh : χ− qh ∈ Zh(qh) } and Kh(qh) := Sh(qh) ∩Kh.(2.31)

In addition, we have that (cf. (2.26))

Wn
ε ≡ −3Gh

Un−1
ε

[
Un

ε −Un−1
ε

τn
+Xn−1

ε

]
+

∑
j∈J0(U

n−1
ε )

αn
j χj +

M∑
m=1

βnm Ξm(Un−1
ε ),(2.32)

where {αn
j }j∈J0(U

n−1
ε ) and {βnm}Mm=1 are arbitrary constants. Hence (2.11a) and

(2.11b) can be restated as follows.
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For n ≥ 1, find Un
ε ∈ Kh(Un−1

ε ) and constant Lagrange multipliers {αn
j }j∈J0(U

n−1
ε ),

{βnm}Mm=1 such that

c (∇Un
ε ,∇(χ− Un

ε )) + 3
(
Gh
Un−1

ε

[
Un

ε −Un−1
ε

τn

]
, χ− Un

ε

)h

≥
 ∑

j∈J0(U
n−1
ε )

αn
j χj +

M∑
m=1

βnm Ξm(Un−1
ε ) +X

n−1

ε , χ− Un
ε

h

∀ χ ∈ Kh,

(2.33)

where X
n−1

ε ∈ Sh is such that

(X
n−1

ε , χ)h := −(φ−(Un−1
ε + ε) + 3Gh

Un−1
ε

Xn−1
ε , χ)h ∀ χ ∈ Sh .

It follows from (2.33), (2.31), and (2.24) that Un
ε ∈ Kh(Un−1

ε ) is such that

AUn−1
ε

(Un
ε , z̃

h − Un
ε ) ≥ (X

n−1

ε , z̃h − Un
ε )

h ∀ z̃h ∈ Kh(Un−1
ε ),(2.34)

where AUn−1
ε

: Sh(Un−1
ε )× Sh → R is defined by

AUn−1
ε

(zh, χ) := c (∇zh,∇χ) + 3 (Gh
Un−1

ε
[
zh−Un−1

ε

τn
], χ)h ∀ zh ∈ Sh(Un−1

ε ), χ ∈ Sh.

(2.35)

There exists Un
ε ∈ Kh(Un−1

ε ) satisfying (2.34) since, on noting (2.27), this is the
Euler–Lagrange variational inequality of the convex minimization problem

min
z̃h∈Kh(Un−1

ε )

{
c
2 |z̃h|21 + 3

2τn
|[πh[(Un−1

ε )3] ]
1
2 ∇Gh

Un−1
ε

(z̃h − Un−1
ε )|20 − (X

n−1

ε , z̃h)h
}
.

(2.36)

Furthermore, given any zh ∈ Kh, similarly to (2.26) there exists a ζ ∈ R>0 such
that

z̃h := Un
ε + ζ

 (zh − Un
ε )−

∑
j∈J0(U

n−1
ε )

(zh − Un
ε )(pj)χj

−
M∑

m=1

(zh − Un
ε ,Ξm(Un−1

ε ))h

(Un
ε ,Ξm(Un−1

ε ))h
πh[Un

ε Ξm(Un−1
ε )]


≡ πh

[(
1− ζ

(
1 +

M∑
m=1

(zh − Un
ε ,Ξm(Un−1

ε ))h

(Un
ε ,Ξm(Un−1

ε ))h
Ξm(Un−1

ε )

))
Un
ε

]

+ ζ

 zh −
∑

j∈J0(U
n−1
ε )

zh(pj)χj

 ∈ Kh(Un−1
ε ).(2.37)

Here we have used that Ξm(Un−1
ε )(pj) = Un

ε (pj) = 0 for all j ∈ J0(U
n−1
ε ), and

(πh[Un
ε Ξm(Un−1

ε )],Ξm(Un−1
ε ))h = (Un

ε ,Ξm(Un−1
ε ))h = (Un−1

ε ,Ξm(Un−1
ε ))h > 0 for
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m = 1 → M . For all zh ∈ Kh, choosing z̃h ∈ Kh(Un−1
ε ) (as constructed in (2.37)) in

(2.34) yields the existence of a solution to (2.33) with

αn
j =

AUn−1
ε

(Un
ε , χj)− (X

n−1

ε , χj)
h

(1, χj)
∀ j ∈ J0(U

n−1
ε )

and

βnm =
AUn−1

ε
(Un

ε , π
h[Un

ε Ξm(Un−1
ε )])− (X

n−1

ε , Un
ε Ξm(Un−1

ε ))h

(Un
ε ,Ξm(Un−1

ε ))h
m = 1 → M.

Therefore, on noting (2.32), we have the existence of a solution {Un
ε ,W

n
ε } to (Ph,τ

ε )
with

∫−Un
ε =

∫−Un−1
ε .

To prove the existence of V n
ε , we will make use of the Brouwer fixed point theorem

(see, e.g., [29, Theorem 9.36, p. 357]). Let J := #J , and let g : R
J → R

J be defined
by

gj(V ) :=(V, χj)
h + ρ τn (∇V,∇χj) + τn (U

n
ε Λε(V )∇V,∇χj)

+ τn
2 (πh[(Un

ε )
1
2 (Un−1

ε )
3
2 ] Λε(V )∇Wn

ε ,∇χj) ∀ j ∈ J ,

where V ≡ ∑
j∈J Vj χj and V := (V1, . . . , VJ )T ∈ R

J . Noting Lemma 2.1, we have
that g is continuous, and hence it is sufficient to show that g is coercive. We have
that ∑

j∈J
gj(V )Vj = |V |2h + ρ τn |V |21 + τn (U

n
ε Λε(V )∇V,∇V )

+ τn
2 (πh[(Un

ε )
1
2 (Un−1

ε )
3
2 ] Λε(V )∇Wn

ε ,∇V ) ∀ V ∈ Sh .(2.38)

From (1.19), (2.15), and (2.28), we have

τn
2

∣∣∣(πh[(Un
ε )

1
2 (Un−1

ε )
3
2 ] Λε(V )∇Wn

ε ,∇V )
∣∣∣

≤ τn
2 (Un

ε Λε(V )∇V,∇V ) + τn
8 (πh[(Un−1

ε )3] Λε(V )∇Wn
ε ,∇Wn

ε )

≤ τn
2 (Un

ε Λε(V )∇V,∇V ) + C(τn, U
n−1
ε , Wn

ε ) .
(2.39)

It follows from (2.38), (2.39), and (2.28) that∑
j∈J

gj(V )Vj ≥ |V |2h − C(τn, U
n−1
ε , Wn

ε ) ∀ V ∈ Sh .(2.40)

Hence the coerciveness of g follows from (2.40) and (2.1). Therefore, on noting the
aforementioned theorem, we have the existence of V n

ε to (2.11c) and hence the exis-
tence of a solution {Un

ε ,W
n
ε , V n

ε } to (Ph,τ
ε ). Choosing χ ≡ 1 in (2.11c) yields that∫−V n

ε =
∫−V n−1

ε .

If (2.33) has two solutions {Un,i
ε , {αn,i

j }j∈J0(U
n−1
ε ), {βn,im }Mm=1 }, i = 1, 2, then it

follows from (2.34) and (2.27) that Ũn
ε := Un,1

ε − Un,2
ε ∈ Zh(Un−1

ε ) satisfies

c |Ũn
ε |21 + 3 τ−1

n |[πh[(Un−1
ε )3] ]

1
2 ∇(Gh

Un−1
ε

Ũn
ε )|20 ≤ 0.



1440 J. W. BARRETT, H. GARCKE, AND R. NÜRNBERG

Therefore, the uniqueness of Un
ε follows from (1.17). For any ζ ∈ (0, 1), choosing χ ≡

Un
ε ±ζ πh[Un

ε Ξm(Un−1
ε )] ≡ πh[ (1±ζ Ξm(Un−1

ε ))Un
ε ] in (2.33) for m = 1 → M yields

the uniqueness of the Lagrange multipliers {βnm}Mm=1. Hence the desired uniqueness
result on Wn

ε follows from noting (2.32).
Lemma 2.3. Let the assumptions of Theorem 2.2 hold. Then for all ε ∈ (0, 1)

and for all h, τn > 0 a solution {Un
ε ,W

n
ε , V n

ε } to the nth step of (Ph,τ
ε ) is such that

E(Un
ε , V

n
ε ) + c

2 |Un
ε − Un−1

ε |21 + 1
2 |V n

ε − V n−1
ε |2h + ρ τn (∇V n

ε ,∇πh[F ′ε(V
n
ε )])

+ τn
24 (πh[(Un−1

ε )3]∇Wn
ε ,∇Wn

ε ) +
5
8 τn (U

n
ε ∇V n

ε ,∇V n
ε )

≤ E(Un−1
ε , V n−1

ε ) + τn
2 (Un−1

ε ∇V n−1
ε ,∇V n−1

ε ) ,(2.41)

where

E(Un
ε , V

n
ε ) := c

2 |Un
ε |21 + (Fε(V

n
ε ) + Φ−(Un

ε + ε), 1)h .(2.42)

Proof. Choosing χ ≡ Wn
ε in (2.11a), zh ≡ Un−1

ε in (2.11b), and χ ≡ πh[F ′ε(V
n
ε )]

in (2.11c) and noting (2.5) yield that

(Un
ε − Un−1

ε ,Wn
ε )

h + τn
3 (πh[(Un−1

ε )3]∇Wn
ε ,∇Wn

ε )

= − τn
2 (πh[(Un−1

ε )2]∇V n−1
ε ,∇Wn

ε ) ,(2.43a)

c (∇Un
ε ,∇(Un

ε − Un−1
ε )) + (φ−(Un−1

ε + ε), Un
ε − Un−1

ε )h

≤ (Wn
ε , Un

ε − Un−1
ε )h ,(2.43b)

(V n
ε − V n−1

ε , F ′ε(V
n
ε ))h + ρ τn (∇V n

ε ,∇πh[F ′ε(V
n
ε )])

+ τn (U
n
ε ∇V n

ε ,∇V n
ε )

= − τn
2 (πh[(Un

ε )
1
2 (Un−1

ε )
3
2 ]∇Wn

ε ,∇V n
ε ) .(2.43c)

On noting the elementary identity

2 r (r − s) = (r2 − s2) + (r − s)2 ∀ r, s ∈ R(2.44)

and the concavity of Φ−, it follows from (2.43b) that

c
2 |Un

ε |21 + c
2 |Un

ε − Un−1
ε |21 + (Φ−(Un

ε + ε), 1)h

≤ c
2 |Un−1

ε |21 + (Φ−(Un−1
ε + ε), 1)h + (Wn

ε , Un
ε − Un−1

ε )h .(2.45)

Combining (2.43a) and (2.45) yields that

c
2 |Un

ε |21 + (Φ−(Un
ε + ε), 1)h + τn

3 (πh[(Un−1
ε )3]∇Wn

ε ,∇Wn
ε ) +

c
2 |Un

ε − Un−1
ε |21

≤ c
2 |Un−1

ε |21 + (Φ−(Un−1
ε + ε), 1)h − τn

2 (πh[(Un−1
ε )2]∇V n−1

ε ,∇Wn
ε ) .

(2.46)

Now F ′′ε ≥ 1 implies that

(V n
ε − V n−1

ε , F ′ε(V
n
ε ))h ≥ (Fε(V

n
ε )− Fε(V

n−1
ε ), 1)h + 1

2 |V n−1
ε − V n

ε |2h .(2.47)

Combining (2.43c), (2.46), and (2.47) and noting (1.19), (2.15), and (2.42) yield that

E(Un
ε , V

n
ε ) + c

2 |Un
ε − Un−1

ε |21 + 1
2 |V n

ε − V n−1
ε |2h + ρ τn (∇V n

ε ,∇πh[F ′ε(V
n
ε )])

+ τn
3 (πh[(Un−1

ε )3]∇Wn
ε ,∇Wn

ε ) + τn (U
n
ε ∇V n

ε ,∇V n
ε )

≤ E(Un−1
ε , V n−1

ε )− τn
2 (πh[(Un

ε )
1
2 (Un−1

ε )
3
2 ]∇Wn

ε ,∇V n
ε )

− τn
2 (πh[(Un−1

ε )2]∇Wn
ε ,∇V n−1

ε )

≤ E(Un−1
ε , V n−1

ε ) + ζ+γ
4 τn (π

h[(Un−1
ε )3]∇Wn

ε ,∇Wn
ε )

+ τn
4ζ (U

n−1
ε ∇V n−1

ε ,∇V n−1
ε ) + τn

4γ (Un
ε ∇V n

ε ,∇V n
ε )
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for arbitrary ζ, γ ∈ R>0. Choosing ζ = 1
2 and γ = 2

3 leads to the desired result
(2.41).
Theorem 2.4. Let the assumptions (A) hold and U0

ε ∈ Kh, V 0
ε ∈ Sh. Then for

all ε ∈ (0, 1), h > 0 a solution {Un
ε ,W

n
ε , V n

ε }Nn=1 to (Ph,τ
ε ) with a = 0 (φ− ≡ 0) is

such that
∫−Un

ε =
∫−U0

ε and
∫−V n

ε =
∫−V 0

ε , and if τn ≤ 5
4 ω τn−1, n = 2 → N, for an

ω ∈ (0, 1), then

c max
1≤n≤N

‖Un
ε ‖2

1 + max
1≤n≤N

(Fε(V
n
ε ), 1)h + max

1≤n≤N
|V n

ε |20 + ε−1 max
1≤n≤N

|πh[V n
ε ]−|20

+ c

N∑
n=1

‖Un
ε − Un−1

ε ‖2
1 +

N∑
n=1

|V n
ε − V n−1

ε |20 + ρ

N∑
n=1

τn(∇V n
ε ,∇πh[F ′ε(V

n
ε )])

+

N∑
n=1

τn (π
h[(Un−1

ε )3]∇Wn
ε ,∇Wn

ε ) + (1− ω)

N∑
n=1

τn (U
n
ε ∇V n

ε ,∇V n
ε )

+ ρ

N∑
n=1

τn‖V n
ε ‖2

1 ≤ C
[
1 + ‖U0

ε ‖2
1 + (U0

ε ∇V 0
ε ,∇V 0

ε ) + (Fε(V
0
ε ), 1)

h
]
,

(2.48a)

N∑
n=1

τn

∣∣∣G[Un
ε −Un−1

ε

τn
]
∣∣∣2
1
+

N∑
n=1

τn

∣∣∣G[V n
ε −V n−1

ε

τn
]
∣∣∣2
1

≤ C( max
n=0→N

‖Un
ε ‖0,∞)

[
1 + ‖U0

ε ‖2
1 + (U0

ε ∇V 0
ε ,∇V 0

ε ) + (Fε(V
0
ε ), 1)

h
]
.

(2.48b)

Proof . Summing (2.41) from n = 1 → k and observing that τn ≤ 5
4 ω τn−1,

n = 2 → k, yield for any k ≤ N that

E(Uk
ε , V

k
ε ) +

1
2

k∑
n=1

[
c |Un

ε − Un−1
ε |21 + |V n

ε − V n−1
ε |2h

]
+ ρ

k∑
n=1

τn(∇V n
ε ,∇πh[F ′ε(V

n
ε )])

+ 1
24

k∑
n=1

τn (π
h[(Un−1

ε )3]∇Wn
ε ,∇Wn

ε ) +
5
8 (1− ω)

k∑
n=1

τn (U
n
ε ∇V n

ε ,∇V n
ε )

≤ E(U0
ε , V

0
ε ) +

τ1
2 (U0

ε ∇V 0
ε ,∇V 0

ε ) .

(2.49)

As a = 0, we have that

E(Un
ε , V

n
ε ) = c

2 |Un
ε |21 + (Fε(V

n
ε ), 1)h ≥ 0 .(2.50)

Therefore, the bounds 1 → 2 and 5 → 9 in (2.48a) follow from (2.49), (2.50), Un
ε −

Un−1
ε ∈ Zh, (1.17), (2.1), and (2.14). Combining the bound on Fε(V

n
ε ) in (2.48a) and

(2.4) yields the bounds 3 → 4 in (2.48a). Bounds 3 and 7 in (2.48a) yield, on noting
(2.8), bound 10 in (2.48a).
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From (1.16), (2.2), (2.11a), (2.21), and (1.17), we obtain that∣∣∣G[Un
ε −Un−1

ε

τn
]
∣∣∣2
1
=
(
Un

ε −Un−1
ε

τn
,G[Un

ε −Un−1
ε

τn
]
)
=
(
Un

ε −Un−1
ε

τn
, Qh G[Un

ε −Un−1
ε

τn
]
)h

= −
(

1
3 πh[(Un−1

ε )3]∇Wn
ε + 1

2 πh[(Un−1
ε )2]∇V n−1

ε ,∇
[
Qh G[Un

ε −Un−1
ε

τn
]
])

≤ C |Un−1
ε | 320,∞

[
| [πh[(Un−1

ε )3] ]
1
2 ∇Wn

ε |0 + |(Un−1
ε )

1
2 ∇V n−1

ε |0
] ∣∣∣Qh G[Un

ε −Un−1
ε

τn
]
∣∣∣
1

≤ C |Un−1
ε |30,∞

[
| [πh[(Un−1

ε )3] ]
1
2 ∇Wn

ε |20 + |(Un−1
ε )

1
2 ∇V n−1

ε |20
]
.

(2.51)

Similarly to (2.51), from (1.16), (2.2), (2.11c), (2.28), (2.16), (2.21), and (1.17), we
obtain that∣∣∣G[V n

ε −V n−1
ε

τn
]
∣∣∣2
1
=
(
V n
ε −V n−1

ε

τn
, Qh G[V n

ε −V n−1
ε

τn
]
)h

= −ρ
(
∇V n

ε ,∇
[
Qh G[V n

ε −V n−1
ε

τn
]
])

−
(
Un
ε Λε(V

n
ε )∇V n

ε + 1
2 πh[(Un

ε )
1
2 (Un−1

ε )
3
2 ] Λε(V

n
ε )∇Wn

ε ,∇
[
Qh G[V n

ε −V n−1
ε

τn
]
])

≤ C
[
ρ2 |∇V n

ε |20 + |Un
ε |0,∞

(
|(Un

ε )
1
2 ∇V n

ε |20 + | [πh[(Un−1
ε )3] ]

1
2 ∇Wn

ε |20
)]

.

(2.52)

Combining (2.51), (2.52), the assumptions on τn, and the bounds 8 → 10 in (2.48a)
yields the bounds (2.48b).
Lemma 2.5. Let u0, v0 ∈ K, and the assumptions (A) hold. On choosing

U0
ε ≡ Qhu0 and V 0

ε ≡ Qhv0, or U0
ε ≡ πhu0 and V 0

ε ≡ πhv0 in the case d = 1, it
follows that U0

ε , V
0
ε ∈ Kh are such that for all h > 0

‖U0
ε ‖2

1 + (U0
ε ∇V 0

ε ,∇V 0
ε ) + (Fε(V

0
ε ), 1)

h ≤ C .(2.53)

Proof. The desired result (2.53) follows from (2.21), (2.20), and (2.18).

2.1. Inclusion of repulsive van der Waals forces. We end this section by
extending Theorems 2.2 and 2.4 and Lemmas 2.3 and 2.5 to the approximation (Ph,τ

δ, ε ).

In order to prove the existence of a solution to (Ph,τ
δ, ε ) , we need to go through a reg-

ularization procedure which is similar to that used for the logarithmic Cahn–Hilliard
equation; see, e.g., [5, 3]. For this purpose we introduce, for any µ ∈ R>0, the C2,1

convex function Φ+
µ : R → R≥0 such that

Φ+
µ (s) :=

{
Φ+(µ) + φ+(µ) (s− µ) + (s−µ)2

2 (φ+)′(µ), s ≤ µ,
Φ+(s), µ ≤ s .

(2.54)

We set φ+
µ (·) := (Φ+

µ )
′(·) and note that Φ+(s) ≥ Φ+

µ (s) ≥ 0 for all s ∈ R>0.
A consequence of the monotonicity of φ+

µ and our mesh assumption (A) is that
for all µ ∈ R>0

|πh[φ+
µ (χ)] |21 ≤ (φ+)′(µ) (∇χ,∇πh[φ+

µ (χ)] ) ∀ χ ∈ Sh;(2.55)

see, for example, [15].
Theorem 2.6. Let the assumptions (A) hold and Un−1

ε , V n−1
ε ∈ Sh with Un−1

ε >
0. Then for all ε ∈ (0, 1) and for all h, τn > 0 there exists a solution {Un

ε ,W
n
ε , V n

ε } to
the nth step of (Ph,τ

δ, ε ) with Un
ε > 0,

∫−Un
ε =

∫−Un−1
ε , and

∫−V n
ε =

∫−V n−1
ε . Moreover,

Un
ε and Wn

ε are unique.



FE APPROXIMATION OF SURFACTANT SPREADING ON A THIN FILM 1443

Proof. As Un−1
ε := minx∈Ω Un−1

ε (x) > 0, we have in place of (2.32), on noting
(2.12) for χ ≡ 1, that

Wn
ε ≡ −3Gh

Un−1
ε

[
Un

ε −Un−1
ε

τn
+Xn−1

ε ] + 1
m(Ω) (φ

+(Un
ε ) + φ−(Un−1

ε ), 1)h ,(2.56)

where Xn−1
ε ∈ Zh is defined by (2.30). Hence (2.11a) and (2.12) can be restated as

follows.
Find Un

ε ∈ Sh(Un−1
ε ) such that

AUn−1
ε

(Un
ε , χ) + (φ+(Un

ε ), (I −
∫−)χ)h = (X

n−1

δ, ε , χ)h ∀ χ ∈ Sh ,(2.57)

where AUn−1
ε

(·, ·) is defined as in (2.35) and X
n−1

δ, ε ∈ Zh is such that

(X
n−1

δ, ε , χ)h := −(φ−(Un−1
ε ) + 3Gh

Un−1
ε

Xn−1
ε , (I − ∫−)χ)h ∀ χ ∈ Sh .

Due to the singular nature of the nonlinearity φ+(s), we have to go through a regu-
larization procedure in order to prove the existence of a solution to (2.57). For any
µ ∈ R>0, we introduce the regularized version of (2.57): Find Un

ε, µ ∈ Sh(Un−1
ε ) such

that

AUn−1
ε

(Un
ε, µ, χ) + (φ+

µ (U
n
ε, µ), (I −

∫−)χ)h = (X
n−1

δ, ε , χ)h ∀ χ ∈ Sh,(2.58)

where φ+
µ is defined via (2.54). Similarly to (2.36), there exists a unique Un

ε, µ satisfying
(2.58) since this is the Euler–Lagrange equation of the convex minimization problem

min

χ∈Sh(Un−1
ε )

{
c
2 |χ|21+(Φ+

µ (χ), 1)
h+ 3

2τn
|[πh[(Un−1

ε )3] ]
1
2 ∇Gh

Un−1
ε

(χ−Un−1
ε )|20−(X

n−1

δ, ε , χ)h
}
.

Choosing χ ≡ Un
ε, µ − Un−1

ε ∈ Zh in (2.58) and rearranging using (2.44), (2.27),
(1.17), and the convexity of Φ+

µ ≤ Φ+ yield that

c ‖Un
ε, µ‖2

1 + τn | [πh[(Un−1
ε )3] ]

1
2 ∇Gh

Un−1
ε

[
Un

ε, µ−Un−1
ε

τn
] |20

≤ C [ (Φ+(Un−1
ε ), 1)h + |Xn−1

δ, ε |2h + ‖Un−1
ε ‖2

1 ] ≤ C,(2.59)

where, in the above and below, C ∈ R>0 is also independent of µ. Choosing χ ≡
πh[φ+

µ (U
n
ε, µ)] in (2.58) and noting (2.55), X

n−1

δ, ε ∈ Zh, (2.27), (2.14), (1.17), and
(2.59) yield that

τn |(I −
∫−)πh[φ+

µ (U
n
ε, µ)] |2h ≤ C τn [ |Xn−1

δ, ε |2h + |Gh
Un−1

ε
[
Un

ε, µ−Un−1
ε

τn
] |2h ]

≤ C(Un−1
ε ) τn [ |Xn−1

δ, ε |2h + | [πh[(Un−1
ε )3] ]

1
2 ∇Gh

Un−1
ε

[
Un

ε, µ−Un−1
ε

τn
] |20 ] ≤ C(Un−1

ε ) .

(2.60)

Choosing χ ≡ Un
ε, µ in (2.58) and noting the convexity of Φ+

µ , it follows for any constant
ζ ∈ R>0 that

(φ+
µ (U

n
ε, µ), ζ −

∫−Un
ε, µ)

h

≤ (Φ+
µ (ζ)− Φ+

µ (U
n
ε, µ), 1)

h + (X
n−1

δ, ε − 3Gh
Un−1

ε
[
Un

ε, µ−Un−1
ε

τn
], Un

ε, µ)
h

≤ (Φ+(ζ), 1)h + (X
n−1

δ, ε − 3Gh
Un−1

ε
[
Un

ε, µ−Un−1
ε

τn
], Un

ε, µ)
h .

(2.61)
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Choosing ζ = (
∫−Un

ε, µ) ± 1
2 Un−1

ε = (
∫−Un−1

ε ) ± 1
2 Un−1

ε ≥ 1
2 Un−1

ε > 0 in (2.61) and
noting (2.59) and (2.60) yield that

τn |
∫−(πh[φ+

µ (U
n
ε, µ)] )|2h ≤ C(Un−1

ε ).(2.62)

It follows from (2.59), (2.60), and (2.62) that there exist Un
ε ∈ Sh(Un−1

ε ), φ+
h ∈

Sh, and a subsequence {Un
ε, µ′ , πh[φ

+
µ′(Un

ε, µ′)] }µ′ such that Un
ε, µ′ → Un

ε and

πh[φ+
µ′(Un

ε, µ′)] → φ+
h as µ′ → 0. Noting that for all s ∈ R, [φ+

µ ]
−1(s) → [φ+]−1(s) as

µ → 0, we have that (Un
ε (pj) − [φ+]−1(s)) (φ+

h (pj) − s) ≥ 0 for all s ∈ R, j ∈ J and
hence that φ+

h ≡ πh[φ+(Un
ε )]. Therefore, we may pass to the limit µ′ → 0 in (2.58) to

prove the existence of a solution Un
ε > 0 to (2.57). Uniqueness of this solution follows

from the monotonicity of φ+. Hence noting (2.56), we have existence and uniqueness
of a solution {Un

ε , W
n
ε } to (2.11a) and (2.12). Finally, existence of a solution V n

ε to
(2.11c) follows as in the proof of Theorem 2.2.
Lemma 2.7. Let the assumptions of Theorem 2.6 hold. Then for all ε ∈ (0, 1)

and for all h, τn > 0 a solution {Un
ε ,W

n
ε , V n

ε } to the nth step of (Ph,τ
δ, ε ) is such that

(2.41) holds with E(·, ·) replaced by Eδ(Un
ε , V

n
ε ) := c

2 |Un
ε |21 + (Fε(V

n
ε ) + Φ(Un

ε ), 1)
h.

Proof. The proof is a straightforward adaptation of the proof of Lemma 2.3 on
noting (2.9) and the convexity of Φ+.
Theorem 2.8. Let the assumptions (A) hold and U0

ε , V
0
ε ∈ Sh with U0

ε > 0.

Then for all ε ∈ (0, 1), h > 0, a solution {Un
ε ,W

n
ε , V n

ε }Nn=1 to (Ph,τ
δ, ε ) is such that∫−Un

ε =
∫−U0

ε and
∫−V n

ε =
∫−V 0

ε , and if τn ≤ 5
4 ω τn−1, n = 2 → N , for an ω ∈ (0, 1),

then (2.48a,b) hold with the additional terms max1≤n≤N (Φ(Un
ε ), 1)

h on the left-hand
side of (2.48a) and (Φ(U0

ε ), 1)
h inside the square brackets on the right-hand sides of

(2.48a,b).
Proof. A straightforward adaptation of the proof of Theorem 2.4 on noting (2.10)

yields the desired result.
Lemma 2.9. Let u0, v0 ∈ K, with u0 ∈ L∞(Ω) and u0(x) ≥ ζ > 0 for a.e.

x ∈ Ω, and let the assumptions (A) hold. On choosing U0
ε ≡ Qhu0 and V 0

ε ≡ Qhv0,
or U0

ε ≡ πhu0 and V 0
ε ≡ πhv0 in the case d = 1, it follows that U0

ε , V
0
ε ∈ Kh with

U0
ε ≥ ζ are such that for all h > 0

‖U0
ε ‖2

1 + (U0
ε ∇V 0

ε ,∇V 0
ε ) + (Fε(V

0
ε ) + Φ(U0

ε ), 1)
h ≤ C .(2.63)

Proof. The desired result (2.63) follows from (2.21), (2.20), and (2.18).
Remark 2.10. We note that Lemmas 2.3 and 2.7 are the discrete analogues of

the energy estimates (1.5) and (1.11), respectively, on recalling (1.6), (1.7), and that
σ(s) := 1− s.

3. Convergence in one space dimension. Let

Uε(t) :=
t−tn−1

τn
Un
ε + tn−t

τn
Un−1
ε , t ∈ [tn−1, tn], n ≥ 1,(3.1a)

U+
ε (t) := Un

ε , U−ε (t) := Un−1
ε , t ∈ (tn−1, tn], n ≥ 1.(3.1b)

We note for future reference that

Uε − U±ε = (t− t±n )
∂Uε

∂t , t ∈ (tn−1, tn) n ≥ 1,(3.2)

where t+n := tn and t−n := tn−1. We introduce also τ̄(t) := τn for t ∈ (tn−1, tn] and
n ≥ 1. Using the above notation and introducing analogous notation for Wε and Vε,
(2.11a–c) can be restated as follows.
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Find {Uε, Wε, Vε} ∈ H1(0, T ;Sh)×L2(0, T ;Sh)×H1(0, T ;Sh) such that Uε(·, t) ∈
Kh and for all χ ∈ L2(0, T ;Sh), zh ∈ L2(0, T ;Kh),

∫ T

0

[(
∂Uε

∂t , χ
)h
+ 1

3

(
πh[(U−ε )3]∇W+

ε ,∇χ
)]

dt =− 1
2

∫ T

0

(πh[(U−ε )2]∇V −ε ,∇χ) dt,

(3.3a)

∫ T

0

[
c (∇U+

ε ,∇(zh − U+
ε )) + (φ−(U−ε + ε)−W+

ε , zh − U+
ε )h

]
dt ≥ 0,

(3.3b)

∫ T

0

[(
∂Vε

∂t , χ
)h

+ ρ
(∇V +

ε ,∇χ
)
+
(
U+
ε Λε(V

+
ε )∇V +

ε ,∇χ
)]

dt

= − 1
2

∫ T

0

(πh[(U+
ε )

1
2 (U−ε )

3
2 ] Λε(V

+
ε )∇W+

ε ,∇χ) dt.

(3.3c)

Lemma 3.1. Let d = 1, a = 0 (φ− ≡ 0), ρ > 0, and u0, v0 ∈ K with u0 �≡ 0. Let
{T h, U0

ε , V
0
ε , {τn}Nn=1, ε}h>0 be such that

(i) U0
ε ≡ πhu0, V 0

ε ≡ πhv0;
(ii) Ω and {T h}h>0 fulfil assumption (A), ε ∈ (0, 1), and τn ≤ 5

4 ω τn−1, n =
2 → N , for an ω ∈ (0, 1);

(iii) ε, τ → 0 as h → 0.
Then there exist a subsequence of {Uε, Vε}h, where {Uε, Wε, Vε} solve (Ph,τ

ε ), and
functions

u ∈ L∞(0, T ;K) ∩H1(0, T ; (H1(Ω))′) ∩ C
1
2 ,

1
8

x,t (ΩT ),(3.4a)

v ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;K) ∩H1(0, T ; (H1(Ω))′)(3.4b)

with u(x, 0) = u0(x) for all x ∈ Ω, v(·, 0) = v0(·) in (H1(Ω))′,
∫−u(·, t) = ∫−u0 > 0 for

all t ∈ [0, T ] and
∫−v(·, t) = ∫−v0 for a.e. t ∈ [0, T ] such that as h → 0

Uε, U±ε → u uniformly on ΩT ,(3.5a)

Uε, U±ε → u and G ∂Uε

∂t → G ∂u
∂t weakly in L2(0, T ;H1(Ω)),(3.5b)

Vε, V ±ε → v and G ∂Vε

∂t → G ∂v
∂t weakly in L2(0, T ;H1(Ω)),(3.6a)

Vε, V ±ε → v and Λε(V
+
ε ) → λ(v) strongly in L2(ΩT ).(3.6b)

Proof. From (2.48a), (2.53), and (1.15), we have for d = 1

max
1≤n≤N

‖Un
ε ‖1 ≤ C =⇒ max

1≤n≤N
|Un

ε |0,∞ ≤ C .(3.7)

Noting the definitions (3.1a,b) and (3.7), the bounds in (2.48a,b) together with (1.17),
(2.53), and the time step control in (ii) imply that

‖Uε‖2
L∞(0,T ;H1(Ω)) + ‖Vε‖2

L∞(0,T ;L2(Ω)) + ρ ‖Vε‖2
L2(0,T ;H1(Ω)) + ρ ‖V ±ε ‖2

L2(0,T ;H1(Ω))

+ ε−1 ‖πh[V +
ε ]−‖2

L∞(0,T ;L2(Ω)) + ‖τ̄ 1
2 ∂Uε

∂t ‖2
L2(0,T ;H1(Ω)) + ‖τ̄ 1

2
∂Vε

∂t ‖2
L2(ΩT )

+ ‖ [πh[(U−ε )3] ]
1
2 ∇W+

ε ‖2
L2(ΩT ) + ‖G ∂Uε

∂t ‖2
L2(0,T ;H1(Ω)) + ‖G ∂Vε

∂t ‖2
L2(0,T ;H1(Ω)) ≤ C.

(3.8)
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In addition, we deduce from (3.2) and (3.8) that

‖Uε − U±ε ‖2
L2(0,T ;H1(Ω)) + ‖Vε − V ±ε ‖2

L2(ΩT ) ≤ ‖τ̄ ∂Uε

∂t ‖2
L2(0,T ;H1(Ω)) + ‖τ̄ ∂Vε

∂t ‖2
L2(ΩT )

≤ C τ.(3.9)

Moreover, the first and ninth bound in (3.8) imply that the C
1
2 ,

1
8

x,t (ΩT ) norm of Uε

is bounded independently of h, τ , ε, and T ; see, e.g., [4, Theorem 2.2]. Therefore,
by the Arzelà–Ascoli theorem there exists a subsequence {Uε, Vε}h and a u ≥ 0, as
Uε(·, t) ∈ Kh, such that

Uε, U±ε → u ∈ C
1
2 ,

1
8

x,t (ΩT ) uniformly on ΩT as h → 0.(3.10)

Furthermore, (3.10), (3.8), (2.19), (3.1a,b), (3.9),
∫−Un

ε =
∫−U0

ε ,
∫−V n

ε =
∫−V 0

ε , and our
assumptions (iii) imply, as ρ > 0, that this same subsequence {Uε, Vε}h can be chosen
such that (3.4a), (3.4b) with K replaced by H1(Ω), (3.5a,b), and (3.6a) hold. The

strong convergence result for V
(±)
ε in (3.6b) follows immediately from (3.6a) and a

standard embedding result. Furthermore, it follows from (3.8), (3.6a), (1.18), and a
standard compactness argument that

Vε → v in C([0, T ]; (H1(Ω))′) .(3.11)

Noting the assumptions (i) and (2.19), we have that

U0
ε → u0 and V 0

ε → v0 strongly in H1(Ω) .(3.12)

Combining (3.12), (3.11), and (3.10) yields that u(·, 0) = u0(·) in C(Ω) and v(·, 0) =
v0(·) in (H1(Ω))′.

We now prove the remaining result in (3.6b). For this we introduce for all ε ∈
(0, 1), λε : R → [ε, 1] defined, on recalling (1.13), by

λε(s) := [λ(s)− ε]+ + ε, where [s]+ := max{s, 0}.(3.13)

Then we have that

‖λ(v)− Λε(V
+
ε )‖L2(ΩT ) ≤ ‖λ(v)− λ(V +

ε )‖L2(ΩT ) + ‖(I − πh)λ(V +
ε )‖L2(ΩT )

+ ‖πh[λ(V +
ε )− λε(V

+
ε ) ]‖L2(ΩT ) + ‖πh[λε(V +

ε )]− Λε(V
+
ε )‖L2(ΩT ).

(3.14)

Noting the global Lipschitz continuity of λ, (2.18), and (3.8), we have that

‖λ(v)− λ(V +
ε )‖L2(ΩT ) + ‖(I − πh)λ(V +

ε )‖L2(ΩT )

≤ ‖v − V +
ε ‖L2(ΩT ) + C h ‖∇[λ(V +

ε )]‖L2(ΩT )

≤ ‖v − V +
ε ‖L2(ΩT ) + C h ‖∇V +

ε ‖L2(ΩT ) ≤ ‖v − V +
ε ‖L2(ΩT ) + C h .(3.15)

It follows from (2.1), (2.14), (3.1b), (1.13), (3.13), and (3.8) that

‖πh[λ(V +
ε )− λε(V

+
ε ) ] ‖2

L2(ΩT ) ≤
N∑
n=1

τn |πh[λ(V n
ε )− λε(V

n
ε ) ]|2h

≤
N∑
n=1

τn |πh[ε− [V n
ε ]−] |2h ≤ C

[
ε2 +

N∑
n=1

τn |πh[V n
ε ]− |20

]
≤ C ε2.(3.16)
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From (2.7), (2.3), and (3.13), we have that Λε(V
n
ε ) |(pj−1,pj) lies between λε(V

n
ε (pj−1))

and λε(V
n
ε (pj)) for j = 1 → J and n = 1 → N . This together with (2.18), the global

Lipschitz continuity of λε, and (3.8) implies that

‖πh[λε(V +
ε )]− Λε(V

+
ε )‖L2(ΩT ) ≤ C h ‖∇πh[λε(V

+
ε )]‖L2(ΩT )

≤ C h ‖∇[λε(V
+
ε )]‖L2(ΩT ) ≤ C h ‖∇V +

ε ‖L2(ΩT ) ≤ C h .(3.17)

Combining (3.14), (3.15), (3.16), and (3.17) and noting the result on V +
ε in (3.6b)

and our assumption (iii) on ε yield the desired result on Λε(V
+
ε ) in (3.6b). Finally,

we note that Λε(V
+
ε ) ≥ 0 and (3.6b) ⇒ λ(v) ≥ 0 a.e. ⇒ v ≥ 0 a.e. ⇒ K in

(3.4b).
For any α > 0, we set

Bα := { (x, t) ∈ ΩT : u(x, t) > α } and Bα(t) := {x ∈ Ω : u(x, t) > α }.(3.18)

From (3.4a), we have that there exist positive constants Cx and Ct such that

|u(y2, t)− u(y1, t)| ≤ Cx |y2 − y1| 12 ∀ y1, y2 ∈ Ω, ∀ t ∈ [0, T ];(3.19a)

|u(x, tb)− u(x, ta)| ≤ Ct |tb − ta| 18 ∀ ta, tb ∈ [0, T ], ∀ x ∈ Ω.(3.19b)

As
∫−u(·, t) = ∫−u0 > 0 for all t ∈ [0, T ], it follows that there exists an α0 ∈ (0,

∫−u0)
such that Bα0(t) �= ∅ for all t ∈ [0, T ]. It immediately follows from (3.18) and (3.19a,b)
for any ta, tb ∈ [0, T ] and for any α1, α2 ∈ (0, α0) with α1 > α2 that

y1 ∈ Bα1(ta) and y2 ∈ ∂Bα2(tb) with y2 �∈ ∂Ω =⇒
Cx |y2 − y1| 12 + Ct |tb − ta| 18 ≥ u(y1, ta)− u(y2, tb) > (α1 − α2),(3.20)

where ∂Bα(t) is the boundary of Bα(t). Therefore, (3.20) implies that for any α ∈
(0, α0), there exists an h0(α) such that for all h ≤ h0(α) and t ∈ [0, T ] there exists a
collection of simplices T h

α (t) ⊂ T h such that

Bα(t) ⊂ Bh
α(t) := ∪κ∈T h

α (t) κ ⊂ Bα
2
(t) ∀ t ∈ [0, T ].(3.21)

Similarly, it follows from (3.20) that for any α ∈ (0, α0), there exists a τ0(α) such that
for all τ ≤ τ0(α)

Bα(t) ⊂ Bα
2
(tn) ⊂ Bα

4
(t) ∀ t ∈ (tn−1, tn], n = 1 → N.(3.22)

Clearly, we have from (3.21) and (3.22) that α2 < α1 < α0 implies that h0(α2) ≤
h0(α1) and τ0(α2) ≤ τ0(α1). For a fixed α ∈ (0, α0), it follows from (3.18), (3.5a),

and our assumption (iii) of Lemma 3.1 that there exists an ĥ0(α) ≤ h0(α) such that

for h ≤ ĥ0(α)

0 ≤ U±ε (x, t) ≤ 2α ∀ (x, t) �∈ Bα,
1
2 α ≤ U±ε (x, t) ∀ (x, t) ∈ Bα,

and τ ≤ τ0(α).(3.23)

Theorem 3.2. Let the assumptions of Lemma 3.1 hold. Then there exist a sub-
sequence of {Uε,Wε, Vε}h, where {Uε, Wε, Vε} solve (Ph,τ

ε ), and functions {u,w, v}
satisfying (3.4a,b) and

w ∈ L2
loc({u > 0}) with ∇w ∈ L2

loc({u > 0}),(3.24)

where {u > 0} := {(x, t) ∈ ΩT : u(x, t) > 0 } such that as h → 0 (3.5a,b), (3.6a–
c) hold and W+

ε → w, ∇W+
ε → ∇w weakly in L2

loc({u > 0}). Furthermore, we
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have that u, v, and w fulfil u(·, 0) = u0(·), v(·, 0) = v0(·) and are such that for all
η, z ∈ L2(0, T ;H1(Ω)), with supp(z) ⊂ {u > 0},∫ T

0

〈∂u∂t , η〉dt+ 1
3

∫
{u>0}

u3 ∇w .∇η dxdt+ 1
2

∫
ΩT

u2 ∇v .∇η dxdt = 0,(3.25a) ∫
{u>0}

[ c∇u .∇z − w z ] dxdt = 0,(3.25b) ∫ T

0

〈∂v∂t , η〉dt+
∫

ΩT

[ ρ∇v .∇η + uλ(v)∇v .∇η ] dxdt

+ 1
2

∫
{u>0}

u2 λ(v)∇w .∇η dxdt = 0.(3.25c)

Proof. For any η ∈ L2(0, T ;H1(Ω)), we choose χ ≡ πhη in (3.3a,c) and now
analyze the subsequent terms. First, (2.17), (2.23), (2.18), (1.15) in time, and (3.8)
yield for Z ≡ Uε and Vε, respectively, and for all η̃ ∈ H1(0, T ;H1(Ω)) that∣∣∣∣∣
∫ T

0

[(
∂Z
∂t , π

hη
)h − (

∂Z
∂t , π

hη
)]

dt

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ T

0

[(
∂Z
∂t , π

h[η − η̃]
)h − (

∂Z
∂t , π

h[η − η̃]
)]

dt

∣∣∣∣∣
+

∣∣∣∣∣−
∫ T

0

(
Z, ∂(πhη̃)

∂t

)h
dt+ (Z(·, T ), πhη̃(·, T ) )h − (Z(·, 0), πhη̃(·, 0) )h

+

∫ T

0

(
Z, ∂(πhη̃)

∂t

)
dt− (Z(·, T ), πhη̃(·, T ) ) + (Z(·, 0), πhη̃(·, 0) )

∣∣∣∣∣
≤ C ‖G ∂Z

∂t ‖L2(0,T ;H1(Ω)) ‖πh[η − η̃]‖L2(0,T ;H1(Ω))

+ C h ‖Z‖L∞(0,T ;L2(Ω)) ‖πhη̃‖H1(0,T ;H1(Ω))

≤ C ‖η − η̃‖L2(0,T ;H1(Ω)) + C h ‖η̃‖H1(0,T ;H1(Ω)) .
(3.26)

Furthermore, it follows from (1.16) and (3.8) that∣∣∣∣∣
∫ T

0

(
∂Z
∂t , (I − πh)η

)
dt

∣∣∣∣∣ ≤ C ‖G ∂Z
∂t ‖L2(0,T ;H1(Ω)) ‖(I − πh)η‖L2(0,T ;H1(Ω))

≤ C ‖(I − πh)η‖L2(0,T ;H1(Ω)).(3.27)

Combining (3.26), the denseness of H1(0, T ;H1(Ω)) in L2(0, T ;H1(Ω)), (3.27), (2.19),
(1.20), (3.5b), and (3.6a) yields that for z ≡ u and v, respectively,∫ T

0

(
∂Z
∂t , π

hη
)h

dt →
∫ T

0

〈∂z∂t , η〉dt as h → 0.(3.28)

In view of (2.28), (3.1b), (2.16), (3.7), and (3.8), as ρ > 0, we deduce that∣∣∣∣∣
∫ T

0

(
πh[(U+

ε )
1
2 (U−ε )

3
2 ] Λε(V

+
ε )∇W+

ε ,∇(I − πh)η
)
dt

∣∣∣∣∣
≤ ‖πh[(U+

ε )
1
2 (U−ε )

3
2 ]∇W+

ε ‖L2(ΩT ) ‖(I − πh)η‖L2(0,T ;H1(Ω))

≤ C ‖U+
ε ‖ 1

2

L∞(ΩT ) ‖ [πh[(U−ε )3] ]
1
2∇W+

ε ‖L2(ΩT ) ‖(I − πh)η‖L2(0,T ;H1(Ω))

≤ C ‖(I − πh)η‖L2(0,T ;H1(Ω)),(3.29a)
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and similarly∣∣∣∣∣
∫ T

0

(
πh[(U−ε )3]∇W+

ε ,∇(I − πh)η
)
dt

∣∣∣∣∣+
∣∣∣∣∣
∫ T

0

(
U+
ε Λε(V

+
ε )∇V +

ε ,∇(I − πh)η
)
dt

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

0

(
πh[(U−ε )2]∇V −ε ,∇(I − πh)η

)
dt

∣∣∣∣∣+
∣∣∣∣∣
∫ T

0

(∇V +
ε ,∇(I − πh)η

)
dt

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

0

(∇U+
ε ,∇(I − πh)η

)
dt

∣∣∣∣∣ ≤ C ‖(I − πh)η‖L2(0,T ;H1(Ω)).

(3.29b)

Noting (3.29b), (2.19), (3.5b), and (3.6a), we have for Z+ ≡ U+
ε and V +

ε , and z ≡ u
and v, respectively, that∫ T

0

(∇Z+,∇(πhη) ) dt →
∫ T

0

(∇z,∇η) dt as h → 0.(3.30)

It also follows from (3.8), (2.28), (1.13), and (3.4a,b) that for all η̃ ∈L∞(0, T ;W 1,∞(Ω))

∣∣∣∣∣
∫ T

0

(
(πh[(U−ε )2]− u2)∇V −ε ,∇η

)
dt

∣∣∣∣∣
≤ ‖πh[(U−ε )2]− u2‖L∞(ΩT ) ‖V −ε ‖L2(0,T ;H1(Ω)) ‖η‖L2(0,T ;H1(Ω))

≤ C
[‖πh[(U−ε )2 − u2]‖L∞(ΩT ) + ‖(I − πh)u2‖L∞(ΩT )

] ‖η‖L2(0,T ;H1(Ω)),
(3.31a)

∣∣∣∣∣
∫ T

0

(
(U+

ε Λε(V
+
ε )− uλ(v) )∇V +

ε ,∇η
)
dt

∣∣∣∣∣
≤
∣∣∣∣∣
∫ T

0

(
(U+

ε − u) Λε(V
+
ε )∇V +

ε ,∇η
)
dt

∣∣∣∣∣
+

∣∣∣∣∣
∫ T

0

[ (
u (Λε(V

+
ε )− λ(v) )∇V +

ε ,∇(η − η̃)
)
+
(
u (Λε(V

+
ε )− λ(v) )∇V +

ε ,∇η̃
) ]

dt

∣∣∣∣∣
≤ ‖U+

ε − u‖L∞(ΩT ) ‖V +
ε ‖L2(0,T ;H1(Ω)) ‖η‖L2(0,T ;H1(Ω))

+ ‖u‖L∞(ΩT ) ‖Λε(V
+
ε )− λ(v)‖L∞(ΩT ) ‖V +

ε ‖L2(0,T ;H1(Ω)) ‖η − η̃‖L2(0,T ;H1(Ω))

+ ‖u‖L∞(ΩT ) ‖Λε(V
+
ε )− λ(v)‖L2(ΩT ) ‖V +

ε ‖L2(0,T ;H1(Ω)) ‖η̃‖L∞(0,T ;W 1,∞(Ω))

≤ C
[
‖U+

ε − u‖L∞(ΩT ) ‖η‖L2(0,T ;H1(Ω)) + ‖η − η̃‖L2(0,T ;H1(Ω))

+ ‖Λε(V
+
ε )− λ(v)‖L2(ΩT ) ‖η̃‖L∞(0,T ;W 1,∞(Ω))

]
.

(3.31b)

Noting that L∞(0, T ;W 1,∞(Ω)) is dense in L2(0, T ;H1(Ω)), (3.29b), (2.19), (3.31a,b),
(3.5a), (2.13), (3.6b), and (3.6a), we have that∫ T

0

(
πh[(U−ε )2]∇V −ε ,∇(πhη)

)
dt →

∫ T

0

(u2 ∇v,∇η) dt as h → 0,(3.32a) ∫ T

0

(
U+
ε Λε(V

+
ε )∇V +

ε ,∇(πhη)
)
dt →

∫ T

0

(uλ(v)∇v,∇η) dt as h → 0.(3.32b)
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We now show the compactness of {W+
ε }h on compact subsets of {u > 0}. On

noting (3.23), (3.8), (2.28), and (2.16), we have for all h ≤ ĥ0(α), similarly to (3.29a),
that∣∣∣∣∣

∫
ΩT \Bα

πh[(U+
ε )

1
2 (U−ε )

3
2 ] Λε(V

+
ε )∇W+

ε .∇η dxdt

∣∣∣∣∣
≤ C ‖U+

ε ‖ 1
2

L∞(ΩT \Bα) ‖ [πh[(U−ε )3] ]
1
2∇W+

ε ‖L2(ΩT ) ‖η‖L2(0,T ;H1(Ω))

≤ C α
1
2 ‖η‖L2(0,T ;H1(Ω))

(3.33a)

and similarly ∣∣∣∣∣
∫

ΩT \Bα

πh[(U−ε )3]∇W+
ε .∇η dxdt

∣∣∣∣∣ ≤ C α
3
2 ‖η‖L2(0,T ;H1(Ω)).(3.33b)

It follows from (3.23), (3.21), and (3.8) that for all h ≤ ĥ0(
α
8 )

C1 α
3

∫
Bα

4

|∇W+
ε |2 dxdt ≤ C1 α

3

∫
Bh

α
4

|∇W+
ε |2 dxdt ≤

∫
Bh

α
4

πh[(U−ε )3] |∇W+
ε |2 dxdt

≤ C,(3.34)

where Bh
α := {(x, t) ∈ ΩT : x ∈ Bh

α(t)}. Similarly to (3.31a,b), it follows from (2.28),

(3.34), (1.13), and (3.4a,b) that for all h ≤ ĥ0(
α
8 ) and for all η̃ ∈ L∞(0, T ;W 1,∞(Ω))∣∣∣∣ ∫

Bα

(πh[(U−ε )3]− u3)∇W+
ε .∇η dxdt

∣∣∣∣
≤ ‖πh[(U−ε )3]− u3‖L∞(ΩT ) ‖∇W+

ε ‖L2(Bα) ‖η‖L2(0,T ;H1(Ω))

≤ C α−
3
2

[ ‖πh[(U−ε )3 − u3]‖L∞(ΩT )+ ‖(I − πh)u3‖L∞(ΩT )

] ‖η‖L2(0,T ;H1(Ω)),

(3.35a)

∣∣∣∣ ∫
Bα

(πh[(U+
ε )

1
2 (U−ε )

3
2 ] Λε(V

+
ε )− u2 λ(v) )∇W+

ε .∇η dxdt

∣∣∣∣
≤
∣∣∣∣ ∫

Bα

(πh[(U+
ε )

1
2 (U−ε )

3
2 ]− u2) Λε(V

+
ε )∇W+

ε .∇η dxdt

∣∣∣∣
+

∣∣∣∣ ∫
Bα

u2 (Λε(V
+
ε )− λ(v) )∇W+

ε . [∇(η − η̃) +∇η̃ ] dxdt

∣∣∣∣
≤ ‖πh[(U+

ε )
1
2 (U−ε )

3
2 ]− u2‖L∞(ΩT ) ‖∇W+

ε ‖L2(Bα) ‖η‖L2(0,T ;H1(Ω))

+ ‖u2‖L∞(ΩT ) ‖Λε(V
+
ε )− λ(v)‖L∞(ΩT ) ‖∇W+

ε ‖L2(Bα) ‖η − η̃‖L2(0,T ;H1(Ω))

+ ‖u2‖L∞(ΩT ) ‖Λε(V
+
ε )− λ(v)‖L2(ΩT ) ‖∇W+

ε ‖L2(Bα) ‖η̃‖L∞(0,T ;W 1,∞(Ω))

≤ C α−
3
2

[
‖πh[(U+

ε )
1
2 (U−ε )

3
2 − u2]− (I − πh)u2 ‖L∞(ΩT ) ‖η‖L2(0,T ;H1(Ω))

+ ‖Λε(V
+
ε )− λ(v)‖L2(ΩT ) ‖η̃‖L∞(0,T ;W 1,∞(Ω)) + ‖η − η̃‖L2(0,T ;H1(Ω))

]
.

(3.35b)

From (3.23) we have for all h ≤ ĥ0(
α
8 ) and for a.e. t ∈ (0, T ) that ξh(·, t) := U+

ε (·, t)±
α
16 ζh(·, t)/‖ζh(·, t)‖L∞(Ω) ∈ Kh for any ζh ∈ L2(0, T ;Sh) with supp(ζh) ⊂ Bα

8
.
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Choosing zh ≡ ξh in (3.3b) yields, as φ− ≡ 0, for all h ≤ ĥ0(
α
8 ) that

∫ T

0

[
c (∇U+

ε ,∇ζh)− (W+
ε , ζh)h

]
dt = 0 ∀ ζh ∈ L2(0, T ;Sh) with supp(ζh) ⊂ Bα

8
.

(3.36)

Next we derive a bound on W+
ε locally on the set {u > 0}. For any α ∈ (0, α0) and

any t ∈ [0, T ], we choose a cut-off function θα(·, t) ∈ C∞(Ω) such that

θα(·, t) ≡ 1 on Bα(t), 0 ≤ θα(·, t) ≤ 1 on Bα
2
(t) \Bα(t),

θα(·, t) ≡ 0 on Ω \Bα
2
(t) and |∇θα(·, t)| ≤ C α−2.(3.37)

It follows from (3.20) that this last property can be achieved. We have from (3.37)
and (3.21) that

supp(πh[θ2
α
2
W+

ε ] ) ⊂ Bh
α
4
⊂ Bα

8
∀ h ≤ ĥ0(

α
8 ).(3.38)

Next we note, as d = 1, that for any κ = (pj , pj+1) ∈ T h and any z1, z2 ∈ C(κ)

∇πh[z2
1 z2] = [ (z1 z2)(pj) + (z1 z2)(pj+1) ]∇πh[z1] + z1(pj) z1(pj+1)∇πh[z2] on κ.

(3.39)

It follows from (2.1), (3.36), (3.38), (3.39), (3.37), (3.21), and (1.19) that for all

h ≤ ĥ0(
α
8 )∫

ΩT

πh[(θα
2
W+

ε )2] dxdt =

∫ T

0

(W+
ε , πh[θ2

α
2
W+

ε ] )h dt =

∫ T

0

c (∇U+
ε ,∇(πh[θ2

α
2
W+

ε ] ) ) dt

≤ C ‖U+
ε ‖L2(0,T ;H1(Ω))

[
‖∇θα

2
‖L∞(ΩT )

[∫
ΩT

πh[(θα
2
W+

ε )2] dxdt

] 1
2

+ ‖∇W+
ε ‖L2(Bh

α
4

)

]

≤ C (1 + α−4) ‖U+
ε ‖2

L2(0,T ;H1(Ω)) + C ‖∇W+
ε ‖2

L2(Bh
α
4

) .

(3.40)

From (3.21), (3.37), and (2.14), we obtain that for all h ≤ ĥ0(
α
8 )∫

ΩT

πh[(θα
2
W+

ε )2] dxdt ≥
∫
Bh

α

πh[(W+
ε )2] dxdt ≥

∫
Bh

α

(W+
ε )2 dxdt ≥ ‖W+

ε ‖2
L2(Bα).

(3.41)

Therefore, combining (3.34), (3.40), (3.41), (3.9), and (3.8) yields that

‖W+
ε ‖L2(0,T ;H1(Bα(t))) ≤ C(α−1) ∀ h ≤ ĥ0(

α
8 ).(3.42)

The bound (3.42) implies the existence of a subsequence and a function w ∈
L2(0, T ;H1(Bα(t))) such that

W+
ε → w, ∇W+

ε → ∇w weakly in L2(Bα) as h → 0.(3.43)

On noting that L∞(0, T ;W 1,∞(Ω)) is dense in L2(0, T ;H1(Ω)), (3.29a,b), (2.19),
(3.35a,b), (3.5a), (2.13), (3.6b), and (3.43), we have that as h → 0∫

Bα

πh[(U−ε )3]∇W+
ε .∇(πhη) dxdt →

∫
Bα

u3 ∇w .∇η dxdt,(3.44a) ∫
Bα

πh[(U+
ε )

1
2 (U−ε )

3
2 ] Λε(V

+
ε )∇W+

ε .∇(πhη) dxdt →
∫
Bα

u2λ(v)∇w .∇η dxdt.(3.44b)
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Using (2.1), (2.18), and (3.42), we deduce for all ζ ∈ L2(0, T ;H1(Ω)) with supp(ζ) ⊂
Bα and for all h ≤ ĥ0(

α
8 ) that∣∣∣∣∣

∫ T

0

[
(W+

ε , πhζ)h − (W+
ε , ζ)

]
dt

∣∣∣∣∣ =
∣∣∣∣∫

ΩT

(I − πh)(W+
ε ζ) dxdt

∣∣∣∣
≤ C h

∫
ΩT

|∇(W+
ε ζ)|dxdt

≤ C h ‖W+
ε ‖L2(0,T ;H1(Bα(t))) ‖ζ‖L2(0,T ;H1(Ω))

≤ C(α−1)h ‖ζ‖L2(0,T ;H1(Ω)).(3.45)

It follows from (3.45) and (3.43) that for all ζ ∈ L2(0, T ;H1(Ω)) with supp(ζ) ⊂ Bα,

∫ T

0

(W+
ε , πhζ)h dt →

∫ T

0

(w, ζ) dt =

∫
Bα

w ζ dxdt as h → 0 .(3.46)

Combining (3.30) for u and (3.46) and noting (3.36) yield that

∫
Bα

[ c∇u .∇ζ − w ζ ] dxdt = 0 ∀ ζ ∈ L2(0, T ;H1(Ω)) with supp(ζ) ⊂ Bα.(3.47)

This uniquely defines w in terms of u on the set Bα. Repeating (3.44a,b) for all α > 0
and noting (3.33a,b) and (2.19) yield for all η ∈ L2(0, T ;H1(Ω)) that as h → 0

∫
ΩT

πh[(U−ε )3]∇W+
ε .∇(πhη) dxdt →

∫
B0

u3 ∇w .∇η dxdt,(3.48a) ∫
ΩT

πh[(U+
ε )

1
2 (U−ε )

3
2 ] Λε(V

+
ε )∇W+

ε .∇(πhη) dxdt →
∫
B0

u2 λ(v)∇w .∇η dxdt.(3.48b)

Combining (3.3a,c), (3.28), (3.30), (3.32a,b), and (3.48a,b) and repeating (3.47)
for all α > 0 yield that the functions {u, w, v} satisfy (3.4a,b), (3.24), and
(3.25a–c).

Remark 3.3. If v0 ≡ 0, then (3.25a–c) collapses to

∫ T

0

〈∂u∂t , η〉dt− c
3

∫
{u>0}

u3 ∇(∆u) .∇η dxdt = 0 ∀ η ∈ L2(0, T ;H1(Ω))(3.49)

since v ≡ λ(v) ≡ 0 in ΩT and w ≡ −c∆u on {u > 0}. This is the Bernis–Friedman
weak formulation of the degenerate fourth order equation ∂u

∂t + c
3 ∇.(u3 ∇(∆u)) = 0;

see [9]. Note that (3.49) incorporates a weak formulation of the boundary condition
c
3 u3 ∂∆u

∂ν∂Ω
= 0. In addition, (3.25b) implies that ∂u

∂ν∂Ω
(x, t) = 0 for (x, t) ∈ ∂Ω× (0, T )

whenever u(x, t) > 0. Therefore, (3.25a–c) is the natural extension of the Bernis–
Friedman weak formulation to the problem (P) in the presence of surfactant (v0 �≡ 0).

Remark 3.4. The obstacle formulation in (Ph,τ
ε ) is not crucial in proving well-

posedness and convergence of the resulting approximation {Uε, Wε, Vε} to a solution,



FE APPROXIMATION OF SURFACTANT SPREADING ON A THIN FILM 1453

{u, w, v}, of (P). Replacing πh[(Un−1
ε )3], πh[(Un−1

ε )2] by πh[ [Un−1
ε ]3+], π

h[ [Un−1
ε ]2+]

in (2.11a), the inequality by an equality, Kh by Sh in (2.11b), and Un
ε Λε(V

n
ε ),

πh[(Un
ε )

1
2 (Un−1

ε )
3
2 ] by πh[ [Un

ε ]+] Λε(V
n
ε ), πh[ [Un

ε ]
1
2
+ [Un−1

ε ]
3
2
+] in (2.11c), one can eas-

ily adapt the proofs of Theorems 2.2, 2.4, and 3.2 and Lemmas 2.3, 2.5, and 3.1. Hence
one can pass to a limit {u, w, v} which solves (P) in the sense of (3.25a–c) with u2

replaced by [u]2+ in (3.25a) and uλ(v) replaced by [u]+ λ(v) in (3.25c). Using [u]− as
a test function in the modified (3.25a), one recovers the nonnegativity of u and hence
the weak formulation (3.25a–c). However, as Un

ε (·) can now become negative in many
disconnected regions where u(·, tn) ≡ 0, this makes the location of the approximate
free boundary more difficult.

Remark 3.5. On choosing U0
ε ≡ πhu0 and V 0

ε ≡ πhv0, we need the quasi unifor-
mity assumption on the partitioning T h only in order to obtain the bound (2.48b) via
(2.51), (2.52), and (2.21) and the bound (3.26) via (2.23). However, we can replace
this with the far milder assumption that {T h}h>0 is a regular partitioning at the
expense of a minimum time step constraint as in [4]. It is easily established from
(1.16), (2.22), {T h}h>0 being a regular partitioning, elliptic regularity, assuming that
Ω is convex polygonal if d = 2, and (2.17) that

‖(G − Gh)zh‖1 ≤ C h ‖zh‖0 ∀ zh ∈ Zh .(3.50)

Then choosing χ ≡ Gh[Un
ε −Un−1

ε

τn
] and χ ≡ Gh[V n

ε −V n−1
ε

τn
] in (2.11a) and (2.11c), re-

spectively, we obtain, similarly to (2.51) and (2.52), that

‖Gh ∂Uε

∂t ‖L2(0,T ;H1(Ω)) + ‖Gh ∂Vε

∂t ‖L2(0,T ;H1(Ω)) ≤ C(‖Uε‖L∞(ΩT ))(3.51)

on noting (2.53). Combining (3.50) and (3.51) and noting the fifth and sixth bound
in (2.48a), it follows for Z ≡ Uε or Vε that

‖G ∂Z
∂t ‖L2(0,T ;H1(Ω)) ≤ ‖(G − Gh)∂Z∂t ‖L2(0,T ;H1(Ω)) + ‖Gh ∂Z

∂t ‖L2(0,T ;H1(Ω))

≤ C h ‖∂Z∂t ‖L2(ΩT ) + C(‖Uε‖L∞(ΩT ))

≤ C(‖Uε‖L∞(ΩT )) (τ
− 1

2

min h+ 1) ≤ C(‖Uε‖L∞(ΩT ))

if the mild time step constraint C h2 ≤ τmin := minn=1→N τn is satisfied.

3.1. Inclusion of van der Waals forces. We now extend Lemma 3.1 and
Theorem 3.2 to the approximation (Ph,τ

δ, ε ).

Lemma 3.6. Let d = 1, ρ > 0 and u0, v0 ∈ K, with u0(x) ≥ ζ > 0 for all x ∈ Ω.
Let {T h, U0

ε , V
0
ε , τ, ε}h>0 be such that assumptions (i), (ii), and (iii) of Lemma 3.1

hold. Then there exist a subsequence of {Uε, Vε}h, where {Uε, Wε, Vε} solve (Ph,τ
δ, ε ),

and functions {u, v} satisfying (3.4a,b) with u(x, 0) = u0(x) for all x ∈ Ω, v(·, 0) =
v0(·) in (H1(Ω))′,

∫−u(·, t) =
∫−u0 > 0 for all t ∈ [0, T ], and

∫−v(·, t) =
∫−v0 for

a.e. t ∈ [0, T ], such that as h → 0 (3.5a,b) and (3.6a–c) hold.
Proof. The proof is exactly the same as that of Lemma 3.1.
Theorem 3.7. Let the assumptions of Lemma 3.6 hold. Then there exist a sub-

sequence of {Uε,Wε, Vε}h, where {Uε, Wε, Vε} solve (Ph,τ
δ, ε ), and functions {u,w, v}

satisfying (3.4a,b), w ∈ L2(0, T ;H1(Ω)), and u > 0 on ΩT . In addition, as h → 0,
(3.5a,b), (3.6a–c), and W+

ε → w weakly in L2(0, T ;H1(Ω)) hold. Furthermore, we
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have that u, v, and w fulfil u(·, 0) = u0(·), v(·, 0) = v0(·) and are such that for all
η ∈ L2(0, T ;H1(Ω)),∫ T

0

〈∂u∂t , η〉dt+ 1
3

∫
ΩT

u3 ∇w .∇η dxdt+ 1
2

∫
ΩT

u2 ∇v .∇η dxdt = 0,∫
ΩT

[ c∇u .∇η + φ(u) η − w η ] dxdt = 0,∫ T

0

〈∂v∂t , η〉dt+
∫

ΩT

[ ρ∇v .∇η + uλ(v)∇v .∇η ] dxdt+ 1
2

∫
ΩT

u2 λ(v)∇w .∇η dxdt = 0.

Proof. Theorem 2.8 and Lemma 2.9 imply that

max
t∈[0,T ]

∫
Ω

πh[Φ(U+
ε )](x, t) dx ≤ C.(3.52)

From the uniform Hölder continuity of U+
ε and (3.52), it follows that there exists

u ∈ R>0 independent of h, τ , and ε such that U+
ε (x, t) ≥ u > 0 for all (x, t) ∈ ΩT ;

see, e.g., [23, Corollary 5.3]. Combining this with (3.5a) yields that u is strictly
positive.

The rest of the proof is similar to that of Theorem 3.2 with the following minor
modifications. We have that (3.36) holds with the extra term (φ+(U+

ε )+φ−(U−ε ), ζh)h

inside the square brackets on the left-hand side. Since u is strictly positive, it is
straightforward to show convergence of this extra term to the corresponding term in
the weak formulation of the continuous problem.

4. Solution of the nonlinear discrete system. We now discuss algorithms
for solving the resulting system of nonlinear equations for {Un

ε ,W
n
ε , V n

ε } at each time

level for the approximations (Ph,τ
ε ) and (Ph,τ

δ, ε ). As (2.11a,b) for (Ph,τ
ε ) and (2.11a),

(2.12) for (Ph,τ
δ, ε ) are independent of V

n
ε , we first solve these to obtain {Un

ε ,W
n
ε }; then

we solve (2.11c) for V n
ε . First, we consider (Ph,τ

ε ). Adapting the techniques in [4,
section 3] we introduce Rn

ε ∈ Sh by

(Rn
ε , χ)

h = c (∇Un
ε ,∇χ) + (φ−(Un−1

ε + ε), χ)h − (Wn
ε , χ)h ∀ χ ∈ Sh.(4.1)

Hence, for any µ ∈ R>0 and on recalling (3.13), (Ph,τ
ε ) is equivalent to the following.

Given U0
ε ∈ Kh, V 0

ε ∈ Sh, for n ≥ 1 find {Un
ε ,W

n
ε , V n

ε } ∈ [Sh]3 such that (2.11a),
(4.1), Rn

ε = πh[Rn
ε−µUn

ε ]+, and (2.11c) hold. We use this formulation in constructing
our iterative method to solve (Ph,τ

ε ).
Given {Wn,0

ε , Rn,0
ε } ∈ [Sh]2, for k ≥ 1 find {Un,k

ε ,Wn,k
ε , Rn,k

ε } ∈ [Sh]3 such that
for all χ ∈ Sh

(
Un,k

ε −Un−1
ε

τn
, χ
)h

+ bn−1

3 (∇Wn,k
ε ,∇χ) = 1

3 ((b
n−1 − πh[(Un−1

ε )3])∇Wn,k−1
ε ,∇χ)

− 1
2 (π

h[(Un−1
ε )2]∇V n−1

ε ,∇χ),(4.2a)

c (∇Un,k
ε ,∇χ) + (φ−(Un−1

ε + ε), χ)h = (Wn,k
ε +Rn,k−1

ε , χ)h,
(4.2b)

Rn,k
ε = πh[Rn,k−1

ε − µUn,k
ε ]+,(4.2c)

where bn−1 := |Un−1
ε |30,∞.



FE APPROXIMATION OF SURFACTANT SPREADING ON A THIN FILM 1455

Then, having obtained {Un
ε ,W

n
ε }, we find V n

ε as follows. Given V n,0
ε ∈ Sh, for

k ≥ 1 find V n,k
ε ∈ Sh such that(

V n,k
ε −V n−1

ε

τn
, χ
)h

+ ρ
(∇V n,k

ε ,∇χ
)
+
(
Un
ε Λε(V

n,k−1
ε )∇V n,k

ε ,∇χ
)

= − 1
2 (π

h[(Un
ε )

1
2 (Un−1

ε )
3
2 ] Λε(V

n,k−1
ε )∇Wn

ε ,∇χ) ∀ χ ∈ Sh.(4.3)

Equation (4.3) is the natural extension of the iterative procedure proposed in [22] for
solving a finite element approximation of the thin film equation. As (4.3) is linear,
existence of V n,k

ε follows from uniqueness; and this is easily established on noting
ρ ≥ 0, (2.5), and Un

ε ∈ Kh. Hence the iteration (4.3) is well defined.
The algorithm (4.2a–c) is a simple adaptation of the algorithm in [4, section 3]

for problem (Ph,τ
ε ) in the absence of the surfactant and van der Waals forces, i.e.,

V n
ε ≡ 0 and a = 0 (φ− ≡ 0).

Defining An,k−1 ∈ Zh such that

(An,k−1, χ)h := 1
3 (π

h[(Un−1
ε )3]∇Wn,k−1

ε ,∇χ) ∀ χ ∈ Sh(4.4)

and Xn−1
ε ∈ Sh as in (2.30), it follows from (4.2a), (2.22), (4.2b) with χ ≡ 1, (1.17),

and (1.14) that

Wn,k
ε = (I − ∫−)Wn,k−1

ε − 3
bn−1 Gh[U

n,k
ε −Un−1

ε

τn
+An,k−1 +Xn−1

ε ]

+
∫−πh[φ−(Un−1

ε + ε)]− ∫−Rn,k−1
ε .(4.5)

Therefore, (4.2a,b) may be written equivalently as follows: Find Un,k
ε ∈ S

h
(Un−1

ε ) :=
{χ ∈ Sh : χ− Un−1

ε ∈ Zh } such that

c (∇Un,k
ε ,∇χ) + 3

bn−1 (Gh[U
n,k
ε −Un−1

ε

τn
], χ)h

= ((I − ∫−)(Wn,k−1
ε +Rn,k−1

ε +X
n,k−1

ε ), χ)h ∀ χ ∈ Sh,(4.6)

where X
n,k−1

ε ∈ Sh is such that

(X
n,k−1

ε , χ)h := −(φ−(Un−1
ε + ε) + 3

bn−1 Gh[An,k−1 +Xn−1
ε ], χ)h ∀ χ ∈ Sh .

Existence and uniqueness of Un,k
ε ∈ S

h
(Un−1

ε ) satisfying (4.6) then follows since, on
noting (2.22), this is the Euler–Lagrange equation of the convex minimization problem

min
χ∈Sh

(Un−1
ε )

{
c
2 |χ|21 + 3

2 bn−1 τn
|∇Gh(χ− Un−1

ε )|20 − (Wn,k−1
ε +Rn,k−1

ε +X
n,k−1

ε , χ)h
}
.

(4.7)

Finally, Wn,k
ε and Rn,k

ε are uniquely defined by (4.5) and (4.2c), respectively. Hence
the iterative procedure (4.2a–c) is well defined for any µ > 0.
Theorem 4.1. Let the assumptions (A) hold. Then there exists a µ0 such that

for all µ ∈ (0, µ0) and {Wn,0
ε , Rn,0

ε } ∈ [Sh]2 the sequence {Un,k
ε ,Wn,k

ε }k≥0 generated
by the algorithm (4.2a–c) satisfies

Un,k
ε → Un

ε and

∫
Ω

πh[(Un−1
ε )3] |∇(Wn

ε −Wn,k
ε )|2 dx → 0 as k → ∞.(4.8)
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Proof. This is a simple adaptation of the proof of Theorem 3.1 in [4]. On letting

Ek := Un
ε − Un,k

ε ∈ Zh, F k := Wn
ε −Wn,k

ε ∈ Sh, and Dk := Rn
ε −Rn,k

ε ∈ Sh,

it is an easy exercise to show that

|Dk|2h + µ τn
3 | [bn−1 − πh[(Un−1

ε )3] ]
1
2 ∇F k|20 + 2

3 µ τn | [πh[(Un−1
ε )3] ]

1
2 ∇F k|20

+ (2µ c− C µ2) |Ek|21 ≤ |Dk−1|2h + µ τn
3 | [bn−1 − πh[(Un−1

ε )3] ]
1
2 ∇F k−1|20.(4.9)

Now (4.9) yields that { |Dk|2h+ µ τn
3 | [bn−1−πh[(Un−1

ε )3] ]
1
2 ∇F k|20 }k≥0 is a decreasing

sequence for µ sufficiently small and hence has a limit. Therefore, the desired results
(4.8) follow from this and (4.9).

Remark 4.2. The linear system (4.3) can be solved efficiently using a conjugate
gradient algorithm. Although we are unable to show convergence of the iteration (4.3)
for V n

ε , we observed good convergence properties in practice.

4.1. Inclusion of repulsive van der Waals forces. We now consider an al-
gorithm for solving the nonlinear algebraic system at each time level in (Ph,τ

δ, ε ). Our
method for {Un

ε ,W
n
ε } satisfying (2.11a) and (2.12) is based on the general splitting

algorithm of [25]; see also [2, 5], where this algorithm has been adapted to solve simi-
lar variational inequality problems arising from Cahn–Hilliard systems. V n

ε satisfying
(2.11c) is solved as before using (4.3). We now introduce our algorithm for {Un

ε ,W
n
ε }.

Let Bn : Sh → Sh be such that for all qh ∈ Sh, χ ∈ Sh

(Bn(qh), χ)h := c (∇qh,∇χ) + (φ−(Un−1
ε ), χ)h .

Hence (2.12) can be rewritten as

(Bn(Un
ε ) + φ+(Un

ε ), χ)
h = (Wn

ε , χ)h ∀ χ ∈ Sh .(4.10)

Now, for n fixed, multiplying (4.10) with µ ∈ R>0, adding (Un
ε , χ)

h to both sides,
rearranging on noting (2.11a), and defining Xn−1

ε ∈ Sh as in (2.30), it follows that
{Un

ε , W
n
ε } ∈ [Sh]2 solving (2.11a) and (2.12) satisfy for all χ ∈ Sh

(
Un

ε −Un−1
ε

τn
, χ
)h

+ bn−1

3 (∇Wn
ε ,∇χ) = 1

3 ((b
n−1 − πh[(Un−1

ε )3])∇Wn
ε ,∇χ)

− (Xn−1
ε , χ)h,(4.11a)

(Un
ε + µφ+(Un

ε ), χ)
h = (Y n

ε , χ)h,(4.11b)

where Y n
ε ∈ Sh is such that

(Y n
ε , χ)h := (Un

ε , χ)
h − µ (Bn(Un

ε )−Wn
ε , χ)h ∀ χ ∈ Sh .(4.11c)

For later use we introduce also Y
n

ε ∈ Sh such that

(Y
n

ε , χ)
h := (Un

ε , χ)
h + µ (Bn(Un

ε )−Wn
ε , χ)h ∀ χ ∈ Sh(4.11d)

and note that Y
n

ε = 2Un
ε − Y n

ε . We use this as a basis for constructing our iterative
procedure to find {Un

ε , W
n
ε } ∈ [Sh]2 satisfying (4.11a,b).

Given {Un,k−1
ε , Wn,k−1

ε } ∈ [Sh]2 for k ≥ 1, we define Y n,k−1
ε ∈ Sh such that

(Y n,k−1
ε , χ)h := (Un,k−1

ε , χ)h − µ (Bn(Un,k−1
ε )−Wn,k−1

ε , χ)h ∀ χ ∈ Sh .(4.12a)
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Then we find U
n,k− 1

2
ε ∈ Sh such that

(U
n,k− 1

2
ε + µφ+(U

n,k− 1
2

ε ), χ)h = (Y n,k−1
ε , χ)h ∀ χ ∈ Sh(4.12b)

and find {Un,k
ε , Wn,k

ε } ∈ [Sh]2 such that for all χ ∈ Sh

(
Un,k

ε −Un−1
ε

τn
, χ
)h

+ bn−1

3 (∇Wn,k
ε ,∇χ)

= 1
3 ((b

n−1 − πh[(Un−1
ε )3])∇Wn,k−1

ε ,∇χ)− (Xn−1
ε , χ)h,(4.12c)

(Un,k
ε , χ)h + µ (Bn(Un,k

ε )−Wn,k
ε , χ)h = (Y

n,k

ε , χ)h,(4.12d)

where Y
n,k

ε := 2U
n,k− 1

2
ε −Y n,k−1

ε . Existence and uniqueness of U
n,k− 1

2
ε > 0 in (4.12b)

follow from the monotonicity of ϕ : R>0 → R, where ϕ(s) := s+µφ+(s), and the fact
that lims→∞ ϕ(s) = − lims↘0 ϕ(s) = ∞.

It remains to show that (4.12c,d) possess a unique solution {Un,k
ε , Wn,k

ε } ∈ [Sh]2.
This is a simple adaptation of the existence and uniqueness proof for {Un,k

ε ,Wn,k
ε ,

Rn,k
ε } in (4.2a–c). Similarly to (4.5), it follows from (4.12c), (2.22), (4.12d) with

χ ≡ 1, (1.17), and (1.14) that

Wn,k
ε = (I − ∫−)Wn,k−1

ε − 3
bn−1 Gh[U

n,k
ε −Un−1

ε

τn
+An,k−1 +Xn−1

ε ]

+
∫−πh[φ−(Un−1

ε )] + µ−1
∫−(Un,k

ε − Y
n,k

ε ) ,(4.13)

where An,k−1 ∈ Zh is defined as in (4.4). Then similarly to (4.6), (4.12c,d) may be

written equivalently as follows: Find Un,k
ε ∈ S

h
(Un−1

ε ) ≡ Sh(Un−1
ε ) such that for all

χ ∈ Sh

(Un,k
ε , (I − ∫−)χ)h + µ

[
c (∇Un,k

ε ,∇χ) + 3
bn−1 (Gh[U

n,k
ε −Un−1

ε

τn
], χ)h

]
= (Y

n,k

ε + µ
[
Wn,k−1

ε − φ−(Un−1
ε )− 3

bn−1 Gh[An,k−1 +Xn−1
ε ]

]
, (I − ∫−)χ)h.(4.14)

Similarly to (4.7), existence and uniqueness of Un,k
ε ∈ S

h
(Un−1

ε ) satisfying (4.14) then
follow since this is the Euler–Lagrange equation of the convex minimization problem

min
χ∈Sh

(Un−1
ε )

{
1
2 |χ|2h + µ

[
c
2 |χ|21 + 3

2 bn−1 τn
|∇Gh(χ− Un−1

ε )|20
]

−(Y
n,k

ε + µ
[
Wn,k−1

ε − φ−(Un−1
ε )− 3

bn−1 Gh[An,k−1 +Xn−1
ε ]

]
, χ)h

}
.

Finally, Wn,k
ε is uniquely defined by (4.13). Hence the iterative procedure (4.12a–d)

is well defined for any µ > 0.
Theorem 4.3. Let the assumptions (A) hold. Then for all µ ∈ R>0 and

{Un,0
ε ,Wn,0

ε } ∈ [Sh]2 the sequence {Un,k
ε ,Wn,k

ε }k≥0 generated by the algorithm
(4.12a–d) satisfies

Un,k
ε → Un

ε and

∫
Ω

πh[(Un−1
ε )3] |∇(Wn

ε −Wn,k
ε )|2 dx → 0 as k → ∞.(4.15)

In addition, it holds that U
n,k− 1

2
ε → Un

ε as k → ∞.
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Proof. A simple adaptation of the proof of Theorem 3.1 in [5] yields that

c |Un
ε − Un,k

ε |21 + 1
4µ |Y n

ε − Y n,k
ε |2h + τn

6 | [bn−1 − πh[(Un−1
ε )3] ]

1
2 ∇(Wn

ε −Wn,k
ε )|20

+ τn
3 | [πh[(Un−1

ε )3] ]
1
2 ∇(Wn

ε −Wn,k
ε )|20 + (φ+(Un

ε )− φ+(U
n,k− 1

2
ε ), Un

ε − U
n,k− 1

2
ε )h

≤ 1
4µ |Y n

ε − Y n,k−1
ε |2h + τn

6 | [bn−1 − πh[(Un−1
ε )3] ]

1
2 ∇(Wn

ε −Wn,k−1
ε )|20 .

(4.16)

Therefore, on noting the monotonicity of φ+, we have that { 1
4µ |Y n

ε − Y n,k
ε |2h +

τn
6 | [bn−1−πh[(Un−1

ε )3] ]
1
2 ∇(Wn

ε −Wn,k
ε )|20 }k≥0 is a decreasing sequence for all µ > 0.

Since it is bounded below, the sequence has a limit. Hence the desired results follow
from this and (4.16).

Remark 4.4. Note that the algorithm (4.12a–d) can easily be modified to solve
the variational inequality that arises at each time step in (Ph,τ

ε ). In particular, let
Bn : Sh → Sh be such that (Bn(q

h), χ)h := c (∇qh,∇χ) + (φ−(Un−1
ε + ε), χ)h for

all qh ∈ Sh, χ ∈ Sh, substitute Bn for Bn in (4.12a–d), and replace (4.12b) with the

following: Find U
n,k− 1

2
ε ∈ Kh such that (U

n,k− 1
2

ε − Y n,k
ε , η − U

n,k− 1
2

ε )h ≥ 0 for all
η ∈ Kh. Then this new procedure satisfies the statement of Theorem 4.3 as well; see
[5, section 3] for a similar proof. However, we employed algorithm (4.2a–c) to solve
(Ph,τ

ε ) since in practice it exhibited superior convergence properties.

Remark 4.5. We see from (4.6) for (Ph,τ
ε ) and (4.14) for (Ph,τ

δ, ε ) that at each
iteration for Un

ε one needs to solve only a fixed linear system with constant coefficients.
On a uniform mesh this can be done efficiently using a discrete cosine transform; see
[12, section 5], where a similar problem is solved.

5. Numerical results. First, we present numerical experiments in one space
dimension in the absence of van der Waals forces, a = δ = 0 (φ ≡ 0). Throughout
we chose a uniform partitioning of Ω = (−L,L), where L ≥ 1, with mesh points
pj = −L+(j−1)h, j = 1 → #J , where h = 2L

#J−1 . In addition, we chose uniform time

steps τn = τ = 1.28× 10−2h and set the regularization parameter ε = 1.28× 10−3h.
For the initial profiles u0(x) and v0(x), we chose either

(i) u0(x) = [14 − x2]+ or (ii) u0(x) = 1(5.1a)

with v0(x) =
v0
max

2 [(1− γ)− tanh(A(|x| − x0))]+ ,(5.1b)

where v0
max ≥ 0, γ ∈ [0, 1), A > 0, and x0 ∈ (0, L). (i) with v0

max > 0, (i) with
v0
max = 0, and (ii) with v0

max > 0 resemble a liquid drop on a plain surface with and
without surfactant on top of it and a uniform liquid film with surfactant, respectively.
Note that for γ > 0 the surfactant v0 has compact support [−l, l], where l = x0 +
A−1 tanh−1(1− γ). Throughout we chose U0

ε ≡ πhu0 and V 0
ε ≡ πhv0 as the discrete

initial data for (Ph,τ
ε ) and (Ph,τ

δ, ε ).
For the iterative algorithms (4.2a–c), (4.12a–d), and (4.3), we set, for n ≥ 1,

Zn,0 ≡ Zn−1 for Z = Uε,Wε, Vε, and Rε, where

R0
ε = 0 and (W 0

ε , χ)
h = c (∇U0

ε ,∇χ) + (φ(U0
ε ), χ)

h ∀ χ ∈ Sh ,

and for each n adopted the stopping criteria

|Un,k
ε − Un,k−1

ε |0,∞ < tol and |V n,k
ε − V n,k−1

ε |0,∞ < tol,(5.2)
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Table 1
(i) with v0max = 0, source-type solution errors.

#J 65 129 257 513 1025 2049

max
n=1→N

‖πhu(·, tn)− Unε (·)‖0,∞ × 104 74.68 62.90 42.40 8.263 2.538 0.900

max
n=1→N

‖πhv(·, tn)− V nε (·)‖0,∞ × 105 1.549 1.391 2.041 2.944 3.499 3.989

-0.008

-0.007

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0 0.1 0.2 0.3 0.4 0.5 0.6

#J = 65
#J = 129

#J = 257
#J = 513

#J = 1025
#J = 2049

Fig. 1. πhu0(x)− Uε(x, T ) plotted against x for T = 4 with v0 ≡ 0.

respectively, with tol = 10−8. Furthermore, we chose µ = 1
1.13h and set {Un

ε ,W
n
ε , Rn

ε }
≡ {πh[Un,k

ε ]+,Wn,k
ε , Rn,k

ε } for (4.2a–c), while we used µ = 0.625h and set {Un
ε ,W

n
ε }

≡ {Un,k
ε ,Wn,k

ε } if Un,k
ε > 0 and {Un

ε ,W
n
ε } ≡ {Un,k− 1

2
ε ,Wn,k

ε } otherwise for (4.12a–d).
For the iteration (4.3) we set V n

ε ≡ V n,k
ε .

In our first set of experiments we set the parameters L = 1, c = 2× 10−2, ρ = 0,
and we chose the initial data (i) with v0

max = 0 and a final time T = 4. We note from
the weak formulation (3.25a–c) that this initial data is a steady state for (P); that is,
u(x, t) = u0(x), v(x, t) = 0 for all (x, t) ∈ ΩT . The results for various choices of h are
displayed in Table 1, where all values are correct to four significant figures.

Remark 5.1. In order to obtain a discretization that leads to a discrete analogue
of the energy estimate (1.5) we needed to approximate λ(v) in a subtle way; see (2.7).
In particular, the resulting scheme does not guarantee that Vε ≡ 0 if the initial data
have this property. However, the results in Table 1 show that the error between Vε
and v is small.

In Figure 1 we plot πhu0(x)− Uε(x, T ) for #J = 2k + 1, k = 6 → 11, on a short
interval about the initial free boundary point on the right-hand side, x = 0.5. For
each #J there are a few points outside the support of u0(x) which are much larger
than tol = 10−8. Outside the region plotted |πhu0(x)−Uε(x, T )| is “zero,” i.e., much
smaller than tol. This behavior compares with results in [4], where similar errors can
be observed. Note that the different choice of c here acts as a time scaling factor.

We see from Figure 2 that for #J = 210 + 1 the initial profile U0
ε ≡ πhu0 is

graphically preserved in the absence of surfactant. This is underlined by the fact that
the energy

E(t) := t−tn−1

τn
E(Un

ε , V
n
ε ) + tn−t

τn
E(Un−1

ε , V n−1
ε ), t ∈ [tn−1, tn], n ≥ 1,
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Fig. 2. Comparison of Uε(x, T ), Vε(x, T ) at T = 4 and E(t) for t ∈ [0, T ] in the (a) absence
and (b) presence of surfactant, respectively.

remains constant over the whole time period [0, T ]. When surfactant is included,
however, this has a dramatic effect on the shape of the solution Uε(x, T ). For the
plot in Figure 2, we took v0 as described in (5.1b) with A = 50, x0 = 0.1, γ = 10−4,
and v0

max = 0.9 so that the support of v0 ⊂ (−0.2, 0.2) ⊂ [−0.5, 0.5], the support
of u0. Eventually the solutions Uε and Vε reach a “numerical steady state”; i.e., we
obtain that {Un

ε ,W
n
ε , V n

ε } ≡ {Un,1
ε ,Wn,1

ε , V n,1
ε } for n sufficiently large for the stated

stopping criteria on Uε and Vε (see (5.2)). For the parameters mentioned above and
a stopping tolerance of tol = 10−10 this state is reached at T = 3413. In Figure 3 we
plot Uε(·, t) and Vε(·, t) for t = 0, t = 50, t = 200, and t = 3413, respectively.

Remark 5.2. In the case ρ = 0, the only mechanism for surfactant spreading is
transport via the fluid velocity. If the support of the initial data of the surfactant is
contained in the set of points initially wetted, then one can show that the support of
the surfactant at time t is contained in the set W(t) := {x : u(x, τ) > 0 for some τ ∈
[0, t]}, which is the set of points which have been wetted at some time in the past.
For the discrete problem a similar property follows directly from (2.11c), since V n

ε (pj)
can only be nonzero if either V n−1

ε (pj) �= 0 or (Un
ε , χj) �= 0. Therefore, the only

modification is that the support of the surfactant can be one mesh point ahead of the
discrete analogue of W(t).
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Fig. 3. Uε(x, t) and Vε(x, t) for t = 0, 50, 200, 3413.
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Fig. 4. Uε(x, T ) and Vε(x, T ) plotted against x for T = 4 (left) and T = 1000 (right).

Remark 5.3. A parabolic profile for the drop together with a constant surfactant
density on the support of the drop is a steady state for the system (1.1a–c) if ρ = 0.
It is the discrete analogue of such a steady state that we observe for large times in
Figure 3.

Remark 5.4. For the thin film equation (in the no-slip case) it is conjectured that
the support of the film does not increase. In the case that a surfactant is placed on
the film this property does not seem to be true any longer.

In addition, we performed experiments for a uniform liquid layer, i.e., u0 ≡ 1.
We chose the parameters similar to the ones reported in [26]. In particular, we took
L = 4, T = 4, c = 10−5, ρ = 2 × 10−4, v0

max = 1, γ = 0, A = 10, x0 = 0.5, and
#J = 210 + 1. The computed solutions Uε(x, T ) and Vε(x, T ) can be seen on the
left-hand side of Figure 4.

We note that Uε(x, T ) and Vε(x, T ) approach similarity solutions of (P) for the
case ρ = c = a = δ = 0; see [24]. This can be seen on the right-hand side of Figure 4,
where we plot the two functions for the values L = 20, T = 1000, c = 10−8, ρ = 0,
γ = 0, v0

max = 1, A = 10, x0 = 0.5, and #J = 210 + 1. We recall that (Ph,τ
ε ) is only

well-posed for c > 0. In order to formulate the similarity solutions, we make use of
the following transformation of coordinates. Let ξ := (1 + t)−

1
3 x, u(ξ, t) := Uε(x, t)

and v(ξ, t) := (1 + t)
1
3 Vε(x, t). Then the similarity solutions for u and v are given by

u0(ξ) =

{
2 ξ
ξs

, 0 ≤ ξ < ξs,

1, ξs ≤ ξ,
and v0(ξ) =

{
ξs
6 (ξs − ξ), 0 ≤ ξ < ξs,

0, ξs ≤ ξ,

where ξs := (12
∫ L
0
v0(x) dx)

1
3 is the position of the shock. The corresponding plot is

shown on the left-hand side of Figure 5.
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Fig. 5. u(ξ, T ), v(ξ, T ) with the corresponding similarity solutions u0(ξ), v0(ξ) plotted against
ξ for T = 1000 (left) and Uε(x, T ), Vε(x, T ) plotted against x for T = 4.33 when φ 	≡ 0 (right).

5.1. Inclusion of van der Waals forces. In addition, we conducted numerical
experiments in which we considered the effect of both attractive and repulsive van
der Waals forces being present. Note that this corresponds to a > 0 and δ > 0,
respectively.

We note that (4.12b) is a decoupled system of #J equations and that for χ ≡ χj

one has to find s = U
n,k− 1

2
ε (pj) ∈ R>0 that satisfies

ψ(s) := s2 (ϕ(s)− Y n,k
ε (pj)) = 0,(5.3)

where ϕ(s) := s+µφ+(s) as in section 4. To solve ψ(s) = 0, we use Newton’s method:

s-+1 = s- − [ψ′(s-)]−1ψ(s-), > ≥ 0,(5.4)

with |s-+1 − s-| < tol as the stopping criterion and s0 = U
n,k− 3

2
ε (pj) for k ≥ 2 and

s0 = Un,0
ε (pj) otherwise. Note that we introduced the term s2 in (5.3) in order to

stabilize the Newton iteration. Although other powers of s are possible, this particular
choice seemed preferable in practice. In fact, the iteration (5.4) always converged.

On the right-hand side of Figure 5, we plot Uε(x, T ) and Vε(x, T ) for a = 2×10−3,
δ = 10−5, and ν = 4. The other parameters were chosen as follows: c = 10−5,
ρ = 2 × 10−3, initial data (ii) with v0

max = 1, γ = 0, A = 10, x0 = 0.5, L = 4,
T = 4.33, and #J = 210 + 1. One can clearly see the effect of modeling the van der
Waals forces. Once the film thickness reaches a certain threshold, the film tries to
rupture in the effected regions. Note that we have plotted the solutions just before
such a “rupture” occurs. Although the film height might become extremely thin,
it can never actually rupture (Uε = 0) due to the presence of the repulsive van der
Waals forces. We would also like to mention that we repeated the experiment with the
parameters mentioned above on a very fine mesh. As we obtained virtually identical
results, we are satisfied that the oscillations shown in Figure 5 are not due to mesh
effects. In fact, the instabilities are in agreement with linear stability analysis for the
thin film equation in the presence of van der Waals forces (see [28, 27]).

5.2. Numerical results for d = 2. Finally, we present numerical experiments
in two space dimensions with Ω = (−L,L) × (−L,L). We took a uniform mesh of
squares ς of length h = 2L

128 , each of which was divided into two triangles by its north
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Fig. 6. Uε(x, T ) and Vε(x, T ) plotted against x for T = 35.

east diagonal. We used the modified discrete semi-inner product on C(Ω):

(η1, η2)
h
∗ :=

∫
Ω

Πh(η1(x) η2(x)) dx .(5.5)

Here Πh is the piecewise continuous bilinear interpolant on Ω, which on each square
ς is bilinear and interpolates at the vertices. Using (5.5) instead of (2.1) enables us to
solve (4.6) efficiently using a “discrete cosine transform” approach; see [2]. We note
that similarly to (2.1) and (2.14), the semi-inner product (5.5) is equivalent on Sh to
the standard L2 inner product, and in place of (2.17), we have that

|(zh, χ)h − (zh, χ)h∗ | ≤ Ch1+m[ln( 1
h )]

2 ‖zh‖m‖χ‖1 ∀ zh, χ ∈ Sh , m = 0 or 1.

Therefore, it is easy to adapt the proofs to show that all the results in this paper
remain unchanged with the choice (5.5).

We report on an experiment with the same parameters for (P) as in d = 1 for
Figure 4. In particular, we set a = δ = 0, c = 10−5, ρ = 2 × 10−4, L = 4, T = 35,
τn = τ = 10−3, and ε = 10−5, and for the initial profiles we chose u0 ≡ 1 and (5.1b)
for v0 with v0

max = 1, γ = 0, A = 10, and x0 = 0.5. We set U0
ε ≡ πhu0 and V 0

ε ≡ πhv0.
Note that u0, v0 ∈ W 1,∞(Ω), and hence the results of Lemma 2.5 still hold for the
chosen U0

ε , V
0
ε on noting a standard interpolation result. Note, furthermore, that

here we integrate until T = 35 as opposed to T = 4 in one space dimension. This is
due to the slower speed of propagation; e.g., the corresponding similarity solution for
c = ρ = 0 advances proportionally to (1 + t)

1
4 for d = 2 as opposed to (1 + t)

1
3 for

d = 1 (see [24]). We chose tol = 10−8 and µ = 400 for the iterative method (4.2a–c).
In Figure 6, we plot Uε(x, T ) and Vε(x, T ) for T = 35, respectively.
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Abstract. It is known that the generating vector of a rank-1 lattice rule can be constructed
component-by-component to achieve strong tractability error bounds in both weighted Korobov
spaces and weighted Sobolev spaces. Since the weights for these spaces are nonincreasing, the first
few variables are in a sense more important than the rest. We thus propose to copy the points of
a rank-1 lattice rule a number of times in the first few dimensions to yield an intermediate-rank
lattice rule. We show that the generating vector (and in weighted Sobolev spaces, the shift also) of
an intermediate-rank lattice rule can also be constructed component-by-component to achieve strong
tractability error bounds. In certain circumstances, these bounds are better than the corresponding
bounds for rank-1 lattice rules.
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1. Introduction. The d-dimensional integral

Id(f) =

∫
[0,1]d

f(x) dx

may be approximated using rank-1 lattice rules. These are equal-weight rules having
quadrature points belonging to the set{{

iz

n

}
: 0 ≤ i ≤ n− 1

}
.

Here z, known as the generating vector, is an integer vector having no factor in
common with n, and the braces around a vector indicate that we take the fractional
part of each component of the vector. It is shown in [14] that every lattice rule may
be written as a multiple sum involving one or more generating vectors; the minimum
number of generating vectors required to generate a lattice rule is known as the “rank”
of the rule. Besides rank-1 lattice rules involving just one generating vector, there
exist lattice rules having rank up to d. More information about lattice rules may be
found in [11].

The construction of rank-1 lattice rules for integrands belonging to weighted Ko-
robov and weighted Sobolev spaces has been studied in various papers. These weighted
function spaces are tensor product reproducing kernel Hilbert spaces. Recall that a
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quasi-Monte Carlo (QMC) rule

Qn,d(f) =
1

n

n−1∑
i=0

f(xi)(1.1)

is an equal-weight quadrature rule with the quadrature points chosen in a determin-
istic way. The “worst-case error” of a QMC rule in some Hilbert space Hd is defined
to be

en,d(Qn,d, Hd) := sup{|Qn,d(f)− Id(f)| : ‖f‖Hd
≤ 1, f ∈ Hd},

and the initial error is

e0,d(Hd) := sup{|Id(f)| : ‖f‖Hd
≤ 1, f ∈ Hd}.

Following the analysis by Sloan and Woźniakowski in [16], the integration problem is
said to be “strongly QMC tractable” in the Hilbert space Hd if the minimal number of
function evaluations n in a QMC rule (1.1) needed to reduce the initial error e0,d(Hd)
by a factor of ε > 0 is bounded by a polynomial in ε−1 independently of d.

In [15], a component-by-component algorithm was developed for constructing
rank-1 lattice rules in unweighted Korobov spaces. The algorithm was later extended
to shifted rank-1 lattice rules (see [12]) in weighted Sobolev spaces, and the rules
constructed achieve strong QMC tractability error bounds. Both these constructions
assumed that n, the number of quadrature points, was a prime number. The con-
struction was later generalized in [10] to rules with a composite number of points.
Construction of rank-1 lattice rules in the randomized setting has been considered in
[13]. Recently, it was shown in [9] that the constructions achieve the optimal rate of
convergence in the corresponding function spaces.

Lattice rules constructed in this manner are “extensible” in terms of the dimension
d; that is, if further dimensions are needed at a later stage, the additional components
can be constructed with the existing components kept unchanged. However, if more
points are required, then the rules need to be reconstructed from scratch. A recent
work [4] showed the existence of good rank-1 lattice rules that are extensible both in
terms of the number of points n and the dimension d, but the proof is nonconstructive.

We are interested in “copying” rank-1 lattice rules. Since the weighted function
spaces of interest have nonincreasing weights, the first few variables are in a sense more
important than the rest. Therefore, it would seem intuitive to copy the points in the
first few dimensions. Thus we may copy an n-point d-dimensional rank-1 lattice rule
 times in each of the first r dimensions, where  ≥ 1, gcd(, n) = 1, and 0 ≤ r ≤ d.
We then obtain the rule with N = rn points given by

Qn,d(f) =
1

rn

�−1∑
mr=0

· · ·
�−1∑
m1=0

n−1∑
i=0

f

({
iz

n
+

(m1, . . . ,mr, 0, . . . , 0)



})
.

We call the rule with these points “the (, r)-copy of a rank-1 lattice rule with gen-
erating vector z.” When r = 0 and/or  = 1, we get just the original n-point rank-1
lattice rule. For r ≥ 1, the resulting rule is a rank-r lattice rule. These intermediate-
rank lattice rules have previously been considered in [7] and [8]. Typically, for reasons
of tractability, we will take r to be a fixed number, say, r = 1, 2, or 3. For the choice
of  it would seem reasonable on practical grounds and theoretical grounds (see The-
orem 2.3 and Lemma 2.4) to take  to be 2 in actual calculations. This value of  = 2
has been used previously in [7] and [8].
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Our plan is to construct intermediate-rank lattice rules in both weighted Korobov
and weighted Sobolev spaces that achieve strong QMC tractability error bounds. In
section 2, we consider intermediate-rank lattice rules in weighted Korobov spaces.
We show that the intermediate-rank lattice rule we consider has the same worst-case
error as a certain rank-1 lattice rule in a slightly different weighted Korobov space. We
then show that there exist intermediate-rank lattice rules with error bounds which are
better than the corresponding bounds for rank-1 lattice rules with approximately the
same number of points. Moreover, we shall see that the generating vectors constructed
component-by-component satisfy strong QMC tractability bounds and achieve the
optimal rate of convergence in weighted Korobov spaces. In section 3, we give a brief
discussion on the construction of shifted intermediate-rank lattice rules in weighted
Sobolev spaces. The final section, section 4, contains numerical results.

Throughout the paper, we will assume that n is a prime number to simplify the
analysis. More general results for any positive integer n can be obtained by emulating
the more complicated analysis found in [10]. When n is a prime number, z can be
chosen from Z

d
n, where Zn := {1, 2, . . . , n− 1}.

2. Intermediate-rank lattice rules in weighted Korobov spaces. We are
interested in the weighted Korobov spaces of periodic functions considered in [10].
These spaces are parameterized by a real parameter α > 1 and two sequences of
positive weights β = {βj} and γ = {γj} satisfying

γ1
β1
≥ γ2
β2
≥ · · · .

The inner product in these spaces is given by

〈f, g〉d =
∑

h∈Zd

f̂(h)ĝ(h) d∏
j=1

r(α, βj , γj , hj)

 ,
where

r(α, β, γ, h) =

{
β−1 if h = 0,

γ−1|h|α otherwise.

Here α is a smoothness parameter characterizing the rate of decay of the Fourier
coefficients. Various variations of these spaces have previously been considered in
works such as [5], [6], [15], and [16]. The worst-case error in these Korobov spaces for
a QMC rule (1.1) is given by

e2n,d(x0, . . . ,xn−1) = −
d∏
j=1

βj +
1

n2

n−1∑
i=0

n−1∑
k=0

d∏
j=1

(
βj + γj

∞∑′

h=−∞

e2πih(xi,j−xk,j)

|h|α
)
,

(2.1)

where the ′ on the sum indicates that we omit the h = 0 term. This expression may be
written in terms of Bernoulli polynomials if α is chosen to be a positive even number.
The initial error is

e0,d =

d∏
j=1

β
1
2
j .
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Following the analysis of tractability in [16], it is possible to show that if the
weights satisfy

∞∑
j=1

γj
βj
<∞,(2.2)

then an upper bound for the square worst-case error of the form

b

n

d∏
j=1

(βj + aγj) ,(2.3)

where a, b > 0 are bounded independently of d, is enough to ensure strong QMC
tractability, with the rate of convergence being O(n−1/2). Moreover, the optimal rate
of convergence O(n−α/2+δ), for any δ > 0, can be achieved if the weights satisfy a
stronger condition,

∞∑
j=1

(
γj
βj

) 1
α−2δ

<∞.

It is worth mentioning that the condition (2.2) is also necessary for strong QMC
tractability (see [6]).

We now consider the (, r)-copy of a rank-1 lattice rule with generating vector z,
that is, a rule with points belonging to the set{{

iz

n
+

(m1, . . . ,mr, 0, . . . , 0)



}
: 0 ≤ i ≤ n− 1, 0 ≤ m1, . . . ,mr ≤ − 1

}
,

where  ≥ 1, gcd(, n) = 1, and 0 ≤ r ≤ d. An expression for en,d,copy(�,r)(z), the
worst-case error for such a rule, is given in the next lemma. Note that though this
intermediate-rank lattice rule has N = rn points, the lemma shows that the worst-
case error may be calculated by using a rule having just n points. We will explore
this further in the next subsection.

Lemma 2.1. We have

e2n,d,copy(�,r)(z) = −
d∏
j=1

βj +
1

n

n−1∑
k=0

 r∏
j=1

(
βj +

γj
α

∞∑′

h=−∞

e2πih�kzj/n

|h|α
)

×
d∏

j=r+1

(
βj + γj

∞∑′

h=−∞

e2πihkzj/n

|h|α
) .

Proof. We have from (2.1) that

e2n,d,copy(�,r)(z) = −
d∏
j=1

βj +
1

2rn2

�−1∑
qr=0

· · ·
�−1∑
q1=0

�−1∑
mr=0

· · ·
�−1∑
m1=0

n−1∑
i=0

n−1∑
k=0 r∏

j=1

βj + γj ∞∑′

h=−∞

e
2πih
({ izj

n +
qj
�

}
−
{ kzj

n +
mj
�

})
|h|α


×

d∏
j=r+1

βj + γj ∞∑′

h=−∞

e
2πih
({ izj

n

}
−
{ kzj

n

})
|h|α

 .
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The second term can be written as

1

n2

n−1∑
i=0

n−1∑
k=0

 r∏
j=1

(
1

2

�−1∑
q=0

�−1∑
m=0

(
βj + γj

∞∑′

h=−∞

e2πih((i−k)zj/n+(q−m)/�)

|h|α
))

×
d∏

j=r+1

(
βj + γj

∞∑′

h=−∞

e2πih(i−k)zj/n

|h|α
) .(2.4)

For 0 ≤ q,m ≤  − 1, the values of (q −m) mod  are just 0 to  − 1 in some order,
with each value occurring  times. Thus we have

1

2

�−1∑
q=0

�−1∑
m=0

(
βj + γj

∞∑′

h=−∞

e2πih((i−k)zj/n+(q−m)/�)

|h|α
)

=
1



�−1∑
m=0

(
βj + γj

∞∑′

h=−∞

e2πih((i−k)zj/n+m/�)

|h|α
)
.

Now since

�−1∑
m=0

e2πihm/� =

{
 if h is a multiple of ,

0 otherwise,
(2.5)

we have

1



�−1∑
m=0

(
βj + γj

∞∑′

h=−∞

e2πih((i−k)zj/n+m/�)

|h|α
)

= βj +
γj


∞∑′

h=−∞

(
e2πih(i−k)zj/n

|h|α
�−1∑
m=0

e2πihm/�

)

= βj +
γj


∞∑′

m=−∞

(
e2πim�(i−k)zj/n

|m|α · 
)

= βj +
γj
α

∞∑′

h=−∞

e2πih�(i−k)zj/n

|h|α .

Thus (2.4) can be simplified to

1

n2

n−1∑
i=0

n−1∑
k=0

 r∏
j=1

(
βj +

γj
α

∞∑′

h=−∞

e2πih�(i−k)zj/n

|h|α
)

×
d∏

j=r+1

(
βj + γj

∞∑′

h=−∞

e2πih(i−k)zj/n

|h|α
) ,

which can be simplified even further to

1

n

n−1∑
k=0

 r∏
j=1

(
βj +

γj
α

∞∑′

h=−∞

e2πih�kzj/n

|h|α
)

d∏
j=r+1

(
βj + γj

∞∑′

h=−∞

e2πihkzj/n

|h|α
) ,

since for 0 ≤ i, k ≤ n−1, the values of (i−k) mod n are just 0 to n−1 in some order,
with each value occurring n times. This completes the proof.
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2.1. Relationship with rank-1 lattice rules based on worst-case error.
Let us define the sequence γ̄ by

γ̄j :=

{γj
α

if 1 ≤ j ≤ r,
γj otherwise

and set z̄ to be the d-dimensional vector with components given by

z̄j :=

{
zj if 1 ≤ j ≤ r,
zj otherwise.

Then the expression in Lemma 2.1 may be rewritten in the form

e2n,d,copy(�,r)(z) = −
d∏
j=1

βj +
1

n

n−1∑
k=0

d∏
j=1

(
βj + γ̄j

∞∑′

h=−∞

e2πihkz̄j/n

|h|α
)

= e2n,d(z̄, γ̄);

(2.6)

that is, the worst-case error of an intermediate-rank lattice rule with generating vector
z in the weighted Korobov space with weights β and γ is the same as the worst-case
error of a rank-1 lattice rule with generating vector z̄ in the weighted Korobov space
with weights β and γ̄.

Since  �= 0 and gcd(, n) = 1, for fixed r there exist a unique z̄ for each z and
vice versa. Because of this one-to-one correspondence between z and z̄, all the known
results on rank-1 lattice rules in weighted Korobov spaces can be applied here, with
generating vector z̄ and weights β and γ̄. Note that the effect of copying in the first
r dimensions can be interpreted as a reduction of the first r terms of γ by a factor of
1/α.

The following theorem is a slight generalization of Lemma 2 in [16]. (There β is
assumed to be 1.)

Theorem 2.2. Let n be a prime number, and define Mn,d,copy(�,r) to be the mean
given by

Mn,d,copy(�,r) :=
1

(n− 1)d

∑
z∈Zd

n

e2n,d,copy(�,r)(z).

Then an expression for Mn,d,copy(�,r) is given by

−
d∏
j=1

βj +
1

n

r∏
j=1

(
βj +

2γjζ(α)

α

) d∏
j=r+1

(βj + 2γjζ(α))

+

(
1− 1

n

) r∏
j=1

(
βj − 2γjζ(α)(1− n1−α)

(n− 1)α

) d∏
j=r+1

(
βj − 2γjζ(α)(1− n1−α)

n− 1

)
,

where ζ(α) is the Riemann zeta function. Moreover, if n satisfies n ≥ 1 + γ1
β1
ζ(α),

then

Mn,d,copy(�,r) ≤ 1

n

r∏
j=1

(
βj +

2γjζ(α)

α

) d∏
j=r+1

(βj + 2γjζ(α)) .
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Clearly there must exist at least one vector z such that

e2n,d,copy(�,r)(z) ≤Mn,d,copy(�,r) ≤ 1

n

d∏
j=1

(βj + 2γjζ(α)) .

Now let N = rn denote the total number of quadrature points. It is obvious that
this last bound is of the form (2.3) with a = 2ζ(α), b = r, and n = N . Since  and
r are fixed, we conclude that there exist intermediate-rank lattice rules that achieve
strong QMC tractability error bounds for weighted Korobov spaces.

2.2. Comparison with rank-1 lattice rules based on mean. It follows from
Theorem 2.2 with  = 1 and n = N that for N prime, the mean for rank-1 lattice
rules is

M̂N,d = −
d∏
j=1

βj +
1

N

d∏
j=1

(βj + 2γjζ(α)) +

(
1− 1

N

) d∏
j=1

(
βj − 2γjζ(α)(1−N1−α)

N − 1

)
.

Suppose we replace N by N = rn in this last expression. This is not valid because N
is not prime, but calculations using the correct (but more complicated) expression for
the mean found in [10] indicate that this yields an underestimate of the true mean.

Now let

Rn,d,�,r :=
Mn,d,copy(�,r)

M̂N,d

.

As an indication of whether these intermediate-rank lattice rules are better than
rank-1 lattice rules having approximately the same number of points, we would like
a result which shows that Rn,d,�,r < 1. A preliminary result of this type is given in
the following theorem.

Theorem 2.3. Suppose that n is a prime number satisfying n ≥ 1 + 2γ1
β1
ζ(α). If

ρ�,r :=

r∏
j=1

βj +
2γjζ(α)
�α−1

βj + 2γjζ(α)
< 1

and

r(n− 1)

r∏
j=1

(
βj − 2γjζ(α)(1− n1−α)

(n− 1)α

) d∏
j=r+1

(
βj − 2γjζ(α)(1− n1−α)

n− 1

)

< (rn− 1)

d∏
j=1

(
βj − 2γjζ(α)(1− (rn)1−α)

rn− 1

)
,(2.7)

then

Rn,d,�,r < ρ�,r.

Proof. By multiplying both Mn,d,copy(�,r) and M̂N,d by N = rn, we can write

Rn,d,�,r =
t1 + t2 − c
b1 + b2 − c and ρ�,r =

t1
b1
,
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where

t1 =

r∏
j=1

(
βj +

2γjζ(α)

α−1

) d∏
j=r+1

(βj + 2γjζ(α)) ,

t2 = r(n− 1)

r∏
j=1

(
βj − 2γjζ(α)(1− n1−α)

(n− 1)α

) d∏
j=r+1

(
βj − 2γjζ(α)(1− n1−α)

n− 1

)
,

b1 =

d∏
j=1

(βj + 2γjζ(α)) ,

b2 = (rn− 1)

d∏
j=1

(
βj − 2γjζ(α)(1− (rn)1−α)

rn− 1

)
,

c = rn

d∏
j=1

βj .

It is not hard to prove that

t1 + t2 − c
b1 + b2 − c <

t1
b1

is true if b1, b2, t1, t2, and c are positive quantities satisfying

t1 < b1, b1 + b2 > c, and t2 < b2 < c.(2.8)

Thus the result is proved if we can prove that all these conditions hold.
It may not be obvious that b2 and t2 are positive quantities, but one can see that

this is the case when βj − 2γjζ(α)/(n− 1) > 0 for j = 1, 2 . . . , d, which is equivalent
to the requirement on n given in the statement of the theorem. The requirement that
t1 < b1 comes from the assumption that ρ�,r < 1, while the requirement that t2 < b2
comes from the assumption given in (2.7). Also, it is clear that b2 < c.

Let

b̂2 = (rn− 1)

d∏
j=1

(
βj − 2γjζ(α)

rn− 1

)
.

It is clear that b2 > b̂2. Thus we can prove that b1+b2 > c by proving that b1+b̂2−c >
0. Using the result that

d∏
j=1

(βj + aj) =
∑
u⊆D

∏
j /∈u

βj
∏
j∈u

aj

 =

d∏
j=1

βj +
∑
∅
=u⊆D

∏
j /∈u

βj
∏
j∈u

aj

 ,
where D = {1, 2, . . . , d}, we have

b1 + b̂2 − c =
d∏
j=1

(βj + 2γjζ(α)) + (rn− 1)

d∏
j=1

(
βj − 2γjζ(α)

rn− 1

)
− rn

d∏
j=1

βj

=
∑
∅
=u⊆D

∏
j /∈u

βj
∏
j∈u

(2γjζ(α))

+(rn−1)
∑
∅
=u⊆D

∏
j /∈u

βj
∏
j∈u

(
−2γjζ(α)

rn− 1

)
=
∑
∅
=u⊆D

S(u)∏
j /∈u

βj
∏
j∈u

(2γjζ(α))

 ,
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where

S(u) = 1 + (rn− 1)

(
− 1

rn− 1

)|u|
.

Clearly S(u) > 0 if |u| is even. For |u| ≥ 1 odd, we have

S(u) = 1− (rn− 1)1−|u| ≥ 1− 1 = 0.

Thus we conclude that b1 + b̂2 − c > 0 and hence b1 + b2 > c.
In the previous theorem, we made the assumption that ρ�,r < 1 and that (2.7) was

true. Attempts to prove that (2.7) is always true have not been successful. However,
all our numerical test calculations with  = 2, α = 2, βj = 1, and various choices of
γj indicate that (2.7) does at least hold for this set of parameters. For other sets of
parameters, readers will need to be content with doing their own calculations to see
whether it holds or not for their particular situation.

The next result gives some sufficient conditions for ρ2,r to be less than one.
Lemma 2.4. Let ρ�,r be defined as in Theorem 2.3, and set  = 2. If α ≥ 2 and

γr
βr
>

1

(2− 22−α)ζ(α)
,

then ρ2,r < 1.
Proof. A product of positive terms is guaranteed to be less than one when each

of the terms is less than one. From the definition of ρ�,r, we see that if  = 2, then
this is the case when

2βj + 22−αγjζ(α)
βj + 2γjζ(α)

< 1

for all j = 1, 2, . . . , r. When rearranged, this yields

γj
βj
>

1

(2− 22−α)ζ(α)
.

Since the sequence { γjβj
} is nonincreasing, this completes the proof.

In the case when α = 2, the condition of the lemma becomes γr/βr > 1/ζ(2) =
6/π2 ≈ 0.6079. This suggests that when α = 2, it is worthwhile to take r to be at
least one when γ1/β1 > 6/π2.

In a sense, the quantity ρ�,r gives an indication of how much we can gain (or
lose) by copying. Later in section 4, we will see that though

√
ρ2,r is concerned with

a ratio of means, the values of
√
ρ2,r nevertheless provide a measure of the ratios of

the worst-case errors between intermediate-rank lattice rules and rank-1 lattice rules
with approximately the same number of points.

2.3. Component-by-component construction. We now consider finding the
components of the generating vector z one at a time. Keeping in mind the relationship
of our intermediate-rank lattice rules with rank-1 lattice rules, we can construct z̄ for
the rank-1 lattice rule with weights β and γ̄ using the component-by-component
Algorithm 8 of [9] from which we can then obtain the corresponding z. This yields
the same result as constructing z directly using Algorithm 2.5 below.

Algorithm 2.5. Given 1 ≤ r ≤ d and n a prime number:
1. Set z1, the first component of z, to 1.
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2. For s = 2, 3, . . . , r, find zs ∈ Zn = {1, 2, . . . , n− 1} such that

e2n,s,copy(�,s)(1, z2, . . . , zs) = −
s∏
j=1

βj +
1

n

n−1∑
k=0

s∏
j=1

(
βj +

γj
α

∞∑′

h=−∞

e2πih�kzj/n

|h|α
)

is minimized.
3. For s = r + 1, r + 2, . . . , d, find zs ∈ Zn such that

e2n,s,copy(�,r)(1, z2, . . . , zs)

= −
s∏
j=1

βj +
1

n

n−1∑
k=0

 r∏
j=1

(
βj +

γj
α

∞∑′

h=−∞

e2πih�kzj/n

|h|α
)

×
d∏

j=r+1

(
βj + γj

∞∑′

h=−∞

e2πihkzj/n

|h|α
)

is minimized.

Theorem 1 and Corollary 2 in [9] give the theoretical foundation behind such a
construction for rank-1 lattice rules. We present the corresponding results here for
intermediate-rank lattice rules. Note that Theorem 2.6 below is a slight improvement
over the corresponding Theorem 1 of [9]. The proof is thus included in the appendix
for completeness. (Such an improvement for rank-1 lattice rules was first obtained in
[1] by using a different argument.)

Theorem 2.6. Let z = (1, z2, . . . , zd) be constructed component-by-component
as in Algorithm 2.5.

(a) For each s = 1, 2, . . . , r, we have

e2n,s,copy(�,s)(1, z2, . . . , zs) ≤ (n− 1)−
1
λ

s∏
j=1

(
βλj +

2γλj ζ(αλ)

αλ

) 1
λ

for all λ satisfying 1
α < λ ≤ 1.

(b) For each s = r + 1, r + 2, . . . , d, we have

e2n,s,copy(�,r)(1, z2, . . . , zs)

≤ (n− 1)−
1
λ

r∏
j=1

(
βλj +

2γλj ζ(αλ)

αλ

) 1
λ s∏
j=r+1

(
βλj + 2γλj ζ(αλ)

) 1
λ

for all λ satisfying 1
α < λ ≤ 1.

It can be shown from the bounds above that the intermediate-rank lattice rules
constructed using Algorithm 2.5 satisfy strong QMC tractability error bounds and
achieve the optimal rate of convergence.

Theorem 2.7. For fixed r satisfying 1 ≤ r ≤ d and n a prime number, let N =
rn denote the total number of quadrature points, and let z be constructed component-
by-component as in Algorithm 2.5. Then this z satisfies

en,d,copy(�,r)(z) ≤ Cd(δ)N−α
2 +δe0,d for all 0 < δ ≤ α−1

2 ,
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where

Cd(δ) = (2r)
α
2−δ

r∏
j=1

[
1 + 2−

α
α−2δ

(
γj
βj

) 1
α−2δ

ζ
(

α
α−2δ

)]α
2−δ

×
d∏

j=r+1

[
1 + 2

(
γj
βj

) 1
α−2δ

ζ
(

α
α−2δ

)]α
2−δ

is independent of N . Moreover, if

∞∑
j=r+1

(
γj
βj

) 1
α−2δ

<∞,

then

Cd(δ) ≤ C∞(δ) <∞;

that is, en,d,copy(�,r)(z) is O(N
−α/2+δ) for δ > 0, independently of d.

Proof. It follows from Theorem 2.6 that the z constructed by Algorithm 2.5
satisfies

en,d,copy(�,r)(z)

≤ (n− 1)−
1
2λ

r∏
j=1

(
βλj +

2γλj ζ(αλ)

αλ

) 1
2λ d∏

j=r+1

(
βλj + 2γλj ζ(αλ)

) 1
2λ

≤
(
nr

2r

)− 1
2λ

r∏
j=1

(
1 + 2−αλ

(
γj
βj

)λ
ζ(αλ)

) 1
2λ d∏

j=r+1

(
1 + 2

(
γj
βj

)λ
ζ(αλ)

) 1
2λ d∏

j=1

β
1
2
j

for all 1
α < λ ≤ 1. Now with the substitution of

−α
2
+ δ = − 1

2λ
,

the condition 1
α < λ ≤ 1 becomes 0 < δ ≤ α−1

2 , and we obtain

en,d,copy(�,r)(z) ≤ Cd(δ)N−α
2 +δe0,d for all 0 < δ ≤ α−1

2 ,

where

Cd(δ) = (2r)
α
2−δ

r∏
j=1

[
1 + 2−

α
α−2δ

(
γj
βj

) 1
α−2δ

ζ
(

α
α−2δ

)]α
2−δ

×
d∏

j=r+1

[
1 + 2

(
γj
βj

) 1
α−2δ

ζ
(

α
α−2δ

)]α
2−δ

≤ C∞(δ),
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and

C∞(δ) = (2r)
α
2−δ

r∏
j=1

[
1 + 2−

α
α−2δ

(
γj
βj

) 1
α−2δ

ζ
(

α
α−2δ

)]α
2−δ

× exp

(α
2 − δ

) ∞∑
j=r+1

log

(
1 + 2

(
γj
βj

) 1
α−2δ

ζ
(

α
α−2δ

))
≤ (2r)

α
2−δ

r∏
j=1

[
1 + 2−

α
α−2δ

(
γj
βj

) 1
α−2δ

ζ
(

α
α−2δ

)]α
2−δ

× exp

(α− 2δ) ζ
(

α
α−2δ

) ∞∑
j=r+1

(
γj
βj

) 1
α−2δ

 ,
where we have used the fact that log(1 + x) ≤ x for x ≥ 0. It is clear from this
expression that for δ > 0, C∞(δ) <∞ if

∞∑
j=r+1

(
γj
βj

) 1
α−2δ

<∞.

This completes the proof.

3. Shifted intermediate-rank lattice rules in weighted Sobolev spaces.
Now we change the function spaces to weighted Sobolev spaces considered in [10].
These spaces are also parameterized by two sequences of positive weights β and γ
satisfying

γ1
β1
≥ γ2
β2
≥ · · · .

The inner product in these spaces is given by

〈f, g〉d :=
∑

u⊆{1,2,... ,d}

∏
j /∈u

β−1
j

∏
j∈u

γ−1
j

∫
[0,1]|u|

∂|u|

∂xu
f(xu,1)

∂|u|

∂xu
g(xu,1) dxu

 ,
where (xu,1) is a d-dimensional vector whose jth component is xj if j ∈ u and 1 if
j /∈ u. Similar spaces have been considered previously (for example, see [12], [13], and
[16]). The worst-case error for a QMC rule (1.1) in these spaces is given by

e2n,d(x0, . . . ,xn−1) =

d∏
j=1

(
βj +

γj
3

)
− 2

n

n−1∑
i=0

d∏
j=1

(
βj +

γj
2

(
1− x2i,j

))

+
1

n2

n−1∑
i=0

n−1∑
k=0

d∏
j=1

(βj + γj [1−max (xi,j , xk,j)]) ,(3.1)

and the initial error is

e0,d =

d∏
j=1

(
βj +

γj
3

) 1
2

.
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Similar to the weighted Korobov spaces, it can be shown that if the weights satisfy
(2.2), then an upper bound for the square worst-case error of the form (2.3) is enough
to ensure strong QMC tractability in weighted Sobolev spaces.

We now consider the ∆-shift of the (, r)-copy of a rank-1 lattice rule with gen-
erating vector z, that is, a rule with points given by{{

iz

n
+

(m1, . . . ,mr, 0, . . . , 0)


+∆

}
: 0 ≤ i ≤ n− 1, 0 ≤ m1, . . . ,mr ≤ − 1

}
,

where  ≥ 1, gcd(, n) = 1, and 0 ≤ r ≤ d. Let en,d,copy(�,r)(z,∆) denote the worst-
case error for such a rule. An expression for e2n,d,copy(�,r)(z,∆) can be derived from

(3.1).
Here we give just the general ideas of the existence and the construction of a good

shifted intermediate-rank lattice rule. The full details follow closely the arguments
from [12] and [13].

To obtain an upper bound on the square worst-case error, we define the mean of
e2n,d,copy(�,r)(z,∆) over all values of z ∈ Z

d
n and ∆ ∈ [0, 1]d by

Mn,d,copy(�,r) :=
1

(n− 1)d

∑
z∈Zd

n

(∫
[0,1]d

e2n,d,copy(�,r)(z,∆) d∆

)
.

Using a known relationship between weighted Korobov spaces and weighted Sobolev
spaces (see [5]), we see that this mean is exactly the mean given in Theorem 2.2 with
α replaced by 2, βj replaced by βj +

γj
3 , and γj replaced by

γj
2π2 . An upper bound for

Mn,d,copy(�,r) follows in the same way from Theorem 2.2:

Mn,d,copy(�,r) ≤ 1

n

d∏
j=1

(
βj +

γj
3

+
2γj
2π2
ζ(2)

)
=

1

n

d∏
j=1

(
βj +

γj
2

)
.

We thus conclude that there exists at least one pair (z,∆) such that e2n,d,copy(�,r)(z,∆)

is bounded by this upper bound on the mean. Since this bound is of the form (2.3), we
conclude that shifted intermediate-rank lattice rules achieve strong QMC tractability
error bounds in weighted Sobolev spaces.

Let en,d+1,�(x0, . . . ,xn−1; zd+1,∆d+1) denote the worst-case error for a QMC rule
with the set of points{(

xi,

{
izd+1

n
+
m


+∆d+1

})
: 0 ≤ i ≤ n− 1, 0 ≤ m ≤ − 1

}
.

These are (d+ 1)-dimensional points obtained by appending { izd+1

n + m
� +∆d+1} to

the existing d components of xi. To construct the pair (zd+1,∆d+1) component-by-
component, we define the following mean:

mn,d+1,�(x0, . . . ,xn−1; zd+1) :=

∫ 1

0

e2n,d+1,�(x0, . . . ,xn−1; zd+1,∆d+1) d∆d+1.

Let us assume that the points x0, . . . ,xn−1 satisfy

e2n,d(x0, . . . ,xn−1) ≤ 1

n

d∏
j=1

(βj + γj) .
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Suppose we choose zd+1 from the set Zn to minimize mn,d+1,�(x0, . . . ,xn−1; zd+1)
and then choose ∆d+1 from the set

{
2m−1

2n : 1 ≤ m ≤ n− 1
}
so that the square worst-

case error e2n,d+1,�(x0, . . . ,xn−1; zd+1,∆d+1) is minimized. Then by using involved
algebraic manipulations and the arguments from [12], these choices of zd+1 and ∆d+1

can be shown to satisfy

e2n,d+1,�(x0, . . . ,xn−1; zd+1,∆d+1) ≤ 1

n

d+1∏
j=1

(βj + γj) .

Note that the result also holds for  = 1; that is, there is no “copying” in the (d+1)th
dimension. For d = 1, we can show that there exists (z1,∆1) satisfying

e2n,1,copy(�,1)(z1,∆1) ≤ 1

n
(β1 + γ1) .

All of the above leads us to the following algorithm for constructing a pair (z,∆)
such that for all s = 1, . . . , d,

e2n,s,copy(�,min(s,r))((z1, . . . , zs), (∆1, . . . ,∆s)) ≤ 1

n

s∏
j=1

(βj + γj) .

In the following algorithm, the notation

mn,s,copy(�,r)((1, z2, . . . , zs−1), (∆1,∆2, . . . ,∆s−1); zs)

is used to denote the quantity mn,s,�(x0, . . . ,xn−1; zs) in the situation when x0, . . . ,
xn−1 are the points from an (, r)-copy of an (s− 1)-dimensional rank-1 lattice rule.

Algorithm 3.1. Given n a prime number and 1 ≤ r ≤ d:
1. Set z1, the first component of z, to 1.
2. Find ∆1 ∈

{
1
2n ,

3
2n , . . . ,

2n−1
2n

}
to minimize e2n,1,copy(�,1)(1,∆1).

3. For s = 2, 3, . . . , r, do the following:
(a) Find zs ∈ {1, 2, . . . , n− 1} to minimize

mn,s,copy(�,s)((1, z2, . . . , zs−1), (∆1,∆2, . . . ,∆s−1); zs).

(b) Find ∆s ∈
{

1
2n ,

3
2n , . . . ,

2n−1
2n

}
to minimize

e2n,s,copy(�,s)((1, z2, . . . , zs), (∆1,∆2, . . . ,∆s)).

4. For s = r + 1, r + 2, . . . , d, do the following:
(a) Find zs ∈ {1, 2, . . . , n− 1} to minimize

mn,s,copy(�,r)((1, z2, . . . , zs−1), (∆1,∆2, . . . ,∆s−1); zs).

(b) Find ∆s ∈
{

1
2n ,

3
2n , . . . ,

2n−1
2n

}
to minimize

e2n,s,copy(�,r)((1, z2, . . . , zs), (∆1,∆2, . . . ,∆s)).

The cost for the construction is O(n3d2) operations, and it is dominated by the
construction of the shift. In [13] the idea of using a number of random shifts was
introduced. This not only cuts the cost of the construction down to O(n2d2) opera-
tions; it also allows error estimation. The reference [3] contains detailed discussions
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on randomized QMC methods. Following [13], we can construct the generating vector
component-by-component by minimizing over the mean

Fn,d,copy(�,r)(z) :=

∫
[0,1]d

e2n,d,copy(�,r)(z,∆) d∆.

Algorithm 3.2. Given n a prime number and 1 ≤ r ≤ d:
1. Set z1, the first component of z, to 1.
2. For s = 2, 3, . . . , r, find zs ∈ {1, 2, . . . , n− 1} to minimize

Fn,s,copy(�,s)(1, z2, . . . , zs).

3. For s = r + 1, r + 2, . . . , d, find zs ∈ {1, 2, . . . , n− 1} to minimize
Fn,s,copy(�,r)(1, z2, . . . , zs).

Using again the relationship between weighted Korobov spaces and weighted
Sobolev spaces, we can obtain the corresponding value of the quantity ρ�,r given
in Theorem 2.3 for weighted Sobolev spaces by replacing α with 2, βj with βj +

γj
3 ,

and γj with
γj
2π2 . This yields

ρ�,r =

r∏
j=1

βj + γj
(
�
3 + 1

6�

)
βj +

γj
2

,

which is greater than 1 for all  ≥ 2. This means that it is unlikely for the ratio
Rn,d,�,r to be less than 1, and thus copying may not give better results in weighted
Sobolev spaces.

4. Numerical results. We will consider weighted Korobov spaces with α = 2.
In this case, the square worst-case error can be written as

e2n,d,copy(�,r)(z) = −
d∏
j=1

βj +
1

n

n−1∑
k=0

 r∏
j=1

(
βj +

2π2γj
2
B2

({
kzj
n

}))

×
d∏

j=r+1

(
βj + 2π2γjB2

({
kzj
n

})) ,
where for x ∈ [0, 1], B2(x) = x

2 − x+ 1/6 is the Bernoulli polynomial of degree 2. In
the implementation of Steps 2 and 3 of Algorithm 2.5, we will consider only values of
zs in {1, 2, . . . , (n− 1)/2}, since

B2

({
kzs
n

})
= B2

({
k(n− zs)
n

})
and B2

({
kzs
n

})
= B2

({
k(n− zs)
n

})
.

For α = 2, β = 1, and two different sequences of γ,

γj = 0.9j and γj =
1

j2
,

we want to see if intermediate-rank lattice rules are better than rank-1 lattice rules
with approximately the same number of points. More precisely, when  = 2, we
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Table 4.1
Total number of points close to 4000, γj = 0.9

j .

2003× 21 1999× 21 1009× 22 997× 22 503× 23 499× 23

d 4001 = 4006 = 3998 = 4036 = 3988 = 4024 = 3992
10 2.9726e+00 2.8068e+00 2.8005e+00 2.6666e+00 2.6874e+00 2.5965e+00 2.6068e+00
20 3.8737e+01 3.6466e+01 3.6455e+01 3.4687e+01 3.4922e+01 3.3752e+01 3.3887e+01
30 1.1022e+02 1.0374e+02 1.0372e+02 9.8675e+01 9.9337e+01 9.6009e+01 9.6392e+01
40 1.6309e+02 1.5348e+02 1.5346e+02 1.4598e+02 1.4696e+02 1.4204e+02 1.4260e+02
50 1.8768e+02 1.7661e+02 1.7659e+02 1.6798e+02 1.6911e+02 1.6344e+02 1.6409e+02
60 1.9719e+02 1.8556e+02 1.8554e+02 1.7650e+02 1.7768e+02 1.7172e+02 1.7241e+02
70 2.0063e+02 1.8879e+02 1.8878e+02 1.7957e+02 1.8077e+02 1.7472e+02 1.7542e+02
80 2.0185e+02 1.8994e+02 1.8992e+02 1.8066e+02 1.8187e+02 1.7578e+02 1.7648e+02
90 2.0227e+02 1.9034e+02 1.9032e+02 1.8104e+02 1.8225e+02 1.7615e+02 1.7685e+02

100 2.0242e+02 1.9048e+02 1.9046e+02 1.8118e+02 1.8239e+02 1.7628e+02 1.7698e+02

Table 4.2
Total number of points close to 16000, γj = 0.9

j .

8009× 21 7993× 21 4003× 22 4001× 22 2003× 23 1999× 23

d 16007 = 16018 = 15986 = 16012 = 16004 = 16024 = 15992
10 1.4365e+00 1.3566e+00 1.3606e+00 1.2982e+00 1.2973e+00 1.2623e+00 1.2621e+00
20 1.9268e+01 1.8198e+01 1.8231e+01 1.7400e+01 1.7413e+01 1.6905e+01 1.6922e+01
30 5.4841e+01 5.1793e+01 5.1887e+01 4.9516e+01 4.9554e+01 4.8109e+01 4.8157e+01
40 8.1141e+01 7.6628e+01 7.6767e+01 7.3258e+01 7.3314e+01 7.1176e+01 7.1247e+01
50 9.3371e+01 8.8176e+01 8.8337e+01 8.4298e+01 8.4363e+01 8.1902e+01 8.1984e+01
60 9.8103e+01 9.2645e+01 9.2813e+01 8.8570e+01 8.8638e+01 8.6053e+01 8.6138e+01
70 9.9815e+01 9.4261e+01 9.4433e+01 9.0115e+01 9.0184e+01 8.7554e+01 8.7641e+01
80 1.0042e+02 9.4832e+01 9.5004e+01 9.0661e+01 9.0730e+01 8.8084e+01 8.8172e+01
90 1.0063e+02 9.5032e+01 9.5205e+01 9.0852e+01 9.0922e+01 8.8270e+01 8.8358e+01

100 1.0070e+02 9.5102e+01 9.5275e+01 9.0919e+01 9.0988e+01 8.8335e+01 8.8423e+01

Table 4.3
Total number of points close to 64000, γj = 0.9

j .

32009× 21 32003× 21 16007× 22 16001× 22 8009× 23 7993× 23

d 64007 = 64018 = 64006 = 64028 = 64004 = 64072 = 63944
10 6.8423e-01 6.4784e-01 6.4773e-01 6.1683e-01 6.1797e-01 5.9937e-01 6.0015e-01
20 9.6190e+00 9.1124e+00 9.0949e+00 8.6927e+00 8.6945e+00 8.4445e+00 8.4523e+00
30 2.7406e+01 2.5958e+01 2.5908e+01 2.4763e+01 2.4768e+01 2.4055e+01 2.4077e+01
40 4.0552e+01 3.8408e+01 3.8336e+01 3.6640e+01 3.6647e+01 3.5592e+01 3.5625e+01
50 4.6664e+01 4.4197e+01 4.4114e+01 4.2162e+01 4.2170e+01 4.0956e+01 4.0995e+01
60 4.9029e+01 4.6436e+01 4.6350e+01 4.4299e+01 4.4307e+01 4.3032e+01 4.3072e+01
70 4.9885e+01 4.7247e+01 4.7159e+01 4.5072e+01 4.5080e+01 4.3783e+01 4.3824e+01
80 5.0187e+01 4.7533e+01 4.7444e+01 4.5345e+01 4.5353e+01 4.4048e+01 4.4089e+01
90 5.0293e+01 4.7633e+01 4.7544e+01 4.5441e+01 4.5449e+01 4.4141e+01 4.4182e+01

100 5.0330e+01 4.7668e+01 4.7579e+01 4.5474e+01 4.5483e+01 4.4173e+01 4.4215e+01

want to know in how many dimensions to copy, that is, which value of r = 1, 2, or
higher should we choose to get better rules than rank-1 lattice rules. We compare the
worst-case errors for rules with approximately 4000, 16000, and 64000 points up to
100 dimensions. (Note that since β = 1, the initial error e0,d is 1.) The results are
presented in Tables 4.1 to 4.6. The second column of each of these tables contains the
worst-case error for rank-1 rules, while the other three columns contain the worst-case
error for r going from r = 1 to r = 3. To get a better picture of the results of copying,
we divide the worst-case errors of intermediate-rank lattice rules at d = 100 by those
of rank-1 lattice rules with approximately the same number of points. These ratios
are presented in Table 4.7.

We can see from the results that for γj = 0.9j , copying is good in at least the first
three dimensions, but for γj = 1/j2, it is only good to copy in the first dimension.
This seems reasonable as in the first few dimensions the sequence 0.9, 0.81, 0.729, . . .
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Table 4.4
Total number of points close to 4000, γj = 1/j

2.

2003× 21 1999× 21 1009× 22 997× 22 503× 23 499× 23
d 4001 = 4006 = 3998 = 4036 = 3988 = 4024 = 3992

10 1.9338e-02 1.8362e-02 1.8036e-02 2.0006e-02 2.0218e-02 2.5298e-02 2.5381e-02
20 2.5421e-02 2.3923e-02 2.3776e-02 2.6554e-02 2.6843e-02 3.3678e-02 3.3951e-02
30 2.7770e-02 2.6094e-02 2.6001e-02 2.9126e-02 2.9474e-02 3.7124e-02 3.7290e-02
40 2.9017e-02 2.7262e-02 2.7181e-02 3.0495e-02 3.0864e-02 3.8956e-02 3.9126e-02
50 2.9795e-02 2.7989e-02 2.7913e-02 3.1362e-02 3.1728e-02 4.0095e-02 4.0269e-02
60 3.0326e-02 2.8489e-02 2.8415e-02 3.1954e-02 3.2320e-02 4.0875e-02 4.1051e-02
70 3.0714e-02 2.8853e-02 2.8780e-02 3.2384e-02 3.2751e-02 4.1444e-02 4.1620e-02
80 3.1008e-02 2.9130e-02 2.9058e-02 3.2711e-02 3.3079e-02 4.1875e-02 4.2052e-02
90 3.1240e-02 2.9348e-02 2.9276e-02 3.2970e-02 3.3337e-02 4.2213e-02 4.2390e-02
100 3.1426e-02 2.9523e-02 2.9453e-02 3.3178e-02 3.3545e-02 4.2485e-02 4.2662e-02

Table 4.5
Total number of points close to 16000, γj = 1/j

2.

8009× 21 7993× 21 4003× 22 4001× 22 2003× 23 1999× 23
d 16007 = 16018 = 15986 = 16012 = 16004 = 16024 = 15992

10 7.0679e-03 6.6226e-03 6.7551e-03 7.4726e-03 7.4423e-03 9.2985e-03 9.3671e-03
20 9.7139e-03 9.1387e-03 9.2672e-03 1.0362e-02 1.0344e-02 1.2975e-02 1.3059e-02
30 1.0786e-02 1.0146e-02 1.0266e-02 1.1513e-02 1.1516e-02 1.4491e-02 1.4543e-02
40 1.1364e-02 1.0691e-02 1.0808e-02 1.2139e-02 1.2150e-02 1.5307e-02 1.5349e-02
50 1.1727e-02 1.1033e-02 1.1145e-02 1.2528e-02 1.2543e-02 1.5818e-02 1.5854e-02
60 1.1977e-02 1.1268e-02 1.1378e-02 1.2796e-02 1.2814e-02 1.6168e-02 1.6204e-02
70 1.2159e-02 1.1438e-02 1.1547e-02 1.2993e-02 1.3012e-02 1.6425e-02 1.6461e-02
80 1.2299e-02 1.1567e-02 1.1676e-02 1.3143e-02 1.3163e-02 1.6622e-02 1.6657e-02
90 1.2409e-02 1.1670e-02 1.1778e-02 1.3261e-02 1.3282e-02 1.6778e-02 1.6812e-02
100 1.2498e-02 1.1753e-02 1.1861e-02 1.3357e-02 1.3379e-02 1.6904e-02 1.6938e-02

Table 4.6
Total number of points close to 64000, γj = 1/j

2.

32009× 21 32003× 21 16007× 22 16001× 22 8009× 23 7993× 23
d 64007 = 64018 = 64006 = 64028 = 64004 = 64072 = 63944

10 2.5983e-03 2.4131e-03 2.4454e-03 2.6945e-03 2.6743e-03 3.3548e-03 3.3135e-03
20 3.7412e-03 3.5099e-03 3.5290e-03 3.9372e-03 3.9465e-03 4.9385e-03 4.9097e-03
30 4.2141e-03 3.9582e-03 3.9767e-03 4.4501e-03 4.4667e-03 5.5924e-03 5.5795e-03
40 4.4705e-03 4.2019e-03 4.2200e-03 4.7333e-03 4.7496e-03 5.9532e-03 5.9446e-03
50 4.6325e-03 4.3564e-03 4.3735e-03 4.9111e-03 4.9270e-03 6.1803e-03 6.1750e-03
60 4.7448e-03 4.4624e-03 4.4798e-03 5.0334e-03 5.0484e-03 6.3377e-03 6.3334e-03
70 4.8270e-03 4.5399e-03 4.5573e-03 5.1227e-03 5.1371e-03 6.4533e-03 6.4493e-03
80 4.8901e-03 4.5991e-03 4.6166e-03 5.1912e-03 5.2052e-03 6.5416e-03 6.5378e-03
90 4.9398e-03 4.6460e-03 4.6635e-03 5.2452e-03 5.2593e-03 6.6113e-03 6.6077e-03
100 4.9801e-03 4.6840e-03 4.7014e-03 5.2890e-03 5.3032e-03 6.6678e-03 6.6645e-03

decays more slowly than 1, 1/4, 1/9, . . . , and so in the former case, the third variable
is still fairly important, while this is not the situation in the latter case.

The phenomenon is also supported by our earlier analysis. Since it may be verified
numerically that (2.7) holds, Theorem 2.3 and Lemma 2.4 together suggest that it
would be advantageous to copy in the first r dimensions if  = 2, α = 2, and

γr
βr
>

6

π2
≈ 0.6079.

For γj = 0.9j , this is obviously satisfied when r = 1, r = 2, and r = 3. For γj = 1/j2,
this is satisfied only when r = 1. Because Lemma 2.4 provides only a sufficient
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Table 4.7
Ratios of worst-case errors at d = 100.

Approximate N r = 1 r = 2 r = 3
4000 0.941 0.941 0.895 0.901 0.871 0.874

γj = 0.9
j 16000 0.944 0.946 0.903 0.904 0.877 0.878

64000 0.947 0.945 0.904 0.904 0.878 0.879
4000 0.939 0.937 1.056 1.067 1.352 1.358

γj = 1/j
2 16000 0.940 0.949 1.069 1.070 1.353 1.355

64000 0.941 0.944 1.062 1.065 1.339 1.338

Table 4.8
Values of ρ2,r for r = 1, 2, 3.

ρ2,1
√
ρ2,1 ρ2,2

√
ρ2,2 ρ2,3

√
ρ2,3

γj = 0.9
j 0.879 0.937 0.799 0.894 0.752 0.867

γj = 1/j
2 0.850 0.922 1.124 1.060 1.797 1.340

condition for ρ2,r to be less than one, a direct calculation of ρ2,r was done, and the
results (see Table 4.8) show the same conclusion.

If we compare the values of
√
ρ2,r in Table 4.8 with the ratios in Table 4.7, we

see that the values of
√
ρ2,r are reasonably close to the ratios. So, although ρ2,r

is essentially a ratio of means, there is numerical evidence here that it provides a
measure of the ratios of the square worst-case errors obtained from intermediate-rank
lattice rules and rank-1 lattice rules in the weighted Korobov space setting.

For our choices of weights, it follows from Theorem 2.7 that the rate of convergence
is O(N−1+δ) for δ > 0, independently of the dimension d. However, the numerical
results presented show a rate of convergence of roughly O(N−1/2) for the case γj =
0.9j and a somewhat better rate for the case γj = 1/j2. The observed rates of
convergence also appear to be higher for the smaller values of d. This agrees with
the numerical results in [9], where the predicted rate of convergence is not observed
when moderate values of n are used relative to the dimension. In that situation,
the observed rate of convergence depends on the rate of decay of the weights, with
faster decaying weights yielding higher convergence rates. To get an observed rate of
convergence close to O(N−1), we need to have weights that decay much faster, for
example, γj = 0.1j or γj = 1/j6. However, if weights such as these were used, the
theory would suggest that there would not be much benefit in doing any copying.

Appendix. Let (1, z2, . . . , zd) be constructed using Algorithm 2.5. Here we
prove Theorem 2.6; that is, for each s = 1, 2, . . . , d, we have

e2n,s,copy(�,min(s,r))(1, z2, . . . , zs) ≤ (n− 1)−
1
λ

s∏
j=1

(
βλj + 2γ̄λj ζ(αλ)

) 1
λ

for all λ satisfying 1
α < λ ≤ 1, where

γ̄j :=

{γj
α

if 1 ≤ j ≤ r,
γj otherwise.

The proof makes use of one form of Jensen’s inequality (see Theorem 19 of [2]),
which states that for {ai} a sequence of positive numbers,∑

ai ≤
(∑

aλi

) 1
λ

for 0 < λ ≤ 1.
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Proof. For s = 1, it is not hard to show that for all z1 we have

e2n,1,copy(�,1)(z1) =
2γ̄1ζ(α)

nα
,

and for any λ satisfying 1
α < λ ≤ 1, we have

2γ̄1ζ(α)

nα
≤ n−α (β1 + 2γ̄1ζ(α)) ≤ n−α

(
βλ1 + 2λγ̄λ1 [ζ(α)]

λ
) 1

λ ,

where the second inequality follows by applying Jensen’s inequality to the sum β1 +
2γ̄1ζ(α). It can be easily verified that n−α < (n − 1)−

1
λ , 2λ < 2, and by Jensen’s

inequality, [ζ(α)]λ ≤ ζ(αλ). Hence the result holds for s = 1.
For s satisfying 2≤s≤d, suppose that an (s−1)-dimensional vector (1, z2,. . ., zs−1)

has already been constructed using Algorithm 2.5 such that it satisfies

e2n,s−1,copy(�,min(s−1,r))(1, z2, . . . , zs−1) ≤ (n− 1)−
1
λ

s−1∏
j=1

(
βλj + 2γ̄λj ζ(αλ)

) 1
λ(A.1)

for all λ satisfying 1
α < λ ≤ 1. For any zs ∈ Zn, there is a corresponding z̄s (recall

that z̄s = zs if s ≤ r and z̄s = zs if s > r), and it follows from (2.6) that

e2n,s,copy(�,min(s,r))(1, z2, . . . , zs)

= βse
2
n,s−1,copy(�,min(s−1,r))(1, z2, . . . , zs−1) + θn,s(α,β, γ̄; 1, z2, . . . , zs),(A.2)

where

θn,s(α,β, γ̄; 1, z2, . . . , zs)

=
γ̄s
n

n−1∑
k=0

s−1∏
j=1

(
βj + γ̄j

∞∑′

h=−∞

e2πihkz̄j/n

|h|α
) ∞∑′

h=−∞

e2πihkz̄s/n

|h|α

 .(A.3)

Later we shall prove the following:
(i) For given α, β, and γ̄, there exists zs = zs(α,β, γ̄) such that

θn,s(α,β, γ̄; 1, z2, . . . , zs) ≤ 2γ̄sζ(α)

n− 1

s−1∏
j=1

(βj + 2γ̄jζ(α)) .

(ii) For all 1
α < λ ≤ 1,

θn,s(α,β, γ̄; 1, z2, . . . , zs) ≤
[
θn,s(αλ,β

λ, γ̄λ; 1, z2, . . . , zs)
] 1

λ

,

where βλ = {βλj } and γ̄λ = {γ̄λj }.
We see from (i) with α, β, and γ̄ replaced by αλ, βλ, and γ̄λ, respectively, that there
exists zs = zs(αλ,β

λ, γ̄λ) such that

θn,s(αλ,β
λ, γ̄λ; 1, z2, . . . , zs) ≤ 2γ̄λs ζ(αλ)

n− 1

s−1∏
j=1

(
βλj + 2γ̄λj ζ(αλ)

)
.
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For this zs = zs(αλ,β
λ, γ̄λ), it then follows from (ii) that

θn,s(α,β, γ̄; 1, z2, . . . , zs) ≤ 2
1
λ γ̄s[ζ(αλ)]

1
λ

(n− 1)
1
λ

s−1∏
j=1

(
βλj + 2γ̄λj ζ(αλ)

) 1
λ .

Thus it follows from (A.1) and (A.2) that this zs = zs(αλ,β
λ, γ̄λ) satisfies

e2n,s,copy(�,min(s,r))(1, z2, . . . , zs)

≤
(
βs + 2

1
λ γ̄s[ζ(αλ)]

1
λ

)
(n− 1)−

1
λ

s−1∏
j=1

(
βλj + 2γ̄λj ζ(αλ)

) 1
λ

≤ (βλs + 2γ̄λs ζ(αλ)
) 1

λ (n− 1)−
1
λ

s−1∏
j=1

(
βλj + 2γ̄λj ζ(αλ)

) 1
λ

= (n− 1)−
1
λ

s∏
j=1

(
βλj + 2γ̄λj ζ(αλ)

) 1
λ ,

where the second inequality follows from applying Jensen’s inequality to the sum in
the first factor. Now since we choose zs in Algorithm 2.5 to minimize the square
worst-case error e2n,s,copy(�,min(s,r))(1, z2, . . . , zs), this choice of zs must satisfy the
same bound. Hence it follows inductively that the result holds for all s = 2, 3, . . . , d.

To complete the proof, we need to prove (i) and (ii).
Proof of (i). Clearly there exists a zs = zs(α,β, γ̄) (and hence z̄s) such that

θn,s(α,β, γ̄; 1, z2, . . . , zs)

≤ 1

n− 1

n−1∑
zs=1

θn,s(α,β, γ̄; 1, z2, . . . , zs)

=
γ̄s
n

n−1∑
k=0

s−1∏
j=1

(
βj + γ̄j

∞∑′

h=−∞

e2πihkz̄j/n

|h|α
)(

1

n− 1

n−1∑
zs=1

∞∑′

h=−∞

e2πihkz̄s/n

|h|α
) .(A.4)

Since n is prime and gcd(, n) = 1, it can be shown for q = 1 and q =  that

1

n− 1

n−1∑
z=1

∞∑′

h=−∞

e2πihkqz/n

|h|α =

2ζ(α) if k is a multiple of n,

−2ζ(α)(1− n1−α)
n− 1

otherwise.

Upon separating out the k = 0 term and using the result above, (A.4) becomes

2γ̄sζ(α)

n

s−1∏
j=1

(βj + 2γ̄jζ(α))− 2γ̄sζ(α)(1− n1−α)
n(n− 1)

n−1∑
k=1

s−1∏
j=1

(
βj + γ̄j

∞∑′

h=−∞

e2πihkz̄j/n

|h|α
)
.

It follows from (2.6) (with the k = 0 term separated out) that

1

n

n−1∑
k=1

s−1∏
j=1

(
βj + γ̄j

∞∑′

h=−∞

e2πihkz̄j/n

|h|α
)

= e2n,s−1,copy(�,min(s−1,r))(1, z2, . . . , zs−1) +

s−1∏
j=1

βj − 1

n

s−1∏
j=1

(βj + 2γ̄jζ(α)) .
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Hence there exists a zs = zs(α,β, γ̄) such that

θn,s(α,β, γ̄; 1, z2, . . . , zs)

≤ 2γ̄sζ(α)

n

s−1∏
j=1

(βj + 2γ̄jζ(α)) +
2γ̄sζ(α)(1− n1−α)

n(n− 1)

s−1∏
j=1

(βj + 2γ̄jζ(α))

≤ 2γ̄sζ(α)

n

(
1 +

1

n− 1

) s−1∏
j=1

(βj + 2γ̄jζ(α))

=
2γ̄sζ(α)

(n− 1)

s−1∏
j=1

(βj + 2γ̄jζ(α)) .

Proof of (ii). Let

r(α, β, γ, h) :=

{
β−1 if h = 0,

γ−1|h|α if h �= 0.

With this notation we can write θn,s(α,β, γ̄; 1, z2, . . . , zs) in (A.3) as

θn,s(α,β, γ̄; 1, z2, . . . , zs)

=
γ̄s
n

n−1∑
k=0

∑
h∈Z

s

hs 
=0

e2πik(h1,h2,... ,hs)·(z̄1,z̄2,... ,z̄s)/n

|hs|α
s−1∏
j=1

r(α, βj , γ̄j , hj)

= γ̄s
∑

h∈Z
s

hs 
=0
(h1,h2,... ,hs)·(z̄1,z̄2,... ,z̄s)≡0 (mod n)

|hs|−α s−1∏
j=1

r(α, βj , γ̄j , hj)
−1



since

n−1∑
k=0

e2πik(h1,h2,... ,hs)·(z̄1,z̄2,... ,z̄s)/n =

n−1∑
k=0

(
e2πi(h1,h2,... ,hs)·(z̄1,z̄2,... ,z̄s)/n

)k
= 0

if (h1, h2, . . . , hs) · (z̄1, z̄2, . . . , z̄s) is not a multiple of n. It now follows from Jensen’s
inequality that

θn,s(α,β, γ̄; 1, z2, . . . , zs)

≤ γ̄s


∑

h∈Z
s

hs 
=0
(h1,h2,... ,hs)·(z̄1,z̄2,... ,z̄s)≡0 (mod n)

|hs|−αλ s−1∏
j=1

r(α, βj , γ̄j , hj)
−λ




1
λ

=
[
θn,s(αλ,β

λ, γ̄λ; 1, z2, . . . , zs)
] 1

λ

,

where the last step follows from the property r(α, β, γ, h)λ = r(αλ, βλ, γλ, h). This
completes the proof.
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NUMERICAL SOLUTION OF A THERMOVISCOELASTIC
CONTACT PROBLEM BY A PENALTY METHOD∗
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Abstract. We consider the numerical approximation of a one-dimensional quasi-static contact
problem in linear thermoviscoelasticity. A finite element approximation based on a penalized problem
is proposed and analyzed. We furnish an a priori estimate of the difference between the true and
numerical solutions. The results of some computations are also presented.

Key words. thermoviscoelasticity, contact problem, penalty method

AMS subject classifications. 65N30, 65N15
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1. Introduction. Consider the quasi-static Signorini contact problem in linear
thermoviscoelasticity:

θt − θxx = −auxt, 0 < x < 1, t > 0,(1.1)

σx = 0, 0 < x < 1, t > 0,(1.2)

with initial conditions

θ(x, 0) = θ0(x), u(x, 0) = u0(x), 0 < x < 1,(1.3)

and boundary conditions

u(0, t) = 0, θ(0, t) = 0, −θx(1, t) = k(θ(1, t)− θA), t > 0,(1.4)

σ(1, t) ≤ 0, u(1, t) ≤ g, σ(1, t)(u(1, t)− g) = 0, t > 0,(1.5)

with σ = ux+ζuxt−aθ. This initial-boundary value problem models the deformations,
due to thermal effects, of a homogeneous viscoelastic rod which moves along the x-axis.
The temperature of the rod and the displacement from its reference configuration,
assumed to be the interval I = [0, 1], are denoted by θ(x, t) and u(x, t), respectively.
At its left end the rod is fixed and has zero temperature, while at the right end it is
free to expand up to a rigid obstacle, at temperature θA, located at distance g > 0
from the rest position. When there is no contact with the obstacle, the stress σ
vanishes. Here the viscosity is represented by ζuxt, ζ > 0, and describes materials
with short memory effect. The constant a is a small positive constant which arises
from the physical properties of the rod; we assume 0 < a < 1 (see [1] for comments on
the size of a and [7] for a full nondimensionalization that provides a situation where
a << 1).
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The one-dimensional problem with ζ = 0 has received considerable attention from
both mathematicians and engineers as a basic model of expansion and contact. The
papers [2] and [13] provide examples of early studies of this problem in the engineering
literature. Long-time behavior issues are tackled in [12].

In many papers (see [12], for instance), the heat exchange coefficient k is a non-
linear function of the actual distance between the end of the rod and the obstacle
when there is no contact and the contact pressure otherwise. In [1], a lengthy proof of
solution existence is furnished for the ζ = 0 case with this nonlinear k; this is one of
the few papers that addresses this case in a rigorous way. We make the less realistic
but more theoretically tractable assumption that k > 0 is a constant.

In this paper, we produce error estimates for a finite element approximation based
on a penalty formulation. The unilateral constraint u(1, t) ≤ g is relaxed by assuming
that the obstacle is elastic with rigidity constant 1/ε > 0. In this situation, the obstacle
can be deformed, and the displacement u(1, t) can be greater than g.

We also use the penalty formulation to establish existence and uniqueness results
for the continuous problem. Previously, Kuttler and Shillor [11], using tools from con-
vex analysis, proved existence results when the heat transfer coefficient may depend
on the gap between the rod and the obstacle.

The contact problem for an elastic rod (ζ = 0) and a rigid obstacle was studied
numerically by Copetti [4]. Dirichlet boundary conditions for the temperature at both
ends were considered by Copetti and Elliott [6]. In [5], the obstacle was elastic. In
these cases, the resulting equations decouple and can be rewritten in terms of the
temperature only. This does not appear to be possible for the viscoelastic problem.

We now outline the remainder of this paper. In section 2, we introduce the penalty
formulation and show that it has a unique solution. We also identify its regularity
properties. In section 3, we prove there exists a unique solution to (1.1)–(1.5) which
is a limit of the solution to the penalty problem as the penalty parameter ε → 0. In
section 4, we produce an estimate on the size of the difference between the penalty and
true solutions. In section 5, we introduce the numerical scheme. Section 6 contains
the main result of the paper which is the error estimate for the scheme. Finally, in
section 7, we show the results of some numerical simulations using the new method.

We denote the norms of L2(I) and Hs(I) by ‖ · ‖ and ‖ · ‖s, respectively. We will
analyze functions in the space H1

E(I) = {χ ∈ H1(I) | χ(0) = 0}.
We assume throughout that the initial data is sufficiently regular and compatible.

Thus

θ0 ∈ H1
E(I), u0 ∈ H1

E(I), and u0(1, ·) ≤ g.(1.6)

Throughout the paper, C denotes positive constants which are allowed to depend
on data and norms of u, θ, and σ; these constants are not necessarily the same at each
occurrence. Although we do not exploit this fact, note that σ = σ(t) since σx = 0.

2. Penalized problem—definition and analysis. In this section, we intro-
duce a penalty formulation for (1.1)–(1.5) which will be used in our existence proof
and will be a critical part of the definition of our numerical method.

The following initial-boundary value problem constitutes our penalized problem:

θεt − θεxx = −auεxt,(2.1)

σεx = 0,(2.2)



THERMOVISCOELASTIC CONTACT PROBLEM 1489

where σε = uεx + ζuεxt − aθε, with initial conditions

θε(x, 0) = θ0(x), uε(x, 0) = u0(x),(2.3)

and boundary conditions

uε(0, t) = 0, θε(0, t) = 0, −θεx(1, t) = k(θε(1, t)− θA),(2.4)

σε(1, t) = −1
ε
[uε(1, t)− g]+.(2.5)

The condition (2.5) treats the obstacle as elastic. Note that σε = σε(t). It is important
for us that the functional on the right side is now Lipschitz.

We first prove an existence and uniqueness theorem for the penalized problem,
(2.1)–(2.5). This will eventually lead to an existence and uniqueness theorem for
(1.1)–(1.5).
Theorem 2.1. For any ε > 0, there exists a unique {θε, uε} satisfying (2.1)–(2.5)

with

θε ∈ L∞(0, T ;H1
E(I)), θεt , θεxx ∈ L2(0, T ;L2(I)),

uε ∈ L∞(0, T ;H1
E(I)), uεt ∈ L2(0, T ;H1

E(I)), σε ∈ L2(0, T ).

Moreover, if u0 ∈ H2(I), then uεxx ∈ L∞(0, T ;L2(I)).
Remark. Note that the functions uε, θε, and σε are bounded in the norms of the

above spaces uniformly in ε.
Proof. It is helpful to study a modified version of (2.1)–(2.5) in which the depen-

dent variables have zero initial data. Thus consider

θ̃ε(x, t) = θε(x, t)− θ0(x) and ũε(x, t) = uε(x, t)− u0(x).

Then θ̃ε, ũε satisfy, ∀ w, v ∈ H1
E(I),

(θ̃εt , w) + (θ̃
ε
x + θ0x, wx) + a(ũεxt, w) + k(θ̃ε(1, ·) + θ0(1)− θA)w(1) = 0,

(ũεx + ζũεxt − aθ̃ε − aθ0 + u0x, vx) +
1

ε
[ũε(1, ·) + u0(1)− g]+v(1) = 0.

Let {φi}∞i=1 ⊂ C∞(I) be an orthogonal basis for H1
E(I) and orthonormal for

L2(I). Let V m = span{φi}mi=1, and look for

θm(x, t) =

m∑
i=1

ci(t)φi(x), um(x, t) =

m∑
i=1

di(t)φi(x),

satisfying, ∀ w, v ∈ V m,

(θmt , w) + (θmx + θ0x, wx) + a(umxt, w) + k(θm(1, ·) + θ0(1)− θA)w(1) = 0,

(umx + ζumxt − aθm − aθ0 + u0x, vx) +
1

ε
[um(1, ·) + u0(1)− g]+v(1) = 0,

with initial conditions θm(·, 0) = um(·, 0) = 0. Since the nonlinearity involved is
Lipschitz continuous, we know from the theory of ordinary differential equations (see
[14]) that there exists a short-time solution (θm, um). We now proceed to show that



1490 M. I. M. COPETTI AND D. A. FRENCH

this solution exists on a full interval [0, T ] for any given T by producing the appropriate
a priori estimates.

Taking w = θm, v = umt and adding the resulting equations, we find that

1

2

d

dt
‖θm‖2+‖θmx ‖2+k(θm(1, ·))2+ 1

2

d

dt
‖umx ‖2+ζ‖umxt‖2+

1

2ε

d

dt
[um(1, ·)+u0(1)−g]2+

= k(θA − θ0(1))θ
m(1, ·)− (θ0x, θ

m
x ) + (aθ0 − u0x, u

m
xt)

≤ k

2
(θA − θ0(1))

2 +
k

2
(θm(1, ·))2 + 1

2
‖θ0x‖2 + 1

2
‖θmx ‖2 +

1

2ζ
‖aθ0 − u0x‖2 + ζ

2
‖umxt‖2.

Thus, integrating the resulting inequality from 0 to T and recalling (1.6), we obtain

‖θm(·, T )‖2 +
∫ T

0

‖θmx ‖2dt+
∫ T

0

(θm(1, t))2dt+ ‖umx (·, T )‖2 +
∫ T

0

‖umxt‖2dt

+
1

ε
[um(1, T ) + u0(1)− g]2+ ≤ C.

Choosing w = θmt yields

‖θmt ‖2 +
1

2

d

dt
‖θmx ‖2 +

k

2

d

dt
(θm(1, ·) + θ0(1)− θA)

2 = −a(umxt, θmt )− (θ0x, θ
m
xt)

≤ a2

2
‖umxt‖2 +

1

2
‖θmt ‖2 −

d

dt
(θ0x, θ

m
x ),

so ∫ T

0

‖θmt ‖2dt+ ‖θmx (·, T )‖2 + k(θm(1, T ) + θ0(1)− θA)
2

≤ a2

∫ T

0

‖umxt‖2dt+ 2‖θ0x‖‖θmx (·, T )‖+ k(θ0(1)− θA)
2.

It follows that∫ T

0

‖θmt ‖2dt+ ‖θmx (·, T )‖2 + (θm(1, T ) + θ0(1)− θA)
2 ≤ C.

Therefore,

θm, um are bounded in L∞(0, T ;H1
E(I)),

θmt is bounded in L2(0, T ;L2(I)),

umt is bounded in L2(0, T ;H1
E(I)),

θm(1, ·), [um(1, ·) + u0(1)− g]+ are bounded in L∞(0, T ).
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We are now in a position to pass to the limit as m→∞. As a consequence, there
exists θ̃ε, ũε, and subsequences {θm}, {um} such that

θm → θ̃ε in L∞(0, T ;H1
E(I)) weak-star,

θmt → θ̃εt in L2(0, T ;L2(I)) weakly,

θm(1, ·)→ θ̃ε(1, ·) in L∞(0, T ) weak-star,

um → ũε in L∞(0, T ;H1
E(I)) weak-star, and

umt → ũεt in L2(0, T ;H1
E(I)) weakly.

Also, since um(1, ·) → ũε(1, ·) in H1(0, T ) weakly and the injection of H1(0, T ) into
L2(0, T ) is compact, we have that um(1, ·)→ ũε(1, ·) in L2(0, T ) strongly.

Because

‖[um(1, ·) + u0(1)− g]+ − [ũε(1, ·) + u0(1)− g]+‖L2(0,T ) ≤ ‖um(1, ·)− ũε(1, ·)‖L2(0,T ),

we find that

[um(1, ·) + u0(1)− g]+ → [ũε(1, ·) + u0(1)− g]+ in L2(0, T ) strongly.

Passing to the limit on m and reversing the change of variables, we find that θε,
uε solve, ∀ w, v ∈ H1

E(I), the weak form

(θεt , w) + (θ
ε
x, wx) + a(uεxt, w) + k(θε(1, ·)− θA)w(1) = 0,(2.6)

(uεx + ζuεxt − aθε, vx) +
1

ε
[uε(1, ·)− g]+v(1) = 0.(2.7)

Choosing w, v ∈ C∞0 (I), it follows that θεxx = θεt + auεxt ∈ L2(0, T ;L2(I)), (uεx +
ζuεxt)x = aθεx ∈ L∞(0, T ;L2(I)), and (2.1)–(2.2) hold a.e. in ΩT . It is now straight-
forward to deduce (2.3)–(2.5) also. In order to obtain H2 regularity for uε(·, t), we
observe that, from the defining equations,

uεx + ζuεxt = aθε + σε.

If we multiply by the appropriate integrating factor, we can rewrite this as

d

dt

(
et/ζuεx(·, t)

)
=
1

ζ
(aθε(·, t) + σε(t))et/ζ .

So, we can integrate and obtain the following representation for uεx:

uεx(·, t) = e−t/ζ
(
uεx(·, 0) +

1

ζ

∫ t

0

(aθε(·, s) + σε(s))es/ζds

)
.

Differentiating with respect to x, we find that uεxx(·, t) ∈ L2(I).
It remains to prove uniqueness. We follow the argument suggested in [1]. Let

{θε1, uε1}, {θε2, uε2} be two solutions, and define ψ =
∫ t
0
(θε1 − θε2)ds, η = uε1 − uε2. Then
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we can show from (2.1)–(2.5) that

(ψt, v) + (ψx, vx) + kψ(1, ·)v(1) + a(ηx, v) = 0,

(σ1(·)− σ2(·), wx) = −1
ε
([uε1(1, ·)− g]+ − [uε2(1, ·)− g]+)w(1).

Now we let v = ψt, w = η and add the resulting equations to obtain the following
estimate:

‖ψt‖2 + ‖ηx‖2 + 1

2

d

dt
(‖ψx‖2 + kψ(1, ·)2 + ζ‖ηx‖2) = −1

ε
([uε1(1, ·)− g]+

−[uε2(1, ·)− g]+)(u
ε
1(1, ·)− uε2(1, ·)) ≤ 0,

where the last inequality followed from the monotonicity of the [·]+ functional. We
can now conclude ψt = η = 0, which finishes the proof.

3. Existence and uniqueness. In this section, we obtain a solution to (1.1)–
(1.5) as the limit of solutions to the penalized problem.
Theorem 3.1. There exists a unique {θ, u} satisfying (1.1)–(1.5) with

θ ∈ L∞(0, T ;H1
E(I)), θt, θxx ∈ L2(0, T ;L2(I)),

u ∈ L∞(0, T ;H1
E(I)), ut ∈ L2(0, T ;H1

E(I)), σ ∈ L2(0, T ).

If in addition u0 ∈ H2(I), then uxx ∈ L∞(0, T ;L2(I)).
Proof. Setting w = θε in (2.6) and v = uεt in (2.7), we obtain

‖θε(·, T )‖2 +
∫ T

0

‖θεx‖2dt+
∫ T

0

(θε(1, t))2dt+ ‖uεx(·, T )‖2 +
∫ T

0

‖uεxt‖2dt

+
1

ε
[uε(1, T )− g]2+ ≤ C.

Let ∆t > 0, and define w(x, t) = (θε(x, t+∆t)− θε(x, t))/∆t for 0 ≤ t ≤ T −∆t
and w(x, t) = (θε(x, T ) − θε(x, t))/∆t for T −∆t ≤ t ≤ T. With this choice of w in
(2.6), integrating from 0 to T and letting ∆t tend to zero, we get∫ T

0

‖θεt‖2dt+ ‖θεx(·, T )‖2 + (θε(1, T ))2 ≤ C.

Thus there exist functions θ and u which are limits of subsequences of {θε} and {uε}
such that, as ε→ 0,

θε → θ in L∞(0, T ;H1
E(I)) weak-star,

θεt → θt in L2(0, T ;L2(I)) weakly,

θε(1, ·)→ θ(1, ·) in L∞(0, T ) weak-star,

uε → u in L∞(0, T ;H1
E(I)) weak-star, and

uεt → ut in L2(0, T ;H1
E(I)) weakly.



THERMOVISCOELASTIC CONTACT PROBLEM 1493

In addition, we have that

uε → u in L2(0, T ;L2(I)) strongly,

[uε(1, ·)− g]+ → [u(1, ·)− g]+ in L2(0, T ) strongly, and

θε → θ in L2(0, T ;L2(I)) strongly.

From our first estimate in this proof, we have [uε(1, ·)− g]2+ ≤ Cε. Thus we conclude
that

[uε(1, ·)− g]+ → 0 in L2(0, T ) strongly.

As a consequence, u(1, t) − g ≤ 0 for almost all t ∈ (0, T ). Observing that, for
w ∈ H1

E(I) which satisfies w(1) ≤ g, we have

−1
ε
[uε(1, ·)− g]+(w(1)−uε(1, ·)) = −1

ε
[uε(1, ·)− g]+(w(1)− g)+

1

ε
[uε(1, ·)− g]2+ ≥ 0,

and letting v = w−uε in (2.7), we conclude that, ∀w ∈ L2(0, T ;H1
E(I)) with w(1, ·) ≤

g, ∫ T

0

(uεx + ζuεxt − aθε, wx − uεx)dt ≥ −
∫ T

0

1

ε
[uε(1, ·)− g]+(w(1)− uε(1, ·))dt ≥ 0.

From this we obtain that∫ T

0

(uεx + ζuεxt, wx)dt−
∫ T

0

(aθε, wx − uεx)dt ≥
∫ T

0

‖uεx‖2dt

+
ζ

2
‖uεx(·, T )‖2 −

ζ

2
‖u0x‖2.(3.1)

The weak convergence of uεx(·, t) to ux(·, t) in L2(I) implies that

(uεx(·, t), ux(·, t))→ ‖ux(·, t)‖2,
and the Cauchy–Schwarz inequality yields

lim inf
ε→0

‖uεx‖ ≥ ‖ux‖.

This allows us to now let ε → 0 on the right side of (3.1) and retain the inequality.
We can also let ε → 0 on the first integral on the left side of (3.1) due to the weak
convergence properties of uεx and uεxt. We can take the limit on the second integral
on the left side due to the strong convergence of θε. We can now conclude that θ, u
satisfy, ∀ w ∈ H1

E(I) and ∀ v ∈ L2(0, T ;H1
E(I)) with v(1, t) ≤ g,

(θt, w) + (θx, wx) + a(uxt, w) + k(θ(1, ·)− θA)w(1) = 0,∫ T

0

(ux + ζuxt − aθ, vx − ux)dt ≥ 0.

Following standard techniques (see [9], [10]), we can now show that θ and u satisfy
the claimed regularity properties and (1.1)–(1.5). Uniqueness follows similarly as it
did for the penalized problem.
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4. Penalization error. In this section, we provide an estimate of the difference
between the true and penalty solutions in terms of the parameter ε.
Theorem 4.1. There exists a constant C such that for any T > 0 the following

holds: ∥∥∥∥∥
∫ T

0

(θx − θεx)dt

∥∥∥∥∥
2

+ ‖(u− uε)(·, T )‖2 ≤ Cε‖σ‖2L2(0,T ).

Proof. As we did in the uniqueness argument, let ψ =
∫ t
0
(θ−θε)ds and η = u−uε.

Then

‖ψt‖2 + ‖ηx‖2 + 1

2

d

dt
(‖ψx‖2 + kψ(1, ·)2 + ζ‖ηx‖2) = (σ(·)− σε(·))(u(1, ·)− uε(1, ·)).

Setting I = (σ(·)− σε(·))(u(1, ·)− uε(1, ·)), we have the following cases:
1. If u(1, ·)− g < 0 and uε(1, ·)− g < 0, then σ(·) = σε(·) = 0 and I = 0.
2. If u(1, ·)− g < 0 and uε(1, ·)− g ≥ 0, then σ(·) = 0, σε(·) < 0, and

I = −σε(·)(u(1, ·)− g + g − uε(1, ·)) ≤ 0.

3. If u(1, ·)− g = 0 and uε(1, ·)− g < 0, then σ(·) ≤ 0, σε(·) = 0, and

I = σ(·)(g − uε(1, ·)) ≤ 0.

4. If u(1, ·)− g = 0 and uε(1, ·)− g ≥ 0, then σε(·) = −(uε(1, ·)− g)/ε, so

I =

(
σ(·) + 1

ε
(uε(1, ·)− g)

)
η(1, ·) =

(
σ(·)− 1

ε
η(1, ·)

)
η(1, ·) ≤ ε

2
σ(·)2 − 1

2ε
η(1, ·)2.

Hence, combining these four cases and integrating in t, we have∫ T

0

‖ψt‖2dt+
∫ T

0

‖ηx‖2dt+1
2
(‖ψx(·, T )‖2+kψ(1, T )2+ζ‖ηx(·, T )‖2)+ 1

2ε

∫ T

0

η(1, t)2dt

≤ ε

2
‖σ‖2L2(0,T ).

It follows from the Poincaré inequality that

‖ψx(·, T )‖2 + ‖η(·, T )‖2 ≤ Cε‖σ‖2L2(0,T ),

which proves the theorem.

5. Numerical approximation. We now introduce our finite element numeri-
cal method with the backward Euler scheme for the time discretization. We briefly
describe the implementation of this method in this section.

Partition the interval (0, 1) into subintervals Ij = (xj−1, xj) of length h = 1/J,
with 0 = x0 < x1 < · · · < xJ = 1, and denote by ShE ⊂ H1

E(I) the space of continuous
piecewise linear functions defined on this partition. Our finite element method for
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(2.1)–(2.5) on each time step is to find Θn, Un ∈ ShE , n = 1, . . . , N, such that,
∀ W, V ∈ ShE ,

1

∆t
(Θn −Θn−1,W ) + (Θnx ,Wx) + k(Θn(1)− θA)W (1)

+
a

∆t
(Un

x − Un−1
x ,W ) = 0,(5.1)

(Un
x − aΘn, Vx) +

ζ

∆t
(Un

x − Un−1
x , Vx) + βε(Γ

n)V (1) = 0,(5.2)

where Θ0 ∈ ShE and U0 ∈ ShE are given approximations of θ0 and u0, respectively,
βε(χ) =

1
ε [χ]+, Γn = Un(1)− g, and ∆t = T/N. Assuming that Θn−1 and Un−1 are

known, we need to iterate to find Θn and Un:

1

∆t
(Θn,l −Θn−1,W ) + (Θn,lx ,Wx) + k(Θn,l(1)− θA)W (1)

+
a

∆t
(Un,l−1

x − Un−1
x ,W ) = 0,(5.3)

(Un,l
x − aΘn,l, Vx) +

ζ

∆t
(Un,l

x − Un−1
x , Vx) + βε(Γ

n,l−1)V (1) = 0,(5.4)

where Θn,0 = Θn−1 and Un,0 = Un−1. The method defined requires that the systems
of algebraic equations

(M +∆tK +∆tkB)cn,l =Mcn−1 +∆tkθAe+ aC(dn−1 − dn,l−1),

(∆t+ ζ)Kdn,l = ζKdn−1 +∆taCT cn,l − ∆t

ε
[dn,l−1
J − g]+e

be solved at each iteration. We used the representations

Θn =

J∑
i=1

cni ηi, Un =

J∑
i=1

dni ηi,

with {ηi}Ji=1 the usual basis for S
h
E , and

Mij = (ηi, ηj), Kij = (ηix, ηjx), Bij = ηi(1)ηj(1), Cij = (ηi, ηjx), {e}i = ηi(1).

We now show that if ∆t is sufficiently small to a reasonable degree, then the
iterations are guaranteed to converge for the system (5.1)–(5.2).
Theorem 5.1. Suppose that a < 1 and ∆t < εζ. Then there exists a unique

solution {Θn, Un} for problem (5.1)–(5.2).
Proof. We will show that the iteration converges for the scheme (5.3)–(5.4). Let

ej = Θn,j −Θn,j−1 and qj = Un,j − Un,j−1. Thus ej and qj satisfy

‖ej‖2 +∆t‖ejx‖2 +∆tk(ej(1))2 = −a(qj−1
x , ej),(

1 +
ζ

∆t

)
‖qjx‖2 + (βε(Γn,j−1)− βε(Γ

n,j−2))qj(1) = a(ej , qjx).
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Adding the equations, using the Lipschitz continuity of βε and the Cauchy–Schwarz
inequality, yields, for δ > 0 and α > 0,

‖ej‖2 +∆t‖ejx‖2 +∆tk(ej(1))2 +

(
1 +

ζ

∆t

)
‖qjx‖2 ≤

δ

2
‖qjx − qj−1

x ‖2

+
1

2δ
‖ej‖2 + α

2ε
(qj−1(1))2 +

1

2αε
(qj(1))2.

Using the fact that (qj(1))2 ≤ ‖qjx‖2, we find(
1− 1

2δ

)
‖ej‖2 +∆t‖ejx‖2 +∆tk(ej(1))2 +

(
1 +

ζ

∆t
− δ − 1

2αε

)
‖qjx‖2

≤
(
δ +

α

2ε

)
‖qj−1
x ‖2,

and taking δ = 1/2 and α = 1, we now have(
1

2
+

ζ

∆t
− 1

2ε

)
‖qjx‖2 ≤

(
1

2
+
1

2ε

)
‖qj−1
x ‖2.

Note that our assumption ∆t < εζ implies 1/ε < ζ/∆t, so we know the factor on the
left side of the inequality above is positive. Moreover,

1

2
+

ζ

∆t
− 1

2ε
>
1

2
+
1

ε
− 1

2ε
=
1

2
+
1

2ε
,

and thus there exists M, with 0 < M < 1, such that

‖qjx‖2 ≤M‖qj−1
x ‖2.

One can now show using standard contraction arguments that the sequences {Θn,j},
{Un,j} converge to Θn, Un ∈ ShE and that these limits solve the Galerkin approxima-
tion (5.1)–(5.2). A similar argument yields the uniqueness of {Θn, Un}.

6. Error bound. In this section, we obtain an error bound for the numerical
approximation of the contact problem. Set U0 = Ph

Eu0, where Ph
E : H

1
E(I) → ShE is

defined by ((η − Ph
Eη)x, χx) = 0 ∀ χ ∈ ShE and satisfies (see [8])

‖η − Ph
Eη‖ ≤ h‖ηx‖, Ph

Eη(xi) = η(xi)

for i = 0, 1, . . . , J . Also, if η is sufficiently smooth, it follows that

‖Ph
Eη − η‖+ h‖(Ph

Eη − η)x‖ ≤ Ch2‖η‖2.
The error analysis uses a triangle inequality estimate involving (θ, u), (θε, uε), and
(Θ, U). Attempts to obtain an error estimate directly are difficult because of the need
to differentiate the monotone graph

β(v) =

 [0,∞), v = 0,
∅, v > 0,
0, v < 0.

Approximating this quantity by the penalty formulation allows the discretization
analysis to go through more easily since β(v) is replaced by the Lipschitz function
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βε(v) = ε−1[v]+. The final estimate, of course, is then subject to the unpleasant ε
−1

factors.
We now state and prove the main theorem of this paper.
Theorem 6.1. There exists a constant C such that∥∥∥∥∥

∫ tn

0

θxdt−∆t

n∑
i=1

Θix

∥∥∥∥∥
2

≤ C

(
‖Θ0 − θ0‖2 + ε+ h2 +

h2

∆t
+ h4 + (∆t)2 +

(∆t)2

ε2

)
,

‖u(·, tn)− Un‖2 ≤ C

(
‖Θ0 − θ0‖2 + ε+ h2 +

h2

∆t
+ h4 + (∆t)2 +

(∆t)2

ε2

)
,

where tn = n∆t.
Remark. The ε, h2/∆t, and (∆t)2/ε2 terms will surely be the least accurate on

the right side of the estimate. (We expect ‖Θ0 − θ0‖ = O(h2).) Balancing these
three terms, we find that ε = h4/5 and ∆t = h6/5 (which satisfies the condition in
Theorem 5.1 for h small enough). Thus the rates of convergence for this theorem are
essentially∥∥∥∥∥

∫ tn

0

θxdt−∆t

n∑
i=1

Θix

∥∥∥∥∥
2

≤ Ch4/5 and ‖u(·, tn)− Un‖2 ≤ Ch4/5.

Proof. First we estimate the error due to the discretization of the penalized
problem. Let θn = θε(·, tn) and un = uε(·, tn). Integrating (2.6) from 0 to tn and (2.7)
from tn−1 to tn, we obtain, ∀ w, v ∈ H1

E(I),

(θn − θ0, w) + (θ̂
n
x , wx) + k(θ̂n(1)− tnθA)w(1) + a(unx − u0x, w) = 0,

(unx − aθ
n
, vx) +

ζ

∆t
(unx − un−1

x , vx) + β
n

ε (γε)v(1) = 0,

with

θ̂n =

∫ tn

0

θε(·, t)dt, un =
1

∆t

∫ tn

tn−1

uε(·, t)dt, θ
n
=

1

∆t

∫ tn

tn−1

θε(·, t)dt,

β
n

ε (γε) =
1

∆t

∫ tn

tn−1

βε(γε(t))dt, and γε(t) = uε(1, t)− g.

Summing (5.1) from 1 to n gives, ∀ W ∈ ShE ,

(Θn −Θ0,W ) +

(
∆t

n∑
i=1

Θix,Wx

)
+ k

(
∆t

n∑
i=1

Θi(1)− tnθA

)
W (1)

+ a(Un
x − U0

x ,W ) = 0.

Thus, ∀ W, V ∈ ShE ,

(Θn − θn,W ) +

(
∆t

n∑
i=1

Θix − θ̂nx ,Wx

)
+ k

(
∆t

n∑
i=1

Θi(1)− θ̂n(1)

)
W (1)

+ a(Un
x − unx ,W ) = (Θ0 − θ0,W ) + a(U0

x − u0x,W ),
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and

(Un
x − unx , Vx) +

ζ

∆t
((Un

x − unx)− (Un−1
x − un−1

x ), Vx)− a(Θn − θ
n
, Vx)

+ (βε(Γ
n)− β

n

ε (γε))V (1) = 0.

Defining εj = ∆t
∑j
i=1Θ

i−Ph
E θ̂

j , j = 1, . . . , n, ε0 = 0, en = Un−Ph
Eu

n, and recalling
the properties of Ph

E , we find that, ∀ W, V ∈ ShE ,

1

∆t
(εn − εn−1,W ) + (εnx ,Wx) + kεn(1)W (1) = (Θ0 − θ0,W )

+ a(U0
x − u0x,W )− a(Un

x − unx ,W ) + (θn − Ph
Eθ

n
,W ),

(enx , Vx) +
ζ

∆t
(enx − en−1

x , Vx) + (βε(Γ
n)− βε(γ

n
ε ))V (1) =

a

∆t
(εn − εn−1, Vx)

+ a(Ph
Eθ

n − θ
n
, Vx) + (u

n
x − unx , Vx) + (β

n

ε (γε)− βε(γ
n
ε ))V (1),

where γnε = γε(tn). Note that

βε(Γ
n)− βε(γ

n
ε ) = β′ε(ξ)(U

n(1)− un(1)) = β′ε(ξ)(U
n(1)− Ph

Eu
n(1)) = β′ε(ξ)e

n(1),

where ξ is between Γn and γnε . Thus

(βε(Γ
n)− βε(γ

n
ε ))e

n(1) = β′ε(ξ)(e
n(1))2 ≥ 0,

a(Un
x − unx ,W ) = a(Un(1)− un(1))W (1)− a(Un − un,Wx),

and

a

∆t
(εn − εn−1, Vx) =

a

∆t
(εn(1)− εn−1(1))V (1)− a

∆t
(εnx − εn−1

x , V ).

ChoosingW = (εn−εn−1)/∆t, V = en and adding the resulting equations, we obtain

1

(∆t)2
‖εn − εn−1‖2 + 1

2∆t
(‖εnx − εn−1

x ‖2 + ‖εnx‖2 − ‖εn−1
x ‖2)

+
k

2∆t

(
(εn(1)− εn−1(1))2 + (εn(1))2 − (εn−1(1))2

)
+ ‖enx‖2

+
ζ

2∆t
(‖enx − en−1

x ‖2 + ‖enx‖2 − ‖en−1
x ‖2) ≤ 1

∆t
(Θ0 − θ0, ε

n − εn−1)

− a

∆t
(U0 − u0, ε

n
x − εn−1

x ) +
a

∆t
(Ph
Eu

n − un, εnx − εn−1
x )

+
1

∆t
(θn−Ph

Eθ
n
, εn−εn−1)+a(Ph

Eθ
n−θ

n
, enx)+(u

n
x−unx , e

n
x)+(β

n

ε (γε)−βε(γ
n
ε ))e

n(1)

≤ ‖Θ0 − θ0‖2 + 2a2

∆t
‖U0 − u0‖2 + 1

2(∆t)2
‖εn − εn−1‖2

+
1

4∆t
‖εnx − εn−1

x ‖2 + 2a2

∆t
‖Ph

Eu
n − un‖2 + 2a2‖θn − Ph

Eθ
n‖2

+‖θn − Ph
Eθ

n‖2 + 2‖unx − unx‖+
1

4
‖enx‖2 + (β

n

ε (γε)− βε(γ
n
ε ))

2 +
1

4
(en(1))2.
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Since (en(1))2 ≤ ‖enx‖2, we have
1

2(∆t)2
‖εn − εn−1‖2 + 1

4∆t
‖εnx − εn−1

x ‖2 + 1

2∆t
(‖εnx‖2 − ‖εn−1

x ‖2)

+
k

2∆t
((εn(1)− εn−1(1))2 + (εn(1))2 − (εn−1(1))2) +

1

2
‖enx‖2

+
ζ

2∆t
(‖enx − en−1

x ‖2 + ‖enx‖2 − ‖en−1
x ‖2) ≤ ‖Θ0 − θ0‖2

+
2a2

∆t
‖U0 − u0‖2 + I1 + I2 + I3 + I4 + I5,(6.1)

where we identify and estimate I1 − I5 below.

I1 =
2a2

∆t
‖Ph

Eu
n − un‖2 ≤ C

h2

∆t
‖uεx(·, tn)‖2,

I2 = 2a
2‖θn − Ph

Eθ
n‖2 ≤ C

h4

∆t

∫ tn

tn−1

‖θε‖22dt,

I3 = ‖θn − Ph
Eθ

n‖2 = ‖θn − θ
n
+ θ

n − Ph
Eθ

n‖2

=

∥∥∥∥∥ 1∆t

∫ tn

tn−1

∫ tn

t

θεt(·, s)ds dt+ θ
n − Ph

Eθ
n

∥∥∥∥∥
2

≤ C

(
∆t

∫ tn

tn−1

‖θεt‖2dt+
h4

∆t

∫ tn

tn−1

‖θε‖22dt
)

,

I4 = 2‖unx − unx‖2 = 2
∥∥∥∥∥ 1∆t

∫ tn

tn−1

(uεx(·, tn)− uεx(·, t))dt
∥∥∥∥∥

2

≤ C∆t

∫ tn

tn−1

‖uεxt‖2dt,

I5 = (β
n

ε (γε)− βε(γ
n
ε ))

2 =

(
1

∆t

∫ tn

tn−1

(βε(γε)− βε(γ
n
ε ))dt

)2

≤
(

1

ε∆t

∫ tn

tn−1

|uε(1, t)− uε(1, tn)|dt
)2

≤
(

1

ε∆t

∫ tn

tn−1

∣∣∣∣∫ t

tn

uεt(1, s)ds

∣∣∣∣ dt
)2

≤ ∆t

ε2

∫ tn

tn−1

(uεt(1, ·))2dt ≤
∆t

ε2

∫ tn

tn−1

‖uεxt‖2dt.

We used the estimate for I2 on the second term in I3 and the fact that |β′ε| ≤ 1/ε on
the last series of inequalities. We now multiply (6.1) by ∆t, sum from 1 to n, note
that n∆t = C, note that the bounds given by Theorem 2.1 are independent of ε, and
use the fact that ε0 = e0 = 0 to obtain

‖εnx‖2 + ‖enx‖2 ≤ C

(
‖Θ0 − θ0‖2 + h2

∆t
+ h4 + (∆t)2 +

(∆t)2

ε2

)
.
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The Poincaré inequality yields

‖Un − Ph
Eu

ε(·, tn)‖2 ≤ C

(
‖Θ0 − θ0‖2 + h2

∆t
+ h4 + (∆t)2 +

(∆t)2

ε2

)
.

Using the triangle inequality, we have

‖uε(·, tn)− Un‖ ≤ ‖uε(·, tn)− Ph
Eu

ε(·, tn)‖+ ‖Ph
Eu

ε(·, tn)− Un‖

≤ Ch‖uεx(·, tn)‖+ ‖Ph
Eu

ε(·, tn)− Un‖,

and, as a consequence of the boundedness of uεx, it results

‖uε(·, tn)− Un‖2 ≤ C

(
‖Θ0 − θ0‖2 + h2 +

h2

∆t
+ h4 + (∆t)2 +

(∆t)2

ε2

)
.

Similarly,∥∥∥∥∥
∫ tn

0

θεxdt−∆t

n∑
i=1

Θix

∥∥∥∥∥ = ‖(θ̂n − Ph
E θ̂

n)x − εnx‖ ≤ Ch

(∫ tn

0

‖θε‖22dt
)1/2

+ ‖εnx‖

and Theorem 2.1 yield∥∥∥∥∥
∫ tn

0

θεxdt−∆t

n∑
i=1

Θix

∥∥∥∥∥
2

≤ C

(
‖Θ0 − θ0‖2 + h2 +

h2

∆t
+ h4 + (∆t)2 +

(∆t)2

ε2

)
.

Combining these estimates with the penalty errors (Theorem 4.1), we obtain the
result.
Corollary 6.2. If u0 ∈ H2(I), there exists a constant C such that∥∥∥∥∥

∫ tn

0

θxdt−∆t

n∑
i=1

Θix

∥∥∥∥∥
2

≤ C

(
‖Θ0 − θ0‖2 + ε+ h2 +

h4

∆t
+ h4 + (∆t)2 +

(∆t)2

ε2

)
,

‖u(·, tn)− Un‖2 ≤ C

(
‖Θ0 − θ0‖2 + ε+

h4

∆t
+ h4 + (∆t)2 +

(∆t)2

ε2

)
.

Remark. In this case, the rates of convergence are, for ε = h8/5 and ∆t = h12/5,∥∥∥∥∥
∫ tn

0

θxdt−∆t

n∑
i=1

Θix

∥∥∥∥∥
2

≤ Ch8/5 and ‖u(·, tn)− Un‖2 ≤ Ch8/5.

Proof. If we look at the proof of Theorem 6.1, we see that if u0 ∈ H2(I) and
uε(·, t) is bounded in H2(I), independently of ε, then the term h2/∆t becomes h4/∆t.
In the estimate for the displacement, h2 turns into h4.

7. Numerical simulations. In this section, we describe some numerical calcu-
lations. In the first experiment, the initial data and the values of a and g, a = 0.017,
g = 0.1, are the same as those in the work of Copetti [4]. Since in [4] the temper-
ature difference is reversed, i.e., the left end of the rod has temperature θA and the
obstacle is at temperature zero, the numerical scheme was modified accordingly. We
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Fig. 7.1. The evolution in time of the temperature for ζ = 10.

let ε = 0.01, k = 1, h = 1/250, and ∆t = 0.001, and we took four values for the
viscosity coefficient ζ, ζ = 0.1, 0.2, 1, and 10. We observed that the temperature
profiles obtained are virtually identical for all values of ζ and are very similar to those
presented by Copetti [4], [5], where the rod was only elastic (ζ = 0). This observation
was reported also by Copetti [5] for different values of rigidity 1/ε. Figure 7.1 is a
representation of the evolution of temperature in these experiments.

On the other hand, the displacements of the rod are strongly dependent on ζ.
When ζ = 10, the deformations are slow in time, and it takes longer for the rod to
reach the steady-state configuration (see Figure 7.2). These results support the usual
assumption (see Boley and Weiner [3]) that, for small a, the temperature does not
depend on the displacement. (Usually the term auxt is then dropped from (1.1).)
Note that the final states shown are in agreement with the steady-state solutions as
described by Copetti [5].

To examine the error estimates numerically, we performed two experiments with
a known solution

θ(x, t) = exp(t) cos

(
3πx

4
+

π

2

)
,

u(x, t) =

{
g sin x exp(t)

sin 1 exp(
√

2)
, 0 < t ≤ √2,

g sin x
sin 1 ,

√
2 < t ≤ 2,

σ(x, t) =

{
0, 0 < t ≤ √2,
−t, √2 < t ≤ 2,
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Fig. 7.2. The evolution in time of the displacement for (a) ζ = 0.1, (b) ζ = 0.2, (c) ζ = 1, (d)
ζ = 10.

satisfying

θt − θxx = −auxt + f(x, t),

σx = 0,

where σ = ux+ζuxt−aθ+g(x, t) and θ0, u0, f, g, and k are calculated from the exact
solution. We let θA = 0, ζ = 1, a = 0.017, and g = 0.1, and Θ0 was the interpolant
of θ0. In Table 7.1, we report the results of several runs with different values of h,
ε ≈ h4/5, and ∆t ≈ h6/5. The computed errors when ε ≈ h8/5 and ∆t ≈ h12/5

are shown in Table 7.2. In both experiments, we observed convergence rates larger
than those given by Theorem 6.1 and Corollary 6.2. This is not surprising since we
have introduced the penalized problem, and, therefore, our a priori error analysis is
probably pessimistic. Moreover, reviewing the proof of Theorem 6.1, we see that the
factors h2/∆t and h4/∆t come from the coupling of the equations. If we assume,
as suggested in the physical literature, that the temperature does not depend on the
displacement, these factors disappear. In addition, for this particular example, the
term ‖Θ0−θ0‖2 converges at the rate h4. A better-than-predicted rate of convergence



THERMOVISCOELASTIC CONTACT PROBLEM 1503

Table 7.1
ε ≈ h4/5 and ∆t ≈ h6/5.

h

∥∥∥∫ 2

0
θxdt− ∆t

∑N

i=1
Θix

∥∥∥2 Rate maxi ‖u(·, ti) − U i‖2 Rate

1/10 9.45 × 10−1 2.16 × 10−2

1/20 1.76 × 10−1 2.43 8.31 × 10−3 1.38
1/40 5.21 × 10−2 1.76 2.89 × 10−3 1.52
1/80 1.07 × 10−2 2.29 1.10 × 10−3 1.39
1/160 3.05 × 10−3 1.81 3.67 × 10−4 1.58
1/320 6.53 × 10−4 2.22 1.29 × 10−4 1.51

Table 7.2
ε ≈ h8/5 and ∆t ≈ h12/5.

h

∥∥∥∫ 2

0
θxdt− ∆t

∑N

i=1
Θix

∥∥∥2 Rate maxi ‖u(·, ti) − U i‖2 Rate

1/10 6.38 × 10−1 7.70 × 10−4

1/20 1.59 × 10−1 2 8.93 × 10−5 3.11
1/40 3.97 × 10−2 2 9.62 × 10−6 3.21
1/80 9.93 × 10−3 2 1.08 × 10−6 3.16
1/160 2.48 × 10−3 2 1.20 × 10−7 3.17
1/320 6.22 × 10−4 2 1.33 × 10−8 3.17

was also seen in the simulations run by Copetti and Elliott [6]. Note that, in the
last experiment, a small time step was used, and for that situation an explicit-in-time
scheme might be competitive. We performed the experiment again using the forward
Euler approximation, and we obtained virtually the same results as in Table 7.2.

In our computations, the trapezoidal rule was used to evaluate spatial integrals,
and the iterative process (5.3)–(5.4) was stopped when ‖cn,l − cn,l−1‖∞ ≤ 1 × 10−7

and ‖dn,l − dn,l−1‖∞ ≤ 1× 10−7.
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Abstract. In this paper, we focus on the representation of a divergence-free vector field, defined,
on a connected nonsimply connected domain Ω ⊂ R

3 with a connected boundary Γ, by its curl and
its normal component on the boundary. The considered problem is discretized with H(curl)- and
H(div)-conforming finite elements. In order to ensure the uniqueness of the vector potential, we
propose a spanning tree methodology to identify the independent edges. The topological features
of the domain under consideration are analyzed here by means of the homology groups of first and
second order.

Key words. divergence-free vector fields, nonsimply connected domains, edge elements, discrete
gauge condition, homology groups
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1. Introduction. In numerical magnetostatics, an important task is the dis-
cretization of the magnetic induction field u, verifying the following equations:

curl u = ω in Ω,(1)

divu = 0 in Ω,(2)

u · nΓ = g on Γ,(3)

where Ω is an open subset of R
3, Γ is its boundary, nΓ is the outward going normal to

Γ, ω is a given current density, and g is a scalar function defined on Γ. A conforming
or nonconforming discretization that respects (2) is difficult to obtain with the finite
element method [19]. On the other hand, a way to exactly satisfy (2) is to represent
u in terms of a vector potential, i.e., a field p such that

u = curl p.(4)

The vector p is not unique but defined up to the gradient of a scalar function. A
classical way to ensure the uniqueness of p is to prescribe a gauge condition such as
the Coulomb gauge

divp = 0(5)

and suitable boundary conditions. Moreover, different choices of boundary conditions
for the vector field p are possible, and we refer to [3, 4] for existence and uniqueness
results. The vector potential is just a tool for representing the field u and must be
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easily computable under some constraints on u. In this paper, we choose to fix the
current density ω and the magnetic induction flux g across the entire boundary. We
remark that, if (2) and (3) are satisfied, then the mean value of the function g across
the boundary of Ω is necessarily equal to zero; i.e.,

∫
Γ

g dΓ = 0. The chosen problem
can be also read in the framework of fluid dynamics: for a given vorticity ω in Ω and
mass inflow g across the boundary Γ of Ω, we look for a velocity field u that satisfies
(1) and (3) in the incompressible case, i.e., under the constraint (2).

We restrict ourselves to the previous problem in a nonsimply connected three-
dimensional domain with a connected boundary. For the analysis of the mixed for-
mulation of a similar problem in simply connected domains with a nonconnected
boundary, see [10].

Concerning the outline of the paper, in section 2, after recalling classical results
on vector fields, we split the linear problem in Ω into a homogeneous problem in Ω
(i.e., g = 0) and a problem on the boundary of Ω (i.e., g �= 0). Then a concrete
construction method of a vector potential p from only the data ω and g is presented.
In the discretized problem, the compatibility between these two subproblems requires
that the discrete field pm associated with a meshm in Ω has a tangential component on
each point of the boundary. The major difficulty is the definition of a “good” discrete
space which guarantees the existence of the discrete potential. We start with a short
introduction on the homology groups in sections 3 and 4. Then in sections 5 and 6,
we adapt the discrete gauge initially proposed by a team of the École Polytechnique
[10, 28] to the case of simply connected domains Ω ⊂ R

3. Developing the problem
presented in [11] in more detail, we generalize in section 7 to the case of proposed
nonsimply connected domains. We finally end in section 8 by a short overview on the
adopted algorithms and their application in the case where Ω is a torus.

Let us introduce some notation. We consider Ω as a connected bounded domain
of R

3, with a connected regular boundary Γ. The scalar product between two vectors
a, b defined in Ω is denoted by a ·b, whereas their vector product is denoted by a×b.
The tangential component of a vector v on Γ is πu = (nΓ × u)× nΓ, and we have a
Green formula for regular vector fields u and v that reads∫

Ω

v · curl u =

∫
Ω

curl v · u +

∫
Γ

(nΓ × v) · u.(6)

The following operators are defined on Γ as in [9] as follows:
• the surface gradient, gradΓu, and surface curl, curlΓu, of a scalar function

u defined on Γ: curlΓu = gradΓu× nΓ;
• the surface curl, curlΓv, and surface divergence, divΓv, of a tangential vector
function v defined on Γ: divΓv = curlΓ(nΓ × v).

By duality, these operators are also defined for a scalar t or vector w distributions on
Γ as follows:

〈gradΓt,v〉Γ = −〈t,divΓv〉Γ ∀v,
〈curlΓt,v〉Γ = 〈t, curlΓv〉Γ ∀v,
〈curlΓw, u〉Γ = 〈w, curlΓu〉Γ ∀u,
〈divΓw, u〉Γ = 〈w, gradΓu〉Γ ∀u.

Here, the duality product 〈·, ·〉Γ of two vectors is the scalar product on Γ [9]:

〈w,v〉Γ =

∫
Γ

w · v.
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The Sobolev spaces L2(Ω), H1(Ω) are Hilbert spaces with their natural norms
||.||0,Ω and ||.||1,Ω, respectively [1]. Following [15], we define

H(div,Ω) = {u ∈ L2(Ω)3 |divu ∈ L2(Ω)},
H(curl,Ω) = {u ∈ L2(Ω)3 | curl u ∈ L2(Ω)3},

and associated norms ||.||div,Ω and ||.||curl,Ω. We also need to introduce

H(div0,Ω) = {u ∈ H(div,Ω) |divu = 0},
H0(div,Ω) = {u ∈ H(div,Ω) |u · nΓ = 0},
H0(curl,Ω) = {u ∈ H(curl,Ω) |u× nΓ = 0},
L2

0(Ω) = {u ∈ L2(Ω) | ∫
Ω

u = 0},
C1,1(Ω) = {u ∈ C1(Ω) |gradu is a vector of Lipschitz functions}.

In a few words, a domain Ω is of class C1,1 if it admits a representation through a
C1,1(Ω) map [15]. Note that the boundary of such a domain has a normal vector
almost everywhere. In the following, given a space S, the notation dim [S] denotes
the dimension of S. If S is a set, its cardinality, i.e., the number of its elements, is
denoted by #S.

2. The continuous problem. We are interested in the following problem: given
g ∈ L2

0(Γ) and ω ∈ H(div0,Ω), find u ∈ H1(Ω)3 satisfying

curl u = ω in Ω,
divu = 0 in Ω,
u · nΓ = g on Γ.

(7)

If Γ is smooth, the continuous problem can be easily analyzed, but the finite
elements to discretize it are quite complicated [19, 10]. If Γ is polyhedric, then there
are specific difficulties in studying the continuous problem [2, 7], but the finite elements
are classical. We recall the main results of regularity for the solution of (7); these
results depend on the regularity of the domain Ω. The first result is proven in [2, 15].

Proposition 2.1. Assume that the bounded domain Ω is of class C1,1 or a convex
polyhedron. Then we have the following continuous embedding:

{v ∈ L2(Ω)3 | curl v ∈ L2(Ω)3, divv ∈ L2(Ω), v · nΓ ∈ H1/2(Γ) } ↪→ H1(Ω)3;

as a consequence, problem (7) has a unique solution, in the sense of distributions, that
belongs to H1(Ω)3.

The solution u of problem (7) is computed as a sum of two functions that are
solutions of two simpler problems, i.e., u = u0+ û, where û is a divergence-free lifting
in Ω of a function ûΓ defined on Γ such that

ûΓ · nΓ = g, divΓûΓ = 0,(8)

and u0 satisfies

curl u0 = ω − curl û in Ω,
divu0 = 0 in Ω,
u0 · nΓ = 0 on Γ .

(9)
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Note that, thanks to the introduction of a vector potential, (2) is exactly verified,
whereas (1) is satisfied in the sense of distributions. Thanks to a trace result proved in
[5], problem (7) is well-posed even in nonconvex polyhedra of R

3 (such as a discretized
torus).

Proposition 2.2. Let Γi, i = 1, . . . , L, be the faces of the boundary Γ of a
bounded polyhedron Ω. There exists a real number s > 1/2 such that for any function
g ∈ H1/2(∂Γi), i = 1, . . . , L, problem (8) has a unique solution û ∈ Hs(Ω)3. In
addition, for any ω ∈ H(div0,Ω), problem (9) has a unique solution u0 ∈ Hs(Ω)3.

We end this section by recalling and applying general results on vector fields
defined on a regular bounded domain Ω of R

3. We refer to [2, 3] and to their included
references for the results. Let us introduce the following spaces:

XT (Ω) = {v ∈ L2(Ω)3 |divv ∈ L2(Ω), curl v ∈ L2(Ω)3, v · nΓ ∈ H1/2(Γ)},
XN (Ω) = {v ∈ L2(Ω)3 |divv ∈ L2(Ω), curl v ∈ L2(Ω)3, v × nΓ ∈ H1/2(Γ)3},
HT (Ω) = {v ∈ L2(Ω)3 |divv = 0, curl v = 0, v · nΓ = 0 on Γ},
HN (Ω) = {v ∈ L2(Ω)3 |divv = 0, curl v = 0, v × nΓ = 0 on Γ},
PT : XT (Ω)→ HT (Ω) orthogonal projection operator,

PN : XN (Ω)→ HN (Ω) orthogonal projection operator,

W 1(Ω) = {w ∈ H1(Ω)3 |divw = 0, w × nΓ = 0,
∫
Γ
w · nΓ dΓ = 0}.

Theorem 2.3 (Hodge decomposition). For a given u ∈ L2(Ω)3, we have two
possible decompositions:

(i) u = gradφ+ curlw + θ

with θ ∈ HT (Ω) and a unique (φ, w) verifying φ ∈ H1(Ω) ∩ L2
0(Ω), w ∈W 1(Ω);

(ii) u = gradψ + curl p+ η

with η ∈ HN (Ω) and a unique (ψ, p) verifying ψ ∈ H1
0 (Ω) and

p ∈ H1(Ω)3, divp = 0, p · nΓ = 0, PTp = 0.

The decomposition (i) (resp., (ii)) of a field u is into three orthogonal components
of the type gradφ (resp., gradψ) plus curlw (resp., curl p) plus a vector lying in
HT (Ω) (resp., HN (Ω)).

Theorem 2.4 (Foias, Temam [12]). Let u ∈ L2(Ω)3 and p ∈ H(curl,Ω) such
that u = curl p; then PNu = 0.

If a vector u admits a representation in terms of a vector potential p, i.e., u =
curl p, it clearly satisfies the condition divu = 0. Moreover, for any vector u of the
form (ii), Theorem 2.4 yields PNu = 0, a condition which precludes flow problems
with sources and sinks, as remarked in [10]. Finally, since the scalar ψ ∈ H1

0 (Ω), we
have ψ = 0. The vector potential p is then the right tool to represent the field u
solution of the considered problem.

In the next section, we recall the main properties of the finite elements we are
going to use to discretize p. These finite elements are H(curl,Ω)-conforming, and by
consequence, the field u will be approximated byH(div,Ω)-conforming finite elements.
Throughout the paper, we treat the three-dimensional case.
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Fig. 1. Example of oriented p-simplex, p = 0, . . . , 3.

3. Meshing the domain with cellular complexes. Given a domain Ω ⊂ R
3

with boundary Γ, a simplicial mesh m in Ω is a tessellation of Ω by tetrahedra, under
the condition that any two of them may intersect along a common face, edge, or node
but in no other way. We denote by Nm, Em, Fm, and Tm (nodes, edges, faces, and
tetrahedra, respectively) the sets of simplices of dimension 0 to 3 thus obtained, and
by Nm, Em, Fm, and Tm their cardinalities. The importance of simplicial meshes
lies in the fact that any triangulated domain is homeomorphic to one in which the
triangles are flat and the edges straight. Properties on the mesh will hold for the
domain, as we are going to present in the following.

First we need to underline some combinatorial properties of the simplicial mesh.
Let M(r, s) denote the set of matrices A whose elements are A(i, j) with 1 ≤ i ≤ r
and 1 ≤ j ≤ s. In addition to the list of nodes and their positions, the mesh data
structure also contains incidence matrices, saying which node belongs to which edge,
which edge bounds which face, etc. [6, 14]. There is a notion of orientation for
the simplex as in Figure 1 that has to be taken into account to define the incidence
matrices. In short, an edge is not only a two-node subset of Nm but an ordered
such set, where the order implies an orientation. Let e = {", n} be an edge of the
mesh oriented from the node " to n. We can define the incidence numbers Ge,n = 1,
Ge,
 = −1, and Ge,k = 0 for all nodes k other than " and n. These numbers form a
rectangular matrix G ∈M(Em, Nm), which describes how edges connect to nodes. A
face f = {", n, k} has three vertices which are the nodes ", n, k. Note that {n, k, l}
and {k, l, n} denote the same face f , whereas {n, l, k} denotes an oppositely oriented
face, which is not supposed to belong to Fm if f does. An orientation of f induces an
orientation of its boundary. So, with respect to the orientation of the face f , the one
of the edge {l, n} is positive, and the one of {k, n} is negative. Then we can define
the incidence number Rf,e = 1 (resp., −1) if the orientation of e matches (resp., does
not match) the one on the boundary of f , and Rf,e = 0 if e is not an edge of f . These
numbers form a matrix R ∈ M(Fm, Em). Finally, let us consider the tetrahedron
t = {k, l,m, n} positively oriented if the three vectors {k, l}, {k,m}, and {k, n} define
a positive frame. (t′ = {l,m, n, k} has a negative orientation and does not belong to
Tm if t does.) A third matrix D ∈M(Tm, Fm) can be defined by setting Dt,f = ±1 if
face f bounds the tetrahedron t, with the sign depending on whether the orientation
of f and of the boundary of t match or not, and Dt,f = 0 in case f does not bound
t. For consistency, we attribute an orientation to nodes as well. Implicitly, we have
been orienting all nodes the same way (+1) up to now. Note that a sign (−1) to node
n changes the sign of all entries of column n in the above G. It can be easily proven
that RG = 0 and DR = 0 [6].

We now define the mixed finite elements we use [6, 23, 24, 26]: they are scalar
functions or vector fields associated to all the simplices of the mesh m. We start by
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denoting ϕn the only continuous, piecewise affine function, which is equal to 1 at n
and to 0 at other nodes. We set W 0

m = span {ϕn |n ∈ Nm}. The degree (zero in
this case) of the elements of W 0

m refers to the dimension of the simplices they are
associated with (i.e., nodes) and not to the degree of ϕn as a polynomial. To the edge
e, let us associate the vector field we of the form a×x+b in each tetrahedron t ∈ Tm;
the two vectors a and b are determined by imposing that the circulation of we along
e ∈ t is 1 and 0 along the other edges of t. We denote W 1

m = span {we | e ∈ Em}.
Similarly, W 2

m = span {vf | f ∈ Fm} with vf the vector of the form ax + b in each
tetrahedron t ∈ Tm; the scalar a and the vector b are determined by imposing that
the flux of vf across the face f ∈ t is 1 and 0 across the other faces of t. Finally, we
introduce W 3

m = span {µt | t ∈ Tm}, where µt is the only scalar whose integral over t
is 1 and 0 over the other tetrahedra.1

Note that, given two adjacent tetrahedra t and t′ sharing a face f , the function ϕn
and both the tangential component of we and the normal component of vf are contin-
uous across f , whereas the function µt is not. Thanks to these continuity properties,
W 0
m ⊂ H1(Ω), W 1

m ⊂ H(curl,Ω), W 2
m ⊂ H(div,Ω), and W 3

m ⊂ L2(Ω). The spaces
W p
m, p = 0, 1, 2, 3, have finite dimension given by Nm, Em, Fm, Tm, respectively, and

they play the role of Galerkin approximation spaces for the latter functional spaces.
The properties introduced so far concern the spaces W p

m taken one by one. There
are properties of the structure made of the spaces W p

m when taken together. We know
that the following inclusions hold:

gradW 0
m ⊂W 1

m, curlW 1
m ⊂W 2

m, divW 2
m ⊂W 3

m.

It is natural to ask when the sequence

{0} −→W 0
m

grad−→ W 1
m

curl−→W 2
m

div−→W 3
m −→ {0}

is exact at levels 1 and 2, i.e., when it happens that

ker(curl;W 1
m) = gradW 0

m, ker(div;W 2
m) = curlW 1

m,

where

ker(curl;W 1
m) := W 1

m ∩ ker(curl), ker(div;W 2
m) := W 2

m ∩ ker(div).

At levels 0 and 3, we lose the property of exactitude for the previous sequence be-
cause, at level 0, the gradient operator is not injective, and, at level 3, the divergence
operator is not surjective. The Poincaré lemma states that, when the domain Ω is
contractible [14], the image fills the kernel in both cases. This is not the case with Ω
nonsimply connected; for example, we have in fact that grad (W 0

m) is a proper sub-
set of ker(curl;W 1

m). This tells us something about the topology of Ω; namely, the

1Given the nodes n, l,m, k, the edge e = {l,m}, the face f = {l,m, k}, and the tetrahedron
t = {i, j, k, l}, the generators of the spaces W p

m, p = 0, 1, 2, 3, respectively, can also be defined as
follows (λn is the barycentric coordinate associated to n):

ϕn = λn, we = λl gradλm − λmgradλl,

vf = 2 (λl gradλm × gradλk + λm gradλk × gradλl + λk gradλl × gradλm),

µt = 6 (λi gradλj × gradλk · gradλl + λj gradλk × gradλl · gradλi

+λk gradλl × gradλi · gradλj + λl gradλi × gradλj · gradλk) = [vol(t)]−1.
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presence of b1 “loops,” where b1 = dim [ker(curl;W 1
m)/grad (W 0

m)] is the Betti num-
ber of dimension 1 of the domain. Solenoidal fields which are not curls indicate the
presence of b2 “holes,” where b2 = dim [ker(div;W 2

m)/curl (W 1
m)] is the Betti number

of dimension 2 of the domain. These are global topological properties of the meshed
domain; they do not depend on the mesh that is used to compute them, but they are
intrinsic to the considered domain Ω. The sequences are thus an algebraic tool by
which the topology of Ω can be explored (and this was Whitney’s concern [31]).

The connection between the vector field picture and the cohomological picture in
the electromagnetic context has also been considered more recently in [22, 30].

4. Chains, boundary homomorphism, and homology groups. Let m be
the simplicial mesh on Ω ⊂ R

3. A p-chain c is an assignement to each simplex of
dimension p in m of a number α, and we denote by Cp(m) the set of all p-chains.
The set Cp(m) has a structure of an abelian group with respect to the addition of
p-chains; two p-chains are added by adding the corresponding coefficients.

To give an example, let us consider a path of edges of the mesh m to go from a
point n1 to a point n2; it is an oriented line. Assigning an integer αe equal to +1
or −1 when the edge e belongs to the path and its orientation is in agreement or in
disagreement with that of the path and 0 for all edges e that do not belong to the
path, we define a 1-chain. A circuit is a line plus a way to run along it; so, when
the line is made of oriented edges, we need to tell the positive direction along each
edge, which is precisely what the chain coefficient αe does. We remark that “chain”
is a more general concept than “path,” “circuit,” etc. In our case, we assume that all
coefficients αi are relative integers.

The next concept is the boundary operator ∂p : Cp(m) → Cp−1(m), p > 0. By
definition, we have

∂1(e) =
∑
n∈Nm

Ge,n n, ∂2(f) =
∑
e∈Em

Rf,e e, ∂3(t) =
∑
f∈Fm

Dt,f f.

Note that ∂p is represented by a matrix that is Gt, Rt, or Dt depending on the
dimension p > 0. We remark, in particular, that ∂p+1 ◦ ∂p = 0, i.e. the boundary of
a boundary is the zero chain.

We will say that a p-chain c is closed if ∂pc = 0. Nontrivial closed p-chains are
called p-cycles and constitute the subspace Zp(m) = ker(∂p;Cp(m)). A p-chain c is
a boundary if there is a (p + 1)-chain γ such that c = ∂p+1 γ. The p-boundaries
constitute the subspace Bp(m) = ∂p+1 Cp+1(m). Both Zp(m) and Bp(m) are abelian
groups with respect to the addition of p-chains. Boundaries are cycles, but not all
cycles are boundaries; we have in fact that Bp(m) ⊂ Zp(m).

The quotient space Hp(m) = [Zp(m)/Bp(m)] is the homology group of order p
of the mesh m, and the Betti number bp is equal to dim [Hp(m)]. In particular, we
have that b0 = dim [ker(grad;W 0

m)] is the number of connected components of Ω, and
b3 = dim [div(W 3

m)] is the number of connected components of Γ minus one.
Our concern is to determine the cycles that are not boundaries for p = 1 and 2, i.e.,

to computate the generators of H1(m) and H2(m). Triangulating a domain reduces
the calculation of Hp(m) to a finite procedure (in section 8, we present an algebraic
algorithm to define a basis of Hp(m), p = 1 and 2); the remarkable thing is that
homology groups, in spite of being defined via triangulation, do measure something
intrinsic and geometrical (they are topological invariants; i.e., they depend on the
domain up to a homeomorphism) that does not depend on the mesh. The homology
groups of a surface have a direct link with the possibility of representing curl-free
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(resp., divergence-free) vectors as gradients (resp., curls). This link is a determinant
in the construction of numerical algorithms for solving given problems in terms of
scalar or vector potentials, as we are going to see. A key tool in this construction is
the Euler–Poincaré characteristic of Ω and its boundary Γ [14].

Remark 4.1. Given a connected domain Ω, the Euler–Poincaré characteristic of
Ω is the integer

χ(Ω) = Nm − Em + Fm − Tm,(10)

where Nm, Em, Fm, and Tm denote, respectively, the number of nodes, edges, faces,
and tetrahedra of the mesh m discretizing Ω.

Remark 4.2. Given a connected orientable surface Γ, the Euler–Poincaré charac-
teristic of Γ is the integer

χ(Γ) = NΓ
m − EΓ

m + FΓ
m,(11)

where NΓ
m, EΓ

m, and FΓ
m denote, respectively, the number of nodes, edges, and triangles

of the mesh mΓ discretizing Γ.
The Euler–Poincaré characteristic is linked to the homology groups’ dimension as

follows:

χ(Γ) = bΓ0 − bΓ1 + bΓ2 , χ(Ω) = b0 − b1 + b2 − b3,

where bΓi , i = 0, 1, 2 (resp., bi, i = 0, 1, 2, 3), are the Betti numbers of Γ (resp.,
Ω). The major point is that these numbers, and consequently the Euler–Poincaré
characteristic, are topological invariants. For more details on the subject, see [29].

5. Some discrete spaces and tools. Let us consider a triangulation m of Ω,
its restriction mΓ to the boundary Γ of Ω. Let us define the following two functional
spaces on Ω and their analogues on the boundary Γ:

W 2
m,0 = {v ∈W 2

m |v · nΓ = 0 on Γ }, W 2
mΓ = {πv |v ∈W 2

m},
W 1
m,0 = {v ∈W 1

m |v × nΓ = 0 on Γ }, W 1
mΓ = {πv |v ∈W 1

m}.

Note that W 1
mΓ is the restriction to Γ of the space W 1

m in the sense that its vectors are
associated to the mesh edges belonging to mΓ. Similarly, the space W 2

mΓ , also known
as the Raviart–Thomas element space, is the restriction to Γ of W 2

m. Its vectors ve
are tangential to Γ and, in each triangle f ∈ mΓ, are determined by imposing that
the flux of ve across the edge e ∈ f is 1 and 0 across the other edges of f . Vectors of
the space W 2

mΓ are adapted to represent flux densities that are tangential to Γ.
We look for a discrete approximation um of u on the mesh m of the form

um = curl pm(12)

with um (resp., pm) lying in W 2
m (resp., W 1

m). The uniqueness of the potential pm is
automatically satisfied if we choose pm ∈ W 1

m and we add a gauge condition. In the
following, a linear space for the discrete potential pm is proposed; we treat the gauge
condition in an entirely algebraic way and obtain the so-called axial gauge [16].

To define the discrete space of the vector potential, we need some details on the
graph defined in the set of vertices of m by the mesh edges. For a general reference
on graph theory, we suggest [14].
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β
γ

e

Fig. 2. In the given mesh m, the thick dark edges compose the spanning tree T , and the dashed
ones compose the corresponding cotree Em \ T . The coedge e closes a circuit together with the tree
edges β and γ.

A set T of edges of the mesh m such that C1(T ) does not contain any cycle is
called a tree. A tree is a spanning tree if there is no strictly larger tree containing
it. The set of all left-over edges, i.e., Em \ T , is called the associated cotree, and its
elements are the coedges with respect to T . Coedges thus furnish a basis for 1-cycles
in the sense that, given a coedge e, there is a unique way to assign an integer αε to
each edge ε of the tree in order to get a closed 1-chain: ∂(e +

∑
ε∈T αε ε) = 0. In

short, one says that each coedge e ∈ Em \ T “closes a circuit” Ce in conjunction with
edges of the tree. (An example is given in Figure 2, where Ce = {e} ∪ {β} ∪ {γ}.)

Remark 5.1. For a given mesh m of the domain Ω, the number of edges contained
in a spanning tree T can be expressed in terms of the Betti numbers of the domain
by means of the following formula (with easy recursive proof):

#T = b1 + (Nm − b0).(13)

For contractible domains, we have #T = Nm − 1. For noncontractible ones, the
spanning tree is enriched with additional edges to take into account that there are
1-cycles that do not bound a surface (b1 �= 0). (The enriched spanning tree has been
called a “belted spanning tree” in [6].)

Now, we explain how to use trees and cotrees to define the proper approximation
space to solve the considered problem. In the following sections, T (resp., T Γ) always
represents a spanning tree on Ω (resp., Γ).

6. Approximation of the problem in the simply connected case. We are
interested here in solving problem (7); the domain Ω and its boundary Γ are assumed
to be connected and simply connected. We thus assume that Ω is a sphere (up to a
homeomorphism). The nonsimply connected case is addressed in the next section.

6.1. Lifting the boundary condition for a sphere. As in [10], given T Γ and
g ∈ L2

0(Γ), we construct a vector ûΓ
m in W 2

mΓ such that divΓ û
Γ
m = 0, ûΓ

m ·nΓ = g face
by face on Γ, we show that ûΓ

m is unique, and we define û ∈W 2
m as the divergence-free

lifting of ûΓ
m in Ω. Problem (8) is thus well-posed.

Proposition 6.1. Let us consider a triangulation m of Ω, its restriction mΓ to
the boundary Γ of Ω, and a spanning tree T Γ in mΓ. Let Γ be a sphere and g ∈ L2

0(Γ).
There is a unique divergence-free vector ûΓ

m ∈W 2
mΓ of the form

ûΓ
m =

∑
e∈EΓm\T Γ

ûe curlwe, we ∈W 1
mΓ ,(14)
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τ

nΓ

Σ

νC

C

C

Fig. 3. Due to the simple connectedness of Γ, any circuit C in mΓ bounds a surface Σ ⊂ Γ.

that satisfies ∫
f

ûΓ
m · nΓ =

∫
f

g ∀ f ∈ FΓ
m.(15)

Proof. Let us introduce the two spaces ker(divΓ;W
2
mΓ) and

V(T Γ) = span {we |we ∈W 1
mΓ , e ∈ EΓ

m \ T Γ}.
The curl operator is well defined as V(T Γ)→ ker(divΓ;W

2
mΓ).

The curl mapping V(T Γ) → ker(divΓ;W
2
mΓ) is injective. Let us consider the

vector p̂Γ
m ∈ V(T Γ) of the form

p̂Γ
m =

∑
e∈EΓm\T Γ

ûewe.

Let α ∈ EΓ
m \T Γ be a given coedge, and let C ⊂ {α}∪T Γ be the associated cycle;

then we have ∫
C

p̂Γ
m · τC = ûα

∫
α

wα · τC = ûα,

where τC is the tangential vector to C.
On the other hand, since Γ is simply connected, C is the boundary of a surface

Σ contained in Γ. On Γ, the normal νC and tangential τC vectors to C are linked to
nΓ through the relation νC × τC = nΓ (see Figure 3). By definition, we have that

(curl p̂Γ
m) · nΓ = curlΓ(πp̂

Γ
m) = divΓ(p̂

Γ
m × nΓ).

The Stokes theorem and the previous tools yield

ûα =

∫
C

p̂Γ
m · τC =

∫
C

(p̂Γ
m × nΓ) · νC =

∫
Σ

divΓ(p̂
Γ
m × nΓ) =

∫
Σ

(curl p̂Γ
m) · nΓ.

If curl p̂Γ
m = 0, then ûα = 0 for all α ∈ EΓ

m \ T Γ, yielding p̂Γ
m = 0.

Let W be the space composed of vectors in ker(divΓ;W
2
mΓ) verifying (15) with

g ∈ L2
0(Γ). The linear spaces V(T Γ) and W have the same dimension. On one hand,

we have dim [V(T Γ)] = EΓ
m − (NΓ

m − 1) thanks to Remark 5.1, and on the other
hand, dim [W ] = FΓ

m − 1. Due to the fact that the Euler–Poincaré characteristic for
a spherical surface is 2, Remark 4.2 yields

EΓ
m −NΓ

m + 1 = FΓ
m − 1.

Given a spanning tree T Γ and a scalar function g ∈ L2
0(Γ), there is a unique

divergence-free vector of the form (14) and verifying (15).
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Fig. 4. In this two-dimensional example, the thick dark edges constitute the set EΓm, the dashed
edges define E�m, and the light ones compose E intm . Note that here EBm is empty but it is not always
the case with more general three-dimensional meshes m.

6.2. Interior problem for a sphere. At this point we can write

um = ûm +
∑
e∈?

uecurlwe,

where ûm is the solution of problem (8) in the sense given in Proposition 6.1 and the
symbol “?” in the previous sum is there on purpose to indicate that we do not know
yet to which set of internal coedges we have to extend the sum. We remark that

Em = EΓ
m ∪ E int

m ∪ E
m ∪ EBm,

where E
m is the set of mesh edges having only one extremity on Γ, E int
m is the set of

mesh edges having both extremities in Ω, and EBm is the set of mesh edges interior to
Ω but with both extremities on Γ (see the example in Figure 4).

We denote T int a spanning tree contained in E int
m and T 
 a subset of E
m composed

of one edge since Γ is connected, linking T int to T Γ and

U0
m = (E int

m ∪ E
m ∪ EBm) \ (T int ∪ T 
).
In the next proposition, we prove that problem (9) is well-posed at the discrete
level. In particular, given T int ∪ T 
 and a function ω ∈ ker(div;W 2

m), we construct a
divergence-free vector u0

m ∈W 2
m such that curl u0

m = ω−curl ûm in Ω and u0
m·nΓ = 0

face by face on Γ, and we show that u0
m is unique.

Proposition 6.2. Let us consider a triangulation m of Ω and a spanning tree
T int ∪ T 
 in m \mΓ. Let us suppose that Ω is a sphere and ω ∈ ker(div;W 2

m). There
exists a unique divergence-free vector u0

m ∈W 2
m,0 of the form

u0
m =

∑
e∈U0

m

u0
e curlwe, we ∈W 1

m,(16)

that satisfies

curl u0
m = ω − curl ûm in Ω,(17)

where ûm is the divergence-free lifting in Ω of ûΓ
m defined in Proposition 6.1.

Proof. Let us introduce the two spaces ker(div;W 2
m,0) and

V(T int, T 
) = span {we |we ∈W 1
m , e ∈ U0

m}.
The curl operator is well defined as V(T int, T 
)→ ker(div;W 2

m,0).
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The curl mapping V(T int, T 
)→ ker(div;W 2
m,0) is injective. The proof given for

Proposition 6.1 is the same with p0
m ∈ V(T int, T 
) of the form

p0
m =

∑
e∈U0

m

ûewe.

The linear spaces V(T int, T 
) and ker(div;W 2
m,0) have the same dimension. Be-

cause #T int = (Nm −NΓ
m − 1), #T 
 = 1, on one hand we have

dim [V(T int , T 
)] = Em − EΓ
m − (Nm −NΓ

m − 1 + 1).

On the other hand, because dim [W 2
m] = Fm and dim [W 2

m,0] = Fm − FΓ
m, we get

dim [ker(div;W 2
m,0)] = Fm − FΓ

m − (Tm − 1).

Note that we have Tm − 1 independent relations since divv = 0 and Ω is simply
connected, as it is proved in Lemma 4.2 of [10]. By using the Euler–Poincaré charac-
teristics and Remarks 4.1 and 4.2, we get

Em − EΓ
m − (Nm −NΓ

m)− (Fm − FΓ
m − (Tm − 1))

= −(Nm − Em + Fm − Tm) + (NΓ
m − EΓ

m + FΓ
m)− 1

= −1 + 2− 1 = 0.

The present proof can also be carried out at an algebraic level. Proposition 6.2
states that, given T int∪T 
, ω ∈ ker(div;W 2

m), and ûm the divergence-free lifting in Ω
of ûΓ

m defined in Proposition 6.1, there is a unique divergence-free vector u0
m ∈W 2

m,0

of the form (16). Moreover, its coefficients u0
e, e ∈ U0

m, on the chosen basis, are the
components of the solution of the linear system∑

e∈U0
m

u0
e

∫
Ω

curlwe · curlwγ =

∫
Ω

ω ·wγ −
∫

Ω

ûm ·wγ ∀ γ ∈ U0
m.(18)

The matrix

A =

(∫
Ω

curlwe · curlwγ

)
e,γ∈U0

m

has full rank; it is in fact the mass matrix for the chosen basis {curlwe | e ∈ U0
m}

(defined on the coedges) of the space ker(div;W 2
m,0). Note that A is a symmetric and

positive definite sparse matrix so that the linear system (18) can be solved iteratively
by using a conjugate gradient method, as first done by Roux [28].

Remark 6.3. Note that E int
m and E
m can be empty. In this case, there is no interior

spanning tree (T int ∪ T 
) and U0
m = EBm. As Nm = NΓ

m, Remarks 4.1 and 4.2 yield
again

(#U0
m =) Em − EΓ

m = Fm − Fm
m − (Tm − 1) (= dim [ker(div;W 2

m,0)]).

A similar remark can be done in the nonsimply connected case.
The function

um = ûm +
∑
e∈U0

m

u0
e curlwe(19)

is then the approximated solution of problem (7). It is natural to ask whether the
computed solution depends on the chosen spanning tree. The answer is no, as we
state in the next subsection.
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6.3. Independence on the spanning tree. We remark that the solution does
not depend on the adopted spanning tree if ω ∈ ker(div;W 2

m). Let us consider two
boundary and interior spanning trees as well as two sets of mesh edges:

T Γ
1 , T1 = T int

1 ∪ T 
1 , U0
m,1 = (E int

m ∪ E
m ∪ EBm) \ T1,
T Γ

2 , T2 = T int
2 ∪ T 
2 , U0

m,2 = (E int
m ∪ E
m ∪ EBm) \ T2.

Let uim be the solution associated with EΓ
m \ T Γ

i on the boundary and with U0
m,i at

the interior (i = 1, 2). Let us denote vm = u1
m − u2

m. We will prove that vm = 0.
On the boundary we consider vm =

∑
e∈EΓm va curlwe; since u

1
m·nΓ = u2

m·nΓ = g
on Γ, we have ∫

f

vm · nΓ = 0 ∀ f ∈ FΓ
m.

Thus vm · nΓ = 0 on Γ, since the family {curlwe |we ∈ W 1
m, e ∈ EΓ

m \ T Γ
i }, i = 1 or

2, is a basis for the space span {curlwe |we ∈W 1
m, e ∈ EΓ

m}.
In the interior, because ω ∈ ker(div;W 2

m), we can write that

ω =
∑
e∈Em

ωe curlwe, we ∈W 1
m.

We have that, for all wγ ∈W 1
m with γ ∈ U0

m,1 or γ ∈ U0
m,2,∫

Ω

ω ·wγ =
∑
e∈Em

ωe

∫
Ω

we · curlwγ .

The family {curlwγ |wγ ∈W 1
m , γ ∈ U0

m,i }, i = 1or 2, is a basis for ker(div;W 2
m), so

we have that for all γ ∈ E int
m ∪ E
m ∪ EBm and not only for all γ ∈ U0

m,i,∫
Ω

ω ·wγ =
∑
e∈Em

ωe

∫
Ω

we · curlwγ .

Remarking that for all γ ∈ E int
m ∪ E
m ∪ EBm∫
Ω
u1
m · curlwγ =

∫
Ω
ω ·wγ ,∫

Ω
u2
m · curlwγ =

∫
Ω
ω ·wγ ,

we have that, for all γ ∈ E int
m ∪ E
m ∪ EBm,∫

Ω

vm · curlwγ = 0.

That together with vm ∈ ker(div;W 2
m) implies vm = 0.

As we have seen, the final solution does not depend on the particular spanning
tree to gauge the potential. In practice, however, the efficiency of the method does
via the dependence on the particular tree of the condition number of the “stiffness”
matrix A in (18). This dependence is not too dramatic anyway, as underlined by the
numerical tests presented in the appendix of [10].
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1C
2C

Fig. 5. Two disjoint loops C1 and C2, an example of generators of the first homology group
H1(mΓ) of the torus surface Γ.

7. Approximation of the problem in the nonsimply connected case.
In the following, we turn our attention to the case where Ω and its boundary are
nonsimply connected. As an example of such a situation, we assume that Ω is a torus,
up to a homeomorphism. For the torus, we have χ(Γ) = 0 and χ(Ω) = 0. Note that Γ
is an “empty” torus, while Ω is a “full” torus. Let us look at the differences between
the simply connected and nonsimply connected cases.

7.1. Lifting the boundary condition for a torus. Let SΓ denote the belted
spanning tree on the torus boundary, i.e., SΓ = T Γ ∪{Π1,Π2}, where T Γ is the usual
spanning tree without loops and Π1, Π2 are two suitable edges of EΓ

m. In particular,
denote C1 and C2 two disjoint loops of Γ, as presented in Figure 5, and we have that

T Γ ∪ {Π1} contains a loop homologous to C1,
T Γ ∪ {Π2} contains a loop homologous to C2.

Note that, with respect to the simply connected case, the spanning tree on the surface
has been enriched according to dim [H1(m

Γ)] (two edges in the case of the torus
surface), as explained in Remark 5.1. Thanks to these added edges, the circuits
associated to all remaining coedges do bound a surface contained in Γ, and this is a
property that will be exploited during the proof of the following proposition. See [27]
for a method to build up a belted spanning tree.

Proposition 7.1. Let us consider a triangulation m of Ω, its restriction mΓ

to the boundary Γ of Ω, and a spanning tree SΓ in mΓ. Let Γ be a torus, and let
g ∈ L2

0(Γ). There is a unique divergence-free vector û
Γ
m ∈W 2

mΓ of the form

ûΓ
m =

∑
e∈EΓm\SΓ

ûe curlwe, we ∈W 1
mΓ ,(20)

that satisfies ∫
f

ûΓ
m · nΓ =

∫
f

g ∀ f ∈ FΓ
m.(21)

Proof. The proof is similar to the proof of Proposition 6.1. We introduce the two
spaces ker(divΓ;W

2
mΓ) and

V(SΓ) = span {we |we ∈W 1
mΓ , e ∈ EΓ

m \ SΓ}.
The curl operator is well defined as V(SΓ)→ ker(divΓ;W

2
mΓ).

The curl mapping V(SΓ)→ ker(divΓ;W
2
mΓ) is injective. Let us consider the vector

p̂Γ
m ∈ V(SΓ) of the form

p̂Γ
m =

∑
e∈EΓm\SΓ

ûewe.
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1C

α C

Σ

Fig. 6. When the circuit C is homologous to one of the two independent loops, say, C1, it does
not bound any surface. In this case, we have to consider the loop C ∪ C1 that bounds a (lateral, in
this case) surface Σ.

Let α ∈ EΓ
m \ SΓ be a given coedge, and let C ⊂ {α} ∪ SΓ be the associated cycle.

It can happen either that C is the boundary of a surface Σ (in this case we repeat
exactly the proof for the simply connected case) or that C is homologous to one of
the two fundamental loops, say, C1, and so it does not bound a surface. To overcome
the problem, we have to consider the loop C ∪C1; now, this loop does bound a surface,
and we denote by Σ the corresponding surface (see Figure 6).

We have then ∫
C∪C1

p̂Γ
m · τC∪C1 = ûα

∫
α

wα · τC∪C1 = ûα,

where τC∪C1 is the tangential vector to C ∪ C1. We then conclude that ûα = 0 by
following the same steps of the proof for Proposition 6.1.

Let W again be the space composed of vectors in ker(divΓ;W
2
mΓ) verifying (21)

with g ∈ L2
0(Γ). The linear spaces V(SΓ) and W have the same dimension. On one

hand, we have dim [V(SΓ)] = EΓ
m − (NΓ

m − 1 + 2) thanks to Remark 5.1, and on the
other hand, dim [W ] = FΓ

m−1. Due to the fact that the Euler–Poincaré characteristic
for an empty torus is 0, the equality

EΓ
m −NΓ

m − 1 = FΓ
m − 1

follows from Remark 4.2.

7.2. Interior problem for a torus. Let C1 be the loop that does not bound
any surface of Ω, and let C2 be the one that bounds a surface Σ2 when considered in
Ω (see Figure 5). The flux condition∫

Σ2

u · nΣ =

∫
∂Σ2

p · τC2 �= 0

yields πp not identically null. In this case, to solve problem (9) we need to “reactivate”
one of the two edges Π1,Π2 excluded in problem (8) and precisely the one associated
with the loop that bounds when we pass from Γ to Ω. In any other case, the degree
of freedom associated to Π2 is zero. In the following, we take into account the more
general case where πp �= 0 and we assume that Π∗2 = supp(πp). The degree of
freedom associated to this particular edge is equal to the flux of the field u across
the transversal section of the torus. For this feature, from now on, we call Π∗2 the
“flux edge.” Denoting by T int the usual spanning tree without loops, we have S int =
T int ∪ {Π1}, and the set U0

m is now defined as follows:

Ũ0
m = (E int

m ∪ E
m ∪ EBm ∪ {Π∗2}) \ (S int ∪ T 
).
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Proposition 7.2. Let us consider a triangulation m of Ω, together with a span-
ning tree S int ∪ T 
 in m. Let us suppose that Ω is a torus and ω ∈ ker(div;W 2

m).
There exists a unique divergence-free vector u0

m ∈W 2
m,0 of the form

u0
m =

∑
e∈Ũ0

m

u0
e curlwe we ∈W 1

m,(22)

that satisfies

curl u0
m = ω − curl ûm in Ω,(23)

where ûm is the divergence-free lifting in Ω of ûΓ
m defined in Proposition 7.1.

Proof. Let us introduce the two spaces ker(div;W 2
m,0) and

V(S int, T 
) = span {we |we ∈W 1
m, e ∈ Ũ0

m}.
The curl operator is well defined as V(S int, T 
)→ ker(div;W 2

m,0).

The curl mapping V(S int, T 
) → ker(div;W 2
m,0) is injective. The proof given for

Proposition 7.1 is the same with p0
m ∈ V(S int, T 
) of the form

p0
m =

∑
e∈Ũ0

m

ûewe.

The linear spaces V(S int, T 
) and ker(div;W 2
m,0) have the same dimension. In

fact, we have

dim [V(S int, T 
)] = Em − EΓ
m + 1− (Nm −NΓ

m − 1 + 1 + 1),

dim [ker(div;W 2
m,0)] = Fm − FΓ

m − (Tm − 1)− 1.

Note that now, for the presence of “one hole” in Ω, the equation divu = 0 gives
only Tm independent conditions. The two are coincident since the Euler–Poincaré
characteristic for the “full” torus and its surface is 0.

Once again, the present proof can also be carried out at an algebraic level. Propo-
sition 7.2 states that, given S int ∪ T 
, ω ∈ ker(div;W 2

m), and ûm the divergence-free
lifting in Ω of ûΓ

m defined in Proposition 7.1, there is a unique divergence-free vector
u0
m ∈ W 2

m,0 of the form (22). Moreover, its coefficients u0
e, e ∈ Ũ0

m, on the chosen
basis, are the components of the solution of the linear system∑

e∈Ũ0
m

u0
e

∫
Ω

curlwe · curlwγ =

∫
Ω

ω ·wγ −
∫

Ω

ûm ·wγ ∀ γ ∈ Ũ0
m.(24)

The matrix

Ã =

(∫
Ω

curlwe · curlwγ

)
e,γ∈Ũ0

m

again has full rank, but it is no more sparse due to the presence of the basis function
associated to {Π∗2}.

The function

um = ûm +
∑
e∈Ũ0

m

u0
e curlwe(25)

is then the approximated solution of problem (7) in the nonsimply connected case.
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C2i1

C2i Σ i

Fig. 7. Two disjoint loops C2i−1 and C2i, 1 ≤ i ≤ κ, example of generators of the first homology
group of the ith “empty” torus belonging to the surface of the sum of κ tori.

7.3. Case of the sum of κ tori. The theory that we have presented can be
generalized to a domain Ω that is the sum of κ tori, with the integer κ ≥ 1. We have
that

χ(Γ) = 1− 2κ+ 1 = 2(1− κ), χ(Ω) = 1− κ.

For problem (8), we have to consider

SΓ =

(
T Γ ∪

κ⋃
i=1

{Π2i−1,Π2i}
)

,

where T Γ is the usual spanning tree without loops and {Π2i−1, Π2i} for 1 ≤ i ≤ κ is
one pair of suitable edges of EΓ

m. In particular, denoting by C2i−1 and C2i two disjoint
loops as presented in Figure 7, we have that

T Γ ∪ {Π2i−1} contains a loop homologous to C2i−1,

T Γ ∪ {Π2i} contains a loop homologous to C2i.

The spanning tree on the surface has been enriched according to dim [H1(m
Γ)] that

is now 2κ, as explained in Remark 5.1. The proof of Proposition 7.1 for problem
(8) does not change globally; concerning the dimension of the approximation and
approximated spaces, we have now

dim [V(SΓ)] = EΓ
m − (NΓ

m − 1 + 2κ), dim [W ] = FΓ
m − 1.

The two coincide thanks to the Euler–Poincaré characteristic of Γ.
Similarly, for 1 ≤ i ≤ κ, let C2i−1 be the loop that does not bound any surface

of Ω, and let C2i be the one that bounds a surface Σi when considered in Ω (see
Figure 7). For problem (9) we need to “reactivate” one of the two edges Π2i−1,Π2i

excluded in problem (8) and precisely the one associated with the loop that bounds
a surface when we pass from Γ to Ω. So, because Π∗2i = supp (πp), the flux edges,
1 ≤ i ≤ κ, with the vector p as in section 7.2, and denoting by T int the usual spanning
tree without loops, we have

S int =

(
T int ∪

κ⋃
i=1

{Π2i−1}
)

,
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and the set U0
m is now defined as follows:

Ũ0
m =

(
E int
m ∪ E
m ∪ EBm ∪

κ⋃
i=1

{Π∗2i}
)
\ (S int ∪ T 
).

The proof of Proposition 7.2 for problem (9) is unchanged; the dimension of the
approximation and approximated spaces is now

dim [V(S int, T 
)] = Em − EΓ
m + κ− (Nm −NΓ

m − 1 + κ+ 1),

dim [H0(div0,m)] = Fm − FΓ
m − (Tm − 1)− κ,

and the two coincide thanks to the Euler–Poincaré characteristic of Ω and Γ.
Remark 7.3. Another existing strategy to deal with potential problems in non-

simply connected domains relies on the introduction of “cuts” in the domain. The big
difficulty with this method is the construction of cuts and understanding where they
should be introduced. Kotiuga [21] and coworkers have provided a correct definition
of a cut, a constructive algorithm, and an implementation of it (see [18], for example).

The “belted tree” approach proposed in this paper allows us to achieve knowledge
of the topological features of the considered domain if this is not given a priori. This
knowledge is a preliminary step to the introduction of cuts.

8. Algorithmics and a simple example. From a practical point of view, the
determination of the set U0

m for simply connected domains is standard, and we refer
to [28] for a procedure to construct a particular spanning tree.

This is not the case for the nonsimply connected case. The problem is now to
find out the independent loops in order to select explicitly the flux edges previously
introduced. We have, in particular, to select the loops that bound a surface when we
pass from the boundary to the interior. This question can be summarized by saying
that we look for generators of H1(m) starting from those of H1(m

Γ).
In section 8.1, we present the algebraic tools, and we explain how to use them in

section 8.2. The very first results for a torus are presented in section 8.3. We remark
that only the computation of a basis for H1(m) is useful to our purpose of solving
problem (24). In any case, a basis for H2(m) can be computed with the same tools,
and at the end of section 8.2 we give a few indications of how to proceed with it. See
[20] for another type of algorithm.

8.1. An integer QR factorization. In this section, we present a matrix de-
composition to compute a set of generators of the homology groups of order p = 1
and 2 of Ω ⊂ R

3. The same algorithm has been used in [25] to detect mesh defects.
The basic idea is to make an integer QR factorization of the matrices Gt, Rt, and Dt.
Given a matrix A ∈ M(r, s), we compute a nonsingular unimodular matrix Q (i.e.,
det(Q) = ±1) and a permutation matrix P such that R = QAP is upper triangular.
As shown later, the two matrices Q and P are obtained as products of a certain num-
ber of local matrices Qi,j and Pi,j and exhibit the row and column rank deficiency of
A [8]. The key point of the algorithm is the following property [17]: given a matrix
A ∈M(r, s) with integer elements, we have

Zr = ker (At) ⊕ range (A), Zs = ker (A) ⊕ range (At).(26)

To defineQ and P, we need two elementary operations. First is the transformation
π1 of a vector v = (εi, εj)

t into the vector ṽ = (1, 0)t. To this purpose, let us introduce
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the elementary matrices

Qel
i,j =

(
εi 0
−εi εj

)
, (Qel

i,j)
−1 =

(
εi 0
εj εj

)
and the matrix

Qi,j(", q) =



δ
,q, " �= i , j, q �= i , j,

Qel
i,j(1, 1), " = i, q = i,

Qel
i,j(1, 2), " = i, q = j,

Qel
i,j(2, 1), " = j, q = i,

Qel
i,j(2, 2), " = j, q = j.

In our case, ε2i = 1, and the vector ṽ = π1(v) = Qel
i,jv. Second, we need the permu-

tation π2 of a vector’s components, i.e., the transformation of a vector v = (εi, εj)
t

into the vector ṽ = (εj , εi)
t. To this purpose, we have ṽ = π2(v) = Pel

i,jv, where Pel
i,j

is a permutation matrix; moreover, we introduce a matrix Pi,j defined similarly to
Qi,j (using Pel

i,j instead of Qel
i,j). We remark that (Pel

i,j)
−1 = Pel

i,j , owing to the fact

that Pel
i,j is a permutation matrix and that (Qi,j)−1 is defined as Qi,j (using (Qel

i,j)
−1

instead of Qel
i,j). In the following, Ir denotes the identity matrix of dimension r > 0.

Now we describe the adopted procedure to build up Q and P for a given matrix
A ∈M(r, s).

Procedure. We set Q = Q0 ∈ M(r, r), P = P0 ∈ M(s, s). We loop on the
column index j, 1 ≤ j ≤ s:

1. We define Vj = {i |min{j, r} ≤ i ≤ min{s, r}, A(i, j) �= 0}, and we put k
equal to the cardinality of Vj , i1 equal to the smallest integer in Vj , and i2
equal to the smallest integer in Vj \ {i1}.

2. In case k = 0, let Pj,z be the matrix of the transformation π2 that permutes
the jth column of A with the zth one. The zth column is chosen to be the first
column, starting from the last one in A, for which there exists a row index s
such that A(s, z) �= 0. If the index z exists, P ←− P Pj,z, A←− APj,z, and
we go back to step 1; otherwise we stop the procedure.

3. In case k �= 0 but A(j, j) = 0, we apply a partial pivot strategy. Let Qj,i1 be
the matrix of the transformation π2 that permutes the jth row with the i1th
one; then Q ←− Qj,i1 Q, A←− Qj,i1 A, i1 ←− j, and we go to step 4.

4. In case k ≥ 2 and A(j, j) �= 0, let Qel
i1,i2

be the matrix of the transformation
π1 applied to the vector (A(i1, j), A(i2, j))

t, and let Qi1,i2 be the associated
matrix; then Q ←− Qi1,i2 Q, A←− Qi1,i2 A, and we go back to step 1.

5. In case k = 1 and A(j, j) �= 0, then j ←− j + 1, and we go back to step 1.
Starting with Q0 = Ir and P0 = Is, at the end of the procedure, the matrix A has
been replaced by R, an upper triangular one. If this new matrix R does not contain
zero rows, then dim [range(R)] = r. Otherwise, dim [ker(Rt)] = r − dim [range(R)].
We remark that the procedure converges and its computational cost is similar to that
of a QR decomposition by using Givens transformations.

8.2. Computation of homology group generators. Now, the question is
how we can use the previous procedure to compute the generators of Hp(m) for p = 1
and 2. To compute a set of generators for H1(m), we proceed as follows.

(i) We apply the procedure with A = Rt, Q0 = IEm , and P0 = IFm , and we
get two invertible matrices QR and PR such that RR = QRRt PR is upper
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Fig. 8. An example of surface discretization for the torus.

triangular. The 1-cycles which bound a surface belong to the image of the
matrix Rt that is also the image of RR.

(ii) We define G̃t = GtQ−1
R . In this way we make a change of basis for the

1-chains. Looking at G̃t, we see immediately from the presence of nc zero
columns that the corresponding columns of Q−1

R represent vectors that belong
to the kernel of Gt. If dim [range (Rt)] = dim [ker (Gt)], then any 1-cycle
bounds. In the other case, we apply the procedure with A = G̃t, Q0 = INm

,
and P0 = IEm−nc . We then obtain two invertible matrices QG̃ and PG̃ such

that RG̃ = QG̃ G̃t PG̃ is upper triangular.
(iii) The rows in PG̃, corresponding to zero rows in RG̃, represent the vectors that

complete the kernel of Gt. In fact, we are looking for c such that Gt c = 0.
This is equivalent to G̃t v = 0, where v has zero in the first nc components
and, in the last Em − nc, any row in PG̃ corresponding to a new zero row
in RG̃. Then the components of c = Q−1

R v are the coefficients of a 1-chain
generator of H1(m).

To determine the generators of H2(m), it is sufficient to perform parts (i), (ii),
and (iii) with Dt at the place of Rt and Rt at the place of Gt.

8.3. Numerical results on the torus. As an application, we consider the case
of a torus. We discretize it by means of a mesh m of 596 tetrahedra and 179 nodes.
The discretization of Ω induces a discretization of the surface, denoted mΓ, composed
of 288 triangles and 144 nodes (see Figure 8).

We apply the procedure presented in section 8.2 to the matrices Rt and Gt of the
surface Γ. At this point we have a basis for the 1-cycles of the mesh mΓ that are not
boundaries, i.e., a basis for H1(m

Γ) (see Figures 9 and 10). Note that the loops C1
and C2 run around the two “holes” of the torus surface.

We want now to make evident the loop that bounds a surface when considered as
1-cycles of the mesh m in Ω. In other terms, in the set of the two computed generators
for H1(m

Γ), we look for the one that generates H1(m).
Let c be an element of H1(m

Γ) and vc the vector whose components are the
coefficients of c for the edges e ∈ EΓ

m and zero for e ∈ Em \ EΓ
m. We apply the

procedure to the matrix Rt associated to the mesh m in Ω, and we transform it into
an upper triangular matrix of the form RR = QRRt PR. Finally, we consider the
vector wc = Q−1

R vc. If wc = 0, then the 1-chain c is homologous to zero in Ω (see
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Fig. 9. Wireframe representation of the loop C2, one of the two generators of the first homology
group of the torus surface.

Fig. 10. Wireframe representation of the loop C1, one of the two generators of the first homology
group of the torus surface.

Figure 9); if wc �= 0, then the 1-chain c is also a generator of H1(m) (see Figure 10).
In our case, the loop C1 is detected to be the element of a basis for H1(m). Note that
the adopted procedure can be optimized in several ways, such as, for example, by
looking for those generators with the minimum number of edges or faces, by applying
the procedure to suitable portions of the whole meshes, and by using a suitable data
format [13].

The two loops C1 and C2 are used as follows. For the lifting of the boundary
condition, the set SΓ of “null degrees of freedom” is a belted spanning tree obtained
by adding to the standard spanning tree T Γ two edges, Π1 ∈ C1 and Π2 ∈ C2, chosen in
an arbitrary way, with Π1 �= Π2. These two edges correspond to nonzero components
in the vector wc of the coefficients of the 1-chains c that generate H1(m

Γ).
For the interior problem, the set of active edges Ũ0

m is obtained by adding a flux
edge Π∗2 to the set U0

m, the latter selected with the algorithm devoted to a simply
connected domain. We conclude by remarking that Π∗2, the edge that has to be
reactivated when passing from the boundary to the interior to solve problem (24),
can be chosen to be any edge e ∈ EΓ

m for which the corresponding coefficient in the
1-chain c is nonzero.
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9. Conclusions. In this paper, we have studied the representation of a solenoidal
vector field in terms of a vector potential. The considered problem has been split into
two parts—a lifting problem of the boundary condition and an internal problem with
homogeneous boundary conditions.

The edge elements are a natural tool to compute vector potentials. On the other
hand, the gauge condition, which is necessary to ensure the potential uniqueness, is
taken into account in a fully discrete way and expressed in terms of a suitable set of
active mesh edges (active in the sense that the associated degree of freedom is a priori
different from zero).

According to the authors’ knowledge, the problem of the computation of the
vector potential is well understood for three-dimensional bounded domains which are
connected and simply connected, even with a connected but nonsimply connected
boundary. Here, we have presented a method to compute the vector potential for
three-dimensional bounded domains which are connected but nonsimply connected,
with a connected boundary. The case of three-dimensional bounded domains which
are nonsimply connected with a nonconnected boundary has not been considered in
the present work.
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Abstract. In this paper, we propose quasi-optimal error estimates, in various norms, for the
streamline-upwind Petrov–Galerkin (SUPG) method applied to the linear one-dimensional advection-
diffusion problem. We follow the classical argument due to Babuška and Brezzi; therefore, the goal
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1. Introduction. In this work, we shall consider the one-dimensional advection-
diffusion operator

Lεw := −εw′′ + w′(1.1)

and, given a source term f , the related Dirichlet homogeneous boundary value problem
Lεu = f in (0, 1),

u(0) = 0,

u(1) = 0.

(1.2)

We assume the diffusion parameter ε to be positive; when it is small, i.e., in the
advection-dominated regime, (1.2) represents one of the simplest examples of sin-
gularly perturbed boundary value differential problems. We think of it as a proto-
type of more general problems, where a skew-symmetric operator (represented by
the first-order derivative) is perturbed by a symmetric operator of higher order (the
second-order derivative in the example).

The associated variational problem reads{
find u ∈ H1

0 ≡ H1
0 (0, 1) such that

aε(u, v) = H−1〈f, v〉H1
0

∀v ∈ H1
0 ,

(1.3)

where aε(w, v) := ε
∫ 1

0
w′(x)v′(x) dx+

∫ 1

0
w′(x)v(x) dx and f is assumed to be in H−1.

This problem fits into the Lax–Milgram framework, but its solution, when ε is small,
depends on the source term f in a very sensitive way with respect to the usual norms
on H1

0 and H−1; actually,

‖L−1
ε ‖L(H−1,H1

0 ) := sup
w∈H1

0

‖w‖H1
0

‖Lεw‖H−1

≈ ε−1.
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Nevertheless, problem (1.2) is well posed for any ε > 0, and indeed in [14] and [13] we
defined suitable norms ‖ · ‖W and ‖ · ‖V such that both the continuity and the inf-sup
conditions

aε(w, v) ≤ κ‖w‖W ‖v‖V ∀w ∈ H1
0 ,∀v ∈ H1

0 ,(1.4)

inf
w∈H1

0

sup
v∈H1

0

aε(w, v)

‖w‖W ‖v‖V ≥ γ > 0,(1.5)

hold true with κ and γ independent of ε. The results in this paper are based on the
approach proposed in [13]; actually the analysis of [13] is more general since it deals
with the multidimensional operator, where the advection term has an anisotropic
structure. In section 2, we shall specialize the results of [13] to the simpler one-
dimensional problem (1.2).

It is well known that the standard Galerkin numerical method, when applied to
(1.2), is unstable (see, e.g., [11]). The most popular methods for (1.2) are actually
the streamline-upwind Petrov–Galerkin (SUPG) method and its variants—e.g., the
Galerkin least squares (GaLS) method—introduced by Hughes and coworkers (see [7]
and [9]) in the eighties. In this work, we shall consider the one-dimensional version
of the SUPG method, whose detailed presentation is postponed to section 2. We
recall now only that even though these methods are quite satisfactory for practical
situations, their error analysis does not fit into the classical theory due to Babuška
and Brezzi (see [1] and [3] and (2.16)–(2.18) in what follows); as a result, it is usually
very hard to prove that these methods are quasi-optimal, namely, to show that the
their numerical solution uh is close to the exact solution u as the best fit of u in the
trial space Wh (up to a multiplicative constant C independent of ε and with respect
to a suitable norm ‖ · ‖):

‖u− uh‖ ≤ C inf
wh∈Wh

‖u− wh‖.

More recent numerical methods for the advection-diffusion problem are, among
others, the residual-free bubbles finite element method (FEM ) (proposed in [6] and
analyzed in [4], [5], [8], and [12]) and the method with negative-order stabilization
(see [2]). Those methods are closely related to the SUPG method—in some cases
they lead to the same numerical algorithm—but they actually improve the theoretical
understanding of this subject; for our purposes here, we note only that those recent
analyses are, roughly speaking, close to the ideal Babuška–Brezzi framework, and the
methods are proved to be close to exhibiting the quasi-optimal behavior.

In this work, we actually prove a family of quasi-optimal error estimates for the
SUPG method for solving (1.2). We apply the general theory stated in section 2,
by showing that the method verifies the continuity and inf-sup conditions (2.16)–
(2.17) with respect to suitable norms, by means of function space interpolation tools.
In particular, we show that the method is quasi-optimal (see (3.37)) with respect
to a norm whose part independent of ε is of differentiability-order 1/2, which is in
accordance with [2], [5], and [13].

We are restricting this analysis to the one-dimensional problem because we are not
able, at the present time, to deal with the anisotropic structure of the convection term
from the numerical point of view; on the other hand, we will not exploit other special
properties of the one-dimensional operator. We refer to section 4 for a discussion on
further extensions of our approach.
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The outline of the paper is as follows. In section 2, we present the notation and
assumptions, recall the results of [13], and specialize and extend them to the one-
dimensional case. In section 3, we develop the error analysis for the SUPG method
in the present setting. Finally, in section 4, we give some comments about the results
proved and outline possible extensions.

2. Preliminaries. We denote by L2 ≡ L2(0, 1) the usual Lebesgue space en-
dowed with the norm ‖ · ‖L2 , by L2

0 ≡ L2
0(0, 1) its subset containing zero mean-value

functions, and by Π0 : L2 → L2
0 the L2-projection onto L2

0; we also denote by w
the mean value of a generic function w ∈ L2 so that w = Π0w + w. Moreover,
H1 ≡ H1(0, 1) is the usual Sobolev space endowed with the norm ‖ · ‖H1 , and semi-
norm | · |H1 ; H1

# denotes its subspace of functions w such that w(0) = w(1), while H1
0

denotes the subspace of functions vanishing at 0 and 1, endowed with the norm | · |H1 .
Finally, H−1 ≡ H−1(0, 1) := (H1

0 )
∗ denotes the dual space of H1

0 endowed with the
dual norm ‖ · ‖H−1 and the usual pairing 〈·, ·〉 ≡ H−1〈·, ·〉H1

0
; the dual (norm, space)

is always denoted by the superscripted star. We shall make use of the interpolation
theory of function spaces; more specifically, we shall use the K-method, and we refer
to [15] for its definition, notation, and properties.

In what follows, C denotes a generic constant whose value, possibly different at
various occurrences, does not depend on any other mathematical quantity appearing
in the analysis (e.g., ε, θ, p, h, u, w, f , φ). We also adopt the notational convention

α � β ⇐⇒ α ≤ Cβ,

α � β ⇐⇒ α � β and β � α.

We now revise the analysis proposed in [13] and specialize it to the one-dimensional
case. Following [13], we define

‖w‖A0 := ε|w|H1 + ‖Π0w‖L2 ∀w ∈ A0 := H1
0 ,

‖w‖A1 := |w|H1 ∀w ∈ A1 := H1
0 ,

(2.1)

where we have used ‖Π0w‖L2 instead of the equivalent norm ‖w′‖H−1 . Therefore, one
has the equivalence between ‖w‖A0 and ‖Lεw‖A∗

1
; i.e.,

ε|w|H1 + ‖Π0w‖L2 � sup
v∈H1

0

aε(w, v)

|v|H1

∀w ∈ H1
0 .(2.2)

One half of (2.2)—the continuity of Lε—is obvious, while the other half actually
follows from the coercivity ε|w|2H1 � aε(w,w). By means of a duality argument, we
obtain from (2.2) the other estimate

|w|H1 � sup
v∈H1

0

aε(w, v)

ε|v|H1 + ‖Π0v‖L2

∀w ∈ H1
0 ;(2.3)

i.e., ‖w‖A1
and ‖Lεw‖A∗

0
are equivalent.

Both (2.2) and (2.3) state that Lε is an isomorphism uniformly with respect to
ε; the dependence on ε of the operator has been included in the norms themselves.

We briefly comment on (2.3): it allows control of the H1
0 norm of the solution u

of (1.2) in terms of the source term f , despite the presence of the boundary layer near
x = 1. It is due to the structure of ‖ · ‖A∗

0
; when f ∈ L2

0 , then ‖f‖A∗
0
≤ ‖f‖L2 , and

actually there is no boundary layer; otherwise, if f ∈ L2 has a nonzero mean value,
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then ‖f‖A∗
0
behaves asymptotically as ε−1/2 for ε→ 0, and accordingly, the presence

of a thin layer on the related solution u makes |u|H1 behave in the same way.
We can infer from (2.2)–(2.3) a family of intermediate estimates: given θ and p

with 0 < θ < 1, 1 ≤ p ≤ +∞, and denoting by p′ the conjugate of p, i.e., 1/p+1/p′ = 1,
by means of the interpolation theory we have (see [13])

ε1−θ|w|H1 + ‖w′‖(H−1,L2
0)θ,p

� sup
v∈H1

0

aε(w, v)

εθ|v|H1 + ‖v′‖(H−1,L2
0)1−θ,p′

∀w ∈ H1
0 ,(2.4)

where we have also made use of the equivalence

‖w‖(A0,A1)θ,p � ε1−θ|w|H1 + ‖w′‖(H−1,L2
0)θ,p

,(2.5)

that is, the one-dimensional counterpart of [13, Proposition 2]. Condition (2.4) brings
our model problem into the framework (1.4)–(1.5).

We also proved the Poincaré-like estimate

‖w‖L2 � ‖w′‖(H−1,L2
0)1/2,1

∀w ∈ H1
0(2.6)

and, as a consequence,

‖w‖L2 � ‖w‖(A0,A1)θ,p ∀w ∈ H1
0 ⇔ θ > 1/2 or (θ, p) = (1/2, 1),(2.7)

‖φ‖(A0,A1)∗θ,p � ‖φ‖L2 ∀φ ∈ H−1 ⇔ θ > 1/2 or (θ, p) = (1/2, 1).(2.8)

Finally, we show the relation between the fractional-order norm appearing in the
equivalence (2.4) and a more usual Besov norm. We focus our attention on the case
θ = 1/2, which will be of special interest in what follows; the case of a generic θ is
similar but more technical (in order to obtain the optimal dependence on θ).

Proposition 2.1. For 1 ≤ p ≤ +∞, we have

(L2, H1
#)1/2,p = {w ∈ L2|w′ ∈ (H−1, L2

0)1/2,p}

and also

‖w‖(L2,H1
#)1/2,p

� ‖w‖L2 + ‖w′‖(H−1,L2
0)1/2,p

(2.9)

for any w ∈ (L2, H1
#)1/2,p.

Proof. Let w be a generic function in L2 and p �= +∞; we have, by definition and
by the triangle inequality,

‖w‖(L2,H1
#)1/2,p

≤
[∫ +∞

0

(
t−1/2‖w0(t)‖L2 + t1/2‖w1(t)‖H1

)p dt

t

]1/p
≤
[∫ 1

0

(
t−1/2‖w0(t)‖L2 + t1/2‖w1(t)‖H1

)p dt

t

]1/p
+

[∫ +∞

1

(
t−1/2‖w0(t)‖L2 + t1/2‖w1(t)‖H1

)p dt

t

]1/p
= I + II
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for any w0(t) and w1(t) with w = w0(t) + w1(t), w0(t) ∈ L2, w1(t) ∈ H1
#, and

0 < t < +∞; I and II actually depend on w0(t) and w1(t). Moreover, we assume, for
0 < t < 1, that w0(t) ∈ L2

0, yielding ‖w0(t)‖L2 = ‖w′0(t)‖H−1 . Recalling the notation
w1(t) = w1(t) + Π0w1(t), where w1(t) = w, we use the continuity of the mean value
in L2 for w and the Bramble–Hilbert lemma for Π0w1(t) to get

‖w1(t)‖H1 ≤ ‖w1(t)‖H1 + ‖Π0w1(t)‖H1

� ‖w1(t)‖L2 + |Π0w1(t)|H1

� ‖w‖L2 + ‖w′1(t)‖L2 .

Therefore, we have

I ≤
[∫ 1

0

(
t−1/2‖w′0(t)‖H−1 + t1/2‖w′1(t)‖L2

)p dt

t

]1/p
+

[∫ 1

0

(
t1/2‖w‖L2

)p dt

t

]1/p
�
[∫ 1

0

(
t−1/2‖w′0(t)‖H−1 + t1/2‖w′1(t)‖L2

)p dt

t

]1/p
+ ‖w‖L2 .

(2.10)

Now the key point is that, for any decomposition w′ = φ0(t) + φ1(t), φ0(t) ∈ H−1,
φ1(t) ∈ L2

0 on 0 < t < 1, we can define w0(t) and w1(t) that satisfy w′0(t) = φ0(t),
w′1(t) = φ1(t), and all the conditions given above: simply take, for any 0 < t < 1,
w1(t) as the primitive of φ1(t) with w1(t) = w and w0(t) = w − w1(t). In particular,
φ1(t) ∈ L2

0 yields w1(t) ∈ H1
#. Therefore, we can rewrite (2.10) in terms of φ0(t) and

φ1(t),

I �
[∫ 1

0

(
t−1/2‖φ0(t)‖H−1 + t1/2‖φ1(t)‖L2

)p dt

t

]1/p
+ ‖w‖L2 ,(2.11)

and take the infimum with respect to φ0(t) and φ1(t), obtaining

I � ‖w′‖(H−1,L2
0)1/2,p

+ ‖w‖L2 .(2.12)

Otherwise, taking w0(t) = w and w1(t) = 0 for 1 < t < +∞, we have

II ≤
[∫ +∞

1

(
t−1/2‖w‖L2

)p dt

t

]1/p
≤ 2

p
‖w‖L2 .

(2.13)

Therefore, (2.12) and (2.13) yield ‖w‖(L2,H1
#)1/2,p

� ‖w‖L2 +‖w′‖(H−1,L2
0)1/2,p

and the

inclusion {w ∈ L2|w′ ∈ (H−1, L2
0)1/2,p} ⊂ (L2, H1

#)1/2,p. With obvious modification,
one could deal with the case p = +∞.

The remaining part, i.e., the inclusion

(L2, H1
#)1/2,p ⊂

{
w ∈ L2|w′ ∈ (H−1, L2

0)1/2,p
}

and the related estimate, is given by the interpolation theorem [15, section 1.3.3 (a)]
since the derivative operator is both continuous from H1

# into L2
0 and from L2 into

H−1.
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We recall that (L2, H1
#)1/2,p is the space of functions whose periodic extension,

say, on (−1, 2), belongs to B
1/2
2,p (−1, 2).

It is useful in what follows to notice that (2.6) and (2.9) give a variant of (2.5),
as stated in the following corollary.

Corollary 2.2. We have

‖w‖(A0,A1)1/2,1
� ε1/2|w|H1 + ‖w‖(L2,H1

#)1/2,1
∀w ∈ H1

0 .(2.14)

Now we turn our attention to the numerical solution of (1.2). We briefly recall
the general error estimation theory, due to Babuška and Brezzi (see [10, Proposition
5.5.1]). Let u be the solution of (1.2); the finite element formulation reads{

find uh ∈Wh such that

aε,h(uh, vh) = 〈fh, vh〉 ∀vh ∈ Vh,
(2.15)

where the spaces Wh and Vh are finite-dimensional subsets of H1
0 , while aε,h and

fh give a consistent discretization of the continuous problem, namely, aε,h(u, vh) =
〈fh, vh〉 for all vh ∈ Vh. If there exist constants κ̃ < +∞ and γ̃ > 0, independent of
ε and h, such that

aε,h(u− wh, vh) ≤ κ̃‖u− wh‖W,h‖vh‖Vh
∀wh ∈Wh,∀vh ∈ Vh,(2.16)

and

inf
wh∈Wh

sup
vh∈Vh

aε,h(wh, vh)

‖wh‖W,h‖vh‖Vh

≥ γ̃,(2.17)

then the method is quasi-optimal :

‖u− uh‖W,h ≤ (κ̃γ̃−1 + 1) inf
wh∈Wh

‖u− wh‖W,h.(2.18)

The notation ‖ · ‖W,h refers to a norm on the space W (we postpone the definition of
W to (3.20)), which can depend on the discretization. Conditions (2.16)–(2.17) are
the analogues of (1.4)–(1.5), and this motivates our interest in (2.4). In order to verify
them, we shall look for norms ‖ · ‖W,h and ‖ · ‖Vh

that are the discrete counterparts
of the ones in (2.4).

We shall consider the very simple case of a uniform subdivision of (0, 1) into N
open elements Ti of size h = N−1,

Ti ≡ Ti,h := {x : (i− 1)h < x < ih} ∀i = 1, 2, . . . , N,(2.19)

and the corresponding space of continuous piecewise linear elements,

Wh ≡ Vh :=

{
v ∈ H1

0 : v|Ti is affine

∀i = 1, . . . , N

}
;(2.20)

the SUPG method, proposed by Hughes and coworkers in [7], adds a weighted residual
stabilization to the continuous variational problem:

aε,h(w, vh) := aε(w, vh) +

N∑
i=1

τ

∫
Ti

(Lεw)(x) v′h(x) dx

〈fh, vh〉 := 〈f, vh〉+
N∑
i=1

τ

∫
Ti

f(x) v′h(x) dx.

(2.21)
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This definition requires both f and w to be regular in the interior of the elements,
which is not restrictive for applications. The amount of streamline1 diffusion τ is
a parameter of the method, and its value is a relevant point. It could depend on ε
and h; here we assume that the problem is advection-dominated, namely, ε ≤ h, and
therefore a usual assumption is that

τ � h.(2.22)

We shall return to a more detailed discussion of the optimal value of τ in section 4.

3. Main results. This section is devoted to the error analysis of the SUPG
method in the framework (2.16)–(2.18).

First, we analyze the inf-sup condition (2.17).
Lemma 3.1. The SUPG method (2.19)–(2.22) satisfies the estimates

ε|wh|H1 + ‖Π0wh‖L2 � sup
vh∈Wh

aε,h(wh, vh)

|vh|H1

∀wh ∈Wh,(3.1)

|wh|H1 � sup
vh∈Wh

aε,h(wh, vh)

ε|vh|H1 + ‖Π0vh‖L2

∀wh ∈Wh.(3.2)

Proof. First, recall that any wh ∈ Wh is piecewise linear; therefore, the higher-
order term in (2.21) vanishes:

aε,h(wh, vh) = (ε+ τ)

∫ 1

0

w′h(x)v
′
h(x) dx +

∫ 1

0

w′h(x)vh(x) dx ∀vh ∈ Vh.

Thanks to the coercivity of aε,h,

ε|wh|2H1 ≤ aε,h(wh, wh),(3.3)

we have immediately

ε|wh|H1 � sup
vh∈Wh

aε,h(wh, vh)

|vh|H1

.(3.4)

We have therefore to prove that

‖Π0wh‖L2 � sup
vh∈Wh

aε,h(wh, vh)

|vh|H1

.(3.5)

In order to do this, we shall define w̃h ∈Wh, depending on wh, such that

aε,h(wh, w̃h) = ‖Π0wh‖2L2 ,(3.6)

|w̃h|H1 � ‖Π0wh‖L2 ;(3.7)

such a w̃h is the solution of the discrete variational problem

aε,h(vh, w̃h) =

∫ 1

0

(Π0wh)(x)vh(x) dx ∀vh ∈Wh.(3.8)

1In the one-dimensional case, there are no streamline directions; we are just following the general
terminology.
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To verify (3.7), we define w̃ ∈ H1
0 as the solution of

−(ε+ τ)w̃′′ − w̃′ = Π0wh,(3.9)

such that aε,h(vh, w̃h− w̃) = 0 for all vh ∈Wh; moreover, (3.9) has the same structure
as (1.2), with ε+ τ � h instead of ε, so that we can make use of the analogue of (2.3):

|w̃|H1 � sup
v∈H1

0

(ε+ τ)
∫ 1

0
w̃′(x)v′(x) dx − ∫ 1

0
w̃′(x)v(x) dx

(ε+ τ)|v|H1 + ‖Π0v‖L2

= sup
v∈H1

0

∫ 1

0
Π0wh(x)v(x) dx

(ε+ τ)|v|H1 + ‖Π0v‖L2

≤ sup
v∈H1

0

∫ 1

0
Π0wh(x)v(x) dx

‖Π0v‖L2

= sup
v∈H1

0

∫ 1

0
Π0wh(x)Π0v(x) dx

‖Π0v‖L2

= ‖Π0wh‖L2 .

(3.10)

We also need to introduce the nodal interpolant w̃I ∈Wh of w̃, which satisfies

|w̃ − w̃I |H1 + h−1‖w̃ − w̃I‖L2 � |w̃|H1 .(3.11)

Therefore, we have, by using the coercivity of aε,h, (3.8), (3.9), and (3.11),

|w̃ − w̃h|2H1 = (ε+ τ)−1aε,h(w̃ − w̃h, w̃ − w̃h)

= (ε+ τ)−1aε,h(w̃ − w̃I , w̃ − w̃h)

≤ |w̃ − w̃h|H1

[|w̃ − w̃I |H1 + (ε+ τ)−1‖w̃ − w̃I‖L2

]
� |w̃ − w̃h|H1 |w̃|H1 ,

which gives |w̃ − w̃h|H1 � |w̃|H1 , and then, by using (3.10),

|w̃h|H1 ≤ |w̃|H1 + |w̃ − w̃h|H1

� |w̃|H1

� ‖Π0wh‖L2 ,

which gives (3.7); (3.6) follows immediately from (3.8), and (3.1) is satisfied.
We obtain (3.2) from (3.1) by a duality argument. We now associate to a generic

wh ∈Wh the function w̃h ∈Wh, which satisfies

aε,h(vh, w̃h) =

∫ 1

0

w′h(x)v
′
h(x) dx ∀vh ∈Wh.(3.12)

The left-hand side of (3.12) is the dual of aε,h(w̃h, vh). We can proceed as before to
obtain the analogue of (3.1); in particular,

ε|w̃h|H1 + ‖Π0w̃h‖L2 � sup
vh∈Wh

aε,h(vh, w̃h)

|vh|H1

= sup
vh∈Wh

∫ 1

0
w′h(x)v

′
h(x) dx

|vh|H1

= |wh|H1 ;
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then

|wh|H1 =

∫ 1

0
w′h(x)w

′
h(x) dx

|wh|H1

=
aε,h(wh, w̃h)

|wh|H1

� aε,h(wh, w̃h)

ε|w̃h|H1 + ‖Π0w̃h‖L2

,

which gives (3.2).
The estimates (3.1)–(3.2) state inf-sup conditions with respect to the same norms

as in (2.2)–(2.3). Focusing on (3.1), for example, we see that one could replace
ε|wh|H1 on the left-hand side with (ε + τ)|wh|H1 , as it seems natural from (3.3)–
(3.4). Actually this leads to an equivalent estimate at the discrete level because of the
inverse inequality (ε + τ)|wh|H1 � ‖Π0wh‖L2 . On the other hand, in order to obtain
in what follows a meaningful error estimate (2.18), our aim here is to make use of the
“natural” norms (for the continuous problem).

Let us now define the discrete counterpart of (2.1):

‖wh‖A0,h
:= ε|wh|H1 + ‖Π0wh‖L2 ∀wh ∈ A0,h := Wh,

‖wh‖A1,h
:= |wh|H1 ∀wh ∈ A1,h := Wh.

(3.13)

We construct from (3.1)–(3.2) a family of intermediate inf-sup conditions by means
of function space interpolation.

Proposition 3.2. Let 0 < θ < 1 and 1 ≤ p ≤ +∞. The one-dimensional SUPG
method (2.19)–(2.22) satisfies the estimates

‖wh‖(A0,h,A1,h)θ,p � sup
vh∈Wh

aε,h(wh, vh)

‖vh‖(A0,h,A1,h)1−θ,p′
∀wh ∈Wh,(3.14)

where 1/p+ 1/p′ = 1.
Proof. The bilinear form aε,h : Wh ×Wh → R induces the linear operator Lε,h :

Wh →W ∗
h in the usual way,

W∗
h
〈Lε,hwh, vh〉Wh

:= aε,h(wh, vh) ∀wh, vh ∈Wh,

which turns out to be invertible, thanks to (3.1)–(3.2); in particular,

‖L−1
ε,hφh‖A0,h

� ‖φh‖A∗
1,h

,(3.15)

‖L−1
ε,hφh‖A1,h

� ‖φh‖A∗
0,h

(3.16)

for any φh ∈ W ∗
h . Therefore, by means of interpolation (see [15, section 1.3.3 (a)]),

we obtain

‖L−1
ε,hφh‖(A0,h,A1,h)θ,p � ‖φh‖(A∗

1,h,A
∗
0,h)θ,p .(3.17)

By means of [15, section 1.11.2], we also have that the norm on (A∗1,h, A
∗
0,h)θ,p is

actually equivalent to the dual norm on (A1,h, A0,h)θ,p′ ≡ (A0,h, A1,h)1−θ,p′ ; notice
in particular that, for the case p = 1 and p′ = +∞, the mentioned result follows
because (A1,h, A0,h)θ,+∞ ≡ (A1,h, A0,h)

0
θ,+∞ in the algebraic sense. Actually, from
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the algebraic point of view A0,h ≡ A1,h ≡ Vh, we are just defining norms that have a
different dependence on the parameter ε. Finally,

‖wh‖(A0,h,A1,h)θ,p � ‖Lε,hwh‖(A0,h,A1,h)∗1−θ,p
,(3.18)

which is just (3.14).
Now we turn our attention to the continuity of aε,h (i.e., estimate (2.16)), which

is, contrary to expectation, the most difficult point. For the sake of clarity, we write
aε,h(·, ·) = aε(·, ·)+s(·, ·)+c(·, ·), where s : H1

0 ×H1
0 → R denotes the stabilizing term

s(w, v) := τ

∫ 1

0

w′(x) v′(x) dx,(3.19)

while the term c(·, ·) makes the numerical formulation consistent. For the definition
of c(·, ·), we need the trial functions w to be regular inside any element. Therefore,
we set

W :=
{
w ∈ H1

0 |w′′|Ti
∈ L2(Ti), i = 1, . . . , N

}
,(3.20)

equipped with the graph norm, and we define c : W ×H1
0 → R as

c(w, v) = −τε
N∑
i=1

∫
Ti

w′′(x) v′(x) dx.(3.21)

First, we consider aε(·, ·).
Lemma 3.3. Assume 0 < θ < 1, 1 ≤ p ≤ +∞, and 1/p+ 1/p′ = 1; we have

aε(w, vh) � ‖w‖(A0,A1)θ,p‖vh‖(A0,h,A1,h)1−θ,p′ ∀w ∈ H1
0 ,∀vh ∈Wh.(3.22)

Proof. Let L̃ε : H1
0 →W ∗

h be the linear operator given by

W∗
h
〈L̃εw, vh〉Wh

:= aε(w, vh) ∀w ∈ H1
0 ,∀vh ∈Wh.

(Notice that it differs from Lε because we are now considering discrete test functions.)
The Cauchy–Schwarz inequality gives, for any w ∈ H1

0 ,

‖L̃εw‖A∗
1,h
� ‖w‖A0

and

‖L̃εw‖A∗
0,h
� ‖w‖A1 ;

therefore, proceeding as in the proof of Lemma 3.2, we obtain

‖L̃εw‖(A1,h,A0,h)∗θ,p � ‖w‖(A0,A1)θ,p ,

which is (3.22).
We need the following inverse inequalities for the forthcoming analysis.
Lemma 3.4. We have

h‖v′h‖L2 � ‖v′h‖H−1 ∀vh ∈Wh.(3.23)
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Proof. Actually, (3.23) follows from ‖v′h‖L2 = ‖(Π0vh)
′‖L2 , ‖v′h‖H−1 = ‖Π0vh‖L2 ,

and from the more usual inverse inequality h‖(Π0vh)
′‖L2 � ‖Π0vh‖L2 .

Lemma 3.5. We have

h‖v′h‖(L2,H1
0 )1/2,+∞ � ‖v′h‖(H−1,L2)1/2,+∞ ∀vh ∈Wh.(3.24)

Proof. We shall show that

h‖v′h‖(L2,H1
0 )1/2,+∞ � h1/2‖v′h‖L2 ∀vh ∈Wh,(3.25)

h‖v′h‖(L2,H1
0 )1/2,+∞ � h−1/2‖v′h‖H−1 ∀vh ∈Wh,(3.26)

which give (3.24) by means of the interpolation theorem [15, section 1.3.3 (a)]. We
focus only on (3.25), as (3.26) follows from (3.25) and (3.23).

We have, by definition,

‖v′h‖(L2,H1
0 )1/2,+∞ ≤ sup

0<t<+∞

(
t−1/2‖φ0(t)‖L2 + t1/2‖φ1(t)‖H1

)
(3.27)

for any φ0(t) and φ1(t) with v′h = φ0(t) + φ1(t), φ0(t) ∈ L2, φ1(t) ∈ H1
0 , and 0 < t <

+∞. We now choose suitable φ0(t) and φ1(t). If t > h, it suffices to take φ0(t) = v′h
and, accordingly, φ1(t) = 0 to obtain

t−1/2‖φ0(t)‖L2 + t1/2‖φ1(t)‖H1 ≤ h−1/2‖v′h‖L2 ∀vh ∈Wh.(t > h case)

Otherwise, when t ≤ h, set δ ≡ δ(t, x) := min{x, 1− x, t/2} and

φ1(t)(x) := t−1

∫ x+δ

x−δ
v′h(ξ) dξ;

the effect of this definition is shown in Figure 3.1. As a result, one has

t−1/2‖φ0(t)‖L2 + t1/2‖φ1(t)‖H1 �
[
N∑
i=0

(
v′h|Ti+1 − v′h|Ti

)2]1/2

,

where v′h|T0
= v′h|TN+1

:= 0 by convention, and

N∑
i=0

(
v′h|Ti+1

− v′h|Ti

)2 � N∑
i=0

(v′h|Ti
)
2

= h−1‖v′h‖2L2 ;

therefore,

t−1/2‖φ0(t)‖L2 + t1/2‖φ1(t)‖H1 � h−1/2‖v′h‖L2 ∀vh ∈Wh.(t ≤ h case)

Collecting the (t > h case) and (t ≤ h case) with (3.27), we obtain (3.25).
Lemma 3.6. Assume 1/2 < θ < 1 and 1 ≤ p ≤ +∞ or θ = 1/2 and p = 1; we

have

s(w, vh) � ‖w‖(A0,A1)θ,p‖vh‖(A0,h,A1,h)1−θ,p′ ∀w ∈ H1
0 ,∀vh ∈Wh,(3.28)

where 1/p+ 1/p′ = 1.
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x

y

h t

v′h

φ1(t)

x

y

h t

φ0(t)

Fig. 3.1. Construction of φ0(t) and φ1(t) inside the proof of Lemma 3.5.

Proof. Let w ∈ H1
0 and vh ∈Wh. Assume for a moment that the estimates

s(w, vh) � ‖w′‖(H−1,L2
0)1/2,1

‖v′h‖(H−1,L2
0)1/2,+∞ ,(3.29)

s(w, vh) � ‖w′‖L2‖v′h‖H−1(3.30)

hold true. Therefore, recalling (2.5) and as ‖vh‖(A0,A1)1/2,+∞ ≤ ‖vh‖(A0,h,A1,h)1/2,+∞ ,
we also have

s(w, vh) � ‖w‖(A0,A1)1/2,1
‖vh‖(A0,h,A1,h)1/2,+∞ ,

s(w, vh) � ‖w‖A1‖vh‖A0,h
,

and we can apply a new interpolation, with parameters 0 < η < 1 and 1 ≤ q ≤ +∞,
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reasoning as in the proof of Lemma 3.3, in order to obtain

s(w, vh) � ‖w‖((A0,A1)1/2,1,A1)η,q
‖vh‖((A0,h,A1,h)1/2,+∞,A0,h)η,q′ ,

where 1/q + 1/q′ = 1. This gives (3.28), thanks to the reiteration theorem (see [15,
section 1.10.2]), with θ = 1/2 + η/2 and p = q.

First, let us focus on (3.30): it follows from the Cauchy–Schwarz inequality,
Lemma 3.4, and (2.22).

Now we focus on (3.29). The Cauchy–Schwarz inequality yields

s(w, vh) � ‖w′‖(H−1,L2)1/2,1
‖τv′h‖(H−1,L2)∗

1/2,1
,(3.31)

and, of course, we have

‖w′‖(H−1,L2)1/2,1
≤ ‖w′‖(H−1,L2

0)1/2,1
;(3.32)

on the other hand, thanks to [15, section 1.11.2], (2.22), and Lemma 3.5, we also have

‖τv′h‖(H−1,L2)∗
1/2,1
� ‖τv′h‖(L2,H1

0 )1/2,+∞

� ‖v′h‖(H−1,L2)1/2,+∞

� ‖v′h‖(H−1,L2
0)1/2,+∞ .

(3.33)

Finally, (3.31)–(3.33) give (3.29).
It is worth noting that the stabilizing term s(·, ·) is continuous, with respect to

the norms ‖ ·‖(A0,A1)θ,p and ‖ ·‖(A0,h,A1,h)1−θ,p′ , for any values of θ and p; nevertheless
the uniformity with respect to ε requires the restrictions stated in Lemma 3.6. In this
sense, these restrictions are optimal: notice that the norms in the left-hand side of
(3.24) cannot be replaced by stronger norms since v′h is discontinuous.

In order to deal with c(·, ·), we define an ad hoc seminorm:

|||φ|||θ−1,p = sup
vh∈Wh

∑N
i=1 τ

∫
Ti

φ(x) v′h(x) dx

‖vh‖(A0,h,A1,h)1−θ,p′
.(3.34)

The continuity of c(·, ·) follows immediately.
Lemma 3.7. Assume 0 < θ < 1, 1 ≤ p ≤ +∞, and 1/p+ 1/p′ = 1; we have

c(w, vh) � ε|||w′′|||θ−1,p‖vh‖(A0,h,A1,h)1−θ,p′ .(3.35)

The framework is complete, and we can now state our main result.
Theorem 3.8. Assume that f ∈ L2, 1/2 < θ < 1, and 1 ≤ p ≤ +∞ or θ = 1/2

and p = 1. The one-dimensional SUPG method (2.19)–(2.22) satisfies the classical
continuity and inf-sup conditions (2.16)–(2.17) with respect to the norms

‖w‖W,h := ‖w‖(A0,A1)θ,p + ε|||w′′|||θ−1,p,

‖vh‖Vh
:= ‖vh‖(A0,h,A1,h)1−θ,p′ .

Proof. The continuity (2.16) follows from Lemmas 3.3, 3.6, and 3.7. Moreover,
since ‖wh‖(A0,A1)θ,p ≤ ‖wh‖(A0,h,A1,h)θ,p and ε|||w′′h|||θ−1,p = 0 for all vh ∈Wh, we get

‖w‖W,h ≤ ‖w‖(A0,h,A1,h)θ,p ,(3.36)
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whence the inf-sup condition (2.17) follows from Proposition 3.2 and (3.36).
As a result, we can state the quasi optimality (2.18) of the one-dimensional SUPG

method with respect to the norm ‖ · ‖W,h (for 1/2 < θ < 1 or θ = 1/2 and p = 1);
the most interesting case is for θ = 1/2. Thanks to (2.6) and (2.9), we can state the
following result.

Corollary 3.9. Assume that f ∈ L2; let u be the solution of (1.2) and uh be the
numerical solution given by the one-dimensional SUPG method (2.19)–(2.22). Then

ε1/2|u− uh|H1 + ‖u− uh‖(L2,H1
#)1/2,1

+ ε|||(u− uh)
′′|||−1/2,1

� inf
wh∈Vh

[
ε1/2|u− wh|H1 + ‖u− wh‖(L2,H1

#)1/2,1
+ ε|||(u− wh)

′′|||−1/2,1

]
.

(3.37)

Estimate (3.37) is interesting because the norm appearing there is “natural” for
the problem, in the sense that ε1/2|u|H1 +‖u‖(L2,H1

#)1/2,1
+ε|||u′′|||−1/2,1 does not grow

as a negative power of ε when ε → 0. Actually, it is not uniformly bounded with
respect to ε but behaves as log(ε) in the worst case. Indeed, we have

N∑
i=1

τ

∫
Ti

εu′′(x) v′h(x) dx = +

N∑
i=1

τ

∫
Ti

u′(x) v′h(x) dx

−
N∑
i=1

τ

∫
Ti

f v′h(x) dx

� s(u, vh) + ‖f‖L2‖τv′h‖L2 .

(3.38)

This, together with (3.28), (2.22), and (3.23), yields ε|||u′′|||−1/2,1 � ‖u‖(A0,A1)1/2,1
+

‖f‖L2 ; then, thanks to (2.4), (2.5), (2.8), (2.14), and [13, equation (22)], we finally
get

ε1/2|u|H1 + ‖u‖(L2,H1
#)1/2,1

+ ε|||u′′|||−1/2,1 � (1 + | log ε|) ‖f‖L2 .(3.39)

Usually, one can infer the convergence of the numerical method from an estimate
like (2.18) (in particular, (3.37)). This is not the case here. We recall that we are
interested in uniform convergence with respect to ε in the advection-dominated regime
ε < h. In fact, since we are using piecewise linear elements, we easily see that |||(u−
uh)
′′|||−1/2,1 = |||u′′|||−1/2,1. Furthermore, ε

1/2|u−uh|H1 , as well as ‖u−uh‖(L2,H1
#)1/2,1

,

cannot vanish uniformly with respect to ε when h→ 0. This is because the boundary
layer cannot be captured within the discrete space Wh when ε � h. On the other
hand, this is not surprising; convergence results are indeed obtained from estimates
like (2.18) by assuming extra regularity on the solution u. In our case, this is not
possible since, for example, ‖u‖(A0,A1)θ,p is strongly dependent on ε for θ > 1/2.

4. Conclusion and further extensions. In this paper, we proved the quasi
optimality of the SUPG method for the one-dimensional advection-diffusion problem
on a uniform grid. Actually, it is a very simple case. Most of our analysis is based on
our previous work [13] and therefore is suitable for an extension to the multidimen-
sional case; in other parts it depends on some special properties of the one-dimensional
problem. We do not know at the moment whether the SUPG method preserves its
quasi optimality in the two-dimensional case or whether a modification of the method
is required for this purpose. We shall focus on possible extensions of the theory in
further works.
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We have assumed the amount of streamline diffusion (or, better, artificial diffu-
sion) τ to be proportional to the mesh size h. It is well known that, from a practical
point of view, the particular choice of τ is relevant for the accuracy of the method.
Our analysis does not give any suggestion for this because, for the sake of simplicity,
our final estimate implicitly contains generic constants whose dependence on τ is not
investigated. This investigation is indeed a very technical task, but one could perform
this kind of analysis by a computational procedure. This has been done in a previous
work [14] (see, in particular, section 3 therein), where we perform a fine-tuning of τ
based on a similar idea.
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Abstract. Considering the identification of a temperature dependent conductivity in a quasi-
linear elliptic heat equation from single boundary measurements, we proof uniqueness in dimensions
n ≥ 2. Taking noisy data into account, we apply Tikhonov regularization in order to overcome the
instabilities. By using a problem-adapted adjoint, we give convergence rates under substantially
weaker and more realistic conditions than required by the general theory. Our theory is supported
by numerical tests.
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1. Introduction. The issue of parameter identification is to determine unknown
parameters, appearing, e.g., in state equations, from indirect measurements related
to the physical state. This inverse problem can be considered as a (mostly) nonlinear
operator equation

F (q) = z,(1.1)

where the forward operator F maps the parameter q onto the output z. As the physical
state often cannot be observed exactly, one finds oneself in the situation of given noisy
data zδ instead of z. Now, as parameter identification problems are frequently ill-
posed, the estimation of the parameter can be strongly influenced in a negative way
by even only small data noise. Hence, for their stable numerical solution, some type
of regularization is required. Regularization techniques replace the ill-posed problem
by a family of neighboring well-posed problems, leading to a stable approximation
of q, called the regularized solution. Probably the most frequently used approach is
Tikhonov regularization, where the regularized solutions are sought as the minimizers
of

q → ‖F (q)− zδ‖2 + β‖q‖2,

with some regularization parameter β.
A careful mathematical analysis of the regularization method is needed in order

to give useful guidance, under which conditions it will perform well, and confidence
in its numerical results. Since for ill-posed problems, convergence of any numerical
algorithm can be arbitrarily slow [21], conditions for convergence rates are of special
theoretical interest. They are also practically relevant as they tell us for which prob-
lems fast convergence of numerical algorithms can be expected. However, according
to the general theory [4], such convergence rates can only be obtained under strong
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source conditions of the type

∃w q − q∗ = F ′(q)∗w,(1.2)

where q∗ is an a priori guess for q, and F ′(q)∗ is the adjoint of the Fréchet-derivative
of F evaluated at q. This general theory has been applied to various inverse problems
including parameter identification; see [14], [4] for elliptic problems and integral equa-
tions and [19] for a parabolic equation. All these applications are for one-dimensional
problems, since only there, the source condition (1.2) has a rather immediate explicit
interpretation (usually requiring some additional smoothness and prescribed bound-
ary behavior for q†−q∗). In [16], condition (1.2) was weakened based on ideas from [8]
and then fully interpreted for the identification of a nonlinearity q(u) from distributed
measurements of u in arbitrary dimensions.

However, before taking data perturbations and convergence rates into account,
one has to consider if the given data z at all contain enough information in order to
identify the parameter q, i.e., if the mapping F from q onto z is injective. Often, a limit
on the amount of available data is given by the setup of the experiment. Frequently
(for example, in nondestructive testing), measurements cannot be done within the
material Ω but only on (parts of) the boundary ∂Ω, leading to data containing less
information.

Considering the inverse conductivity problem, one is interested in finding the
conductivity q(x) in

−∇ · (q(x)∇u) = 0 in Ω,(1.3)

u = g on ∂Ω,

given the additional boundary data

q(x)
∂u

∂n
= h on Γ,(1.4)

with Γ ⊂ ∂Ω. For this case of single boundary measurements, the unique identifiability
is widely investigated for parameters

q = 1 + χ(D), D̄ ⊂ Ω,
where χ is the characteristic function of an unknown domain. Several partial results
are given (see, e.g., [1], [10], and [13]); nonetheless a general uniqueness result is still
missing. Turning to inverse problems for nonlinear elliptic equations

−∆u+ q(u) = 0 in Ω,(1.5)

only local uniqueness results for (small) q are available if, in addition to the Dirichlet
data g, Neumann data are prescribed on ∂Ω. See [12] and the references given there.

In order to enhance the chances of identifiability, one often resorts to many bound-
ary measurements: For any Dirichlet data g in (1.3), one is given Neumann data h;
in other words, the results of all possible boundary measurements are known. Then
the information to identify the parameter is contained in the so-called Dirichlet to
Neumann map

Λ : g → h.(1.6)

Based on these multiple boundary measurements, the aim of impedance tomography
is the reconstruction of the conductivity q(x) or q(x, u) in (1.3) within the human
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body or some material. For the linear case, i.e., q = q(x), global uniqueness was
proven in [24] for dimensions n ≥ 3 and in [18] for two dimensions. The uniqueness
result for the quasi-linear case q = q(x, u) can be found in [23] for dimensions n ≥ 2.
There also, the anisotropic case, i.e., q is a matrix, is investigated.

We now specify the inverse problem we are looking at in this paper. Our goal is
to identify the temperature dependent heat conductivity q in

−∇ · (q(u)∇u) = f in Ω(1.7)

from only single boundary measurements of the temperature u. Note that not only
the inverse but also the forward problem is nonlinear. We show that the parameter is
uniquely identifiable on the temperature range as a function of one variable. Besides,
further developments of our Tikhonov regularization analysis from [16] allow us to
provide a fully interpretable weak source condition for the convergence rate of the
regularized solutions.

In section 2, we briefly discuss the nonlinear direct problem (1.7) with mixed
boundary conditions for u. For a positive parameter q of H1-regularity, we guaran-
tee the existence of a unique weak solution u ∈ H1(Ω). Furthermore, we give an
estimate of the temperature range governed by u in Ω, which is equivalent to the
one-dimensional domain the parameter q lives on. Together with the temperature
data on the boundary, the a priori unknown interval, on which the parameter can be
recovered, can then be estimated.

In sections 3 and 4, we investigate the inverse problem. First we show that the pa-
rameter is uniquely determined by single boundary temperature measurements. From
[23], the uniqueness follows only for the case of multiple measurements. Afterward,
we give a stability analysis for Tikhonov regularization and prove convergence rates
under much weaker assumptions than required in the general theory by taking ad-
vantage of a special adjoint approach. This kind of approach was first introduced in
[8] for the identification of a space dependent heat conductivity q(x) from distributed
temperature measurements.

Section 5 contains a detailed interpretation of the source condition needed for the
convergence rate proof both in two and three dimensions. This is different from [8],
where a full interpretation could only be given in the one-dimensional case.

Section 6 sketches variants in the setup for the inverse problem. In section 7, we
present results of numerical tests which support our theory.

2. The direct problem. In many applications modelled by the heat equation,
for example, in the context of steel production (see [11], [6], [7]), the heat conductivity
q does not vary spatially but rather depends on the temperature u itself. Considering
the stationary case, the heat distribution is described by the nonlinear elliptic equation

−∇ · (q(u)∇u) = f in Ω(2.1)

with, e.g., the boundary conditions

q(u)
∂u

∂n
= h on Γ1(2.2)

and

u(x) = g on Γ2.(2.3)

Here, Ω is an open bounded connected domain in Rn, n ≥ 2, with boundary ∂Ω ∈
C2. We assume Γ2 ⊂ ∂Ω to be connected and to have positive measure and set
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Γ1 = ∂Ω\Γ2. f is a given heat source density, h is a given temperature flux, and g is
a prescribed (boundary) temperature.

We set

V =
{
v ∈ H1(Ω) | v|Γ2

= 0
}

and assume—already with respect to the inverse problem—that

g is constant, h ∈ C(Γ1), and f ∈ C(Ω).
By the trace theorem we then get a g̃ ∈ H1(Ω) such that g̃|Γ2

= g. Now, by integration
by parts we derive the variational formulation for problems (2.1)–(2.3).

Find u ∈ H1(Ω) such that

u− g̃ ∈ V(2.4)

and ∫
Ω

q(u)∇u · ∇v dx =
∫

Ω

f(x)v dx+

∫
Γ1

hv dΓ1 for all v ∈ V(2.5)

hold. Under the assumption

q ∈ H1(R) and 0 < α1 ≤ q ≤ α2,(2.6)

there exists a unique solution to the variational problem (2.5) in H1(Ω). The proof—
based on the continuous embedding H1(R) ⊆ C(R) and the theory of quasi-monotone
operators—can, for example, be found in [22] (see Proposition 5.1 and the subsequent
relaxation to quasi-monotone operators). Furthermore, there is an a priori estimate
for the solution, i.e., there is a constant C > 0 depending only on α2, h, f , and g,
such that

‖uq‖H1(Ω) ≤ C,(2.7)

where, in order to emphasize the fact that the solution u depends on the parameter
q, we use the notation uq or uq(x).

Note that uq can also be considered as the weak solution of the linear equation

−∇ · (q̃(x)∇u) = f in Ω,

q̃(x)
∂u

∂n
= h on Γ1,

u(x) = g on Γ2,

with q̃(x) = q(uq(x)). Already with respect to the inverse problem, we cite [3] for the
weak maximum principle: If we choose f and h such that∫

Ω

f(x)v dx+

∫
Γ1

hv dΓ1 ≤ 0

holds for all essentially nonnegative v ∈ V , we get
ess. sup

x∈Ω
uq ≤ ess. sup

x∈Γ1

max {uq, 0}(2.8)

(or uq is a positive constant). Hence, the upper bound of the temperature range
covered by uq in Ω is given by the maximum temperature on Γ1 (or by 0 if the latter
is negative).
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3. The inverse problem. Given a single boundary observation of the solution
of the direct problem, the inverse problem is to recover the physical parameter q
on the real interval covered by the temperature using the observation data. In or-
der to overcome the ill-posedness of this identification problem, we choose Tikhonov
regularization for its stabilization.

3.1. The interval of identifiability. Identifying the nonlinearity q(u) is theo-
retically and numerically challenging, since the interval, on which the parameter can
be recovered, is a priori not known. Obviously, the parameter, as a function of one
variable, cannot be reconstructed on the whole of R but at the most on the interval
[umin, umax], where umin and umax denote the extremal values of the temperature dis-
tributed over Ω̄. Outside this interval, no physical information is available, making
the identification impossible in advance.

In the case that only boundary temperature measurements are given, the data
need not necessarily cover all of [umin, umax]. If one still wants to recover the parameter
on the whole interval, the following experimental setup for indirect measurements
volunteers itself. Assume that the heat conductivity q is known up to a temperature
value u0 from possibly direct measurements but is inaccessible at temperatures above.
Then we set

g = u0 (constant)(3.1)

in (2.3). By tuning f and h in (2.1) and (2.2), we drive the temperature on the
boundary Γ1 to values higher than u0. Finally, we measure the temperature trace
along Γ1, whose maximum value we call u1.

We know from the maximum principle (2.8) that

umax = u1

holds (for f and h chosen appropriately). Unfortunately, we cannot guarantee umin =
u0 but have only umin ≤ u0. Nevertheless, since we assume to know q up to u0, we
can consider the identification of q on the interval

[umin, umax].(3.2)

3.2. Output least squares formulation. Denoting by z(x) the measured tem-
perature trace along Γ1, we want to identify the true thermal conductivity q

† out of
a set of admissible parameters, satisfying

γuq† = z,(3.3)

where γ denotes the trace operator

γ : H1(Ω)→ L2(Γ1),

u→ u|Γ1 ,

and uq† is the solution of the direct problem (2.1)–(2.3) with q = q†. We always
assume the existence of a true parameter q†, i.e., that the exact data z are attainable.
Of course, the measured (noisy) data need not be attainable.

We already mentioned in the previous section that q† can at most be identified on
the range of uq† . Nevertheless, during the numerical solution of the inverse problem,
temperature values corresponding to other parameters than q† may occur. Hence the
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parameters have to be defined on an even larger range than that of uq† . This crucial
numerical point is discussed in [15] and [16] for the case of distributed temperature
measurements.

For defining the set of admissible parameters, we choose positive constants α1 and
α2 such that the temperatures uα1 and uα2 (obtained by solving the direct problem)
contain (at least) the minimal and maximal values of the data, i.e., the measured
temperature trace on Γ1, respectively. Since α1 and α2 are constant and hence regular
parameters, regularity results (see, for instance, [17]) yield that uα1

and uα2
are

continuous on Ω̄; i.e., there are constants I1 and I2 such that

I1 ≤ uα1 ≤ I2,
I1 ≤ uα2 ≤ I2.

Then we can use the finite interval

I = [I1, I2], I1, I2 ∈ R,(3.4)

in order to define the set of admissible parameters as

K =
{
q ∈ H1(R) | α1 ≤ q(τ) ≤ α2 for τ ∈ I and q is fixed on R\I

}
.(3.5)

Here, the attribute fixed has to be understood as

q1(τ)− q2(τ) ≡ 0 on R\I(3.6)

for any q1, q2 ∈ K. The only requirement for the behavior of q on R\I is that
q ∈ H1(R) is not violated. Then any q ∈ K is continuous and bounded due to
the continuous embedding H1(R) ⊆ Cb(R). Of course, we can only identify q† on a
subdomain of I where we have information about the system from the data z. Outside
this domain, we have no information, so an identification is impossible in advance. In
this sense, we should look in (3.4) for an interval I of minimal length. Again, we refer
to [16] for a possible numerical approach.

As we shall see below, this construction of K is mainly needed for technical rea-
sons. Things would simplify if one assumes the existence (but not the exact knowl-
edge) of a finite interval I that covers all temperatures uq for q belonging to

K̃ =
{
q ∈ H1(I) | α1 ≤ q(τ) ≤ α2 for τ ∈ I

}
(3.7)

with α1, α2 appropriately chosen. This assumption may be supported by the finiteness
of physical temperatures.

For later use, we introduce the set of the indefinite integrals of the parameters
q ∈ K

S =

{
Q ∈ H2(R) | dQ

dτ
∈ K and Q(g) = 0

}
,(3.8)

where g ∈ I is the constant from (2.3), (3.1). Because of (3.5), we have a common
Lipschitz constant, namely, α2, for the functions Q ∈ S:

|Q(τ1)−Q(τ2)| ≤ α2|τ1 − τ2|, τ1, τ2 ∈ R,(3.9)

for all Q ∈ S.
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In applications, the exact data z(x) are not known precisely due to measurement
errors. Hence the actual data are available in the form

zδ(x) = z(x) + noise,

where one needs some information

‖z − zδ‖L2(Γ1) ≤ δ(3.10)

about the noise level. Due to the data noise, the ill-posedness of the inverse prob-
lem requires some type of regularization in order to determine q† in (3.3) in a sta-
ble way. Choosing Tikhonov regularization, we consider the following output-least-
squares problem.

Let the set K of admissible parameters and noisy data zδ be given as in (3.5) and
(3.10). Assume that the exact data z is attainable from a parameter q† ∈ K. Then,
for β > 0, find a parameter qδβ ∈ K that minimizes

Jβ(q) =

∫
Γ1

|γuq − zδ|2dΓ1 + β‖q − q∗‖2H1(R)(3.11)

over K for an appropriate choice of β and q∗ ∈ K. The selection of q∗ is crucial for the
results about the convergence rate in section 4. Available a priori information about
the true parameter q† should be used for the choice of q∗; i.e., q∗ should be interpreted
as some kind of a priori guess for q†. Because of (3.6), theH1(R)-norm can be replaced
by the H1(I)-norm, which in the following is denoted by ‖ · ‖I . (Other penalty terms
are possible; see section 6.) Note that q∗ also determines the “identified” parameter
q† outside the domain of information in the case of I chosen too large.

Before discussing aspects of stability and convergence of the regularized solutions
qδβ toward q

†, we make sure that the given boundary data are sufficient to identify
the parameter uniquely.

3.3. Identifiability. Investigating the identifiability of q, we are interested in
the injectivity of the parameter-to-output map

q → γuq.

We show that the temperature trace on Γ1 determines the parameter uniquely on that
range.

Theorem 3.1. Let uq1 and uq2 ∈ H1(Ω) be the solutions of the direct problem
corresponding to parameters q1 and q2 ∈ K. Then γuq1 = γuq2 implies q1 = q2 on
the range of uq1 on Γ1.

Proof. For i = 1, 2 we define wi = Qi(uqi), where Qi ∈ S is the antiderivative to
qi. Then wi satisfies wi|Γ2

= 0 and the linear equation∫
Ω

∇wi · ∇vdx =
∫

Ω

f(x)vdx+

∫
Γ1

hvdΓ1 for all v ∈ V.

Hence the difference w = w1 − w2 fulfills∫
Ω

∇w · ∇vdx = 0 for all v ∈ V,

which gives w = 0 according to the unique solvability of the homogeneous problem.
Hence we have Q1(uq1) = Q2(uq2) in Ω. From the trace theorem we get γQ1(uq1) =
γQ2(uq2); the continuity of Qi yields Q1(γuq1) = Q2(γuq2). From the assumption
γuq1 = γuq2 , we then can conclude that Q1(τ) = Q2(τ), and hence q1(τ) = q2(τ) for
τ out of the range of uq1 on Γ1.
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3.4. Existence, stability, and convergence of the regularized solutions.
Returning to problem (3.11), we have to make sure that

• a minimizer qδβ exists for any data zδ ∈ L2(Γ1) (existence);
• for a fixed regularization parameter β, the minimizers of (3.11) depend con-
tinuously on the data zδ (stability);

• the regularized solutions qδβ converge toward the true parameter q† as both
the noise level δ and the regularization parameter β (chosen by an a priori
rule) tend to zero (convergence).

The proof of the desired properties is standard (see [4], [5], [16], or [14]) once the weak
closedness of the mapping q → γuq is provided.

Proposition 3.2 (weak closedness). For qn ⇀ q ∈ K in H1(R) and γuqn ⇀ y
in L2(Γ1), we have

γuq = y.(3.12)

Proof. From (2.7) we know that the sequence {uqn} is bounded in H1(Ω). There-
fore, there exists a subsequence {uqnk

} such that

uqnk
⇀ u∗ in H1(Ω)(3.13)

with u∗|Γ2 = g. As the embedding of H
1(Ω) into L2(Ω) is compact, we also have

uqnk
→ u∗ in L2(Ω).(3.14)

First, we prove that uqnk
⇀ uq in H

1(Ω), for which we have to show that u∗ = uq.
By the help of the triangle inequality, we get∣∣∣∣∫

Ω

qnk
(unk

)∇unk
· ∇vdx−

∫
Ω

q(u∗)∇u∗ · ∇vdx
∣∣∣∣

≤
∣∣∣∣∫

Ω

{qnk
(unk

)∇unk
− q(u∗)∇unk

} · ∇vdx
∣∣∣∣(3.15)

+

∣∣∣∣∫
Ω

{q(u∗)∇unk
− q(u∗)∇u∗} · ∇vdx

∣∣∣∣ .(3.16)

Defining a linear functional l on H1(Ω) by

l(u) =

∫
Ω

q(u∗)∇v · ∇udx,

we obtain from the weak convergence (3.13) that (3.16) vanishes for k →∞.
Applying once more the triangle inequality to (3.15) yields∣∣∣∣∫

Ω

{qnk
(unk

)∇unk
− q(u∗)∇unk

} · ∇vdx
∣∣∣∣

≤
∣∣∣∣∫

Ω

{qnk
(unk

)− q(unk
)}∇unk

· ∇vdx
∣∣∣∣(3.17)

+

∣∣∣∣∫
Ω

{q(unk
)− q(u∗)}∇unk

· ∇vdx
∣∣∣∣ .(3.18)
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Because of (3.6) and the Cauchy–Schwarz inequality, we get∣∣∣∣∫
Ω

(qnk
(unk

)− q(unk
))∇unk

· ∇vdx
∣∣∣∣

≤ ‖qnk
− q‖C(I)‖unk

‖H1(Ω)‖v‖H1(Ω)

≤ C̃‖qnk
− q‖C(I)(3.19)

for a constant C̃ not depending on nk because of (2.7). Since the embedding of H
1(I)

into C(I) is compact due to the finiteness of I, (3.17) tends to zero for k →∞.
Because of the boundedness of q, we also can apply the Cauchy–Schwarz inequality

to (3.18) and obtain ∣∣∣∣∫
Ω

{q(unk
)− q(u∗)}∇unk

· ∇vdx
∣∣∣∣

≤ C‖q(unk
)∇v − q(u∗)∇v‖L2(Ω)(3.20)

by means of (2.7). Furthermore, the continuity of q and (3.14) yield limk→∞ q(unk
(x))

= q(u∗(x)) for almost every x ∈ Ω. Because of ∂v/∂xi ∈ L2(Ω) and the boundedness
of q, the dominated convergence theorem (see [9]) shows that (3.20) vanishes for
k →∞.

Summarizing these results, we obtain for k →∞ that∫
Ω

q(u∗)∇u∗ · ∇vdx =
∫

Ω

f(x)vdx+

∫
Γ1

hvdΓ1 for all v ∈ V

with u∗ − g̃ ∈ V . Hence u∗ is the weak solution of (2.1)–(2.3) for the parameters q,
f , g, and h. As the weak solution is unique, we conclude that u∗ = uq. Finally, as
uqnk

⇀ uq holds for any subsequence uqnk
, we get

uqn ⇀ uq in H
1(Ω).(3.21)

According to our assumption, we have γuqn ⇀ y in L2(Γ1); because of (3.21) and
the continuity of the trace operator γ we also know γuqn ⇀ γuq in L

2(Γ1). The
uniqueness of the weak limit yields γuq = y.

Hence existence, stability, and convergence of the regularized solutions are guar-
anteed. The special construction of the set K was only needed in order to derive
estimate (3.19). Furthermore, the proof shows that Proposition 3.2 also holds if one
considers K̃ as a set of admissible parameters.

4. Convergence rates. Opposed to the general theory [4], we introduce a weak
source condition for the convergence rate, which allows a full interpretation in sec-
tion 5. Though based on concepts from [16], both the formulation and the proof of
the convergence rate theorem are different from [16] since we now have to deal with
boundary terms.

Theorem 4.1. Assume that there exists a function

w ∈ V(4.1)

such that (
q† − q∗, ψ)

I
=

∫
Γ1

Ψ(uq†)
∂w

∂n
dΓ1 for all ψ ∈ H1(I)(4.2)
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holds, where Ψ is the antiderivative to ψ, fixed by

Ψ(g) = 0.(4.3)

Furthermore, assume that ∂w
∂n ∈ L2(Γ1) with

∆w = 0 in Ω.(4.4)

Then, with β ∼ δ, we have

‖γuqδ
β
− zδ‖L2(Γ1) = O(δ)

and

‖qδβ − q†‖I = O(
√
δ),

where qδβ is the minimizer of (3.11).
Proof. For the sake of simplicity, we now omit the explicit notation of γ. Then,

as qδβ is a minimizer of (3.11), we get Jβ(q
δ
β) ≤ Jβ(q†). This implies

‖uqδ
β
− zδ‖2L2(Γ1)

+ β‖qδβ − q∗‖2I ≤ δ2 + β‖q† − q∗‖2I ,
from which we obtain

‖uqδ
β
− zδ‖2L2(Γ1)

+ β‖q† − qδβ‖2I
≤ δ2 + β‖q† − q∗‖2I + β

{‖q† − qδβ‖2I − ‖qδβ − q∗‖2I}
= δ2 + 2β

(
q† − q∗, q† − qδβ

)
I
.(4.5)

As integration by parts yields∫
∂Ω

Ψ(uq†)
∂w

∂n
dS −

∫
Ω

Ψ(uq†)∆wdx =

∫
Ω

ψ(uq†)∇uq†∇wdx,

(4.3) and (4.4) give ∫
Γ1

Ψ(uq†)
∂w

∂n
dΓ1 =

∫
Ω

ψ(uq†)∇uq†∇wdx

for the right-hand side of the source condition (4.2). Hence, choosing ψ = q† − qδβ in
the source condition (4.2) leads to(

q† − q∗, q† − qδβ
)
I
=

∫
Ω

(
q†(uq†)− qδβ(uq†)

)∇uq†∇wdx.(4.6)

Using the direct problem formulation (see (2.5)) for uqδ
β
and uq† , we see by taking the

difference that ∫
Ω

(
qδβ(uqδ

β
)∇uqδ

β
− q†(uq†)∇uq†

) · ∇wdx = 0(4.7)

holds. Multiplying (4.6) by β and adding zero in the form of (4.7), it follows that

β
(
q† − q∗, q† − qδβ

)
I
= β

∫
Ω

(
q†(uq†)− qδβ(uq†)

)∇uq†∇wdx
+ β

∫
Ω

qδβ(uqδ
β
)∇uqδ

β
· ∇wdx

− β
∫

Ω

q†(uq†)∇uq† · ∇wdx.(4.8)
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We simplify the right-hand side of (4.8) to

I1 = β

∫
Ω

(
qδβ(uqδ

β
)∇uqδ

β
− qδβ(uq†)∇uq†

) · ∇wdx.
Using the antiderivative Qδβ ∈ S (see (3.8)) of qδβ , we obtain

I1 = β

∫
Ω

(∇Qδβ(uqδ
β
)−∇Qδβ(uq†)

) · ∇wdx.
Integration by parts leads to

I1 = β

∫
∂Ω

(
Qδβ(uqδ

β
)−Qδβ(uq†)

)∂w
∂n

dS

−β
∫

Ω

(
Qδβ(uqδ

β
)−Qδβ(uq†)

)
∆w dx.

Because of uqδ
β
|Γ2
= uq† |Γ2 = g and (4.4), we finally obtain

I1 = β

∫
Γ1

(
Qδβ(uqδ

β
)−Qδβ(uq†)

)∂w
∂n

dΓ1.

Next, we estimate I1 by (3.9) and the Cauchy–Schwarz inequality in order to get

|I1| ≤ βα2‖uq† − uqδ
β
‖L2(Γ1)

∥∥∥∥∂w∂n
∥∥∥∥
L2(Γ1)

.

Applying the triangle inequality and Young’s inequality

a · b ≤ εa2 + b
2

4ε

for any ε > 0, we obtain

|I1| ≤ βα2‖uqδ
β
− zδ‖L2(Γ1)

∥∥∥∥∂w∂n
∥∥∥∥
L2(Γ1)

+βα2‖zδ − uq†‖L2(Γ1)

∥∥∥∥∂w∂n
∥∥∥∥
L2(Γ1)

≤ εα2
2δ

2 +
β2

2ε

∥∥∥∥∂w∂n
∥∥∥∥2

L2(Γ1)

+ εα2
2‖uqδ

β
− zδ‖2L2(Γ1)

.

Using this estimate for |I1|, we get from (4.5) that

‖uqδ
β
− zδ‖2L2(Γ1)

+ β‖qδβ − q†‖2I
≤ δ2 + 2α2

2ε‖uqδ
β
− zδ‖2L2(Γ1)

+2α2
2εδ

2 +
β2

ε

∥∥∥∥∂w∂n
∥∥∥∥2

L2(Γ1)

,
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which is equivalent to {
1− 2α2

2ε
} ‖uqδ

β
− zδ‖2L2(Γ1)

+β‖qδβ − q†‖2I ≤ δ2 + 2εα2
2δ

2

+
β2

ε

∥∥∥∥∂w∂n
∥∥∥∥2

L2(Γ1)

.

With ε < 1
2α2

2
we finally obtain that

‖uqδ
β
− zδ‖L2(Γ1) = O(δ)(4.9)

(hence, by (3.10), also ‖uqδ
β
− z‖L2(Γ1) = O(δ)) and

‖qδβ − q†‖I = O(
√
δ)(4.10)

hold. The constants in the O-terms in (4.9) and (4.10) can be derived from the
proof.

Now the theoretical analysis of our identification problem is complete. We have
shown stability, convergence, and given conditions on the rate of convergence. In
the next section, we give sufficient conditions for the existence of a source function w
that satisfies (4.1)–(4.4), which allows the interpretation of the source condition (4.2).
Again, we modify the approach of [16] appropriately.

5. Discussion of the source condition. Opposed to the general theory (com-
pare with (1.2)), where Fréchet-differentiability of the forward operator F and Lips-
chitz continuity of F ′(q) already require a more regular parameter, the formulation
of (4.2) itself does not impose any more regularity on q∗ and on q† than that they be
in H1(I). Furthermore, in the general theory, the adjoint of F ′(q†) is needed, which
makes the source condition usually very difficult to interpret. The new approach uses
only the parameter-to-solution map uq† itself, which has a direct physical meaning,
and not its linearization.

Usually, source conditions such as (1.2) mean severe restrictions on the parameter
and are readily interpretable only in the one-dimensional case. We next construct a
source function w for (4.2), even for the higher dimensional case, under quite natural
conditions. The interpretation is based on our work in [16] but now for single boundary
measurements.

If we denote the range of the true temperature uq† on Γ1 (and hence on Ω (see

section 3.1)) by the interval I† = [I†min, I
†
max], i.e.,

I†min = min
x∈Γ1

uq† and I
†
max = max

x∈Γ1

uq† ,

we have

I† ⊆ I.

If we can assume to know the true parameter q† outside the range I† already from
q∗, i.e., for ρ := q† − q∗ we have

ρ = 0 for τ ∈ I\I†,(5.1)
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the source condition (4.2) turns to

(ρ, ψ)I† =

∫
Γ1

Ψ(uq†)
∂w

∂n
dΓ1 for all ψ ∈ H1(I).(5.2)

This is a very natural assumption as outside of I† the parameter is of no use for the
physical system. Also, from the inverse point of view, we can expect to identify only
the parameter on the range of the true temperature as outside of I† no information
is available. Hence on I\I† q† is already determined by the choice of q∗.

We now assume that

q† − q∗ ∈ H4(I)(5.3)

and require the trace of the true temperature uq† to satisfy

γuq† : Γ1 → I† is Lipschitz.(5.4)

Then, because of the compact embedding H4(I†) ⊂ C3(I†), our assumptions on the
a priori knowledge about ρ = q† − q∗ (see (5.1)) result in

ρ(j)(I†min) = ρ
(j)(I†max) = 0 for j = 0, 1, 2, 3.(5.5)

Because of assumption (5.4), the change of variables formula (see [9], [16]) can be
applied with the transformation t = γuq† , whose level-sets are isotherms on Γ1. This
gives ∫

Γ1

s(x)Jγuq†(x)dΓ1 =

∫
I†

∫
γu−1

q† {τ}
sdHn−2

 dτ(5.6)

for any Ln−1-summable function s : Rn−1 → R, where Jγuq† denotes the Jacobian
of γuq† and H

n−2 is the (n − 2)-dimensional Hausdorff measure. Next, we have to
find a suitable function s in (5.6) for our purpose. First, we define m to be the
(n− 2)-dimensional Hausdorff-measure of the level sets of γuq† , i.e.,

m(τ) =

∫
γu

q†
−1{τ}

dHn−2 for τ ∈ I†,

and assume the trace of uq† on Γ1 to behave such that

(ρ′′′(γuq†)− ρ′(γuq†)) ·
1

m(γuq†)
· Jγuq† ∈ L2(Γ1).(5.7)

The only term that might cause a violation of (5.7) is 1
m(γu

q† ) . In two dimensions

(n = 2), the Hn−2-measure is the counting measure. Then we have m(τ) �= 0 on I†
as every τ ∈ I† is at least attained once by uq† for x ∈ Γ1 (by definition). This is
distinct from [16], where even in two dimensions condition (5.7) cannot be guaranteed
a priori. In three dimensions (5.7) is certainly fulfilled if m(γuq†) is bounded away
from 0, i.e., if all temperatures in I† are assumed on sets of nonvanishing H1-measure
and if these measures depend in a reasonable way on the temperatures. This is a
(weak) regularity condition on the measures of the isotherms, and it is reasonable,
since one cannot expect identifiability of q† for temperatures which are assumed only
on a “small” set (of H1-measure zero). But even such “small isotherms” are not
excluded by (5.7): The only temperature values possibly attained by γuq† at a set
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of H1-measure zero are I†min or I
†
max. This is a consequence of the continuity of the

trace of uq† on Γ1 and the intermediate value theorem. However, both the first term
in the product (see (5.5)) and Jγuq† (necessary condition for an extremum) vanish
in the respective critical situation. Now if the product of these two expressions tends
faster to zero than m(γuq†), the L

2-boundedness in (5.7) is maintained even then.
Now we again omit the explicit notation of γ and look at the Poisson equation

∆w = 0 in Ω,(5.8)

∂w

∂n
= (ρ′′′(uq†)− ρ′(uq†)) ·

1

m(uq†)
· Juq† on Γ1,(5.9)

w = 0 on Γ2,(5.10)

for which the existence of a unique (weak) solution w ∈ V is guaranteed because of
(5.7). Similarly as in [16], one can show that the solution w of (5.8)–(5.10) satisfies
the source condition (4.2). Note that the conditions (4.1) and (4.4) of the convergence
rate theorem are automatically fulfilled by this approach. The essential assumptions
needed for the proof are

• sufficient smoothness of q† − q∗ as required in (5.3);
• sufficient smoothness of the trace of uq† on Γ1: (5.4);
• sufficient knowledge about q† on the boundary of the temperature interval
where measurements are available: (5.5);
• condition (5.7) (needed only for n = 3), which essentially says that the
isotherms of uq† on Γ1 depend in a sufficiently regular way on the temperature
level, where this regularity is rather weak.

Since under these conditions the source condition can be verified, the convergence
rates from Theorem 4.1 are valid.

In any dimension, the heat dependent conductivity is identified as a function of
one variable. Hence it is remarkable that the interpretation edges down more in two
dimensions, where the boundary temperature represents only a one-dimensional data
manifold, than in three, where a two-dimensional data manifold is available.

6. Variants. In section 2, we introduced a nonlinear mixed boundary problem
for which we considered in section 4 a constant boundary temperature u0 on Γ2 for
technical reasons. From the practical (with respect to industry) point of view, the
pure Neumann-type problem

−∇ · (q(u)∇u) = f(x) in Ω,(6.1)

q(u)
∂u

∂n
= h on ∂Ω(6.2)

could be more realistic, where (6.2) then describes, e.g., the cooling of a steel strand
(see [11]). If we choose the space of test functions V as

V =

{
v ∈ H1(Ω) |

∫
Ω

vdx = 0

}
and require ∫

Ω

fdx+

∫
∂Ω

hdS = 0,

the existence of a unique weak solution uq in V to (6.1)–(6.2) can be guaranteed by
[22]. Then the theory developed in sections 3 and 4 remains valid if we replace Γ1 by
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∂Ω. This means that the measurements are now done on all of ∂Ω, and the Tikhonov
functional is

Jβ(q) =

∫
∂Ω

|uq − zδ|2dS + β‖q − q∗‖2I .

The source condition(
q† − q∗, ψ)

I
=

∫
∂Ω

Ψ(uq†)
∂w

∂n
dS for all ψ ∈ H1(I),(6.3)

which yields the rates

‖uqδ
β
− zδ‖L2(∂Ω) = O(δ)

and

‖qδβ − q†‖I = O(
√
δ),

can be interpreted as in section 5. Note that in order to show the existence of a
unique (weak) solution to problem (5.8)–(5.10) in V (with Γ1 = ∂Ω, Γ2 = ∅), we now
in addition have to check ∫

∂Ω

∂w

∂n
dS = 0.(6.4)

However, this follows from applying the coarea formula (5.6) with

s(x) = (ρ′′′(uq†(x))− ρ′(uq†(x)))
1

m(uq†(x))
,

which gives ∫
∂Ω

∂w

∂n
dS =

∫
I†
(ρ′′′(τ)− ρ′(τ)) 1

m(τ)
m(τ)dτ

=

∫
I†
(ρ′′′ − ρ′)dτ

= 0,(6.5)

where the last equality holds because of (5.5).
Finally, we change the settings of the direct problem to the pure Dirichlet case:

−∇ · (q(u)∇u) = f(x) in Ω,(6.6)

u = g on ∂Ω.(6.7)

The existence of a unique solution in H1(Ω) is given by the theory quoted in section 2.
As now the temperature flux q(u) ∂u∂n is measured on (all of) the boundary ∂Ω, we need
a higher regularity of the solution uq than in our previous discussions if we still want
to measure our data in the L2-setting, i.e., consider that the measurements are in L2.
If we choose the set of admissible parameters

K̂ =

{
q ∈ H2(I) | α1 ≤ q(τ) ≤ α2 for τ ∈ I ∧

∥∥∥∥dqdτ
∥∥∥∥
L∞(I)

≤ ∞
}
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and require

g ∈ H3/2(∂Ω),

then, for q ∈ K̂, the existence of a unique solution uq even in H2(Ω) can be shown
(see [2]). Now, the continuous embedding H2(R) ⊆ C1(R) and the trace theorem
yield

q(uq)
∂uq
∂n
∈ H1/2(∂Ω).

Hence the Tikhonov functional

Jβ(q) =

∫
∂Ω

|γquq − zδ|2dS + β‖q − q∗‖2I
with

γq : H
2(Ω)→ L2(∂Ω),

u→ q(u)
∂u

∂n

is meaningful. Under the source condition(
q† − q∗, ψ)

I
=

∫
∂Ω

Ψ(g)
∂w

∂n
dS for all ψ ∈ H1(I)(6.8)

(g now is no longer needed to be constant), the rates

‖qδβ − q†‖I = O(
√
δ)

and

‖γqδ
β
uqδ

β
− zδ‖L2(∂Ω) = O(δ)

can be shown. Note that now (6.8) does not even depend explicitly on the unknown
temperature uq† , which is a major difference from the theory of convergence rate
developed so far. Once more, the source function w ∈ H1(Ω) can be found as the
solution of

∆w = 0 in Ω,

∂w

∂n
= (ρ′′′(uq†)− ρ′(uq†)) ·

1

m(uq†)
· Juq† on ∂Ω,

for the proof of the convergence rate the variational formulation∫
Ω

q(u)∇u · ∇vdx =
∫

Ω

h(x)vdx+

∫
∂Ω

q(u)
∂u

∂n
vdS

with test functions v ∈ H1(Ω) is needed. The advantage of considering pure Dirichlet
data for the direct problem is that the condition

γuq† : ∂Ω→ I† is Lipschitz

can now be automatically satisfied by choosing the problem input g regular enough
because of

γuq† = g.(6.9)

Furthermore, we now can drive the interval I† on which we want to identify the
parameter in a straightforward way by the choice of g.
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Finally, we mention that in all our optimization problems, the H1-regularization
term can be replaced by a L2-term; i.e., we can consider

minJ(q) :=
{
L2-norm of residual

}2
+ β

∫
I

(q − q∗)2dτ.(6.10)

Results for stability, convergence, and rate of convergence can be proven in a com-
pletely analogous way, where the H1-scalar product (q† − q∗, ψ)I in (4.2) is replaced
by the L2-scalar product

∫
I
(q† − q∗)ψdτ . A solution to the source condition can be

constructed as in section 5 under even weaker regularity assumptions on q†.
The existence of minimizers of (6.10) cannot be guaranteed by Theorem 3.2, but

this difficulty can be resolved by incorporating a tolerance η into the minimization,
i.e., by replacing minimizers of (6.10) by elements qδβ,η such that

J(qδβ,η) ≤ inf J(q) + η.
As long as η = O(δ2), all proofs carry over (see [5]). This can of course also be done
for (3.11).

7. Numerical experiments. In order to test the identification of the heat con-
ductivity by Tikhonov regularization, we carry out numerical simulations using the
temperature trace u|Γ1 as data. Considering a rectangular domain Ω = [0, 0.5]× [0, 2]
with boundaries Γ1 = {0}× [0, 2]∪ [0, 0.5]×{2}∪{0.5}× [0, 2] and Γ2 = [0, 0.5]×{0}
and a temperature field

uq†(x, y) =
y

2
,(7.1)

we want to recover the nonlinearity in

−∇ · ((2 + cos(2πu))∇u) = π · sin(πy) in Ω,
(2 + cos(2πu))

∂u

∂n
= 0 on Γ1,

u = 0 on Γ2

from “observations” of

u|Γ1 .(7.2)

While we already know the true data uq† |Γ1
by construction, a sequence of noisy data

zδi is generated by artificially perturbing uq† |Γ1 with high frequency noise. Then the

regularized solutions qδiβ are defined as the minimizers of

Jβ(q) =

∫
Γ1

|γuq − zδi |2dΓ1 + β‖q − q∗‖2I .(7.3)

Though the true data uq† |Γ1 (and hence the temperature distribution uq†) cover only
the range I† = [0, 1], we choose a larger interval

I = [−0.2, 1.2](7.4)

in (7.3), as both noisy data and computed forward solutions during the minimiza-
tion procedure may exceed I†. Of course, we can only expect to recover the heat
conductivity on I†; that outside it will be determined by the initial guess q∗. With

q∗ = 3,(7.5)
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Fig. 1. q† and q∗.
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Fig. 2. qnonoise identified from exact data.

we then have (see Figure 1)

q†(τ) =
{
2 + cos(2πτ) for τ ∈ I†,
3 for τ ∈ I\I†.(7.6)

Since we know the exact parameter q†, we can compute the error ‖q† − qδiβ ‖H1(I),
allowing us to investigate the behavior of Tikhonov regularization with respect to
stability and rate of convergence. Note that we at least satisfy condition (5.5) for j =
1, 2 by the choice of q∗ and in addition conditions (5.4) and (5.7) by the construction
of our example.

For the minimization of (7.3) we use a quasi-Newton method, approximating the
Hessian matrix of Jβ by a BFGS-update formula in each iteration step k. Given a
search direction pk by that rule, the parameter qk is updated by

qk+1 = qk + αkpk

until a minimum is reached. In order to raise the convergence speed of the optimization
procedure, we also use a line search algorithm for the determination of the stepsize
αk. A more detailed discussion can be found in [15].

The first computations were done for β = 0, i.e., the approach to identify the
parameter by simply minimizing the output least squares term∫

Γ1

|γuq − z(δ)|2dΓ1.

For the case of exact data z = uq† |Γ1 , the result qnonoise is shown in Figure 2. As
predicted by our theory, the parameter is identifiable from observations of the temper-
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Fig. 4. Solution qnoreg after 80 steps.

ature trace on the boundary, but of course only on the interval I†, where the data is
available. Outside, the solution is given by the initial guess q∗. Figures 3 and 4 illus-
trate the ill-posedness of the identification problem. Perturbed data zδ7 with 4.61%
noise already have a dramatic impact on the recovery process. On the left-hand side,

the relative error ‖q
†−qk‖I
‖q†‖I is plotted vs. the iteration index k in the optimization

routine; the right-hand sides records the result qnoreg after 80 steps. While the error
in the residual ‖γuqk − zδ‖L2(Γ1) (not shown) is monotonically decreasing with k, the
error in the parameter starts to increase after some 20 steps, leading to a solution that
differs from q† by more than 60% measured in the H1(I)-norm. Only by introducing
the penalty term

β‖q − q∗‖2I
(or, alternatively, stopping the iteration at “the right time” (see [4] for an introduc-
tion to iterative regularization methods)) these high numerical instabilities can be
overcome. Though there are sophisticated methods for choosing the regularization
parameter β from the knowledge of the noise level δ and the data zδ (see [20]) itself,
we content ourselves with the a priori choice

βi = 4 · 10−4 · δi(7.7)

for the sequence of perturbed data zδi . This relation was found by trial and error,
which is sufficient for our purposes. In order to test the rate of convergence be-
havior of Tikhonov regularization predicted by Theorem 4.1, we need only to meet
the requirement β ∼ δ. Figure 5 shows the error ‖q† − qδiβi

‖I plotted vs. the noise
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Fig. 6. Regularized solutions q
δi
βi
.

level δi = ‖γuq† − zδi‖L2(Γ1). The solid line indicates that the convergence speed

‖q† − qδiβi
‖I = O(

√
δi) from Theorem 4.1 is obeyed, even though not all conditions of

section 5 are satisfied by our example. This gives hope that a source function w in The-
orem 4.1 can be found under even weaker assumptions than those made in section 5.
Finally, Figure 6 shows the regularized solutions qδiβi

for δ1 = 0.0132, δ4 = 0.0239, and
δ7 = 0.0529.
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Abstract. Implicit Runge–Kutta methods for the dual problem of elastoplasticity are analyzed
and classified. The choice of Runge–Kutta time integration is inspired by the problem structure,
which consists of a coupled system of balance equations and unilaterally constrained evolution equa-
tions and which can be viewed as an infinite-dimensional differential-algebraic equation. Focussing on
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1. Introduction. We analyze implicit Runge–Kutta methods for an infinite-
dimensional system of constrained evolution equations, the so-called dual problem
of elastoplasticity. Our approach discretizes only the time axis and leaves the space
variables continuous. In this way, we obtain a grid-independent formulation and lay
the foundation for an implementation in the fashion of Rothe’s method. The main
results are first existence and uniqueness of the numerical solution for coercive Runge–
Kutta methods, second contractivity preservation for algebraically stable methods,
and third convergence for methods that feature both properties as well as a certain
stage order.

Elastoplastic models are used for materials where the deformation process shows
a time-dependent and irreversible behavior. Applications comprise, e.g., the stretch
formation of metal sheets, wear effects in turbine blades, and the behavior of mi-
cromechanical devices. The mathematical model consists of a coupled system of bal-
ance equations and unilaterally constrained evolution equations, where the first set
of equations stands for the balance of momentum and the second for the properties
of the material under consideration [16]. We consider here materials that satisfy the
principle of maximum plastic dissipation and possess a quadratic internal free energy.

In elastoplasticity, numerical simulation is mostly based on the method of lines [15,
16]. More precisely, one discretizes the balance equations by the finite element method
(FEM) and reduces at the same time the evolution equations to the quadrature nodes
of the grid. In these nodes, the evolution is integrated in time, with the implicit Euler
as standard method and the return-mapping scheme for the handling of the unilateral
constraint. Due to this constraint, the so-called yield condition, one deals actually
with a differential-algebraic equation (DAE) of index 2 [8, 12].

Numerical experiments [4, 7, 18] indicate that at least order 2 is possible for
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Fig. 1.1. Dual problem and viscoplastic regularization.

the time integration. Clearly, higher order methods can use larger time steps than
the implicit Euler method and promise a more efficient simulation, particularly if a
variable stepsize algorithm is employed. But which methods should be applied to
elastoplasticity?

Before discretization, the equations can be viewed as an infinite-dimensional sys-
tem of DAEs or as a PDAE (partial differential-algebraic equation). With the nu-
merical analysis of DAEs in mind (see [3, 10, 14]), we focus therefore on the versatile
class of implicit Runge–Kutta methods. In combination with the method of lines, this
choice turned out to be successful [4, 7], and our objective is now the extension to
Rothe’s method, i.e., the direct application to the infinite-dimensional problem.

For the special case of the implicit Euler method, existence and uniqueness of the
numerical solution have been shown recently [9]. Going one step further, we present
results for the large class of implicit Runge–Kutta methods. In particular, we use the
notions of coercivity and of algebraic stability to characterize those methods that are
applicable in elastoplasticity. Various time integration methods become available in
this way, among them Gauss, Radau, Lobatto, and several DIRK (diagonally implicit
Runge–Kutta) methods.

Many authors have considered numerical methods in elastoplasticity. We mention
here the recent monograph of Han and Reddy [9], which serves as extensive reference
and from which we adopted both notation and some fundamental techniques. Wieners
[18, 19] concentrated on multigrid methods for large-scale problems but also intro-
duced, in cooperation with Ellsiepen [7], DIRK methods for the time integration.
Moreover, Carstensen [5] coupled FEM and BEM for this problem class and studied
domain decomposition techniques, while Armero and Pérez-Foguet analyzed closest
point projection algorithms [1, 13]. The monograph of Simo and Hughes [16] repre-
sents the basic reference of the engineering literature.

Figure 1.1 is a road map of the paper. It illustrates the relation between the
original problem formulation and its regularized counterpart, the so-called viscoplastic
regularization due to Duvaut and Lions [6]. The latter has no yield condition and
is thus much easier to analyze. Using a limit process, the results on the regularized
problem both in the time-continuous and in the time-discrete case can be carried over
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to the original problem.
More specifically, the outline of the paper is as follows: Section 2 summarizes

the mathematical model and the necessary framework. On one hand, the principle
of maximum plastic dissipation leads to the aforementioned coupled system, which
we express, following the approach of [9], in terms of displacement and generalized
stress. The corresponding weak form defines the dual problem of elastoplasticity. On
the other hand, the viscoplastic regularization yields a time-dependent saddlepoint
problem. We also provide in this section some basic results on the existence and
uniqueness of solutions.

In section 3, the implicit Runge–Kutta discretization is introduced, and the main
results of the paper are stated. It turns out that the coefficient matrix of the Runge–
Kutta method plays a crucial role for existence, contractivity, and convergence of the
numerical solution. The existence proof makes use of the viscoplastic regularization
and starts with the corresponding time-discrete saddlepoint problem. Letting the
viscosity parameter tend to zero, we obtain the desired result for the variational
inequality that stems from the discretization of the dual problem. The stability and
convergence results, however, use techniques from the theory of B-stability for ODEs.
For better readability, the proofs are given in separate sections 4 and 5. A conclusion
closes the paper.

2. Mathematical model. Kinematics, dynamics, and material law fully de-
scribe the elastoplastic deformation process. More precisely, the kinematic equation
determines the geometric properties of the deformation, the dynamic equation ex-
presses the balance of momentum, and the constitutive equations characterize the
material under consideration. In this section, we state these three ingredients of
the mathematical model and summarize some important properties. We adopt the
notation of [9] and refer the interested reader to [9, 11, 16] for more details.

2.1. Kinematic relations and balance law. Let the undeformed elastoplastic
body occupy the region Ω ⊂ R3. The deformation maps each material point x ∈ Ω
at time t to its current position x+ u(x, t) with displacement field u. Without loss of
generality, homogeneous Dirichlet boundary conditions are assumed,

u = 0 on ∂Ω.

Here and in the following, we mostly drop the arguments x and t for convenience.
We consider small strains only, and consequently the (total) strain tensor ε is

given by

ε = ε(u) :=
1

2

(∇u+∇uT ) .(2.1)

By a tensor we mean usually a second order tensor in matrix representation, i.e.,
ε = (εij)3×3. Like the strain tensor ε, the stress tensor σ also depends on time t, i.e.,
σ = σ(x, t).

Material laws or constitutive equations relate stress and strain. We will come
to this point in the next subsection. Before that, however, we state the balance of
momentum for the quasi-static case,

div σ + f = 0 in Ω,(2.2)

where f = f(x, t) denotes some given volume force.
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2.2. Constitutive equations. The constitutive equations of an elastoplastic
material follow from thermodynamical considerations; see [9, 11, 17]. One basic as-
sumption is that the total strain ε of (2.1) splits into an elastic part εe and a plastic
part εp,

ε = εe + εp.

Using plastic strain εp and a vector of r so-called internal variables ξ = (ξ1, . . . , ξr),
the state of a material point at a certain instant of time is modelled by the generalized
plastic strain P := (εp, ξ).

Another important quantity is the internal free energy function ψ = ψ(εe, ξ),
which comprises the usual stored energy function of elasticity and additional con-
tributions from processes like hardening. Furthermore, the free energy defines the
generalized stress Σ := (σ, χ) with stress tensor σ and conjugate force χ by

σ =
∂

∂εe
ψ,(2.3)

χ = − ∂

∂ξ
ψ.(2.4)

One also says that the generalized stress is conjugate to the generalized strain.
As an example, consider linear hardening, where the quadratic internal free energy

reads

ψ(εe, ξ) =
1

2
εe : C : εe︸ ︷︷ ︸
=:ψe(εe)

+
1

2
ξ ·H · ξ︸ ︷︷ ︸
=:ψp(ξ)

,(2.5)

with elasticity tensor C, regular r × r symmetric positive-definite matrix H of hard-
ening moduli, and hardening variables ξ. Here we abbreviate tensor products by a
“:”, whereas a “·” (or a blank) stands for matrix-vector products.

In case of linear hardening, the derivative (2.3) yields Hooke’s law

σ = C : (ε− εp),(2.6)

and (2.4) becomes

χ = −Hξ.

In this paper, we restrict the discussion to materials that possess an internal free
energy of the form (2.5).

At this point, all relevant variables of the constitutive equations have been intro-
duced. However, a restriction on the generalized stress Σ has still to be taken into
account. More specifically, Σ is required to lie in the set E of admissible generalized
stresses. This convex set is characterized by

E = {Σ |φ(Σ) ≤ 0}(2.7)

with convex function φ, the so-called yield function. In the particular example of
linear isotropic hardening where we have only one scalar conjugate force χ and a
scalar hardening modulus H, the yield function is

φ(σ, χ) = ‖dev σ‖ −
√

2

3
(σ0 − χ),(2.8)
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with given constant σ0 > 0 and dev σ = σ − 1/3 tr σ.
The constitutive equations follow now from the local principle of maximum plastic

work. The rate of plastic work at a point in the material body is given by

W (Ṗ ) = Σ : Ṗ := σ : ε̇p + χ · ξ̇ .

Given a rate of change Ṗ in the generalized plastic strain, the actual stress Σ ∈ E
maximizes the plastic work. In other words, every plastic deformation process stores
as much energy as possible:

W (Ṗ ) = max
T∈E
{T : Ṗ}.(2.9)

For the current generalized stress Σ the following therefore holds:

Σ : Ṗ ≥ T : Ṗ ∀T ∈ E.(2.10)

Using the method of Lagrange multipliers, it is easily concluded that, for the
quadratic free energy (2.5) and the admissible domain (2.7), the Kuhn–Tucker opti-
mality conditions for the maximum principle (2.10) yield the local constitutive equa-
tions

σ̇ = C : ε̇− C :
∂

∂σ
φ(σ, χ)γ,

χ̇ = −H ∂

∂χ
φ(σ, χ)γ,(2.11)

0 ≥ φ(σ, χ), γ ≥ 0,

0 = φ(σ, χ)γ.

With the Lagrange multiplier γ as an additional unknown, the system (2.11) is a
differential-algebraic equation with inequality constraint and complementarity condi-
tion. The differential equation for σ is the analogue of the flow rule for plastic strain
εp, and the equation for χ is the hardening rule.

As shown in [4, 12], the index of the DAE (2.11) is 2 if the constraint is active, i.e.,
if 0 = φ(σ, χ). Then, the Lagrange multiplier γ is positive and the plastic deformation
proceeds. Otherwise, if the constraint is not active, the Lagrange multiplier vanishes
and we have σ̇ = C : ε̇ and χ̇ = 0, which means that the material is in an elastic
phase.

We want to give two remarks here. First, though the DAE (2.11) inspires our
choice of time discretization, we prefer to work in a variational setting in the following.
There, the Lagrange multipliers actually do not show up anymore. And second, the
DAE (2.11) is closely related to a singularly perturbed ODE that is obtained from a
regularization technique, the so-called Perzyna formulation. Another regularization
due to Duvaut and Lions [6], which we call here viscoplastic regularization, will play
a key role in the existence proof in section 4.

2.3. Viscoplastic regularization. In contrast to the elastoplastic case, vis-
coplastic materials feature a rate-dependent behavior. Their constitutive equations
are derived by adding a regularization Jη to the principle (2.9),

Wη(Ṗ ) = max
Σ

({Σ : Ṗ} − Jη(Σ)).(2.12)
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A common choice for the convex function Jη is the Yosida regularization

Jη(Σ) =
1

2η
‖Σ−ΠΣ‖2,(2.13)

where Π denotes the orthogonal projection onto the elastic domain E and η is the
regularization parameter [6, 9, 11, 16]. Obviously, for η tending to zero, the penalty
term Jη(Σ) tends to infinity if Σ /∈ E.

For further use below, we mention an important property of the Yosida regular-
ization. Since Jη is convex, its Gâteaux derivative J ′η is monotone and given under
the Riesz isomorphism by

J ′η(Σ) =
1

η
(Σ−ΠΣ).

The monotonicity is expressed as

(J ′η(Σ)− J ′η(T ),Σ− T ) ≥ 0 for all generalized stresses Σ, T ;(2.14)

see [9, Chapter 8.1] for details.
After this outline of the mathematical model, we pass now to the weak form and

specify the appropriate function spaces.

2.4. The dual problem of elastoplasticity. We require stress, strain, internal
variables, and conjugated forces to be square-integrable on the domain Ω at any time.
Consequently, we introduce the space

S := {τ = (τij)3×3 : τij = τji, τij ∈ L2(Ω)}

for the symmetric tensors, and the space

M := {µ = (µj) : µj ∈ L2(Ω), j = 1, . . . , r}

for the conjugated forces. The product space

T := S ×M,

which is like the other spaces endowed with the natural L2 inner product (·, ·), thus
contains the square-integrable generalized stresses. Furthermore, we define the convex
subset

P := {T = (τ, µ) ∈ T : (τ, µ) ∈ E a.e. inΩ}

for admissible states T .
In order to derive the variational formulation, we multiply the balance of momen-

tum (2.2) by test functions belonging to

V = {v ∈ H1(Ω)3 : v = 0 on ∂Ω}.

Using the Gauss divergence theorem, we arrive at

−
∫

Ω

ε(v) : σ dx = −
∫

Ω

f(t) · v dx ∀v ∈ V.
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From the principle of maximum plastic work (2.10), we obtain the variational inequal-
ity

0 ≤
∫

Ω

(σ − τ) : ε̇p + (χ− µ) · ξ̇ dx

= −
∫

Ω

(σ − τ) : C−1σ̇ + (χ− µ) ·H−1χ̇ dx+

∫
Ω

(σ − τ) : ε̇ dx

for all T = (τ, µ) ∈ P. To get a more compact notation, the integrals in the variational
inequality are abbreviated by the bilinear forms

A : T × T → R, A(Σ, T ):=

∫
Ω

σ : C−1τ dx+

∫
Ω

χ ·H−1µdx,

b : V × S → R, b(v, τ) := −
∫

Ω

ε(v) : τ dx

for Σ = (σ, χ) and T = (τ, µ). Finally, the integral on the right-hand side of the
balance equation is identified with a time-dependent linear operator on the dual space,
that is,

l(t) : V → R, 〈l(t), v〉 = −
∫

Ω

f(t) · v dx.

Now we can state the dual problem as follows.
Dual problem. Given l ∈ H1(0, tf ;V

′) with l(0) = 0, find (u,Σ) = (u, σ, χ) :
[0, tf ]→ V ×P with (u(0),Σ(0)) = (0, 0) such that for almost all t ∈ (0, tf ) we have

b(v, σ(t)) = 〈l(t), v〉 ∀v ∈ V,(2.15)

A(Σ̇(t), T − Σ(t)) + b(u̇(t), τ − σ(t)) ≥ 0 ∀T = (τ, µ) ∈ P.(2.16)

The name “dual,” introduced in [9], is related to the use of the conjugate quan-
tities, i.e., the generalized stress, instead of the primal unknowns plastic strain εp

and internal variables ξ. Note that the dual problem can be viewed as an abstract
constrained initial value problem. The generalized stress Σ is the main quantity of
interest, whereas the displacement u is not unique since only the velocity u̇ appears
in the formulation.

2.5. Basic properties. The following assumptions on the shape of the admis-
sible domain P are a fundamental prerequisite.

Safe Load Condition SLC. There is a constant c > 0 such that for any
T1 = (τ1, µ1) ∈ P and any stress tensor τ2 ∈ S there exists a conjugated force µ2 ∈M
such that

‖µ2‖ ≤ c‖τ2‖ and (τ1, µ1) + (τ2, µ2) ∈ P.
The safe load condition is fulfilled for various yield conditions, particularly for

linear isotropic hardening (2.8). In some sense, it is necessary to complete the dual
problem. The same holds true for the next assumption, which refers to the set E from
(2.7).

Assumption A1. For any T ∈ E and any κ ∈ [0, 1), we have κT ∈ E and

inf
x∈Ω

dist(κT (x), ∂E) > 0.(2.17)
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Under these assumptions, whose specific forms were first introduced in [9] and
are easier to check than other variants, there exists a solution of the dual problem as
follows.

Theorem 2.1. If the safe load condition SLC and Assumption A1 are fulfilled,
then the dual problem has a solution (u,Σ) and Σ is unique.

We briefly outline the idea of the proof given in [9] since our approach in section
4 will follow the same lines. The key idea is the viscoplastic regularization (2.12),
which is an unconstrained optimization problem. Therefore taking the derivative of
(2.12) and setting it to zero yields the variational equality

A(Σ̇(t), T ) +
(
J ′η(Σ(t)), T

)
+ b(u̇(t), τ) = 0 ∀T = (τ, µ) ∈ T ,(2.18)

b(v, σ(t)) = 〈l(t), v〉 ∀v ∈ V.(2.19)

The balance equation (2.15) has been added to show the connection to a saddlepoint
problem. Next, for the bilinear form b there exists a constant βb > 0 such that

sup
0 �=τ∈S

|b(v, τ)|
‖τ‖S ≥ βb‖v‖V ∀v ∈ V.(2.20)

This is the Babuška–Brezzi condition, but note that b satisfies (2.20) only on S and
not on T . For this reason, we need in addition the SLC. This assumption guarantees
a solution σ of (2.19) in the orthogonal complement of the kernel of b such that there
exists χ with (σ, χ) ∈ P. Due to the coercivity of A, which means there exists a
constant βA such that

A(T, T ) ≥ βA‖T‖2T ∀T ∈ T ,
and due to the monotonicity of J ′η, that is,

(J ′η(Σ)− J ′η(T ),Σ− T ) ≥ 0,

there exists a solution (Σ, u̇) of the regularized problem (2.18)–(2.19).
In the second step of the proof, one lets a suitable subsequence of η tend to zero

and shows for this sequence that the limit with respect to Σ and u̇ exists and solves
the dual problem. Uniqueness follows from the coercivity of A.

At the end of this section, we mention another important fact. The solution of
the dual problem possesses a contractivity property with respect to the norm

‖ · ‖A :=
√

A(·, ·),
the so-called complementary energy norm. The following result holds.

Theorem 2.2. Assume that (u,Σ) and (û, Σ̂) are solutions of the dual problem
for different initial values. Then

‖Σ(t)− Σ̂(t)‖A ≤ ‖Σ(0)− Σ̂(0)‖A
for all times t > 0.

Proofs of this property can be found in [9, 16].

3. Main results. In this section, the implicit Runge–Kutta discretization is in-
troduced and the main results of the paper are stated. It turns out that the coefficient
matrix of the Runge–Kutta method plays a crucial role for existence, contractivity,
and convergence of the numerical solution. The existence proof makes use of the vis-
coplastic regularization and starts with the corresponding time-discrete saddlepoint
problem. We postpone the details of this proof, however, to section 4.
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3.1. Runge–Kutta method. We approximate the solution of the dual problem
in time by implicit Runge–Kutta methods. For this purpose, the time derivatives in
(2.15) and (2.16) are replaced by the stage derivatives of the Runge–Kutta method.
Let s be the number of stages, (aij) = A the s× s coefficient matrix, (bi) the vector
of weights, (ci) the vector of quadrature nodes, and h the stepsize. Moreover, the
numerical approximations at time tn are denoted by Σn and un.

One step of the Runge–Kutta method from tn to tn+1 = tn + h is defined by

Σn+1 = Σn + h

s∑
i=1

biΨn,i, un+1 = un + h

s∑
i=1

biwn,i,

where Ψn,i and wn,i are the stage derivatives at time tn,i = tn + cih. The stages
Σn,i = (σn,i, χn,i) ∈ P and the stage derivatives wn,i ∈ V satisfy the nonlinear
system

b(v, σn,i) = 〈ln,i, v〉 ∀v ∈ V,(3.1)

A(Ψn,i, T − Σn,i) + b(wn,i, τ − σn,i) ≥ 0 ∀T = (τ, ν) ∈ P(3.2)

for i = 1, . . . , s, with right-hand sides ln,i = l(tn + cih). Stages Σn,i and stage
derivatives Ψn,i are coupled via

Σn,i = Σn + h

s∑
j=1

aijΨn,j .(3.3)

This method definition includes various schemes like implicit Euler, midpoint and
generalized midpoint rule (θ-method), DIRK schemes, and further implicit discretiza-
tions (the methods of Gauss, Lobatto, or Radau type). Our focus will be on the latter
class, but the results are not restricted to it.

3.2. Existence of the numerical solution. Does the nonlinear system (3.1)–
(3.3) possesses a solution? The answer depends very much on the coefficient matrix
A. If one looks back to the proof of Theorem 2.1, one notices that the coercivity of
the bilinear form A was a basic prerequisite. At first look, the coupling (3.3) destroys
this property: Consider (3.2) and replace the stage derivatives Ψn,i by the stages Σn,i
using the relation (3.3). Thereby the Σn,i are multiplied in a certain sense by the
inverse of the Runge–Kutta matrix before the bilinear form A is evaluated, and we
obtain a new bilinear form that depends on the method coefficients. The crucial point
is whether this new bilinear form is still coercive.

In the theory of stiff ODEs, similar problems occur [10]. In general, the Runge–
Kutta matrix A is not positive definite, but in many cases it possesses a coercivity
property.

Definition 3.1. We consider the inner product (u, v)D := u ·Dv on Rs, where
D = diag (d1, . . . , ds) with positive entries di > 0. The Runge–Kutta matrix A is
coercive iff there exists a positive diagonal matrix D and a constant αD such that

(u,A−1v)D ≥ αD(u, v)D

for all u, v ∈ Rs. In this case, we set

α0(A−1) := sup
D>0

αD.



RK METHODS IN ELASTOPLASTICITY 1573

Table 3.1
Coercivity constants αD and matrices D for classes of Runge–Kutta methods.

Method D Stages αD

Gauss B(C−1 − I) s min 1
2ci(1−ci)

Radau IA B(I − C) 1 1
s > 1 1

2(1−c2)

Radau IIA BC−1 1 1
s > 1 1

2cs−1

(B = diag(b1, . . . , bs), C = diag(c1, . . . , cs))

From [10, Theorem 14.5], we have the following classification.
Theorem 3.2. If the Runge–Kutta method belongs to one of the classes Gauss,

Radau IA, or Radau IIA, then the Runge–Kutta matrix is coercive.
For these method classes, the matrices D and the constants αD are listed in Table

3.1.
We remark that DIRK methods with positive coefficients aii on the diagonal are

coercive too [10, Theorem 14.6]. The constant αD is here given by

α0(A
−1) = min

1

aii
.

With the notion of coercivity for a Runge–Kutta method at hand, we are able to state
the main result of this paper as follows.

Theorem 3.3. Let the Runge–Kutta matrix be coercive, and let the SLC and
Assumption A1 be satisfied. Then the discretization scheme (3.1)–(3.3) possesses a
solution (wn,i,Σn,i) for i = 1, . . . , s, and the stages Σi of the generalized stresses are
unique.

The proof follows the same lines as the proof of Theorem 2.1. Since we have to
consider s stages, however, many technical details need to be addressed. Our starting
point is the Runge–Kutta discretization of the viscoplastic regularization (2.18) in
combination with the balance equation (2.19). In order to simplify the notation, for
the rest of the paper we write Σi instead of Σn,i and omit the index n for all other
stage variables. Furthermore, to distinguish between the original and the regularized
problem, we now use the superscript η for the variables of the regularized problem
and discretize it in the following way.

Find (wηi ,Σ
η
i ) = (wηi , σ

η
i , χ

η
i ) ∈ V × T such that

b(v, σηi ) = 〈li, v〉 ∀v ∈ V,(3.4)

A(Ψηi , T ) +
(
J ′η(Σ

η
i ), T

)
T + b(wηi , τ) = 0 ∀T = (τ, ν) ∈ T(3.5)

for i = 1, . . . , s. Stages Σηi and stage derivatives Ψηi are related to each other via

Σηi = Σn + h

s∑
j=1

aijΨ
η
j .(3.6)

Note that the solution (un,Σn) of the last step is taken from the original but not from
the regularized problem.

In a certain product space, the discretized regularization represents a saddlepoint
problem, and therefore the reasoning of the proof relies very much on the correspond-
ing theory. We postpone the details of the proof to section 4.
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3.3. Contractivity. In ODE theory, the differential equation

ẏ = f(t, y)

is called contractive if it satisfies a one-sided Lipschitz condition

(f(t, y)− f(t, z), y − z) ≤ 0.

The elastoplastic contractivity of Theorem 2.2 can be seen as an analogue, and the
question is whether time discretizations preserve this property. For generalized mid-
point schemes, contractivity of the elastoplastic flow is shown in [15, 16]. Wieners
[18] extended the result in the context of DIRK methods and proved that algebraic
stability is sufficient to preserve the contractivity.

To be more precise, the notion of algebraic stability is defined as follows (see [10]).
Definition 3.4. A Runge–Kutta method is called algebraically stable iff
1. bi ≥ 0 for all i = 1, . . . , s,
2. M = (mij) = (biaij + bjaji − bibj)

s
i,j=1 is nonnegative definite.

The contractivity result of [18] carries immediately over to the more general class
considered here; cf. [4, 15, 16].

Theorem 3.5. Algebraically stable Runge–Kutta methods preserve the contrac-
tivity of the elastoplastic flow; that is,

‖Σn − Σ̂n‖A ≤ ‖Σ0 − Σ̂0‖A(3.7)

for different initial values Σ0 and Σ̂0.
The notions of algebraic stability and coercivity of a Runge–Kutta method are

not equivalent. Remarkably, however, there are several classes, in particular Gauss,
Radau IA, and Radau IIA, that feature both properties.

3.4. Convergence. We start by introducing consistency in terms of the stage
order q, which is the positive integer such that conditions

B(q) :
s∑
i=1

bic
r−1
i =

1

r
, r = 1, . . . , q,

and

C(q) :
s∑
j=1

aijc
r−1
j =

cri
r
, r = 1, . . . , q, i = 1, . . . , s,

hold true. Thus the stage order defines the accuracy of the quadrature rule that is
the basis of the Runge–Kutta method. We assume now that the generalized stresses
are elements of the Sobolev space Hq+1(0, tf ; Ω). Then a weak Taylor expansion and
conditions B(q) and C(q) imply∥∥∥∥∥∥∥∥∥∥

Σ(tn+1)−Σ(tn)− h

s∑
i=1

biΣ(tn + cih)︸ ︷︷ ︸
=:Qn

∥∥∥∥∥∥∥∥∥∥
T

≤ chq‖Σ(q+1)‖L1(tn,tn+1;Ω) =: Q
Err
n
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Table 3.2
The stage order; see Table IV.5.13 in [10].

Method Consistency conditions Stage order

Gauss B(2s), C(s) s
Radau IIA B(2s− 1), C(s) s

and

∥∥∥∥∥∥∥∥∥∥∥
Σ(tn + cih)−Σ(tn)−h

s∑
j=1

aijΣ̇(tn + cjh)︸ ︷︷ ︸
=:Si

n

∥∥∥∥∥∥∥∥∥∥∥
T

≤ chq‖Σ(q+1)‖L1(tn,tn+1;Ω) =: S
Err
n .

Note, that the error estimate on the right-hand side, SErr
n , is independent of the stage

number i. Stage orders for Gauss and Radau IIA methods are listed in Table 3.2.
Theorem 3.6. Assume that the Runge–Kutta method is coercive and algebraically

stable, B(q) and C(q) are fulfilled, and Σ ∈ H(q+1)(0, tf ; Ω). Then the following holds
for the global error on [0, tf ] with N = [tf/h]:

max
r=1,...,N

‖Σ(tr)− Σr‖T ≤ chq‖Σ(q+1)‖L1(0,tf ;Ω).

Hence existence, stability, and consistency of the Runge–Kutta method imply
convergence for the dual problem of elastoplasticity. The proof of Theorem 3.6 is post-
poned to section 5. We remark that the smoothness assumption Σ ∈ H(q+1)(0, tf ; Ω)
is not backed by the regularity provided by the theory; see also the discussion in
Chapter 13.1 of [9] on the midpoint rule.

4. Proof of Theorem 3.3. The proof generalizes Theorem 8.12 of [9], which is
formulated for the implicit Euler method. We first give an outline and provide some
necessary framework.

The existence proof proceeds in three steps. In step one, it is shown that the
discrete regularized system (3.4)–(3.6) possesses a solution (wηi ,Σ

η
i ), i = 1, . . . , s,

depending on the parameter η. Step two constructs a uniform bound for (wηi ,Σ
η
i )

and selects a weakly convergent subsequence. Finally, step three establishes the limit
limη→0(w

η
i ,Σ

η
i ) = (wi,Σi) as a solution of the dual problem. Uniqueness of the stages

Σi follows from the coercivity of both the bilinear form A and the Runge–Kutta matrix
A.

Since the saddlepoint structure plays a crucial role in our first step, we next cite
an important result concerning the bilinear form b. Related to b, one defines the
operators B : S → V ′ and B′ : V → S ′ by

〈Bσ, v〉 := 〈B′v, σ〉 := b(v, σ) for v ∈ V, σ ∈ S.
If the Babuška-Brezzi condition holds (cf. (2.20)), we have the following (see [2, 9]).

Proposition 4.1. The operator B is an isomorphism from (Ker B)⊥ onto V ′,
where

KerB = {σ ∈ S : b(v, σ) = 0 ∀v ∈ V },
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and the operator B′ is an isomorphism from (Ker B)◦ onto V , where

(KerB)◦ = {f ∈ S ′ : 〈f, τ〉 = 0 ∀τ ∈ KerB}.

The framework is completed by a notational agreement. We abbreviate the array
of s stages Σi by

:Σ := (Σ1, . . . ,Σs)
T .

In the same fashion, we extend the initial value Σn of the old time step to

:Σn := (Σn, . . . ,Σn)
T
.

Although :Σ and :Σn are not vectors of real numbers but of tensor-valued functions,
we connect them like standard vectors with the Runge–Kutta matrix A and skip the
introduction of an appropriate Kronecker product. As an example, the relation (3.6)
between stages and stage derivatives reads in this notation

:Ση = :Σn + hA:Ψη ⇔ :Ψη =
1

h
A−1(:Ση − :Σn).

4.1. Step one (regularized problem). The bilinear form b satisfies the
Babuška–Brezzi condition (2.20). Due to Proposition 4.1 there is for each stage i
a unique element σ0

i ∈ (KerB)⊥ such that

b(v, σ0
i ) = 〈li, v〉 ∀v ∈ V.

Taking the constant c as the operator norm of B−1, we have

‖σ0
i ‖S ≤ c‖li‖

for all stages. Applying the SLC to 2σ0
i , we find an element in M, denoted by 2χ0

i ,
such that (2σ0

i , 2χ
0
i ) ∈ P and

‖χ0
i ‖ ≤ c‖σ0

i ‖ ≤ c‖li‖.

We set Σ0
i = (σ0

i , χ
0
i ). Assumption A1 on the structure of the elastic domain ensures

that Σ0
i ∈ E almost everywhere and (see Figure 4.1)

ri ≡ inf
x∈Ω

dist(Σ0
i (x), ∂E) > 0.(4.1)

Next, we look for a solution of (3.5) in the form Σηi = Σ0
i+Σδηi , where Σδηi = (σδηi , χδηi )

is an element of KerB ×M. We observe that the balance equation (3.4) still holds if
Σ0
i is updated by an element of KerB ×M.

At this point of the proof, the coupling (3.6) becomes important and we pass to
the product space T s. We define a bilinear form on T s by

:A :


T s × T s → R,(

:Θ, :Υ
)

�→ d1A(Φ1,Υ1) + · · ·+ dsA(Φs,Υs) with :Φ := A−1:Θ,
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Ση (x)i

0Σ i(x)

Σi
0

ηΣ i

Elastic domain

ir

σ

χ

Fig. 4.1. Situation in step 1.

where D is the diagonal matrix related to the Runge–Kutta matrix A according to
Definition 3.1. Since the bilinear form A is coercive on T ×T , its extension :A defines
a coercive bilinear form, that is,

:A(:Υ, :Υ) ≥ α0(A−1)min{di}βA(:Υ, :Υ)T s

with the scalar product

(:Υ, :Υ)T s := (Υ1,Υ1)T + · · ·+ (Υs,Υs)T .

In general, :A is not symmetric. We also need to extend the scalar product of the
regularization J ′η to the product space T s. For this purpose, a weighted sum with the

elements of D is introduced, similar to the definition of :A:

:J ′η


T s × T s → R,(

:Θ, :Υ
)

�→ d1

(
J ′η(Θ1),Υ1

)
+ · · ·+ ds

(
J ′η(Θs),Υs

)
.

Now we can resume the proof and look for an element :Σδη ∈ (KerB × M)s

satisfying

1

h
:A(:Σδη, :T ) + :J ′η(:Σ

0 + :Σδη, :T ) =
1

h
:A(:Σn − :Σ0, :T )(4.2)

for all :T ∈ (KerB ×M)s. This is an operator equation with the nonlinear operator
L : T s → (T s)′ defined by

〈L·, :T 〉 := 1

h
:A(·, :T ) + :J ′η(:Σ

0 + ·, :T ) ∀:T ∈ T s.

Because :A is coercive and :J ′η is monotone, the operator L is strongly monotone. [9,

Theorem 5.10, p. 107] establishes the existence of a unique solution :Σδη of (4.2).
Setting Ti = T and Tj = 0 for j �= i, (4.2) yields

A(Ψηi , T ) +
(
J ′η(Σ

η
i ), T

)
= 0 ∀T ∈ KerB ×M.(4.3)
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0Σ i(x)

Elastic domain

σ

χ ηΣ i (x)

j (x)i

i

i  ir j (x)

0

H

Fig. 4.2. Situation in step 2.

The left-hand side of (4.3) defines a continuous linear form on T and is also part of the
left-hand side of (3.5). Though Proposition 4.1 is valid only for stresses σ ∈ S, it is
straightforward to extend it to generalized stresses T ∈ T . Therefore, there exists an
element wηi ∈ V such that (3.5) is satisfied and consequently the regularized problem
(3.4)–(3.6) has a solution (wηi ,Σ

η
i ) for i = 1, . . . , s.

4.2. Step two (uniform boundedness). (a) First, we derive a uniform bound

for :Ση. Setting :T = :Σδη in (4.2) leads to

1

h
:A(:Σδη, :Σδη) + :J ′η(:Σ

0 + :Σδη, :Σδη) =
1

h
:A(:Σn − :Σ0, :Σδη).

The convexity of the Yosida regularization Jη implies for Σ0
i ∈ P

0 = Jη(Σ
0
i ) ≥ Jη(Σ

0
i +Σδηi ) + (J ′η(Σ

0
i +Σδηi ),−Σδηi ).

Since Jη(Σ
0
i +Σδηi ) ≥ 0, we obtain

:A(:Σδη, :Σδη) ≤ :A(:Σn − :Σ0, :Σδη).

Next, the coercivity and the continuity of :A yield the existence of a constant c such
that

‖:Ση‖ ≤ c.(4.4)

(b) Second, we show the uniform boundedness of wηi . For all x ∈ Ω with Σηi (x) ∈
E, J ′η(Σ

η
i )(x) = 0 holds. Therefore we assume Σηi (x) /∈ E and define

ji(x) =
Σηi (x)−ΠΣηi (x)

|Σηi (x)−ΠΣηi (x)|
.

Since E is a closed convex set in the finite-dimensional vector space of generalized
forces, ji(x) is normal to a hyperplane Hi = {T | ji(x) : T = ρi}; see Figure 4.2.

Now we exploit (4.1). Since Σ0
i (x) + rij(x) ∈ E and 0 ∈ E, we have

ji(x) : Σ
η
i (x) ≥ ρi and ji(x) :

(
Σ0
i (x) + rij(x)

) ≤ ρi.



RK METHODS IN ELASTOPLASTICITY 1579

Geometrically this means that Σηi (x) and (Σ0
i (x) + riji(x)) are separated by the hy-

perplane Hi; see Figure 4.2. Hence

ji(x) :
(
Σηi − Σ0

i (x)
) ≥ ri,

that is,

|Σηi (x)−ΠΣηi (x)| ≤
1

ri
(Σηi (x)−ΠΣηi (x)) : (Σ

η
i − Σ0

i (x)).

Since the latter inequality holds also for all x ∈ Ω with Σηi (x) ∈ E, we obtain

‖J ′η(Σηi )‖ ≤
1

ri

(
J ′η(Σ

η
i ),Σ

η
i − Σ0

i

)
.(4.5)

Now we return to (4.3). There we set Ti = Σηi − Σ0
i ∈ Ker B ×M. Inserting (4.3)

into (4.5) yields

‖J ′η(Σηi )‖T ≤ −
1

ri
A(Ψηi ,Σ

η
i − Σ0

i ).

Since the uniform boundedness of :Ση implies

|A(Ψηi ,Σηi − Σ0
i )| ≤ α‖Ψηi ‖T ‖Σηi − Σ0

i ‖ ≤ c̃,

we conclude

‖J ′η(Σηi )‖T ≤ c̃.

From the Babuška–Brezzi condition in combination with (3.5) we obtain

βb‖wηi ‖V ≤ sup
τ∈S
|b(wηi , τ)|
‖τ‖S

≤ sup
τ∈S

| −A(Ψηi , (τ, 0))− J ′η (Σ
η
i , (τ, 0)) |

‖τ‖S
≤ c̃

(‖Ψηi ‖T + ‖J ′η(Σηi )‖
) ≤ c̃.

Extending this to the product space leads to the uniform bound of :wη.
In parts (a) and (b) of step 2, we established the uniform boundedness of :Ση and

:wη. Thus we can extract a subsequence that converges weakly in the dual space of
T s × V s, still denoted by :Ση and :wη, such that (:Ση, :wη) ⇀ (:Σ, :w) as η → 0.

4.3. Step three (proving (3.1) and (3.2)). The last part of the existence
proof again splits into several parts. In part (a), we show that the limits Σi are
admissible. In part (b), we prove the equality (3.1), and finally, in part (c), we
establish the variational inequality (3.2).

(a) First, we prove that the limits Σi are admissible, that is, Σi ∈ P. Since
Σi ∈ P ⇔ ‖Σi −ΠΣi‖ = 0,

we investigate the convex functional Jη. The convexity of Jη yields

Jη(Σ
η
i ) ≤ (J ′η(Σ

η
i ),Σ

δη
i ).
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Equation (4.3) implies A(Σ̃ηi ,Σ
δη
i ) + Jη(Σ

η
i ) ≤ 0, which is equivalent to

Jη(Σ
η
i ) ≤ −A(Ψηi ,Σδηi ) = − 1

h
A(A−1

i (:Σn − :Σηi ),Σ
η
i − Σi0).

Since Σηi is uniformly bounded, we have Jη(Σ
η
i ) ≤ c. The Yosida regularization is

convex and l.s.c.; hence the function

f(Σ) := ηJη = ‖Σ−ΠΣ‖2

is weakly l.s.c. (see [9, p. 74]). Therefore

f(Σi) ≤ lim inf
η→0

f(Σηi ) ≤ lim
η→0

cη = 0.

This implies ‖Σi −ΠΣi‖ = 0, that is, Σi ∈ P.
(b) Now we show (3.1). Since b(v, σδηi ) = 0 for all v ∈ V , we have

b(v, σi) = b(v, σ0
i ) = 〈li, v〉.

(c) Finally we consider the variational inequality (3.2). Jη is a convex function.
Hence for all T̄ ∈ P, the convexity implies

0 = Jη(T̄ ) ≥ Jη(Σ
η
i ) +

(
J ′η(Σ

η
i ), T̄ − Σηi

)
⇒ 0 ≥ −Jη(Σηi ) ≥

(
J ′η(Σ

η
i ), T̄ − Σηi

)
.

Setting T̄ = T − Σi, we insert the last inequality into (3.5) and arrive at

A(Ψηi , T − Σηi ) + b(wi, τ − σηi ) ≥ 0.

Now we pass to the product space to obtain

1

h
:A(:Ση, :T − :Ση) + d1b(w

η
1 , τ1 − ση1 ) + · · ·+ dsb(w

η
s , τs − σηs ) ≥

1

h
:A(:Σn, :T − :Ση).

(4.6)

It is our goal to preserve this inequality while η tends to zero. We proceed as follows:
1. Weak convergence and the relation σδηi ∈ KerB lead to

b(wηi , σ
η
i ) = b(wηi , σ

0)→ b(wi, σ
0) = b(wηi , σi).

2. Weak convergence also implies

:A(:Ση, :T )→ :A(:Σ, :T ),

:A(:Σn, :T − :Ση)→ :A(:Σn, :T − :Σ).

3. The last term of (4.6) needs some more effort. Since :A(·, ·) is not symmetric,
we formulate the quadratic identity

(4.7) :A(:Ση, :Σ) + :A(:Σ, :Ση) − :A(:Σ, :Σ) = :A(:Ση, :Ση) − :A(:Ση − :Σ, :Ση − :Σ).

From the coercivity of :A, passing to the lim inf yields

:A(:Σ, :Σ) ≤ lim inf
η→0

:A(:Ση, :Ση).

Applying the lim inf to (4.6) and inserting the last three limits, we arrive at

A(Σ̃i, T − Σi) + b(wi, τ − σi) ≥ 0.

Setting Ti = T and Tj = 0 for j �= i proves the inequality (3.2).
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4.4. Uniqueness. Suppose there exist two different solutions (wi,Σi) with Σi =
(σi, χi) and (w̃i, Σ̃i) with Σ̃i = (σ̃i, χ̃i) of the system (3.1)–(3.3).

The linearity of the variational equation (3.1) implies

b(v, σi − σ̃i) = 0 ∀v ∈ V,

that is, σ − σ̃ ∈ Ker B. Therefore inserting Σi into the variational inequality (3.1)
and setting T = Σ̃i yields

A(Ψi, Σ̃i − Σi) ≥ 0,

where Ψi again denotes the stage derivative. The same argument with Σi and Σ̃i
interchanged gives

A(Ψ̃i,Σi − Σ̃i) ≥ 0.

Adding these two equations and passing to the product space T s leads to

:A(:Σ− :̃Σ, :Σ− :̃Σ) ≤ 0.

Hence the coercivity of :A implies Σi = Σ̃i.

5. Proof of Theorem 3.6. We use the same notation as in section 4 and extend
the proof of Theorem IV.12.4 of [10]. The definitions of the errors Qn and Sin (see
subsection 3.4) lead to

‖Σn+1 − Σ(tn+1)‖2A

=

∥∥∥∥∥∥Σn + h

s∑
j=1

bjΨj −
Σ(tn) + h

s∑
j=1

bjΣ̇(tj)

−Qn

∥∥∥∥∥∥
2

A

= ‖Σn − Σ(tn)‖2A + 2h

s∑
j=1

bj(Ψj − Σ̇(tj),Σj − Σ(tj))A

−h2
s∑

i,j=1

mij(Ψi − Σ̇(ti),Ψj − Σ̇(tj))A + 2h

s∑
j=1

bj(Ψj − Σ̇(tj), S
j
n)A

− 2

Σn − Σ(tn) + h

s∑
j=1

bj(Ψj − Σ̇(tj)), Qn


A

+ ‖Qn‖2A.

From (3.2) and (2.16) we derive

(Ψj − Σ̇(tj),Σj − Σ(tj))A ≤ b(wj − w(tj), σj − σ(tj))

= 〈lj , wj − w(tj)〉 − 〈l(tj), wj − w(tj)〉
= 0.(5.1)
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Hence with the coefficient matrix (mij) being nonnegative definite, we obtain

‖Σn+1 − Σ(tn+1)‖2A

≤ ‖Σn − Σ(tn)‖2A − 2

Σn − Σ(tn) + h

s∑
j=1

bj(Ψj − Σ̇(tj)), Qn


A

+ ‖Qn‖2A + 2h

s∑
j=1

bj(Ψi − Σ̇(ti), S
j
n)A

= ‖Σn − Σ(tn)‖2A − 2(Σn − Σ(tn), Qn)A(5.2)

− 2h

s∑
j=1

bj(Ψj − Σ̇(tj), Qn)A + ‖Qn‖2A + 2h

s∑
j=1

bj(Ψj − Σ̇(tj), S
j
n)A.

To derive an estimate for the right-hand side of (5.2), we need an upper bound for
h‖Ψj − Σ̇(tj)‖. Therefore we again pass to the product space T s to exploit the
coercivity of the Runge–Kutta matrix. In the notation of section 4, we set

:̇Σ(tj) = (Σ̇(t1), . . . , Σ̇(ts))
T, :Σ(tj) = (Σ(t1), . . . ,Σ(ts))

T,

and :Σ(tn) = (Σ̇(tn), . . . , Σ̇(tn))
T. Then for each stage

:̇Σ(tj) =
1

h
A−1(:Σ(tj)− :Σ(tn))− 1

h
A−1 (S1

n, . . . , S
s
n)

T︸ ︷︷ ︸
=:�S

.

With inequality (5.1), we get

:A(:Σ− :Σn − (:Σ(tj)− :Σ(tn)) + :S, :Σ− :Σ(tj)) ≤ 0

and hence

:A(:Σ− :Σ(tj), :Σ− :Σ(tj)) ≤ :A((:Σn − :Σ(tn))− :S, :Σ− :Σ(tj)).

The coercivity and continuity of :A imply

‖:Σ− :Σ(tj)‖2T s ≤ c(‖:Σn − :Σ(tn)‖T s + ‖:S‖T s)‖:Σ− :Σ(tj)‖T s .

Therefore for each stage we have

‖Σj − Σ(tj)‖T ≤ c(‖Σn − Σ(tn)‖T + SErr
n ).(5.3)

The stage error is thus determined by the previous approximation error and the
consistency error of the Runge–Kutta method. The identity

:Ψ− :̇Σ(tj) =
1

h
A−1(:Σ− :Σ(tj)− :Σn + :Σ(tn)) +

1

h
A−1:S

implies for the stage derivatives

h‖Ψj − Σ̇(tj)‖T ≤ c(‖Σj − Σ(tj)‖T + ‖Σn − Σ(tn)‖T + SErr
n ).

Hence with (5.3) we have

h‖Ψj − Σ̇(tj)‖T ≤ c(‖Σn − Σ(tn)‖T + SErr
n ).(5.4)
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Now we return to (5.2), insert the estimate (5.4), and combine it with the coercivity
and continuity of the bilinear form A to obtain

‖Σn+1 − Σ(tn+1)‖2T
≤ c‖Σn − Σ(tn)‖T (QErr

n + SErr
n ) + cQErr

n SErr
n + cSErr

n

2
+ cQErr

n

2
.

Summation from 1 to n leads to

‖Σn+1 − Σ(tn+1)‖2T ≤ c

n∑
r=1

‖Σr − Σ(tr)‖T (QErr
r + SErr

r )

+ c

n∑
r=1

(QErr
r

2
+ SErr

r

2
+ SErr

r QErr
r ).

With M := maxr=1,...,N ‖Σn+1 − Σ(tn+1)‖T it follows that

M2 ≤ cM

N−1∑
r=1

(QErr
r + SErr

r ) + c

N−1∑
r=1

(QErr
r

2
+ SErr

r

2
+ SErr

r QErr
r ).

Furthermore, due to

‖ · ‖L1(0,t1;Ω) + · · ·+ ‖ · ‖L1(tn,tn+1;Ω) = ‖ · ‖L1(0,tn+1;Ω)

and the Cauchy–Schwarz inequality, we arrive at

M2 ≤Mchq‖Σ(q+1)‖L1(0,tf ;Ω) + ch2q‖Σ(q+1)‖L1(0,tf ;Ω).

Therefore

M ≤ chq‖Σ(q+1)‖L1(0,tf ;Ω).

6. Conclusions. In this paper, we have extended implicit Runge–Kutta meth-
ods to the infinite-dimensional constrained evolution equations of elastoplasticity. Co-
ercivity and algebraic stability, notions that are familiar from the finite-dimensional
case, turned out to be sufficient to show existence, uniqueness, contractivity preser-
vation, and convergence. Various time integration methods become available in this
way, among them Gauss, Radau, Lobatto, and several DIRK methods.

While the proof for contractivity preservation is very similar to the one for ODEs,
the existence proof presented here relies very much on the framework of variational
inequalities. Though we have in each material point a DAE of index 2 with a certain
Lagrange multiplier (cf. (2.11)), this multiplier showed up neither in the formulation
of the dual problem nor in the Runge–Kutta method definition. For implementation,
in the fashion of Rothe’s method or in the method of lines, however, the multiplier
will regain its importance.
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Abstract. It is known that the energy technique for a posteriori error analysis of finite element
discretizations of parabolic problems yields suboptimal rates in the norm L∞(0, T ;L2(Ω)). In this
paper, we combine energy techniques with an appropriate pointwise representation of the error based
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1. Introduction. A posteriori error estimation and adaptivity are in many cases
very successful tools for efficient numerical computations of linear as well as nonlinear
PDEs. In particular, a posteriori error control provides a practical, as well as math-
ematically sound, means of detecting multiscale phenomena and doing reliable com-
putations. Although the a posteriori error analysis of elliptic problems is now mature
[2, 3, 6, 7, 18, 23], the time dependent case is still under development. Many papers
have appeared for the discontinuous Galerkin method [9, 10, 11, 13, 14, 15, 20, 19]
and other schemes [1, 4, 17, 21, 24, 25] mainly for linear parabolic problems.

One of the outstanding issues related to a posteriori estimation of (linear) time
dependent problems is the known fact that the energy technique for a posteriori
error analysis of finite element discretizations of parabolic problems yields suboptimal
rates in the norm L∞(0, T ;L2(Ω)). Since the energy method is the most elementary
technique for estimating the error in the a priori analysis, the question of whether
or not this method can be successfully applied in the a posteriori error analysis is
very natural. In addition, we hope that examining this and related issues will enable
us to increase our understanding on the important subject of error control for time
dependent problems in general.

We will work with the following linear parabolic equation as a model:

ut +Au = f in Ω× [0, T ],

u(·, 0) = u0(·) in Ω,

u = 0 on ∂Ω× [0, T ].

(1.1)

Here A is a linear, symmetric, second order positive definite elliptic operator, and Ω is
a bounded domain of R

d (d ≥ 1) with sufficiently smooth boundary for our purposes.
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Let H := L2(Ω), V := H1
0 (Ω), and V

� := H−1(Ω) be the dual of V. If a(·, ·) is the
bilinear form that corresponds to A, our assumptions on A imply that

‖v‖V := a(v, v)1/2

defines a norm on V. We denote the norms on H and V � by ‖ · ‖V � and ‖ · ‖H ,
respectively, and we indicate with 〈·, ·〉 the duality pairing in either H or V ∗ − V.

We assume that f ∈ L2(0, T ;V �) and u0 ∈ H so that (1.1) admits a unique weak
solution satisfying

〈ut(t), v〉+ a(u(t), v) = 〈f, v〉 for all v ∈ V, a.e. t ∈ [0, T ] .

In this paper, we consider semidiscrete finite element discretizations of arbitrary
degree. We combine energy techniques with an appropriate pointwise representation
of the error based on a novel elliptic reconstruction operator which restores the opti-
mal order in L∞(0, T ;L2(Ω)). This technique may be regarded as the dual counterpart
of Wheeler’s elliptic projection method in the a priori error analysis [27]. In partic-
ular, for uh as the finite element approximation, our estimates exhibit the following
properties:

• the estimator is a computable quantity in terms of the approximate solution
uh and the data f, u0, and Ω, but its actual form and quality depends only
on the elliptic estimator at our disposal;
• the order is optimal in L∞(0, T ;L2(Ω)) for any polynomial degree ≥ 1, and

the regularity is the lowest compatible with (1.1) for polynomial degree > 1;
• the a posteriori estimates mimic completely the corresponding a priori esti-
mates.

Hereafter, the use of “optimal order” and “optimal regularity” is consistent with
classical terminology in approximation theory. Consequently, “optimal order” corre-
sponds to the largest exponent r for which the error is O(hr), where h is the biggest
element diameter of the partition. Likewise, “optimal regularity” refers to the lowest
regularity which is compatible with (1.1) and an error of O(hr).

Finite element approximation. For Th, being a shape-regular partition of Ω, con-
sider the finite element space

Vh = {χ ∈ H1
0 (Ω) : χ|K ∈ Pk(K) for all K ∈ Th},

where Pk(K) is the space of polynomials of degree ≤ k over K. The finite element
approximation uh : [0, T ]→ Vh of u is defined to satisfy the following linear ODE:

〈uh,t, χ〉+ a(uh, χ) = 〈f, χ〉 for all χ ∈ Vh, a.e. t ∈ [0, T ],

uh(·, 0) = u0
h ∈ Vh .

(1.2)

A posteriori error estimation. Residual-based a posteriori estimates are usually
proved by estimating the linear functional R ∈ V �, so-called residual,

−〈R, v〉 =
∫ T

0

(
〈uh,t, v〉+ a(uh, v)− 〈f, v〉

)
dt

=

∫ T

0

(
〈uh,t, v − Ihv〉+ a(uh, v − Ihv)− 〈f, v − Ihv〉

)
dt,

(1.3)

in appropriate norms. Here, in the second equality, we have used the definition of
the semidiscrete scheme (1.2) and an interpolation operator Ih : V → Vh stable in V
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(e.g., Clement’s interpolant). Then, for e = u − uh as the error to be estimated, we
have

1

2
‖e (T )‖2H +

∫ T

0

a(e, e)dt =
1

2
‖e (0)‖2H + 〈R, e〉.(1.4)

Due to the presence of
∫ T
0
a(uh, e−Ihe)dt, which gives rise to the integral of an H1 el-

liptic residual, the ensuing a posteriori estimate is of optimal order in L2(0, T ;H1
0 (Ω)),

as corresponds to an estimate of
∫ T
0
a(e, e)dt, but is suboptimal in L∞(0, T ;L2(Ω)). It

is well known that an analogous phenomenon occurs in the a priori analysis and that
the use of an elliptic projection operator overcomes the difficulty [27]. This is now a
standard tool in the finite element analysis.

In this paper, we introduce an elliptic reconstruction operator which restores
the optimal order in the a posteriori error estimation in L∞(0, T ;L2(Ω)). The key
properties of the elliptic reconstruction U (cf. Definition 2.1) are (i) u − U satisfies
an appropriate pointwise equation (cf. (3.2)) that can be used to derive estimates in
terms of uh,t − Ut, and (ii) uh is the finite element solution of an elliptic problem
whose exact solution is U, and therefore uh−U (as well as uh,t−Ut) can be estimated
in various norms by any given a posteriori elliptic estimator. Note that a similar
function U was introduced in [12] for a different purpose.

For clarity of exposition, we present the method in the simplest framework. The
ideas of the present paper might be useful for linear problems of nondissipative char-
acter as well as for nonlinear dissipative problems. In this direction, they should be
explored together with the recent a posteriori results of time discretization of nonlinear
problems [17, 19]. The a posteriori analysis of [17, 19] is based on the same principles
as those in the present paper, namely, an appropriate pointwise representation of the
error and energy arguments.

Although it is possible to derive quasi-optimal order-regularity estimators in
L∞(0, T ;L2(Ω)) via parabolic duality [9, 22], this technique hinges on the parabolic
regularizing effect which is not valid for estimates in L2(0, T ;H1

0 (Ω)). For the latter,
duality leads invariably to estimators similar to those obtained with the energy ap-
proach and which also bound the error in L∞(0, T ;L2(Ω)) but with suboptimal order.
In contrast, several contributions over the last few years are devoted to estimates that
are based on the (forward) energy approach. Picasso [21] derives a posteriori error
estimates of residual type that are optimal in L2(0, T ;H1

0 (Ω)) for piecewise linear
elements for space discretization and backward Euler for time discretization. Toward
overcoming the barrier described above, Babuška, Feistauer, and Šoĺın [4] derive esti-
mates in L2(0, T ;L2(Ω)) for (1.2) by a double integration in time; see also [1, 5]. In
[24, 25], Verfürth proves a posteriori estimates in Lr(0, T ;Lρ(Ω)), with 1 < r, ρ <∞,
for fully discrete approximations of quasi-linear parabolic equations.

The paper is organized as follows. We introduce the elliptic reconstruction op-
erator in section 2, and we derive abstract a posteriori error estimates in section 3.
In particular, our estimator of Theorem 3.1 depends on an abstract elliptic estimator
function for elliptic problems; any such estimator can be used. In section 4, we specify
the form of the estimates for the classical residual-type elliptic estimators.

2. Elliptic reconstruction. We now introduce the elliptic reconstruction op-
erator R : Vh → V . To this end, let P 1

h : V → Vh be the elliptic projection operator,
i.e.,

a(P 1
hw,χ) = a(w,χ) for all χ ∈ Vh,(2.1)
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and let P 0
h : H → Vh be the L2-projection operator, i.e.,

(P 0
hw,χ) = 〈w,χ〉 for all χ ∈ Vh.(2.2)

Let w ∈ V satisfy the elliptic problem Aw = g ∈ V � or, in weak form,

w ∈ V : a(w, v) = 〈g, v〉 for all v ∈ V .(2.3)

Let wh ∈ Vh be the corresponding finite element solution

wh ∈ Vh : a(wh, χ) = 〈g, χ〉 for all χ ∈ Vh;(2.4)

hence wh = P 1
hw. We assume that we have at our disposal a posteriori estimators

that control the error ‖w − wh‖X in the spaces X = H,V, or V �.
Assumption 2.1. Let w and wh be the exact solution and its finite element

approximation given in (2.3) and (2.4) above. We assume that there exists an a
posteriori estimator function E = E(wh, g;X), which depends on wh, g and the space
X = H,V, or V � such that

‖w − wh‖X ≤ E(wh, g;X).(2.5)

Let Ah : Vh → Vh be the following discrete version of A:

〈Ahv, χ〉 = a(v, χ) for all χ ∈ Vh.(2.6)

Then we have the following definition.
Definition 2.1. Let uh be the finite element solution of (1.2) and fh := P 0

hf .
We define the elliptic reconstruction U = Ruh ∈ H1

0 (Ω) of uh to be the solution of
the elliptic problem in weak form

a(U(t), v) = 〈gh(t), v〉 for all v ∈ H1
0 (Ω), a.e. t ∈ [0, T ],(2.7)

where

gh := Ahuh − fh + f.(2.8)

We note that a similar function U was defined at the final time T in [12] in a
different context, i.e., in postprocessing the Galerkin method at T with the aim of
improving the order of convergence. We observe that U satisfies the strong form

AU = Ahuh − fh + f(2.9)

as well as

a(U,ϕ) = a(uh, ϕ)− 〈fh − f, ϕ〉 = a(uh, ϕ) for all ϕ ∈ Vh,(2.10)

because fh = P 0
hf . This relation implies that uh is the finite element solution of the

elliptic problem whose exact solution is the elliptic reconstruction U , namely,

uh = P 1
hU.(2.11)

Assume that f ∈ H1(0, T ;V ∗). Since a(·, ·) is independent of t, there holds a(Ut, ϕ) =
a(uh,t, ϕ) for all ϕ ∈ Vh, or

uh,t = P 1
hUt.(2.12)

In addition,

a(Ut, v) = 〈gh,t, v〉 for all v ∈ V .(2.13)
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3. Abstract a posteriori error analysis. In this section, we establish the
improved a posteriori error estimate in H and make several comments about its op-
timality regarding both order and regularity.

Theorem 3.1. Assume that u is the solution of (1.1) and uh is its finite element
approximation (1.2). Let U be the elliptic reconstruction of uh and E be as defined in
Assumption 2.1. Then the following a posteriori error bounds hold for 0 < t ≤ T :

‖(u− U)(t)‖2H +

∫ t

0

‖u− U‖2V ds ≤ ‖u(0)− U(0)‖2H +

∫ t

0

E(uh,t, gh,t;V �)2ds

and

‖(u− uh)(t)‖H ≤ ‖u0 − u0
h‖H +

(∫ t

0

E(uh,t, gh,t;V �)2ds
)1/2

+ E(uh(0), gh(0);H) + E(uh(t), gh(t);H).

Proof. By virtue of definitions (1.2) and (2.9) of uh and U , we have

uh,t +AU = f,

whence U satisfies the following pointwise equation:

Ut +AU = f + (U − uh)t .(3.1)

Thus the error equation for u− U reads

(u− U)t +A(u− U) = (uh − U)t .(3.2)

Multiplying by u− U and using standard energy arguments yield

‖(u− U)(t)‖2H +

∫ t

0

‖(u− U)(s)‖2V ds ≤ ‖u(0)− U(0)‖2H

+

∫ t

0

‖(uh,t − Ut)(s)‖2V �ds .

(3.3)

Relations (2.12) and (2.13), in conjunction with Assumption 2.1, imply

‖uht − Ut‖V � ≤ E(uh,t, gh,t;V �) ,

which in turn leads to the first assertion of Theorem 3.1. To show the second one, it
suffices to note that (2.11) and Assumption 2.1 yield

‖(uh − U)(t)‖H ≤ E(uh(t), gh(t);H) for all 0 ≤ t ≤ T ,(3.4)

which, together with

‖u(0)− U(0)‖H ≤ ‖u(0)− uh(0)‖H + ‖P 1
hU(0)− U(0)‖H

≤ ‖u0 − u0
h‖H + E(uh(0), gh(0);H),

concludes the proof.
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Remark 3.1 (L2-based estimate). An alternative estimate that follows from the
proof of Theorem 3.1 is

max
0≤t≤T

‖u− U‖2H ≤ ‖u(0)− U(0)‖2H + max
0≤t≤T

‖u− U‖H
∫ T

0

‖uh,t − Ut‖Hdt

≤ max
0≤t≤T

‖u− U‖H
(
‖u(0)− U(0)‖H +

∫ T

0

‖uh,t − Ut‖Hdt
)
.

Therefore, (2.5) and (3.4) imply

max
0≤t≤T

‖u− U‖H ≤ ‖u(0)− U(0)‖H +

∫ T

0

E(uh,t, gh,t;H)dt,

along with the corresponding a posteriori error bound

max
0≤t≤T

‖u− uh‖H ≤ ‖u0 − u0
h‖H + E(uh(0), gh(0);H) + 2

∫ T

0

E(uh,t, gh,t;H)dt.

Remark 3.2 (a priori vs. a posteriori bounds). Note that the elliptic reconstruc-
tion is an “a posteriori dual” to Wheeler’s elliptic projection [22, 27]. Furthermore,
the two results in Theorem 3.1 are indeed an a posteriori dual to the classical a priori
estimate for semidiscrete linear parabolic problems [22, 27]

‖(uh − P 1
hu)(t)‖2H +

∫ t

0

‖uh − P 1
hu‖2V ds

≤ ‖uh(0)− P 1
hu(0)‖2H +

∫ t

0

‖ut − P 1
hut‖2V �ds

(3.5)

and

‖(u− uh)(t)‖H ≤ ‖(u− P 1
hu)(t)‖H

+

(
‖uh(0)− P 1

hu(0)‖2H +

∫ t

0

‖ut − P 1
hut‖2V �dt

)1/2

.
(3.6)

Remark 3.3 (optimal regularity). The a priori bound in (3.5) (and therefore in
(3.6)) is of optimal order. The regularity required is optimal only for polynomial
degree k ≥ 2. Indeed, by exploiting standard results on superconvergence in negative
norms of elliptic finite element problems, we see that the following bound for the error
of the elliptic projection holds [22, 26]:

‖v − P 1
hv‖V � ≤ Ch(k+1)‖v‖k.(3.7)

This estimate follows from the definition of the dual norm ‖w‖V � = sup‖z‖V =1 〈w, z〉
and a standard duality argument. Using (3.7), we obtain∫ T

0

‖ut − P 1
hut‖2V �dt ≤ C

∫ T

0

h2(k+1)‖ut‖2kdt ≤ Ch2(k+1)

∫ T

0

‖u‖2k+2dt ;

here ‖ · ‖s denotes the Sobolev norm of Hs(Ω) , and for simplicity take A = −∆ and
f = 0. For an (optimal) convergence rate of order O(hk+1) in L∞(0, T ;L2(Ω)), the
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minimal regularity required by our finite element space is u ∈ L∞(0, T ;Hk+1(Ω)).
However, it is a simple matter to check that for (1.1) both∫ T

0

‖u‖2k+2dt and max
0≤t≤T

‖u‖2k+1

are bounded by the same constant depending on data. Thus the classical a priori
estimate (3.6) is of optimal order and regularity for k ≥ 2. The negative norm ‖ · ‖V ∗

appears in a complete similar fashion in the a posteriori error analysis of Theorem 3.1,
and thus for polynomial degree k ≥ 2 this indicates that the estimator is of optimal
order-regularity.

4. Application: Residual-type error estimators. In this section, we derive
the specific form of the estimates of section 3 in case we choose the classical residual-
type estimators for (2.5) [6, 23]. Of course, any other choice, such as solving local
problems [2, 7, 18, 23] or averaging techniques [3], is possible according to Theorem
3.1. For simplicity, we assume that A = −∆ and that Ω is sufficiently smooth in
order for (4.2) below to be valid. However, Theorem 3.1 is general enough to allow
for geometric singularities and corresponding elliptic estimators. We refer to [16] for
weighted a posteriori estimators, which account for corner singularities in both H and
V � in an optimal fashion, as well as to [8], where an error estimator is derived for an
elliptic problem with curved boundaries.

We first calculate E(uh,t, gh,t;V �) or, equivalently, estimate

‖ρ‖V � = sup
‖φ‖V ≤1

〈ρ, φ〉, ρ = (U − uh)t.

We accomplish this via standard duality arguments. Given φ ∈ V , let ψ ∈ V be
defined by

a(ψ, v) = 〈∇ψ,∇v〉 = 〈v, φ〉 for all v ∈ V,(4.1)

and suppose there exists a constant CΩ > 0, depending on the domain Ω, such that

‖ψ‖H3(Ω) ≤ CΩ‖φ‖H1(Ω).(4.2)

If Th = {K} is a shape-regular partition of Ω into finite elements K, then Sh = {S}
denotes the set of internal interelement sides and Nh(E) stands for the union of all
elements of Th intersecting the closed set E (= K or S). Then, assuming for the time
being that the polynomial degree is k ≥ 2 and recalling (2.12), we can write

〈ρ, φ〉 = a(ψ, ρ) = a(ψ − Ihψ, ρ)
≤
∑
K∈Th

|(ψ − Ihψ,∆ρ)K |+
∑
S∈Sh

∫
S

|ψ − Ihψ||[∂nρ]| ds

≤ CI
∑
K∈Th

h3
K |ψ|3,Nh(K)‖∆ρ‖L2(K)

+ CI
∑
S∈Sh

h
5/2
S |ψ|3,Nh(S)‖[∂nρ]‖L2(S),

(4.3)

where CI > 0 is an interpolation constant associated with the local interpolation
operator Ih. If we further set

η−1(uh,t)
2 =

∑
K∈Th

h6
K‖∆ρ‖2L2(K) +

∑
S∈Sh

h5
S‖[∂nuh,t]‖2L2(S)
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and make use of (4.2), then we end up with the a posteriori error estimate

E(uh,t, gh,t;V �) = ‖ρ‖V � ≤ CICΩη−1(uh,t),

where CI now contains an additional factor to account for the h-independent overlap
of sets Nh(E) in (4.3).

The form of η−1(uh,t) can be further simplified upon using the definition of the
elliptic reconstruction and the semidiscrete scheme:

∆ρ = ∆Ut −∆uh,t = −Ahuh,t + fh,t − ft −∆uh,t .

Since uh,tt +Ahuh,t = fh,t, we have

∆ρ = −fh,t + uh,tt + fh,t − ft −∆uh,t = (uh,t −∆uh − f)t .

If we denote the element residuals as

r|K := uh,t −∆uh − f for all K ∈ Th, j|S := [∂nuh] for all S ∈ Sh,

we finally get

η−1(uh,t)
2 =

∑
K∈Th

h6
K‖rt‖2L2(K) +

∑
S∈Sh

h5
S‖jt‖2L2(S),(4.4)

and

E(uh,t, gh,t;V �) ≤ CICΩη−1(uh,t) if k ≥ 2.

Using similar arguments, we can derive

E(uh, gh;H) ≤ CICΩη0(uh) if k ≥ 2,

where

η0(uh)
2 =

∑
K∈Th

h4
K‖r‖2L2(K) +

∑
S∈Sh

h3
S‖j‖2L2(S).(4.5)

Note that the constants CI , CΩ may have different values now. Finally, in the case
k = 1, the use of negative norm does not give better results because of the lack of
superconvergence in V �. Hence

E(uh,t, gh,t;V �) ≤ E(uh,t, gh,t;H) ≤ CICΩη0(uh,t) .(4.6)

In summary, in view of Theorem 3.1, we have derived the following explicit error
estimate.

Theorem 4.1 (a posteriori estimators of residual type). Assume that the domain
Ω is sufficiently smooth, and let t ∈ (0, T ]. If k = 1, then the following a posteriori
estimate holds:

‖(u− uh)(t)‖H ≤ ‖u0 − u0
h‖H

+ CICΩ

{
η0(uh(0)) + η0(uh(t)) +

(∫ t

0

η0(uh,t(s))
2ds

)1/2
}
.
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In addition, for k ≥ 2, we have

‖(u− uh)(t)‖H ≤ ‖u0 − u0
h‖H

+ CICΩ

{
η0(uh(0)) + η0(uh(t)) +

(∫ t

0

η−1(uh,t(s))
2ds

)1/2
}
,

where the estimators η0 and η−1 are given by (4.5) and (4.4), respectively.
Remark 4.1. The reasoning of Remark 3.3 applies and indicates that the estimator

in Theorem 4.1 is of optimal order for polynomial degree k ≥ 1 and of optimal
regularity for k ≥ 2. We do not actually show an a priori convergence rate for the a
posteriori estimators η0(uh) and η1(uh); this is of interest but lies outside the scope
of this paper.
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A NEW DUAL-PETROV–GALERKIN METHOD FOR THIRD AND
HIGHER ODD-ORDER DIFFERENTIAL EQUATIONS:

APPLICATION TO THE KDV EQUATION∗
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Abstract. A new dual-Petrov–Galerkin method is proposed, analyzed, and implemented for
third and higher odd-order equations using a spectral discretization. The key idea is to use trial
functions satisfying the underlying boundary conditions of the differential equations and test func-
tions satisfying the “dual” boundary conditions. The method leads to linear systems which are sparse
for problems with constant coefficients and well conditioned for problems with variable coefficients.
Our theoretical analysis and numerical results indicate that the proposed method is extremely accu-
rate and efficient and most suitable for the study of complex dynamics of higher odd-order equations.

Key words. dual-Petrov–Galerkin, KDV equation, Legendre polynomials, spectral approxima-
tion
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1. Introduction. Over the last thirty years, spectral methods have been playing
an increasingly important role in scientific and engineering computations. Most work
on spectral methods is concerned with elliptic and parabolic-type equations; there
has also been active research on spectral methods for hyperbolic problems (see, for
instance, [11, 7, 14] and the references therein). However, there is only a limited body
of literature on spectral methods for dispersive, namely, third and higher odd-order,
equations. In particular, relatively few studies are devoted to third and higher odd-
order equations in finite intervals. This is partly due to the fact that direct collocation
methods for higher odd-order boundary problems lead to very much higher condition
numbers—more precisely, of order N2k, where N is the number of modes and k is the
order of the equation—and often exhibit unstable modes if the collocation points are
not properly chosen (see, for instance, [17, 21]).

In a sequence of papers [22, 23, 25, 26], the author constructed efficient spectral-
Galerkin algorithms for elliptic equations in various situations. In this paper, we
extend the main idea for constructing efficient spectral-Galerkin algorithms—using
compact combinations of orthogonal polynomials, which satisfy essentially all the un-
derlying homogeneous boundary conditions, as basis functions—to third and higher
odd-order equations. Since the main differential operators in these equations are not
symmetric, it is quite natural to employ a Petrov–Galerkin method.

The key idea of the new spectral dual-Petrov–Galerkin method is the innovative
choice of the test and trial functional spaces. More precisely, we choose the trial
functions to satisfy the underlying boundary conditions of the differential equations,
and we choose the test functions to satisfy the “dual” boundary conditions.

Recently, Ma and Sun [19, 20] studied an interesting Legendre–Petrov–Galerkin
method for third-order equations. The main difference between this paper and [19, 20]

∗Received by the editors June 26, 2002; accepted for publication (in revised form) February 18,
2003; published electronically October 2, 2003. This research was partially supported by NFS grant
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lies in the choice of the test and trial function spaces and their basis functions. The
critical feature of test and trial spaces used here is that they allow us to integrate by
parts freely without introducing any additional boundary terms. With this property
and our choice of using “compact combinations” (minimal interactions) of Legendre
polynomials as basis functions for the test and trial spaces, we obtain linear systems
which are compactly sparse for problems with constant coefficients and well condi-
tioned (i.e., the condition number is independent of the number of unknowns) for
problems with variable coefficients. This is rather remarkable considering the fact
that the problems at hand are nonsymmetric and involve high-order derivatives.

Together with the so-called Chebyshev–Legendre approach [10, 24], i.e., using
the Legendre formulation and Chebyshev–Gauss–Lobatto points, our method has a
quasi-optimal computational complexity and is well conditioned to permit the use
of very large numbers of modes without suffering from large round-off errors, which
are necessary for simulations of very complex dynamics of challenging scientific and
engineering problems.

The new spectral dual-Petrov–Galerkin method not only leads to quasi-optimal
numerical algorithms; it is also equivalent to a natural weighted variational formula-
tion for third and higher odd-order equations. By showing that the basis functions for
the trial (and test) spaces form a sequence of orthogonal polynomials in a weighted
Sobolev space, we are able to establish optimal error estimates in appropriate weighted
Sobolev spaces.

The paper is organized as follows. In sections 2 and 3, we study the third-order
and fifth-order equations, respectively. As an example of application, we consider the
Korteweg–de Vries (KDV) equation on a finite interval in section 4. In section 5, we
discuss miscellaneous issues/extensions of the spectral dual-Petrov–Galerkin methods.
In section 6, we present various numerical results exhibiting the accuracy and efficiency
of our numerical algorithms. We end the paper with a few concluding remarks.

We now introduce some notation. Let ω(x) be a positive weight function on
I = (−1, 1). One usually requires that ω ∈ L1(I). However, in this paper, we shall
be interested mainly in the case ω �∈ L1(I). We shall use the weighted Sobolev spaces
Hm
ω (Ω) (m = 0,±1, . . . ) whose norms are denoted by ‖ ·‖m,ω. In particular, the norm

and inner product of L2
ω(Ω) = L2

ω(Ω) are denoted by ‖ · ‖ω and (·, ·)ω, respectively.
To account for homogeneous boundary conditions, we define

Hm
0,ω(Ω) = {v ∈ Hm

ω (Ω) : v(±1) = v′(±1) = · · · = v(m−1)(±1) = 0}, m = 1, 2, . . . .

The subscript ω will be omitted from the notation in the case where ω ≡ 1.
We denote by c a generic constant that is independent of any parameters and

functions. In most cases, we shall simply use the expression A � B to mean that
there exists a generic constant c such that A ≤ cB.

Let Lk be the kth degree Legendre polynomial. We now recall some basic prop-
erties of Legendre polynomials (cf. [27]) which will be used in this paper.∫ 1

−1

Lk(x)Lj(x)dx =
2

2k + 1
δkj ;(1.1)

Ln(x) =
1

2n+ 1
(L′n+1(x)− L′n−1(x)), n ≥ 1;(1.2)
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L′n(x) =

n−1∑
k=0

k+n odd

(2k + 1)Lk(x);(1.3a)

L′′n(x) =

n−2∑
k=0

k+n even

(
k +

1

2

)
(n(n+ 1)− k(k + 1))Lk(x);(1.3b)

Ln(±1) = (±1)n,(1.4a)

L′n(±1) =
1

2
(±1)n−1n(n+ 1),(1.4b)

L′′n(±1) = (±1)n(n− 1)n(n+ 1)(n+ 2)/8.(1.4c)

2. Third-order equations.

2.1. Dual-Petrov–Galerkin method. Consider the model third-order equa-
tion

αu− βux − γuxx + uxxx = f, x ∈ I = (−1, 1),

u(±1) = ux(1) = 0,
(2.1)

where α, β, γ are given constants. Without loss of generality, we consider only ho-
mogeneous boundary conditions, for nonhomogeneous boundary conditions u(−1) =
c1, u(1) = c2, and ux(1) = c3 can be handled easily by considering v = u − û,
where û is the unique quadratic polynomial satisfying the nonhomogeneous boundary
conditions.

Denoting by PN the space of polynomials of degree ≤ N , we set

VN = {u ∈ PN : u(±1) = ux(1) = 0}, V ∗N = {u ∈ PN : u(±1) = ux(−1) = 0}.
(2.2)

For any constants a and b, let ωa,b(x) = (1− x)a(1 + x)b. We also define

V = {u : u ∈ H1
0 (I), ux ∈ L2

ω−2,0(I)}, V ∗ = {u : u ∈ H1
0 (I), ux ∈ L2

ω0,−2(I)}.
(2.3)

It is clear that VN ⊂ V and V ∗N ⊂ V ∗.
We consider the following Legendre dual-Petrov–Galerkin approximation for (2.1):

Find u
N
∈ VN such that

α(u
N
, v

N
)− β(∂xuN

, v
N

) + γ(∂xuN
, ∂xvN

) + (∂xuN
, ∂2
xvN

) = (f, v
N

) ∀v
N
∈ V ∗N ,

(2.4)

where (u, v) =
∫
I
uvdx, ∂xu, and ∂2

xu denote du
dx and d2u

dx2 , respectively.
Notice that for any u

N
∈ VN we have ω−1,1u

N
∈ V ∗N . Thus the above dual-

Petrov–Galerkin formulation is equivalent to the following weighted spectral-Galerkin
approximation: Find u

N
∈ VN such that

α(u
N
, v

N
)ω−1,1 − β(∂xuN

, v
N

)ω−1,1 + γ(∂xuN
, ω1,−1∂x(v

N
ω−1,1))ω−1,1

+ (∂xuN
, ω1,−1∂2

x(v
N
ω−1,1))ω−1,1 = (f, v

N
)ω−1,1 ∀v

N
∈ VN ,

(2.5)

where (u, v)ω−1,1 =
∫
I
uvω−1,1dx.

We shall see that the dual-Petrov–Galerkin formulation (2.4) is most suitable for
implementation, while the weighted Galerkin formulation (2.5) is more convenient for
error analysis.
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2.2. Basis functions and projection operators. As suggested in [22, 24],
one should choose compact combinations of orthogonal polynomials as basis func-
tions to minimize the bandwidth and the condition number of the coefficient matrix
corresponding to (2.5). Let {pk} be a sequence of orthogonal polynomials. As a gen-
eral rule, for one-dimensional differential equations with m boundary conditions, one
should look for basis functions in the form

φk(x) = pk(x) +

m∑
j=1

a
(k)
j pk+j(x),(2.6)

where a
(k)
j (j = 1, . . . ,m) are chosen so that φk(x) satisfy the m homogeneous bound-

ary conditions.
Using (1.4), one verifies readily that

φk(x) = Lk(x)− 2k + 3

2k + 5
Lk+1(x)− Lk+2(x) +

2k + 3

2k + 5
Lk+3(x) ∈ Vk+3,

ψk(x) = Lk(x) +
2k + 3

2k + 5
Lk+1(x)− Lk+2(x)− 2k + 3

2k + 5
Lk+3(x) ∈ V ∗k+3.

(2.7)

Therefore, for N ≥ 3, we have

VN = span{φ0, φ1, . . . , φN−3};
V ∗N = span{ψ0, ψ1, . . . , ψN−3}.

(2.8)

Next, we discuss the properties of {φk} and {ψk} and related projection operators
in L2

ω−2,−1 and L2
ω−1,−2 . Since the procedures for L2

ω−2,−1 and L2
ω−1,−2 are completely

parallel, we shall describe only the results for L2
ω−2,−1 . One can obtain the corre-

sponding results for L2
ω−1,−2 by making a change of variable x→ −x.

Lemma 2.1. Let {φk} be defined as in (2.7). Then∫
I

φkφjω
−2,−1dx = 0, k �= j,(2.9)

and {φk} form a complete orthogonal basis in L2
ω−1,1 .

Furthermore, φk satisfies the following Sturm–Liouville equation:

Aφk := −(1− x)2(1 + x)∂x
{

(1− x)−1∂xφk(x)
}

= (k + 1)(k + 3)φk(x).(2.10)

Proof. By construction, pk(x) := φk(x)ω−2,−1 is a polynomial of degree ≤ k.
Thanks to the orthogonality of the Legendre polynomials,∫

I

φkφjω
−2,−1dx =

∫
I

pkφjdx = 0 ∀k < j.

Hence {φk} is a sequence of orthogonal polynomials in L2
ω−2,−1 . One can verify that

φk(x) is proportional to (1−x)2(1+x)J2,1
k (x). Thus {φk} forms a complete orthogonal

basis in L2
ω−2,−1 since {J2,1

k } forms a complete orthogonal basis in L2
ω2,1 .

It is clear that Aφk(x) is a polynomial of degree ≤ k+3 and ∂x{(1−x)−1∂xφk(x)}
is a polynomial of degree ≤ k. Hence∫

I

Aφk(x)φj(x)ω−2,−1dx = −
∫
I

∂x{(1− x)−1∂xφk(x)}φjdx

= −
∫
I

∂x{(1− x)−1∂xφj(x)}φkdx = 0 ∀j < k.
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Therefore, Aφk must be proportional to φk; i.e., Aφk = λkφk. By comparing the
coefficients of xk+3, we find that λk = (k + 1)(k + 3).

Now, let π
N

be the L2
ω−2,−1 -orthogonal projector L2

ω−2,−1 → VN defined by

(u− π
N
u, vN )ω−2,−1 = 0 ∀vN ∈ VN .(2.11)

We also define

Bmω−2,−1(I) = {u ∈ L2
ω−2,−1(I) : ∂lxu ∈ L2

ωl−2,l−1(I), 1 ≤ l ≤ m}.(2.12)

Then, we have the following error estimates.
Theorem 2.1.

‖∂lx(u− π
N
u)‖ωl−2,l−1 � N l−m‖∂mx u‖ωm−2,m−1 ∀u ∈ Bmω−2,−1 , 0 ≤ l ≤ m.

Proof. We recall that for a, b > −1, the Jacobi polynomials satisfy the following
relations:

∂lxJ
a,b
k (x) = κa,bk,lJ

a+l,b+l
k−l (x), a, b > −1, k ≥ l,(2.13)

where

κa,bk,l =
Γ(k + l + a+ b+ 1)

2lΓ(k + a+ b+ 1)
;

∫
I

Ja,bk (x)Ja,bj (x)ωa,bdx = γa,bk δkj ,(2.14)

where

γa,bk =
2a+b+1Γ(k + a+ 1)Γ(k + b+ 1)

(2k + a+ b+ 1)Γ(k + 1)Γ(k + a+ b+ 1)
.

We shall extend the definition of the Jacobi polynomials to (a, b) = (−2,−1) such
that the relations (2.13)–(2.14) are still valid. To this end, we define

J−1,0
k (x) = −1

2
(1− x)J1,0

k−1(x), k ≥ 1,

J−2,−1
k (x) =

1

2
(k − 2)

∫ x

−1

J−1,0
k−1 (t)dt, k ≥ 3.

(2.15)

One derives immediately that {J−1,0
k } are mutually orthogonal in L2

ω−1,0 . Note that

{Lk−1 − Lk} are also mutually orthogonal in L2
ω−1,0 . Hence J−1,0

k is proportional to
{Lk−1 − Lk}. One can also derive from the properties of Legendre polynomials that
J−2,−1
k (±1) = ∂xJ

−2,−1
k (1) = 0. We then derive from (1.2) and (2.15) that J−2,−1

k

must be proportional to φk−3. Hence {J−2,−1
k } are mutually orthogonal in L2

ω−2,−1 .

Moreover, one can verify that J−1,0
k and J−2,−1

k satisfy the relations (2.13)–(2.14).
For any u ∈ L2

ω−2,−1 , we write

u(x) =

∞∑
k=3

ũkJ
−2,−1
k (x) with ũk = (u, J−2,−1

k )ω−2,−1/‖J−2,−1
k ‖2ω−2,−1 .
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Hence u− π
N
u =

∑∞
k=N+1 ũkJ

−2,−1
k . Let us define

CN,l,m = max
k>N

(κ−2,−1
k,l )2γl−2,l−1

k−l
(κ−2,−1
k,m )2γm−2,m−1

k−m
.(2.16)

Then, by using (2.13)–(2.14), we find

‖∂lx(u− π
N
u)‖2ωl−2,l−1 =

∞∑
k=N+1

ũ2
k(κ−2,−1

k,l )2‖J l−2,l−1
k−l ‖2ωl−2,l−1

≤ CN,l,m
∞∑

k=N+1

ũ2
k(κ−2,−1

k,m )2‖Jm−2,m−1
k−m ‖2ωm−2,m−1

≤ CN,l,m‖∂mx u‖2ωm−2,m−1 .

(2.17)

The desired results follow from the above inequality and the fact that

CN,l,m � N2(l−m).

2.3. Error estimates. Let us first prove the following generalized Poincaré in-
equalities.

Lemma 2.2. ∫
I

u2

(1− x)4
dx ≤ 4

9

∫
I

u2
x

(1− x)2
dx ∀u ∈ VN ,∫

I

u2

(1− x)3
dx ≤

∫
I

u2
x

1− xdx ∀u ∈ VN .
(2.18)

Proof. Let u ∈ VN and h ≤ 2. Then, for any constant q, we have

0 ≤
∫
I

(
u

1− x + qux

)2
1

(1− x)h
dx

=

∫
I

(
u2

(1− x)2+h
+ q

(u2)x
(1− x)1+h

+ q2
u2
x

(1− x)h

)
dx

= (1− (1 + h)q)

∫
I

u2

(1− x)2+h
dx+ q2

∫
I

u2
x

(1− x)h
dx.

We obtain the first inequality by taking h = 2 and q = 2
3 and the second inequality

with h = 1 and q = 1.

Remark 2.1. We note that with a change of variable x→ −x in the above lemma,
we have corresponding inequalities for u ∈ V ∗N .

Lemma 2.3.

1

3
‖ux‖2ω−2,0 ≤ (ux, (uω

−1,1)xx) ≤ 3‖ux‖2ω−2,0 ∀u ∈ VN .(2.19)

Proof. For any u ∈ VN , we have uω−1,1 ∈ V ∗N . Thanks to the homogeneous
boundary conditions built into the spaces VN and V ∗N , all the boundary terms from
the integration by parts of the third-order term would vanish. Therefore, using the
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identity ∂kxω
−1,1(x) = 2 k!

(1−x)k+1 and Lemma 2.2, we find

(ux, (uω
−1,1)xx) = (ux, uxxω

−1,1 + 2uxω
−1,1
x + uω−1,1

xx )

=
1

2

∫
I

(
(u2
x)xω

−1,1 + (u2)xω
−1,1
xx + 4u2

xω
−1,1
x

)
dx

=

∫
I

(
3

2
u2
xω
−1,1
x − 1

2
u2ω−1,1

xxx

)
dx

= 3

∫
I

u2
x

(1− x)2
dx− 6

∫
I

u2

(1− x)4
dx ≥ 1

3

∫
I

u2
x

(1− x)2
dx.

The desired results follow immediately from the above.
Before we proceed with the error estimates, we make the following simple but

important observation.
Lemma 2.4. Let π

N
be defined in (2.11). Then

(∂x(u− π
N
u), ∂2

xvN
) = 0 ∀u ∈ V, v

N
∈ V ∗N .

Proof. The result is a direct consequence of (2.11), the identity

(∂x(u− π
N
u), ∂2

xvN
) = −(u− π

N
u, ω2,1∂3

xvN
)ω−2,−1 ,

and the fact that ω2,1∂3
xvN
∈ VN .

Let us denote ê
N

= π
N
u− u

N
and e

N
= u− u

N
= (u− π

N
u) + ê

N
.

Theorem 2.2. For any α, β ≥ 0 and − 1
3 < γ < 1

6 , there exists a unique solution
for the system (2.4). Furthermore, for u ∈ Bmω−2,−1 , we have

α‖e
N
‖ω−1,1 +N−1‖(e

N
)x‖ω−1,0 � (1 + |γ|N)N−m‖∂mx u‖ωm−2,m−1 , m ≥ 1.

Proof. We derive from (2.1), (2.5), and Lemma 2.4 that

α(e
N
, v

N
)ω−1,1 − β(∂xeN , vN

)ω−1,1 + γ(∂xeN , ω
1,−1∂x(v

N
ω−1,1))ω−1,1

+ (∂xêN , ω
1,−1∂2

x(v
N
ω−1,1))ω−1,1 = 0 ∀v

N
∈ VN .

(2.20)

Taking v
N

= ê
N

in the above and using Lemma 2.3 and the identities

− (vx, v)ω−1,1 = −1

2

∫
I

(v2)xω
−1,1dx = ‖v‖2ω−2,0 ∀v ∈ VN ,

(vx, (vω
−1,1)x) = (vx, vxω

−1,1 + 2vω−2,0) = ‖vx‖2ω−1,1 − 2‖v‖2ω−3,0 ∀v ∈ VN ,
(2.21)

we obtain

α‖ê
N
‖2ω−1,1 + β‖ê

N
‖2ω−2,0 + γ‖(ê

N
)x‖2ω−1,1 − 2γ‖ê

N
‖2ω−3,0 +

1

3
‖(ê

N
)x‖2ω−2,0

≤ −α(u− π
N
u, ê

N
)ω−1,1 + β(∂x(u− π

N
u), ê

N
)ω−1,1

− γ(∂x(u− π
N
u), ∂x(ê

N
ω−1,1)).

The right-hand side can be bounded by using Lemma 2.2, the Cauchy–Schwarz in-
equality, and the fact that ω−1,2 ≤ 2ω−1,1 ≤ 2ω−2,0:

(u− π
N
u, ê

N
)ω−1,1 ≤ ‖ê

N
‖ω−1,1‖u− π

N
u‖ω−1,1 ≤ 2‖ê

N
‖ω−1,1‖u− π

N
u‖ω−2,−1 ,

((u− π
N
u)x, êN )ω−1,1 = (u− π

N
u, ∂xêNω

−1,1 + 2ê
N
ω−2,0)

� ‖u− π
N
u‖ω−2,−1‖∂xêN ‖ω−2,0 ,

((u− π
N
u)x, (êNω

−1,1)x) = ((u− π
N
u)x, (êN )xω

−1,1 + 2ê
N
ω−2,0)

≤ ‖(u− π
N
u)x‖ω−1,0‖(ê

N
)x‖ω−2,0 .
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For 0 ≤ γ < 1
6 , we choose δ sufficiently small such that 1

3 − 2γ − δ > 0. Combining
the above inequalities, using the inequality

ab ≤ εa2 +
1

4ε
b2 ∀ε > 0,(2.22)

and dropping some unnecessary terms, we get

α

2
‖ê

N
‖2ω−1,1 +

(
1

3
− 2γ − δ

)
‖(ê

N
)x‖2ω−2,0

� ‖u− π
N
u‖2ω−2,−1 + γ‖(u− π

N
u)x‖2ω−1,0

� (1 + γN2)N−2m‖∂mx u‖ωm−2,m−1 .

The last inequality follows from Theorem 2.1.
For − 1

3 < γ < 0, we choose δ sufficiently small such that 1
3 + γ − δ > 0, and we

derive similarly

α

2
‖ê

N
‖2ω−1,1 +

(
1

3
+ γ − δ

)
‖(ê

N
)x‖2ω−2,0 � (1 + |γ|N2)N−2m‖∂mx u‖ωm−2,m−1 .

The desired results follow from the triangular inequality, Theorem 2.1, and the
fact that ‖u‖ω−1,0 ≤ 2‖u‖ω−1,0 .

Remark 2.2. Note that the error estimate in the above theorem is optimal for
γ = 0 but suboptimal for γ �= 0.

2.4. Linear system and its coefficient matrices. Hence, by setting

u
N

=

N−3∑
k=0

ũkφk, ū = (ũ0, ũ1, . . . , ũN−3)t,

f̃k = (f, ψk), f̄ = (f̃0, f̃1, . . . , f̃N−3)t,

mij = (φj , ψi), pij = −(φ′j , ψi), qij = (φ′j , ψ
′
i), sij = (φ′j , ψ

′′
i ),

(2.23)

the linear system (2.4) becomes

(αM + βP + γQ+ S)ū = f̄ ,(2.24)

where M, P, Q, and S are (N − 2)× (N − 2) matrices with entries mij , pij , qij , and
sij , respectively.

Thanks to the orthogonality of the Legendre polynomials, we have mij = 0 for
|i− j| > 3. Therefore, M is a seven-diagonal matrix. We note that the homogeneous
“dual” boundary conditions satisfied by φj and ψi allow us to integrate by parts freely
without introducing additional boundary terms; namely, we have

sij = (φ′j , ψ
′′
i ) = (φ′′′j , ψi) = −(φj , ψ

′′′
i ).

Thanks to the compact form of φj and ψi, we have sij = 0 for i �= j. So S is
a diagonal matrix. Similarly, we see that P is a pentadiagonal matrix and Q is a
tridiagonal matrix. It is an easy matter to derive that

sii = 2(2i+ 3)2.(2.25)

Nonzero elements of M, P, Q can be easily determined from the properties of Legendre
polynomials. Hence the linear system (2.24), under the condition of Theorem 2.2, can
be easily formed and inverted.
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3. Fifth-order equations. In this section, we shall consider an example of fifth-
order equations. We shall follow essentially the same procedures as in the previous
section and will omit some repetitive details.

3.1. Dual-Petrov–Galerkin method. Consider the model fifth-order equa-
tion:

αu+ βuxxx − uxxxxx = f, x ∈ I = (−1, 1),

u(±1) = ux(±1) = uxx(1) = 0,
(3.1)

where α and β are given constants. For the sake of simplicity and with the fifth-order
KDV equation in mind, we included only zeroth- and third-order linear terms in the
equation. Other linear terms as well as nonhomogeneous boundary conditions can be
treated as in the previous section.

Similarly to the third-order equation, we define

WN = {u ∈ PN : u(±1) = ux(±1) = uxx(1) = 0},
W ∗N = {u ∈ PN : u(±1) = ux(±1) = uxx(−1) = 0}.(3.2)

We also define

W = {u : u ∈ H2
0 (I), uxx ∈ L2

ω−2,0},
W ∗ = {u : u ∈ H2

0 (I), uxx ∈ L2
ω0,−2}.

(3.3)

It is clear that WN ⊂W and W ∗N ⊂W ∗.
We consider the following Legendre dual-Petrov–Galerkin approximation for (3.1):

Find u
N
∈WN such that

α(u
N
, v

N
)− β(∂2

xuN
, ∂xvN

) + (∂2
xuN

, ∂3
xvN

) = (f, v
N

) ∀v
N
∈W ∗N .(3.4)

Once again, the above dual-Petrov–Galerkin formulation is equivalent to the fol-
lowing weighted spectral-Galerkin approximation: Find u

N
∈WN such that

α(u
N
, v

N
)ω−1,1 − β(∂2

xuN
, ω1,−1∂x(v

N
ω−1,1))ω−1,1

+ (∂2
xuN

, ω1,−1∂3
x(v

N
ω−1,1))ω−1,1 = (f, v

N
)ω−1,1 ∀v

N
∈WN .

(3.5)

Note in particular that W ⊂ V and W ∗ ⊂ V ∗. Hence the results proved in the
previous section are still valid here.

3.2. Basis functions and projection operators. The construction of suitable
basis functions for WN and W ∗N follows the general principle (2.6); i.e., we look for

Φk = Lk + a
(k)
1 Lk+1 + a

(k)
2 Lk+2 + a

(k)
3 Lk+3 + a

(k)
4 Lk+4 + a

(k)
5 Lk+5(3.6)

such that Φk ∈ W . Using (1.4) and after some simplifications, we find that {a(k)
j }

satisfy the following relations:

a
(k)
2 + a

(k)
4 = −1,

(k + 2)(k + 3)a
(k)
2 + (k + 4)(k + 5)a

(k)
4 = −k(k + 1),

(3.7)

and

a
(k)
1 + a

(k)
3 + a

(k)
5 = 0,

(k + 1)(k + 2)a
(k)
1 + (k + 3)(k + 4)a

(k)
3 + (k + 5)(k + 6)a

(k)
5 = 0,

(k + 1)2(k + 2)2a
(k)
1 + (k + 3)2(k + 4)2a

(k)
3 + (k + 5)2(k + 6)2a

(k)
5 = gk,

(3.8)



1604 JIE SHEN

where gk = −k2(k + 1)2 − (k + 2)2(k + 3)2a
(k)
2 − (k + 4)2(k + 5)2a

(k)
4 .

One derives immediately from (3.7) that

a
(k)
2 = −2(2k + 5)

2k + 7
, a

(k)
4 =

2k + 3

2k + 7
.(3.9)

We can then determine a
(k)
1 , a

(k)
3 , a

(k)
5 by solving the 3× 3 system (3.8).

It is easy to verify that

Ψk = Lk − a(k)
1 Lk+1 + a

(k)
2 Lk+2 − a(k)

3 Lk+3 + a
(k)
4 Lk+4 − a(k)

5 Lk+5 ∈W ∗.(3.10)

Hence, for N ≥ 5, we have

WN = span{Φ0,Φ1, . . . ,ΦN−5};
W ∗N = span{Ψ0,Ψ1, . . . ,ΨN−5}.

(3.11)

We define

L2
ω−3,−2(I) = L2

ω−3,−2(I) ∩W, L2
ω−2,−3(I) = L2

ω−2,−3(I) ∩W ∗(3.12)

equipped with the norm of ‖ · ‖ω−3,−2 and ‖ · ‖ω−2,−3 , respectively. We shall only
summarize the results for L2

ω−3,−2 below. The corresponding results for L2
ω−2,−3 are

obtained by using the transform x → −x. The proofs are essentially the same as in
the previous section.

Lemma 3.1. Let {Φk} be defined as in (3.6). Then∫
I

ΦkΦjω
−3,−2dx = 0, k �= j,(3.13)

and {Φk} forms a complete orthogonal basis in L2
ω−3,−2 .

Furthermore, Φk satisfies the following Sturm–Liouville equation:

BΦk := −(1− x)3(1 + x)2∂x
{

(1− x)−2(1 + x)−1∂xΦk(x)
}

= (k + 1)(k + 5)Φk(x).

(3.14)

Now, let Π
N

be the L2
ω−3,−2 -orthogonal projector L2

ω−3,−2 →WN defined by

(u−Π
N
u, vN )ω−3,−2 = 0 ∀vN ∈WN .(3.15)

We define

Hm
ω−3,−2(I) = {u ∈ L2

ω−3,−2(I) : ∂lxu ∈ L2
ωl−3,l−2(I), 1 ≤ l ≤ m}.(3.16)

Theorem 3.1.

‖∂lx(u−Π
N
u)‖ωl−3,l−2 � N l−m‖∂mx u‖ωm−3,m−2 ∀u ∈ Hm

ω−3,−2 , 0 ≤ l ≤ m.
Proof. Let us define

J−3,−2
k (x) =

1

2
(k − 4)

∫ x

−1

J−2,−1
k−1 (t)dt, k ≥ 5.(3.17)

One can show that J−3,−2
k (±1) = ∂xJ

−3,−2
k (±1) = ∂2

xJ
−3,−2
k (1) = 0. Since J−2,−1

k

is proportional to φk−3, we then derive from (1.2) and (3.17) that J−3,−2
k must be

proportional to Φk−5 so {J−3,−2
k } are mutually orthogonal in L2

ω−3,−2 . Moreover, one

can verify that J−3,−2
k satisfies the relations (2.13)–(2.14). Thus the desired results

follow from the same arguments as those in Theorem 2.1.



DUAL-PETROV–GALERKIN METHODS 1605

3.3. Error estimates. We first prove the following generalized Poincaré in-
equalities.

Lemma 3.2.∫
I

u2

(1− x)6
dx ≤ 4

25

∫
I

u2
x

(1− x)4
dx ≤ 16

225

∫
I

u2
xx

(1− x)2
dx ∀u ∈WN ,(3.18)

and ∫
I

u2
x

(1− x)4
dx ≤ 1

7

∫
I

u2
xx

(1− x)2
dx+ 2

∫
I

u2

(1− x)6
dx ∀u ∈WN .(3.19)

Proof. The proof is similar to that of Lemma 2.2. Letting u ∈ WN , for any
constant q,

0 ≤
∫
I

(
u

1− x + qux

)2
1

(1− x)4
dx =

∫
I

(
u2

(1− x)6
+ q

(u2)x
(1− x)5

+ q2
u2
x

(1− x)4

)
dx

= (1− 5q)

∫
I

u2

(1− x)6
dx+ q2

∫
I

u2
x

(1− x)4
dx.

We obtain the first part of (3.18) by taking q = 2
5 . The second part is a direct

consequence of Lemma 2.2 since ux ∈ VN .
For (3.19), we consider the following relation with any constants q and r:

0 ≤
∫
I

(
u

(1− x)2
+ q

ux
1− x + ruxx

)2
1

(1− x)2
dx

= (1− 5q + 20r)

∫
I

u2

(1− x)6
dx+ (q2 − 2r − 4qr)

∫
I

u2
x

(1− x)4
dx+ r2

∫
I

u2
xx

(1− x)2
dx.

We obtain (3.19) by taking q = 3
2 and r = 1

2 .
Lemma 3.3.

5

7

∫
I

u2
xx

(1− x)2
dx ≤ (∂2

xu, ∂
3
x(uω−1,1)) ≤ 203

15

∫
I

u2
xx

(1− x)2
dx ∀u ∈WN .(3.20)

Proof. For any u ∈ WN , we set u = Φ(1 − x) with Φ(±1) = Φx(±1) = 0. Then,
by integrating by parts and using the fact that all boundary terms are zero, we find

(∂2
xu,∂

3
x(uω−1,1)) = −(∂3

xu, ∂
2
x(uω−1,1)) = −(Φxxx(1− x)− 3Φxx,Φxx(1 + x) + 2Φx)

=

∫
I

{
−1

2
(Φ2

xx)x(1− x2) + 3Φ2
xx(1 + x) + 3(Φ2

x)x + 2Φxx(Φx(1− x))x

}
dx

= 5

∫
I

Φ2
xxdx = 5

∫
I

{
∂2
x

(
u

1− x
)}2

dx.

Expanding ∂2
x( u

1−x ) and integrating by parts, we get

∫
I

{
∂2
x

(
u

1− x
)}2

dx =

∫
I

u2
xx

(1− x)2
dx− 6

∫
I

u2
x

(1− x)4
dx+ 24

∫
I

u2

(1− x)6
dx.

(3.21)

We conclude by applying (3.18) and (3.19) to the above.



1606 JIE SHEN

Let Π
N

be defined in (3.15). By definition, we have

(∂2
x(u−Π

N
u), ∂3

xvN
) = (u−Π

N
u, ω3,2∂5

xvN
)ω−3,−2 = 0 ∀u ∈W, v

N
∈W ∗N .(3.22)

Letting u and u
N

be, respectively, the solution of (3.1) and (3.4), we denote
ê
N

= Π
N
u− u

N
and e

N
= u− u

N
= (u−Π

N
u) + ê

N
.

Theorem 3.2. For any α, β ≥ 0, there exists a unique solution for the system
(3.4). Furthermore, for u ∈ Hm

ω−2,−1 , we have

α‖e
N
‖ω−1,1 + βN−1‖(e

N
)x‖ω−2,0 +N−2‖(e

N
)xx‖ω−1,0

� (1 + βN)N−m‖∂mx u‖ωm−3,m−2 , m ≥ 2.

Proof. We derive from (3.1), (3.5), and (3.22) that

α(e
N
, v

N
)ω−1,1 − β(∂2

xeN , ∂x(v
N
ω−1,1)) + (∂2

xêN , ∂
3
x(v

N
ω−1,1)) = 0 ∀v

N
∈WN .

Taking v
N

= ê
N

in the above and using Lemmas 2.3 and 3.3, we obtain

α‖ê
N
‖2ω−1,1 +

β

9
‖(ê

N
)x‖2ω−2,0 +

5

7
‖(ê

N
)xx‖2ω−2,0

≤ −α(u−Π
N
u, ê

N
)ω−1,1 + β(∂2

x(u−Π
N
u), ∂x(ê

N
ω−1,1))

= −α(u−Π
N
u, ê

N
)ω−1,1

− β(∂x(u−Π
N
u), (∂2

xêNω
−1,1 + 4∂xêNω

−2,0 + 4ê
N
ω−3,0)).

Using the Cauchy–Schwarz inequality, we bound the right-hand side as follows:

(u−Π
N
u, ê

N
)ω−1,1 ≤ ‖ê

N
‖ω−1,1‖u−Π

N
u‖ω−1,1 � ‖ê

N
‖ω−1,1‖u−Π

N
u‖ω−3,−2 ;

and thanks to Lemma 2.2,

((u−Π
N
u)x,(∂

2
xêNω

−1,1 + 4∂xêNω
−2,0 + 4ê

N
ω−3,0))

� ‖(u−Π
N
u)x‖ω−2,−1(‖∂2

xêN ‖ω0,3 + ‖∂xêN ‖ω−2,1 + ‖ê
N
‖ω−4,1)

� ‖(u−Π
N
u)x‖ω−2,−1(‖∂2

xêN ‖ω−2,0 + ‖∂xêN ‖ω−2,0).

Using (2.22) and combining the above inequalities, we arrive at

α

2
‖ê

N
‖2ω−1,1 +

β

18
‖∂xêN ‖2ω−2,0 +

5

14
‖∂2
xêN ‖2ω−2,0

� ‖u−Π
N
u‖2ω−3,−2 + β‖(u−Π

N
u)x‖2ω−2,−1

� (1 + βN2)N−2m‖∂mx u‖ωm−3,m−2 .

The last inequality follows from Theorem 3.1.
We can then conclude from the above inequality and the triangular

inequality.
Remark 3.1. Similarly as in the previous section, the error estimate in the above

theorem is optimal for β = 0 but suboptimal for β �= 0.

3.4. Linear system and its coefficient matrices. Similarly to the third-order
equation, we set

u
N

=

N−5∑
k=0

ũkΦk, ū = (ũ0, ũ1, . . . , ũN−5)t,

f̃k = (f,Ψk), ū = (f̃0, f̃1, . . . , f̃N−5)t,

mij = (Φj ,Ψi), M = (mij)i,j=0,1,... ,N−5,

pij = −(Φ′′j ,Ψ
′
i), P = (pij)i,j=0,1,... ,N−5,

sij = (Φ′′j ,Ψ
′′′
i ), S = (sij)i,j=0,1,... ,N−5

(3.23)
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so that the linear system (3.4) becomes

(αM + βP + S)ū = f̄ .(3.24)

Obviously, M is an eleven nonzero diagonal matrix, and with integration by parts, we
find that P is a pentadiagonal matrix and S is a diagonal matrix. Repeatedly using
(1.2), we can derive that

sii = 2(2i+ 3)(2i+ 5)(2i+ 7)(2i+ 9)a
(i)
5 .(3.25)

Nonzero elements of M and P can be determined accordingly using (1.2) and (1.3).
Hence the linear system (3.24), under the condition of Theorem 3.1, can also be easily
inverted.

4. Application to the KDV equation. There is a vast body of literature on
various aspects of the KDV equation. Although most of these studies are concerned
with initial value problems, the initial-boundary value problems also received consid-
erable attention. The most natural initial-boundary value KDV equation is set in a
quarter-plane (see, for instance, [28, 16, 3, 2, 12, 13, 5] and the references therein).
The KDV equation on a finite spatial interval has also been considered by several
authors [20, 9, 4]. Here, as an example of application to nonlinear equations, we
consider the KDV equation on a finite interval:

αvt + βvx + γvvx + vxxx = 0, x ∈ (−1, 1), t ∈ (0, T ],

v(−1, t) = g(t), v(1, t) = vx(1, t) = 0, t ∈ [0, T ],

v(x, 0) = v0(x), x ∈ (−1, 1).

(4.1)

The positive constants α, β, and γ are introduced to accommodate the scaling of
the spatial interval. The existence and uniqueness of the solution for (4.1) can be
established as in [9, 4]. Beside its own interests, (4.1) can also be viewed as a legitimate
approximate model for the KDV equation on a quarter-plane before the wave reaches
the right boundary.

Let us first reformulate (4.1) as an equivalent problem with homogeneous bound-

ary conditions. To this end, let v̂(x, t) = (1−x)2
4 g(t), and write v(x, t) = u(x, t) +

v̂(x, t). Then u satisfies the following equation with homogeneous boundary condi-
tions:

αut + a(x, t)u+ b(x, t)ux + γuux + uxxx = f, x ∈ (−1, 1), t ∈ (0, T ],

u(±1, t) = ux(1, t) = 0; t ∈ [0, T ],

u(x, 0) = u0(x) = v0(x)− v̂(x, 0), x ∈ (−1, 1),

(4.2)

where a(x, t) = γ
2 (x− 1)g(t), b(x, t) = β + γv̂(x, t), and f(x, t) = −αv̂t(x, t).

For a given ∆t, we set tk = k∆t and let u0
N

= π
N
u0 and u1

N
∈ VN be an appro-

priate approximation of u(·, t1), for instance; we can compute u1
N

using one step of a
semi-implicit first-order scheme so that for u ∈ C3(0, T ;L2

ω2,2(I)) ∩ C(0, T ;Bmω−2,−1),
we have

‖u1
N
− π

N
u(·, t1)‖ω−1,1 � ∆t2 +N−m.(4.3)

Let M be such that |u(x, t)| ≤ M for x ∈ [−1, 1] and t ∈ [0, T ]. We define a
cut-off function

H(x) =


x, |x| ≤ 2M,

2M, x > 2M,

−2M, x < −2M.

(4.4)
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It is easy to verify that

|H(x)−H(y)| ≤ |x− y| ∀x, y.(4.5)

We consider first a modified Crank–Nicolson leap-frog dual-Petrov–Galerkin approx-
imation:

α

2∆t
(uk+1

N
− uk−1

N
, v

N
)ω−1,1 +

1

2
(∂x(uk+1

N
+ uk−1

N
), ∂2

x(v
N
ω−1,1))

= (f(·, tk), v
N

)ω−1,1 +
γ

2
(H(uk

N
)uk

N
, ∂x(v

N
ω−1,1))

− (a uk
N
, v

N
)ω−1,1 + (uk

N
, ∂x(bv

N
ω−1,1)) ∀v

N
∈ VN .

(4.6)

We denote êk
N

= π
N
u(·, tk)−uk

N
, ẽk

N
= u(·, tk)−π

N
u(·, tk), and ek

N
= u(·, tk)−uk

N
.

Theorem 4.1. We assume u ∈ C3(0, T ;L2
ω2,2(I))∩C(0, T ;Bmω−2,−1) with m > 1.

Then the scheme (4.6) is unconditionally stable, and the following error estimates
hold:

‖en+1
N
‖ω−1,1 � ∆t2 +N−m, 0 ≤ n ≤ [T/dt]− 1,(

∆t
n∑
k=1

‖∂x(ek+1
N

+ ek−1
N

)‖2ω−1,0

) 1
2

� ∆t2 +N1−m, 1 ≤ n ≤ [T/dt]− 1.

Proof. Let Ek (k = 1, 2, . . . ) be the truncation error defined by

α

2∆t
(u(·, tk+1)− u(·, tk−1)) + a(·, tk)u(·, tk) + b(·, tk)ux(·, tk) + γu(·, tk)∂xu(·, tk)

+
1

2
∂3
x(u(·, tk+1) + u(·, tk−1))− f(·, tk) = Ek(·).

(4.7)

Comparing (4.6) with (4.7) and using Lemma 2.4, we have

α

2∆t
(êk+1

N
− êk−1

N
, v

N
)ω−1,1 +

1

2
(∂x(êk+1

N
+ êk−1

N
), ∂2

x(v
N
ω−1,1))

=
γ

2
(u(·, tk)2 −H(uk

N
)uk

N
, ∂x(v

N
ω−1,1))

− (a (êk
N

+ ẽk
N

), v
N

)ω−1,1 +
1

2
((êk

N
+ ẽk

N
), ∂x(bv

N
ω−1,1))

+ (Ek, v
N

)ω−1,1 − α

2∆t
(ẽk+1

N
− ẽk−1

N
, v

N
)ω−1,1 ∀v

N
∈ VN .

(4.8)

Let A = maxx∈[−1,1], t∈[0,T ] |a(x, t)| and B = maxx∈[−1,1], t∈[0,T ](|b(x, t)|+ |∂xb(x, t)|).
We now take v

N
= 2∆t(êk+1

N
+ êk−1

N
) in (4.8) and bound the right-hand side terms

using repeatedly the Cauchy–Schwarz inequality and Lemma 2.2 as follows:

−2∆t(a (êk
N

+ ẽk
N

), êk+1
N

+ êk−1
N

)ω−1,1≤∆tA(‖ẽk
N
‖2ω−1,1 + ‖êk

N
‖2ω−1,1 + ‖êk+1

N
+ êk−1

N
‖2ω−1,1),

2∆t(Ek, êk+1
N

+ êk−1
N

)ω−1,1 ≤ 2∆t‖Ek‖ω2,2‖êk+1
N

+ êk−1
N
‖ω−4,0

≤ c∆t‖Ek‖2ω2,2 +
∆t

36
‖∂x(êk+1

N
+ êk−1

N
)‖2ω−2,0 .

Let us denote ẼkN = 1
2∆t (ẽ

k+1
N − ẽk−1

N ). Similarly as above, we have

− α

2∆t
(ẽk+1
N − ẽk−1

N , êk+1
N

+ êk−1
N

)ω−1,1 ≤ c∆t‖ẼkN‖2ω2,2 +
∆t

36
‖∂x(êk+1

N
+ êk−1

N
)‖2ω−2,0 .
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By the assumption |u(x, t)| ≤M for all x and t, we have

|u(·, tk)2 −H(uk
N

)uk
N
| = |u(·, tk)(H(u(·, tk))−H(uk

N
)) +H(uk

N
)(u(·, tk)− uk

N
)|

≤ 2M |u(·, tk)− uk
N
| ≤ 2M(|ẽk

N
|+ |êk

N
|).

Hence,

γ∆t(u(·, tk)2 −H(uk
N

)uk
N
, ∂x(êk+1

N
+ êk−1

N
)ω−1,1)

≤ γ∆t‖u(·, tk)2 −H(uk
N

)uk
N
‖ω0,2‖∂x(êk+1

N
+ êk−1

N
)‖ω−2,0

≤ c∆t(‖ẽk
N
‖2ω−2,−1 + ‖êk

N
‖2ω−1,1) +

∆t

36
‖∂x(êk+1

N
+ êk−1

N
)‖2ω−2,0 ,

To handle the remaining terms, we recall the following Hardy inequalities:∫ b

a

[
1

t− a
∫ t

a

ψ(s)ds

]2
(t− a)αdt ≤ 4

1− α
∫ b

a

ψ2(t)(t− a)αdt,

∫ b

a

[
1

b− t
∫ b

t

ψ(s)ds

]2

(b− t)αdt ≤ 4

1− α
∫ b

a

ψ2(t)(b− t)αdt,(4.9)

which hold for all measurable functions φ on (a, b) with a < b and α < −1.

Let (a, b) = (−1, 0), α = 0, and φ(t) =
∫ t
−1
ψ(s)ds. We find∫ 0

−1

1

(1− t)3(1 + t)
φ2(t)dt ≤

∫ 0

−1

1

(t+ 1)2
φ2(t)dt ≤ 4

∫ 0

−1

(φt)
2dt.

Let (a, b) = (0, 1), α = −1, and φ(t) =
∫ 1

t
ψ(s)ds. We find∫ 1

0

1

(1− t)3(1 + t)
φ2(t)dt ≤

∫ 1

0

1

(1− t)3φ
2(t)dt ≤ 2

∫ 1

0

(φt)
2 1

1− tdt.

Combining the above two inequalities, we obtain∫
I

φ2ω−3,−1dx ≤ 4

∫
I

(φx)2ω−1,0dx,(4.10)

which holds for all φ such that φ(±1) = 0 and
∫
I
(φx)2ω−1,0dx <∞.

Thanks to Lemma 2.2 and (4.10),

γ∆t(u(·, tk)2 −H(uk
N

)uk
N
, (êk+1

N
+ êk−1

N
) ∂xω

−1,1)

≤ 2γ∆t‖u(·, tk)2 −H(uk
N

)uk
N
‖ω−1,1‖(êk+1

N
+ êk−1

N
)‖ω−3,−1

≤ c∆t(‖ẽk
N
‖2ω−2,−1 + ‖êk

N
‖2ω−1,1) +

∆t

36
‖∂x(êk+1

N
+ êk−1

N
)‖2ω−2,0 .

Similarly, we have

∆t((êk
N

+ ẽk
N

), ∂x(b(êk+1
N

+ êk−1
N

)ω−1,1)) = ∆t((êk
N

+ ẽk
N

), b ∂x(êk+1
N

+ êk−1
N

)ω−1,1)

+ ∆t((êk
N

+ ẽk
N

), b (êk+1
N

+ êk−1
N

) ∂xω
−1,1) + ∆t(êk

N
+ ẽk

N
, ∂xb (êk+1

N
+ êk−1

N
)ω−1,1)

≤ cB∆t(‖ẽk
N
‖2ω−2,−1 + ‖êk

N
‖2ω−1,1) +

∆t

36
‖∂x(êk+1

N
+ êk−1

N
)‖2ω−2,0 .

Combining the above inequalities into (4.8) and using Lemma 2.3, we obtain

α(‖êk+1
N
‖2ω−1,1 − ‖êk−1

N
‖2ω−1,1) +

∆t

36
‖∂x(êk+1

N
+ êk−1

N
)‖2ω−2,0

≤ c∆t(‖Ek‖2ω2,2 + ‖ẼkN‖2ω2,2 + ‖êk+1
N
‖2ω−1,1 + ‖êk

N
‖2ω−1,1 + ‖êk−1

N
‖2ω−1,1 + ‖ẽk

N
‖2ω−2,−1).

We can then apply the standard discrete Gronwall lemma to the above inequality to
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get

‖ên+1
N
‖2ω−1,1 +

∆t

36

n∑
k=1

‖∂x(êk+1
N

+ êk−1
N

)‖2ω−2,0 � ‖ê0
N
‖2ω−1,1 + ‖ê1

N
‖2ω−1,1

+ ∆t

n∑
k=1

(‖ẽk
N
‖2ω−2,−1 + ‖Ek‖2ω2,2 + ‖ẼkN‖2ω2,2), 1 ≤ n ≤ [T/∆t]− 1.

Using the triangular inequality, we derive that

‖en+1
N
‖2ω−1,1 � ‖ê0

N
‖2ω−1,1 + ‖ê1

N
‖2ω−1,1 + ‖ẽn+1

N
‖2ω−1,1

+ ∆t

n∑
k=1

(‖ẽk
N
‖2ω−2,−1 + ‖Ek‖2ω2,2 + ‖ẼkN‖2ω2,2)

and

∆t

36

n∑
k=1

‖∂x(ek+1
N

+ ek−1
N

)‖2ω−1,0 � ‖ê0
N
‖2ω−1,1 + ‖ê1

N
‖2ω−1,1

+ ∆t

n∑
k=1

(‖ẽk
N
‖2ω−2,−1 + ‖Ek‖2ω2,2 + ‖ẼkN‖2ω2,2 + ‖∂x(ẽk+1

N
+ ẽk−1

N
)‖2ω−1,0).

We can then conclude from the assumptions and Theorem 2.1.

Next, we consider the standard Crank–Nicolson leap-frog weighted Galerkin ap-
proximation:

α

2∆t
(uk+1

N
− uk−1

N
, v

N
)ω−1,1 +

1

2
(∂x(uk+1

N
+ uk−1

N
), ∂2

x(v
N
ω−1,1))

= −(a uk
N
, v

N
)ω−1,1 + (uk

N
, ∂x(bv

N
ω−1,1))

+ (f(·, tk), v
N

)ω−1,1 +
γ

2
((uk

N
)2, ∂xvN

ω−1,1 + v
N
∂xω

−1,1) ∀v
N
∈ VN .

(4.11)

Corollary 4.1. Under the conditions of Theorem 4.1, there exists c0 such that
for ∆tN ≤ c0, the two schemes (4.6) and (4.11) are equivalent.

Proof. We need only to show that the scheme (4.6) reduces to (4.11) under the
condition that ∆tN ≤ c0. Indeed, using the estimate in Theorem 4.1, the inverse
inequality ‖u‖L∞ � N2‖u‖ω0,1 for all u ∈ PN (see Lemma 4.1 below), and the as-
sumptions on u, we find that there exists c0 such that for ∆tN ≤ c0 we have

‖uk
N
‖L∞ ≤ ‖u(·, tk)‖L∞ + ‖ẽk

N
‖L∞ + ‖êk

N
‖L∞

≤M + ‖ẽk
N
‖L∞ +N2‖êk

N
‖ω0,1

≤M + ‖ẽk
N
‖L∞ + cN2(∆t2 +N−m) ≤ 2M.

Hence (4.6) and (4.11) are equivalent.

The following lemma is a special case of Theorem 2.1 in [15]. For the reader’s
convenience, we provide an elementary proof below.

Lemma 4.1.

‖u‖L∞ � N2‖u‖ω0,1 ∀u ∈ PN .
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Proof . Let J0,1
k be the kth degree Jacobi polynomial of index (0, 1). We recall

that (cf. [27])

‖J0,1
k ‖L∞ = k + 1, ‖J0,1

k ‖ω0,1 =

√
2

k + 1
.(4.12)

For any u ∈ PN , we write u(x) =
∑N
k=0 ukJ

0,1
k (x). Then

‖u‖2L∞ ≤ (N + 1)2

(
N∑
k=0

|uk|
)2

≤ (N + 1)3
N∑
k=0

|uk|2

≤ 1

2
(N + 1)4

N∑
k=0

|uk|2 2

k + 1
=

1

2
(N + 1)4‖u‖2ω0,1 .

Remark 4.1. In practice, the nonlinear term is usually computed using the pseu-
dospectral approach (cf. [11, 7]), which is discussed in the next section. It is not
difficult to show that the results in Theorem 4.1 apply to the pseudospectral scheme
(see [20] for a similar result).

Remark 4.2. We note that the result obtained here for the third-order KDV equa-
tion (4.2) can be extended to the fifth-order KDV equation, which has also attracted
considerable attention (see, for instance, [18]).

5. Miscellaneous issues. We discuss in this section several extensions and
practical issues related to the dual-Petrov–Galerkin method. We note, in particular,
that the dual-Petrov–Galerkin method can be used with any spatial discretization
method based on a variational formulation such as the finite-element method.

5.1. Other higher odd-order equations. We have discussed in detail the
Legendre dual-Petrov–Galerkin method for third- and fifth-order equations. It is
evident that the method can be directly applied to other higher odd-order equations
of the form

2m∑
j=0

aju
(j)(x) + u(2m+1)(x) = 0, m ≥ 3,(5.1)

with the boundary conditions

u(±1) = u′(±1) = · · · = u(m−1)(±1) = 0, u(m)(1) = 0.(5.2)

Other boundary conditions and/or variable coefficients can be treated following the
discussion below.

5.2. Other boundary conditions. It must be noted that our dual-Petrov–
Galerkin approach is quite flexible and can be used for other unconventional boundary
conditions. For instance, Colin and Ghidaglia [9] studied the KDV equation

ut +
2

L
(ux + uux) +

8

L3
uxxx = 0, x ∈ (−1, 1), t > 0,(5.3)

with the boundary conditions

u(−1) = g(t), ux(1) = uxx(1) = 0.(5.4)
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Note that we have scaled the interval from (0, L), which was used in [9], to (−1, 1).

Let us denote

XN = {u ∈ PN : u(−1) = 0, ux(1) = uxx(1) = 0}.(5.5)

Then the “dual” space is

X∗N = {v ∈ PN : vx(−1) = v(−1) = 0, vxx(1) = 0}.(5.6)

There exist unique coefficients {a(k)
j , ã

(k)
j } such that

φk = Lk +

3∑
j=1

a
(k)
j Lk+j ∈ XN , k = 0, 1, . . . , N − 3,

ψk = Lk +

3∑
j=1

ã
(k)
j Lk+j ∈ X∗N , k = 0, 1, . . . , N − 3.

(5.7)

Then, the Legendre dual-Petrov–Galerkin method for (5.3)–(5.4) is to find u
N

=

v
N

+ (1−x)3
8 g(t) with v

N
∈ XN such that

(∂tuN
, ψj) +

2

L
(∂xuN

+ u
N
∂xuN

, ψj) + (∂xuN
, ∂2
xψj) = 0, j = 0, 1, . . . , N − 3.(5.8)

One can prove results which are similar to Theorem 4.1 for this problem.

5.3. Problems with variable coefficients: Pseudospectral method in
modal basis. Let us consider, as an example, the following third-order equation:

a(x)u− b(x)ux + uxxx = f, x ∈ I = (−1, 1),

u(±1) = ux(1) = 0.
(5.9)

The pseudospectral dual-Petrov–Galerkin method for (5.9) is to find u
N
∈ VN such

that

(a(x)u
N
, v

N
)N − (b(x)u′

N
, v

N
)N + (u′

N
, v′′

N
)N = (f, v

N
)N ∀vN

∈ V ∗N ,(5.10)

where

(u, v)N =

N∑
k=0

u(xk)v(xk)ωk(5.11)

is the discrete inner product of u and v associated with the Legendre–Gauss–Lobatto
quadrature (cf. [7]). We recall that

(u, v)N = (u, v) ∀uv ∈ P2N−1.(5.12)

Let us denote ψ̃i = 1
(φ′

i
,ψ′′

i
)ψi = 1

2(2i+3)2ψi. Then we have

(φ′j , ψ̃
′′
i )N = (φ′j , ψ̃

′′
i ) = δij , 0 ≤ i, j ≤ N − 3.
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Hence, by setting

u
N

=

N−3∑
k=0

ũkφk, ū = (ũ0, ũ1, . . . , ũN−3)t,

f̃k = (f, ψ̃k)N , f̄ = (f̃0, f̃1, . . . , f̃N−3)t,

mij = (a(x)φj , ψ̃i)N , pij = −(b(x)φ′j , ψ̃i)N ,

(5.13)

the linear system (5.10) becomes

(M + P + I)ū = f̄ .(5.14)

It is clear that the matrices M and P are full and their formation involves N3

operations as well as the inversion of (5.14). Hence a direct approach is advisable only
if one uses a small or moderate number of modes. Otherwise, an iterative method
can be efficiently implemented as follows:

• Note that a conjugate gradient type iterative method does not require the
explicit formation of the matrix; only the action of the matrix upon a given
vector is needed at each iteration. Although the formation of M and P
involves N3 operations, their action on a given vector ū, i.e., Mū and Pū,
can be computed in O(N2) operations.

• The number of operations can be further reduced to a quasi-optimalO(N logN)
if we use the following Chebyshev–Legendre dual-Petrov–Galerkin method (cf.
[10, 24]): Find u

N
∈ VN such that

(IcN (a(x)u
N

), v
N

)N − (IcN (b(x)u′
N

), v
N

)N + (u′
N
, v′′

N
)N = (f, v

N
)N ∀vN

∈ V ∗N ,
where IcN is the interpolation operator based on the Chebyshev–Gauss–Lobatto
points, while (·, ·)N is still the discrete inner product of u and v associated
with the Legendre–Gauss–Lobatto quadrature. Hence the only difference be-
tween (5.3) and (5.10) is that a(x)u

N
and b(x)u′

N
in (5.10) are replaced by

IcN (a(x)u
N

) and IcN (b(x)u′
N

). Thanks to the fast Fourier transform (FFT)
and the fast Chebyshev–Legendre transform [1, 24], the Legendre coefficients
of IcN (a(x)u

N
) and IcN (b(x)u′

N
) can be computed in O(N logN) operations

given the Legendre coefficients of u
N

(see [24] for details).
• Under reasonable assumptions on a(x) and b(x), the matrix M+P +I is well

conditioned; i.e, its condition number is independent of N . We now provide
a heuristic argument for this statement.
Since φkω

−1,1 ∈ V ∗, there exists unique {hkj} such that

φkω
−1,1 =

N−3∑
j=0

hkjψj , k = 0, 1, . . . , N − 3.

Hence we have

〈Hū, ū〉 =

N−3∑
j=0

ũjφ
′
j ,

N−3∑
k,j=0

ũjhkjψ
′′
j


N

=

N−3∑
j=0

ũjφ
′
j ,

N−3∑
j=0

ũj(φjω
−1,1)′′

 = (∂xuN
, ∂2
x(u

N
ω−1,1))



1614 JIE SHEN

and

〈HMū, ū〉 =

a(x)

N−3∑
j=0

ũjφj ,

N−3∑
k,j=0

ũjhkjψj


N

=

a(x)

N−3∑
j=0

ũjφj ,

N−3∑
j=0

ũjφjω
−1,1


N

= (a(x)u
N
, u

N
ω−1,1)N ,

where 〈v̄, v̄〉 :=
∑N−3
j=0 v2

j is the inner product in l2.
Let us assume that 0 ≤ a(x) ≤ a1. Then, thanks to (2.2) and (2.3), we derive
from the above that there exists a constant a2 independent of N such that

〈Hū, ū〉 ≤ 〈H(M + I)ū, ū〉 ≤ a2〈Hū, ū〉.
Hence the condition number of M + I, in the norm ‖v̄‖H := 〈Hv̄, v̄〉 12 , is
independent of N . Under assumptions similar to those in Theorem 2.2, one
can also establish that the condition number of M + P + I is independent
of N . This statement is confirmed by our numerical results (see the next
section).

Therefore, a conjugate gradient type iterative method like BICGSTAB or CGS for
(5.14) will converge in a small and fixed number (i.e., independent of N) of steps. In
short, the Chebyshev–Legendre dual-Petrov–Galerkin method for (5.9) can be solved
in a quasi-optimal O(N logN) operation.

Since the unknowns are coefficients of the spectral expansion, instead of the nodal
values of the approximate solution at the collocation points, we refer to the above as
the pseudospectral dual-Petrov–Galerkin method in modal basis. The modal basis
presents at least three distinct advantages compared with the nodal basis:

• As demonstrated in sections 2 and 3 (see also [22, 23, 24]), for problems
with constant coefficients, using an appropriate modal basis leads to sparse
matrices.
• With the nodal basis, the choice of quadrature rules/collocation points plays

an important role and should be made in accordance with the underlying
differential equations and boundary conditions (see, for instance, [17] and the
references therein). For example, the Gauss–Lobatto points are not suitable
for third-order equations (cf. [21]). With the modal basis, since the use of
the quadrature rule is merely to approximate the integrals in the variational
formulation, the choice of quadrature rules/collocation points is not impor-
tant. Therefore, for the third-order equation (5.9), we can still use the usual
Gauss–Lobatto quadrature.
• Most importantly, using an appropriate modal basis leads to well-conditioned

matrices as we explained above.

6. Numerical results. We present in this section some numerical results illus-
trating the nice properties of our dual-Petrov–Galerkin method.

6.1. Third- and fifth-order linear equations. Let us first look at the con-
ditioning of our dual-Petrov–Galerkin method. We list in Table 6.1 the condition
numbers of M + P + I in (5.14) with various a(x) and b(x). Notice that in all cases,
the condition numbers are small and, more importantly, independent of N .

We list in Table 6.2 the condition numbers of αM + βP + S in (3.24) scaled by
the diagonal matrix S with various α and β. Once again, the condition numbers are
small and independent of N .
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Table 6.1
Condition numbers of (5.14).

a(x) = 1 a(x) = 10 a(x) = 50 a(x) = sinx a(x) = 10 exp(x)
N b(x) = 0 b(x) = 0 b(x) = 0 b(x) = 2x− 1 b(x) = cosx
16 1.119 2.218 7.219 1.188 2.393
64 1.119 2.218 7.219 1.188 2.393
128 1.119 2.218 7.219 1.188 2.393

Table 6.2
Condition numbers of (3.24) scaled by S.

α = 1 α = 100 α = 100 α = 1 α = 0
N β = 0 β = 0 β = 100 β = −100 β = 1
16 1.006 2.421 2.005 3.342 1.009
64 1.006 2.421 2.005 3.342 1.009
128 1.006 2.421 2.005 3.342 1.009
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Fig. 6.1. L2-errors for the third- and fifth-order equations.

Next, we look at the accuracy of our dual-Petrov–Galerkin method. We take
a(x) = sinx and b(x) = 2x−1 in (2.4) and let the exact solution of (2.4) be cos(16πx).
We plot in Figure 6.1 (left) the log10 of the L2-error against N2. For the fifth-order
equation (3.1), we take α = β = 1 and the exact solution to be sin3(3πx). The log10 of
the L2-error against N2 is presented in Figure 6.1 (right). The straight lines in these
plots indicate that the L2-errors converge like exp(−cN2), a typical supergeometric
convergence for analytic functions by spectral methods (cf. [6]).

6.2. KDV equation. Now, we present some numerical tests for the KDV equa-
tion. We first consider the initial value KDV problem

ut + uux + uxxx = 0, u(x, 0) = u0(x),(6.1)

with the exact soliton solution

u(x, t) = 12κ2sech2(κ(x− 4κ2t− x0)).

Since u(x, t) converges to 0 exponentially as |x| → ∞, we can approximate the initial
value problem (6.1) by an initial-boundary value problem for x ∈ (−M,M) as long
as the soliton does not reach the boundaries.

We take κ = 0.3, x0 = −20, M = 50, and ∆t = 0.001 so that for N � 160, the
time discretization error is negligible compared with the spatial discretization error.
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Fig. 6.2. Exact solution for the KDV equation: Left, time evolution; right, maximum error vs. N.
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Fig. 6.3. Interaction of five solitary waves.

On the left of Figure 6.2, we plot the time evolution of the approximate solution,
and on the right, we plot the maximum errors in the semi-log scale at t = 1 and
t = 50. Note that the straight lines indicate that the errors converge like exp(−cN),
which is typical for solutions that are infinitely differentiable but not analytic. The
excellent accuracy for this known exact solution indicates that the KDV equation on a
finite interval can be used to effectively simulate the KDV equation on a semi-infinite
interval before the wave reaches the boundary.

In the following tests, we fix M = 150, ∆t = 0.02, and N = 256.

Example 1: Interaction of five solitons. We start with the initial condition

u0(x) =

5∑
i=1

12κ2
i sech2(κi(x− xi))

with

κ1 = .3, κ2 = .25, κ3 = .2, κ4 = .15, κ5 = .1,
x1 = −120, x1 = −90, x3 = −60, x4 = −30, x5 = 0.

In Figure 6.3 (left), we plot the time evolution of the solution in the (x, t) plane. We
also plot the initial profile and the profile at the final step (t = 600) in Figure 6.3
(right). We observe that the soliton with higher amplitude travels with faster speed,
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Fig. 6.4. Solitary waves generated by an initial Gaussian profile.
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Fig. 6.5. Solitary waves generated by a square pulse (in time) at the left boundary.

and the amplitudes of the five solitary waves are well preserved at the final time. This
indicates that our scheme has an excellent conservation property.

Example 2: Solitary waves generated by an initial Gaussian profile. We
start with the initial condition u0(x) = exp(−1.5x2). We plot the time evolution of
the solution on the left in Figure 6.4 and the profile at the final step (t = 150) on the
right. The initial Gaussian profile has evolved into four separated solitary waves by
the time t = 150.

Example 3: Solitary waves generated by a square pulse (in time) at
the left boundary. In this example, we take u0(x) = 0 but set

u(0, t) =

{
5, 0 ≤ t ≤ 5,

0, t > 5.

One may think of this situation as a dam of height five unit length that releases water
for five unit time and is then shut off. We plot the time evolution of the solution on the
left in Figure 6.5 and the profile at the final step (t = 500) on the right. The square
pulse (in time) at the boundary generates a cascade of solitary waves as time evolves.
This interesting phenomenon was first observed by Chu, Xiang, and Baransky in [8]
(see also [12]).
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7. Concluding remarks. We presented in this paper a new dual-Petrov–
Galerkin method for third and higher odd-order equations. The key idea is to use
test functions satisfying boundary conditions which are the “dual” of those for the
trial functions. The resulting linear systems are sparse for problems with constant
coefficients and well conditioned for problems with variable coefficients. By exploring
the orthogonal properties of the test and trial basis functions in weighted Sobolev
spaces, we were able to establish optimal error estimates for typical third-order and
fifth-order linear equations and for a KDV equation on a finite interval. Obviously,
the technique can be extended to other higher odd-order equations.

When combined with a Chebyshev–Legendre approach, our dual-Petrov–Galerkin
method has a quasi-optimal computational complexity and is extremely accurate and
efficient as illustrated by our numerical examples. Hence the method is most suitable
for the study of complex dynamics of higher odd-order equations.

Finally, we note that the orthogonal polynomials {φk} and {Φk} introduced

in this paper can be viewed as extensions of the Jacobi polynomials Ja,bk (x) with
(a, b) = (−2,−1) and (a, b) = (−3,−2), respectively. They appear to be the most
natural basis functions for, respectively, the third- and fifth-order equations (with the
specified boundary conditions) considered in this paper. The extension of the Jacobi
polynomials to more general (a, b) with a, b < −1 and their applications to spec-
tral methods for other types of partial differential equations, including, in particular,
hyperbolic systems, will be investigated in a forthcoming paper.

Acknowledgment. The author would like to thank Professor Benyu Guo for
fruitful discussions and for carefully reading the first draft of the paper.
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Abstract. The streamline-diffusion finite element method (SDFEM) is applied to a convection-
diffusion problem posed on the unit square, using a Shishkin rectangular mesh with piecewise bilinear
trial functions. The hypotheses of the problem exclude interior layers but allow exponential boundary
layers. An error bound is proved for ‖uI − uN‖SD, where uI is the interpolant of the solution u,
uN is the SDFEM solution, and ‖ · ‖SD is the streamline-diffusion norm. This bound implies that
‖u− uN‖L2 is of optimal order, thereby settling an open question regarding the L2-accuracy of the
SDFEM on rectangular meshes. Furthermore, the bound shows that uN is superclose to uI , which
allows the construction of a simple postprocessing that yields a more accurate solution. Enhancement
of the rate of convergence by using a discrete streamline-diffusion norm is also discussed. Finally,
the verification of these rates of convergence by numerical experiments is examined, and it is shown
that this practice is less reliable than was previously believed.
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1. Introduction. We consider the singularly perturbed boundary value problem

Lu := −ε∆u + b · ∇u + cu = f on Ω = (0, 1)2,(1.1)

u = 0 on ∂Ω,

where ε is a small positive parameter, b(x, y) = (b1(x, y), b2(x, y)) with b1(x, y) >
β1 > 0 and b2(x, y) > β2 > 0, c(x, y) ≥ 0 on Ω̄, and

c(x, y)− div
b(x, y)

2
≥ c0 > 0 on Ω̄,(1.2)

where β1, β2, and c0 are some constants. We assume that the functions b, c, and f
are sufficiently smooth. These hypotheses ensure that (1.1) has a unique solution
in H1

0 (Ω) ∩ H2(Ω) for all f ∈ L2(Ω). Note that for sufficiently small ε, the other
hypotheses imply that (1.2) can always be ensured by the simple change of variable
v(x, y) = e−σxu(x, y) when σ is chosen suitably.

This elliptic boundary value problem, posed on a rectangular domain, is a simpli-
fication of more complex situations. In the numerical solution of models of fluid flow
problems, the streamline-diffusion finite element method (SDFEM) is often used on
meshes that are adapted to the flow’s properties. Our aim in this paper is, on nonuni-
form meshes, to develop a deeper understanding of the behavior of that method that
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will be of use to others. The precise degree of accuracy that the method achieves on
certain highly nonuniform meshes has not been fully understood up to now—even for
problems like (1.1)—and we shall throw fresh light on this fundamental question.

Layer-adapted meshes are usually used to solve (1.1), since its solution typically
has boundary layers at the sides x = 1 and y = 1 of Ω. A piecewise uniform Shishkin
mesh can be chosen a priori when one has some knowledge of the structure of these
layers [4, 14, 19]. This mesh has O(N2) points in a rectangular grid that is refined
near the sides x = 1 and y = 1.

Shishkin meshes were originally introduced in the context of finite difference meth-
ods. The first paper to consider a finite element method on such a mesh seems to
be [20], where a standard Galerkin method with piecewise bilinear trial functions was
used. It was shown that ‖uI−uNGal‖1,ε = O(N−1 lnN), where ‖·‖1,ε is the ε-weighted
energy norm defined in (2.9) below, uI is the interpolant of the solution u from the
finite element space of piecewise bilinears, and uNGal is the computed solution. Later
papers on the same method [11, 23] improved this result to O(N−2 ln2 N). (In [11], a
graded Bakhvalov mesh replaces the Shishkin mesh, which improves the convergence
rate by removing the factor ln2 N ; in [23], a discrete version of the ε-weighted energy
norm is used; thus these papers have some differences from [20].) Despite these conver-
gence results, it is computationally expensive to solve the associated discrete system
of equations [10, 13], and this makes the standard Galerkin method less attractive.

The popular SDFEM, on the other hand, yields a discrete system of equations
that can be solved efficiently by standard iterative methods [13]. Furthermore, in the
graphical results presented in [13] for solutions of (1.1) computed on Shishkin meshes,
the plots show that the solution computed by the standard Galerkin method has many
small oscillations, while no oscillations are visible in the plot of the SDFEM solution.
(For nonlinear problems such oscillations are highly undesirable.) Finally, Galerkin
methods are much more sensitive to the choice of transition point in the Shishkin
mesh than the SDFEM. Roos [17, p. 294] is strongly critical of Galerkin methods
on Shishkin meshes for all these reasons, and his Figure 4 shows the undesirable
oscillations that they can produce. For theoretical comparisons of the two methods
that show the superiority of the SDFEM, see Remarks 4.2 and 5.1 below.

The convergence properties of the SDFEM have been widely studied [5, 15, 16,
19, 21, 24, 25], but as we discuss below, up to now no satisfactory optimal convergence
result has been proved. Consequently there is an impression among researchers that,
compared with the standard Galerkin method, to achieve the extra stability of the
SDFEM one must pay the price of reduced accuracy in the computed solution. We
shall show that, at least in the case of a rectangular Shishkin mesh, the SDFEM is
no less accurate than the standard Galerkin method.

In [21], the SDFEM was applied to (1.1) using a Shishkin mesh, and it was shown
that ‖uI − uN‖SD = O(ε1/2N−1 lnN + N−3/2), where uN is the computed solution,
once again uI is the interpolant of the solution u from the finite element space of
piecewise bilinears, and ‖ · ‖SD is the streamline-diffusion norm, which will be defined
in (2.7). In the present paper, we shall use sharp interpolation error identities of Lin
[7] to perform a more careful and incisive analysis than was given in [21], culminating
in a proof that in fact ‖uI − uN‖SD = O(εN−3/2 + N−2 ln2 N).

Numerical experiments in [22] seemed to indicate that the earlier result that
‖uI − uN‖SD = O(ε1/2N−1 lnN + N−3/2) was optimal. In the present paper, we
shall show, however, that it is easy to misinterpret the rate of convergence obtained
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in numerical experiments, and it now seems likely that when ε ≤ N−1, the numerical
results from [22] show that ‖uI − uN‖SD = O(N−2 ln2 N). This warning about the
indeterminate nature of computed rates of convergence has significant implications
for the inferences drawn from numerical experiments in many papers on convection-
diffusion problems.

Our main result settles a long-standing conjecture regarding the accuracy of the
SDFEM on regions where the solution u is smooth (i.e., away from any layers). Stan-
dard analyses (see, e.g., [19]) showed only that the rate of convergence attained in
L2 was a half-order less than optimal. (By “optimal” we mean the order of the error
between the solution and its interpolant from the finite element space.) Was this
apparent deficiency of the SDFEM actually observed in practice? Numerical experi-
ments in many papers seemed to indicate that in fact one always attained optimality.
Then in [24], Zhou produced an example with a smooth solution where piecewise lin-
ears on a sequence of special triangular meshes of diameter h yielded convergence of
only O(h3/2) in L2. On the other hand, in [25] the authors showed that, when the
mesh is quadrilateral, isoparametric bilinear trial functions are used, the convective
flow direction b closely follows (in a precise sense) the meshlines, and the solution u is
smooth on the entire domain, then one attains second-order convergence in L2 (in fact,
in L∞). This still left open the possibility that one could construct a Zhou-type coun-
terexample for bilinears when the convective flow was transverse to the meshlines. We
show (see Remark 4.1) that this will not occur on rectangular locally uniform meshes:
for (1.1) one obtains full second-order convergence (up to a logarithmic factor) in L2

when bilinears are used. It is therefore likely that for more general problems one could
use cut-off functions to prove a similar result in regions that extend downstream from
an inflow boundary and on which the solution is smooth.

Furthermore, our analysis is for a problem whose solution has exponential bound-
ary layers, and the estimates proved are valid inside those layers also with absolute
constants that are independent of the data of the problem.

Our main result (Theorem 4.5) bounds the error ‖uI−uN‖SD. Writing ‖ ·‖1,ε for
the ε-weighted energy norm, which is weaker than ‖·‖SD, it turns out that ‖u−uI‖1,ε
has in general a lower order of convergence than ‖uI − uN‖1,ε, so Theorem 4.5 does
not immediately yield a satisfactory convergence result for ‖u− uN‖1,ε.

To obtain a high order of convergence for ‖u−uN‖ in some norm stronger than L2,
we discuss two separate methods. First, we show that for a discrete analogue ‖ ·‖SD,d
of the norm ‖ · ‖SD, one has ‖u − uN‖SD,d ≤ C(εN−3/2 + N−2 ln2 N). Second,
we analyze a simple local postprocessing of uN that yields a piecewise biquadratic
solution ũN for which ‖u− ũN‖1,ε has the same order as ‖uI − uN‖1,ε.

The techniques and results of this paper are not restricted to bilinear elements;
in a forthcoming paper we shall consider higher-order elements.

The paper is organized as follows. In section 2 we describe the Shishkin mesh
and the SDFEM. A decomposition of the solution u and some theoretical facts about
interpolation that we shall need later are presented in section 3. The convergence of
the SDFEM is analyzed in section 4. Then in section 5 the results outlined in the
previous paragraph are proved. Section 6 shows that the use of numerical results to
confirm theoretical rates of convergence is less reliable than was previously supposed.

Notation. Throughout the paper C will denote a generic positive constant that
is independent of ε and the mesh.

We use the standard Sobolev spaces W k,p(D),Hk(D)=W k,2(D), Hk
0 (D), Lp(D)=

W 0,p(D) for nonnegative integers k and 1 ≤ p ≤ ∞ and write (·, ·)D for the L2(D)
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inner product. Here D is any measurable subset of Ω. Then | · |k,D and ‖ · ‖k,D are
the usual Sobolev seminorm and norm on Hk(D). When D = Ω, we drop D from the
notation for simplicity.

2. The Shishkin mesh and the SDFEM. In this section we describe the
mesh and the finite element method.

Shishkin meshes are piecewise uniform meshes, constructed a priori, that are
refined inside layers. See [14, 19, 17] for a detailed discussion of their properties and
uses.

Let N be an even positive integer. We let λx and λy denote two mesh transition
parameters that will be used to specify where the mesh changes from coarse to fine;
these are defined by

λx = min

(
1

2
,

5ε

2β1
lnN

)
and λy = min

(
1

2
,

5ε

2β2
lnN

)
.

In these formulae, different authors make slightly different choices for the multi-
plier of ε/β1 and ε/β2. Linß [11] takes this multiplier to be 2 (as was also done in
[21]), while Zhang [23] chooses 5/2, as we do in the present paper. This choice of a
larger value ensures that the solution layers have decayed sufficiently on the coarse
part of the Shishkin mesh.

In fact we assume that λx = (5ε/(2β1)) lnN and λy = (5ε/(2β2)) lnN , as other-
wise we have N ≥ min{eβ1/(5ε), eβ2/(5ε)} (which is very unlikely in practice), and one
can then analyze the method using standard classical techniques.

We divide Ω as in Figure 2.1: Ω̄ = Ω11 ∪ Ω21 ∪ Ω12 ∪ Ω22, where Ω11 = [0, 1 −
λx] × [0, 1 − λy],Ω21 = [1 − λx, 1] × [0, 1 − λy], Ω12 = [0, 1 − λx] × [1 − λy, 1],Ω22 =
[1− λx, 1]× [1− λy, 1].

1− λx

1− λy

0

0

1

1

Ω11

Ω12

Ω21

Ω22

Fig. 2.1. Division of Ω and Shishkin mesh for T8.

The mesh points ΩN = {(xi, yj) ∈ Ω̄ : i, j = 0, . . . , N} are the rectangular lattice
defined by

xi =

{
2i(1− λx)/N for i = 0, . . . , N/2,
1− 2(N − i)λx/N for i = N/2 + 1, . . . , N,
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and

yj =

{
2j(1− λy)/N for j = 0, . . . , N/2,
1− 2(N − j)λy/N for j = N/2 + 1, . . . , N.

Our mesh is constructed by drawing lines parallel to the coordinate axes through
these mesh points, so it is a tensor product of two one-dimensional piecewise uniform
meshes. This divides Ω into a set TN of mesh rectangles K whose sides are parallel
to the axes—see Figure 2.1. The mesh is coarse on Ω11, coarse/fine on Ω21 ∪ Ω12,
and fine on Ω22. The mesh is quasi-uniform on Ω11, and its diameter d there satisfies√

2/N ≤ d ≤ 2
√

2/N ; on Ω12 ∪ Ω21, each mesh rectangle has dimensions O(N−1)
by O(εN−1 lnN); and on Ω22 each rectangle is O(εN−1 lnN) by O(εN−1 lnN). We
shall use these properties several times in our analysis. Given a mesh rectangle K, its
dimensions are written as hx,K by hy,K and its barycenter is denoted by (xK , yK).

We now describe the SDFEM on this rectangular mesh. Our trial space V N is the
standard space of continuous piecewise bilinears that satisfy the boundary conditions
of the problem:

V N =
{
v ∈ C(Ω̄) : v|∂Ω = 0 and v|K ∈ Q1(K) ∀K ∈ TN

}
.

Given any function v(·, ·) ∈ C(Ω̄), we denote its piecewise bilinear interpolant on the
mesh TN by vI(·, ·). We define the bilinear form BSD(·, ·) used in the SDFEM by

BSD(w, v) = BGAL(w, v) + BSTAB(w, v),

where

BGAL(w, v) = ε(∇w,∇v) + (b · ∇w + cw, v),(2.1)

BSTAB(w, v) =
∑

K⊂Ω11

δK(−ε∆w + b · ∇w + cw, b · ∇v)K(2.2)

for all (w, v) ∈ H̃1(Ω) ×H1(Ω), where H̃1(Ω) denotes the set of functions in H1(Ω)
that lie in H2(K) for each K, and δK ≥ 0 is a user-chosen piecewise constant param-
eter. Now the SDFEM is defined as follows: Find uN ∈ V N such that

BSD(uN , vN ) = (f, vN ) +
∑

K⊂Ω11

δK(f, b · ∇vN )K ∀vN ∈ V N .(2.3)

The term ∆uN in BSTAB(uN , vN ) is zero on each K as our trial space is piecewise
bilinear. We clearly have the Galerkin orthogonality property

BSD(u− uN , vN ) = 0 ∀ vN ∈ V N .(2.4)

It is shown in, e.g., [19, section III.3.2.1], that if

0 ≤ δK ≤ c0
(maxK |c(x, y)|)2 ∀K ⊂ Ω11,(2.5)

then

BSD(vN , vN ) ≥ 1

2
‖vN‖2SD ∀ vN ∈ V N ,(2.6)
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where we define

‖v‖SD =

(
ε|v|21 +

∑
K⊂Ω11

δK‖b · ∇v‖20,K + c0‖v‖20
)1/2

∀ v ∈ H1(Ω).(2.7)

(Here we simplified the result from [19] by observing that ∆vN |K = 0 for each K ∈
TN .) It follows that (2.3) has a unique solution uN ∈ V N .

Similarly to [19, p. 233], we set

δK =

 N−1 if K ⊂ Ω11 and ε ≤ N−1,
ε−1N−2 if K ⊂ Ω11 and ε > N−1,
0 otherwise.

(2.8)

This choice clearly satisfies (2.5) for N sufficiently large (independently of ε).
We shall also use the ε-weighted energy norm

‖v‖1,ε =
(
ε|v|21 + c0‖v‖20

)1/2 ∀ v ∈ H1(Ω).(2.9)

This norm is clearly weaker than ‖ · ‖SD.

3. Solution decomposition, a priori estimates. For the analysis we shall
assume that the solution u can be decomposed in a way that reflects the typical
behavior that is observed in solutions of (1.1) when interior layers are absent. The
precise hypotheses follow.

Assumption 3.1. Assume that

u = S + E21 + E12 + E22,(3.1)

where there exists a constant C such that for all (x, y) ∈ Ω we have∣∣∣∣ ∂i+jS∂xi∂yj
(x, y)

∣∣∣∣ ≤ C for 0 ≤ i + j ≤ 2,(3.2) ∣∣∣∣∂i+jE21

∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cε−ie−β1(1−x)/ε for 0 ≤ i, j ≤ 2,(3.3) ∣∣∣∣∂i+jE12

∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cε−je−β2(1−y)/ε for 0 ≤ i, j ≤ 2,(3.4) ∣∣∣∣∂i+jE22

∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cε−(i+j)e−(β1(1−x)+β2(1−y))/ε for 0 ≤ i, j ≤ 2.(3.5)

Furthermore, assume that S ∈ H3(Ω) with

‖S‖3 ≤ C.(3.6)

Here S is the smooth part of u, E21 is an exponential boundary layer along the
side x = 1 of Ω, E12 is an exponential boundary layer along the side y = 1, while E22

is an exponential corner layer at (1,1).
Remark 3.1. Linß [11] and Zhang [23] make assumptions close to those of As-

sumption 3.1. In [12] a proof is given that under certain compatibility conditions on
the data f , the bounds (3.2)–(3.5) of Assumption 3.1 hold true. The extension of this
result to the case 0 ≤ i+ j ≤ 3 in (3.2)—which would imply (3.6)—is not trivial and
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furthermore would place an inordinate number of compatibility conditions on f , but
it should be noted that the hypothesis (3.6) is weaker than requiring all third-order
derivatives of u to be pointwise bounded.

The Shishkin mesh is highly anisotropic on Ω12 ∪Ω21, and to obtain satisfactory
interpolation error estimates on this region we invoke the sharp anisotropic interpo-
lation analysis of [1], which includes the following result as a special case.

Lemma 3.1. Let K be any mesh rectangle of the Shishkin mesh TN . Let v ∈
H2(K). Then its piecewise bilinear interpolant vI satisfies the bounds

‖v − vI‖0,K ≤ C
(
h2
x,K‖vxx‖0,K + hx,Khy,K‖vxy‖0,K + h2

y,K‖vyy‖0,K
)
,

‖(v − vI)x‖0,K ≤ C (hx,K‖vxx‖0,K + hy,K‖vxy‖0,K) ,

‖(v − vI)y‖0,K ≤ C (hx,K‖vxy‖0,K + hy,K‖vyy‖0,K) .

The next lemma collects several results that involve the interpolants of the various
terms in the decomposition (3.1).

Lemma 3.2. Let Assumption 3.1 hold true. Let SI and EI denote the piecewise
bilinear interpolants of S and E, respectively, on the Shishkin mesh TN , where the
function E can be any one of E12, E21, or E22. Then there exists a constant C such
that the following interpolation error estimates hold true:

‖S − SI‖0,Ω ≤ C N−2,(3.7)

‖E‖0,Ω11
≤ C ε1/2N−5/2,(3.8)

ε‖∆E‖L1(Ω11) + ‖∇E‖L1(Ω11) ≤ C N−5/2,(3.9)

N−1‖∇EI‖0,Ω11 + ‖EI‖0,Ω11
≤ C

(
ε1/2N−5/2 + N−3

)
,(3.10)

‖E − EI‖0,Ω ≤ CN−2 ln2 N.(3.11)

Proof. Inequality (3.7) is a standard classical result [2, Theorem 3.1.5]; it can also
be deduced from Lemma 3.1 and (3.2).

We prove (3.8)–(3.10) only for E = E21 since the proof for the other layer func-
tions is similar. Applying (3.3), one gets

‖E21‖20,Ω11
≤ C

∫ 1−λy

0

∫ 1−λx

0

e−2β1(1−x)/ε dx dy

≤ Cεe−2β1λx/ε

≤ CεN−5,

which proves (3.8). For (3.9) we have similarly

ε‖∆E21‖L1(Ω11) + ‖∇E21‖L1(Ω11) ≤ Cε−1

∫ 1−λy

0

∫ 1−λx

0

e−β1(1−x)/ε dx dy

≤ Ce−β1λx/ε

≤ C N−5/2.

The proof of (3.10) is longer. An inverse inequality [2, Theorem 3.2.6] yields

N−1‖∇EI‖0,Ω11
+ ‖EI‖0,Ω11

≤ C ‖EI‖0,Ω11
,
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and it remains only to bound ‖EI‖0,Ω11
. Again invoking (3.3),

‖EI21‖20,Ω11
≤ C

∫ 1−λy

0

N/2∑
i=1

∫ xi

xi−1

e−2β1(1−xi)/ε dx dy.

In this sum, each integral is small as a function of ε when i < N/2 but not when
i = N/2, so we treat the final value of i differently. For i = 1, . . . , N/2 − 1 and
x ∈ [xi−1, xi], we have

e−2β1(1−xi)/ε = e2β1(xN/2−xN/2−1)/εe−2β1(1−xi−1)/ε ≤ e2β1(xN/2−xN/2−1)/εe−2β1(1−x)/ε,

and for i = N/2,

e−2β1(1−xN/2)/ε = e−2β1λx/ε = N−5.

Thus

‖EI21‖20,Ω11
≤ Ce2β1(xN/2−xN/2−1)/ε

∫ xN/2−1

0

e−2β1(1−x)/ε dx + CN−6

≤ Cεe−2β1(1−xN/2)/ε + CN−6

≤ C
(
εN−5 + N−6

)
,

which proves (3.10).

To get the final estimate (3.11), observe that (3.8) and (3.10) imply that

‖E − EI‖0,Ω11
≤ C(ε1/2N−5/2 + N−3) ≤ CN−2 ln2 N.

Furthermore,

‖E − EI‖0,Ω\Ω11
≤ CN−2 ln2 N.

To prove this inequality, apply Lemma 3.1 and the bounds (3.3)–(3.5) on each mesh
rectangle, and then add the results; see [3].

4. Error bound for uI −uN . The analysis of this section improves on that of
[21] by invoking the sharp superconvergence results of Lin [7]. For each mesh rectangle
K, we set

GK(x) =
1

2

[
(x− xK)2 −

(
hx,K

2

)2
]
, FK(y) =

1

2

[
(y − yK)2 −

(
hy,K

2

)2
]
.

Denote the east, north, west, and south edges of K by li,K for i = 1, . . . , 4, respectively.
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Lemma 4.1 (Lin identities). Let K be a mesh rectangle. Let w ∈ H3(K), and let
wI ∈ Q1(K) be its bilinear interpolant. Then for each vN ∈ Q1(K), we have∫

K

(w − wI)xv
N
x dx dy =

∫
K

wxyy

(
FKv

N
x −

1

3

(
F 2
K

)′
vNxy

)
dxdy,∫

K

(w − wI)xv
N
y dx dy =

∫
K

(
FKwxyy(vNy −G′Kv

N
xy) + GKwxxyv

N
x

)
dx dy

−
∫
l2,K

GKwxxv
N
x dx +

∫
l4,K

GKwxxv
N
x dx,∫

K

(w − wI)yv
N
x dx dy =

∫
K

(
GKwxxy(vNx − F ′Kv

N
xy) + FKwxyyv

N
y

)
dx dy

−
∫
l1,K

FKwyyv
N
y dy +

∫
l3,K

FKwyyv
N
y dy,∫

K

(w − wI)yv
N
y dxdy =

∫
K

wxxy

(
GKv

N
y −

1

3

(
G2
K

)′
vNxy

)
dx dy.

Proof. Start from the right-hand side of each identity. Since (wI)xx, (wI)yy, and
all third-order derivatives of wI vanish, these terms can be introduced at appropriate
places in the right-hand side; then one integrates by parts and takes into consideration
the definitions of FK and GK . For more details, see [7].

Lemma 4.2. Let ϕ ∈ W 1,∞ satisfy ‖ϕ‖W 1,∞ ≤ C for some constant C. Let
wI ∈ V N be the piecewise bilinear interpolant of w ∈ H3(Ω) ∩ W 2,∞(Ω) on the
Shishkin mesh TN . Then for all vN ∈ Q1(K), we have∣∣∣∣∫

Ω11

ϕ(w − wI)xv
N
x dx dy

∣∣∣∣ ≤ C N−2 (|w|2 + |w|3) ‖vNx ‖0,(4.1) ∣∣∣∣∫
Ω11

ϕ(w − wI)xv
N
y dx dy

∣∣∣∣ ≤ C N−2 (|w|W 2,∞ + ‖w‖3)
(‖vNy ‖0 + ‖vNx ‖0

)
+ Cε1/2N−2(ln1/2 N)|w|W 2,∞‖vNxy‖0,(4.2) ∣∣∣∣∫

Ω11

ϕ(w − wI)yv
N
x dx dy

∣∣∣∣ ≤ C N−2 (|w|W 2,∞ + ‖w‖3)
(‖vNx ‖0 + ‖vNy ‖0

)
+ Cε1/2N−2(ln1/2 N)|w|W 2,∞‖vNxy‖0,(4.3) ∣∣∣∣∫

Ω11

ϕ(w − wI)yv
N
y dx dy

∣∣∣∣ ≤ C N−2 (|w|2 + |w|3) ‖vNy ‖0.(4.4)

Proof. We define a piecewise constant approximation ϕ̄ of ϕ by

ϕ̄
∣∣∣
K

=
1

area K

∫
K

ϕdx dy for all mesh rectangles K.

Then we use the splitting∫
Ω11

ϕ(w − wI)xv
N
x dx dy

=

∫
Ω11

(ϕ− ϕ̄)(w − wI)xv
N
x dx dy +

∫
Ω11

ϕ̄(w − wI)xv
N
x dx dy.
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The first term can be bounded using standard interpolation error estimates [2, The-
orem 3.1.5] and the hypothesis ‖ϕ‖W 1,∞ ≤ C:

∣∣∣∣∫
Ω11

(ϕ− ϕ̄)(w − wI)xv
N
x dx dy

∣∣∣∣ ≤ C N−2|w|2 ‖vNx ‖0.

For the second term, we apply Lemma 4.1 and get

∣∣∣∣∫
Ω11

ϕ̄(w − wI)xv
N
x dxdy

∣∣∣∣ ≤ C
∑

K⊂Ω11

‖wxyy‖0,K
(
N−2‖vNx ‖0,K + N−3‖vNxy‖

)
≤ C N−2|w|3 ‖vNx ‖0

by an inverse inequality [2, Theorem 3.2.6]. This proves (4.1). The inequality (4.4)
can be shown in the same way.

To prove (4.2), we use the same technique and get

∣∣∣∣∫
Ω11

ϕ(w − wI)xv
N
y dx dy

∣∣∣∣
≤ C N−2

[|w|2‖vNy ‖0 + |w|3(‖vNx ‖0 + ‖vNy ‖0)
]

+

∣∣∣∣∣ ∑
K⊂Ω11

(∫
l2,K

ϕ̄GKwxxv
N
x dx−

∫
l4,K

ϕ̄GKwxxv
N
x dx

)∣∣∣∣∣ .
Set

ϕi,j = ϕ̄(x, y) for xi−1 < x < xi and yj−1 < y < yj .

Since vNx (x, 0) = 0, we have

∑
K⊂Ω11

(∫
l2,K

ϕ̄GKwxxv
N
x dx−

∫
l4,K

ϕ̄GKwxxv
N
x dx

)

=

N/2∑
i,j=1

∫ xi

xi−1

ϕij
[
(GKwxxv

N
x )(x, yj)− (GKwxxv

N
x )(x, yj−1)

]
dx

=

N/2∑
i=1

N/2−1∑
j=1

∫ xi

xi−1

(ϕij − ϕi,j+1) (GKwxxv
N
x )(x, yj) dx

+

N/2∑
i=1

∫ xi

xi−1

ϕi,N/2(GKwxxv
N
x )(x, yN/2) dx.(4.5)

Here we used the following observation: if K and K ′ are two mesh rectangles having
a common horizontal edge, then vNx is continuous across this edge and GK and GK′
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coincide there. Taking the first term in (4.5),∣∣∣∣∣∣
N/2∑
i=1

N/2−1∑
j=1

∫ xi

xi−1

(ϕij − ϕi,j+1) (GKwxxv
N
x )(x, yj) dx

∣∣∣∣∣∣
≤ C N−3|w|W 2,∞

N/2∑
i=1

N/2−1∑
j=1

∫ xi

xi−1

|vNx (x, yj)| dx

≤ C N−3|w|W 2,∞

N/2∑
i=1

N/2−1∑
j=1

√∫ xi

xi−1

∫ yj

yj−1

|vNx (x, y)|2 dx dy

≤ C N−2|w|W 2,∞‖vNx ‖0,

where the penultimate inequality is proved by transforming to the reference element
and then scaling. To estimate the final term in (4.5), note first that vNx (x, 1) = 0.
Starting with the representation

(GKwxxv
N
x )(x, yN/2) =

N−1∑
j=N/2

[
(GKwxxv

N
x )(x, yj)− (GKwxxv

N
x )(x, yj+1)

]
= −

N−1∑
j=N/2

∫ yj+1

yj

∂(GKwxxv
N
x )

∂y
(x, y) dy,

one has ∣∣∣∣∣∣
N/2∑
i=1

∫ xi

xi−1

ϕi,N/2(GKwxxv
N
x )(x, yN/2) dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣
N/2∑
i=1

N−1∑
j=N/2

∫ xi

xi−1

∫ yj+1

yj

ϕi,N/2GK
(
wxxyv

N
x + wxxv

N
xy

)
dx dy

∣∣∣∣∣∣
≤ CN−2

∑
K⊂Ω12

∫
K

∣∣wxxyvNx + wxxv
N
xy

∣∣ dx dy
≤ CN−2

[|w|3‖vNx ‖0 + |w|W 2,∞‖vNxy‖L1(Ω12)

]
≤ CN−2

[|w|3‖vNx ‖0 + (ε lnN)1/2|w|W 2,∞‖vNxy‖0
]
,

where we used the Cauchy–Schwarz inequality to bound ‖vNxy‖L1(Ω12). Collecting the
various estimates now yields (4.2). One can similarly prove (4.3).

Versions of the next lemma appear in both [11] and [23], but the proof of [11]
contains the erroneous statement that ‖E−EI‖Ω22

≤ C‖E‖Ω22
; Linß [9] gives a short

alternative argument that fixes this mistake.

Lemma 4.3. Let Assumption 3.1 hold true. Then for all vN ∈ V N , we have∣∣BGAL(u− uI , vN )
∣∣ ≤ C

(
εN−3/2 + N−2 ln2 N

)‖vN‖1,ε.(4.6)

Proof. This result is proved in [23, section 4] under the assumption that ‖S‖W 3,∞(Ω)

≤ C, but this hypothesis can be relaxed. Indeed, the full regularity of S was used
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only in the following chain of arguments [23, (4.32)]:

‖SxxxvN + Sxxv
N
x ‖L1(Ω21∪Ω22) ≤ ‖S‖W 3,∞(Ω)‖vN + vNx ‖L1(Ω21∪Ω22)

≤ Cλ1/2
x ‖vN‖1,Ω21∪Ω22

≤ C(ln1/2 N)‖vN‖1,ε

for all vN ∈ V N . Replace this calculation by

‖SxxxvN + Sxxv
N
x ‖L1(Ω21∪Ω22) ≤ |S|3‖vN‖0 + |S|W 2,∞(Ω)‖vNx ‖L1(Ω21∪Ω22)

≤ C
[‖vN‖0 + (ε lnN)1/2|vN |1

]
≤ C(ln1/2 N)‖vN‖1,ε,

where we used the Cauchy–Schwarz inequality.
Lemma 4.4. Let Assumption 3.1 hold true. Then∣∣BSTAB(u− uI , vN )

∣∣ ≤ CN−2(ln1/2 N)‖vN‖SD ∀vN ∈ V N .

Proof. Writing E for E12, E21, or E22, we have∣∣BSTAB(E − EI , vN )
∣∣

≤ CN−1
[
ε‖∆E‖L1(Ω11) + ‖∇E‖L1(Ω11)

] ‖b · ∇vN‖L∞(Ω11)

+ C N−1/2
(‖∇EI‖0,Ω11 + ‖E − EI‖0,Ω11

) ‖vN‖SD
≤ CN−5/2‖b · ∇vN‖0,Ω11 + CN−1/2

(
ε1/2N−3/2 + N−2 ln2 N

)‖vN‖SD
≤ CN−2‖vN‖SD,(4.7)

where we used Lemma 3.2 and an inverse inequality [2, Theorem 3.2.6]. Next,

BSTAB(S − SI , vN )

= −
∑

K⊂Ω11

εδK
(
∆S, b · ∇vN)

K
+

∑
K⊂Ω11

δK
(
b · ∇(S − SI), b · ∇vN)

K

+
∑

K⊂Ω11

δK
(
c(S − SI), b · ∇vN)

K
.(4.8)

For the first term in (4.8),

− (∆S, b · ∇vN)
K

=
(
∆S, vNdiv b

)
K
− (∆S,div (bvN )

)
K

=
(
∆S, vNdiv b

)
K

+
(∇∆S, bvN

)
K
−
∫
∂K

∆S(b · nK)vN dγ,

after integrating by parts. Here nK denotes the outward-pointing unit normal to the
boundary ∂K of K. Now (2.8) implies that εδK ≤ N−2, so∣∣∣∣∣ ∑

K⊂Ω11

εδK
(
∆S, b · ∇vN)

K

∣∣∣∣∣ ≤ CN−2 (|S|2 + |S|3) ‖vN‖0

+ CN−2

∣∣∣∣∫
∂Ω11

∆S(b · nK)vN dγ

∣∣∣∣
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since the line integrals in the interior of Ω11 cancel. For the line integral over ∂Ω11,
one can imitate our earlier analysis of the final term in (4.5) to get∣∣∣∣∫

∂Ω11

∆S(b · nK)vNdγ

∣∣∣∣ =

∣∣∣∣−∫
Ω12

(b2v
N∆S)y dx dy −

∫
Ω21

(b1v
N∆S)x dx dy

∣∣∣∣
≤ C

[‖vN‖0|S|3 + ε1/2(ln1/2 N) |vN |1|S|W 2,∞
]

≤ C(ln1/2 N)‖vN‖SD.

Collecting these results, the first term in (4.8) is bounded by∣∣∣∣∣ ∑
K⊂Ω11

εδK
(
∆S, b · ∇vN)

K

∣∣∣∣∣ ≤ CN−2(ln1/2 N)‖vN‖SD.

The second term in (4.8) is handled by invoking Lemma 4.2:∣∣∣∣∣ ∑
K⊂Ω11

δK
(
b · ∇(S − SI), b · ∇vN)

K

∣∣∣∣∣ ≤ C N−3
[|vN |1 + (ε lnN)1/2‖vNxy‖0

]
≤ C N−2

[|vN |0 + (ε lnN)1/2‖vN‖1
]

≤ C N−2(ln1/2 N)‖vN‖SD.

Finally, the third term in (4.8) can be bounded by∣∣∣∣∣ ∑
K⊂Ω11

δK
(
c(S − SI), b · ∇vN)

K

∣∣∣∣∣ ≤ C N−3|vN |1 ≤ C N−2‖vN‖SD,

using an inverse inequality.

Each term in (4.8) has now been bounded. Recalling the estimate (4.7) for the
layer part of u, the conclusion of the lemma follows.

It is now straightforward to prove our main result.

Theorem 4.5. Let Assumption 3.1 hold true. Then the SDFEM solution uN

satisfies

‖uN − uI‖SD ≤ C (εN−3/2 + N−2 ln2 N).(4.9)

Proof. By (2.6) and (2.4), we have

1

2
‖uN − uI‖2SD ≤ BSD(uN − uI , uN − uI)

= BSD(u− uI , uN − uI)

= BGAL(u− uI , uN − uI) + BSTAB(u− uI , uN − uI).

Now invoke Lemmas 4.3 and 4.4 to complete the proof.

Remark 4.1. Suppose that ε ≤ N−1/2 ln2 N , as is almost certainly true in prac-
tice. Then Theorem 4.5 implies that ‖uI − uN‖0 ≤ CN−2 ln2 N , which is optimal
since by (3.7) and (3.11) one has ‖u−uI‖0 ≤ CN−2 ln2 N , and this is the best possible
result, as can be seen by considering u(x, y) = e−β1(1−x)/ε. Thus a triangle inequality
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yields ‖u − uN‖0 ≤ CN−2 ln2 N . This optimal bound is obtained without using an
Aubin–Nitsche trick.

Zhou and Rannacher [24, 25] prove a similar result on meshes that are almost
uniform in the streamline direction but only when the convective flow is directed along
or close to the meshlines, and they do not consider solutions that exhibit boundary
layers.

Remark 4.2. Zhang [23] and Linß [11] obtain a result similar to Theorem 4.5 for
the standard Galerkin method on Shishkin meshes but in the weaker norm ‖ · ‖1,ε;
compared with this, our theorem guarantees additional accuracy in the computed
approximation of the streamline derivative.

Remark 4.3. It should be noted that when ε ≤ N−1 (so δK = N−1 for K ⊂ Ω11),
Theorem 4.5 implies, in particular, that( ∑

K⊂Ω11

‖b · ∇(uI − uN )‖20,K
)1/2

≤ CN−3/2 ln2 N,

although approximation theory predicts that, in general,( ∑
K⊂Ω11

‖b · ∇(u− uI)‖20,K
)1/2

≤ CN−1

is the best possible result. This phenomenon, where the order of accuracy of ‖uI−uN‖
in some norm or seminorm ‖·‖ is greater than the optimal order of ‖u−uN‖, is called
the superclose property by Lin [8], who shows that it can occur in the solution of
many classical problems on rectangular meshes.

5. Error bounds for u − uN . One can use Lemma 3.1 to show that ‖u −
uI‖1,ε ≤ CN−1 lnN (see [3]), and this estimate is sharp. Consequently, despite the
bound of Theorem 4.5, the triangle inequality yields only ‖u− uN‖1,ε ≤ CN−1 lnN .
There are two possible ways of bypassing this barrier and proving higher-order esti-
mates for u− uN in some H1-type norm, as we now outline.

The first possibility is to exploit the fact that discrete norms are sometimes weaker
than their continuous counterparts. For example, a discrete version of the | · |1 semi-
norm (where the H1 integral has been replaced by a one-point quadrature rule at the
barycenters of the rectangles) is used in [23]. One has superconvergence of the com-
puted gradients at these barycenters, and this leads to an enhanced rate of convergence
in the discrete norm. We follow a similar approach in section 5.1 and prove higher-
order uniform convergence in a discrete version of the streamline-diffusion norm.

The second possibility is to apply to uN a local postprocessing technique yielding
a new discrete solution PuN for which ‖u − PuN‖1,ε � ‖u − uN‖1,ε. In classical
finite element computations, postprocessing is commonly used, but to the best of the
authors’ knowledge it has been applied only recently to singularly perturbed problems:
a reaction-diffusion problem is considered in [6], while in [18] the authors show how
in a convection-diffusion problem one can improve the accuracy of the computed
gradient. In section 5.2, we construct a local postprocessing operator P and prove a
higher-order error bound (uniformly in ε) for ‖u− PuN‖1,ε.

In analyzing each of these possibilities, we are forced to assume slightly more
regularity of the solution than was required in previous sections, but our assumptions
are no stronger than those of [18, 23].
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Assumption 5.1. Assume that, for the decomposition u = S + E21 + E12 + E22

of Assumption 3.1, there exists a constant C such that for all (x, y) ∈ Ω we have∣∣∣∣∂i+jE21

∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cε−ie−β1(1−x)/ε for 0 ≤ i + j ≤ 3,(5.1) ∣∣∣∣∂i+jE12

∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cε−je−β2(1−y)/ε for 0 ≤ i + j ≤ 3,(5.2) ∣∣∣∣∂i+jE22

∂xi∂yj
(x, y)

∣∣∣∣ ≤ Cε−(i+j)e−(β1(1−x)+β2(1−y))/ε for 0 ≤ i + j ≤ 3.(5.3)

5.1. Bound in discrete streamline-diffusion norm. Let us first introduce a
discrete version ‖ · ‖SD,d of the streamline-diffusion norm ‖ · ‖SD. This discrete norm
is defined by replacing all integrals of derivatives in ‖ · ‖SD by a barycentric one-point
quadrature rule. That is,

‖v‖SD,d =

[ ∑
K∈TN

ε (areaK)|∇v(xK , yK)|2

+
∑

K⊂Ω11

δK |(areaK)(b · ∇v)(xK , yK)|2 + ‖v‖20
]1/2

,(5.4)

where this norm is defined for all functions v such that v|K ∈ H3(K) for all K ∈ TN .

The next result shows that the discrete streamline-diffusion norm (5.4) is weaker
than the streamline-diffusion norm (2.7) on the discrete space V N .

Lemma 5.1. There exists a positive constant C such that

‖vN‖SD,d ≤ C ‖vN‖SD ∀vN ∈ V N .

Proof. A direct calculation shows that for K ∈ TN and vN ∈ V N ,

(areaK) |(b · ∇vN )(xK , yK)|2 ≤
∫
K

|b(xK , yK) · ∇vN (x, y)|2 dxdy.

Thus ∑
K∈TN

(areaK) |∇vN (xK , yK)|2 ≤ |vN |21

and ∑
K⊂Ω11

δK(areaK) |(b · ∇vN )(xK , yK)|2

≤
∑

K⊂Ω11

∫
K

δK |b(xK , yK) · ∇vN (x, y)|2 dxdy.

Using the splitting

|b(xK , yK) · ∇vN (x, y)| ≤ |(b(xK , yK)− b(x, y)) · ∇vN (x, y)|+ |(b · ∇vN )(x, y)|
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and an inverse inequality [2, Theorem 3.2.6], we get∑
K⊂Ω11

δK(areaK)|(b · ∇vN )(xK , yK)|2 ≤ C
∑

K⊂Ω11

δK
(‖vN‖20,K + ‖b · ∇vN‖20,K

)
.

As the norms ‖ · ‖SD and ‖ · ‖SD,d have identical L2 terms, the statement of the
lemma follows on putting together the above estimates.

The next interpolation result is needed later.
Lemma 5.2. In addition to Assumptions 3.1 and 5.1, suppose that S ∈W 3,∞(Ω)

with ‖S‖W 3,∞(K) ≤ C for some constant C. Then

‖u− uI‖SD,d ≤ C N−2 ln2 N.(5.5)

Proof. Combining (3.7) and (3.11), we get the estimate

‖u− uI‖0 ≤ C N−2 ln2 N.(5.6)

At the barycenter of each rectangle K ⊂ Ω11, a Taylor expansion shows readily that
the gradient of the interpolant to the smooth part of u is superconvergent:

|(S − SI)x(xK , yK)| ≤ C N−2|S|3,∞,K ∀K ∈ TN .(5.7)

Moving on to the layer part of u, it is shown in [23, Theorem 4.1] that

ε
∑
K∈TN

(areaK) |∇(E − EI)(xK , yK)|2 ≤ C N−4 ln4 N,(5.8)

where the function E can be any one of E12, E21, or E22.
Inequality (5.8) suffices to bound the ε-weighted H1-norm component of ‖u −

uI‖SD,d, but it is inadequate for the streamline-diffusion-derivative component. Thus
on Ω11 we shall prove a stronger result. Consider only the case E = E21, since in the
other cases the estimates are analogous. Using (3.3), for all K ⊂ [xi−1, xi] × [0, 1 −
λy] ⊂ Ω11 we have

|∇E21(xK , yK)|2 ≤ C(1 + ε−2)e−2β1(1−xK)/ε

≤ Cε−2e−β1H/ε e−2β1(1−xi)/ε,

where we set H = xi − xi−1 for 1 = 1, 2, . . . , N/2. Hence

∑
K⊂Ω11

δK(areaK)|∇E21(xK , yK)|2 ≤ Cε−2e−β1H/εN−3

N/2∑
i,j=1

e−2β1(1−xi)/ε.

Now

N/2∑
i,j=1

e−2β1(1−xi)/ε ≤ C

N/2−1∑
i=1

N2

∫ xi

xi−1

e−2β1(1−xi−1−H)/ε dx + Ne−2β1λx/ε


≤ CN2

∫ 1−λx−H

0

e−2β1(1−x−H)/ε dx + CN−4

≤ C(εN−3 + N−4),
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so, since H ≥ 1/N ,∑
K⊂Ω11

δK(areaK)|∇E21(xK , yK)|2 ≤ CN−5
[
(εN)−1 + (εN)−2

]
e−β1/(εN)

≤ CN−5,(5.9)

as the mapping t �→ (t + t2)e−t is bounded on R+. It remains only to estimate
|∇EI21(xK , yK)|. First, (3.3) and H ≥ 1/N imply that

|∇EI21(xK , yK)| ≤ CNe−β1(1−xi)/ε

for all K ⊂ [xi−1, xi]× [0, 1− λy] ⊂ Ω11. Then recalling the calculation above,

∑
K⊂Ω11

δK(areaK)|∇EI21(xK , yK)|2 ≤ C

N/2∑
i,j=1

N−1e−2β1(1−xi)/ε

≤ C(εN−4 + N−5).(5.10)

Combining (5.7)–(5.10) yields the statement of the lemma.
Theorem 5.3. In addition to Assumptions 3.1 and 5.1, suppose that S∈W 3,∞(Ω)

with ‖S‖W 3,∞(K) ≤ C for some constant C. Then

‖u− uN‖SD,d ≤ C
(
εN−3/2 + N−2 ln2 N

)
.

Proof. Lemmas 5.2 and 5.1 imply that

‖u− uN‖SD,d ≤ ‖u− uI‖SD,d + ‖uI − uN‖SD,d
≤ CN−2 ln2 N + C ‖uI − uN‖SD.

Now invoke Theorem 4.5 to complete the proof.
Remark 5.1. In practice one usually has ε ≤ N−1/2 ln2 N , so the bound of

Theorem 5.3 becomes ‖u − uN‖SD,d ≤ CN−2 ln2 N . Writing uNGal for the numerical
solution computed by the Galerkin finite element method, it is shown in [11, 23] that
if ε ≤ N−1, then ‖u − uNGal‖1,ε ≤ CN−2 ln2 N , but the norm ‖ · ‖1,ε is weaker than
‖ · ‖SD,d.

5.2. Postprocessing uN . As described at the beginning of section 5, we now
show how a local postprocessing of uN yields a piecewise biquadratic solution PuN

for which in general ‖u− PuN‖1,ε � ‖u− uN‖1,ε.
Consider a family of Shishkin meshes TN with mesh points (xi, yj) for i, j =

0, . . . , N , where we require N/2 to be even. Then we can build a coarser mesh
composed of disjoint macrorectangles M , each comprising four mesh rectangles from
TN , where M belongs to only one of the four domains Ω11, Ω12, Ω21, and Ω22. See
Figure 5.1. Associate with each macrorectangle M an interpolation operator PM :
C(M̄)→ Q2(M) defined by the standard biquadratic interpolation at the barycenter,
nodes, and midpoints of edges of the macrorectangle. As usual, PM can be extended
to a continuous global interpolation operator P : C(Ω̄) → WN , where WN is the
space of piecewise biquadratic finite elements, by setting

(Pv)|M := PM (v|M ) ∀M.

Note that the macrorectangle M does not belong to TN/2 because the transition
point values 1 − λx and 1 − λy associated with the Shishkin mesh TN change when
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Fig. 5.1. Macroelements built from the decomposition T8.

N is replaced by N/2. We shall use the notation T̃N/2 for the family of macromeshes
that is generated by the family of Shishkin meshes TN . Thus each macrorectangle
M ∈ T̃N/2 is the union of four rectangles from TN .

Lemma 5.4. The piecewise biquadratic interpolation P has the following proper-
ties:

P (vI) = P (v) ∀v ∈ C(Ω̄),(5.11)

‖PvN‖1,ε ≤ C‖vN‖1,ε ∀vN ∈ V N .(5.12)

Proof. The identity (5.11) follows immediately from the definitions of the inter-
polation operators.

To prove (5.12), map the macroelement M onto the reference macroelement M̂ =
[−1,+1]2 that is the union of M1 = [0, 1]× [−1, 0], M2 = [0, 1]2, M3 = [−1, 0]× [0, 1],
and M4 = [−1, 0]2. Then by scaling properties it is sufficient to show that

‖P̂ v̂‖0,M̂ ≤ C‖v̂‖0,M̂ and |P̂ v̂|1,M̂ ≤ C|v̂|1,M̂ ∀v̂ ∈ Q(M̂),(5.13)

where

Q(M̂) = {ŵ ∈ C(M̂) : ŵ|Mi
∈ Q1(Mi) for i = 1, . . . , 4}.

We have

P̂ v̂ = 0 ⇒ v̂ = 0 ∀v̂ ∈ Q(M̂),

so the mapping v̂ �→ ‖P̂ v̂‖0,M̂ is a norm on the space Q(M̂). Similarly

|P̂ v̂|1,M̂ = 0 ⇒ P̂ v̂ = constant ⇒ v̂ = constant,

which shows that the mapping

v̂ �→ |P̂ v̂|1,M̂
is a norm on the quotient space Q(M̂)\R. Then (5.13) follows from the equivalence
of norms in finite-dimensional spaces.

Lemma 5.5. Let Assumptions 3.1 and 5.1 hold true. Then

‖Pu− u‖1,ε ≤ C
(
εN−3/2 + N−2 ln2 N

)
.(5.14)
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Proof. When considering a family of Shishkin meshes TN with N/2 even, the
resulting family T̃N/2 of macroelements has the same transition points as TN but has
N/2 elements in each coordinate direction. Using standard interpolation results, we
get

‖PS − S‖1,ε ≤ C(ε1/2N−2 + N−3) ≤ CN−2.(5.15)

The method of analysis of the layer parts of u varies with one’s location in Ω. In
order not to overburden the presentation with excessive detail, only the estimation of
ε1/2‖(PE21 −E21)x‖0 is described; the component ε1/2‖(PE21 −E21)y‖0 of (5.14) is
less badly behaved, and the treatment of E12 and E22 is broadly similar. A similar
argument also shows that, analogously to (3.11),

‖PE − E‖0 ≤ CN−2 ln2 N,(5.16)

where E can be any one of E12, E21, or E22.
Inside the layer (i.e., on Ω21 ∪ Ω22), one uses the following anisotropic error

estimates from [1], which are analogous to those of Lemma 3.1:

‖v − Pv‖0,M ≤ C
∑
i+j=3

hix,Mhjy,M

∥∥∥∥ ∂3v

∂xi∂yj

∥∥∥∥
0,M

∀M ∈ T̃N/2,

‖(v − Pv)x‖0,M ≤ C
∑
i+j=2

hix,Mhjy,M

∥∥∥∥ ∂3v

∂xi+1∂yj

∥∥∥∥
0,M

∀M ∈ T̃N/2,

‖(v − Pv)y‖0,M ≤ C
∑
i+j=2

hix,Mhjy,M

∥∥∥∥ ∂3v

∂xi∂yj+1

∥∥∥∥
0,M

∀M ∈ T̃N/2.

These bounds yield

ε1/2‖(E21 − PE21)x‖0,Ω21∪Ω22

≤ Cε1/2

[(
ε lnN

N

)2

‖(E21)xxx‖0,Ω21∪Ω22

+

(
ε lnN

N
· 1

N

)
‖(E21)xxy‖0,Ω21∪Ω22

+
1

N2
‖(E21)xyy‖0,Ω21∪Ω22

]

≤ CN−2 ln2 N,

(5.17)

by (5.1).
Outside the layer region Ω21 ∪ Ω22, it is best to apply the triangle inequality:

ε1/2‖(E21 − PE21)x‖0,Ω12∪Ω11
≤ ε1/2‖(E21)x‖0,Ω12∪Ω11

+ ε1/2‖(PE21)x‖0,Ω12∪Ω11
.

Then (5.1) implies that

ε1/2‖(E21)x‖0,Ω12∪Ω11 ≤ CN−5/2.(5.18)

For the other term ε1/2‖(PE21)x‖0,Ω12∪Ω11 , on each K ⊂ Ω12 use the easily verified
inequality ‖(PE21)x‖L∞(K) ≤ C‖(E21)x‖L∞(K), and then exploit the fact that the
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area of Ω12 is at most C(ε lnN)1/2, while on Ω11 simply invoke an inverse inequality.
These techniques yield (compare with the derivation of (3.10))

ε‖(PE21)x‖20,Ω12
≤ Cε−1

∫ 1

1−λy

N/4∑
i=1

∫ x2i

x2i−2

exp

(
−2β1(1− x2i)

ε

)
dx dy

≤ C(εN−5 + N−6) lnN(5.19)

and

ε1/2‖(PE21)x‖0,Ω11
≤ Cε1/2N‖PE21‖0,Ω11

≤ Cε1/2N

∫ 1−λy

0

N/4∑
i=1

∫ x2i

x2i−2

exp

(
−2β1(1− x2i)

ε

)
dx dy

≤ Cε1/2(ε1/2N−3/2 + N−2).(5.20)

Now combine (5.17)–(5.20) to get

ε1/2‖(PE21 − E21)x‖0 ≤ C
(
εN−3/2 + N−2 ln2 N

)
.

Recalling (5.15) and (5.16), we are done.
Theorem 5.6. Let Assumptions 3.1 and 5.1 hold true. Then after postprocessing

by P , the numerical solution uN generated by the SDFEM satisfies

‖u− PuN‖1,ε ≤ C
(
εN−3/2 + N−2 ln2 N

)
.

Proof. The triangle inequality and Lemmas 5.4 and 5.5 yield

‖u− PuN‖1,ε ≤ ‖u− Pu‖1,ε + ‖P (uI − uN )‖1,ε
≤ C

(
εN−3/2 + N−2 ln2 N + ‖uI − uN‖1,ε

)
≤ C(εN−3/2 + N−2 ln2 N),

where we invoked Theorem 4.5.
Remark 5.2. In practice we can assume that ε ≤ N−1/2 ln2 N and obtain (aside

from a logarithmic factor) second-order convergence in Theorem 5.6.
Remark 5.3. Theorem 5.6 implies that

ε1/2‖∇u−∇PuN‖0 ≤ C(εN−3/2 + N−2 ln2 N).

In [18] a recovery technique is applied to the solution uNGal computed by the standard
Galerkin method on the Shishkin mesh TN , producing a recovered gradient RuNGal
for which ε1/2‖∇u − RuNGal‖0 ≤ CN−2 ln5/2 N when ε ≤ N−1. Thus our postpro-
cessed solution PuN includes a recovery of the gradient that is accurate to a slightly
higher order. The two methods are not the same; ∇PuN is piecewise linear and
discontinuous, while RuNGal is piecewise linear and continuous.

6. What rates of convergence are observed? In this section we give nu-
merical results that appear to support our theoretical results, as is standard practice.
However, we shall also reveal that in analyzing the numerical results of singularly
perturbed problems solved on Shishkin meshes, it is easy to mistake one rate of con-
vergence for another.
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In Figure 6.1 is shown the experimental data from [22, Figure 2], which is for
(1.1) with b = (2 + x, 1 + y), c = 2, and the right-hand side f chosen so that

u(x, y) = 2(sinx)

(
1− exp

(
−3(1− x)

ε

))
y2

(
1− exp

(
−2(1− y)

ε

))
.

This is a typical problem of type (1.1). In [22], where only the comparison curve
for O(N−3/2) was drawn, the numerical results were interpreted as showing that
experimentally one observes convergence of order N−3/2. Of course Theorem 4.5 of
the present paper predicts instead convergence of order N−2 ln2 N , so in Figure 6.1
we also draw this comparison curve. One can then see that indeed Theorem 4.5 does
appear to predict the correct rate of convergence, but one can also see that the two
comparison curves are quite similar, so it is easy to understand the misinterpretation
made in [22].

10
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10
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10
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10
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10
-3

10
-2

10
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10
0

O(N-3/2 ) 

O(N-2  ln2N) 

Fig. 6.1. Error in ‖uI − uN‖SD.

Can we be sure from Figure 6.1 that the experimental order of convergence is
N−2 ln2 N? No. It is possible that a comparison curve for O(N−α lnβ N) (for some
constants α and β) would look slightly more convincing.

Table 6.1 presents this data in another way. It gives the computed rates of
convergence based on the errors in Figure 6.1 when one assumes that the error has
the form CN−α or C(N−1 lnN)−α for some constant α. Once again it is difficult to
draw a firm conclusion about the actual rate that is observed.

By now, the reader may be of the opinion that these difficulties in interpretation
of experimental results stem from the use of values of N that are too small. Surely
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Table 6.1
Computed rates of convergence for errors from Figure 6.1.

N 16 32 64 128 256
Rate N−α; α value 0.9694 1.2455 1.4254 1.5365 1.6080

Rate (N−1 lnN)α; α value 1.6572 1.8369 1.9341 1.9760 1.9917

Table 6.2
Convergence rates for E(N) = CN−2 ln2N ; rate of N−α is assumed.

N 32 64 128 256 512 1024 2048 4096
α 1.3561 1.4739 1.5552 1.6147 1.6601 1.6960 1.7250 1.7489

for N sufficiently large there can be no doubt about the actual rate of convergence
observed?

To throw some light on the answer to this question, Table 6.2 gives the rates
of convergence, computed in the standard way when one assumes convergence of
order N−α for some constant α, from a function of the form E(N) = CN−2 ln2 N .
That is, these numbers are not obtained by solving a boundary value problem but
are computed by assuming that the numerical error function E(N) has the exact
form CN−2 ln2 N for some constant C. If this table were computed from successive
numerical solutions to a problem like (1.1) and one did not know a priori that the rates
represent O(N−2 ln2 N) convergence, one might easily interpret them as O(N−7/4).
Taking larger values of N would certainly reveal the misinterpretation, but already the
table has reached N = 4096, which for our two-dimensional problem means that one
has about 16 million unknowns. Thus taking a value of N sufficiently large to confirm
beyond doubt a rate of convergence when solving (1.1) is in general impractical. It
seems that Figure 6.1 is the best we can do.
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Abstract. We introduce a nonoverlapping variant of the Schwarz waveform relaxation algo-
rithm for wave propagation problems with variable coefficients in one spatial dimension. We derive
transmission conditions which lead to convergence of the algorithm in a number of iterations equal
to the number of subdomains, independently of the length of the time interval. These optimal trans-
mission conditions are in general nonlocal, but we show that the nonlocality depends on the time
interval under consideration, and we introduce time windows to obtain optimal performance of the
algorithm with local transmission conditions in the case of piecewise constant wave speed. We show
that convergence in two iterations can be achieved independently of the number of subdomains in
that case. The algorithm thus scales optimally with the number of subdomains, provided the time
windows are chosen appropriately. For continuously varying coefficients we prove convergence of
the algorithm with local transmission conditions using energy estimates. We then introduce a finite
volume discretization which permits computations on nonmatching grids, and we prove convergence
of the fully discrete Schwarz waveform relaxation algorithm. We finally illustrate our analysis with
numerical experiments.
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1. Introduction. Domain decomposition methods have been mainly developed
and analyzed for elliptic coercive problems, and their convergence theory is well under-
stood; see [42, 8, 38, 37] and references therein. When treating evolution problems, the
classical approach consists of discretizing the time dimension uniformly on the whole
domain by an implicit scheme and then treating the obtained problems at each time
step by a classical domain decomposition method for steady problems. For parabolic
problems, see, for example, [6, 30, 7], and for hyperbolic problems see [2, 41].

This approach has two disadvantages. First, one needs to impose a uniform time
discretization for all subdomains, and thus one loses one of the main features of do-
main decomposition algorithms, namely, to adapt the solution process to the physical
properties of the subdomain. It is still possible to refine in space, but for evolution
problems this is not sufficient, since the space and time discretization are linked in
general by stability constraints and conditions on the dispersion of the numerical
scheme. Second, the algorithm needs to communicate small amounts of information
at each time step. Each communication involves in addition to the cost for the data
transmitted a startup cost independent of the amount of data transmitted. It can
thus be of interest to communicate larger packages of data at once over several time
steps instead of many small packages to save communication time. This factor can be-
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‡Département de Mathématiques, Université Paris XIII, 93430 Villetaneuse, France and CMAP,
Ecole Polytechnique, 91128 Palaiseau, France (halpern@math.univ-paris13.fr).

§CMAP, CNRS UMR 7641, Ecole Polytechnique, 91128 Palaiseau, France (nataf@cmap.
polytechnique.fr).

1643



1644 M. J. GANDER, L. HALPERN, AND F. NATAF

come important if the algorithm runs on an existing network of workstations without
special high performance links.

To avoid the above disadvantages, we propose in this paper an approach different
from the classical one. We decompose the original domain into subdomains as in the
classical case, but we do not discretize the time dimension. Instead we solve time
dependent subproblems on each subdomain. This approach is related to waveform
relaxation algorithms for ordinary differential equations and has first been consid-
ered for partial differential equations by Bjørhus in [5, 4], where first order hyper-
bolic problems were analyzed, in which case only incoming characteristic information
can be imposed on subdomain interfaces. An overlapping Schwarz algorithm of this
type has been analyzed for the heat equation in [13, 19, 18], and for more general
parabolic problems in [20, 14], which led to a new understanding of the performance
of the waveform relaxation algorithm when applied to parabolic partial differential
equations; in particular, a new and faster asymptotic convergence rate is obtained
with overlapping subdomain splitting compared to the classical waveform relaxation
rate for Jacobi splittings. For overlapping and nonoverlapping Schwarz waveform re-
laxation methods for the wave equation and convection reaction diffusion equation,
see [15].

We are focusing in this paper on wave propagation phenomena in the presence
of variable and discontinuous coefficients. We first perform an analysis at the contin-
uous level and derive transmission conditions for nonoverlapping Schwarz waveform
relaxation algorithms which lead to optimal convergence. The optimal transmission
conditions involve linear operators Sj related to the Dirichlet to Neumann maps at
the artificial interfaces. For elliptic problems, results of this type have been studied
in [9, 34, 33, 12, 17]. These optimal transmission conditions are nonlocal in general,
but we show that the nonlocality depends on the time interval under consideration in
the wave equation case. We introduce then time windows to obtain optimal perfor-
mance of the algorithm with local transmission conditions for piecewise constant wave
speed. We show that convergence in two iterations can be achieved independently of
the number of subdomains in that case. The algorithm thus scales optimally with
the number of subdomains, without any additional mechanism like a coarse grid. For
continuously varying coefficients, we prove convergence of the algorithm with local
transmission conditions using energy estimates. We then introduce a finite volume
discretization and analyze the fully discrete Schwarz waveform relaxation algorithm.
This algorithm allows us to use nonmatching grids both in space and time on dif-
ferent subdomains so that the resolution can be adapted to the underlying physical
properties of the problem. For piecewise constant wave speed, we analyze the con-
vergence of the algorithm using discrete Laplace transforms, a tool introduced for the
continuous analysis of waveform relaxation algorithms by Miekkala and Nevanlinna in
[31] and later used by Nevanlinna in [35, 36]. For an analysis of waveform relaxation
algorithms discretized in time, see also Janssen and Vandewalle [22] and references
therein. For continuously varying wave speed, we prove stability of the subdomain
problems and convergence on nonmatching grids using energy estimates. Our ap-
proach is an alternative to the mortar method for nonmatching grids [3]; see also
[1]. We finally illustrate the analysis with numerical experiments for model problems
and a simulation for a typical underwater sound speed profile from an application.
For a different approach of a space time decomposition for evolution problems using
virtual controls, see [28], and for other ways of grid refinement in space and time, see
[2, 10, 25].
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Ω1 ΩIΩi Ωi+1Ωi−1Ωi−2

Fig. 2.1. Domain decomposition into I nonoverlapping subdomains.

2. The optimal Schwarz waveform relaxation algorithm. We consider the
second order wave equation with variable wave speed in one dimension,

L(u) = 1

c2(x)

∂2u

∂t2
− ∂2u

∂x2
= f,(2.1)

on the domain R× (0, T ) with initial conditions

u(x, 0) = p(x),
∂u

∂t
(x, 0) = q(x).

For 0 < c ≤ c(x) ≤ c < ∞ there exists a unique weak solution u of (2.1) on any
bounded time interval t ∈ [0, T ]; see [26, 27].

2.1. A general nonoverlapping Schwarz waveform relaxation algorithm.
We decompose the domain R into I nonoverlapping subdomains Ωi = (ai, ai+1),
aj < ai, for j < i and a1 = −∞, aI+1 = +∞ as given in Figure 2.1. We introduce a
general nonoverlapping Schwarz waveform relaxation algorithm

L(uk+1
i ) = f, in Ωi × (0, T ),

B−i (uk+1
i )(ai, t) = B−i (uki−1)(ai, t), t ∈ (0, T ),

B+
i (u

k+1
i )(ai+1, t) = B+

i (u
k
i+1)(ai+1, t), t ∈ (0, T ),

uk+1
i (x, 0) = p(x), x ∈ Ωi,

∂uk+1
i

∂t (x, 0) = q(x), x ∈ Ωi,

(2.2)

where B±i are linear transmission operators which we will determine to get optimal
performance of the algorithm. For ease of notation, we define here

uk0 := 0, ukI+1 := 0(2.3)

so that the index i in (2.2) ranges from i = 1, 2, . . . , I. Note that we call this algorithm
a waveform relaxation algorithm because time dependent problems are solved on
subdomains as in the waveform relaxation algorithm for large systems of ordinary
differential equations [24]. The algorithm we consider here is a Jacobi-type or additive
Schwarz algorithm, since all the subdomains are treated in parallel. A Gauss–Seidel or
multiplicative Schwarz algorithm could be considered as well. But since the analysis
would be similar, we focus in this paper on the additive version of the algorithm only.

2.2. Transmission conditions for optimal convergence. For elliptic prob-
lems, the Dirichlet to Neumann map has been used in [32] to define optimal transmis-
sion conditions. For wave propagation, it is more convenient to introduce the linear
operator S1(x0) defined by

S1(x0) : g(t) 	→ ∂v

∂x
(x0, t),(2.4)
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where v(x, t) is the solution of

L(v) = 0, in (−∞, x0)× (0, T ),
∂v
∂t (x0, t) = g(t), t ∈ (0, T ),

v(x, 0) = ∂v
∂t (x, 0) = 0, x ∈ (−∞, x0),

(2.5)

and the linear operator S2(x0) is defined by

S2(x0) : g(t) 	→ ∂v

∂x
(x0, t),(2.6)

where v(x, t) is the solution of

L(v) = 0, in (x0,∞)× (0, T ),
∂v
∂t (x0, t) = g(t), t ∈ (0, T ),

v(x, 0) = ∂v
∂t (x, 0) = 0, x ∈ (x0,∞).

(2.7)

The operators Sj defined in (2.5) and (2.7) are the key ingredients in obtaining an op-
timal Schwarz waveform relaxation algorithm. This algorithm is obtained by choosing
the transmission operators B±i in the algorithm (2.2) to be

B−i := S1(ai)∂t − ∂x, B+
i := S2(ai+1)∂t − ∂x.(2.8)

This choice is not arbitrary. The absorption property of these transmission operators
allows the algorithm to compute subdomain solutions which do not see the interfaces
and hence are exact; for the steady convection diffusion case, see [34].

Theorem 2.1 (convergence in I steps). The nonoverlapping Schwarz waveform
relaxation algorithm (2.2) with transmission operators defined by (2.8) converges in I
iterations, where I denotes the number of subdomains.

Proof. First note that convergence in less than I iterations, where I denotes the
number of subdomains, is not possible over long time intervals, since the solution on
each subdomain depends on the data on all the other subdomains and information is
propagated only locally to neighboring subdomains. To show that the algorithm with
the transmission operators (2.8) achieves convergence in I iterations and therefore is
optimal, we rewrite the algorithm (2.2) in substructured form on the interfaces only.
By linearity it suffices to consider the homogeneous case (the error equations) only
(f = p = q = 0) and to prove convergence to zero. We denote the interface values,
which subdomain Ωi obtains from its neighbors Ωi−1 and Ωi+1, by

gk
−

i (t) := B−i (uki−1)(ai, t), gk
+

i (t) := B+
i (u

k
i+1)(ai+1, t) ∀t ∈ (0, T )

and put all these values gk
−

i (t) and gk
+

i (t) together into the vector-valued function

gk := (gk
+

1 , gk
−

2 , gk
+

2 , . . . , gk
−

I ). Note that there is only one element in gk for the
leftmost and rightmost subdomain, since they both extend to infinity. One step of the
Schwarz waveform relaxation algorithm (2.2) can now be seen as a linear map taking
a vector-valued function gk as input and producing a new vector-valued function gk+1

as output. On each subdomain Ωi for interior subdomains, i = 2, . . . I − 1, there are
two linear mappings, both taking as input arguments the values of the neighboring
subdomains and one producing a new value on the left boundary

A−i : (gk
−

i , gk
+

i ) 	→ B+
i−1

(
uk+1
i

)
(ai, ·)
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and the other one a new value on the right boundary

A+
i : (gk

−
i , gk

+

i ) 	→ B−i+1

(
uk+1
i

)
(ai+1, ·).

For the outermost subdomains there is only one linear map each, taking one input
argument only,

A+
1 : gk

+

1 	→ B−2
(
uk+1

1

)
(a2, ·) and A−I : gk

−
I 	→ B+

I−1

(
uk+1
I

)
(aI , ·).

Note that by the definition of the operators Sj , both A+
1 and A−I map any argument

to zero: for any function g(t) we have

A+
1 (g) ≡ A−I (g) ≡ 0.(2.9)

This can be seen for A+
1 , for example, by

A+
1 (g) = B−2 (v) (a2, ·) = (S1(a2)∂t − ∂x)v = vx(a2)− vx(a2) = 0,

where we have used that by the definition of S1 the function v is a solution of (2.5).
Similarly for interior subdomains, we have for any function g(t)

A−i (g, 0) ≡ A+
i (0, g) ≡ 0.(2.10)

However, this implies by linearity that A+
i (g, h) depends only on g and A−i (g, h)

depends only on h, since

A+
i (g, h) = A+

i (g, 0) +A+
i (0, h) =: Ã+

i (g),

A−i (g, h) = A−i (g, 0) +A−i (0, h) =: Ã−i (h).
(2.11)

Using these linear mappings on each subdomain, a complete step of the nonoverlapping
Schwarz waveform relaxation algorithm can be described by the linear map A : gk 	→
gk+1, where Agk is defined by

Agk = A(gk+

1 , gk
−

2 , gk
+

2 , . . . , gk
−

I )

= (A−2(g
k−
2 , gk

+

2 ),A+
1(g

k+

1 ),A−3(g
k−
3 ,gk

+

3 ),A+
2(g

k−
2 , gk

+

2 ), . . . ,A−I (g
k−
I ),A+

I−1(g
k−
I−1, g

k+

I−1))

= (Ã−2 (g
k+

2 ), 0, Ã−3 (g
k+

3 ), Ã+
2 (g

k−
2 ), . . . , 0, Ã+

I−1(g
k−
I−1))

or, written in matrix form,

A =



0 0 Ã−2
0 0 0 0

0 0 0 0 Ã−3

Ã+
2 0 0 0

. . .

0 0 0 0

Ã+
3 0 0 Ã−I−1

. . . 0 0 0
0 0 0 0

Ã+
I−1 0 0


.

Now proving that the nonoverlapping Schwarz waveform relaxation algorithm (2.2)
converges in I iterations is equivalent to showing that the Schwarz iteration map
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satisfies AI−1 = 0 since then after I − 1 iterations all the interface values are zero,
and thus after one more iteration the solution will be converged to zero everywhere.
We prove this by showing that AI−1 applied to an arbitrary vector-valued function
e(t) = (e1(t), e2(t), . . . , e2I−2(t)) equals zero. The first application of A will delete
the second and second to last entry in e. The second application therefore will delete
the fourth and fourth to last entries in e because of the structure of A. This process
continues until the I − 1 application of A deleted the 2I − 2, and the 2I − 2 to last
entry, which is the first entry in e. Thus now AI−1e is the zero vector, and in the
next step the solution is zero everywhere.

Note that the proof uses only the fundamental property of the linear operators
Sj leading to the transparent transmission conditions and no special properties of the
wave equation. The result is therefore valid for other partial differential equations as
well where the appropriate operators Sj can be defined.

3. Optimal convergence with local transmission conditions for piece-
wise constant wave speed. We now consider the wave equation (2.1) with piecewise
constant wave speed to investigate the optimal transmission operators further. This
will lead to the interesting result of convergence in fewer iterations than the number
of subdomains on certain bounded time intervals. We consider first the wave equation
(2.1) with two physical domains

O1 = R
− with c(x) = c1 and O2 = R

+ with c(x) = c2.(3.1)

In this case we can compute the linear operators Sj explicitly, and from them we
gain more insight into the optimal Schwarz waveform relaxation algorithm. In sub-
section 3.3, we generalize the results to an arbitrary number of discontinuities.

3.1. Identification of the optimal nonlocal transmission conditions. We
define the ratio r by

r :=
c2 − c1
c2 + c1

.(3.2)

Lemma 3.1. In the case of piecewise constant wave speed (3.1), the linear opera-
tors Sj in (2.4), (2.6) are given by

(S1(x0)) g(t) =


1
c1
g(t), x0 ∈ O1,

1
c2

(
g(t) + 2

∑� c2t

2x0
�

k=1 rkg(t− 2kx0/c2)
)
, x0 ∈ O2,

(3.3)

and

(S2(x0)) g(t) =

 1
c1

(
g(t) + 2

∑� c1t

2x0
�

k=1 rkg(t+ 2kx0/c1)
)
, x0 ∈ O1,

1
c2
g(t), x0 ∈ O2.

(3.4)

Proof. This result can be obtained by explicitly computing the solutions; for
details, see [16].

In this special case, one can see why the operators Sj are nonlocal in general: they
have to include reflections stemming from the discontinuity in the wave speed between
the two different physical domains. Using Theorem 2.1, the nonoverlapping Schwarz
waveform relaxation algorithm for the wave equation with a discontinuity in the wave
speed converges in I steps, where I denotes the number of subdomains. However, an
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implementation of these nonlocal transmission conditions is rather complicated, and
we do not recommend this, especially if several discontinuities occur in the physical
domain. However, the result indicates a better approach already, and we develop it
in the next subsection.

3.2. Local transmission conditions using the time evolution. The optimal
transmission operators (2.8) depend on the time interval under consideration, since the
linear operators Sj in (3.3), (3.4) contain a sum with a number of terms proportional
to the length of the time interval. In particular, for a given time interval [0, T ] we
have at most

max

(⌊
c1T

2x0

⌋
,

⌊
c2T

2x0

⌋)
terms in the sum to obtain optimal convergence. We thus obtain the following im-
portant corollary of Theorem 2.1.

Corollary 3.2. In the case of piecewise constant wave speed (3.1), if the discon-
tinuity at x = 0 lies within the subdomain Ωl, al < 0 < al+1, then the nonoverlapping
Schwarz waveform relaxation algorithm (2.2) with local transmission operators

B−i :=
1

c(ai)
∂t − ∂x, B+

i :=
1

c(ai+1)
∂t + ∂x(3.5)

converges in I iterations, where I denotes the number of subdomains, if the computa-
tion is restricted to the time interval t ∈ [0, T ] with

T ≤ T1 = 2min

( |al|
c(al)

,
|al+1|
c(al+1)

)
.(3.6)

Proof. If we choose T such that

max
1<j≤I

⌊
c(aj)T

2|aj |
⌋
≡ 0,(3.7)

then there are no terms left in the sum of the operators Sj in (3.3), (3.4), and thus
the optimal transmission operators become the local operators (3.5). However, the
maximum in condition (3.7) can only be attained for either j = l or j = l+1 because
the discontinuity lies in subdomain Ωl, and thus (3.7) is equivalent to the condition
(3.6).

This corollary suggests avoiding the costly nonlocal transmission conditions by
cutting the given time domain [0, T ] into time windows of length T1 given in (3.6).
Then the algorithm can employ local transmission conditions and will still converge
in at most I iterations.

However, condition (3.6) can impose very small time windows if al or al+1 is very
close to the discontinuity at x = 0. At first glance, this suggests that it is best to
place the subdomains so that the discontinuities lie inside the subdomains, away from
its boundaries. The optimal location for al < 0 < al+1 would be such that

|al|
c(al)

=
|al+1|
c(al+1)

(3.8)

to maximize the time interval (3.6) one can use with the algorithm and local transmis-
sion conditions. There is, however, a better choice: taking the limit of the operators
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Sj in (3.3,3.4) as x0 goes to zero, we find

(S1(0))g(t) =
1

c1
g(t), (S2(0))g(t) =

1

c2
g(t),(3.9)

and thus the operators Sj become local operators in that case. This suggests that
aligning physical domains with computational ones is an advantage for the transmis-
sion conditions. Defining

c(x−) := c(x− 0), c(x+) := c(x+ 0)

to include the correct limits when the discontinuity lies exactly at an interface between
two subdomains, we obtain the following corollary.

Corollary 3.3. In the case of piecewise constant wave speed (3.1), if the discon-
tinuity lies on the interface between the two subdomains Ωl and Ωl+1, al+1 = 0, then
the nonoverlapping Schwarz waveform relaxation algorithm (2.2) with local transmis-
sion operators

B−i :=
1

c(a−i )
∂t − ∂x, B+

i :=
1

c(a+
i+1)

∂t + ∂x(3.10)

converges in I iterations, where I denotes the number of subdomains, if the computa-
tion is restricted to the time interval t ∈ [0, T ] with

T ≤ T2 = 2min

( |al|
c(al)

,
|al+2|
c(al+2)

)
.(3.11)

Proof. If we place the discontinuity directly between the two subdomains Ωl and
Ωl+1, then the optimal transmission conditions between Ωl and Ωl+1 are local, as seen
in (3.9). Therefore, the largest time interval we can choose for local transmission con-
ditions depends now only on the total width of Ωl and Ωl+1, which leads to condition
(3.11).

Hence, with the discontinuity at x = 0 aligned with a subdomain boundary, say,
at al+1 = 0, one would choose the subdomain boundaries al and al+2 such that

|al|
c(al)

=
|al+2|
c(al+2)

(3.12)

to maximize the possible time interval in (3.11), where the algorithm can be used
with local transmission conditions. This choice leads to a longer time interval than
the choice with the discontinuity within one subdomain (3.8) since al < al+1 < al+2.

3.3. Convergence in two iterations independent of the number of sub-
domains. In more realistic situations, there will be more than one discontinuity in
the computational domain, which seems to complicate the situation because for the
global optimal transmission conditions of the type (3.3), (3.4), one would need to track
more and more reflections from the various discontinuities in the wave speed. How-
ever, due to the finite speed of propagation in the wave equation, the previous analysis
can be applied locally using time windows again. In addition, with time windows, not
every subdomain solution depends on the solution on all the other subdomains if the
time interval is short enough. Neighboring information suffices in that case, and it is
thus possible to reduce the number of iterations below I for I subdomains.

Suppose we have J physical domains Oj = (dj , dj+1) with constant wave speed
per physical domain, c(x) = cj for dj < x < dj+1, j = 1, . . . , J , d1 = −∞, and
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dJ+1 = ∞. We decompose the physical domain R into I computational subdomains
Ωi = (ai, ai+1) as before. We denote by ni the number of discontinuities within
each subdomain Ωi, and we exclude for the moment the case where a discontinuity is
aligned precisely between two computational subdomains. We also denote by mi the
index of the first physical domain Omi

which intersects the computational subdomain
Ωi. We define the transmission time ti of a signal across subdomain Ωi by

ti :=


ai+1 − ai

cmi

if ni = 0,

dmi+1 − ai
cmi

+

ni−1∑
k=1

dmi+k+1 − dmi+k

cmi+k
+

ai+1 − dmi+ni

cmi+ni

if ni > 0.
(3.13)

We also define the reflection time at each interface ai of the computational subdomains
by

τi := 2min
j

|ai − dj |
c(ai)

.(3.14)

These two time constants allow us to formulate conditions for convergence in less than
I steps.

Theorem 3.4. The overlapping Schwarz waveform relaxation algorithm (2.2)
with local transmission conditions (3.10) and any discontinuities strictly in the inte-
rior of the computational subdomains converges in two iterations independently of the
number of subdomains if the time interval [0, T ] is chosen such that

T ≤ T3 = min
(
min
i

ti,min
i

τi

)
,(3.15)

where ti is defined in (3.13) and τi is defined in (3.14).
Proof. Consider one of the computational domains Ωi. The solution on that

domain depends only on the solution of the neighboring domains Ωi+1 and Ωi−1

determined by their initial conditions, because the time interval [0, T ] given by (3.15)
is too short for any signal to reach domain Ωi across the neighboring subdomains due
to condition (3.15). So after one iteration, the exact boundary conditions for domain
Ωi are available if the transmission conditions employed at the boundary of Ωi are
exact absorbing boundary conditions. However, this is ensured by condition (3.15) as
well because T is smaller than any reflection time τi so that the local transmission
conditions (3.10) are indeed exactly absorbing. Thus the second iteration produces
the exact solution on subdomain Ωi. Since this argument holds for all computational
subdomains, the result is established.

As in Corollary 3.2, this result can require very small time intervals, since the
reflection times τi can be very small when a discontinuity approaches a subdomain
boundary. This can however be avoided as before by aligning physical discontinuities
with the boundaries of the subdomains—a natural approach for domain decomposi-
tion. Doing this for all discontinuities, the minimal transmission time mini ti becomes
necessarily smaller than the minimal reflection time mini τi because the reflection
time requires the signal to go across a subdomain twice. (There are no discontinu-
ities within subdomains anymore.) In addition, the transmission times formula (3.13)
simplifies greatly, becoming

ti =
ai+1 − ai

c(a+
i )

.

We therefore obtain the following theorem.
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x

t

Ωiai ai+1

Recalc(T4)

Recalc(Tε)

T4

Tε

Fig. 3.1. Toward the optimal algorithm: Unknowns to recompute for the time windows T4 and
Tε, respectively.

Theorem 3.5. The overlapping Schwarz waveform relaxation algorithm (2.2)
with local transmission conditions (3.10) and any discontinuities aligned with the
computational subdomain boundaries converges in two iterations independently of the
number of subdomains if the time interval [0, T ] is chosen such that

T ≤ T4 = min
i

ai+1 − ai

c(a+
i )

.(3.16)

Proof. The argument is the same as in the previous theorem.
Further computation can be saved by noting that only values above the char-

acteristics in each subdomain need to be recomputed during the second iteration, as
shown in Figure 3.1. If the time window is chosen to be [0, T4] from Theorem 3.5, then
convergence will be achieved in two iterations, and in the second iteration only the
variables in the region denoted by Recalc(T4) need to be recalculated. If we choose
however an even smaller time window Tε, then far fewer variables need to be recal-
culated in the second iteration, namely, the ones denoted by Recalc(Tε). Thus, with
our algorithm, the solution of the wave equation can be optimally parallelized: the
parallel algorithm run on a sequential machine will run at a cost 1 + ε of the optimal
sequential code, provided the cost is linear in the number of unknowns. The optimal
choice of Tε depends on the latency time of the network linking the computational
nodes. If the latency time is small, then a short Tε will lead to the best performance,
since almost no values need to be recomputed. If the latency time is important, how-
ever, it is better to communicate larger amounts of data each time a communication
needs to be done. This can be achieved by choosing a larger Tε and will lead to faster
solution times even if more values need to be recomputed in the second iteration.

4. Convergence with local transmission conditions for continuous wave
speed. Discontinuous wave speeds allowed us to use local transmission conditions in
the Schwarz waveform relaxation algorithm and still get optimal performance. If the
wave speed is varying continuously, such a result cannot hold anymore, because reflec-
tions become relevant immediately. Nevertheless, the algorithm is well defined with
local transmission conditions, and we prove that it converges using energy estimates.
Energy estimates are useful tools for proving well-posedness of boundary or initial
boundary value problems, in particular for variable coefficients. They have been used
to analyze the convergence of Schwarz algorithms in the stationary case before; see,
for example, [29], [11], or [33]. We extend these techniques here to time dependent
problems.
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Let u be a solution of the wave equation in the interval [a, b] for t ≥ 0,

1

c2(x)

∂2u

∂t2
− ∂2u

∂x2
= 0,(4.1)

where c(x) is now any continuous function. We define the kinetic and potential
energies by

EK(u)(t) :=
1

2

∫ b

a

1

c2(x)

(
∂u

∂t
(x, t)

)2

dx, EP (u)(t) :=
1

2

∫ b

a

(
∂u

∂x
(x, t)

)2

dx(4.2)

and the total energy by the sum E := EK + EP . Multiplying (4.1) by ∂u
∂t and

integrating on the interval [a, b] yield the following theorem.
Theorem 4.1 (continuous energy identity). The energy identity

d

dt
[E(u)(t)] +

∂u

∂t
(a, t)

∂u

∂x
(a, t)− ∂u

∂t
(b, t)

∂u

∂x
(b, t) = 0(4.3)

holds for any positive time t.

4.1. Well-posedness of the continuous subdomain problems. Introducing
the general progressive and regressive transport operators

T +
α =

1

α

∂

∂t
+

∂

∂x
, T −α =

1

α

∂

∂t
− ∂

∂x
,(4.4)

where α is a positive real number, we can rewrite (4.3) for any positive α and β as

d

dt
[E(u)(t)]+

α

4

[T +
α u(a, t)

]2
+

β

4

[T −β u(b, t)
]2
=

α

4

[T −α u(a, t)
]2
+

β

4

[T +
β u(b, t)

]2
.(4.5)

Suppose that the boundary conditions (4.4) are given by

T −α u(a, t) = g−(t), T +
β u(b, t) = g+(t).(4.6)

Then we get a bound on the energy on any finite time interval.
Theorem 4.2. For the wave equation (4.1) on [a, b] with boundary conditions

(4.6), the energy E(u)(t) on [a, b] stays bounded for all finite time t,

E(u)(t) ≤ E(u)(0) +

∫ t

0

[
α

4
|g−(τ)|2 + β

4
|g+(τ)|2

]
dτ.(4.7)

By standard techniques (see, for example, [26]), the well-posedness is then estab-
lished.

4.2. Convergence with local transmission conditions. Consider now the
domain decomposition algorithm (2.2) for continuously variable wave speed c(x). By
linearity, it suffices to consider the homogeneous wave equation with homogeneous
initial conditions and prove convergence to zero. The local transmission operators
(3.10) can be expressed in terms of the transport operators (4.4),

B−i = T −c(ai)
, B+

i = T +
c(ai+1)

,(4.8)

where i = 1, . . . , I.
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Theorem 4.3. Suppose the velocity is continuous on the interfaces ai. Then on
any time interval [0, T ], the nonoverlapping Schwarz waveform relaxation algorithm,
with local transmission conditions

T −c(ai)
(uk+1

i )(ai, ·) = T −c(ai)
(uki−1)(ai, ·) on (0, T ),

T +
c(ai+1)

(uk+1
i )(ai+1, ·) = T +

c(ai+1)
(uki+1)(ai+1, ·) on (0, T ),

(4.9)

converges in the energy norm,

I∑
i=1

E(uki )(T ) −→ 0 as k −→∞.

Proof. We can write (4.5) on the interval [ai, ai+1], with α = c(ai) and β =
c(ai+1), which gives

d
dt [E(uk+1

i )(·)] + c(ai)
4

[T +
c(ai)

(uk+1
i )(ai, ·)

]2
+ c(ai+1)

4

[T −c(ai+1)
(uk+1

i )(ai+1, ·)
]2

= c(ai)
4

[T −c(ai)
(uk+1

i )(ai, ·)
]2

+ c(ai+1)
4

[T +
c(ai+1)

(uk+1
i )(ai+1, ·)

]2(4.10)

for 1 ≤ i ≤ I, with the convention

T +
c(a1)

(uk+1
1 )(a1, ·) = 0, T −c(aI+1)

(uk+1
I )(aI+1, ·) = 0,(4.11)

and by using the boundary conditions, we obtain

d
dt [E(uk+1

i )(·)] + c(ai)
4

[T +
c(ai)

(uk+1
i )(ai, ·)

]2
+ c(ai+1)

4

[T −c(ai+1)
(uk+1

i )(ai+1, ·)
]2

= c(ai)
4

[T −c(ai)
(uki−1)(ai, ·)

]2
+ c(ai+1)

4

[T +
c(ai+1)

(uki+1)(ai+1, ·)
]2
.

(4.12)

Summing these equations for 1 ≤ i ≤ I and shifting the indices of the two sums on
the right-hand side, we find

I∑
i=1

d

dt
[E(uk+1

i )(·)] +
I∑

i=1

c(ai)

4

[T +
c(ai)

(uk+1
i )(ai, ·)

]2
+

I∑
i=1

c(ai+1)

4

[T −c(ai+1)
(uk+1

i )(ai+1, ·)
]2

=

I−1∑
i=0

c(ai+1)

4

[T −c(ai+1)
(uki )(ai+1, ·)

]2
+

I+1∑
i=2

c(ai)

4

[T +
c(ai)

(uki )(ai, ·)
]2
.

(4.13)
Now note that by (2.3) we have ukI+1 = uk0 = 0 and thus T +

c(aI+1)
(ukI+1)(aI+1, ·) =

T −c(a1)
(uk0)(a1, ·) = 0. Together with (4.11), we obtain the energy equality

I∑
i=1

d

dt
[E(uk+1

i )(·)] +
I∑

i=2

c(ai)

4

[T +
c(ai)

(uk+1
i )(ai,·)

]2
+

I−1∑
i=1

c(ai+1)

4

[T −c(ai+1)
(uk+1

i )(ai+1,·)
]2

=

I∑
i=2

c(ai)

4

[T +
c(ai)

(uki )(ai, ·)
]2
+

I−1∑
i=1

c(ai+1)

4

[T −c(ai+1)
(uki )(ai+1, ·)

]2
.

(4.14)
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Now we have the same terms on the boundary, on the left for iteration step k+1 and
on the right for iteration step k. Defining

Êk(t) :=

I∑
i=1

E(uk+1
i )(t),

Êk
B(t) :=

I∑
i=2

c(ai)

4

[T +
c(ai)

(uki , ·)(ai)
]2

+

I−1∑
i=1

c(ai+1)

4

[T −c(ai+1)
(uki )(ai+1, ·)

]2
,

we find the energy equality

d

dt
Êk+1 + Êk+1

B = Êk
B on (0, T ),

and thus summing up over all iteration steps k = 0, . . . ,K and denoting the sum of
the energies Êk at each step by

EK :=

K∑
k=0

Êk,

we find by cancellation of the Êk
B terms

d

dt
EK + ÊK

B = Ê0
B on (0, T ).

Since ÊK
B ≥ 0, we obtain

d

dt
EK ≤ Ê0

B on (0, T ).

Now integrating over (0, T ) and noting that EK(0) = 0, we find

EK(T ) ≤
∫ T

0

Ê0
B(t)dt,

and thus the total energy EK is uniformly bounded independently of the number of
iterations K. Hence the energy at each iteration must go to zero, and the algorithm
converges.

5. A finite volume discretization. We discretize the wave equation (2.1) on
each subdomain Ωi × (0, T ), i = 1, . . . , I, separately, using a finite volume discretiza-
tion on rectangular grids. For simplicity we set f = 0. We allow nonmatching grids
on different subdomains, with Ji+2 points in space numbered from 0 up to Ji+1 and
∆xi = (ai+1−ai)/(Ji+1) and Ni+1 grid points in time with ∆ti = T/Ni numbered
from 0 up to Ni. Note that we chose for the exposition here uniform spacing in time
per subdomain, but the techniques developed are not limited to this special case. We
denote the numerical approximation to uki (ai + j∆xi, n∆ti) on Ωi at iteration step k
by Uk

i (j, n). To simplify the notation, we omit the index i on quantities depending on
the subdomain and the index k referring to the iteration as long as we are discussing
one subdomain only.

5.1. Discretization of the subdomain problem.

5.1.1. Interior points. Denoting by D the volume around a grid point (x =
ai + j∆xi, t = n∆ti) in the interior of subdomain Ωi × (0, T ), as shown in Figure 5.1
on the left, we obtain the finite volume scheme by integrating the equation over the
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x t x+∆xx−∆x

t+∆t

t−∆t

D

∂D

x t x+∆x

t+∆t

t−∆t

D

∂D

Fig. 5.1. Control volume of an interior grid point and a boundary grid point.

volume D and applying the divergence theorem,

0 =

∫ x+∆x/2

x−∆x/2

∫ t+∆t/2

t−∆t/2

[
1

c2(ξ)

∂2u

∂t2
(ξ, τ)− ∂2u

∂x2
(ξ, τ)

]
dτdξ

=

∫ x+∆x/2

x−∆x/2

1

c2(ξ)

∂u

∂t
(ξ, t+∆t/2)dξ −

∫ x+∆x/2

x−∆x/2

1

c2(ξ)

∂u

∂t
(ξ, t−∆t/2)dξ

−
∫ t+∆t/2

t−∆t/2

∂u

∂x
(x+∆x/2, τ)dτ +

∫ t+∆t/2

t−∆t/2

∂u

∂x
(x−∆x/2, τ)dτ.

(5.1)

Now we approximate the remaining derivatives by finite differences on the grid:

D+
t (U)(j, n) := U(j,n+1)−U(j,n)

∆t ≈ ∂u
∂t (ξ, t+∆t/2),

D−t (U)(j, n) := U(j,n)−U(j,n−1)
∆t ≈ ∂u

∂t (ξ, t−∆t/2),

x− ∆x
2 ≤ ξ ≤ x+ ∆x

2 ,

D+
x (U)(j, n) := U(j+1,n)−U(j,n)

∆x ≈ ∂u
∂x (x+∆x/2, τ),

D−x (U)(j, n) := U(j,n)−U(j−1,n)
∆x ≈ ∂u

∂x (x−∆x/2, τ),

t− ∆t
2 ≤ τ ≤ t+ ∆t

2 .

(5.2)

We introduce a discrete speed function Ci(j) which approximates c(ai+j∆xi) through
the integral relation

∆xi
C2
i (j)

:=

∫ x+∆xi/2

x−∆xi/2

1

c2(ξ)
dξ,(5.3)

and we will omit the subdomain index i as long as we are on one subdomain. We
thus obtain from (5.1) the discrete scheme

0 =
∆x

C2(j)
(D+

t −D−t )(U)(j, n)−∆t(D+
x −D−x )(U)(j, n),

which yields on using the identities ∆tD+
t D−t = D+

t −D−t and ∆xD+
x D−x = D+

x −D−x
the well-known finite difference scheme(

1

C2(j)
D+

t D−t −D+
x D−x

)
(U)(j, n) = 0, 1 ≤ j ≤ J,(5.4)

for points in the interior of subdomains.
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5.1.2. Boundary points. So far the finite volume scheme led to a similar dis-
cretization as a finite difference scheme. On the boundary, however, the finite volume
scheme leads automatically to a consistent discretization of the transmission condi-
tions, whereas a finite difference discretization would require a special treatment. In
addition, the finite volume scheme leads naturally to the correct transmission opera-
tors when using nonmatching grids in different subdomains.

Suppose the point (x = ai, t = n∆ti) is on the left boundary of subdomain
Ωi × (0, T ), as shown in Figure 5.1 on the right. Then we have only half a volume D
to integrate over. Proceeding as before, we obtain

0 =

∫ x+∆x/2

x

1

c2(ξ)

∂u

∂t
(ξ, t+∆t/2)dξ −

∫ x+∆x/2

x

1

c2(ξ)

∂u

∂t
(ξ, t−∆t/2)dξ

−
∫ t+∆t/2

t−∆t/2

∂u

∂x
(x+∆x/2, τ)dτ +

∫ t+∆t/2

t−∆t/2

∂u

∂x
(x, τ)dτ.

Again we can approximate ∂u
∂t and ∂u

∂x by the finite differences given in (5.2) except on

the left side of the control volume where we cannot approximate ∂u
∂x (x, τ) by a finite

difference, since we are on the boundary and the point at x−∆x is not available. We
approximate only on the three other sides by finite differences and obtain

0 =

(
∆x

2C2(0)
(D+

t −D−t )−∆tD+
x

)
(U)(0, n) +

∫ t+∆t/2

t−∆t/2

∂u

∂x
(x, τ)dτ.(5.5)

Note that this equation defines the spatial derivative along the boundary, once all
the grid values are known. However, to compute the grid values, we need to use the
transmission condition imposed on the left boundary which also defines the spatial
derivative at the boundary, since it is of the form

B−(u)(x, t) =
(

1

c(x−)
∂u

∂t
− ∂u

∂x

)
(x, t) = g−(t),(5.6)

where g−(t) is a given boundary condition. Solving for ∂u
∂x and integrating, we find∫ t+∆t/2

t−∆t/2

∂u

∂x
(x, τ)dτ =

∫ t+∆t/2

t−∆t/2

1

c(x−)
∂u

∂t
(x, τ)dτ −

∫ t+∆t/2

t−∆t/2

g−(τ)dτ,(5.7)

which gives us the missing expression for the spatial derivative in the discrete scheme
(5.5). The newly introduced time derivative on the right can be approximated again
by finite differences as in (5.2), on the upper part of the integral by D+

t and on
the lower part by D−t . Summing those contributions, we obtain a centered finite
difference,

D0
t (U)(j, n) :=

U(j, n+ 1)− U(j, n− 1)

2∆t
,(5.8)

and we get on denoting by C− := c(x−) for the integral of ∂u
∂x∫ t+∆t/2

t−∆t/2

∂u

∂x
(x, τ)dτ =

∆t

C−
D0

t (U)(0, n)−
∫ t+∆t/2

t−∆t/2

g−(τ)dτ,(5.9)
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which we insert into our scheme (5.5). Denoting the integral over the boundary
condition g−(t) by

∆tG−(n) :=
∫ t+∆t/2

t−∆t/2

g−(τ)dτ, t = n∆t,

we obtain the discretization

0 =

(
∆x

2C2(0)
D+

t D−t −D+
x +

1

C−
D0

t

)
(U)(0, n)−G−(n).(5.10)

This result also defines the discrete transmission operator B−. Comparing this with
(5.6), we find (where we add now the subdomain index i for completeness)

B−i (Ui)(0, n) :=

(
∆xi

2C2
i (0)

D+
t D−t −D+

x +
1

Ci−1(Ji−1 + 1)
D0

t

)
(Ui)(0, n),(5.11)

where we used the fact that C− = Ci−1(Ji−1 + 1). Similarly, for a point (x, t) on the
right boundary of a subdomain with imposed transmission condition

B+(u)(x, t) =

(
1

c(x+)

∂u

∂t
+

∂u

∂x

)
(x, t) = g+(t),(5.12)

one obtains on defining

∆tG+(n) :=

∫ t+∆t/2

t−∆t/2

g+(τ)dτ, t = n∆t,

and C+ := c(x+) the discrete scheme

0 =

(
∆x

2C2(J + 1)
D+

t D−t +D−x +
1

C+
D0

t

)
(U)(J + 1, n)−G+(n)(5.13)

and thus the definition of the discrete transmission operator for subdomain i

B+
i (Ui)(Ji+1, n) :=

(
∆xi

2C2
i (Ji+1)

D+
t D−t +D−x +

1

Ci+1(0)
D0

t

)
(Ui)(Ji+1, n),(5.14)

where we used that C+ = Ci+1(0).

5.1.3. Points on the initial line. Suppose (x = ai+j∆xi, 0) is a grid point on
the interior of the initial line of subdomain Ωi × (0, T ). We have again half a volume
D to integrate over, as shown in Figure 5.2 on the left. Integrating as before, we
obtain

0 =

∫ x+∆x/2

x−∆x/2

1

c2(ξ)

∂u

∂t
(ξ,∆t/2)dξ −

∫ x+∆x/2

x−∆x/2

1

c2(ξ)

∂u

∂t
(ξ, 0)dξ

−
∫ ∆t/2

0

∂u

∂x
(x+∆x/2, τ)dτ +

∫ ∆t/2

0

∂u

∂x
(x−∆x/2, τ)dτ.

Now the remaining derivatives can be approximated by finite differences (5.2) except
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Fig. 5.2. Control volume of a grid point on the initial line and in a corner.

∂u
∂t (ξ, 0). However, this derivative is given explicitly by the initial condition, and
approximating it on one grid cell by

∆x
Ut(j)

C2(j)
:=

∫ x+∆x/2

x−∆x/2

1

c2(ξ)

∂u

∂t
(ξ, 0)dξ,

we obtain the scheme(
1

C2(j)
D+

t −
∆t

2
D+

x D−x

)
(U)(j, 0)− 1

C2(j)
Ut(j) = 0.(5.15)

5.1.4. Corner points. For the corner points on the initial line, there is only a
quarter of the original finite volume left to integrate over. For example, on the left
corner we obtain according to Figure 5.2

0 =

∫ ∆x/2

0

1

c2(ξ)

∂u

∂t
(ξ,∆t/2)dξ −

∫ ∆x/2

0

1

c2(ξ)

∂u

∂t
(ξ, 0)dξ

−
∫ ∆t/2

0

∂u

∂x
(∆x/2, τ)dτ +

∫ ∆t/2

0

∂u

∂x
(0, τ)dτ.

Here two of the remaining derivatives can be approximated by the finite differences
(5.2), whereas ∂u

∂t (ξ, 0) is given by the initial condition and ∂u
∂x (0, τ) has to be obtained

from the transmission condition by proceeding as before along the boundary. We
obtain the discrete scheme

0 =

(
∆x

2C2(0)
D+

t −
∆t

2
D+

x +
∆t

2C−
D+

t

)
(U)(0, 0)− ∆x

2C2(0)
Ut(0)− ∆t

2
G−(0),

and thus the discrete transmission operator B− on the initial line on the left is ob-
tained by dividing through by ∆t/2:

B−i (Ui)(0, 0)=

(
∆xi

∆tC2
i (0)

D+
t −D+

x +
1

Ci−1(Ji−1 + 1)
D+

t

)
(Ui)(0, 0)− ∆xi

∆tC2
i (0)

Ut,i(0).

(5.16)
Similarly, for the corner point on the right, we get

0=

(
∆x

2C2(J+1)
D+

t +
∆t

2
D−x +

∆t

2C+
D+

t

)
(U)(J+1, 0)− ∆x

2C2(J+1)
Ut(J+1)−∆t

2
G+(0),

and thus the discrete transmission operator B+ on the initial line on the right is

B+
i (Ui)(Ji + 1, 0) =

(
∆xi

∆tC2
i (Ji + 1)

D+
t +D−x +

1

Ci+1(0)
D+

t

)
(Ui)(Ji + 1, 0)

− ∆xi
∆tC2

i (Ji + 1)
Ut,i(Ji + 1).

(5.17)
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For given discrete transmission conditions G−(n) and G+(n), n = 0, . . . , N , the above
discrete scheme describes a numerical method to solve one subproblem on one subdo-
main.

5.2. Extraction of the transmission conditions from neighboring subdo-
mains. Now the boundary values g−i (t) and g+

i (t) imposed through the transmission
conditions on subdomain Ωi have to come from the neighboring subdomains Ωi−1 and
Ωi+1. We thus need to calculate from our discrete scheme above on the neighboring
subdomains the integrals∫ ti+∆ti/2

ti−∆ti/2

g−i (τ)dτ =

∫ ti+∆ti/2

ti−∆ti/2

[
1

c(x−)
∂ui−1

∂t
(x, τ)− ∂ui−1

∂x
(x, τ)

]
dτ,(5.18)

where (x, t) is on the right of subdomain Ωi−1 and similarly∫ ti+∆ti/2

ti−∆ti/2

g+
i (τ)dτ =

∫ ti+∆ti/2

ti−∆t/2

[
1

c(x+)

∂ui+1

∂t
(x, τ) +

∂ui+1

∂x
(x, τ)

]
dτ,(5.19)

where (x, t) is on the left of the subdomain Ωi+1. Let us take, for example, the subdo-
main to the right, Ωi+1. To perform the integration (5.19) we note that the numerical

approximation to ∂ui+1

∂t in the finite volume scheme is piecewise constant and accord-

ing to (5.2) given by D+
t (Ui+1)(0, n) for t ∈ [n∆ti+1, (n + 1)∆ti+1). Similarly, the

numerical approximation to ∂ui+1

∂x is piecewise constant in the finite volume scheme.
According to (5.5), it is given for t ∈ [(n− 1

2 )∆ti+1, (n+ 1
2 )∆ti+1) by(

− ∆xi+1

2∆ti+1C2
i+1(0)

(D+
t −D−t ) +D+

x

)
(Ui+1)(0, n).

Inserting these two numerical approximations into (5.19), we obtain on one grid cell
of Ωi+1∫ (n+1/2)∆ti+1

(n−1/2)∆ti+1

g+
i (τ)dτ=

(
−∆xi+1∆ti+1

2C2
i+1(0)

D+
t D−t +∆ti+1D

+
x +

∆ti+1

Ci+1(0)
D0

t

)
(Ui+1)(0, n),

and thus the definition of the discrete transmission operator B̃+
i is

B̃+
i (Ui+1)(0, n) :=

(
− ∆xi+1

2C2
i+1(0)

D+
t D−t +D+

x +
1

Ci+1(0)
D0

t

)
(Ui+1)(0, n) = G̃+

i (n).

(5.20)

Similarly, we find on the left subdomain Ωi−1 the discrete transmission operator B̃−i
to be

B̃−i (Ui−1)(Ji−1+1, n) :=
(
− ∆xi−1
2C2

i−1(Ji−1+1)
D+

t D
−
t −D−x+

1

Ci−1(Ji−1+1)
D0

t

)
(Ui−1)(Ji−1+1, n)

= G̃−i (n).
(5.21)

Note that in the discrete case B±i and B̃±i are different operators, whereas in the
continuous case we found the identical operator B±i . On the initial line we find
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accordingly

B̃+
i (Ui+1)(0, 0) :=

(
− ∆xi+1

∆ti+1C2
i+1

(0)
D+

t +D+
x + 1

Ci+1(0)
D+

t

)
(Ui+1)(0, 0)

+ ∆xi+1

∆ti+1C2
i+1

(0)
Ut(0),

B̃−i (Ui−1)(Ji−1+1, 0) :=
(
− ∆xi−1

∆ti−1C2
i−1

(Ji−1+1)
D+

t −D−x + 1
Ci−1(Ji−1+1)D

+
t

)
(Ui−1)(Ji−1+1, 0)

+ ∆xi−1

∆ti−1C2
i−1

(Ji−1+1)
Ut(Ji−1 + 1),

(5.22)
and we have

B̃+
i (Ui+1)(0, 0) = G̃+

i (0), B̃−i (Ui−1)(Ji−1 + 1, 0) = G̃−i (0).

5.3. Projections for different grids. If different grids are used on different
subdomains, the extracted transmission condition G̃+

i is a vector in R
Ni+1+1 and G̃−i

is a vector in R
Ni−1+1 which both represent step functions on their corresponding

grids, and what we need to impose on the boundary on Ωi are vectors G±i in R
Ni+1.

We thus need to introduce a projection operation to transfer the boundary values
onto the grid of Ωi. Suppose we are given a vector v = (v0, . . . , vN ) ∈ R

N+1 which
represents the values of a step function on the corresponding intervals In = (tn, tn+1),
where t0 = 0, tN+1 = T , and ∪Nn=0In = [0, T ], and the intervals do not overlap. Then
we define the scalar product on R

N+1 by

(v,w)N+1 :=

N∑
n=0

|In|vnwn,

where |In| denotes the length of the interval In. We thus obtain the induced norm on
R
N+1

||v||2N+1 := (v,v)N+1.

We first define the operator F : R
N+1 −→ L2(0, T ), which constructs a piecewise

constant function on the intervals In from the vector v,

F : v 	−→ f(t) := vn, t ∈ In.

Then we define the operator E : L2(0, T ) −→ R
N+1 which projects a given function

f(t) onto a vector v ∈ R
N+1 corresponding to a piecewise constant function in the

intervals In:

E : f(t) 	−→ vn :=
1

|In|
∫
In

f(t)dt.

Denoting by Fi and Ei the corresponding operators using the grid of Ωi, we define
the operator Pi,j : R

Ni+1 −→ R
Nj+1 by

Pi,j := Ej ◦ Fi.(5.23)

A direct calculation shows that for any u in R
Ni+1 we have

||Pi,ju||Nj+1 ≤ ||u||Ni+1,(5.24)

which is a natural consequence of the L2 projection on piecewise constant functions.
To perform the projection Pi,j between arbitrary grids is a nontrivial task, since one
needs to find the intersections of corresponding arbitrary grid cells. For one dimension
however, there is a short, concise algorithm; see the appendix.
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5.4. The discrete Schwarz waveform relaxation algorithm. We obtain the
discrete Schwarz waveform relaxation algorithm on subdomains Ωi, i = 1, . . . , I, with
nonmatching grids(

1
C2

i
(j)

D+
t D−t −D+

x D−x
)
(Uk+1

i )(j, n) = 0, 1 ≤ j ≤ Ji, 1 ≤ n ≤ Ni,(
1

C2
i
(j)

D+
t − ∆ti

2 D+
x D−x

)
(Uk+1

i )(j, 0)− 1
C2

i
(j)

Ut,i(j) = 0, 1 ≤ j ≤ Ji,

B−i (Uk+1
i )(0, ·) = Pi−1,iB̃

−
i (Uk

i−1)(Ji−1 + 1, ·),
B+
i (U

k+1
i )(Ji + 1, ·) = Pi+1,iB̃

+
i (U

k
i+1)(0, ·),

(5.25)
where the operators Pi±1,i are defined in (5.23), the discrete transmission operators

B±i for n ≥ 1 are given in (5.11), (5.14), and the extraction operators B̃±i are for
n ≥ 1 given in (5.20), (5.21). For n = 0 the corresponding operators are given in
(5.16), (5.17), and (5.22). For conforming grids with these transmission conditions,
the solution obtained at convergence satisfies the finite volume discretization scheme
without decomposition, as one can see by taking the difference of B±i and B̃±i . For
example, for constant wave speed across the interface we obtain

B+
i − B̃+

i =
∆x

C2
D+

t D−t +D−x −D+
x = ∆x

(
1

C2
D+

t D−t −D−x D+
x

)
,

which is the discretized wave operator (5.4). For nonconforming grids, (5.25) defines
the solution when converged. For a different definition of a solution on nonmatching
grids, see [10].

6. Normal mode analysis and convergence proof for piecewise constant
wave speed and two subdomains. We consider two subdomains Ωi, i = 1, 2, with
piecewise constant velocity ci per subdomain. We discretize the problem on each
subdomain in space with spatial discretization parameter ∆xi, and we keep the time
discretization uniform across the subdomains with discretization parameter ∆t. Then
there is no projection in the transmission operators in (5.25). We denote by γi the
Courant–Friedrichs–Lewy (CFL) number in the corresponding subdomain Ωi,

γi = ci
∆t

∆xi
.(6.1)

For the stability of the Cauchy problem, we suppose that γi < 1 [39]. By linearity it
suffices to analyze algorithm (5.25) for homogeneous initial conditions and to prove
convergence to zero. To avoid the special case of the interface conditions for n = 0
in the analysis, we set U(j, 0) = U(j, 1) = 0, which corresponds to initial conditions
u(x, 0) = ut(x, 0) = 0.

6.1. Discrete Laplace transforms. The discrete Laplace transform of a grid
function v = {vn}n≥0 on a regular grid with time step ∆t is defined for η > 0 by [39]

Lv(s) = v̂(s) =
1√
2π

∆t
∑
n≥0

e−sn∆tvn, s = η + iτ, |τ | ≤ π

∆t
,(6.2)

and the inversion formula is given by

vn =
1√
2π

∫ π
∆t

− π
∆t

esn∆tv̂(s)dτ = − i√
2π

∫
|z|=eη∆t

zn−1v̂(z)dz.
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The corresponding norms are

||v||η,∆t =

∆t
∑
n≥0

e−2ηn∆t|vn|2
 1

2

, ||v̂||η =

(∫ π
∆t

− π
∆t

|v̂(η + iτ)|2dτ
) 1

2

,(6.3)

and we have Parseval’s equality

||v||η,∆t = ||v̂||η.(6.4)

Suppose U(j, n) is a solution of the difference equation(
1

C2
D+

t D−t −D+
x D−x

)
(U)(j, n) = 0(6.5)

with the initial condition U(j, 0) = U(j, 1) = 0. We denote by Û(j, s) the discrete
Laplace transform in time of U(j, n). Equation (6.5) becomes the difference equation

γ2Û(j − 1, s)− 2(γ2 + h(z))Û(j, s) + γ2Û(j + 1, s) = 0,(6.6)

with z = es∆t, h(z) = 1
2 (z + 1

z ) − 1, and γ = c∆t/∆x. The solutions of (6.6) are
formed by powers of the roots of the second order equation

γ2r2 − 2(γ2 + h(z))r + γ2 = 0.(6.7)

We need several technical lemmas about these roots.
Lemma 6.1. For η = 0 and τ = 0, (6.7) has one double root r± = 1. For η = 0

and | sin( τ∆t
2 )| = γ, (6.7) has one double root r± = −1.

Proof. One can do the analysis on a case by case basis.
Lemma 6.2. For |z| > 1 (i.e., η > 0), (6.7) has one root r− whose modulus is

strictly less than 1 and one root r+ whose modulus is strictly bigger than 1.
Proof. The discriminant of (6.7) is

∆ = h(z)(2γ2 + h(z)),(6.8)

and for it to vanish we have the sequence of necessary and sufficient conditions

∆ = 0 ⇐⇒ h(z) = 0 or 2γ2 + h(z) = 0
⇐⇒ z = 1 or z + 1

z − 2 + 4γ2 = 0

⇐⇒ z = 1 or z = 1− 2γ2 ± 2iγ
√
1− γ2.

In both cases |z| = 1, as a short computation in the second case shows, and |z| = 1
is excluded in this lemma and treated in Lemma 6.3. Hence for |z| > 1 there are two
distinct roots whose product equals 1. Therefore, either they are a complex conjugate
of modulus 1 or one is of modulus strictly bigger than 1 whereas the other is of
modulus strictly less than 1. It thus remains to exclude the complex conjugate case.
We find

r̄ =
1

r
⇐⇒ r + r̄ = r +

1

r
⇐⇒ γ2 + h(z)

γ2
∈ R ⇐⇒ h(z) ∈ R,

r̄ =
1

r
⇐⇒ z +

1

z
∈ R ⇐⇒ η∆t = 0 or τ∆t = 0,±π.
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If η = 0, we have |z| = 1, which is again excluded by the conditions of the lemma. If,
on the other hand, τ∆t = 0, we compute the real part of the root r and obtain

�(r) = 1 +
h(z)

γ2
= 1 +

2

γ2
sinh2

(
η∆t

2

)
≥ 1,

and if τ∆t = ±π, we have

�(r) = 1− 2

γ2
cosh2

(
η∆t

2

)
≤ −1,

and in both cases |r| > 1, a contradiction which excludes this case as well and hence
proves the lemma.

Lemma 6.3. For |z| = 1 (i.e., η = 0) and | sin( τ∆t
2 )| different from 0 and γ, (6.7)

has two distinct roots r− and r+,

r± =


1
γ2

[
γ2 − 2 sin2( τ∆t

2 )± 2i sin( τ∆t
2 )
√

γ2 − sin2( τ∆t
2 )
]

if | sin( τ∆t
2 )| < γ,

1
γ2

[
γ2 − 2 sin2( τ∆t

2 )∓ 2 | sin( τ∆t
2 )|

√
−γ2 + sin2( τ∆t

2 )
]

if | sin( τ∆t
2 )| > γ.

Proof. For η = 0, one can compute the roots directly. The only difficulty is the
determination of the signs in front of the square root. In the case | sin( τ∆t

2 )| < γ,
the roots are complex conjugate. We compute the roots r±(z) for z = (1 + ε)z0

with z0 = eiθ and let ε tend to zero. The sign is then defined by continuity. For
| sin( τ∆t

2 )| > γ, there are two real roots, and the sign is determined by the fact that
|r+| > 1 and |r−| < 1.

Lemma 6.4. For z real positive, which corresponds to τ∆t = 0, we have

r± =
1

γ2

[
γ2 + 2 sinh2

(
η∆t

2

)
± 2 sinh

(
η∆t

2

)√
γ2 + sinh2

(
η∆t

2

)]
,

and 0 < r− < 1, r+ > 1.
For z real negative, which corresponds to τ∆t = π, we have

r± =
1

γ2

[
γ2 − 2 cosh2

(
η∆t

2

)
∓ 2 cosh

(
η∆t

2

)√
−γ2 + cosh2

(
η∆t

2

)]
,

and −1 < r− < 0, r+ < −1.
Proof. For τ∆t = 0,±π, which means z real, one can do the analysis on a case

by case basis.
In all cases except for Lemma 6.1, there are functions a+(s) and a−(s) such that

for all j the solution of (6.6) is given by

Û(j, s) = a+(s)r
j
+ + a−(s)r

j
−.(6.9)

In the case of Lemma 6.1 there exist functions a(s) and b(s) such that for all j

Û(j, s) = (a(s)j + b(s))rj±.
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6.2. The discrete homogeneous subdomain problem. We consider, for ex-
ample, the problem posed in Ω1, with a nonhomogeneous boundary condition of type
B+

1 , (
1

C2
D+

t D−t −D+
x D−x

)
(U)(j, n) = 0, −∞ < j < 0, n ≥ 1,

U(j, 0) = U(j, 1) = 0, −∞ < j < 0,(
∆x

2C2
D+

t D−t +D−x +
1

αC
D0

t

)
(U)(0, n) = g(n), n ≥ 1,

(6.10)

where α is a given, strictly positive real number. Applying the discrete Laplace
transform, we obtain with the results of the previous subsection that every solution
bounded in space is of the form

Û(j, s) = a+(s)r
j
+.

Applying the discrete Laplace transform to the boundary condition, we get(
∆x

C2∆t2
h(z) +

1

∆x
(1− r−) +

1

αC∆t

(
z − 1

z

))
Û(0, s) = ĝ(s),

and introducing the notation

k(z) =
1

2

(
z − 1

z

)
, E(z, γ, α) =

1

γ2
h(z) + 1− r− +

1

αγ
k(z),(6.11)

the boundary condition becomes E(z, γ, α)a+(s) = ∆xĝ(s). We call the problem
well-posed in the sense of Gustafsson, Kreiss, and Sundstrom (GKS) if the preceding
equation is invertible for all z with |z| ≥ 1. If z0 is such that E(z0, γ, α) = 0, we call
z0 a generalized eigenvalue [39].

Theorem 6.5. If γ < 1 and |z| ≥ 1 with z �= 1, then for any strictly positive α,
E(z, γ, α) �= 0. The only generalized eigenvalues are z = 1 and if γ = 1, z = −1.

Proof. Using the relation r+ + r− = 2
γ2 (γ

2 + h(z)) satisfied by the roots of (6.7),
we find

E(z, γ, α) =
1

2
(r+ − r−) +

k(z)

αγ
.(6.12)

For z = 1 we obtain by Lemma 6.1 that E(1, γ, α) = 0. If γ = 1, we also get for
z = −1 by Lemma 6.1 that E(−1, γ, α) = 0. We have to show now that there are
no other generalized eigenvalues. For any generalized eigenvalue z, we must have
E(z, γ, α) = 0, which means

r+ − r−
2

= −k(z)

αγ
.(6.13)

Squaring both sides and using the relations of the roots r+ and r− of the quadratic
equation (6.7) to the coefficients of that equation, we obtain

k2(z)

α2γ2
=

1

4
(r+−r−)2 =

1

4

(
(r++r−)2− 4r+r−

)
=

(γ2+h(z))2

γ4
−1 =

h(z) · (2γ2+h(z))

γ4
.

Inserting the definitions of h(z) from (6.6) and k(z) from (6.11) and factoring, we
obtain that in order to be a generalized eigenvalue, z has to satisfy the following
equation:

(z − 1)2
(
(γ2 − α2)z2 + 2(α2 − 2α2γ2 + γ2)z + γ2 − α2

)
= 0.(6.14)



1666 M. J. GANDER, L. HALPERN, AND F. NATAF

The first factor contains the generalized eigenvalue z = 1 we have found earlier. For
γ = 1 the second factor contains the generalized eigenvalue z = −1, and for α = 1 it
contains again the generalized eigenvalue z = 1. It remains to show that for γ < 1
and α �= 1 the solutions of the second factor are introduced by the squaring, and
they are not solutions to the original equation (6.13) and therefore not generalized
eigenvalues. To do this, we perform the change of variables

a2 =
1

γ2
− 1, εb2 =

1

α2
− 1

with ε = ±1, ε( 1
α2 − 1) > 0, a > 0, b > 0 in the second factor of (6.14). Note that we

exclude the case b = 0 ⇔ α = 1 because then the only solution is z = 1. We obtain
after the change of variables for the second factor of (6.14)

(εb2 − a2)z2 + 2(εb2 + a2)z + εb2 − a2 = 0

or, equivalently,

εb2(z + 1)2 = a2(z − 1)2.

Now if ε = +1, the only root with modulus greater than or equal to 1 is

z1 =
a+ b

a− b
.

Using Lemma 6.4, we see that the signs of (r+ − r−)(z1) and k(z1) are equal, which
contradicts (6.13), and thus z1 is not a generalized eigenvalue; E(z1) �= 0. If ε = −1,
there are two complex conjugate roots of modulus 1,

z1 =
a− ib

a+ ib
= eiτ∆t, z2 =

a+ ib

a− ib
= e−iτ∆t.

To apply Lemma 6.3 we need to check that | sin(τ∆t/2)| is different from 0 and γ. To

do so, note that the real part of both z1 and z2 is given by cos τ∆t = a2−b2
a2+b2 , and thus

we obtain for | sin(τ∆t/2)|

sin2 τ∆t

2
=

1

2
− 1

2
cos(τ∆t) =

b2

a2 + b2
> 0.

Now since ε = −1, we have b2 < 1, and therefore

sin2 τ∆t

2
=

b2

a2 + b2
<

1

a2 + 1
= γ2.

Hence the first case of Lemma 6.3 applies and we obtain

r+ − r− =
4i

γ2
sin

(
τ∆t

2

)√
γ2 − sin2 τ∆t

2
, k(z) = 2i sin τ∆t,

which again contradicts (6.13) because of the sign. The results for z2 are the same
with a sign change.

The values z = 1 (and z = −1 if γ = 1) are the generalized eigenvalues in the
sense of GKS. Following the analysis of Trefethen [40], they correspond to stationary
solutions which propagate at the same time toward the left and the right. We will see
that this does not affect the convergence of the Schwarz method.
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6.3. Convergence rate. We denote by Ûk
i (j, s), i = 1, 2 the discrete Laplace

transforms in time of the iterates Uk
i (j, n), i = 1, 2, in algorithm (5.25). We obtain

with the results from subsection 6.1

Ûk
1 (j, s) = Ûk

1 (0, s)r
j
1,+, Ûk

2 (j, s) = Ûk
2 (0, s)r

j
2,−,(6.15)

where ri,+and ri,− are the roots of the second order equation (6.7) defined in each
subdomain,

γ2
i r

2 − 2(γ2
i + h(z))r + γ2

i = 0, with γi = ci
∆t
∆xi

.

The coefficients Ûk
1 (0, s) and Ûk

2 (0, s) are determined iteratively by the Laplace trans-
form of the transmission conditions in (5.25). The discrete transmission operators in
the Laplace transformed domain are given by

b+1 (z) = E(z, γ1, c2/c1) =
1

γ2
1

h(z) + 1− r1,− +
c1

c2γ1
k(z),

b̃+1 (z) = −E(z, γ2, 1) = − 1

γ2
2

h(z)− 1 + r2,− +
1

γ2
k(z),

b−2 (z) = E(z, γ2, c1/c2) =
1

γ2
2

h(z) + 1− r2,− +
c2

c1γ2
k(z),

b̃−2 (z) = −E(z, γ1, 1) = − 1

γ2
1

h(z)− 1 + r1,− +
1

γ1
k(z).

(6.16)

The transmission conditions impose therefore

1

∆x1
b+1 (z)Û

k+1
1 (0, s) =

1

∆x2
b̃+1 (z)Û

k
2 (0, s),

1

∆x2
b−2 (z)Û

k+1
2 (0, s) =

1

∆x1
b̃−2 (z)Û

k
1 (0, s).

Inserting the second equation at iteration k into the first one, we find

Ûk+1
1 (0, s) =

b̃+1 (z)

b+1 (z)

b̃−2 (z)
b−2 (z)

Ûk−1
1 (0, s)

and a similar relation for Ûk+1
2 (0, s). Defining

σ(z, γ) =
1

γ2
h(z) + 1− r− =

1

2
(r+ − r−), ρ(z, γ, q) =

−σ(z, γ) + 1
γ k(z)

σ(z, γ) + q
γ k(z)

,(6.17)

we obtain for the convergence rate of the discrete Schwarz waveform relaxation algo-
rithm

R(z, γ1, γ2, c1/c2) :=
b̃+1 (z)

b+1 (z)

b̃−2 (z)
b−2 (z)

= ρ(z, γ2, c2/c1)ρ(z, γ1, c1/c2),(6.18)

and by induction we find

Û2k
i (0, s) = RkÛ0

i (0, s), i = 1, 2.(6.19)

Lemma 6.6. The convergence rate R(z, γ1, γ2, c1/c2) is an analytic function of z
for |z| ≥ 1.
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Proof. By Theorem 6.5, for γ < 1, z = 1 is the only root of E(z, γ, α) such that
|z| ≥ 1. Furthermore, a Taylor expansion shows that it is a simple root; for z close to
1 we have

E(z, γ, α) ≈ α+ 1

αγ
(z − 1).

With (6.16) and (6.18) we see that z = 1 is only an apparent pole for R, which
concludes the proof.

Since R is analytic for |z| ≥ 1, which corresponds to η ≥ 0, R satisfies a maximum
principle for η ≥ 0 and hence attains its maximum on the boundary η = 0. It therefore
suffices to study the behavior of R for η = 0, and we do this by studying the factors
ρ(z, γ, q) for η = 0. Setting ω := τ∆t

2 , we consider ω varying between 0 and π
2 . (The

same computations apply for negative ω.) For η = 0 we have the explicit formulas

ρ(z, γ, q) =



−
√

γ2 − sin2 ω + γ cosω√
γ2 − sin2 ω + qγ cosω

if sinω < γ,√
sin2 ω − γ2 + iγ cosω

−
√
sin2 ω − γ2 + iqγ cosω

if sinω > γ,

1

q
if sinω = γ.

To find a first necessary condition for convergence of the Schwarz method, we choose

ω1 such that sinω1 = γ1, ω1 ∈ (0, π2 ), and q =
c1
c2

. We obtain for the convergence rate

at η = 0

R =
1

q


γ2 cosω1 −

√
γ2
2 − γ2

1

γ2 cosω1 + q
√

γ2
2 − γ2

1

if γ1 < γ2,

iγ2 cosω1 +
√

γ2
2 − γ2

1

iγ2 cosω1 − q
√

γ2
2 − γ2

1

if γ1 > γ2.

In the first case, R is a real number strictly between 0 and 1, and in the second case,
if q < 1, |R| > 1. We therefore have the following theorem.

Theorem 6.7. If the convergence rate R given in (6.18) of the discrete Schwarz
waveform relaxation algorithm is bounded by 1 for all z of modulus larger than or
equal to 1, then

(c1 − c2)(γ1 − γ2) ≥ 0;(6.20)

in other words, c1 > c2 implies γ1 ≥ γ2.
We now study the variations of |ρ(z, γ, q)| for η = 0 as a function of ω. An

example is shown in Figure 6.1 for the case γ1 < γ2 and q = c1/c2 < 1. The complete
results are obtained by explicitly computing the derivatives and are summarized in
Table 6.1. They rely on

d

dz
ρ(z, γ, q) =

(q + 1)(γ2 − 1)

γ5

h(z)2

zσ(z)(σ(z) + q
γ k(z))

2
,(6.21)

where h is given in (6.6), k in (6.11), and σ in (6.17). For ω ≤ arcsin(γ2), we have



SCHWARZ WAVEFORM RELAXATION FOR THE WAVE EQUATION 1669
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1.2

1.4

|ρ(e2iω, γ1, q)|
|ρ(e2iω, γ2,

1
q )|

|R(e2iω, γ1, γ2, q)|

γ1 γ2

q

1/q

sin2 ω

Fig. 6.1. Example of the dependence of |ρ(e2iω , γ, q)| as a function of ω at η = 0, q = c1/c2.

Table 6.1
Behavior of |ρ(e2iω , γ, q)| as a function of ω > 0 for η = 0.

ω = 0 0 < sin(ω) < γ sin(ω) = γ γ < sin(ω) < 1 sin(ω) = 1
q < 1 0 ↗ 1/q ↘ 1
q > 1 0 ↗ 1/q ↗ 1

|ρ(e2iω,, γ1, q)| ≤ 1/q and |ρ(e2iω, γ2,
1
q )| ≤ q. By (6.21), a final explicit computation

shows that the modulus of R is an increasing function of ω for ω ≥ arcsin(γ2) and

sup
ω∈[0,π2 ]

|R(e2iω, γ1, γ2, q)| = |R(−1, γ1, γ2, q)| = 1.(6.22)

We therefore have the following theorem.
Theorem 6.8. For (c1− c2)(γ1− γ2) ≥ 0 the convergence rate R(z, γ1, γ2, c1/c2)

satisfies

sup
|z|=1

|R(z, γ1, γ2, c1/c2)| = 1.

For purely propagating modes, η = 0, the convergence rate equals 1.
For η > 0, however, we have the following convergence result.
Theorem 6.9. For (c1− c2)(γ1−γ2) ≥ 0 and η > 0 fixed, there exists a constant

K strictly positive such that, for η∆t sufficiently small but nonzero, the convergence
rate satisfies

sup
|z|=eη∆t

|R(z, γ1, γ2, c1/c2)| ≤ 1−Kη∆t.

Proof. By (6.21) we can calculate the derivative of |ρ| with respect to η∆t and
get

d

d(η∆t)
(|ρ(z, γ, q)|2)

∣∣∣∣
η∆t=0

= 2
(q + 1)(γ2 − 1)

γ5
� h(z)2ρ̄(z)

σ(z)(σ(z) + q
γ k(z))

2
.
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For η∆t = 0, h is real, k is purely imaginary, and by Lemma 6.3 we have the explicit
value of σ which is purely imaginary for sin(ω) < γ and real negative for sin(ω) > γ.
We thus have 

d
d(η∆t) (|ρ(z, γ, q)|2)

∣∣∣
η∆t=0

= 0 if sin(ω) < γ,

d
d(η∆t) (|ρ(z, γ, q)|2)

∣∣∣
η∆t=0

< 0 if sin(ω) > γ,

which together with (6.22) gives the desired result.

6.4. Convergence of the discrete Schwarz waveform relaxation algo-
rithm. We introduce the discrete norms in space and time

||U ||Ωi,η,∆t =

∆t∆xi
∑
j∈Ωi

∑
n≥0

e−2ηn∆t|U(j, n)|2
 1

2

.(6.23)

Theorem 6.10. Let Up
i be the iterates of algorithm (5.25). For (c1−c2)(γ1−γ2) ≥

0 there exists a positive constant K such that for η∆t sufficiently small but nonzero,
we have

||Up
i ||Ωi,η,∆t ≤ (1−Kη∆t)�

p
2 � max

i=1,2
||U0

i ||Ωi,η,∆t.

Proof. By (6.15) and (6.19), we have Û2k
i (j, s) = RkÛ0

i (j, s) for any j, s and
therefore

||U2k
i ||2Ωi,η,∆t =

∫
|z|=eη∆t

|R(z)|2k||Û0
i (z)||2Ωi

dz ≤ sup
|z|=eη∆t

|R(z)|2k
∫
|z|=eη∆t

||Û0(z)||2Ω1
dz

≤ sup
|z|=eη∆t

|R(z)|2k||U0
i ||2Ωi,η,∆t ≤ (1−Kη∆t)2k||U0

i ||2Ωi,η,∆t.

A similar argument holds for U2k+1
i .

7. Energy estimates and convergence proof for continuous wave speed.
We consider here the case of I subdomains, with a continuous velocity, and nonuniform
grids in space and time. We use the same approach as in the continuous case to prove
convergence of the discrete domain decomposition algorithm. Such estimates have
been used in [21] in the context of discrete absorbing boundary conditions for the
wave equation and in [10] to prove stability for a nonuniform scheme.

7.1. Stability for the discrete subdomain problem. Let U(j, n) for 0 ≤
j ≤ J + 1 and 0 ≤ n ≤ N solve the leap-frog scheme

1

C2(j)
D+

t D−t (U)(j, n)−D+
x D−x (U)(j, n) = 0, 1 ≤ j ≤ J.(7.1)

Here n stands for the discrete time variable and j for the discrete space variable. We
define a discrete energy. First, we denote by V = {V (j)}0≤j≤J+1 a sequence in R

J+2,
and we define for V,W ∈ R

J+2 a bilinear form on R
J+2 by

ah(V,W ) =
∆x

2

J+1∑
j=1

D−x (V )(j) ·D−x (W )(j).(7.2)
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Accordingly, for any positive n, V (n) stands for the sequence {V (j, n)}0≤j≤J+1. The
discrete energy En at time step n, global in space, is defined as the sum of a discrete
kinetic energy EK,n and a discrete potential energy EP,n given by

EK,n =
∆x

2

 1

2C2(0)
(D−t (V )(0, n))2 +

J∑
j=1

1

C2(j)
(D−t (V )(j, n))2

+
1

2C2(J + 1)
(D−t (V )(J + 1, n))2

 ,

EP,n = ah(V (n), V (n− 1)),

En =EK,n + EP,n.

(7.3)

The quantity EK,n is clearly a discrete kinetic energy. It is less evident to identify En

as an energy. The following lemma gives a lower bound for En under a CFL condition
and hence shows that En is indeed an energy.

Lemma 7.1. For any n ≥ 1, we have

En ≥
(
1−

(
C

∆t

∆x

)2
)

EK,n,(7.4)

where C is defined by C = sup1≤j≤J+1 C(j). Hence, under the CFL condition

C
∆t

∆x
< 1,(7.5)

En is bounded from below by an energy.
Proof. For any V,W ∈ R

J+2 we have

ah(V,W ) =
1

4
Ah(V +W )− 1

4
Ah(V −W )(7.6)

with Ah defined by Ah(V ) = ah(V, V ). Since ah is a positive bilinear form, the first
term on the right-hand side is positive, which gives a first lower bound on En,

En ≥ EK,n − 1

4
Ah(V (n)− V (n− 1)).(7.7)

It remains to estimate the second term on the right-hand side. Using the well-known
inequality

(a+ b)2 ≤ 2(a2 + b2),(7.8)

we obtain

Ah(V (n)− V (n− 1)) =
∆x

2

J+1∑
j=1

[
D−x (V )(j, n)−D−x (V )(j, n− 1)

]2
=

∆x

2

J+1∑
j=1

∆t2

∆x2

[
D−t (V )(j, n)−D−t (V )(j − 1, n)

]2
≤ C2 ∆t2

∆x2

∆x

J+1∑
j=1

1

C2(j)
(D−t (V )(j, n))2

+∆x

J∑
j=0

1

C2(j)
(D−t (V )(j, n))2

 .
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Thus

Ah(V (n)− V (n− 1)) ≤ 4C2 ∆t2

∆x2
EK,n,(7.9)

which, together with (7.7), gives the desired result (7.4).
Having defined a discrete energy, we obtain a discrete energy identity as stated

in the following theorem.
Theorem 7.2 (discrete energy identity). For any n ≥ 1, if U(j, n) is a solution

of (7.1), we have the energy identity

En+1 − En + ∆tD0
t (U)(0, n) ·

(
D+

x −
∆x

2C2(0)
D+

t D−t

)
(U)(0, n)

= ∆tD0
t (U)(J + 1, n) ·

(
D−x +

∆x

2C2(J + 1)
D+

t D−t

)
(U)(J + 1, n).

(7.10)

Furthermore, if U(j, 0) is a solution of (5.15), we have the energy identity

EK,1 + E1 + ∆t
2 D+

t (U)(0, 0) ·
(
D+

x −
1

C2(0)
D+

t

)
(U)(0, 0)

=
∆t

2
D+

t (U)(J + 1, 0) ·
(
D−x +

1

C2(J + 1)
D+

t

)
(U)(J + 1, 0)

+ ∆x
J∑

j=1

1

C2(j)
Ut(j)D

+
t (U)(j, 0) +

∆x

2

J+1∑
j=1

(D−x (U)(j, 0))2.

(7.11)

Proof. The proof is the discrete analogue to the proof in the continuous case.
The problem here is that there is no canonical translation of the derivatives and the
integrals. For n ≥ 1, the appropriate choice is to multiply (7.1) by the centered finite
differences D0

t (U)(j, n). Then we sum up for 1 ≤ j ≤ J . We obtain for the derivatives
in time denoted by I1

I1 =

J∑
j=1

1

C2(j)

(
D+

t D−t (U)(j, n)
) (

D0
t (U)(j, n)

)
=

1

2∆t

J∑
j=1

1

C2(j)

(
(D+

t −D−t )(U)(j, n)
) (

(D+
t +D−t )(U)(j, n)

)
=

1

2∆t

J∑
j=1

1

C2(j)

[(
D+

t (U)(j, n)
)2 − (D+

t (U)(j, n− 1)
)2]

,

where we usedD−t (U)(j, n) = D+
t (U(j, n−1)), and for the derivatives in space denoted

by I2

I2 =

J∑
j=1

D+
x D−x (U)(j, n) ·D0

t (U)(j, n)

=
1

∆x

 J∑
j=1

D+
x (U)(j, n) ·D0

t (U)(j, n)−
J∑

j=1

D−x (U)(j, n) ·D0
t (U)(j, n)

 .
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By a translation of indices in the first sum of I2 using D+
x (U)(j, n) = D−x (U(j+1, n)),

we get

I2 =
1

∆x

J+1∑
j=1

D−x (U)(j, n) · (D0
t (U)(j − 1, n)−D0

t (U)(j, n))

+
1

∆x

(−D+
x (U)(0, n) ·D0

t (U)(0, n) +D−x (U)(J + 1, n)) ·D0
t (U)(J + 1, n)

)
=

1

2∆t

−J+1∑
j=1

D−x (U)(j, n+1) ·D−x (U)(j, n) +

J+1∑
j=1

D−x (U)(j, n) ·D−x (U)(j, n− 1)


+

1

∆x

(−D+
x (U(0, n)) ·D0

t (U)(0, n) +D−x (U(J + 1, n)) ·D0
t (U)(J + 1, n)

)
.

We now compute the difference I1 − I2 and find

0 =
1

∆t

1
2

J∑
j=1

1

C2(j)
(D−t (U)(j, n+ 1))2 − 1

2

J∑
j=1

1

C2(j)
(D−t (U)(j, n))2


+

1

∆t∆x
(ah(U(n+ 1), U(n))− ah(U(n), U(n− 1)))

+
1

∆x

(
D+

x (U)(0, n) ·D0
t (U)(0, n)−D−x (U)(J + 1, n) ·D0

t (U)(J + 1, n)
)
.

Using the definition of En, we finally obtain

0 =
1

∆t∆x
(En+1 − En) +

1

4C2(0)∆t

[−(D+
t (U)(0, n))2 + (D−t (U)(0, n))2

]
+

D+
x (U)(0, n) ·D0

t (U)(0, n)

∆x
+
−(D+

t (U)(J+1, n))2 + (D−t (U)(J+1, n))2

4C2(J+1)∆t

− 1

∆x
D−x (U)(J + 1, n) ·D0

t (U)(J + 1, n),

which gives (7.10) using the identities D+
t −D−t = ∆tD+

t D−t and D+
t + D−t = 2D0

t .
For n = 0, the appropriate choice is to multiply (5.15) by the forward finite difference
D+

t (U)(j, 0) and to perform the same computations.
We define the discrete boundary operators

T−α,C :=
1

α
D0

t −D+
x +

∆x

2C2
D+

t D−t , T̃−α,C :=
1

α
D0

t −D−x −
∆x

2C2
D+

t D−t ,

T+
α,C :=

1

α
D0

t +D−x +
∆x

2C2
D+

t D−t , T̃+
α,C :=

1

α
D0

t +D+
x −

∆x

2C2
D+

t D−t ,

(7.12)
to be applied to U(j, n) for n ≥ 1, where α is a positive real number. For n = 0,
D+

t D−t /2 above is replaced by D+
t /∆t, and D0

t is replaced by D+
t . Using the identity

ab = α
4

(
( 1
αa+ b)2 − ( 1

αa− b)2
)
for α > 0, the energy identities (7.10), (7.11) can be

rewritten for any positive α and β as

En+1 − En +
∆t

4

(
α
(
T̃+
α,C(0)(U)(0, n)

)2
+ β

(
T̃−β,C(J+1)(U)(J + 1, n)

)2)
=

∆t

4

(
α
(
T−α,C(0)(U)(0, n)

)2
+ β

(
T+
β,C(J+1)(U)(J + 1, n)

)2)
,

(7.13)
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2EK,1 + 2E1 +
∆t

4

(
α
(
T̃+
α,C(0)(U)(0, 0)

)2
+ β

(
T̃−β,C(J+1)(U)(J + 1, 0)

)2)
=

∆t

4

(
α
(
T−α,C(0)(U)(0, 0)

)2
+ β

(
T+
β,C(J+1)(U)(J + 1, 0)

)2)
+2∆x

J∑
j=1

1

C2(j)
Ut(j)D

+
t (U)(j, 0) + ∆x

J+1∑
j=1

(D−x (U)(j, 0))2.

(7.14)

Suppose now the discrete boundary conditions are to be given for n ≥ 0 by

T−α,C(0)(U)(0, n) = G−(n), T+
β,C(J+1)(U)(J + 1, n) = G+(n)(7.15)

and the initial conditions are to be given by {U(j, 0)}, {Ut(j)}. Summing (7.13) in
time and adding (7.14), we get

En+1 + 2EK,1 + E1 ≤ 1

4
∆t

n∑
p=0

(
α(G−(p))2 + β(G+(p))2

)
+2∆x

J∑
j=1

1

C2(j)
Ut(j)D

+
t (U)(j, 0) + ∆x

J+1∑
j=1

(D−x (U)(j, 0))2.

Using the discrete Cauchy–Schwarz inequality on the right-hand side, we get stability
for the numerical scheme.

Theorem 7.3 (stability). Suppose U(j, n) is a solution of (7.1), together with
initial conditions and boundary conditions (7.15), with α and β positive. For any
positive time step n one has

En+1 + E1 ≤ 1

4
∆t

n∑
p=0

(α(G−(p))2 + β(G+(p))2)

(7.16)

+ ∆x
J+1∑
j=1

(D−x (U)(j, 0))2 +∆x

J∑
j=1

1

C2(j)
(Ut(j))

2.

Thus, under the CFL condition sup1≤j≤J C(j) ∆t
∆x < 1 required in Lemma 7.1, the

scheme is stable.

7.2. Convergence of the discrete Schwarz waveform relaxation algo-
rithm. Corresponding to the continuous analysis, we take the velocity to be con-
tinuous at the interfaces. To shorten the notation we denote by T−i the operator
T−C(ai),C(ai)

and the others accordingly. To analyze convergence of the discretized

domain decomposition algorithm (5.25), it suffices to consider homogeneous initial
conditions in (5.25) and to prove convergence to zero.

Theorem 7.4. Assume that the velocity is continuous on the interfaces ai. If
the CFL condition (7.5) is satisfied by the discretization in each subdomain, then the
nonoverlapping discrete Schwarz waveform relaxation algorithm (5.25) with homoge-
neous initial condition converges to zero on any time interval [0, T ] in the energy
norm

I∑
i=1

ENi(U
k
i )→ 0 as k →∞.
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Proof. The energy estimates (7.13) and (7.14 ) can be rewritten as

Ek+1
n+1 − Ek+1

n +
∆ti
4

(
c(ai)

(
T̃+
i (Uk+1

i )(0, n)
)2

+ c(ai+1)
(
T̃−i+1(U

k+1
i )(Ji + 1, n)

)2)
=

∆ti
4

(
c(ai)

(
T−i (Uk+1

i )(0, n)
)2

+ c(ai+1)
(
T+
i+1(U

k+1
i )(Ji + 1, n)

)2)
,

(7.17)

2EK,1 + 2E1 +
∆ti
4

(
c(ai)

(
T̃+
i (Uk+1

i )(0, 0)
)2

+ c(ai+1)
(
T̃−i+1(U

k+1
i )(Ji + 1, 0)

)2)
=

∆ti
4

(
c(ai)

(
T−i (Uk+1

i )(0, 0)
)2

+ c(ai+1)
(
T+
i+1(U

k+1
i )(Ji + 1, 0)

)2)
.

(7.18)

We define the boundary energies

F̃ k,+
i,n = ∆ti

4 c(ai)(T̃
+
i (Uk

i )(0, n))
2, F̃ k,−

i,n = ∆ti−1

4 c(ai)(T̃
−
i (Uk

i−1)(Ji−1+1, n))2,

F k,+
i,n = ∆ti−1

4 c(ai)(T
+
i (U

k
i−1)(Ji−1+1, n))2, F k,−

i,n = ∆ti
4 c(ai)(T

−
i (Uk

i )(0, n))
2

(7.19)
and rewrite (7.17) and (7.18) as

[En+1 − En](U
k+1
i ) + F̃ k+1,+

i,n + F̃ k+1,−
i+1,n = F k+1,+

i+1,n + F k+1,−
i,n ,

[2EK,1 + 2E1] (U
k+1
i ) + F̃ k+1,+

i,0 + F̃ k+1,−
i+1,0 = F k+1,+

i+1,0 + F k+1,−
i,0 .

(7.20)

Summing these equations in every subdomain for 1 ≤ n ≤ Ni, we find

[ENi+1 + 2EK,1 + E1](U
k+1
i ) +

Ni∑
n=0

F̃ k+1,+
i,n +

Ni∑
n=0

F̃ k+1,−
i,n

(7.21)

=

Ni∑
n=0

F k+1,+
i,n +

Ni∑
n=0

F k+1,−
i,n .

Using now the transmission conditions and the fact that the projection is a contraction
in L2, we get

[ENi+1 + 2EK,1 + E1](U
k+1
i ) +

Ni∑
n=0

F̃ k+1,+
i,n +

Ni∑
n=0

F̃ k+1,−
i,n

(7.22)

≤
Ni+1∑
n=0

F̃ k,+
i+1,n +

Ni−1∑
n=0

F̃ k,−
i−1,n.

Note now that by definition we have as in the continuous case F k,±
1 = F k,±

I+1 = 0.
Thus, defining the total boundary energy at iteration k by

F̃ k =

I∑
i=1

Ni∑
n=0

[F̃ k,−
i,n + F̃ k,+

i,n ],

we have, by summing in i and shifting the indices, the inequality

I∑
i=1

[ENi+1 + 2EK,1 + E1](U
k+1
i ) + F̃ k+1 ≤ F̃ k.(7.23)

Thus the same arguments as in the continuous case prove that
∑I

i=1 ENi
(Uk

i )→ 0 as
k →∞.
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8. Numerical experiments. We perform the numerical experiments on the
wave equation

∂2u

∂t2
= c2(x)

∂2u

∂x2
, 0 < x < L, 0 < t < T,(8.1)

where we truncate the spatial domain at 0 and L using absorbing boundary conditions
so that the results obtained correspond to the analysis on an infinite domain. We
discretize the wave equation and the optimal transmission conditions using the finite
volume scheme presented in section 5.

8.1. Optimal global transmission conditions. First we test the convergence
result proved in Theorem 2.1 for a two subdomain problem with L = 2, T = 2, and a
constant wave speed c(x) = 1. The domain is partitioned at x = 1, and the optimal
transmission conditions at the continuous level are local. We use the initial conditions

u(x, 0) = 0,

∂u

∂t
(x, 0) = −100(0.5− x)e−50(0.5−x)2 ,

and we start the iteration with the initial guess zero. Table 8.1 shows for various
mesh parameters the difference of the domain decomposition algorithm result after
two iterations and the numerical solution on the whole domain and compares this
value to the truncation error, the difference between the numerical solution on the
whole domain, and the exact solution. One can see that the discretization of the
optimal local transmission conditions leads to an algorithm which converges in two
iterations to well below the accuracy of the numerical scheme.

Table 8.1
Convergence in two iterations to below the accuracy of the discretization.

Grid Error after 2 iterations Discretization error
50 x 50 2.6128e-04 2.1515e-02

100 x 100 2.7305e-05 4.9472e-03
200 x 200 3.2361e-06 1.2218e-03
400 x 400 3.9852e-07 3.0321e-04
800 x 800 4.9548e-08 7.5567e-05

For the next model problem, we choose L = 6, T = 8, and a speed function c(x)
with a discontinuity at x = 1,

c(x) =

{
1 1 < x < 6,
2 0 < x < 1.

We decompose the domain into three subdomains, Ω1 = [0, 2]×[0, 6], Ω2 = [2, 4]×[0, 6],
and Ω3 = [4, 6]× [0, 6], and we use the initial conditions

u(x, 0) = 0,

∂u

∂t
(x, 0) = −20(5− x)e−10(5−x)2 .

We use again a discretization of the optimal transmission conditions, which are
nonlocal in this case. We start the Schwarz waveform relaxation with a zero ini-
tial guess. Table 8.2 shows that the algorithm converges at the third iteration to the
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discretization error level and illustrates Theorem 2.1, which states that we should find
convergence in a number of iterations identical to the number of subdomains. More
accuracy is achieved as the iteration progresses further. The nonlocal transmission
conditions (2.8) require this value of T to include three terms of the sum of the opera-
tors Sj in (3.3), (3.4) on the middle subdomain and one term on the right subdomain.
We computed the solution on a uniform grid with ∆x = 1/20 and ∆t = 1/40 for this
example.

Table 8.2
Convergence for a 3 subdomain problem and a discontinuity in the left subdomain.

Iteration 0 1 2 3 4 5
||u− uk||∞ 5.0230e-01 5.0164e-01 5.0065e-01 4.0289e-03 3.9800e-03 3.9535e-05

8.2. Optimal local transmission conditions. Now we introduce time win-
dows for the same example to be able to use optimal local transmission conditions.
We cut the time domain into four equal pieces [0, 2], [2, 4], [4, 6], and [6, 8] such that
the condition (3.15) according to Theorem 3.4 is satisfied. We solve the problem
consecutively on the four time subdomains, and in each time window we expect the
algorithm to converge in two iterations. We show the convergence results for the first
time window only, [0, T = 2]. Table 8.3 shows the error in the infinity norm over
five iterations for the same mesh parameters as before. The algorithm converges now
already at the second iteration as predicted by Theorem 3.4 to the discretization error
level, and more accuracy is achieved as the iteration progresses.

Table 8.3
Convergence with local transmission conditions over a shorter time interval.

Iteration 0 1 2 3 4 5
||u− uk||∞ 5.0200e-01 5.0135e-01 1.2089e-03 9.0654e-06 1.4775e-06 1.2551e-06

8.3. Nonconforming grids. As an illustration of Theorem 3.5 on noncon-
forming grids, we consider a problem with a layered medium of six layers, and we
decompose the domain into six subdomains corresponding to the different layers,
Ωi = [i − 1, i] with corresponding wave speeds ci ∈ {1, 2/3, 1/2, 3/4, 1, 4/5}. We dis-
cretize each subdomain with a grid in space using ∆xi = 1/50 and in time using an
appropriate time step satisfying the CFL condition ci

∆ti
∆xi

< 1 but close to 1, which
is important for accuracy in the propagation properties of the solution, so different
time steps are essential in different subdomains. This leads to nonconforming grids
between subdomains. Since we have no algorithm that computes the entire solution
over nonconforming grids to compare with, we choose to compute the zero solution to
the homogeneous problem with zero initial conditions. We start with a nonzero initial
guess on the artificial interfaces, g±(t) = 1. According to Theorem 3.5 the algorithm
will converge in two iterations if T ≤ 1. Table 8.4 shows that this is also observed
numerically. After two iterations the Schwarz waveform relaxation has converged
to the precision of the numerical scheme. Figure 8.1 shows a solution computed on
nonmatching grids with the optimal Schwarz waveform relaxation algorithm.

8.4. Variable wave speed and local transmission conditions. Now we con-
sider a variable propagation speed c(x) for which convergence of the Schwarz waveform
relaxation algorithm with local transmission conditions was proved in Theorem 4.3
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Table 8.4
Convergence with local transmission conditions in 2 iterations to the level of the truncation

error for a problem with five discontinuities and six subdomains aligned with the discontinuities.

Iteration 0 1 2
||u− uk||∞ 5.0234e+00 5.0234e+00 1.1738e-02
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Fig. 8.1. Computation with nonmatching grids on a layered medium with five discontinuities,
a pulse created in the surface layer and propagating downward.

using energy estimates. The speed profile, which is a typical underwater profile, was
obtained from [23], and it is given as a function of depth by

c(x) =


300, m

s , x < 0 (above ground),
1500− x/12, m

s , 0 < x < 120,
1480 + x/12, m

s , 120 < x < 240,
1505, m

s , x > 240.

We decompose the domain into two subdomains Ω1 = [0, 300], and Ω2 = [300, 600],
and we apply the domain decomposition algorithm with the local transmission con-
ditions (3.10), which would be exact if the sound speed was identically constant over
both subdomains and equal to the sound speed at the artificial interface at x = 300.
Table 8.5 shows the convergence of the algorithm for the variable sound speed for a
time interval [0, 1/2]. The algorithm converges again to the accuracy of the scheme
in two iterations, even though the sound speed is variable in this example. This is
because the variation is small in scale, and thus the local approximations to the trans-
mission conditions are sufficiently accurate to lead to the convergence in two steps.
Note also that continuing the iteration, the error is further reduced.
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Table 8.5
Convergence behavior of the algorithm for the variable sound speed profile from an application.

Iteration 0 1 2 3
||u− uk||∞ 5.0316e+00 5.0316e+00 9.9024e-03 6.2439e-04

9. Conclusions. We have presented and analyzed a nonoverlapping Schwarz
waveform relaxation algorithm for the one dimensional wave equation with variable
coefficients, both at the continuous and the discrete level. The algorithm permits the
use of grid CFL conditions adapted to the local wave speeds and nonmatching grids on
different subdomains, and it has optimal scalability when implemented on a parallel
computer. The formulation of the algorithm is quite general; it can be applied to the
wave equation in higher dimensions and even to other types of evolution equations.
The convergence result with the optimal transmission conditions also holds in these
more general situations; specific results for the wave equation in higher dimensions will
be presented elsewhere. The convergence analysis for the discretized algorithm with
approximate transmission conditions, however, is specific to the one dimensional wave
equation with variable coefficients. Although the ideas can be generalized to higher
dimensions, the discrete energy estimates present a real challenge. The advantage of
the continuous analysis is, however, that convergence results similar to the continuous
ones can be expected to hold when the algorithm is consistently discretized.

Appendix. A projection algorithm for nonmatching grids.
The projection operation between nonconforming grids as given in (5.23) is not

an easy task in an algorithm, since one cell can intersect with an arbitrary number of
neighboring ones or even not intersect at all if it is fully contained in the neighboring
one. In one dimension, the following short algorithm in Matlab performs this task in
an efficient manner:
function b=transfer(a,ta,tb);

% TRANSFER integrates a stepfunction between given intervals

% b=transfer(a,ta,tb); computes the integral of the

% stepfunction with values a(j) in [ta(j),ta(j+1)] in the

% intervals [tb(i),tb(i+1)] and stores the result in b(i).

% Note that the first and last entry in ta and tb must be equal.

n=length(tb); % n-1 is the length of b

ta(length(ta))=tb(n); % numerical equality for proper termination

j=1;

for i=1:n-1,

b(i)=0;

m=ta(j+1)-tb(i);

while ta(j+1)<tb(i+1),

b(i)=b(i)+m*a(j);

j=j+1;

m=ta(j+1)-ta(j);

end;

m=m-(ta(j+1)-tb(i+1));

b(i)=b(i)+m*a(j);

end;
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Given a vector ta = [0, ta(1), . . . , T ] of arbitrary grid points in time and a piecewise
constant function on the intervals between the grid points ta whose values are given
in the vector a, the algorithm computes the integrals of a on the intervals between the
grid points of a second grid given in the vector tb = [0, tb(1), . . . , T ]. The algorithm
does a single pass without any special cases using the fact that the grid points are
sorted in time. It advances automatically on whatever side the next cell boundary
is coming and handles any possible cases of nonmatching grids at a one dimensional
interface.
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d’advection-diffusion, C. R. Acad. Sci. Paris Sèr. I Math., 313 (1991), pp. 623–626.
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Travaux et Recherches Mathématiques 17, Dunod, Paris, 1968.
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Abstract. In this paper, we propose a nonoverlapping domain decomposition method for solving
the three-dimensional Maxwell equations, based on the edge element discretization. For the Schur
complement system on the interface, we construct an efficient preconditioner by introducing two
special coarse subspaces defined on the nonoverlapping subdomains. It is shown that the condition
number of the preconditioned system grows only polylogarithmically with the ratio between the
subdomain diameter and the finite element mesh size but possibly depends on the jumps of the
coefficients.
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1. Introduction. In the numerical solution of the Maxwell equations, one needs
to repeatedly solve the following system [9], [12], [17], [21], [28], [30]:

∇×(α∇×u) + βu = f in Ω,(1.1)

where Ω is an open polyhedral domain in R3 and the coefficients α(x) and β(x) are
two positive bounded functions in Ω. Among various boundary conditions for (1.1),
we shall consider the perfect conductor condition

u× n = 0 on ∂Ω,(1.2)

where n is the unit outward normal vector on ∂Ω.
Both the nodal and edge finite element methods have been widely used for solv-

ing the system (1.1)–(1.2); see, for example, [5], [10], [11], [12], [22], [24]. However,
the algebraic systems arising from the discretization by the edge element methods
are very different from the ones arising from the discretization by the standard nodal
finite element methods. So the nonoverlapping domain decomposition theory for the
nodal element systems, which has been well developed for second order elliptic prob-
lems in the past two decades (see the survey articles [13] [33]), does not work for the
edge element systems in general, especially in three dimensions. During the last five
years, there has been a rapidly growing interest in domain decomposition methods
(DDMs) for solving the system (1.1)–(1.2). Some substructuring DDMs were studied
for two-dimensional Maxwell equations in [29], [30] and for a different three dimen-
sional model problem in [31]. Overlapping Schwarz methods were investigated in
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[15], [28], [16] for three-dimensional Maxwell equations. As far as the nonoverlapping
DDMs are concerned, very few works can be found in the literature. A nonoverlap-
ping DDM with two subdomains was proposed in [3] for Maxwell equations in three
dimensions. The current work represents some initial efforts in the construction of
efficient nonoverlapping DDMs for the case with general multiple subdomains. As we
shall see, not only the construction of the coarse subspaces but also the estimates of
the condition numbers of the preconditioned systems for the three-dimensional case
with multiple nonoverlapping subdomains are much more difficult and tricky than in
the two-dimensional case or the three-dimensional case with overlapping subdomains.

In this paper, we will propose an efficient preconditioner for the Schur comple-
ment system arising from the nonoverlapping DDM based on the edge element dis-
cretization. For the analysis of our new method, some important inequalities will be
established for discrete functions in edge element spaces. We believe these inequalities
should also be useful to the future developments in the field. It will be shown that the
resulting preconditioned system has a nearly optimal condition number; namely, the
condition number grows only polylogarithmically with the ratio between the subdo-
main diameter and the finite element mesh size. Unlike the optimal nonoverlapping
domain decomposition preconditioners for elliptic problems [13], [25], [33], we are still
unable to conclude whether the condition number of the preconditioned system gen-
erated by our nonoverlapping DDM is independent of the jumps of the coefficients.
This is an important problem that we are currently working on.

The paper is arranged as follows. The edge element discretization of the system
(1.1)–(1.2) and some basic formulae and definitions will be described in section 2.
The construction of nonoverlapping domain decomposition preconditioners and the
main results of the paper are discussed in section 3. Section 4 presents some auxiliary
lemmas, which are needed in section 5 to deal with the technical difficulties in the
estimates of the condition numbers.

2. Domain decompositions and discretizations. This section is devoted to
the introduction of the nonoverlapping domain decomposition and the weak form
and the edge element discretization of the system (1.1)–(1.2) as well as some discrete
operators.

Domain decomposition. We decompose the physical domain Ω intoN nonover-
lapping tetrahedral subdomains {Ωi}Ni , with each Ωi of size d (see [7], [33]). The faces
and vertices of the subdomains are always denoted by f and v, while the common
(open) face of the subdomains Ωi and Ωj are denoted by Γij , and the union of all
such common faces is denoted by Γ, i.e., Γ = ∪Γ̄ij . Γ will be called the interface. By
Γi we denote the intersection of Γ with the boundary of the subdomain Ωi. So we
have Γi = ∂Ωi if Ωi is an interior subdomain of Ω.

Finite element triangulation. Further, we divide each subdomain Ωi into
smaller tetrahedral elements of size h so that elements from the neighboring two
subdomains have an intersection which is either empty or a single nodal point or an
edge or a face on the interface Γ. The resulting triangulation of the domain Ω is
denoted by Th, which is assumed to be quasi-uniform (cf. [33]), while the set of edges
and the set of nodes in Th are denoted by Eh and Nh, respectively.

Weak formulation. The primary goal of this paper is to construct an efficient
nonoverlapping DDM for solving the discrete system arising from the edge element
discretization of (1.1). For this, we first introduce its weak form and then the edge
element discretization of the weak form. Let H(curl; Ω) be the Sobolev space con-
sisting of all square integrable functions whose curl’s are also square integrable in Ω,
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and let H0(curl; Ω) be a subspace of H(curl; Ω) with all functions whose tangential
components vanish on ∂Ω, i.e., v × n = 0 on ∂Ω for all v ∈ H0(curl; Ω). Then, by
integration by parts, one derives immediately the variational problem associated with
the system (1.1)–(1.2).

Find u ∈ H0(curl; Ω) such that

A(u,v) = (f ,v) ∀v ∈ H0(curl; Ω),(2.1)

where A(·, ·) is a bilinear form given by

A(u,v) = (α∇× u,∇× v) + (βu,v), u,v ∈ H(curl; Ω).

Here and in what follows, (·, ·) denotes the scalar product in L2(Ω) or L2(Ω)3.
Edge element discretization. The Nédélec edge element space, of the lowest

order, is a subspace of piecewise linear polynomials defined on Th (cf. [14] and [23]):

Vh(Ω) =
{

v ∈ H0(curl; Ω); v |K∈ R(K) ∀K ∈ Th
}
,

where R(K) is a subset of all linear polynomials on the element K of the form

R(K) =
{

a + b× x; a,b ∈ R3, x ∈ K
}
.

It is known [14], [23] that the tangential components of any edge element function
v of Vh(Ω) are continuous on all edges of every element in the triangulation Th, and
v is uniquely determined by its moments on edges of Th:{

λe(v) =

∫
e

v · teds; e ∈ Eh
}
,

where te denotes the unit vector on the edge e. Let {Le; e ∈ Eh} be the edge element
basis functions of Vh(Ω) satisfying

λe′(Le) =

{
1 if e′ = e ,
0 if e′ = e ;

then the edge element basis function Le associated with the edge e has the represen-
tation

Le = ce (λ
e
1∇λe2 − λe2∇λe1) ,(2.2)

where ce is a constant independent of h, and λe1 and λe2 are two barycentric basis
functions at the two endpoints of e. Furthermore, each function v of Vh(Ω) can be
expressed as

v(x) =
∑
e∈Eh

λe(v)Le(x), x ∈ Ω .

With the above notation, the edge element approximation to the variational prob-
lem (2.1) can be formulated as follows: Find uh ∈ Vh(Ω) such that

A(uh,vh) = (f ,vh) ∀vh ∈ Vh(Ω),(2.3)
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where Ah(·, ·) is a bilinear form given by

Ah(uh,vh) =

N∑
i=1

Ai(uh,vh)

with each Ai(·, ·) defined only on the subdomain Ωi:

Ai(u,v) = (α∇× u,∇× v)Ωi + (β u,v)Ωi , i = 1, 2, . . . , N.

Some edge element subspaces. In section 3, we will formulate our DDM for
solving the edge element system (2.3). Before doing so, we need to introduce more
notation, subspaces, and discrete operation tools.

We will often use G to represent a subset of Γ, which may be the entire interface
Γ or the local interface Γi or a face f of Γi. The notation e, with e ⊂ G, always
means that e is an edge of Th and lies on G. By restricting Vh(Ω) on G, we generate
a subspace of L2(G)3:

Vh(G) =
{
ψ ∈ L2(G)3; ψ = v × n on G for some v ∈ Vh(Ω)

}
.

By Vh(Ωi) we denote the restriction of Vh(Ω) on the subdomain Ωi. The following
two local subspaces of Vh(Ωi) and Vh(f) will be important to our subsequent analysis:

V 0
h (Ωi) =

{
v ∈ Vh(Ωi); v × n = 0 on Γi

}
,

V 0
h (f) =

{
Φ = v × n ∈ Vh(f); λe(v) = 0 ∀ e ⊂ ∂f ∩ Eh

}
.

Discrete operators. We will often use the natural restriction operator from
Vh(Γ) onto Vh(G), denoted by IG, and the natural zero extension operator from Vh(G)
into L2(Γ)3, denoted by ItG. By definition it is clear that for a face f, Itfv ∈ Vh(Γ) if
and only if v ∈ V 0

h (f), and IG and ItG satisfy

〈IGΨ,Φ〉G = 〈Ψ, ItGΦ〉 ∀Ψ ∈ Vh(Γ), Φ ∈ Vh(G),

where 〈·, ·〉G stands for the L2-inner product in L2(G) or L2(G)3, and the subscript
G will be dropped when G = Γ. Also, we shall write Ii = IΓi and Itij = ItΓij

.

For any face f of Ωi, we use fb to denote the union of all Th-induced (closed)
triangles on f which have at least one edge lying on ∂f and f∂ to denote the open set
f\fb.

By definition, for any Φ ∈ Vh(Γi), there exists a v ∈ Vh(Ωi) such that Φ = v× n
on Γi. So Φ has the representation of the form

Φ(x) =
∑
e⊂Γi

λe(v)(Le × n)(x), x ∈ Γi.(2.4)

For any open face f on Γi, we define an operator I0
f∂

: Vh(Γi)→ ItfV
0
h (f) by

(I0
f∂

Φ)(x) =
∑
e⊂f∂

λe(v)(Le × n)(x), x ∈ Γi,(2.5)
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and an operator I0
fb

by

(I0
fb
Φ)(x) =

∑
e⊂fb

λe(v) Itf(Le × n)(x), x ∈ Γi.

Some nodal element spaces. From time to time, we shall also need some
nodal element spaces in the analyses—for example, the continuous piecewise linear
finite element space Zh(Ω) of H1

0 (Ω), its restriction Zh(Γ) on Γ and Zh(Ωi) on any
subdomain Ωi, and the restriction Zh(Γi) of Zh(Ωi) on the local interface Γi and
Zh(f) on a face f.

The operator Itf : Zh(f)→ L2(Γ) is defined similarly to Itf.
For a subset G of Γi, we introduce a “local” subspace

Z0
h(G) = {v ∈ Zh(Γi); v = 0 at all nodes on Γi\G}.

For any open face f ⊂ Γi, we will use I
0
f : Zh(Γi)→ Z0

h(f) and I0∂f : Zh(Γi)→ Z0
h(∂f)

to denote the natural restriction operators (see [33]).
curl- and harmonic extension operators. The next two extension operators

will play an important role in the subsequent analysis. The first is the discrete curl-
extension operator Ri

h : Vh(Γi) → Vh(Ωi) defined as follows: For any Φ ∈ Vh(Γi),
Ri
hΦ ∈ Vh(Ωi) satisfies Ri

hΦ× n = Φ on Γi and solves

Ai(R
i
hΦ,vh) = 0 ∀vh ∈ V 0

h (Ωi).

The second is the discrete harmonic extension operator Rih : Zh(Γi)→ Zh(Ωi) defined
as follows: For any vh ∈ Zh(Γi), Rihvh ∈ Zh(Ωi) satisfies Rihvh = vh on Ωi and

(∇Rihvh,∇wh) = 0 ∀wh ∈ Zh(Ωi) ∩H1
0 (Ωi) .

3. Nonoverlapping DDMs. In this section, we propose a nonoverlapping DDM
for solving the edge element system (2.3). The notation 〈·, ·〉Γi

and (·, ·)Ωi
shall be

used for the scalar products in L2(Γi) and L
2(Ωi), respectively.

3.1. The interface equation. For the solution uh to the system (2.3), we write
uhi = uh|Ωi

. It follows from (2.3) that

Ai(uhi,vh) = (f ,vh)Ωi ∀vh ∈ V 0
h (Ωi).(3.1)

This indicates that if the tangential components uhi×ni are known on Γi the “local”
unknown uhi can be obtained by solving the local equation (3.1).

Next, we will establish an equation for the interface quantity Φ = uh × n on Γ.
To do so, we introduce a “local” interface operator Si : Vh(Γi)→ Vh(Γi)

∗ by

〈SiΦi,Ψi〉Γi = Ai(R
i
hΦi,R

i
hΨi) ∀Ψi,Φi ∈ Vh(Γi).

Using the obvious decomposition

uhi = u0
hi + Ri

h(uhi × ni)

with u0
hi ∈ V 0

h (Ωi), solving (3.1), (2.3) reduces to the interface equation (cf. [27])

N∑
i=1

〈SiIiΦ, IiΨ〉Γi =

N∑
i=1

(f ,Ri
hIiΨ)Ωi ∀Ψ ∈ Vh(Γ).(3.2)
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Let g ∈ Vh(Γ)∗ be defined by

〈g,Ψ〉Γ =

N∑
i=1

(f ,Ri
hIiΨ)Ωi

∀Ψ ∈ Vh(Γ),

and let S =
∑N
i=1 ItiSiIi; then (3.2) may be written as

〈SΦ,Ψ〉 = 〈g,Ψ〉 ∀Ψ ∈ Vh(Γ).(3.3)

With Φ = uh ×n available on Γ, the solution of (2.3) can be obtained by solving one
subproblem, (3.1), on each subdomain Ωi. Therefore, the solution of (2.3) reduces
to the one of the interface problem (3.3). However, it is very expensive to solve this
interface equation directly. Instead, we will construct an efficient preconditioner for
S; then (3.3) can be solved by the preconditioned CG method.

3.2. Preconditioners for the interface operator S. We now start to con-
struct a preconditioner for S. As usual, a good preconditioner should involve both
local solvers and global coarse solvers.

First, the local solvers can be constructed on each local face Γij . For each Γij ,
we define a “local” operator Sij : V

0
h (Γij)→ V 0

h (Γij)
∗ by

〈SijΦij ,Ψij〉Γij
= Ai(R

i
hI
t
ijΦij ,R

i
hI
t
ijΨij) +Aj(R

j
hI
t
ijΦij ,R

j
hI
t
ijΨij)

∀Φij ,Ψij ∈ V 0
h (Γij),

and S−1
ij will be our desired local solvers. The construction of the global coarse solvers

is much more tricky and technical. Before doing this, we would like to illustrate our
main idea about the construction. The essential difficulty in the construction of a
coarse solver lies in two facts: (1) The edge element space Vh(Ω), different from
the nodal element space, is not a subspace of H1(Ω)3; (2) for any vh ∈ Vh(Ω), its
tangential components are continuous on all cross-edges, namely, the edges which are
shared by more than two fine elements (tangential components make no sense at the
cross-points in two dimensions), but the moments on the cross-edges are not sufficient
to determine the values of the tangential trace vh×n on these edges. As one will see,
we have the Helmholtz decomposition

Vh(Ω) = gradZh(Ω) + Ṽh(Ω),

where Ṽh(Ω) corresponds to the divergence-free part and is closely related to the
space H1(Ω)3. Thus it seems necessary to construct two coarse subspaces and coarse
solvers, corresponding to the curl-free and divergence-free subspaces ∇Zh(Ω) and
Ṽh(Ω), respectively.

For the construction of the coarse subspaces, we introduce some more notation
below. For any subdomain Ωi, by Wi we denote the set of the edges of Ωi, which
belong to at least two other local interfaces Γj , j = i. On each Wi, we define the
discrete L2-scalar product

〈ϕ,ψ〉h,Wi = h
∑

x∈Nh∩Wi

ϕ(x)ψ(x) ∀ϕ,ψ ∈ Zh(Γi) ;

the corresponding norm is denoted by ‖ · ‖h,Wi . Let

∆i =
⋃

f⊂Γi

fb, i = 1, . . . , N.
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We introduce a norm ‖ · ‖∗,∆i that is induced from the following inner product in
L2(∆i)

3:

〈v × n,w × n〉∗,∆i
=
∑
K⊂∆i

〈v × n,w × n〉∂K ∀v × n,w × n ∈ Vh(Γi),

where the summation is over all triangles K in ∆i.
For any given subset G of Ω and function ϕ in L2(G), we use γ

G
(ϕ) for the

average value of ϕ on G. Similarly, for a vector v = (v1, v2, v3) in L2(G)3, we use
ΥG(v) for the constant vector with three average values γ

G
(v1), γG

(v2), and γG
(v3)

as its components.
Now we define two discrete operators in Zh(Γ) and Vh(Γ) which will generate two

coarse subspaces. For any ϕ ∈ Zh(Γ), we define π0ϕ ∈ Zh(Γ) by

π0ϕ(x) =

{
ϕ(x) for x ∈ Wi ∩Nh (i = 1, . . . , N),
γ

∂f(ϕ) for x ∈ f ∩Nh (f ⊂ Γ).
(3.4)

Similarly, for each v × n ∈ Vh(Γ), we define Π0v × n ∈ Vh(Γ) such that

λe(Π0v) =

{
λe(v) for e ⊂ ∆i ∪ Ωi (i = 1, . . . , N),
λe(Υ∂f(v)) for e ⊂ f∂ (f ⊂ Γ).

Note that although Π0v involves the degrees of freedom inside Ωi, Π0v × n is deter-
mined on Γ uniquely by the moments λe(v) for all e ⊂ Γ. Thus Π0v×n ∈ Vh(Γ) can
also be defined directly by

Π0v × n =

{
v × n on ∆i (i = 1, . . . , N),
Υ∂f(v × n) on f∂ (f ⊂ Γ),

where we have used the fact that the normal vector n is constant on any face f ⊂ Γ
and

Υ∂f(v)× n|f = Υ∂f(v × n).

Now, we can define the two coarse subspaces:

V 01
h (Γ) =

{
Φ0 ∈ Vh(Γ); IiΦ0 = grad(Ri0Iiπ0ϕ)× n on Γi for some ϕ ∈ Zh(Γ)

}
,

V 02
h (Γ) =

{
v0 × n ∈ Vh(Γ); v0 = Π0v for some v × n ∈ Vh(Γ)

}
.

The operator Ri0 used in V 01
h (Γ) is the zero extension into the interior of Ωi; namely,

for any vh ∈ Zh(Γi), Ri0vh ∈ Zh(Ωi) takes the same values as vh on Γi and vanishes
at all interior nodes of Ωi. We can define two coarse solvers S0k : V 0k

h (Γ)→ V 0k
h (Γ)∗,

k = 1, 2, associated with these coarse subspaces. For any Φ0,Ψ0 ∈ V 01
h (Γ), there exist

ϕ, ψ ∈ Zh(Γ) such that on Γi,

IiΦ0 = grad(Ri0Iiπ0ϕ)× n, IiΨ0 = grad(Ri0Iiπ0ψ)× n .

Then S01 is defined by

〈S01Φ0,Ψ0〉 = [1 + log(d/h)]

N∑
i=1

〈π0ϕ− γWi
(π0ϕ), π0ψ − γWi

(π0ψ)〉h,Wi .
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Similarly, for any Φ0,Ψ0 ∈ V 02
h (Γ), there exist v ,w ∈ Vh(Ω) such that on Γi,

IiΦ0 = Π0v × n, IiΨ0 = Π0w × n.

Then S02 is defined by

〈S02Φ0,Ψ0〉 = [1 + log(d/h)]

N∑
i=1

〈Φ0 −Υ∆i(v)× n,Ψ0 −Υ∆i(w)× n〉∗,∆i

+ d2〈Φ0,Ψ0〉∗,∆i
.

Hereafter, Υ∆i
(v) is the constant vector satisfying

‖Φ0 −Υ∆i
(v)× n‖2∗,∆i

= min
C

∆i
∈R3
‖Φ0 − C∆i

× n‖2∗,∆i
,

which can be viewed as some average of Φ0 on ∆i. And the average is well defined.
Finally, the preconditioner for the interface operator S can be defined as follows:

M−1 = S−1
01 + S−1

02 +
∑
Γij

ItijS
−1
ij Iij .(3.5)

For this preconditioner, we have the following theorem.
Theorem 3.1. The condition number of the preconditioned system can be esti-

mated by

cond(M−1S) ≤ C[1 + log(d/h)]3.(3.6)

Remark 3.1. A simple algorithm to implement the coarse solver S01 can be found
in [33]. By the minimum property of the average Υ∆i(Φ0), we can also derive a
simple algorithm for implementing the coarse solver S02, which is similar to the one
in [33]. Note that one may also use the inner product h−1〈·, ·〉∆i

in the definition
of S02 instead of the inner product 〈·, ·〉∗,∆i . Furthermore, one may use the discrete
L2(∆i)

3-inner product

〈〈v × n,w × n〉〉h,∆i
=
∑
e⊂∆i

λe(v)λe(w) ∀v × n,w × n ∈ Vh(Γi),

to define the coarse solver S02, but we do not know yet how to verify the existence of
the corresponding average.

Remark 3.2. The “local” operator Sij may be replaced by any other spectrally
equivalent operator, for example, the operator defined by

〈SiijΦij ,Ψij〉Γij
= Ai(R

i
hI
t
ijΦij ,R

i
hI
t
ijΨij) ∀Ψij ∈ V 0

h (Γij).

Siij is easier to implement than Sij , but it loses the symmetry with respect to the face
Γij .

Remark 3.3. Based on our current analysis in section 5, the constant C in the
condition number estimate (3.6) may have a factor γmax/γmin related to the coeffi-
cients in (1.1), where γmax is the supremum of β(x) and α2(x) over Ω̄, and γmin is the
infimum of β(x) and α2(x) over Ω̄. It is possible to improve such dependence on the
coefficients if a more localized and sharper analysis can be found.
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Remark 3.4. The nodal element coarse interpolant π0 is widely used in nonover-
lapping DDMs for second order elliptic problems [13], [33]. The new edge element
coarse interpolant Π0 is very similar to π0 but with some essential differences. For a
H1(Ω)3 vector-valued function v, there is no trace on the wirebasket set Wi, and the
coarse interpolants π0v and Π0v make no sense. However, it is known that π0 is stable
in the nodal element space Zh(Γi) [13], [33]. Likewise, we shall show in section 4 that
Π0 is stable in the edge element space Vh(Γi), with the stability constants growing
only polylogarithmically with d/h. This explains somewhat why we can achieve a
logarithmical bound (3.6) on the condition number.

4. Some auxiliary lemmas. As we shall see, the estimate (3.6) of the condition
number cond(M−1S) for the preconditioned system is rather technical. This section
presents some basic properties of Sobolev spaces and auxiliary lemmas, which are
needed to deal with the technical difficulties in the estimate of the condition number.
The proofs will be provided in the appendix. The constant C will be used often
in what follows for the generic constant that may take different values at different
occasions.

4.1. The scaled norms. A large part of the condition number estimate will be
carried out on the subdomains, for which we need some scaled norms. For the space
H1(Ωi)

3, we define a scaled norm by

‖v‖1,Ωi
= (|v|21,Ωi

+ d−2‖v‖20,Ωi
)

1
2 ∀v ∈ H1(Ωi)

3,

while for the space H(curl; Ωi), the restriction of H0(curl; Ω) on the subdomain Ωi,

and the interface space H−
1
2 (Γi), we define their scaled norms by

‖v‖curl;Ωi
=
(
‖curl v‖20,Ωi

+ d−2‖v‖20,Ωi

) 1
2 ∀v ∈ H(curl; Ωi) ,

‖λ‖− 1
2 ,Γi

= sup
v∈H 1

2 (Γi)

|〈λ, v〉Γi |
‖v‖ 1

2 ,Γi

∀λ ∈ H− 1
2 (Γi),

where

‖v‖ 1
2 ,Γi

= (|v|21
2 ,Γi

+ d−1‖v‖20,Γi
)

1
2 .

For any Φ ∈ Vh(Γi), we use divτΦ to denote the tangential divergence of Φ; see

[2] and [3] for the definition of divτΦ. It is known that divτΦ ∈ H− 1
2 (Γi), so it makes

sense to define the norm

‖Φ‖XΓi
= d−1‖Φ‖− 1

2 ,Γi
+ ‖divτΦ‖− 1

2 ,Γi
.

The next two estimates on this norm ‖ · ‖XΓi
can be found in [3].

Lemma 4.1. The discrete curl-extension Ri
hΦ ∈ Vh(Ωi) satisfies

‖RihΦ‖curl;Ωi ≤ C‖Φ‖XΓi
.(4.1)

Lemma 4.2. Let u ∈ Vh(Ωi), which satisfies u× n = Φ on Γi. Then

‖Φ‖XΓi
≤ C‖u‖curl;Ωi

.(4.2)
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4.2. Estimates with the norm ‖ · ‖1/2,Γi
and the edge element inter-

polant. The results in Lemma 4.3 can be found in [7] and [33].
Lemma 4.3. For any ϕ ∈ Zh(Γ), we have
C |π0ϕ|21

2 ,Γi
≤ [1 + log(d/h)]‖ϕ− γWi

(ϕ)‖2h,Wi
≤ C[1 + log(d/h)]2|ϕ|21

2 ,Γi
(4.3)

and for any face f ⊂ Γi,

‖I0f(ϕ− π0ϕ)‖21
2 ,Γi
≤ C[1 + log(d/h)]2|ϕ|21

2 ,Γi
.(4.4)

Now we define an interpolation operator rh associated with the space Vh(Ω). For
any appropriately smooth v, rhv ∈ Vh(Ω) is a function in Vh(Ω) which has the same
moments on the edges of Th as v, namely,∫

e

rhv · teds =
∫
e

v · teds ∀v ∈ H1(Ω) and e ∈ Eh.

The interpolant rhv is well defined on each element K for all v lying in the space{
w ∈ Lp(K)3; curl v ∈ Lp(K)3 and v × n ∈ Lp(∂K)3

}
with p > 2; see Lemma 4.7 in [4]. From this we immediately know that rhv is well
defined for all v in H1(Ω)3 whose curl is in Lp(K)3.

The following three lemmas present some estimates on the interpolation operator
rh. The proof of the first lemma below is quite similar to the proofs of Lemma 4.7 in
[4] and Lemma 3.2 in [12], and details can be found in [20].

Lemma 4.4. Let w ∈ H1(Ωi)
3 and its interpolant rhw be well defined in Vh(Ωi).

Also, we assume that curl w = curl vh for some vh ∈ Vh(Ωi). Then
‖rhw −w‖0,Ωi ≤ Ch(|w|21,Ωi

+ ‖curl vh‖20,Ωi
)

1
2 .(4.5)

Lemma 4.5. Under the same assumptions as in Lemma 4.4, for any face f of Γi
we have

‖(rhw)× n‖∗,fb
≤ C[1 + log(d/h)]

1
2 (‖w‖21,Ωi

+ ‖curl vh‖20,Ωi
)

1
2 .(4.6)

Lemma 4.6. Under the same assumptions as in Lemma 4.4, for any face f of Γi
we have

d−2‖rhw −Υ∂f(rhw)‖20,Ωi
≤ C[1 + log(d/h)]|(|w|21,Ωi

+ ‖curl vh‖20,Ωi
),(4.7)

d−2‖w −Υ∂f(rhw)‖0,Ωi
≤ C[1 + log(d/h)]|(|w|21,Ωi

+ ‖curl vh‖20,Ωi
).(4.8)

4.3. Some estimates with the norm‖ · ‖XΓi
.

Lemma 4.7. Let w and vh be the same as specified in Lemma 4.4, and Φ =
rhw × n on Γi. Then for any face f ⊂ Γi we have

‖I0
f∂

Φ‖XΓi
≤ C[1 + log(d/h)](‖Φ‖XΓi

+ ‖w‖1,Ωi + ‖curl vh‖0,Ωi).(4.9)

Lemma 4.8. Let Φ = v × n ∈ Vh(Γi) on Γi, and

I0
∆i

Φ(x) =
∑
e⊂∆i

λe(v)(Le × ni)(x), x ∈ Γi.

We have

‖I0
∆i

Φ‖XΓi
≤ C[1 + log(d/h)]

1
2 ‖Φ‖∗,∆i .(4.10)

Lemma 4.9. Assume that v ∈ Vh(Ω) and f ⊂ Γk. Then

‖I0
f∂

(Υ∂f(Π0v)× n)‖2XΓk
≤ C[1 + log(d/h)]‖(Π0v)× n‖2∗,fb

.(4.11)



1692 QIYA HU AND JUN ZOU

5. The estimate of condition number. This section is devoted to the esti-
mate (3.6) of the condition number of the preconditioned system M−1S. The estima-
tion will be done by using the following additive Schwarz framework [26], [32], whose
proof is standard (cf. [18] and [27]).

Lemma 5.1. Assume that the following two conditions hold:
(i) For any Φ ∈ Vh(Γ) there is a decomposition Φ = Φ01 + Φ02 +

∑
i<j I

t
ijΦij ,

with Φ0k ∈ V 0k
h (Γ) (k = 1, 2) and Φij ∈ V 0

h (Γij), such that

〈S01Φ01,Φ01〉+ 〈S02Φ02,Φ02〉+
∑
i<j

〈SijΦij ,Φij〉Γij ≤ C1〈SΦ,Φ〉;(5.1)

(ii) For any Ψ0k ∈ V 0k
h (Γ) (k = 1, 2) and Ψij ∈ V 0

h (Γij), we have〈
S

∑
i<j

ItijΨij +Ψ01 +Ψ02

 , ∑
i<j

ItijΨij +Ψ01 +Ψ02

〉
(5.2)

≤ C2

∑
i<j

〈SijΨij ,Ψij〉Γij + 〈S01Ψ01,Ψ01〉+ 〈S02Ψ02,Ψ02〉
 .

Then we have cond(M−1S) ≤ C1C2.
The rest of this section applies Lemma 5.1 to show Theorem 3.1, the main result

of this paper. First, we construct the important decomposition required in the lemma.
For this, we will make use of the so-called regular decomposition instead of the usual
L2(Ω)-orthogonal Helmholtz decomposition [14].

For any v ∈ H0(curl; Ω), there exist some w ∈ H1
0 (Ω)

3 and p ∈ H1
0 (Ω) such that

the following regular decomposition holds (cf. [6], [16]):

v = ∇p+ w(5.3)

with the estimates

‖w‖0,Ω + ‖p‖1,Ω ≤ C ‖v‖0,Ω , |v|1,Ω ≤ C‖curl v‖0,Ω .(5.4)

We remark that the use of Helmholtz-type or regular decompositions is a fundamental
technique for the analysis of preconditioners for H(curl; Ω)- and H(div; Ω)-elliptic
problems [1], [15], [17], [16], [28].

Now, for any Φ ∈ Vh(Γ), we define a vh ∈ Vh(Ω) such that vh = Ri
hIiΦ in

each subdomain Ωi. By the regular decomposition (5.3), there exist p ∈ H1
0 (Ω) and

w ∈ H1
0 (Ω)

3 such that

vh = grad p+ w .(5.5)

As w ∈ H1
0 (Ω)

3 and curl w = curl vh , so rhw is well defined (see subsection 4.2).
This, with (5.5), implies

vh = rhgrad p+ rhw .

By Lemma 5.10 in [14], there exists a function ph ∈ Zh(Ω) such that

vh = grad ph + rhw = gradph + wh(5.6)
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with wh = rhw ∈ Vh(Ω). By (5.5) and (5.6), we know

curl wh = curl w = curl vh.(5.7)

Now we are ready to show Theorem 3.1 using Lemma 5.1. We divide the proof
into four steps.

Step 1. Establish a suitable decomposition for Φ ∈ Vh(Γ). For ease of notation,
we introduce p0h ∈ Zh(Ω) and Φ01 by

p0h = RihIiπ0(ph|Γ) in Ωi, i = 1, . . . , N,

Φ01(x) = (grad (p0h|Ωi)× n)(x), x ∈ Γi, i = 1, 2, . . . , N.

By direct checking, we can also write

Φ01(x) = (grad (p̃0h|Ωi
)× n)(x), x ∈ Γi,

with p̃0h = Ri0Iiπ0(ph|Γ). So we know Φ01(x) ∈ V 01
h (Γ). Next, we choose w02 =

Π0wh ∈ Vh(Ω) and let

Φ02 = (w02 × n)|Γ ∈ V 02
h (Γ).

Define Φij ∈ Vh(Γij) by
Φij = Iij((grad ph + wh)× n)− Iij(Φ01 +Φ02)

= Iij(grad (ph − p0h)× n) + Iij(wh × n− Φ02)
= Iij(grad (ph − p0h)× n) + Iij((wh −w02)× n).

Noting the fact that p0h − ph vanishes on the wirebasket set Wi, we can easily verify
that λe(grad (ph − p0h)) = 0 for any e ∈ Eh ∩Wi. Also, we have λe(wh −w02) = 0
for any face e on ∆i. Thus Φij ∈ V 0

h (Γij), and the following decomposition holds:

Φ = Φ01 +Φ02 +
∑
Γij

ItijΦij .(5.8)

Step 2. Prove the estimate∑
Γij

〈SijΦij ,Φij〉Γij ≤ C[1 + log(d/h)]3〈SΦ,Φ〉.(5.9)

For any face Γij of Γi, we define

piij = RihI
t
ij [(ph − p0h)|Γij ] ∈ Zh(Ωi),

wi
ij = Ri

hI
t
ij [((wh −w02)× n)|Γij ] ∈ Vh(Ωi),

viij = grad piij + wi
ij ∈ Vh(Ωi).

Using the fact that

Ri
hI
t
ijΦij × n = ItijΦij = viij × n on Γi,

we obtain by the minimum curl-energy property of the discrete curl-extension that

Ai(R
i
hI
t
ijΦij ,R

i
hI
t
ijΦij) ≤ Ai(viij ,viij) = ‖α

1
2 curl wi

ij‖20,Ωi
+ ‖β 1

2 viij‖20,Ωi
(5.10)

≤ C(‖grad piij‖20,Ωi
+ ‖wi

ij‖2curl,Ωi
).
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As p0h = π0(ph|Γ) on Γ, we have

Itij [(ph − p0h)|Γij ] = I0ij(ph|Γ − π0(ph|Γ)).

Thus, using (4.4) and the trace theorem, we obtain

‖grad piij‖20,Ωi
= |piij |21,Ωi

≤ C|Itij [(ph − p0h)|Γij ]|21
2 ,Γi

(5.11)

≤ C[1 + log(d/h)]2|ph|21
2 ,Γi

≤ C[1 + log(d/h)]2|ph|21,Ωi
.

We next estimate wi
ij . For each (open) common face f = Γij shared by Ωi and Ωj , it

follows from the definition of Π0 that

λe(wh −w02) =

{
0 if e ⊂ fb,

λe(wh −Υ∂f(wh)) if e ⊂ f∂ .

Then we derive by using (5.7) and Lemmas 4.1 and 4.7 that

‖wi
ij‖2curl,Ωi

≤ C‖Itij [((wh −w02)× n)|Γij ]‖2XΓi
(5.12)

= C‖I0
f∂

[(wh −Υ∂Γij (wh))× n]‖2XΓi

≤ C[1 + log(d/h)]2(‖(wh −Υ∂Γij
(wh))× n‖2XΓi

+‖w −Υ∂Γij (wh)‖21,Ωi
+ ‖curl vh‖20,Ωi

).

On the other hand, for the term (wh − Υ∂Γij (wh)) × n we have by Lemma 4.2 and
(5.5) that

‖(wh −Υ∂Γij (wh))× n‖2XΓi

≤ C‖wh −Υ∂Γij
(wh)‖2curl;Ωi

= C(‖curl wh‖20;Ωi
+ d−2‖wh −Υ∂Γij (wh)‖20;Ωi

)

= C(‖curl vh‖20;Ωi
+ d−2‖wh −Υ∂Γij (wh)‖20;Ωi

).

Combining this with (5.12) and using Lemma 4.6 give

‖wi
ij‖2curl,Ωi

≤ C[1 + log(d/h)]3(|w|21,Ωi
+ ‖curl vh‖20,Ωi

).

With this estimate, (5.10), and (5.11), we come to

Ai(R
i
hI
t
ijΦij ,R

i
hI
t
ijΦij) ≤ C[1+log(d/h)]3(|ph|21,Ωi

+|w|21,Ωi
+‖curl vh‖20,Ωi

).(5.13)

Similarly, we have

Aj(R
j
hI
t
ijΦij ,R

j
hI
t
ijΦij) ≤ C[1 + log(d/h)]3(|ph|21,Ωj

+ |w|21,Ωj
+ ‖curl vh‖20,Ωj

).

So we have proved

〈SijΦij ,Φij〉Γij
≤ C[1 + log(d/h)]3(|ph|21,Ωi

+ |ph|21,Ωj
+ |w|21,Ωi

+|w|21,Ωj
+ ‖curl vh‖20,Ωi

+ ‖curl vh‖20,Ωj
),
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or

∑
Γij

〈SijΦij ,Φij〉Γij ≤ C[1 + log(d/h)]3
N∑
i=1

(|ph|21,Ωi
+ |w|21,Ωi

+ ‖curl vh‖20,Ωi
)(5.14)

= C[1 + log(d/h)]3

(
|ph|21,Ω + |w|21,Ω

+

N∑
i=1

‖curl vh‖20,Ωi

)
.

To prove (5.9), it suffices to show

|ph|21,Ω + |w|21,Ω ≤ C(‖vh‖20,Ω + ‖curl vh‖20,Ω),(5.15)

as this, with (5.14), implies

∑
Γij

〈SijΦij ,Φij〉Γij ≤ C[1 + log(d/h)]3
N∑
i=1

(‖curl vh‖20,Ωi
+ ‖vh‖20,Ωi

)

≤ C[1 + log(d/h)]3
N∑
i=1

Ai(R
i
hIiΦ,R

i
hIiΦ).

Next we show (5.15). It follows from (5.4) and (5.7) that

|w|21,Ω ≤ C‖curl w‖20,Ω = C‖curl vh‖20,Ω .(5.16)

However, by Lemma 4.4 and (5.4) we obtain that

‖rhw‖20,Ω ≤ C (h2 ‖curl vh‖20,Ω + h2 |w|21,Ω + ‖w‖20,Ω) ≤ C ‖curl vh‖20,Ω.
Inequality (5.15) is then a consequence of this estimate, (5.16), and the triangle in-
equality

‖∇ph‖0,Ω ≤ ‖vh‖0,Ω + ‖rhw‖0,Ω .
Step 3. Derive the estimate

〈S01Φ01,Φ01〉+ 〈S02Φ02,Φ02〉 ≤ C[1 + log(d/h)]2〈SΦ,Φ〉.(5.17)

It follows from the definitions of S01 and Φ01 that

〈S01Φ01,Φ01〉 = [1 + log(d/h)]

N∑
i=1

‖p0h − γ∆ip
0
h‖2h,∆i

.

Thus, by (4.3) and the trace theorem, we have

〈S01Φ01,Φ01〉 ≤ C[1 + log(d/h)]2
N∑
i=1

|ph|21
2 ,Γi

(5.18)

≤ C[1 + log(d/h)]2
N∑
i=1

|ph|21,Ωi
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≤ C[1 + log(d/h)]2|ph|21,Ω.
By the definitions of S02 and Φ02, we know

〈S02Φ02,Φ02〉 = [1+log(d/h)]

N∑
i=1

(‖(wh−Υ∆i(wh))×n‖2∗,∆i
+d2‖wh×n‖2∗,∆i

).(5.19)

From the definition of Υ∆i(wh), we have

‖(wh −Υ∆i
(wh))× n‖2∗,∆i

≤ ‖(wh −ΥΓi
(w))× n‖2∗,∆i

.

This, with Lemma 4.5 and the Poincaré inequality, gives

‖(wh −Υ∆i(wh))× n‖2∗,∆i
≤
∑
f⊂Γi

‖(wh −ΥΓi
(w))× n‖2∗,fb

(5.20)

≤ C[1 + log(d/h)](‖w −ΥΓi
(w)‖21,Ωi

+‖curl (vh −ΥΓi
(w))‖20,Ωi

)

≤ [1 + log(d/h)](|w|21,Ωi
+ ‖curl vh‖20,Ωi

).

The other terms in (5.19) are estimated by Lemma 4.5 and (5.5) as follows:

d2‖wh × n‖2∗,∆i
= d2

∑
f⊂Γi

‖wh × n‖2∗,fb

≤ Cd2[1 + log(d/h)](‖w‖21,Ωi
+ ‖curl vh‖20,Ωi

)

= C[1 + log(d/h)](d2|w|21,Ωi
+ ‖w‖20,Ωi

+ d2‖curl vh‖20,Ωi
)

≤ C[1 + log(d/h)](|w|21,Ωi
+ ‖vh‖20,Ωi

+ ‖curl vh‖20,Ωi
).

So we have proved by (5.19) that

〈S02Φ02,Φ02〉 ≤ C[1 + log(d/h)]2(|w|21,Ω + ‖vh‖20,Ω + ‖curl vh‖20,Ω),
which, together with (5.18), yields

〈S01Φ01,Φ01〉+ 〈S02Φ02,Φ02〉
≤ C[1 + log(d/h)]2(|ph|21,Ω + |w|21,Ω + ‖vh‖20,Ω + ‖curl vh‖20,Ω)
≤ C[1 + log(d/h)]2(|ph|21,Ω + |curl w|21,Ω + ‖vh‖20,Ω + ‖curl vh‖20,Ω)
≤ C[1 + log(d/h)]2(|ph|21,Ω + ‖vh‖20,Ω + ‖curl vh‖20,Ω)
≤ C[1 + log(d/h)]2(‖vh‖20,Ω + ‖curl vh‖20,Ω)
≤ C[1 + log(d/h)]2〈SΦ,Φ〉.

The estimates (5.9) and (5.17) indicate that the constant C1 in (5.1) can be
bounded by C[1 + log(d/h)]3.

Step 4. Estimate the constant C2 in (5.2). It is easy to see that

Ik

∑
Γij

ItijΨij +Ψ01 +Ψ02

 =
∑

Γij⊂Γk

ItijΦij + IkΨ01 + IkΨ02.
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Hence

(5.21)〈
S

∑
Γij

ItijΨij +Ψ01 +Ψ02

 , ∑
Γij

ItijΨij +Ψ01 +Ψ02

〉

≤ C
N∑
k=1

 ∑
Γij⊂Γk

〈SkItijΨij , ItijΦij〉Γk
+ 〈SkIkΨ01, IkΨ01〉Γk

+ 〈SkIkΨ02, IkΨ02〉Γk


≤C

N∑
k=1

 ∑
Γij⊂Γk

〈SijΨij ,Ψij〉Γij+Ak(R
k
hIkΨ01,R

k
hIkΨ01)+Ak(R

k
hIkΨ02,R

k
hIkΨ02)

 .
As each face Γij is shared only by two subdomains Ωi and Ωj , we have

N∑
k=1

∑
Γij⊂Γk

〈SijΨij ,Ψij〉Γij ≤ C
∑
Γij

〈SijΨij ,Ψij〉Γij .(5.22)

Note that Ψ01 ∈ V 01
h (Γ) can be written as

IkΨ01 = grad(RkhIkπ0ψ)× n on Γk

for some ψ ∈ Zh(Γ), so we have

Ak(R
k
hIkΨ01,R

k
hIkΨ01) ≤ Ak(grad(RkhIkπ0ψ),grad(RkhIkπ0ψ))

= |β 1
2RkhIkπ0ψ|21,Ωk

≤ C|π0ψ|21
2 ,Γk

.

Then it follows from (4.3) that

Ak(R
k
hIkΨ01,R

k
hIkΨ01) ≤ C[1 + log(d/h)]‖π0ψ − γWk

(π0ψ)‖2h,Wk
.

This, with the definition of S01, shows

N∑
k=1

Ak(R
k
hIkΨ01,R

k
hIkΨ01) ≤ C〈S01Ψ01,Ψ01〉.(5.23)

We next estimate the last term in (5.21). We can write Ψ02 ∈ V 02
h (Γ) as follows:

IkΨ02 = Π0v × n = [Π0v −Υ∆k
(Π0v)]× n +Υ∆k

(Π0v)× n on Γi

for some v ∈ Vh(Γ). Then, by the triangle inequality, we obtain

Ak(R
k
hIkΨ02,R

k
hIkΨ02)

≤ 2Ak(R
k
hIk[Π0v −Υ∆k

(Π0v)]× n,Rk
hIk[Π0v −Υ∆k

(Π0v)× n])
+Ak(R

k
hIk[Υ∆k

(Π0v)× n],Rk
hIk[Υ∆k

(Π0v)× n])).

Furthermore, using Lemma 4.1 and the minimum curl-energy property of the discrete
curl-extension, we obtain (note that Υ∆k

(Π0v) is a constant vector)

Ak(R
k
hIkΨ02,R

k
hIkΨ02)

≤ C(‖[Π0v −ΥWk
(Π0v)]× n‖2XΓi

+Ak(Υ∆k
(Π0v),Υ∆k

(Π0v)))

= C(‖[Π0v −Υ∆k
(Π0v)]× n‖2XΓk

+ ‖Υ∆k
(Π0v)‖20,Ωk

),(5.24)
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where the last term can be estimated using the Hölder inequality and direct compu-
tation:

(5.25)

‖Υ∆k
(Π0v)‖20,Ωk

= d3|Υ∆k
(Π0v)|2 ≤ Cd2‖Υ∆k

(Π0v)‖2∗,∆k
≤ Cd2‖(Π0v)× n‖2∗,∆k

.

Next, we show that the first term in (5.28) has the following bound:

‖[Π0v−Υ∆k
(Π0v)]×n‖2XΓk

≤ C[1+ log(d/h)]‖[Π0v−Υ∆k
(Π0v)]×n‖2∗,∆k

.(5.26)

For this, it suffices to prove

‖(Π0v)× n‖2XΓk
≤ C[1 + log(d/h)]‖(Π0v)× n‖2∗,∆k

∀v ∈ Vh(Ω).(5.27)

To see this, using the relation

Ik[(Π0v)× n] = I0
∆k

(Π0v × n) +
∑

f⊂Γk

I0
f∂

(Υ∂f(Π0v)× n),

we have

‖(Π0v)× n‖2XΓk
≤ C

‖I0
∆i

(Π0v × n)‖2XΓk
+
∑

f⊂Γk

‖I0
f∂

(Υ∂f(Π0v)× n)‖2XΓk

 .
This, together with Lemmas 4.8 and 4.9, yields (5.27).

Finally, we obtain using (5.24), (5.25), and (5.26) that

Ak(R
k
hIkΨ02,R

k
hIkΨ02) ≤ C([1 + log(d/h)]‖[v−Υ∆k

(v)]× n‖2∗,∆k
+ d2‖v× n‖2∗,∆k

),

which implies

N∑
k=1

Ak(R
k
hIkΨ02,R

k
hIkΨ02) ≤ C〈S02Ψ02,Ψ02〉.

This estimate with (5.22)–(5.23) indicates that the constant C2 in (5.2) is bounded
by a constant independent of h and d.

6. Appendix. This appendix provides the technical proofs for the auxiliary lem-
mas in Section 4.

6.1. Proofs of Lemmas 4.5 and 4.6. In this subsection we shall prove Lem-
mata 4.5 and 4.6. For this, we first give some auxiliary results. The first lemma can
be found in [7], [33].

Lemma 6.1. Let vh ∈ Zh(Γi). Then, for any f ⊂ Γi, we have

‖vh‖0,∂f ≤ C[1 + log(d/h)]
1
2 ‖vh‖ 1

2 ,Γi
,(6.1)

‖I0fvh‖ 1
2 ,Γi
≤ C[1 + log(d/h)]‖vh‖ 1

2 ,Γi
,(6.2)

|I0∂fvh| 12 ,f ≤ C[1 + log(d/h)]
1
2 ‖vh‖ 1

2 ,Γi
.(6.3)

Lemma 6.2. Assume that vh ∈ Zh(Ωi)3. Then, for any face f of Γi we have

d−2‖vh −Υ∂f(vh)‖20,Ωi
≤ C[1 + log(d/h)]|vh|21,Ωi

.(6.4)
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Proof. Since Υ∂f(·) is invariant with constant vectors, we have

d−2‖vh −Υ∂f(vh)‖20,Ωi
= d−2‖vh −Υf(vh)−Υ∂f(vh −Υf(vh))‖20,Ωi

≤ 2d−2(‖vh −Υf(vh)‖20,Ωi
+ ‖Υ∂f(vh −Υf(vh))‖20,Ωi

).(6.5)

It can be verified, by the Hölder inequality, that

‖Υ∂f(vh −Υf(vh))‖20,Ωi
≤ Cd3|Υ∂f(vh −Υf(vh))|2 ≤ Cd2‖vh −Υf(vh)‖20,∂f.

This, together with (6.1) and the trace theorem, yields

d−2‖Υ∂f(vh −Υf(vh))‖20,Ωi
≤ C[1 + log(d/h)]‖vh −Υf(vh)‖21

2 ,Γi

≤ C[1 + log(d/h)]‖vh −Υf(vh)‖21,Ωi
.

Now (6.4) follows from this, (6.5), and the Friedrich’s inequality.
For any face f of Γi, we define a quantity (not a norm) on fb as follows:

‖v‖∗,fb
=

 ∑
K∈fb

‖v‖20,∂K

 1
2

∀v ∈ Zh(Γi)3 or v ∈ Vh(Γi).

Lemma 6.3. Assume that vh ∈ Zh(Γi)3. Then

‖vh‖∗,fb
≤ C[1 + log(d/h)]

1
2 ‖vh‖ 1

2 ,Γi
.(6.6)

Proof. Consider a triangle K ∈ fb, and let e be one of its edges lying on ∂f. Then
we have

‖vh‖20,∂K ≤ 2(‖vh −Υe(vh)‖20,∂K + ‖Υe(vh)‖20,∂K).(6.7)

By the Poincaré inequality we obtain

h−1‖vh −Υe(vh)‖20,∂K ≤ h−2‖vh −Υe(vh)‖20,K ≤ C|vh|21,K .

Thus

‖vh −Υe(vh)‖20,∂K ≤ Ch|vh|21,K .(6.8)

On the other hand, it can be verified directly that

‖Υe(vh)‖20,∂K ≤ Ch|Υe(vh)|2 ≤ C‖vh‖20,e.

Substituting this and (6.8) into (6.7) and then summing over all the edges e on K
yield

‖vh‖20,∂K ≤ C(h|vh|21,f + ‖vh‖20,∂f) ≤ C(|vh|21/2,f + ‖vh‖20,∂f).

Now, (6.6) follows from (6.1).
Proof of Lemma 4.5. Let Ph: L

2(Ωi)
3 → Zh(Ωi)

3 be the L2-projection operator,
which is known to have the following Hs-stability (with 0 ≤ s ≤ 1) and estimate [8]:

‖Phw‖s,Ωi ≤ C‖w‖s,Ωi , ‖w −Phw‖0,Ωi ≤ C h |w|1,Ωi .(6.9)
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It is easy to verify that

‖(rhw)× n‖∗,fb
≤ C‖rhw‖2∗,fb

≤ C
∑
e⊂fb

(‖Phw‖20,e + ‖rhw −Phw‖20,e).(6.10)

Let Ke ∈ Th be an element in Ωi with e being one of its edges, and {λi}4i=1 the
barycentric basis functions at the four vertices of Ke, λ1, and λ2, correspond to two
end-points of e. By the expression (2.2) of the edge element basis functions, it is easy
to verify that (rhw −Phw) can be written, in the element Ke, as

rhw −Phw =

(
4∑
i=1

aiλi ,

4∑
i=1

biλi ,

4∑
i=1

ciλi

)T
,

where ai, bi, and ci (i = 1, 2, 3, 4) are constants which may depend on h. By the
standard scaling argument, we obtain

‖rhw −Phw‖20,Ke
≥ C̄h3

4∑
i=1

(a2
i + b

2
i + c

2
i ) ,

‖rhw −Phw‖20,e ≤ C̃h
2∑
i=1

(a2
i + b

2
i + c

2
i ).

This implies

‖rhw −Phw‖20,e ≤ Ch−2‖rhw −Phw‖20,Ke
,

and so we have∑
e⊂fb

‖rhw−Phw‖20,e≤Ch−2
∑
e⊂fb

‖rhw−Phw‖20,Ke
≤ Ch−2‖rhw−Phw‖20,Ωi

.(6.11)

This with (6.10) leads to

‖rhw‖2∗,fb
≤ C(‖Phw‖2∗,fb

+ h−2‖rhw −Phw‖20,Ωi
).(6.12)

On the other hand, by (6.6), the trace theorem, and (6.9), we obtain

‖Phw‖∗,fb
≤ C[1 + log(d/h)]

1
2 ‖Phw‖ 1

2 ,Γi
(6.13)

≤ C[1 + log(d/h)]
1
2 ‖Phw‖1,Ωi

≤ C[1 + log(d/h)]
1
2 ‖w‖1,Ωi ,

while by the triangle inequality, (4.5), and (6.9), we deduce

h−1‖rhw −Phw‖0,Ωi ≤ h−1(‖rhw −w‖0,Ωi + ‖Phw −w‖0,Ωi)(6.14)

≤ C(|w|21,Ωi
+ ‖curl vh‖20,Ωi

)
1
2 .

Now, (4.6) follows readily from (6.12)–(6.14).
Proof of Lemma 4.6. We can write

rhw −Υ∂f(rhw) = (rhw −Phw) + (Phw −Υ∂f(Phw)) + Υ∂f(Phw − rhw);
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then, by the triangle inequality,

‖rhw −Υ∂f(rhw)‖20,Ωi
≤ 3(‖Phw −Υ∂f(Phw)‖20,Ωi

(6.15)

+‖rhw −Phw‖20,Ωi
+ ‖Υ∂f(Phw − rhw)‖20,Ωi

).

Using (6.4) and (6.9), we know

(6.16)

‖Phw−Υ∂f(Phw)‖20,Ωi
≤Cd2[1+log(d/h)]|Phw|21,Ωi

≤ Cd2[1+log(d/h)]|w|21,Ωi
.

On the other hand, by the definition of Υ∂f, one can verify directly that

‖Υ∂f(Phw − rhw)‖20,Ωi
≤ Cd3|Υ∂f(Phw − rhw)|2 ≤ C d2‖Phw − rhw‖20,fb

.

This with (6.11) gives

‖Υ∂f(Phw − rhw)‖20,Ωi
≤ Cd2h−2 ‖rhw −Phw‖20,Ωi

,

and so we obtain by (6.14) that

‖rhw −Phw‖20,Ωi
+ ‖Υ∂f(Phw − rhw)‖20,Ωi

≤ C(1 + d2h−2)‖rhw −Phw‖20,Ωi

≤ C(h2 + d2)(|w|21,Ωi
+ ‖curl vh‖20,Ωi

).

Now (4.7) follows from this, (6.15), and (6.16).
Finally, the relation

w −Υ∂f(rhw) = (w − rhw) + (rhw −Υ∂f(rhw)),

with (4.7) and Lemma 4.4, leads to (4.8) directly.

6.2. Proofs of Lemmas 4.7, 4.8, and 4.9. The proofs of these lemmas are
rather technical, and we will start with some auxiliary results.

Lemma 6.4. For any Φ ∈ Vh(Γi), we have

‖Φ‖0,Γi ≤ Ch−
1
2 ‖Φ‖− 1

2 ,Γi
, ‖I0

fb
Φ‖0,f ≤ Ch 1

2 ‖Φ‖∗,fb
.(6.17)

Proof. The first estimate was proved in [3]. We prove only the second inequality
in (6.17). For any Φ ∈ Vh(Γi), we can write Φ = v × n on Γi for some v ∈ Vh(Ωi).
Using the definitions of I0

fb
, we deduce

‖I0
fb
Φ‖20,f ≤ C

∑
e⊂fb

λ2
e(v)‖Le × ni‖20,f.(6.18)

It follows by (2.2) that ‖Le × n‖20,f ≤ C. This, together with (6.18), yields

‖I0
fb
Φ‖20,f ≤ C

∑
e⊂fb

λ2
e(v).

Now we need only to prove

λ2
e(v) ≤ Ch‖Φ‖20,e ∀ e ⊂ fb ⊂ Γi.(6.19)



1702 QIYA HU AND JUN ZOU

Noting the fact that v = (v · n)n + n× v × n on f, for any e ⊂ f we have

v|f · te = (n× v × n)|f · te.

Thus (6.19) comes readily from the following:

λ2
e(v) =

∣∣∣∣∫
e

v · teds
∣∣∣∣2 ≤ ∫

e

|n×v×n|2ds
∫
e

|te|2ds ≤ Ch
∫
e

|n×v|2ds.(6.20)

Lemma 6.5. Let Φ ∈ Vh(Γi), and let I0
f∂

Φ be defined as in (2.5). Then

‖I0
f∂

Φ‖− 1
2 ,Γi
≤ C([1 + log(d/h)]‖Φ‖− 1

2 ,Γi
+ h

1
2 ‖Φ‖∗,fb

).(6.21)

Proof. The proof is similar to that of Lemma 6 in [19]. However, for the reader’s
convenience, we still give a complete proof below.

For any v∈H1/2(Γi)
3, let vh∈Zh(Γi)3 be the L2(Γi)-projection of v. Then

|〈I0
f∂

Φ,v〉Γi
| ≤ |〈I0

f∂
Φ,v − vh〉Γi

|+ |〈I0
f∂

Φ,vh〉Γi
|.(6.22)

It is known that

‖vh − v‖0,Γi≤Ch
1
2 ‖v‖ 1

2 ,Γi
, ‖vh‖ 1

2 ,Γi
≤C‖v‖ 1

2 ,Γi
.(6.23)

This, together with (6.17), leads to

|〈I0
f∂

Φ,v − vh〉Γi | ≤ ‖I0
f∂

Φ‖0,Γi ‖v − vh‖0,Γi(6.24)

≤ Ch1/2‖Φ‖0,Γi
‖v‖ 1

2 ,Γi
≤ C‖Φ‖− 1

2 ,Γi
‖v‖ 1

2 ,Γi
.

On the other hand, from the definitions of the operators I0
f∂

and I0
fb
, we have I0

f∂
Φ =

Φ− I0
fb
Φ on f. Then

|〈I0
f∂

Φ,vh〉Γi
| = |〈I0

f∂
Φ,vh〉f| ≤ |〈Φ,vh〉f|+ |〈I0

fb
Φ,vh〉f|.(6.25)

It follows from (6.17) that

|〈I0
fb
Φ,vh〉f| ≤ ‖I0

fb
Φ‖0,f ‖vh‖0,f ≤ Ch 1

2 ‖Φ‖∗,fb
‖vh‖ 1

2 ,Γi
.(6.26)

For the term 〈Φ,vh〉f in (6.25), we use the simple decomposition

vh(x) = I0fvh(x) + I0∂fvh(x) ∀x ∈ f(6.27)

to derive (note that I0fvh(x) = 0 on Γi\f)

|〈Φ,vh〉f| ≤ |〈Φ, I0fvh〉f|+ |〈Φ, I0∂fvh〉f|
≤ |〈Φ, I0fvh〉Γi |+ ‖Φ‖0,f ‖I0∂fvh‖0,f
≤ ‖Φ‖− 1

2 ,Γi
‖I0fvh‖ 1

2 ,Γi
+ Ch

1
2 ‖Φ‖0,Γi ‖vh‖0,∂f,

where a direct computation is used to bound the term ‖I0∂fvh‖0,f by h1/2‖vh‖0,∂f
using the discrete L2-norm. This with (6.17), (6.2), and (6.1) yields

|〈Φ,vh〉f| ≤ C[1 + log(d/h)]‖Φ‖− 1
2 ,Γi
‖vh‖ 1

2 ,Γi
.
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Substituting it and (6.26) into (6.25) yields

|〈I0
f∂

Φ,vh〉f| ≤ C([1 + log(d/h)]‖Φ‖− 1
2 ,Γi

+ h
1
2 ‖Φ‖∗,fb

)‖vh‖ 1
2 ,Γi

,

which, along with (6.22) and (6.24), leads to

|〈I0
f∂

Φ,v〉Γi | ≤ C([1 + log(d/h)]‖Φ‖− 1
2 ,Γi

+ h
1
2 ‖Φ‖∗,fb

)‖v‖ 1
2 ,Γi

.

Now (6.21) follows directly from the definition of the norm ‖ · ‖−1/2,Γi
.

Next, we are going to prove Lemma 6.10 on the estimate of ‖divτ (I0
fΦ)‖− 1

2 ,Γi
for

all Φ ∈ Vh(Γi). To do so, we have to present some auxiliary results first (Lemmas 6.6–
6.9).

Lemma 6.6. Let ϕ ∈ L2(Γi) be piecewise constant with respect to the Th-induced
triangulation Th,i on Γi. Then

‖ϕ‖0,Γi
≤ Ch− 1

2 ‖ϕ‖− 1
2 ,Γi

.(6.28)

Proof. By definition,

‖ϕ‖− 1
2 ,Γi

= sup
ψ∈H1/2(Γi)

|〈ϕ,ψ〉Γi |
‖ψ‖ 1

2 ,Γi

.

The inequality (6.28) then follows if we can construct a function ψ0 ∈ H 1
2 (Γi) such

that

|〈ϕ,ψ0〉Γi | ≥ C‖ϕ‖0,Γi
‖ψ0‖0,Γi , ‖ψ0‖ 1

2 ,Γi
≤ Ch− 1

2 ‖ψ0‖0,Γi .(6.29)

To construct the function ψ0 for each triangle K ∈ Th,i and lying on Γi, with OK
being its barycenter, we refine K by connecting OK with three vertices of K. Let aK
denote the (constant) value of ϕ on the triangle K, and let ψ0 be a piecewise linear
function on K with respect to this subdivision such that ψ0 equals aK at OK and
vanishes on the edges of K. It is clear that such a function ψ0 is in H1/2(Γi). As ψ0

is piecewise linear on the entire boundary Γi with respect to the subdivision of Th,
the second inequality in (6.29) follows directly from the inverse inequality. Moreover,
by the equivalent discrete L2-norms we have

‖ψ0‖20,Γi
≤ Ch2

∑
K∈Th,i

|aK |2.(6.30)

Let SK be the area of the triangle K. We have

|〈ϕ,ψ0〉Γi | =
∣∣∣∣∣∣
∑

K∈Th,i

〈ϕ,ψ0〉K

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∑

K∈Th,i

aK〈1, ψ0〉K

∣∣∣∣∣∣
=

1

3

∣∣∣∣∣∣
∑

K∈Th,i

a2
K
SK

∣∣∣∣∣∣ ≥ Ch2
∑

K∈Th,i

|a2
K
|.

Now the first inequality of (6.29) follows readily from this and (6.30).
The next lemma can be shown similarly as Lemma 6.5 by using Lemma 6.6.
Lemma 6.7. Let ϕ be the same as in Lemma 6.6; then

‖Itf(ϕ|f)‖− 1
2 ,Γi
≤ C[1 + log(d/h)]‖ϕ‖− 1

2 ,Γi
.(6.31)
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For the proof, we introduce some new functions. For any Φ = v×n ∈ Vh(Γi) and
any face f ⊂ Γi, we define a function in L2(Γi) as follows:

ϕfb
(x) =

∑
e⊂fb

λe(v)(ni · curl Le)(x), x ∈ f̄; ϕfb
(x) = 0, x ∈ Γi\f̄,(6.32)

where {Le; e ∈ Eh} are the edge element basis functions defined in (2.2). One can
see that ϕfb

is piecewise constant on Γi, and it vanishes everywhere except in those

triangles which are in f and have a vertex on ∂f at least. We now present two
estimates for ϕfb

(x) below.

Lemma 6.8. For any Φ ∈ Vh(Γi) and any face f of Γi, we have

‖ϕfb
‖− 1

2 ,Γi
≤ Ch 1

2 [1 + log(d/h)]
1
2 ‖ϕfb

‖0,f.(6.33)

Proof. For any v ∈ H1/2(Γi), let vh∈Zh(Γi) be the L2(Γi)-projection of v. We
see directly from (6.27), (6.23), and (6.1) that

|〈ϕfb
, v〉Γi

| ≤ |〈ϕfb
, v − vh〉Γi

+ |〈ϕfb
, I0∂fvh〉Γi |+ |〈ϕfb

, I0fvh〉Γi |
≤ Ch 1

2 [1 + log(d/h)]
1
2 ‖ϕfb

‖0,f ‖v‖ 1
2 ,Γi

+ |〈ϕfb
, I0fvh〉f|,

where we have used the fact that ϕfb
= 0 on Γi\f. It remains to show that

|〈ϕfb
, I0fvh〉f| ≤ Ch

1
2 [1 + log(d/h)]

1
2 ‖ϕfb

‖0,f ‖v‖ 1
2 ,Γi

.(6.34)

Let fc denote the union of all triangles that have at least one of their vertices lying
on ∂f. We regroup the triangles in fc such that fc = ∪K, with each K being one
triangle or a union of two triangles and having at least one of its edges lying on ∂f.
Then by the definition of ϕfb

and the Hölder inequality, we have

|〈ϕfb
, I0fvh〉f| = |〈ϕfb

, I0fvh〉fc
| =

∣∣∣∣∣∑
K

〈ϕfb
, I0fvh〉K

∣∣∣∣∣(6.35)

≤
∑
K

‖ϕfb
‖0,K ‖I0fvh‖0,K .

As each K ∈ fc has an edge lying on ∂f, I0fvh vanishes on the edge. Then by
Friedrich’s inequality we obtain

‖I0fvh‖0,K ≤ Ch
1
2 |I0fvh| 12 ,K .

Plugging this in (6.35) and using the Cauchy–Schwarz inequality, we derive

|〈ϕfb
, I0fvh〉f| ≤ Ch

1
2

{∑
K

‖ϕfb
‖20,K

} 1
2
{∑

K

|I0fvh|21
2 ,K

} 1
2

(6.36)

= Ch
1
2 {‖ϕfb

‖20,fc
} 1

2 {|I0fvh|21
2 ,fc
} 1

2

≤ Ch 1
2 ‖ϕfb

‖0,f |I0fvh| 12 ,f.

On the other hand, it follows from (6.27) and (6.3) that

|I0fvh| 12 ,f = |vh − I0∂fvh| 12 ,f ≤ |vh| 12 ,f + |I0∂fvh| 12 ,f ≤ C[1 + log(d/h)]
1
2 ‖vh‖ 1

2 ,Γi
.
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This, together with (6.36), gives (6.34).
Lemma 6.9. Assume that Φ = v × n ∈ Vh(Γi). Then

‖ϕfb
‖0,f ≤ Ch− 1

2 ‖Φ‖∗,fb
.(6.37)

Proof. We have by the definitions of ϕfb
that

‖ϕfb
‖20,f ≤ C

∑
e⊂fb

λ2
e(v)‖ni · curl Le‖20,f.(6.38)

It follows from (2.2) that curlLe = ce∇λe1×∇λe2, which gives ‖ni·curl Le‖20,f ≤ Ch−2.
Then we derive from (6.38) that

‖ϕfb
‖20,f ≤ Ch−2

∑
e⊂fb

λ2
e(v).

This, together with (6.20), gives the desired results.
Lemma 6.10. For any Φ = v × n ∈ Vh(Γi), we have

‖divτ (I0
fΦ)‖− 1

2 ,Γi
≤ C[1+log(d/h)]‖divτΦ‖− 1

2 ,Γi
+C[1+log(d/h)]

1
2 ‖Φ‖∗,fb

.(6.39)

Proof. We use Lemmas 6.7, 6.8, and 6.9 to estimate divτ (I
0
fΦ). By Green’s

formula and the definition of divτΦ, one can verify (cf. [2]) that

divτΦ = divτ (v × n)|Γi
= −(ni · curl v)|Γi

in H−
1
2 (Γi).

Thus divτΦ is a piecewise constant function on Γi. It suffices to prove that

divτ (I
0
f∂

Φ) = Itf(divτΦ|f) + ϕfb
in H−

1
2 (Γi).(6.40)

As divτ (I
0
f∂

Φ) = 0 on Γi\f̄, the inequality (6.40) is valid in Γi\f̄. However, on the
face f̄, we have by (2.4) and (2.5) that

divτΦ =
∑
e⊂f

λe(v)divτ (Le × ni) , divτ (I
0
f∂

Φ) =
∑
e⊂f∂

λe(v)divτ (Le × ni) .

Hence

divτΦ− divτ (I
0
f∂

Φ) =
∑
e⊂fb

λe(v)divτ (Le × ni) on f̄.(6.41)

Noting that (see (2.10) in [2])

divτ (Le × ni)|Γi = −(ni · curl Le)|Γi in H−
1
2 (Γi),

we see that (6.40) holds also on f̄, using (6.41) and (6.32).
The following result can be proved in an analogous way as Lemma 6.6.
Lemma 6.11. For any Φ ∈ Vh(Γi) and any face f of Γi, we have

‖I0
fb
Φ‖− 1

2 ,f ≤ Ch
1
2 [1 + log(d/h)]

1
2 ‖I0

fb
Φ‖0,f.(6.42)

Below, we start to prove Lemmas 4.7, 4.8, and 4.9. Lemma 4.7 is a direct conse-
quence of Lemmas 4.5, 6.5, and 6.10, and it indicates that the norm ‖I0

fΦ‖XΓi
cannot

be bounded only by ‖Φ‖XΓi
(compare to the estimate (6.2)).
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Proof of Lemma 4.8. Using (6.40) and the relations

I0
∆i

Φ =
∑
f⊂Γi

Itf(I
0
fb
Φ)|f, Itf(I

0
fb
Φ)|f = ItfΦ− I0

f∂
Φ

and the facts that ItfΦ)|Γi\f̄ = 0 but (I0
fb
Φ)|Γi\f̄ = 0, we can write

divτ (I
0
∆i

Φ) = divτ

∑
f⊂Γi

ItfΦ−
∑
f⊂Γi

I0
fΦ

 = divτ

Φ−
∑
f⊂Γi

I0
f∂

Φ


= divτΦ−

∑
f⊂Γi

divτ (I
0
f∂

Φ) =
∑
f⊂Γi

(Itfdivτ (Φ)|f − divτ (I
0
f∂

Φ))

=
∑
f⊂Γi

ϕfb
.

This leads to

‖I0
∆i

Φ‖− 1
2 ,Γi
≤
∑
f⊂Γi

‖I0
fb
Φ‖− 1

2 ,f , ‖divτ (I0
∆i

Φ)‖− 1
2 ,Γi
≤
∑
f⊂Γi

‖ϕfb
‖− 1

2 ,Γi
.

Using these two estimates, together with Lemmas 6.11 and 6.8, we have

‖I0
∆i

Φ‖XΓi
≤ Ch 1

2 [1 + log(d/h)]
1
2

∑
f⊂Γi

(d−1‖I0
fb
Φ‖0,f + ‖ϕfb

‖0,f).(6.43)

Substituting (6.17) and (6.37) into (6.43), we obtain the desired result.
Proof of Lemma 4.9. By Lemma 6.10 we have

‖divτ [I0
f∂

(Υ∂f(Π0v)× n)]‖2− 1
2 ,Γk

(6.44)

≤ C([1 + log(d/h)]2‖divτ [Υ∂f(Π0v)× n|Γk
]‖2− 1

2 ,Γk

+[1 + log(d/h)]‖Υ∂f(Π0v)× n‖2∗,fb
).

It is easy to see that

‖Υ∂f(Π0v)× nk‖2∗,fb
= ‖Υ∂f(Π0v)× nk‖2∗,fb

≤ C‖(Π0v)× n‖2∗,fb
.(6.45)

Since Υ∂f(Π0v) is a constant vector, we have

divτ (Υ∂f(Π0v)× n|Γk
) = 0 in H−

1
2 (Γk).

Hence

‖divτ (Υ∂f(Π0v)× n|Γk
)‖− 1

2 ,Γk
= 0.

Substituting (6.45) and the above inequality into (6.44) yields

‖divτ [I0
f∂

(Υ∂f(Π0v)× n)]‖2− 1
2 ,Γk
≤ C[1 + log(d/h)]‖(Π0v)× n‖2∗,fb

.(6.46)

On the other hand, it follows from Lemmas 6.11 and 6.4 that

d−1‖I0
f∂

(Υ∂f(Π0v)× n)‖− 1
2 ,Γk

= d−1‖I0
f∂

(Υ∂f(Π0v)× n)‖− 1
2 ,f(6.47)

≤ C(d−1‖Υ∂f(Π0v)× n‖− 1
2 ,f + d−1h[1 + log(d/h)]

1
2 ‖Υ∂f(Π0v)× n‖∗,fb

).
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However, for any Ψ ∈ (H
1
2 (f))3, we have

d−1|〈Υ∂f(Π0v)× n,Ψ〉f| ≤ d−1‖Υ∂f(Π0v)× n‖0,f ‖Ψ‖0,f
≤ Cd− 1

2 ‖Υ∂f(Π0v × n)‖0,f ‖Ψ‖ 1
2 ,f

≤ Cd 1
2 |Υ∂f(Π0v × n)| ‖Ψ‖ 1

2 ,f≤ C‖(Π0v)× n‖0,∂f ‖Ψ‖ 1
2 ,f≤ C‖(Π0v)× n‖∗,fb

‖Ψ‖ 1
2 ,f,

which implies

d−1‖Υ∂f(Π0v)× n‖− 1
2 ,f ≤ C‖(Π0v)× n‖∗,fb

.

Plugging this and (6.45) in (6.47) leads to

d−1‖I0
f∂

(Υ∂f(Π0v)× n)‖− 1
2 ,Γk
≤ C[1 + log(d/h)]

1
2 ‖(Π0v)× n‖∗,fb

,

which, together with Lemmas 6.4 and 6.9, gives the desired result.
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Abstract. A nonoverlapping domain decomposition approach is used on uniform and matching
grids to first define and then to compute the orthogonal spline collocation solution of the Dirichlet
boundary value problem for Poisson’s equation on an L-shaped region. We prove existence and
uniqueness of the collocation solution and derive optimal order Hs-norm error bounds for s = 0, 1, 2.
The collocation solution on two interfaces is computed using the preconditioned conjugate gradient
method, and the collocation solution on three squares is computed by a matrix decomposition method
that uses fast Fourier transforms. The total cost of the algorithm is O(N2 logN), where the number
of unknowns in the collocation solution is O(N2).

Key words. spline collocation, nonoverlapping domain decomposition, Sobolev norms, Steklov–
Poincaré operator, preconditioned conjugate gradient method, separation of variables, fast Fourier
transforms
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1. Introduction. A thorough presentation of overlapping and nonoverlapping
domain decomposition methods for solving finite difference and finite element bound-
ary value problems is given in [8, 15, 16] and references therein. Some overlapping
methods are considered in [4, 5, 11, 12, 13, 17] for the solution of boundary value
problems discretized by orthogonal spline collocation (OSC). In [1], a nonoverlap-
ping method is developed for computing the OSC solution of Poisson’s equation on
a rectangle. However, to the best of our knowledge, no analysis of nonoverlapping
OSC methods for nonrectangular regions is available. In the present paper, we use
a nonoverlapping domain decomposition approach on uniform and matching grids to
first define and then to compute the OSC solution of the model Dirichlet boundary
value problem for Poisson’s equation on an L-shaped region. In principle, the pro-
posed approach to define and then to compute the OSC solution can also be used
for quasi-uniform and matching grids, more general partial differential equations with
variable coefficients, and more general regions with sides parallel to the coordinate
axes. Of course, any such extensions may require generalizations of the present proofs
and modifications of the employed computational techniques.

Let Ω be the L-shaped region given by Ω =
⋃3
i=1 Ωi ∪

⋃2
i=1 Γi, where the squares

Ω1 = (0, 1)× (0, 1), Ω2 = (1, 2)× (0, 1), Ω3 = (0, 1)× (1, 2)

and the two interfaces

Γ1 = {1} × (0, 1), Γ2 = (0, 1)× {1}.
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We consider the model Dirichlet boundary value problem for Poisson’s equation

∆u = f in Ω, u = g on ∂Ω,(1.1)

which is approximated using a domain decomposition approach and OSC discretiza-
tion. On each square Ωi, i = 1, 2, 3, the collocation solution is a piecewise Hermite
bicubic that satisfies Poisson’s equation at the collocation points in the square. The
collocation solution is continuous throughout the region Ω, and its normal derivative is
continuous at the collocation points on the interfaces Γ1 and Γ2. However, continuity
of the normal derivative across the interfaces is not guaranteed. We prove existence
and uniqueness of the collocation solution and derive optimal order Hs-norm error
bounds for s = 0, 1, 2. The solution of the collocation problem is reduced to finding
the collocation solution on the interfaces. The collocation Steklov–Poincaré operator
corresponding to the interfaces is self-adjoint and positive definite with respect to the
discrete inner product associated with the collocation points on the interfaces. The
right-hand side in the collocation Steklov–Poincaré equation is obtained by solving a
collocation problem on each square. With the use of a fast Fourier transform (FFT)
matrix decomposition method of [7], this is accomplished at a cost of O(N2 logN),
where the number of unknowns in the collocation solution is O(N2). The collocation
solution on the interfaces is computed using the preconditioned conjugate gradient
(PCG) method with a preconditioner obtained from two collocation Steklov–Poincaré
operators corresponding to two pairs of the adjacent squares. It is shown that this pre-
conditioner is spectrally equivalent to the interface operator with spectral constants
1/2 and 2. The cost of each PCG iteration is O(N2). Once the collocation solution
is computed on the interfaces, the collocation solution on each square is obtained at
a cost O(N2 logN) using the FFT matrix decomposition method of [7]. With the
number of PCG iterations proportional to logN , the total cost of the algorithm is
O(N2 logN).

In our earlier study of OSC for (1.1), we used two additional basis functions as-
sociated with the re-entrant corner to formulate a piecewise Hermite bicubic OSC
scheme in which the number of unknowns was equal to the number of the colloca-
tion points in Ω. With the vertical interface Γ1 dividing Ω into two rectangles only,
we used continuity of the normal derivative of the collocation solution across Γ1 to
obtain a linear system for the coefficients of the collocation solution restricted to Γ1.
Surprisingly the resulting interface matrix was nonsymmetric even though it was an
algebraic counterpart of the Steklov–Poincaré operator. The interface system was
formed explicitly and then solved by Gauss elimination, which led to an algorithm
whose cost was O(N3). We believe that the nonsymmetry of the interface matrix was
a consequence of using two additional basis functions associated with the re-entrant
corner.

An outline of this paper is as follows. In section 2, we introduce OSC concepts
and state and prove basic results. The OSC problem is defined and analyzed in section
3. In section 4, we formulate an algorithm for solving the OSC problem. The solution
of the interface problem is discussed in section 5. The total cost of solving the OSC
problem is given in section 6. Finally, in section 7, we present numerical results.

2. Preliminaries. Let N be a positive integer. We set h = 1/N and introduce
tk = kh, k = 0, . . . , N . Let P3 be the set of polynomials of degree ≤ 3, and let
M(0, 1), M0(0, 1) be the spaces of piecewise Hermite cubics on [0, 1] defined by

M(0, 1) = {v ∈ C1[0, 1] : v|[tk−1,tk] ∈ P3, k = 1, . . . , N},(2.1)

M0(0, 1) = {v ∈M(0, 1) : v(0) = v(1) = 0}.
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Let G = {ξl}2Nl=1 be the set of collocation points in [0, 1] given by

ξ2k−1 = tk−1 + hη1, ξ2k = tk−1 + hη2,(2.2)

where k = 1, . . . , N , and

η1 =
3−√3

6
, η2 =

3 +
√

3

6
.(2.3)

The following result is a consequence of Lemma 2.3 in [10].
Lemma 2.1. Any V ∈M0(0, 1) is uniquely determined by its values on the set G.
For V and W defined on G, we introduce

〈V,W 〉G =
h

2

∑
ξ∈G

(VW )(ξ), ‖V ‖G =
√
〈V, V 〉.(2.4)

Throughout the paper, C denotes a generic positive constant that is independent
of h. The following result is a special case of Lemma 3.1 in [10].

Lemma 2.2. For any V,W ∈M(0, 1),

〈−V ′′,W 〉G =

∫ 1

0

(V ′W ′)(t) dt− V ′W |10 +
2

3
Ch5

N∑
k=1

V
(3)
k W

(3)
k ,

where, for k = 1, . . . , N , V
(3)
k = V (3)(t), W

(3)
k = W (3)(t), t ∈ (tk−1, tk).

The next result is a special case of Lemma 3.2 in [10].
Lemma 2.3. For any V ∈M(0, 1),

Ch5
N∑
k=1

[
V

(3)
k

]2
≤ ‖V ′‖2L2(0,1),

where C is the same as in Lemma 2.2.
The next result is inequality (3.4) in [10] (cf. the first inequality in (5.25) of [14]).
Lemma 2.4. For any V ∈M(0, 1),

〈V, V 〉G ≤ C‖V ‖2L2(0,1).

The next result is a generalization of the second inequality in (5.25) of [14].
Lemma 2.5. For any V ∈M(0, 1),

‖V ‖2L2(0,1) ≤ C
(‖V ‖2G + hV 2(0) + hV 2(1)

)
.

Proof. For V ∈M(0, 1), we introduce

Ṽ (t) =

 V (0)g(1− t/h), t ∈ [t0, t1],
0, t ∈ [t1, tN−1,
V (1)g(1 + (t− 1)/h), t ∈ [tN−1, tN ],

(2.5)

where g(x) = −2x2 + 3x2. Then it is easy to verify that Ṽ ∈ M(0, 1), and Ṽ (tk) =
V (tk), k = 0, N . Hence applying the second inequality in (5.25) of [14] to V − Ṽ ∈
M0(0, 1), and using the triangle inequality, we have

‖V − Ṽ ‖L2(0,1) ≤ C‖V − Ṽ ‖G ≤ C
(
‖V ‖G + ‖Ṽ ‖G

)
.(2.6)
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The triangle inequality and (2.6) yield

‖V ‖L2(0,1) ≤ ‖V − Ṽ ‖L2(0,1) + ‖Ṽ ‖L2(0,1) ≤ C
(
‖V ‖G + ‖Ṽ ‖G + ‖Ṽ ‖L2(0,1)

)
.(2.7)

Using (2.5), it is easy to show that

‖Ṽ ‖2G, ‖Ṽ ‖2L2(0,1) ≤ C
(
hV 2(0) + hV 2(1)

)
.(2.8)

Hence the required result follows from (2.7), the Cauchy–Schwarz inequality, and
(2.8).

Let δn,k be the Kronecker delta. The following two lemmas are Lemmas 2.1 and
2.2 in [1].

Lemma 2.6. There exist eigenfunctions ψn ∈M0(0, 1), n = 1, . . . , 2N , such that

−ψ′′n(ξ) = λnψn(ξ), ξ ∈ G,
〈ψn, ψk〉G =

h

2
δn,k, n, k = 1, . . . , 2N,

where the eigenvalues λn, n = 1, . . . , 2N , all of which are positive, are given by the
formulas in Lemma 2.1 of [1].

Lemma 2.7. For each λn, n = 1, . . . , 2N , of Lemma 2.6 there exists a unique
vn ∈M(0, 1) such that

v′′n(ξ) = λnvn(ξ), ξ ∈ G, vn(0) = 0, vn(1) = 1.

Moreover, a nonzero value of v′n(1) is given by (2.4)–(2.6) in [1].
Let B and Z be the 2N × 2N matrices defined, respectively, in (2.9) and (2.10)

of [1]. The following lemma follows easily from Lemma 2.3 in [1].
Lemma 2.8. Let ψn, n = 1, . . . , 2N , be as in Lemma 2.6. Assume v ∈M0(0, 1),

and hence v =
∑2N
n=1 αnψn. If !α = [α1, . . . , α2N ]T , then

[v(ξ1), . . . , v(ξ2N )]T = BZ!α, !α = ZTBT [v(ξ1), . . . , v(ξ2N )]T .

The following remark follows from (2.9) and (2.10) in [1].
Remark 2.1. The cost of multiplying a vector by B or BT is O(N), and with the

use of FFTs the cost of multiplying a vector by Z or ZT is O(N logN).

3. The OSC problem. Let M(1, 2) be the space of piecewise Hermite cubics
on [1, 2] defined by

M(1, 2) = {v ∈ C1[1, 2] : v|[tk−1,tk] ∈ P3, k = N + 1, . . . , 2N},

where tk = kh, k = N, . . . , 2N . We introduce the following spaces of piecewise
Hermite bicubics:

M1 =M(0, 1)⊗M(0, 1), M2 =M(1, 2)⊗M(0, 1),
M3 =M(0, 1)⊗M(1, 2),

(3.1)

Xi = {v ∈Mi : v = 0 on ∂Ω ∩ ∂Ωi}, i = 1, 2, 3,(3.2)

where M(0, 1) is given by (2.1). We note that v(1, 1) = 0 for any v ∈ X1.
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Let G̃ = {ξl}4Nl=2N+1 be the set of the collocation points in [1, 2], where ξ2k−1, ξ2k,
k = N + 1, . . . , 2N , are given by (2.2)–(2.3). Then the sets of the collocation points
in Ω1, Ω2, Ω3 are defined, respectively, by

G1 = G × G, G2 = G̃ × G, G3 = G × G̃,
where G = {ξl}2Nl=1 is given by (2.2)–(2.3).

Let g̃ be the piecewise Hermite cubic interpolant of g on ∂Ω. The OSC problem
for (1.1) consists in finding Ui ∈Mi, i = 1, 2, 3, such that

∆Ui(ξ) = f(ξ), ξ ∈ Gi, Ui = g̃ on ∂Ω ∩ ∂Ωi, i = 1, 2, 3,(3.3)

and

∂jU1

∂xj
(1, ξ) =

∂jU2

∂xj
(1, ξ),

∂jU1

∂yj
(ξ, 1) =

∂jU3

∂yj
(ξ, 1), ξ ∈ G, j = 0, 1.(3.4)

It follows from (3.3), (3.4) with j = 0 and Lemma 2.1 that

U1|Γ1
= U2|Γ1

, U1|Γ2
= U3|Γ2

.(3.5)

However, in general

∂U1

∂x
(1, 1) �= ∂U2

∂x
(1, 1),

∂U1

∂y
(1, 1) �= ∂U3

∂y
(1, 1).

To carry out the analysis of the OSC problem, we introduce, for Vi ∈ Xi, i =
1, 2, 3,

‖(V1, V2, V3)‖2h =

3∑
i=1

‖Vi‖2i,h,(3.6)

where

‖V1‖21,h =
h

2

∑
η∈G

∥∥∥∥∂V1

∂x
(·, η)

∥∥∥∥2
L2(0,1)

+
h

2

∑
ξ∈G

∥∥∥∥∂V1

∂y
(ξ, ·)

∥∥∥∥2
L2(0,1)

,(3.7)

‖V2‖22,h =
h

2

∑
η∈G

∥∥∥∥∂V2

∂x
(·, η)

∥∥∥∥2
L2(1,2)

+
h

2

∑
ξ∈ ˜G

∥∥∥∥∂V2

∂y
(ξ, ·)

∥∥∥∥2
L2(0,1)

,(3.8)

‖V3‖23,h =
h

2

∑
η∈ ˜G

∥∥∥∥∂V3

∂x
(·, η)

∥∥∥∥2
L2(0,1)

+
h

2

∑
ξ∈G

∥∥∥∥∂V3

∂y
(ξ, ·)

∥∥∥∥2
L2(1,2)

.(3.9)

It is not difficult to show that, for any stepsize h, ‖ · ‖h defined by (3.6) is a norm on
X1 ×X2 ×X3.

For i = 1, 2, 3 and Vi,Wi defined on Gi, we introduce

〈Vi,Wi〉Gi =
h2

4

∑
ξ∈Gi

(ViWi)(ξ), ‖Vi‖Gi =
√
〈Vi, Vi〉Gi .(3.10)
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To prove existence and uniqueness of the OSC solution, we require the following
lemma.

Lemma 3.1. If Wi ∈ Xi, i = 1, 2, 3, and

∂jW1

∂xj
(1, ξ) =

∂jW2

∂xj
(1, ξ),

∂jW1

∂yj
(ξ, 1) =

∂jW3

∂yj
(ξ, 1), j = 0, 1, ξ ∈ G,(3.11)

then

‖(W1,W2,W3)‖2h ≤
3∑
i=1

〈−∆Wi,Wi〉Gi
≤ 5

3
‖(W1,W2,W3)‖2h.

Proof. Using (3.10), we obtain

3∑
i=1

〈−∆Wi,Wi〉Gi = Ix + Iy,(3.12)

where

Ix =
h

2

∑
η∈G

h2
∑
ξ∈G

(
−∂

2W1

∂x2
W1

)
(ξ, η) +

h

2

∑
ξ∈ ˜G

(
−∂

2W2

∂x2
W2

)
(ξ, η)


+
h

2

∑
η∈ ˜G

h

2

∑
ξ∈G

(
−∂

2W3

∂x2
W3

)
(ξ, η),

Iy =
h

2

∑
ξ∈G

h2
∑
η∈G

(
−∂

2W1

∂y2
W1

)
(ξ, η) +

h

2

∑
η∈ ˜G

(
−∂

2W3

∂y2
W3

)
(ξ, η)


+
h

2

∑
ξ∈ ˜G

h

2

∑
η∈G

(
−∂

2W2

∂y2
W2

)
(ξ, η).

It follows from Lemma 2.2 and (3.11) that

Ix =
h

2

∑
η∈G

{∥∥∥∥∂W1

∂x
(·, η)

∥∥∥∥2
L2(0,1)

+
2

3
Ch5

N∑
k=1

[
W

(3,0)
1,k (η)

]2}

+
h

2

∑
η∈G

{∥∥∥∥∂W2

∂x
(·, η)

∥∥∥∥2
L2(1,2)

+
2

3
Ch5

2N∑
k=N+1

[
W

(3,0)
2,k (η)

]2}

+
h

2

∑
η∈ ˜G

{∥∥∥∥∂W3

∂x
(·, η)

∥∥∥∥2
L2(0,1)

+
2

3
Ch5

N∑
k=1

[
W

(3,0)
3,k (η)

]2}
,

(3.13)

where, for x ∈ (tk−1, tk),

W
(3,0)
1,k (η) =

∂3W1

∂x3
(x, η), W

(3,0)
2,k (η) =

∂3W2

∂x3
(x, η), W

(3,0)
3,k (η) =

∂3W3

∂x3
(x, η).

Hence the required inequalities follow from (3.13), a similar expression for Iy, and
Lemma 2.3.
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Theorem 3.1. The OSC problem (3.3)–(3.4) has a unique solution.
Proof. We assume that U Ii , U

II
i ∈ Mi, i = 1, 2, 3, are two solutions of the OSC

problem (3.3)–(3.4). Let Wi = U Ii − U IIi , i = 1, 2, 3. Since ‖ · ‖h is a norm on
X1 ×X2 ×X3, Lemma 3.1 gives U Ii = U IIi , i = 1, 2, 3. This in turn implies existence
and uniqueness of the collocation solution since the number of degrees of freedom in
the OSC problem is equal to the number of constraints.

The L2-norm convergence analysis of the OSC problem is based on the following
lemma.

Lemma 3.2. If h is sufficiently small, then

3∑
i=1

‖Vi‖2L2(Ωi)
≤ C‖(V1, V2, V3)‖2h, Vi ∈ Xi, i = 1, 2, 3.

Proof. Using (3.6)–(3.9) and the Poincaré inequality and interchanging the order
in which summation and integration are carried out, we have

C‖(V1, V2, V3)‖2h ≥
h

2

∑
ξ∈G

∥∥∥∥∂V1

∂y
(ξ, ·)

∥∥∥∥2
L2(0,1)

+

∫ 1

0

‖V1(x, ·)‖2G dx+

∫ 2

1

‖V2(x, ·)‖2G dx+

∫ 2

1

‖V3(·, y)‖2G dy.

Adding and subtracting hV 2
1 (x, 1) to and from ‖V1(x, ·)‖2G, and using Lemma 2.5, we

obtain

C‖(V1, V2, V3)‖2h ≥
h

2

∑
ξ∈G

∥∥∥∥∂V1

∂y
(ξ, ·)

∥∥∥∥2
L2(0,1)

− h
∫ 1

0

V 2
1 (x, 1) dx

+C‖V1‖2L2(Ω1)
+ ‖V2‖2L2(Ω2)

+ ‖V3‖2L2(Ω3)
.

(3.14)

We note that V1(·, 1) ∈M0(0, 1) and V1(ξ, 1) =
∫ 1

0
∂V1

∂y (ξ, y) dy, ξ ∈ G. Hence Lemma
2.5 and the Cauchy–Schwarz inequality give∫ 1

0

V 2
1 (x, 1) dx ≤ C

h

2

∑
ξ∈G

V 2
1 (ξ, 1) ≤ C

h

2

∑
ξ∈G

∥∥∥∥∂V1

∂y
(ξ, ·)

∥∥∥∥2
L2(0,1)

.(3.15)

Thus the required result follows from (3.14) and (3.15).
Theorem 3.2. Assume that u is the solution of (1.1) such that u, ∂u/∂x, ∂u/∂y,

and ∂2u/∂x∂y are continuous on Ω and such that u|Ωi ∈ H6(Ωi), i = 1, 2, 3. Let
Ui ∈Mi, i = 1, 2, 3, satisfy (3.3)–(3.4). Then, for h sufficiently small,

3∑
i=1

‖u− Ui‖Hs(Ωi) ≤ Ch4−s
3∑
i=1

‖u‖H6(Ωi), s = 0, 1, 2.

Proof. Let ũ1 ∈M1 be the piecewise Hermite bicubic interpolant of u|Ω1 , that is,

∂i+j ũ1

∂xi∂yj
(tk, tl) =

∂i+ju

∂xi∂yj
(tk, tl), k, l = 0, . . . , N, i, j = 0, 1,

and let, for i = 2, 3, the piecewise Hermite bicubic interpolant ũi ∈ Mi of u|Ωi be
defined in a similar way. Let

vi = u|Ωi − ũi, Wi = ũi − Ui, i = 1, 2, 3.(3.16)
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Then it follows from [9] that

‖vi‖Hs(Ωi) ≤ Ch4−s‖u‖H4(Ωi), i = 1, 2, 3, s = 0, 1, 2,(3.17)

and (3.3), (1.1), and (3.4) imply that Wi ∈ Xi, i = 1, 2, 3, and that (3.11) holds. Also,
using (3.16), (3.3), and (1.1), we have

3∑
i=1

〈−∆Wi,Wi〉Gi
=

3∑
i=1

〈∆vi,Wi〉Gi
.(3.18)

First we bound 〈∆v1,W1〉G1
on the right-hand side of (3.18). It follows from (2.20)

in [2] and the proof of (2.22) in [2] that

‖∆v1‖G1
≤ Ch3‖u‖H5(Ω1),

S1 ≡

h2

16

N∑
k,l=1

 1∑
i,j=0

∆v1(ξ2k−i, ξ2l−j)

2


1/2

≤ Ch4‖u‖H6(Ω1).
(3.19)

Let

σk,l =
1

4

1∑
i,j=0

W1(ξ2k−i, ξ2l−j), k, l = 1, . . . , N.(3.20)

By (3.20), the Cauchy–Schwarz inequality, Lemma 2.4, the Poincaré inequality, and
(3.7), we obtain

h2
N∑

k,l=1

σ2
k,l ≤

h

2

∑
η∈G
‖W1(·, η)‖2G ≤ C

h

2

∑
η∈G

∥∥∥∥∂W1

∂x
(·, η)

∥∥∥∥2
L2(0,1)

≤ C‖W1‖21,h.(3.21)

Also, by the Cauchy–Schwarz inequality, for k, l = 1, . . . , N , i, j = 0, 1, we have

[W1(ξ2k−1, ξ2l−j)−W1(ξ2k, ξ2l−j)]2 ≤ h

∥∥∥∥∂W1

∂x
(·, ξ2l−j)

∥∥∥∥2
L2(tk−1,tk)

,

[W1(ξ2k−i, ξ2l−1)−W1(ξ2k−i, ξ2l)]2 ≤ h

∥∥∥∥∂W1

∂y
(ξ2k−i, ·)

∥∥∥∥2
L2(tl−1,tl)

,

which imply

1∑
i,j=0

[W1(ξ2k−i, ξ2l−j)− σk,l]2

≤ Ch

 1∑
j=0

∥∥∥∥∂W1

∂x
(·, ξ2l−j)

∥∥∥∥2
L2(tk−1,tk)

+

1∑
i=0

∥∥∥∥∂W1

∂y
(ξ2k−i, ·)

∥∥∥∥2
L2(tl−1,tl)

 ,

(3.22)

since, for example, (3.20) gives

W1(ξ2k−1, ξ2l−1)− σk,l =
1

4
[W1(ξ2k−1, ξ2l−1)−W1(ξ2k, ξ2l−1)]

+
1

4
[W1(ξ2k−1, ξ2l−1)−W1(ξ2k−1, ξ2l)]

+
1

4
[W1(ξ2k−1, ξ2l−1)−W1(ξ2k, ξ2l)±W1(ξ2k, ξ2l−1)].
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It follows from (3.22) and (3.7) that

S2 ≡
h2

4

N∑
k,l=1

1∑
i,j=0

[W1(ξ2k−i, ξ2l−j)− σk,l]2
1/2

≤ Ch‖W1‖1,h.(3.23)

Using the Cauchy–Schwarz inequality, (3.23), (3.19), and (3.21), we obtain

〈∆v1,W1〉G1
=
h2

4

N∑
k,l=1

1∑
i,j=0

∆v1(ξ2k−i, ξ2l−j)[W1(ξ2k−i, ξ2l−j)− σk,l]

+
h2

4

N∑
k,l=1

σk,l

1∑
i,j=0

∆v1(ξ2k−i, ξ2l−j) ≤ ‖∆v1‖G1
S2 +

h2
N∑

k,l=1

σ2
k,l

1/2

S1

≤ Ch4‖W1‖1,h‖u‖H6(Ω1).

In a similar way, we can show that

〈∆vi,Wi〉Gi ≤ Ch4‖Wi‖i,h‖u‖H6(Ωi), i = 2, 3.

Hence the Cauchy–Schwarz inequality and (3.6) give

3∑
i=1

〈∆vi,Wi〉Gi ≤ Ch4‖(W1,W2,W3)‖h
3∑
i=1

‖u‖H6(Ωi).

Using this inequality, (3.18), Lemmas 3.1 and 3.2, and inverse inequalities [9], we
obtain

3∑
i=1

‖Wi‖Hs(Ωi) ≤ Ch4−s
3∑
i=1

‖u‖H6(Ωi), s = 0, 1, 2.(3.24)

The required inequalities now follow from (3.16), the triangle inequality, (3.17), and
(3.24).

It should be noted that while the exponent on h in the error bounds of Theorem
3.2 is optimal, the smoothness assumption on u is not. The same proof shows that
Theorem 3.2 holds for quasi-uniform and matching grids.

4. The algorithm for solving OSC problem. Taking advantage of uniform
partitions of Ωi, i = 1, 2, 3, we develop an FFT algorithm for the solution of the
OSC problem (3.3)–(3.4). In the case of quasi-uniform partitions, the corresponding
problems in this algorithm can be solved very efficiently by multilevel methods of [6].

Assume that Ui ∈Mi, i = 1, 2, 3, satisfy (3.3)–(3.4). Let UΓi ∈M0(0, 1), i = 1, 2,
be defined by (cf. (3.5))

UΓ1
(tk) = U1(1, tk) = U2(1, tk), k = 1, . . . , N − 1,(4.1)

U ′Γ1
(tk) =

∂U1

∂y
(1, tk) =

∂U2

∂y
(1, tk), k = 0, . . . , N,(4.2)

UΓ2(tk) = U1(tk, 1) = U3(tk, 1), k = 1, . . . , N − 1,(4.3)

U ′Γ2
(tk) =

∂U1

∂x
(tk, 1) =

∂U3

∂x
(tk, 1), k = 0, . . . , N.(4.4)
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For i = 1, 2, 3, let Ûi ∈Mi be such that

∆Ûi(ξ) = f(ξ), ξ ∈ Gi, Ûi = g̃ on ∂Ω ∩ ∂Ωi,(4.5)

Û1(1, tk) = Û1(tk, 1) = Û2(1, tk) = Û3(tk, 1) = 0, k = 1, . . . , N − 1,(4.6)

∂Û1

∂y
(1, tk) =

∂Û1

∂x
(tk, 1) =

∂Û2

∂y
(1, tk) =

∂Û3

∂x
(tk, 1) = 0, k = 0, . . . , N,(4.7)

and let

Ũi = Ui − Ûi.(4.8)

Then it follows from (4.8), (3.3), and (4.1)–(4.7) that Ũi ∈ Xi, i = 1, 2, 3, and that

∆Ũ1(ξ) = 0, ξ ∈ G1, Ũ1|Γ1
= UΓ1 , Ũ1|Γ2

= UΓ2 ,(4.9)

∆Ũ2(ξ) = 0, ξ ∈ G2, Ũ2|Γ1
= UΓ1 ,(4.10)

∆Ũ3(ξ) = 0, ξ ∈ G3, Ũ3|Γ2
= UΓ2 .(4.11)

Using (4.8) and (3.4) with j = 1, we also have

∂Ũ1

∂x
(1, ξ)− ∂Ũ2

∂x
(1, ξ) =

∂Û2

∂x
(1, ξ)− ∂Û1

∂x
(1, ξ), ξ ∈ G,

∂Ũ1

∂y
(ξ, 1)− ∂Ũ3

∂y
(ξ, 1) =

∂Û3

∂y
(ξ, 1)− ∂Û1

∂y
(ξ, 1), ξ ∈ G.

(4.12)

Based on these derivations, we arrive at the following algorithm to compute Ui ∈Mi,
i = 1, 2, 3, satisfying (3.3)–(3.4):

Step 1. With Ûi ∈Mi, i = 1, 2, 3, defined by (4.5)–(4.7), compute
the right-hand sides of (4.12).

Step 2. Compute UΓi ∈M0(0, 1), i = 1, 2, such that Ũi ∈ Xi, i = 1, 2, 3,
satisfy (4.9)–(4.12).
Step 3. Compute Ui ∈Mi, i = 1, 2, 3, satisfying (3.3) and (4.1)–(4.4).

(4.13)

In the remainder of the paper, we explain how to carry out each step of this
algorithm.

5. The interface problem. This section is concerned with performing step 2
of algorithm (4.13), which is equivalent to solving the interface problem.

5.1. Collocation Steklov–Poincaré operator K. Let K : [M0(0, 1)]2 →
[M0(0, 1)]2 be defined for VΓi ∈M0(0, 1), i = 1, 2, by

K(VΓ1 , VΓ2) = (WΓ1 ,WΓ2),(5.1)

where WΓi ∈M0(0, 1), i = 1, 2, are uniquely determined by (cf. Lemma 2.1)

WΓ1(ξ) =
∂V1

∂x
(1, ξ)− ∂V2

∂x
(1, ξ), WΓ2

(ξ) =
∂V1

∂y
(ξ, 1)− ∂V3

∂y
(ξ, 1), ξ ∈ G,(5.2)

and where Vi ∈ Xi, i = 1, 2, 3, satisfy

∆V1(ξ) = 0, ξ ∈ G1, V1|Γ1
= VΓ1 , V1|Γ2

= VΓ2 ,(5.3)

∆V2(ξ) = 0, ξ ∈ G2, V2|Γ1
= VΓ1 ,(5.4)

∆V3(ξ) = 0, ξ ∈ G3, V3|Γ2
= VΓ2 .(5.5)
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Then step 2 of algorithm (4.13) is equivalent to finding UΓi ∈M0(0, 1), i = 1, 2, such
that

K(UΓ1
, UΓ2

) = (FΓ1
, FΓ2

),(5.6)

where FΓi
∈M0(0, 1), i = 1, 2, are given by

FΓ1
(ξ) =

∂Û2

∂x
(1, ξ)− ∂Û1

∂x
(1, ξ), FΓ2

(ξ) =
∂Û3

∂y
(ξ, 1)− ∂Û1

∂y
(ξ, 1), ξ ∈ G,

and where Ûi ∈Mi, i = 1, 2, 3, satisfy (4.5)–(4.7).
We define the inner product in [M0(0, 1)]2 by

〈(VΓ1 , VΓ2), (WΓ1 ,WΓ2)〉 =

2∑
i=1

〈VΓi ,WΓi〉G,(5.7)

where 〈·, ·〉G is given in (2.4).
Theorem 5.1. The operator K : [M0(0, 1)]2 → [M0(0, 1)]2 defined by (5.1)–(5.2)

is self-adjoint and positive definite with respect to the inner product (5.7).
Proof. To prove that K is self-adjoint, we have to show that, for VΓi

,WΓi
∈

M0(0, 1), i = 1, 2,

〈K(VΓ1
, VΓ2

), (WΓ1
,WΓ2

)〉 = 〈(VΓ1
, VΓ2

),K(WΓ1
,WΓ2

)〉.
Using (5.1)–(5.2) and (5.7), we have

〈K(VΓ1 , VΓ2), (WΓ1 ,WΓ2)〉
=

〈
∂V1

∂x
(1, ·)− ∂V2

∂x
(1, ·),WΓ1

〉
G

+

〈
∂V1

∂y
(·, 1)− ∂V3

∂y
(·, 1),WΓ2

〉
G
,

(5.8)

where Vi ∈ Xi, i = 1, 2, 3, satisfy (5.3)–(5.5). Let Wi ∈ Xi, i = 1, 2, 3, satisfy

∆W1(ξ) = 0, ξ ∈ G1, W1|Γ1
= WΓ1 , W1|Γ2

= WΓ2 ,(5.9)

∆W2(ξ) = 0, ξ ∈ G2, W2|Γ1
= WΓ1 ,(5.10)

∆W3(ξ) = 0, ξ ∈ G3, W3|Γ2
= WΓ2

.(5.11)

It follows from (5.3), Lemma 2.2, and (5.9) that

0 =
h2

4

∑
(ξ,η)∈G1

(−∆V1W1)(ξ, η)

=
h

2

∑
η∈G

h

2

∑
ξ∈G

(
−∂

2V1

∂x2
W1

)
(ξ, η) +

h

2

∑
ξ∈G

h

2

∑
η∈G

(
−∂

2V1

∂y2
W1

)
(ξ, η)

=
h

2

∑
η∈G

[∫ 1

0

(
∂V1

∂x

∂W1

∂x

)
(x, η) dx−

(
∂V1

∂x
WΓ1

)
(1, η)

+
2

3
Ch5

N∑
k=1

(V
(3,0)
1,k W

(3,0)
1,k )(η)

]

+
h

2

∑
ξ∈G

[∫ 1

0

(
∂V1

∂y

∂W1

∂y

)
(ξ, y) dy −

(
∂V1

∂y
WΓ2

)
(ξ, 1)

+
2

3
Ch5

N∑
k=1

(V
(0,3)
1,k W

(0,3)
1,k )(ξ)

]
,

(5.12)
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where, for t ∈ (tk−1, tk),

V
(3,0)
1,k (η) =

∂3V1

∂x3
(t, η), W

(3,0)
1,k (η) =

∂3W1

∂x3
(t, η),

V
(0,3)
1,k (ξ) =

∂3V1

∂y3
(ξ, t), W

(0,3)
1,k (ξ) =

∂3W1

∂y3
(ξ, t).

In a similar way, using (5.4), (5.5), Lemma 2.2, (5.10), and (5.11), we obtain

0 =
h2

4

∑
(ξ,η)∈G2

(−∆V2W2)(ξ, η)

=
h

2

∑
η∈G

[∫ 2

1

(
∂V2

∂x

∂W2

∂x

)
(x, η) dx+

(
∂V2

∂x
WΓ1

)
(1, η)

+
2

3
Ch5

2N∑
k=N+1

(V
(3,0)
2,k W

(3,0)
2,k )(η)

]

+
h

2

∑
ξ∈ ˜G

[∫ 1

0

(
∂V2

∂y

∂W2

∂y

)
(ξ, y) dy +

2

3
Ch5

N∑
k=1

(V
(0,3)
2,k W

(0,3)
2,k )(ξ)

]
(5.13)

and

0 =
h2

4

∑
(ξ,η)∈G3

(−∆V3W3)(ξ, η)

=
h

2

∑
η∈ ˜G

[∫ 1

0

(
∂V3

∂x

∂W3

∂x

)
(x, η) dx+

2

3
Ch5

N∑
k=1

(V
(3,0)
3,k W

(3,0)
3,k )(η)

]

+
h

2

∑
ξ∈G

[∫ 2

1

(
∂V3

∂y

∂W3

∂y

)
(ξ, y) dy +

(
∂V3

∂y
WΓ2

)
(ξ, 1)

+
2

3
Ch5

2N∑
k=N+1

(V
(0,3)
3,k W

(0,3)
3,k )(ξ)

]
.

(5.14)

Hence (5.8) and (5.12)–(5.14) give

〈K(VΓ1 , VΓ2), (WΓ1 ,WΓ2)〉 =

3∑
i=1

Ii(Vi,Wi),(5.15)

where

I1(V1,W1) =
h

2

∑
η∈G

[∫ 1

0

(
∂V1

∂x

∂W1

∂x

)
(x, η) dx+

2

3
Ch5

N∑
k=1

(V
(3,0)
1,k W

(3,0)
1,k )(η)

]

+
h

2

∑
ξ∈G

[∫ 1

0

(
∂V1

∂y

∂W1

∂y

)
(ξ, y) dy +

2

3
Ch5

N∑
k=1

(V
(0,3)
1,k W

(0,3)
1,k )(ξ)

]
,

(5.16)
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I2(V2,W2) =
h

2

∑
η∈G

[∫ 2

1

(
∂V2

∂x

∂W2

∂x

)
(x, η) dx+

2

3
Ch5

2N∑
k=N+1

(V
(3,0)
2,k W

(3,0)
2,k )(η)

]

+
h

2

∑
ξ∈ ˜G

[∫ 1

0

(
∂V2

∂y

∂W2

∂y

)
(ξ, y) dy +

2

3
Ch5

N∑
k=1

(V
(0,3)
2,k W

(0,3)
2,k )(ξ)

]
,

(5.17)

I3(V3,W3) =
h

2

∑
η∈ ˜G

[∫ 1

0

(
∂V3

∂x

∂W3

∂x

)
(x, η) dx+

2

3
Ch5

N∑
k=1

(V
(3,0)
3,k W

(3,0)
3,k )(η)

]

+
h

2

∑
ξ∈G

[∫ 2

1

(
∂V3

∂y

∂W3

∂y

)
(ξ, y) dy +

2

3
Ch5

2N∑
k=N+1

(V
(0,3)
3,k W

(0,3)
3,k )(ξ)

]
.

(5.18)

Equations (5.15)–(5.18) imply that K is self-adjoint.
Clearly, (5.15)–(5.18) show that 〈K(VΓ1

, VΓ2
), (VΓ1 , VΓ2)〉 ≥ 0. To prove that K

is positive definite, we assume 〈K(VΓ1 , VΓ2
), (VΓ1

, VΓ2
)〉 = 0. Then (5.16) gives

∂V1

∂x
(t, ξ) =

∂V1

∂y
(ξ, t) = 0, t ∈ [0, 1], ξ ∈ G.

Since V1 ∈ X1,

V1(0, ξ) = V1(ξ, 0) = 0, ξ ∈ G.
Therefore,

V1(t, ξ) = V1(ξ, t) = 0, t ∈ [0, 1], ξ ∈ G.
Taking t = 1 and using Lemma 2.1 and (5.3), we obtain VΓ1

= VΓ2
= 0.

It follows from Theorem 5.1 that the PCG method is a natural choice for solving
the interface problem (5.6).

5.2. Collocation preconditioner P . In this section, we define a precondi-
tioner P for the operator K of (5.1)–(5.2) and show that K and P are spectrally
equivalent.

Let P : [M0(0, 1)]2 → [M0(0, 1)]2 be defined for VΓi ∈M0(0, 1), i = 1, 2, by

P (VΓ1
, VΓ2

) = (WΓ1
,WΓ2

),(5.19)

where WΓi
∈M0(0, 1), i = 1, 2, are uniquely determined by (cf. (5.2))

WΓ1(ξ) =
∂V v1
∂x

(1, ξ)− ∂V2

∂x
(1, ξ), WΓ2(ξ) =

∂V h1
∂y

(ξ, 1)− ∂V3

∂y
(ξ, 1), ξ ∈ G,(5.20)

and where Vi ∈ Xi, i = 2, 3, satisfy (5.4), (5.5), while V v1 , V
h
1 ∈ X1 satisfy

∆V v1 (ξ) = 0, ξ ∈ G1, V v1 |Γ1
= VΓ1 , V v1 |Γ2

= 0,(5.21)

∆V h1 (ξ) = 0, ξ ∈ G1, V h1 |Γ1
= 0, V h1 |Γ2

= VΓ2
.(5.22)

Theorem 5.2. The operator P : [M0(0, 1)]2 → [M0(0, 1)]2 defined by (5.19)–
(5.20) is self-adjoint and positive definite with respect to the inner product (5.7).
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Proof. Following the proof of Theorem 5.1, and using (5.19)–(5.20), (5.7), we have

〈P (VΓ1 , VΓ2), (WΓ1 ,WΓ2)〉
=

〈
∂V v1
∂x

(1, ·)− ∂V2

∂x
(1, ·),WΓ1

〉
G

+

〈
∂V h1
∂y

(·, 1)− ∂V3

∂y
(·, 1),WΓ2

〉
G
,

(5.23)

where Vi ∈ Xi, i = 2, 3, satisfy (5.4), (5.5) and V v1 , V
h
1 ∈ X1 satisfy (5.21), (5.22).

Let Wi ∈ Xi, i = 2, 3, satisfy (5.10), (5.11), and let W v
1 ,W

h
1 ∈ X1 satisfy

∆W v
1 (ξ) = 0, ξ ∈ G1, W v

1 |Γ1
= WΓ1

, W v
1 |Γ2

= 0,(5.24)

∆Wh
1 (ξ) = 0, ξ ∈ G1, Wh

1 |Γ1
= 0, Wh

1 |Γ2
= WΓ2 .(5.25)

Then, using (5.21), (5.22), Lemma 2.2, (5.24), and (5.25), we obtain (cf. (5.12))

0 =
h2

4

∑
(ξ,η)∈G1

(−∆V v1 W
v
1 )(ξ, η)

=
h

2

∑
η∈G

[∫ 1

0

(
∂V v1
∂x

∂W v
1

∂x

)
(x, η) dx−

(
∂V v1
∂x

WΓ1

)
(1, η)

+
2

3
Ch5

N∑
k=1

(V
v(3,0)
1,k W

v(3,0)
1,k )(η)

]

+
h

2

∑
ξ∈G

[∫ 1

0

(
∂V v1
∂y

∂W v
1

∂y

)
(ξ, y) dy +

2

3
Ch5

N∑
k=1

(V
v(0,3)
1,k W

v(0,3)
1,k )(ξ)

]
(5.26)

and

0 =
h2

4

∑
(ξ,η)∈G1

(−∆V h1 W
h
1 )(ξ, η)

=
h

2

∑
η∈G

[∫ 1

0

(
∂V h1
∂x

∂Wh
1

∂x

)
(x, η) dx+

2

3
Ch5

N∑
k=1

(V
h(3,0)
1,k W

h(3,0)
1,k )(η)

]

+
h

2

∑
ξ∈G

[∫ 1

0

(
∂V h1
∂y

∂Wh
1

∂y

)
(ξ, y) dy −

(
∂V h1
∂y

WΓ2

)
(ξ, 1)

+
2

3
Ch5

N∑
k=1

(V
h(0,3)
1,k W

h(0,3)
1,k )(ξ)

]
.

(5.27)

Since Vi,Wi, i = 2, 3, are the same as in the proof of Theorem 5.1, (5.13) and (5.14)
hold true. Hence (5.23)–(5.27), (5.13), and (5.14) give (cf. (5.15))

〈P (VΓ1 , VΓ2), (WΓ1 ,WΓ2)〉 = I1(V v1 ,W
v
1 ) + I1(V h1 ,W

h
1 ) +

3∑
i=2

Ii(Vi,Wi),(5.28)

where Ii, i = 1, 2, 3, are defined in (5.16)–(5.18), respectively. Equations (5.28) and
(5.16)–(5.18) imply that P is self-adjoint and positive definite.

Theorem 5.3. The operators K and P are spectrally equivalent with respect to
the inner product (5.7). In fact, for VΓ1 , VΓ2 ∈M0(0, 1),

1

2
〈P (VΓ1

, VΓ2
), (VΓ1

, VΓ2
)〉 ≤ 〈K(VΓ1

, VΓ2
), (VΓ1

, VΓ2
)〉 ≤ 2〈P (VΓ1

, VΓ2
), (VΓ1

, VΓ2
)〉.
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Table 5.1
κ(P−1/2KP−1/2) and κ(K).

N 4 8 16 32 64

κ(P−1/2KP−1/2) 2.51 2.62 2.69 2.75 2.79
κ(K) 8.96 17.79 35.50 70.93 141.81

Proof. Assume VΓi
∈M0(0, 1), i = 1, 2. Then it follows from (5.15) that

〈K(VΓ1 , VΓ2), (VΓ1 , VΓ2)〉 =

3∑
i=1

Ii(Vi, Vi),(5.29)

where Vi ∈ Xi, i = 1, 2, 3, satisfy (5.3)–(5.4), and Ii, i = 1, 2, 3, are defined in (5.16)–
(5.18). In a similar way, it follows from (5.28) that

〈P (VΓ1
, VΓ2

), (VΓ1
, VΓ2

)〉 = I1(V v1 , V
v
1 ) + I1(V h1 , V

h
1 ) +

3∑
i=2

Ii(Vi, Vi),(5.30)

where Vi ∈ Xi, i = 2, 3, satisfy (5.4), (5.5) and V v1 , V
h
1 ∈ X1 satisfy (5.21), (5.22).

Since V1, V
v
1 , and V h1 ∈ X1 satisfy (5.3), (5.21), and (5.22), respectively, we have

V1 = V v1 + V h1 , which, by (5.16) and the inequality (α + β)2 ≤ 2(α2 + β2), α, β ∈ R,
gives

I1(V1, V1) ≤ 2[I1(V v1 , V
v
1 ) + I1(V h1 , V

h
1 )].(5.31)

Hence (5.29), (5.30), and (5.31) imply that K ≤ 2P .

Since V2 ∈ X2 and V v1 ∈ X1 satisfy (5.4) and (5.21), respectively, we have
V v1 (x, y) = V2(2 − x, y), x, y ∈ [0, 1], which, by (5.16), (5.17), and the symmetry
of G and G̃ about 1, gives

I1(V v1 , V
v
1 ) = I2(V2, V2).(5.32)

In a similar way, for V3 ∈ X3 and V h1 ∈ X1 satisfying, respectively, (5.5) and (5.22), we
have V h1 (x, y) = V3(x, 2− y), x, y ∈ [0, 1], which, by (5.16), (5.18), and the symmetry
of G and G̃ about 1, gives

I1(V h1 , V
h
1 ) = I3(V3, V3).(5.33)

Hence (5.30), (5.32), (5.33), and (5.29) imply that P ≤ 2K.

With the preconditioner P , the convergence rate of the PCG method applied
to (5.6) depends on κ(P−1/2KP−1/2), where, for a self-adjoint and positive definite
operator A, κ(A) = λmax(A)/λmin(A). Since P−1/2KP−1/2 and P−1K have the
same eigenvalues,

κ(P−1/2KP−1/2) = λmax(P−1K)/λmin(P−1K).

This formula was used to compute κ(P−1/2KP−1/2) numerically for several values of
N . The results in Table 5.1 confirm the theoretical result κ(P−1/2KP−1/2) ≤ 4 of
Theorem 5.3 and also indicate that κ(K) = O(N).
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5.3. Solving with P and multiplying by K. In this section, we discuss
the cost of solving an operator equation with the preconditioner P and the cost of
multiplying by the operator K. Throughout this section, ψn, γn, n = 1, . . . , 2N , are
as in Lemma 2.6, and vn, n = 1, . . . , 2N , are as in Lemma 2.7.

It follows from the definition (5.19)–(5.20) of the operator P that, given WΓi
∈

M0(0, 1), i = 1, 2, solving

P (VΓ1 , VΓ2) = (WΓ1 ,WΓ2
)

for VΓi ∈ M0(0, 1), i = 1, 2, is equivalent to solving two independent problems. The
first problem consists in finding VΓ1

∈M0(0, 1) such that

∂V v1
∂x

(1, ξ)− ∂V2

∂x
(1, ξ) = WΓ1(ξ), ξ ∈ G,(5.34)

where V v1 ∈ X1 satisfies (5.21) and V2 ∈ X2 satisfies (5.4). The second problem
consists in finding VΓ2

∈M0(0, 1) such that

∂V h1
∂y

(ξ, 1)− ∂V3

∂y
(ξ, 1) = WΓ2(ξ), ξ ∈ G,

where V h1 ∈ X1 satisfies (5.22) and V3 ∈ X3 satisfies (5.5). We explain how to solve
(5.34) using separation of variables; the second problem can be solved in a similar
way.

Using Lemmas 2.6 and 2.7, it is easy to show that V v1 defined by

V v1 (x, y) =

2N∑
n=1

αnvn(x)ψn(y), x, y ∈ [0, 1],

where the αn are arbitrary constants, belongs to X1 and satisfies ∆V v1 (ξ) = 0, ξ ∈ G1,
and V v1 |Γ2

= 0. Also, it is easy to verify that V2 defined by

V2(x, y) = V v1 (2− x, y), x ∈ [1, 2], y ∈ [0, 1],

belongs to X2 and satisfies ∆V2(ξ) = 0, ξ ∈ G2. Moreover, VΓ1 defined by

VΓ1
(y) = V v1 (1, y) = V2(1, y) =

2N∑
n=1

αnψn(y), y ∈ [0, 1],

belongs to M0(0, 1). Since WΓ1 ∈M0(0, 1), we have

WΓ1
(y) =

2N∑
n=1

βnψn(y), y ∈ [0, 1].

Therefore, (5.34) becomes

2N∑
n=1

2αnv
′
n(1)ψn(ξ) =

2N∑
n=1

βnψn(ξ), ξ ∈ G,

which gives

αn =
βn

2v′n(1)
, n = 1, . . . , 2N,
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where v′n(1) is as referred to in Lemma 2.7. If we introduce

!α = [α1, . . . , α2N ]T , !β = [β1, . . . , β2N ]T ,

then Lemma 2.8 yields

!β = ZTBT [WΓ1
(ξ1), . . . ,WΓ1(ξ2N )]T , [VΓ1

(ξ1), . . . , VΓ1
(ξ2N )]T = BZ!α.

Thus, given WΓ1
(ξ), ξ ∈ G, Remark 2.1 implies that VΓ1

(ξ), ξ ∈ G, can be computed
at a cost O(N logN).

If follows from the definition (5.1)–(5.2) of the operator K that, given VΓ1
, VΓ2

∈
M0(0, 1), the computation of

(WΓ1 ,WΓ2) = K(VΓ1 , VΓ2), WΓ1 ,WΓ2 ∈M0(0, 1),

involves solving collocation problems (5.3)–(5.5). Let V1, V
v
1 , V

h
1 ∈ X1 be, respec-

tively, solutions of (5.3), (5.21), (5.22). Then V1 = V v1 + V h1 . Moreover, if V2 ∈ X2

and V3 ∈ X3 are solutions of (5.4) and (5.5), respectively, then, by the symmetry
of G and G̃ about 1, we have V2(x, y) = V v1 (2 − x, y), x ∈ [1, 2], y ∈ [0, 1], and
V3(x, y) = V h1 (x, 2− y), x ∈ [0, 1], y ∈ [1, 2]. Hence, it follows from (5.2) that

WΓ1(ξ) = 2
∂V v1
∂x

(1, ξ) +
∂V h1
∂x

(1, ξ), WΓ2
(ξ) =

∂V v1
∂y

(ξ, 1) + 2
∂V h1
∂y

(ξ, 1), ξ ∈ G.

We explain how to compute
∂V v

1

∂x (1, ξ),
∂V v

1

∂y (ξ, 1), ξ ∈ G;
∂V h

1

∂x (1, ξ),
∂V h

1

∂y (ξ, 1), ξ ∈ G,

can be computed in a similar way. Since VΓ1 ∈M0(0, 1), we have

VΓ1
(y) =

2N∑
n=1

αnψn(y).

Lemmas 2.6 and 2.7 imply that

V v1 (x, y) =

2N∑
n=1

αnvn(x)ψn(y)(5.35)

is a solution of (5.21). Hence

∂V v1
∂x

(1, y) =

2N∑
n=1

αnv
′
n(1)ψn(y),

where v′n(1) is referred to in Lemma 2.7. If we introduce

!α = [α1, . . . , α2N ]T , !β = [α1v
′
1(1), . . . , α2Nv

′
2N (1)]T ,

then Lemma 2.8 yields

!α = ZTBT [VΓ1(ξ1), . . . , VΓ1(ξ2N )]T ,

[
∂V v1
∂x

(1, ξ1), . . . ,
∂V v1
∂x

(1, ξ2N )

]T
= BZ!β.

Thus, given VΓ1(ξ), ξ ∈ G, Remark 2.1 implies that
∂V v

1

∂x (1, ξ), ξ ∈ G, can be computed
at a cost O(N logN). On the other hand, (5.35) gives

∂V v1
∂y

(ξ, 1) =

2N∑
n=1

αnvn(ξ)ψ′n(1), ξ ∈ G.
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Since explicit formulas for vn(ξ), ξ ∈ G, and ψ′n(1), n = 1, . . . , 2N , are known,
∂V v

1

∂y (ξ, 1), ξ ∈ G, can be computed at a cost O(N2) by multiplying the vector

[α1ψ
′
1(1), . . . , α2Nψ

′
2N (1)]T by the matrix C = (ck,n)2Nk,n=1, where ck,n = vn(ξk).

6. Total cost of solving OSC problem. In this section, we give the total cost
of solving OSC problem (3.3)–(3.4) using algorithm (4.13).

Step 1 of algorithm (4.13) involves computing ∂Û1

∂x (1, ξ), ∂Û1

∂y (ξ, 1), ∂Û2

∂x (1, ξ),
∂Û3

∂y (ξ, 1), ξ ∈ G, where Ûi ∈Mi, i = 1, 2, 3, satisfies (4.5)–(4.7). Since only ∂Û1

∂x (1, ξ),
∂Û1

∂y (ξ, 1), ξ ∈ G, are required when solving (4.5) with i = 1 and (4.6)–(4.7) for Û1,
these values can be obtained by applying steps 1 and 2 and only a part of step 3 of
Algorithm II of section 3.3 in [7]. The costs of steps 1 and 2 of this algorithm are
O(N2 logN) and O(N2), respectively, and the cost of the part of step 3 is O(N2).
When performing these calculations, we save the results obtained in step 2 of Algo-

rithm II of [7] when solving partially for Û1. In a similar way, we compute ∂Û2

∂x (1, ξ),
∂Û3

∂y (ξ, 1), ξ ∈ G.

Step 2 of algorithm (4.13) is carried out using the PCG method with P as a
preconditioner for K. It follows from section 5.3 that the cost of this step is O(mN2),
where m is the number of PCG iterations.

In step 3 of algorithm (4.13), we have to compute Ui ∈Mi, i = 1, 2, 3, satisfying
(3.3) and (4.1)–(4.4). It follows from (4.8) that U1 = Û1 + Ũ1, where Û1 ∈ M1 is a
solution of (4.5) with i = 1 and (4.6)–(4.7), and Ũ1 ∈ X1 is a solution of (4.9). First,
we apply steps 1 and 2 of Algorithm II of [7] when solving (4.9) for Ũ1. Because
of the zero right-hand side in the first equation of (4.9), the cost of step 1 in this
algorithm becomes O(N2), while the cost of step 2 remains O(N2). Next, we add the
results obtained in step 2 of Algorithm II of [7] when solving for Û1 and Ũ1. Finally,
we perform, at a cost O(N2 logN), step 3 of Algorithm II of [7] to obtain U1. In a
similar way, we compute U2 and U3.

It follows from the discussion in this section that the total cost of algorithm (4.13)
for solving the OSC problem is O(N2 logN) + O(mN2), where m is the number of
PCG iterations in the solution of the interface problem. With m proportional to
logN , the total cost becomes O(N2 logN).

7. Numerical results. We used the method of this paper to solve (1.1) with f
corresponding to the exact solution

u(x, y) = ex+y.

The algorithm was run in double precision on a Gateway PC E-2000 400. The
initial guess in the PCG method (for the solution of the interface problem) was 0, and
the number of PCG iterations was set to log2N + 4. Convergence rates in various
norms were determined using the formula

rate =
log(eN/2/eN )

log 2
,

where eN is the error corresponding to the N ×N partition of Ω1.

In Table 7.1, we present errors and the corresponding convergence rates for U1

using Sobolev norms. As expected, the convergence rates for the L2-, H1-, and H2-
norms are 4, 3, and 2, respectively.
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Table 7.1
Sobolev norm errors and convergence rates.

‖u− U1‖L2(Ω1)
‖u− U1‖H1(Ω1)

‖u− U1‖H2(Ω1)

N Error Rate Error Rate Error Rate
4 4.33–05 4.08–04 1.05–02
8 2.72–06 3.992 5.08–05 3.005 2.63–03 1.998

16 1.70–07 3.998 6.34–06 3.001 6.58–04 1.999
32 1.07–08 4.000 7.93–07 3.000 1.64–04 2.000
64 6.66–10 4.000 9.91–08 3.000 4.11–05 2.000

Table 7.2
Maximum nodal errors and convergence rates.

‖u− U1‖Ch
‖(u− U1)x‖Ch

‖(u− U1)y‖Ch
‖(u− U1)xy‖Ch

N Error Rate Error Rate Error Rate Error Rate
4 9.71–06 6.48–05 6.48–05 1.61–03
8 6.16–07 3.979 5.65–06 3.519 5.65–06 3.519 2.57–04 2.649

16 3.85–08 4.000 4.82–07 3.551 4.82–07 3.551 4.13–05 2.635
32 2.41–09 3.996 4.04–08 3.578 4.04–08 3.578 6.66–06 2.634
64 1.51–10 4.001 3.33–09 3.601 3.34–09 3.596 1.07–06 2.638

Table 7.3
CPU times for the OSC method.

N 64 128 256 512
CPU time 0.49 1.99 8.29 33.91

In Table 7.2, we give errors and the corresponding convergence rates for U1 using
the maximum nodal norm defined by

‖w‖Ch
= max

0≤k,l≤N
|w(tk, tl)|.

The convergence rate for ‖u−U1‖Ch
is 4, while the convergence rates for ‖(u−U1)x‖Ch

and ‖(u − U1)y‖Ch
appear to be between 3.5 and 4. It was shown in [3] that the

piecewise Hermite bicubic OSC solution U of Poisson’s equation on Ω1, with the
nonzero Dirichlet boundary conditions approximated by the piecewise Hermite cubic
interpolant, possesses superconvergence phenomena; that is, the convergence rates for
‖(u−U)x‖Ch

and ‖(u−U)y‖Ch
are 4. Numerical results, identical to those in Tables

7.1 and 7.2, were also obtained by first forming the symmetric positive definite matrix
corresponding to the operator K and then solving the resulting linear system using
Cholesky’s method. Hence the presented convergence rates for ‖(u − U1)x‖Ch

and
‖(u− U1)y‖Ch

are due to the proposed OSC scheme for an L-shaped region and not
an insufficient number of PCG iterations.

Finally, in Table 7.3, we give the CPU times for our OSC domain decomposition
method. Clearly, as N increases by a factor of 2, the CPU time increases approxi-
mately by a factor of 4. This observation supports the theoretical result that the total
cost of our algorithm is O(N2 logN).

8. Concluding remarks. We used a nonoverlapping domain decomposition ap-
proach to define the OSC solution of the Dirichlet boundary value problem for Pois-
son’s equation on an L-shaped region. We proved existence and uniqueness of the
collocation solution and derived optimal order Hs-norm error bounds for s = 0, 1, 2.
The collocation solution on the interfaces is computed using the PCG method with a
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preconditioner obtained from two collocation Steklov–Poincaré operators correspond-
ing to two pairs of the adjacent squares. The collocation solution on each square is
obtained using the FFT matrix decomposition method. The total cost of comput-
ing the collocation solution is O(N2 logN), where the number of unknowns in the
collocation solution is O(N2).

REFERENCES

[1] B. Bialecki, A fast domain decomposition Poisson solver on a rectangle for Hermite bicubic
orthogonal spline collocation, SIAM J. Numer. Anal., 30 (1993), pp. 425–434.

[2] B. Bialecki, Convergence analysis of orthogonal spline collocation for elliptic boundary value
problems, SIAM J. Numer. Anal., 35 (1998), pp. 617–631.

[3] B. Bialecki, Superconvergence of the orthogonal spline collocation solution of Poisson’s equa-
tion, Numer. Methods Partial Differential Equations, 15 (1999), pp. 285–303.

[4] B. Bialecki, X.-C. Cai, M. Dryja, and G. Fairweather, An additive Schwarz algorithm
for piecewise Hermite bicubic orthogonal spline collocation, in Proceedings of the Sixth
International Conference on Domain Decomposition Methods in Science and Engineering,
Contemp. Math. 57, AMS, Providence, RI, 1994, pp. 237–244.

[5] B. Bialecki and S. D. Dillery, Fourier analysis of Schwarz alternating methods for piecewise
Hermite bicubic orthogonal spline collocation, BIT, 33 (1993), pp. 634–646.

[6] B. Bialecki and M. Dryja, Multilevel additive and multiplicative methods for orthogonal
spline collocation problems, Numer. Math., 77 (1997), pp. 35–58.

[7] B. Bialecki, G. Fairweather, and K. R. Bennett, Fast direct solvers for piecewise Hermite
bicubic orthogonal spline collocation equations, SIAM J. Numer. Anal., 29 (1992), pp.
156–173.

[8] T. F. Chan and T. P. Mathew, Domain decomposition algorithms, in Acta Numerica, 1994,
Cambridge University Press, Cambridge, UK, 1994, pp. 61–143.

[9] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North–Holland, Amsterdam,
1978.

[10] J. Douglas, Jr. and T. Dupont, Collocation Methods for Parabolic Equations in a Single
Space Variable, Lecture Notes in Math. 385, Springer-Verlag, New York, 1974.

[11] S. Kim and S. Kim, Estimating convergence factors of Schwarz algorithms for orthogonal spline
collocation method, Bull. Korean Math. Soc., 36 (1999), pp. 363–370.

[12] Y.-L. Lai, A. Hadjidimos, and E. N. Houstis, A generalized Schwarz splitting method based on
Hermite collocation for elliptic boundary value problems, Appl. Numer. Math., 21 (1996),
pp. 265–290.

[13] G. Mateescu, C. J. Ribbens, and L. T. Watson, A domain decomposition preconditioner for
Hermite collocation problems, Numer. Methods Partial Differential Equations, 19 (2003),
pp. 135–151.

[14] P. Percell and M. F. Wheeler, A C1 finite element collocation method for elliptic equations,
SIAM J. Numer. Anal., 17 (1980), pp. 605–622.

[15] A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equa-
tions, Oxford University Press, New York, 1999.

[16] B. F. Smith, P. E. Bjørstad, and W. D. Gropp, Domain Decomposition. Parallel Mul-
tilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press,
Cambridge, UK, 1996.

[17] E. G. Yanik, A Schwarz alternating procedure using spline collocation methods, Internat. J.
Numer. Methods Engrg., 28 (1989), pp. 621–627.



COMPUTING ACOUSTIC WAVES IN AN INHOMOGENEOUS
MEDIUM OF THE PLANE BY A COUPLING OF SPECTRAL

AND FINITE ELEMENTS∗
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Abstract. In this paper we analyze a Galerkin procedure, based on a combination of finite
and spectral elements, for approximating a time-harmonic acoustic wave scattered by a bounded
inhomogeneity. The finite element method used to approximate the near field in the region of
inhomogeneity is coupled with a nonlocal boundary condition, which consists in a linear integral
equation. This integral equation is discretized by a spectral Galerkin approximation method.

We provide error estimates for the Galerkin method, propose fully discrete schemes based on
elementary quadrature formulas, and show that the perturbation due to this numerical integration
gives rise to a quasi-optimal rate of convergence. We also suggest a method for implementing the
algorithm using the preconditioned GMRES method and provide some numerical results.
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1. Introduction. The purpose of this paper is to introduce a new fully discrete
method for a boundary element and finite element coupling strategy applied to an
acoustic scattering problem in the plane. The difficulty related to the fact that the
acoustic field extends over the whole space has been tackled in the literature by dif-
ferent strategies. For example, the problem may be posed in a bounded domain by
reducing it to the Lippman–Schwinger integral equation (cf. [11]). However, the com-
putational cost associated to the discretization of such an equation can be excessive:
it requires numerical integration for singular volume integrals, and it leads to linear
systems of equations with nonsparse matrices (cf. [10]).

The approaches based on a finite element approximation method require absorbing
boundary conditions prescribed on an artificial boundary Γ enclosing the region of
inhomogeneity. These boundary conditions that incorporate (approximately) the far-
field effects into the finite element model may be of local (differential) or global type.

Most of the differential absorbing boundary conditions use a circle (or a sphere) as
an artificial boundary, and they are more exact the larger the radius of the circle is (cf.
[7, 2]). This can lead to a large nondimensional wave number in a scaled model and
renders the numerical solution more difficult to compute. It is also worth mentioning
here the perfectly matched layer method introduced recently by Bérenger [3].

Choosing a circle as an artificial boundary, one may also compute a series rep-
resentation of the exterior solution by separation of variables and obtain on the way
global absorbing boundary conditions (cf. [6, 13, 14]). However, when the region of
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inhomogeneity is anisotropic, one may again be obliged to compute the numerical
solution in a large domain. For more information about the previous methods we
refer to the survey of Ihlenburg [8] and the references given therein.

We consider in this paper a nonlocal absorbing boundary condition based on
boundary integral operators defined on Γ. It is a discretization procedure that com-
bines finite elements (FEM) and boundary elements (BEM). In fact, we use the well-
known Johnson–Nedelec BEM–FEM formulation introduced in [9] for an exterior
Poisson problem and also used successfully for the Stokes system (cf. [18, 19]). We
point out here that, in the Johnson–Nedelec method, the boundary integral equation
coupled with the finite element problem must be posed on a smooth artificial interface
in order to ensure the compactness of the double-layer potential. This is essential in
the analysis of the discrete problem (see [9, 15] and the analysis given in section 5 of
this paper).

Usually, the discrete problem is posed on a domain with a piecewise polynomial
boundary that approximates the smooth artificial boundary in order to use isopara-
metric finite elements (cf. [9]). This strategy has a serious drawback since it ren-
ders difficult the approximation of the nearly singular boundary integrals by simple
quadratures. Recently, a more efficient method that discretizes the integral operators
on their natural boundary has been proposed. It permits one to design fully discrete
schemes that require few kernel evaluations while preserving the stability and conver-
gence properties obtained when the integrals are computed exactly (cf. [15, 16, 18]).
This discretization method relies on exact triangulations of the domain. Hence curved
triangles are needed all along the auxiliary interface.

Furthermore, these new BEM–FEM formulations permit one to approximate the
periodic representation of the unknown defined on the boundary by trigonometric
polynomials (cf. [17]). We apply here this mixed scheme that combines a finite element
method and a spectral method to solve an acoustic scattering problem. Our analysis
shows that stability and convergence are obtained for the Johnson–Nedelec method
without any constraint involving the mesh size h for the interior finite elements and
the dimension 2n of the space of trigonometric polynomials used for the approximation
on the boundary. We also introduce a fully discrete scheme that requires elementary
quadrature rules and converges at a quasi-optimal rate.

We notice that, as we have a spectral convergence for the variable defined on the
boundary, few degrees of freedom are needed on the interface boundary in order to
attain the order of convergence imposed by the finite element method. This permits
us to eliminate the periodic unknown at matricial level by a static condensation pro-
cess and reduce the complexity of the linear systems. The preconditioned GMRES
method is used to solve the reduced linear systems of equations. The iterative method
requires solving a short sequence of standard interior elliptic finite element problems.
Furthermore, we do not need to store the unstructured and nonsymmetric global ma-
trix, and the problems we have to solve during each iteration process are standard.
We see from the numerical experiments that the method seems to be stable in the
sense that the number of iterations does not increase with the finite element degrees
of freedom.

We point out that our discretization method combines standard techniques of
approximation since the schemes obtained here for the integral equation are directly
derived from those described in [12, 5]; see also the references given therein. Nev-
ertheless, to our knowledge, the only work where a coupling of finite elements and
spectral methods is exploited to solve exterior Helmholtz problems is given by Kirsch
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and Monk in [20]. Their method relies on a Lagrange multiplier approach that is con-
ceptually more complicated than the one we propose here, and they do not include
the effects of numerical integration in their analysis. We also point out that Kirsch
and Monk use a Nyström method for the unknown boundary, while we use a spectral
Galerkin method. Our choice simplifies the analysis but, from the point of view of
implementation, the computational work associated to a Nyström scheme is less than
the computational work corresponding to a Galerkin method. We overcome this dis-
advantage by providing a fully discrete Galerkin method that may be interpreted in
practice as a collocation method.

The paper is organized as follows. In the first part, which consists of sections 2,
3, and 4, we introduce the model problem, derive the Galerkin discretization of the
Johnson–Nedelec method, and give its convergence analysis. In section 5, we describe
the quadrature rules that we use to obtain the fully discrete schemes, and section 6
is devoted to the convergence analysis of these completely discrete problems. Finally,
we present our numerical results in section 7.

1.1. Notation and Sobolev spaces. In what follows, we deal with complex
valued functions, and the symbol ı is used for

√−1. We denote by α the conjugate of
a complex number α ∈ C and by |α| its modulus. Let Ω be a bounded open set of R

2.
We denote by ‖·‖0,Ω the L2(Ω)-norm corresponding to the inner product

∫
Ω
fg dx.

More generally, for any m ∈ N, ‖·‖m,Ω stands for the norm of the Sobolev space
Hm(Ω); see [1].

On the other hand, we will also consider periodic Sobolev spaces. Let C∞2π be the
space of 2π-periodic and infinitely differentiable complex valued functions of a single
variable. Given g ∈ C∞2π, we define its Fourier coefficients as

ĝ(k) :=
1

2π

∫ 2π

0

g(s)e−ıks ds.

Then, for p ∈ R, we define the Sobolev space Hp(0, 2π) to be the completion of C∞2π
with the norm

‖g‖p :=
(∑
k∈Z

(1 + |k|2)p|ĝ(k)|2
)1/2

.

It is well known that Hp(0, 2π) are Hilbert spaces and Hp(0, 2π) ⊂ Hq(0, 2π) for every
p > q, the inclusion being dense and compact; see [12]. Moreover, the L2(0, 2π)-inner

product
∫ 2π

0
λ(s)η(s) ds can be extended to represent the duality of H−p(0, 2π) and

Hp(0, 2π) for all p.
Throughout this paper, C will denote positive constants, not necessarily the same

at different occurrences, which are independent of the parameters h and n.

2. The model problem. Let θ ∈ C2(R2) be a given function that satisfies
Re θ(x) > 0 and Im θ(x) ≥ 0 for all x ∈ R

2. We also assume that the function
1− θ(x) has a compact support in R

2. Let k > 0 be given together with a function w
that satisfies the Helmholtz equation ∆w+k2w = 0 in all R

2. We seek the u : R
2 → C

solution of

∆u+ k2θ(x) u = 0 in R
2,

u = w + us in R
2

(2.1)
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that satisfies the outgoing Sommerfeld radiation condition

∂us

∂r
− ıkus = o

(
1√
r

)
,(2.2)

when r := |x| → ∞ uniformly for all directions x/|x|.
The system (2.1)–(2.2) governs the propagation of time-harmonic acoustic waves

of small amplitude in a slowly varying inhomogeneous and absorbing medium. The
wave motion is caused by a time-harmonic incident field of amplitude w. A common
choice for w is the plane wave w(x) := exp(ıkd · x), where d is a fixed unit vector.
The solution u of our problem is determined by the scattered field us that satisfies the
Sommerfeld radiation condition (2.2). We refer to [5] and [11] for more information
about the physical background of the problem.

Let us introduce an artificial boundary Γ such that the support of 1 − θ lays in
its interior. Then Γ separates R

2 into a bounded domain Ω and an unbounded region
Ωe exterior to Γ.

We introduce the bilinear form

ak(z, v) :=

∫
Ω

∇z · ∇v dx− k2

∫
Ω

θ(x)zv dx ∀z, v ∈ H1(Ω).

It is straightforward that u satisfies in Ω the following variational formulation:

find u ∈ H1(Ω) such that

ak(u, v)− ∫
Γ
∂u
∂ν v dσ = 0 ∀v ∈ H1(Ω),

(2.3)

where the unit normal ν on Γ is directed into Ωe.
On the other hand, using a Green formula, the radiation condition (2.2), and the

fact that ∆us + k2us = 0 in Ωe, one arrives at the integral representation

us(x) =

∫
Γ

∂E(x,y)

∂νy
us(y) dσy −

∫
Γ

E(x,y)
∂us

∂ν
dσy ∀x ∈ Ωe,(2.4)

where

E(x,y) :=
ı

4
H

(1)
0 (k|x− y|)

is the radial outgoing fundamental solution of the Helmholtz equation andH
(1)
0 stands

for the Hankel function of order 0 and first type. The Johnson–Nedelec BEM–FEM
method introduced in [9] uses a boundary integral identity relating on Γ the trace of
us and its normal derivative ∂u

s

∂ν . This boundary integral equation arises from the
integral representation formula (2.4) and the classical jump conditions for the double-
layer potential. Our purpose is to perform the coupling of this boundary equation
with (2.3), but let us first introduce some notation and basic properties.

In what follows, we choose Γ to be an infinitely differentiable boundary, and we
denote by x : R→ R

2 a regular 2π-periodic parametric representation of this curve:

|x′(s)| > 0 ∀s ∈ R and x(s) = x(t) iff t− s ∈ 2πZ.

Therefore, we can identify any function defined on Γ with a 2π-periodic function. We
can also define the parameterized trace on Γ as the linear continuous extension of

γ : C∞(Ω) → L2(0, 2π),
u �→ γu(·) := u|Γ(x(·))
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to H1(Ω). The resulting linear application γ : H1(Ω) → H1/2(0, 2π) is bounded and
onto (cf. Theorem 8.15 of [12]).

We introduce the parameterized versions of the simple and double-layer acoustic
potentials

Sg(s) :=
∫ 2π

0

V (s, t)g(t)dt and Dg(s) :=
∫ 2π

0

K(s, t)g(t)dt,

where

V (s, t) :=
ı

4
H

(1)
0 (k|x(s)− x(t)|)

and

K(s, t) := −kı

4
H

(1)
1 (k|x(t)− x(s)|)x

′
2(t)(x1(t)− x1(s))− x′1(t)(x2(t)− x2(s))

|x(t)− x(s)|

with H
(1)
1 being the Hankel function of first type and order one.

Parameterizing the integral identity relating us and ∂us

∂ν on Γ yields (a similar
strategy is used in [15, 18])

γus =

(
1

2
I +D

)
γus − Sξ,(2.5)

where I is the identity operator and the auxiliary unknown ξ is given in terms of the
normal derivative of us on Γ by

ξ := |x′| ∂u
s

∂ν
◦ x.

Combining (2.3) with a variational version of (2.5), we arrive at the following
global weak formulation of (2.1)–(2.2):

find u ∈ H1(Ω) and ξ ∈ H−1/2(0, 2π) such that

ak(u, v)−
∫ 2π

0

ξ(t)γv(t) dt =

∫ 2π

0

λ(t)γv(t) dt ∀v ∈ H1(Ω),

b(u, µ) + c(ξ, µ) = b(w, µ) ∀µ ∈ H−1/2(0, 2π),

(2.6)

where λ := |x′| ∂w∂ν ◦ x,

c(ξ, µ) :=

∫ 2π

0

µ(t)(Sξ)(t) dt, and b(v, µ) :=

∫ 2π

0

µ(t)

(
1

2
I − D

)
(γv)(t) dt.

Moreover, defining the Hilbert space M := H1(Ω) ×H−1/2(0, 2π) and denoting
u := (u, ξ), v := (v, µ) ∈M, we may formulate (2.6) equivalently by

find u ∈M such that

A(u,v) = L(v) ∀v ∈M,
(2.7)

where L(v) =
∫ 2π

0
λ(t)γv(t) dt+ 2b(w, µ) and

A(u,v) = ak(u, v) + 2c(ξ, µ) + 2b(u, µ)−
∫ 2π

0

ξ(t)γv(t) dt.
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3. Existence and uniqueness. We will first give a brief account of some funda-
mental tools that concern the properties of S and D when mapping between Sobolev
spaces. For n = 0, 1, 2 we introduce the auxiliary integral operators

Λn(ξ)(t) :=
−1
2π

∫ 2π

0

(
sin

t− s

2

)n
log

(
4

e
sin2 t− s

2

)
ξ(s) ds.

Lemma 3.1. For any p ∈ R the mappings Λ0 : Hp(0, 2π) → Hp+1(0, 2π),
S : Hp(0, 2π)→ Hp+1(0, 2π), D : Hp(0, 2π)→ Hp+2(0, 2π), and S−Λ0 : Hp(0, 2π)→
Hp+3(0, 2π) are bounded. Furthermore, Λ0 is H−1/2(0, 2π)-elliptic; i.e., there exists
α > 0 such that ∫ 2π

0

ξ(t)(Λ0ξ)(t) dt ≥ α‖ξ‖2−1/2 ∀ξ ∈ H−1/2(0, 2π).(3.1)

Proof. Let fm(t) := exp(ımt). One may deduce easily from the property (see
[12])

Λ0fm =
1

max(1, |m|)fm ∀m ∈ Z(3.2)

that Λ0 is a pseudodifferential operator of order −1 and that it satisfies (3.1).
In general, given a function D(t, s) which is in C∞2π with respect to each variable,

it is shown in [21] that µ �→ Λn(D(t, ·)µ(·)) is a pseudodifferential operator of order
−n − 1. Therefore, the results for S, D, and S − Λ0 are obtained by noticing that
there exist two functions D1 and D2 that belong to C∞2π in each of their two variables
such that

(Sµ)(t) = (Λ0µ)(t) + Λ2(D1(t, ·)µ(·)) + (Fµ)(t)
and

(Dµ)(t) = Λ1(D2(t, ·)µ(·))(t) + (Gµ)(t),
where F and G are integral operators with 2π-periodic and infinitely differentiable
kernels.

Theorem 3.2. Assume that k2 is not an eigenvalue of the Laplacian in Ω with
a Dirichlet boundary condition on Γ. Then problem (2.7) has a unique solution.

Proof. We introduce the bilinear form

A0(u,v) := a(u, v) + 2

∫ 2π

0

µ(t)(Λ0ξ)(t) dt−
∫ 2π

0

γv(t) ξ(t) dt+

∫ 2π

0

γu(t) µ(t) dt,

where a(u, v) :=
∫
Ω
∇u · ∇v dx+

∫
Ω
uv dx. We deduce from Lemma 3.1 that A0(·, ·)

is bounded on M×M and M-elliptic:

Re[A0(v,v)] ≥ min(1, α)‖v‖2M ∀v ∈M.

Let M′ be the dual of M pivotal to L2(Ω) × L2(0, 2π). Then M ⊂ L2(Ω) ×
L2(0, 2π) ⊂M′ with dense inclusions. We denote by [·, ·] the duality bracket between
M and M′. We consider the continuous linear mappings A : M → M′ and A0 :
M→M′ defined by

[Au, v] := A(u, v) and [A0u, v] := A0(u, v)
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for all u, v in M.
Now it is clear that A0 is an isomorphism, and we deduce easily from Lemma 3.1

and the compactness of the canonical injection from H1(Ω) into L2(Ω) that A−A0 :
M �→ M′ is compact. Hence A is a Fredholm operator of index zero. Thus the
theorem reduces to prove uniqueness of the solution for (2.7).

Let (u0, ξ0) ∈ H1(Ω) × H−1/2(0, 2π) be a solution of (2.6) with w = 0. We
introduce the function

ũ(x) :=


u0(x), x ∈ Ω,

z(x) :=

∫ 2π

0

∂E

∂νy
(x,x(t))u0(x(t))|x′(t)|dt−

∫ 2π

0

E(x,x(t))ξ0(t)dt, x ∈ Ωe.

It is easy to verify that u0 solves the equation

∆u0 + k2θ(x) u0 = 0 in Ω.(3.3)

On the other hand, z solves the Helmholtz equation

∆z + k2z = 0 in Ωe(3.4)

and satisfies the Sommerfeld radiation condition (2.2). Furthermore, using the jump
relations of the acoustic potential layers (see section 2 of [21]), we obtain the following
identities on Γ:

γz =

(
1

2
I +D

)
γu0 − Sξ0,(3.5)

|x′(t)| ∂z
∂ν

(x(t)) = −Hγu0 +

(
1

2
I − D∗

)
ξ0,(3.6)

where D∗ is the adjoint of operator D, i.e.,

D∗g(t) :=
∫ 2π

0

K(s, t)g(s)ds.

We refer to [21] for the definition of the hypersingular operator H. We point out that
we are using a parameterized version of this operator.

By virtue of (2.5), (3.5) directly yields the identity

γz = γu0.(3.7)

Now we also deduce from the integral representation of z in Ωe and the jump conditions
that

|x′(t)| ∂z
∂ν

(x(t)) = −Hγz +
(
1

2
I − D∗

)
|x′(t)| ∂z

∂ν
(x(t)).(3.8)

Subtracting (3.8) from (3.6) and using (3.7), we obtain that(
1

2
I − D∗

)(
|x′(t)| ∂z

∂ν
(x(t))− ξ0

)
= 0.(3.9)
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Theorem 3.3.4. of [21] proves that, under our hypothesis on k, operator 1
2I − D∗ is

one-to-one and thus (3.9) provides the identity

∂z

∂ν
=

∂u0

∂ν
on Γ.(3.10)

Now, (3.3), (3.4), (3.7), and (3.10) show that ũ is a solution of (2.1)–(2.2) when w = 0,
and Theorem 8.7 of [5] ensures that such a function ũ should vanish identically in all
R

2, and the result follows.

4. Finite elements with curved triangles. Let N be a given integer. We
consider the equidistant subdivision { iπN ; i = 0, . . . , 2N − 1} of the interval [0, 2π]
with 2N grid points. We denote by Ωh the polygonal domain whose vertices lying on
Γ are {x( iπN ); i = 0, . . . , 2N −1}. Let τh be a regular triangulation of Ωh by triangles
T of diameter hT not greater than max|x′(s)|h with h := π

N . We assume that any

vertex of a triangle lying on the boundary of Ωh belongs to {x( iπN ); i = 0, . . . , 2N−1}.
We obtain from τh a triangulation τ̃h of Ω by replacing each triangle of τh with

one side along ∂Ωh by the corresponding curved triangle.
Let T be a curved triangle of τ̃h. We denote its vertices by aT1 , a

T
2 , and aT3 ,

numbered in such a way that aT2 and aT3 are the endpoints of the curved side of T .
Let ti, ti+1 ∈ [0, 1] be such that x(ti) = aT2 and x(ti+1) = aT3 . Then ϕ(t) := x (ti + t h)

(t ∈ [0, 1]) is a parameterization of the curved side of T . Let T̂ be the reference triangle
with vertices â1 := (0, 0), â2 := (1, 0), and â3 := (0, 1). Consider the affine map GT
defined by GT (âi) = aTi for i ∈ {1, 2, 3}. Consider also the function ΘT : T̂ → R

2,

ΘT (x̂) :=
x̂1

1− x̂2

(
ϕ(x̂2)− (1− x̂2)a

T
2 − x̂2a

T
3

)
,

where the limiting value has to be taken as x̂2 goes to 1. Then there exists h0 > 0
such that if h ∈ (0, h0), T is the range of T̂ by the C∞ and the one-to-one mapping

FT : T̂ → R
2 given by

FT := GT +ΘT .

Moreover, each side of T̂ is mapped onto the corresponding side of T ; i.e., ΘT (0, t) =
ΘT (t, 0) = (0, 0) and FT (t, 1− t) = ϕ(t) for all t ∈ [0, 1]. This type of diffeomorphism
was first proposed by Zlámal [25] and studied by Scott [22]. If T is a straight (interior)
triangle, we take the curving perturbation ΘT ≡ 0, and thus FT is the usual affine
map from the reference triangle. This hypothesis will be implicit in the following.
In the finite element analysis we need estimates on the derivatives of FT and F−1

T .
These estimates are classical in the affine case, and they are proven in Theorem 22.4
of [24] (cf. also [22]) when T is a curved triangle. We collect the properties used in
the forthcoming analysis in the following lemma.

Lemma 4.1. For all h ∈ (0, h0), the Jacobian JT of FT does not vanish on a

neighborhood of T̂ , and the following estimates hold:

C1h
2
T ≤ |JT (x̂)| ≤ C2h

2
T ∀x̂ ∈ T̂ ,(4.1)

max
x̂∈T̂
|∂α(FT )i(x̂)| ≤ Ch

|α|
T , max

x∈T
|∂α(F−1

T )i(x)| ≤ Ch−1
T(4.2)

for all i = 1, 2 and for all multi-index α such that |α| = 1, 2.
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A finite element is defined on T by a triplet (T, P1(T ),ΣT ), where P1(T ) is the

image under FT of the space P1(T̂ ) of polynomials of degree no greater than 1 on T̂ ,

P1(T ) := {p : T → C; p = p̂ ◦ F−1
T , p̂ ∈ P1(T̂ )},

and ΣT = {Ni; i = 1, 2, 3} is a set of linear functionals defined by Ni(φ) = φ(ai,T ) for
all φ ∈ P1(T ) and for i = 1, 2, 3.

Interpolation error bounds on curved triangles are obtained by the technique used
generally in the affine case (cf. [4] or [24]). Namely, if h is sufficiently small, one may
readily prove with the aid of Lemma 4.1 that there exists a constant C independent
of T such that

‖v − πT v‖1,T ≤ ChT ‖v‖2,T ∀v ∈ H2(T ),(4.3)

where πT v ∈ P1(T ) is uniquely determined by πT v(a
T
i ) = v(aTi ) for all i = 1, 2, 3.

Notice that the norm ‖·‖2,T in (4.3) may be substituted by the seminorm |·|2,T when
T is a straight triangle.

We define the finite-dimensional subspace Vh ⊂ H1(Ω) by

Vh = {v ∈ H1(Ω); v|T ∈ P1(T ) ∀T ∈ τ̃h}.

We deduce from (4.3) that

inf
v∈Vh
‖u− v‖1,Ω ≤ Ch ‖u‖2,Ω ∀u ∈ H2(Ω).(4.4)

Let n be a given integer. We consider the 2n-dimensional space

Tn :=


n∑
j=0

aj cos jt+

n−1∑
j=1

bj sin jt; aj , bj ∈ C

 .

We have the following approximation property (cf. [21]):

inf
µ∈Tn
‖λ− µ‖s ≤ 2t−sns−t‖λ‖t ∀λ ∈ Ht(0, 2π),∀t ≥ s.(4.5)

We will also need the two inverse inequalities (cf. [21])

‖µ‖q ≤
(

1

2n

)p−q
‖µ‖p ∀µ ∈ Tn, ∀p ≤ q(4.6)

and

‖µ‖∞ ≤ C n‖µ‖−1/2 ∀µ ∈ Tn,(4.7)

where we denoted ‖µ‖∞ := maxt∈[0, 2π]|µ(t)|.
5. The discrete problem. Let Mδ = Vh × Tn, where δ := (h, 1/n) is the

discretization parameter. In terms of this notation, the discrete version of (2.7) is
given by

find uδ ∈Mδ such that

A(uδ,v) = L(v) ∀v ∈Mδ.
(5.1)
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Theorem 5.1. Assume that k2 is not an eigenvalue of the Laplacian in Ω with a
Dirichlet boundary condition on Γ. For all δ small enough, problem (5.1) has a unique
solution. Moreover, the Galerkin method is stable, and we have Céa’s estimate

‖u− uδ‖M ≤ C1 inf
v∈Mδ

‖u− v‖M.

In case the exact solution belongs to H2(Ω)×Hσ−1/2(0, 2π) for some σ > 0, we have

‖u− uh‖1,Ω + ‖ξ − ξn‖−1/2 ≤ C2

(
h‖u‖2,Ω + n−σ‖ξ‖σ−1/2

)
.

Proof. The theorem is a consequence of a classical result for compact perturba-
tions of operator equations. Indeed, let us consider the auxiliary problem

find z ∈M such that

A0(z,v) = L(v) ∀v ∈M(5.2)

and its discrete counterpart

find zδ ∈Mδ such that

A0(zδ,v) = L(v) ∀v ∈Mδ.
(5.3)

Both (5.2) and (5.3) are well posed by virtue of the M-ellipticity of A0(·, ·). Further-
more, Céa’s lemma, the approximation properties (4.4) and (4.5), and the density of
smooth functions in M yield

lim
δ→0

inf
v∈Mδ

‖z− v‖M = 0.(5.4)

Now we proved that problem (2.7) is also well posed and that it is a compact
perturbation of (5.2) (see Theorem 3.2). Under these hypotheses, Theorem 13.7 of
[12] shows that, if δ is sufficiently small, (5.1) is also well posed and convergent.
Finally, the convergence implies Céa’s estimate, and the last assertion of the theorem
follows from the approximation properties (4.4) and (4.5).

6. Description of the fully discrete method.

6.1. Approximation of ak(·, ·) on Vh × Vh. Consider first a quadrature for-
mula on the reference triangle

Q̂(φ̂) :=

L∑
l=1

ω̂lφ̂(ẑl) �
∫
T̂

φ̂ dx̂

with weights ω̂l > 0 such that
∑L
l=1 ω̂l =

1
2 . On each T ∈ τ̃h we define

QT (φ) := Q̂(|J(FT )|φ ◦ FT ) =
L∑
l=1

ω̂l|J(FT )|(ẑl)φ(FT (ẑl)) �
∫
T

φ(x) dx.

This induces us to define an approximation akh(·, ·) of ak(·, ·) by

akh(u, v) =
∑
K∈τ̃h

QK(∇u · ∇v − k2θuv) ∀u, v ∈ Vh.
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6.2. Approximation of c(·, ·) on Tn×Tn. For all continuous and 2π-periodic
functions g, we consider the composite trapezoidal rule

Qn(g) := π

n

2n−1∑
i=0

g

(
iπ

n

)
associated to the partition of [0, 2π] into 2n grid points.

We also need to construct approximations for the improper integral

(Λ0g)(t) := − 1

2π

∫ 2π

0

log

(
4

e
sin2 t− s

2

)
g(s) ds.(6.1)

We can proceed as in [12] and obtain a quadrature formula replacing g(s) in (6.1) by
its trigonometric interpolation polynomial

(Png)(s) :=
2n−1∑
j=0

g

(
jπ

n

)
Lj(s),

where the Lagrange basis is given by

Lj(s) :=
1

2n

{
1 + 2

n−1∑
k=1

cos k

(
s− jπ

n

)
+ cosn

(
s− jπ

n

)}
∀j = 0, . . . , 2n− 1.

Therefore, we obtain the formula

Q̃ng(t) :=
2n−1∑
j=0

R
(n)
j (t)g

(
jπ

n

)
,

where, for j = 0, . . . , 2n− 1, the weights

R
(n)
j (t) =

1

2n
+

1

n

n−1∑
m=1

1

m
cosm

(
t− jπ

n

)
+

1

2n2
cosn

(
t− jπ

n

)
are given explicitly by evaluating the integrals (Λ0Lj)(t) with the aid of (3.2) (cf. [12]).

Using the splitting (cf. [5])

V (t, s) = − 1

2π
V1(t, s) log

(
4

e
sin2 t− s

2

)
+ V2(t, s)(6.2)

of the single-layer acoustic potential, where V1(t, s) :=
1
2J0(k|x(t) − x(s)|) and J0 is

the Bessel function of order zero, we obtain

c(ξ, µ) =

∫ 2π

0

Λ0(V1(t, ·)ξ(·))(t)µ(t) dt+
∫ 2π

0

(∫ 2π

0

V2(t, s)ξ(s) ds

)
µ(t) dt.(6.3)

Hereafter, taking into account that V1(·, ·) and V2(·, ·) are in C∞2π with respect to each
variable, the first term of the right-hand side in (6.3) may be approximated by using

the quadrature rule Q̃n for the internal integral and Qn for the external one. The two-
dimensional quadrature rule derived from Qn is applied to the second term. In other
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words, we are introducing an approximation of the bilinear form c(·, ·) on Tn × Tn
given by

cn(ξ, µ) := Qn[Q̃n[V1(t, ·)ξ(·)]µ(t)] +Qn[Qn[V2(t, ·)ξ(·)]µ(t)],
which may also be written in matricial form as follows:

cn(ξ, µ) =

2n−1∑
i=0

2n−1∑
j=0

Ci,jξ

(
jπ

n

)µ

(
iπ

n

)
.

The entries of the symmetric 2n× 2n matrix C are

Ci,j :=
π

n
R

(n)
j

(
iπ

n

)
V1

(
iπ

n
,
jπ

n

)
+

π2

n2
V2

(
iπ

n
,
jπ

n

)
.

6.3. Approximation of b(·, ·) on Vh×Tn. We point out that the kernelK(·, ·)
associated to the bilinear form b(·, ·) is continuous but not derivable; therefore, it is
necessary to split it, as we did for V (·, ·) in (6.2), before using any quadrature rule.
We follow [5] and write

K(t, s) = − 1

2π
K1(t, s) log

(
4

e
sin2 t− s

2

)
+K2(t, s),(6.4)

with

K1(s, t) := −k

2
J1(k|x(t)− x(s)|)x

′
2(s)(x1(t)− x1(s))− x′1(s)(x2(t)− x2(s))

|x(t)− x(s)| ,

and J1 being the Bessel function of order one. Here again, it turns out that K1 and
K2 belong to C∞2π in each variable.

We introduce the composite trapezoidal rule

QN (g) := π

N

2N−1∑
i=0

g

(
iπ

N

)
associated to the uniform partition of [0, 2π] into 2N grid points. Given v ∈ Vh and
µ ∈ Tn, our strategy consists in approximating

b(v, µ) =
1

2

∫ 2π

0

γv(t)µ(t) dt−
∫ 2π

0

Λ0(K1(·, s)µ(·))(s) γv(s) ds

−
∫ 2π

0

(∫ 2π

0

K2(t, s)γv(s) ds

)
µ(t) dt

by employing Qn, Q̃n, and QN as follows:

bδ(v, µ) :=
1

2

∫ 2π

0

γv(t)µ(t) dt−QN [Q̃n[K1(·, s)µ(·)]γv(s)]
−QN [Qn[K2(·, s)µ(·)]γv(s)].

In other words,

bδ(v, µ) =
1

2

∫ 2π

0

γv(t)µ(t) dt−
2N−1∑
j=0

(
2n−1∑
i=0

Bi,jµ

(
iπ

n

))
γv

(
jπ

N

)
,
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where B is the 2n× 2N matrix with entries

Bi,j :=
π

N
R

(n)
i

(
jπ

N

)
K1

(
iπ

n
,
jπ

N

)
+

π2

nN
K2

(
iπ

n
,
jπ

N

)
.

We note here that we did not propose a quadrature rule for
∫ 2π

0
γv(t)µ(t)dt since this

integral may be easily evaluated analytically.
We are now in a position to propose a completely discrete version of the Galerkin

scheme (5.1):

find u∗δ ∈Mδ such that

Aδ(u
∗
δ ,v) = Lδ(v) ∀v ∈Mδ,

(6.5)

where

Aδ(u,v) = akh(u, v) + 2cn(ξ, µ) + 2bδ(u, µ)−
∫ 2π

0

ξ(t)γv(t) dt

and

Lδ(v) =

∫ 2π

0

(Pnλ) γv dt+ 2bδ(Πhw, µ),

with Πh : C0(Ω)→ Vh being the global Lagrange interpolation operator.

6.4. Matrix form of the fully discrete problem. Let us denote by Ak the
symmetric Mh ×Mh matrix whose entries are given by the complex numbers Aki,j :=

akh(ϕi, ϕj), where {ϕi ; i = 1, . . . ,Mh} is the usual nodal basis of Vh. If we set

uh(x) =

Mh∑
i=1

uiϕi(x), ξh(t) =

2n−1∑
i=0

ξiLi(t),

then the matricial interpretation of (6.5) takes the form(
Ak −Rt

K C

)(
u

ξ

)
=

(
Rtλ

Kw

)
,(6.6)

where

Ki,j = bδ(ϕj , Li) and Ri,j =

∫ 2π

0

γϕj(t)Li(t) dt

for all i = 0, . . . , 2n − 1 and j = 1, . . . ,Mh. We also denoted by w the Mh-vector
whose components are given by the values of the incident wave w at the nodes of the
triangulation τ̃h and λk := λ(kπn ) for k = 0, . . . , 2n− 1.

7. Analysis of the fully discrete method. We begin our analysis with the
following classical result (see [4] or [24]).

Lemma 7.1. There exists h0 ∈ (0, 1] such that

|ak(u, v)− akh(u, v)| ≤ Ch‖u‖1,Ω‖v‖1,Ω ∀u, v ∈ Vh,

for some constant C > 0 independent of h for all h ≤ h0.
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We recall that fk(t) := exp(ımt) and that Pn is the trigonometric interpolation
operator. It is easy to check that Pnf2kn+m = Pnfm for all m, k ∈ Z. Furthermore,
Pnfm = fm if −n < m < n and Pnfn = 1

2 (fn + f−n). The following estimate is
essential in the subsequent analysis, and we deduce it by just adapting the proof of
Theorem 11.8 of [12].

Lemma 7.2. Assume that p > 1/2; then there exists a constant C > 0 such that

‖afm − Pn(afm)‖∞ ≤ Cn−p+1/2‖a‖p ∀a ∈ Hp(0, 2π), ∀m ∈ Z.

Proof. Using the Fourier expansion

a(t) =

n∑
ρ=−n+1

∑
k∈Z

â2kn+ρf2kn+ρ(t)

of a, where âk := 1/2π
∫ 2π

0
a(t)f−k(t) dt, we deduce that

(I − Pn)(afm) =
n∑

ρ=−n+1

∑
k∈Z

â2kn+ρ(f2kn+ρ+m − Pnfρ+m).

Notice that we may always write m = 2k0n +m with k0 ∈ Z and −n < m ≤ n. We
denote by ε(m) := m

|m| the sign of m with the convention ε(0) = 1. We remark that

−n < ρ := ε(m)n−m ≤ n and write (I − Pn)(afm) = S1 + S2 with

S1 =

n∑
ρ=−n+1
ρ	=ρ

∑
k∈Z∗

â2kn+ρ(f2kn+ρ+m − fρ+m)

and

S2 =
∑
k∈Z

â2kn+ρ

(
f2kn+ρ+m − 1

2
fn − 1

2
f−n

)
,

where Z
∗ = Z− {0}.

A first bound of S1 is obtained by using the Cauchy–Schwarz inequality

|S1(t)|2 ≤

2

n∑
ρ=−n+1
ρ	=ρ

∑
k∈Z∗
|â2kn+ρ|


2

≤ 8n

n∑
ρ=−n+1
ρ	=ρ

(∑
k∈Z∗
|â2kn+ρ|

)2

.

The Cauchy–Schwarz inequality gives again(∑
k∈Z∗
|â2kn+ρ|

)2

≤
∑
k∈Z∗

1

(2kn+ ρ)2p

∑
k∈Z∗

(2kn+ ρ)2p|â2kn+ρ|2

≤ n−2p
∑
k∈Z∗

1

(2k + ρ
n )

2p

∑
k∈Z∗

(2kn+ ρ)2p|â2kn+ρ|2

≤ C1 n
−2p

∑
k∈Z∗

(2kn+ ρ)2p|â2kn+ρ|2,
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where C1 = maxt∈[−1, 1]

∑
k∈Z∗

1
(2k+t)2p <∞ since p > 1/2. We deduce that

|S1(t)|2 ≤ 8C1 n
−2p+1

n∑
ρ=−n+1
ρ	=ρ

∑
k∈Z∗

(2kn+ ρ)2p|â2kn+ρ|2 ∀t ∈ [0, 2π].(7.1)

On the other hand,

|S2(t)|2 ≤
(
2
∑
k∈Z

|â2kn+ρ|
)2

≤ 4n−2p
∑
k∈Z

1

(2k + ε(m)− mn )2p
∑
k∈Z

(2kn+ρ)2p|â2kn+ρ|2,

and then

|S2(t)|2 ≤ 4

(
max
ρ∈[−1, 1]

∑
k∈Z

1

(2k + ε(m) + ρ)2p

)
n−2p

∑
k∈Z

(2kn+ ρ)2p|â2kn+ρ|2(7.2)

for all t ∈ [0, 2π].
Summing (7.1) and (7.2), we obtain that

|(I − Pn)(afm)|2 ≤ C2 n
−2p+1

∑
k∈Z

k2p|âk|2 ∀t ∈ [0, 2π],

and the result follows.
Lemma 7.3. There exists a constant C independent of n such that

|c(ξ, µ)− cn(ξ, µ)| ≤ Cn−σ‖ξ‖−1/2‖µ‖−1/2 ∀σ > 0,

for all ξ and µ in Tn.
Proof. We begin with the decomposition

c(ξ, µ)− cn(ξ, µ) =

∫ 2π

0

Λ0(V1(t, ·)ξ(·))µ(t) dt−Qn[Q̃n[V1(t, ·)ξ(·)]µ(t)]

+

∫ 2π

0

∫ 2π

0

V2(t, s)ξ(s)µ(t) dsdt−Qn[Qn[V2(t, ·)ξ(·)]µ(t)].

It is proved in Lemma 7 of [17] that there exists a constant C such that∣∣∣∣∫ 2π

0

∫ 2π

0

V2(t, s)ξ(s)µ(t) dsdt−Qn[Qn[V2(t, ·)ξ(·)]µ(t)]
∣∣∣∣ ≤ Cn−σ‖ξ‖−1/2‖µ‖−1/2

for all σ > 0.
Now, we have to prove the same estimate for the remaining term, which may be

written∫ 2π

0

Λ0(V1(t, ·)ξ(·))µ(t) dt−Qn[Q̃n[V1(t, ·)ξ(·)]µ(t)] =
∫ 2π

0

E1(t) dt+Qn[E2(t)µ(t)],

where

E1(t) = (I − Pn)[Λ0(V1(t, ·)ξ(·)) µ(t)] and E2(t) = Λ0(I − Pn) (V1(t, ·)ξ(·)) .
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We develop V1 as

V1(t, s) =
∑
m∈Z

âm(t)fm(s),

with âm(t) := 1/2π
∫ 2π

0
V1(t, s)f−m(s) ds, and we deduce that

Λ0(V1(·, s)ξ(s))(t)µ(t) =
n∑

i,j=−n

(∑
m∈Z

âm(t)Λ0(fm+j)(t)

)
fi(t)ξjµi

=

n∑
i,j=−n

(∑
m∈Z

âm(t)
fm+j+i(t)

max(1, |m+ j|)

)
ξjµi,

where ξi and µi are the coefficients of ξ, µ ∈ Tn in the basis fi. Therefore,

E1(t) =

n∑
i,j=−n

(∑
m∈Z

1

max(1, |m+ j|) (I − Pn)(âm(t)fm+j+i(t))

)
ξjµi,

and applying Lemma 7.2 with p = σ + 5
2 , we deduce that

|E1(t)| ≤ C1 n
−σ−2

(∑
m∈Z

‖âm‖σ+5/2

)
n∑
i=−n

|µi|
n∑

j=−n
|ξj | ∀t ∈ [0, 2π].

Now, on the one hand, using (4.6) with p = −1/2 and q = 0, we have

n∑
i=−n

|µi| ≤
√
2n‖µ‖0 ≤ 2n‖µ‖−1/2 ∀µ ∈ Tn,(7.3)

and on the other hand, the regularity of V1 implies that

∑
m∈Z

‖âm‖σ+5/2 ≤
(∑
m∈Z

1

1 +m2

)1/2
 ∑
m,k∈Z

(1 +m2)(1 + k2)σ+5/2 |âm,k|2
1/2

<∞,

where âm,k := 1/2π
∫ 2π

0
âm(t)f−k(t) dt. Consequently, we have the estimate∣∣∣∣∫ 2π

0

E1(t) dt

∣∣∣∣ ≤ C2 n
−σ‖µ‖−1/2‖ξ‖−1/2.(7.4)

It remains to bound E2. In this case we develop V1 with respect to the variable
t, considering s as a parameter:

V1(t, s) =
∑
m∈Z

b̂m(s)fm(t),

(
b̂m(s) :=

1

2π

∫ 2π

0

V1(t, s)f−m(t) dt
)
.

It follows that

E2(t) =

n∑
j=−n

ξj
∑
m∈Z

Λ0(I − Pn)(̂bmfj)fm(t).
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Let us denote by C02π the space of 2π-periodic and continuous functions. By virtue
of the Sobolev imbedding H1(0, 2π) ↪→ C02π, we have that Λ0 : L2(0, 2π) → C02π is
bounded and

‖Λ0(I − Pn)(̂bmfj)‖∞ ≤ C3‖(I − Pn)(̂bmfj)‖0 ≤
√
2πC3‖(I − Pn)(̂bmfj)‖∞.

Thus applying Lemma 7.2 with p = σ + 5/2 yields

|E2(t)| ≤ Cn−σ−2

(∑
m∈Z

‖b̂m‖σ+5/2

)
n∑

j=−n
|ξj | ∀t ∈ [0, 2π],

and, here again, (7.3) and the regularity of V1 permit us to obtain the bound

‖E2(t)‖∞ = ‖(I − Pn) (V1(t, ·)ξ(·))‖∞ ≤ C5 n
−σ−1‖ξ‖−1/2.(7.5)

Now, by definition of the trapezoidal rule

Qn[E2(t)µ(t)] =
π

n

2n−1∑
i=0

E2(ti)µ(ti)

and by virtue of (4.7), we obtain the inequality

|Qn[E2(t)µ(t)]| ≤ 2π‖E2(t)‖∞‖µ‖∞ ≤ C6 n
−σ‖ξ‖−1/2‖µ‖−1/2

that, joined to (7.4), gives the result.
Lemma 7.4. There exists a constant C independent of δ = (h, 1/n) such that

|b(v, µ)− bδ(v, µ)| ≤ C

(
h
n
√
log n

N
+ n−σ

)
‖v‖M ∀σ > 0,

for all v := (v, µ) ∈Mδ.
Proof. We begin by noting that the parameterized trace t → γv(x(t)) of a func-

tion v ∈ Vh belongs to the space Th of 2π-periodic, continuous, and piecewise linear
functions on the uniform partition of [0, 2π] into 2N subintervals.

We have the decomposition

b(v, µ)− bδ(v, µ) =

∫ 2π

0

Λ0(K1(·, s)µ(·)) γv(s) ds−QN [Q̃n[K1(·, s)µ(·)]γv(s)]

+

∫ 2π

0

∫ 2π

0

K2(t, s)γv(s)µ(t) dsdt−QN [Qn[K2(·, s)µ(·)]γv(s)].

One can proceed as in Lemma 8 of [17] and prove that there exists a constant C1

such that∣∣∣∣∫ 2π

0

∫ 2π

0

K2(t, s)γv(s)µ(t) dsdt−QN [Qn[K2(·, s)µ(·)]γv(s)]
∣∣∣∣

≤ C1 (n
−σ + h)‖µ‖−1/2‖v‖1,Ω.

We introduce the error operator EN (g) :=
∫ 2π

0
g − QN (g) corresponding to the

quadrature formula QN and write∫ 2π

0

Λ0(K1(·, s)µ(·))γv(s) ds−QN [Q̃n[K1(·, s)µ(·)]γv(s)]
= EN [B1(s)γv] +QN [B2(s)γv],
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where

B1(s) = Λ0(K1(·, s)µ(·)) and B2(s) = Λ0(I − Pn) (K1(·, s)µ(·)) .

A simple change of variable yields

EN [B1(s)γv(s)] = h

2N−1∑
i=0

E(Bi1)γv
(
iπ

N

)
,

where E(g) := ∫ 1

0
g(t) dt− g(1)+g(0)2 is the error operator of the basic trapezoidal rule

on the reference interval [0, 1] and

Bi1(s) := sB1

(
(i− 1)π

N
+ sh

)
+ (1− s)B1

(
iπ

N
+ sh

)
.

It follows readily from the Bramble–Hilbert lemma that

|E(Bi1)| ≤ C2

∥∥∥∥ d2

ds2
(sB1(ti−1 + sh) + (1− s)B1(ti + sh))

∥∥∥∥
∞
≤ C3h

2‖B′′1 ‖∞.

Using that for any ε > 0, Hε+1/2(0, 2π) is imbedded continuously in the space of
2π-periodic and continuous functions, we deduce that

‖B′′1 ‖∞ ≤ C(ε)‖B′′1 ‖ε+1/2 ≤ C(ε)‖B1‖ε+5/2.

Moreover, it is easy to show that C(ε) =
(∑
k∈Z

1/max(1, |k|)1+2ε
)1/2

behaves like
1/
√
ε. Now, as we have already noticed in Lemma 3.1, D2(t, s) = K1(t, s)/(sin

t−s
2 )

belongs to C∞2π in each of its two variables. It follows that we may write B1(s) =
Λ1(D2(·, s)µ) and

‖Λ1(D2(·, s)µ)‖5/2+ε ≤ C(ε)‖µ‖1/2+ε ≤ C(ε)n1+ε‖µ‖−1/2

since µ �→ Λ1(D2(·, s)µ) is a pseudodifferential operator of index −2. We also used
the inverse inequality (4.6).

Putting together the last estimates, we obtain, after using the Cauchy–Schwarz
inequality and the fact that the norms

v(x(t))→ ‖v(x(t))‖0 and v(x(t))→
(
h

2N−1∑
i=0

∣∣∣∣γv( iπ

N

)∣∣∣∣2
)1/2

are uniformly equivalent on Th, that

|EN [B1(s)γv(s)]| ≤ C4 h
2n

1+ε

√
ε
‖µ‖−1/2

2N−1∑
i=0

h

∣∣∣∣γv( iπ

N

)∣∣∣∣ ≤ C5 h
2n

1+ε

√
ε
‖µ‖−1/2‖γv‖0

for all ε > 0. Furthermore, we notice that the function ε �→ n1+ε/
√
ε attains its

minimum at a value proportional to n
√
log n when ε = 1

2 log n , and hence

|EN [B1(s)γv(s)]| ≤ C6 h
n
√
log n

N
‖µ‖−1/2‖v‖1,Ω ∀µ ∈ Tn, ∀v ∈ Vh.(7.6)
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On the other hand,

|QN [B2(s)γv(s)]| = h

∣∣∣∣∣
2N−1∑
i=0

B2

(
iπ

N

)
γv

(
iπ

N

)∣∣∣∣∣
≤ ‖B2‖∞

2N−1∑
i=0

h

∣∣∣∣γv( iπ

N

)∣∣∣∣ ≤ C7 ‖B2‖∞‖γv‖0,

and estimate (7.5) yields (after substituting V1 by K1)

‖B2‖∞ = ‖Λ0(I − Pn) (K1(·, s)µ(·))‖∞ ≤ C8 n
−σ‖µ‖−1/2 ∀µ ∈ Tn.

Finally,

|QN [B2(s)γv(s)]| ≤ C9 n
−σ‖µ‖−1/2‖v‖1,Ω ∀µ ∈ Tn, ∀v ∈ Vh,

and the result follows from the last inequality and (7.6).
We conclude our analysis with the following result.
Theorem 7.5. Assume that k2 is not an eigenvalue of the Laplacian in Ω with a

Dirichlet boundary condition on Γ. We also assume that there exists κ > 0 such that
n
N ≤ κ. Then, for δ = (h, 1/n) small enough, the fully discrete scheme (6.5) is well
posed and convergent. Moreover, we have

‖u− u∗h‖1,Ω + ‖ξ − ξ∗n‖−1/2 ≤ C (h
√
log n+ n−σ)

(‖u‖2,Ω + ‖ξ‖σ−1/2

)
in case the exact solution belongs to H2(Ω)×Hσ−1/2(0, 2π) for some σ > 0.

Proof. On the one hand, the convergence and stability of the Galerkin method
(5.1) (see Theorem 5.1) is equivalent to the uniform inf-sup condition

sup
v∈Mδ

A(u,v)

‖v‖M ≥ C ‖u‖M ∀u ∈Mδ.

On the other hand, Lemmas 7.3, 7.1, and 7.4 yield

|A(u,v)−Aδ(u,v)| ≤ C1 (h
√
log n+ n−σ)‖u‖M‖v‖M ∀u,v ∈Mδ,(7.7)

which permits us to deduce by standard arguments that, for δ small enough, Aδ(·, ·)
also satisfies a uniform inf-sup condition, and hence problem (6.5) has a unique solu-
tion.

Now, the second Strang lemma [23] gives the abstract estimate

‖u∗h − v‖M ≤ C2

(
sup

z∈Mδ

|A(u− v, z)|
‖z‖M + sup

z∈Mδ

|A(v, z)−Aδ(v, z)|
‖z‖M
+ sup

z∈Mδ

|L(z)− Lδ(z)|
‖z‖M

)
for all v ∈Mδ.

We can see from the right-hand side of the last inequality that it remains only
to estimate the difference L(·) − Lδ(·) on Mδ to obtain the asymptotic convergence
annunciated in the theorem. We have that

|L(v)− Lδ(v)| ≤
∣∣∣∣∫ 2π

0

(λ− Pnλ)γv dt

∣∣∣∣+ 2|b(w, µ)− bδ(Πhw, µ)|.
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On the one hand,∣∣∣∣∫ 2π

0

(λ− Pnλ)γv dt

∣∣∣∣ ≤ ‖(λ− Pnλ)‖0‖γv‖0 ≤ C3 n
−σ‖λ‖σ‖v‖1,Ω

by virtue of the trace theorem and the well-known trigonometric interpolation error
estimate in Sobolev spaces (cf. Theorem 11.8 of [12]).

On the other hand, using Lemma 7.4,

|b(w, µ)− bδ(Πhw, µ)| ≤ |b(w −Πhw, µ)|+ |b(Πhw, µ)− bδ(Πhw, µ)|
≤ C4

(
‖w −Πhw‖1,Ω‖µ‖−1/2 + (h

√
log n+ n−σ)‖Πhw‖1,Ω‖µ‖−1/2

)
,

and by virtue of the Lagrange interpolation error estimate derived from (4.3) we
deduce that

|b(w, µ)− bδ(Πhw, µ)| ≤ C5(h
√
log n+ n−σ)‖w‖2,Ω‖µ‖−1/2,

and consequently

|L(v)− Lδ(v)| ≤ C6(h
√
log n+ n−σ)(‖w‖2,Ω + ‖λ‖σ)‖v‖M.(7.8)

We deduce from the triangle inequality

‖u− u∗h‖M ≤ ‖u− uh‖M + ‖u∗h − uh‖M
and the second Strang inequality that the asymptotic behavior of the fully discrete
method is a direct consequence of (7.7), (7.8), the boundness of A(·, ·), and Theorem
5.1.

We point out that the asymptotic behavior predicted by the last theorem is in
fact too pessimistic. In practice, as we will show in the next section, n can be blocked
at a very low value (which is independent of h) without influencing the accuracy of
the method. Consequently, the convergence may still be considered as linear in h.

8. Numerical results. We test our numerical method by using the same exam-
ple given in section 5 of [20]. In all of what follows, the artificial boundary Γ is the
ellipse of minor and major semiaxes a = 1.1 and b = 1.5. The incident wave is given
by w(x) := exp(ıkx1) and θ(x) := 1 + ψ(|x|) with

ψ(t) :=

{
(1− t4)2 for t ∈ [0, 1],

0 elsewhere.

As θ(x) is radially symmetric, it is possible to use a separation of variable method
and compute u explicitly in terms of the series

u(r cosφ, r sinφ) =
∞∑

m=−∞
ym(r) exp(ımφ),

where ym satisfies an integral equation described in section 5 of [20]. In the following,
we compare our solution with

u(r cosφ, r sinφ) =

20∑
m=−20

ym(r) exp(ımφ),
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Table 8.1
Convergence history and number of iterations of the method for different values of the parameter

n when k = 1 and h = 2π/128.

2n errormax Iterations

128 8.30× 10−4 10

64 8.62× 10−4 7

32 8.62× 10−4 6

16 8.62× 10−4 6

8 2.0× 10−3 6

Table 8.2
Convergence history and number of iterations of the method for different values of the parameter

n when k = 5 and h = 2π/256.

2n errormax Iterations

256 3.22× 10−2 51

128 3.22× 10−2 42

64 3.22× 10−2 41

32 3.21× 10−2 40

16 3.75× 10−1 36

Table 8.3
Convergence history and number of iterations of the method for different values of the parameter

h when k = 2 and 2n = 16.

h errormax iterations

2π/32 7.57× 10−2 16

2π/64 2.29× 10−2 15

2π/128 5.8× 10−3 15

2π/256 1.5× 10−3 14

where ym is an approximation of ym obtained by solving the corresponding integral
equation by a Nyström method as suggested in [20]. In all the tables, errormax :=
max |uh(a)− u(a)|, where the maximum is taken over the vertices a of τ̃h.

We take in Table 8.1 k = 1 and h = 2π/128, and we take in Table 8.2 k = 5 and
h = 2π/256. In both cases we decrease the spectral parameter n until we obtain the
smallest value that preserves the order of accuracy. We can see that the number of
degrees of freedom is drastically reduced. This justifies the following strategy used
to solve the linear systems: We eliminate the boundary variable from the system of
linear equations (6.6) to obtain the reduced system(

Ak +RtC−1K
)
u = f ,(8.1)

where f := Rtλ+(RtC−1K)w. The system of equations (8.1) is solved by a GMRES
method using A := (a(ϕi, ϕj))i,j as a preconditioner. We use a version of GMRES
without restarts. We take as an initial guess the solution of the Helmholtz equation
in the bounded domain Ω, and iterations are continued until ‖rk+1‖2/‖rk‖2 < 10−6,
where rk is the kth residual.

Each iteration of the GMRES method entails the solution of a linear system with
a full but small matrix C and another linear system with the sparse stiffness matrix
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A. Furthermore, as A is symmetric and positive definite, this can be performed by a
direct method through a Cholesky decomposition for matrix A. Table 8.3 shows the
number of iterations against h with n = 8 and k = 2. The numerical results suggest
that the method has a number of iterations bounded independently of the critical
parameter h.
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Abstract. This paper deals with the numerical approximation of the bending of a plate modeled
by Reissner–Mindlin equations. It is well known that, in order to avoid locking, some kind of reduced
integration or mixed interpolation has to be used when solving these equations by finite element
methods. In particular, one of the most widely used procedures is based on the family of elements
called MITC (mixed interpolation of tensorial components). We consider two lowest-order methods
of this family on quadrilateral meshes.

Under mild assumptions we obtain optimal H1 and L2 error estimates for both methods. These
estimates are valid with constants independent of the plate thickness. We also obtain error estimates
for the approximation of the plate vibration problem. Finally, we report some numerical experiments
showing the very good behavior of the methods, even in some cases not covered by our theory.
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1. Introduction. The Reissner–Mindlin model is the most widely used for the
analysis of thin or moderately thick elastic plates. It is now very well understood that
standard finite element methods applied to this model produce very unsatisfactory
results due to the so-called locking phenomenon. Therefore, some special method
based on reduced integration or mixed interpolation has to be used. Among them, the
mixed interpolation of tensorial components (MITC ) methods introduced by Bathe
and Dvorkin in [7] or variants of them are very likely the most used in practice.

A great number of papers dealing with the mathematical analysis of this kind of
method have been published (see, for example, [2, 6, 10, 12, 13, 18, 20, 23]). In those
papers, optimal order error estimates, valid uniformly on the plate thickness, have
been obtained for several methods. However, although some of the most commonly
used elements in engineering applications are the isoparametric quadrilaterals (indeed,
the original Bathe and Dvorkin paper deals with these elements), no available result
seems to exist for this case.
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On the other hand, it has been recently noted that the extension to general quadri-
laterals of convergence results valid for rectangular elements is not straightforward,
and, furthermore, the order of convergence can deteriorate when nonstandard finite
elements are used in distorted quadrilaterals, even if they satisfy the usual shape
regularity assumption (see [3, 4]).

The aim of this paper is to analyze two low-order methods based on quadrilateral
meshes. One is the original MITC4 introduced in [7], while the other one is an exten-
sion to the quadrilateral case of a method introduced in [12] for triangular elements.
(From now on the latter will be called DL 4.) We are interested not only in load
problems but also in the determination of the free vibration modes of the plate.

For nested uniform meshes of rectangles, an optimal order error estimate in H1

norm has been proved in [6] for MITC4. However, the regularity assumptions on
the exact solution required in that paper are not optimal. These assumptions have
been weakened in [12], but they are still not optimal. Let us remark that to obtain
approximation results for the plate vibration spectral problem, it is important to
remove this extra regularity assumption.

On the other hand, for low-order elements as those considered here, an optimal
error estimate in L2 norm is difficult to obtain because of the consistency term aris-
ing in the error equation. For triangular elements, such an estimate has been only
recently proved in [13]. However, the proof given in that paper cannot be extended
straightforwardly, even for the case of rectangular elements.

In this paper we prove optimal in order and regularity H1 and L2 error estimates
for both methods, MITC4 and DL 4, under appropriate assumptions on the family
of meshes. As a consequence, following the arguments in [13], we also obtain optimal
error estimates for the approximation of the corresponding plate vibration spectral
problem.

In order to prove the H1 error estimate for MITC4, we require an additional
assumption on the meshes (which is satisfied, for instance, by uniform refinements of
any starting mesh). Instead, no assumption other than the usual shape regularity is
needed for DL 4.

On the other hand, a further assumption on the meshes is made to prove the L2

error estimates: the meshes must be formed by higher-order perturbations of parallelo-
grams. This restriction is related to approximation properties of the Raviart–Thomas
elements which are used in our arguments and do not hold for general quadrilateral
elements. However, this assumption is only needed for extremely refined meshes.
Indeed, the L2 estimate holds for any regular mesh as long as the mesh-size is com-
parable with the plate thickness. Moreover, we believe that this quasi-parallelogram
assumption is of a technical character. In fact, the numerical experiments reported
here seem to show that it is not necessary.

The rest of the paper is organized as follows. In section 2, we recall Reissner–
Mindlin equations and introduce the two discrete methods. We prove optimal-order
error estimates for both methods in H1 and L2 norms in sections 3 and 4, respectively.
In section 5, we prove error estimates for the spectral plate vibration problem. Finally,
in section 6, we report some numerical experiments.

Throughout the paper we denote by C a positive constant not necessarily the same
at each occurrence but always independent of the mesh-size and the plate thickness.

2. Statement of the problem.

2.1. Reissner–Mindlin model. Let Ω× (− t
2 ,

t
2 ) be the region occupied by an

undeformed elastic plate of thickness t, where Ω is a convex polygonal domain of R
2.
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In order to describe the deformation of the plate, we consider the Reissner–Mindlin
model, which is written in terms of the rotations β = (β1, β2) of the fibers initially
normal to the plate’s midsurface and the transverse displacement w. The following
equations describe the plate’s response to conveniently scaled transversal and shear
loads f ∈ L2(Ω) and θ ∈ L2(Ω)2, respectively (see, for instance, [9, 13]).

Problem 2.1. Find (β,w) ∈ H1
0(Ω)

2 ×H1
0(Ω) such that a(β, η) + (γ,∇v − η) = (f, v) +

t2

12
(θ, η) ∀(η, v) ∈ H1

0(Ω)
2 ×H1

0(Ω),

γ =
κ

t2
(∇w − β).

(2.1)

In this expression, κ := Ek/2(1+ν) is the shear modulus, with E being the Young
modulus, ν the Poisson ratio, and k a correction factor. We have also introduced the
shear stress γ and denoted by (·, ·) the standard L2 inner product. Finally, a is the
H1

0(Ω)
2 elliptic bilinear form defined by

a(β, η) :=
E

12(1− ν2)

∫
Ω

 2∑
i,j=1

(1− ν)εij(β)εij(η) + ν div β div η
 ,

with εij(β) =
1
2 (∂βi/∂xj+∂βj/∂xi) being the components of the linear strain tensor.

Let us remark that we have included in our formulation the shear load term
t2

12 (θ, η) since it arises naturally when considering the free vibration plate problem. In
fact, it is simple to see that the free vibration modes of the plate are determined by

t3a(β, η) + κt

∫
Ω

(∇w − β) · (∇v − η) = ω2

(
t

∫
Ω

ρwv +
t3

12

∫
Ω

ρ β · η
)

∀(η, v) ∈ H1
0(Ω)

2 ×H1
0(Ω),

where ω denotes the angular vibration frequency, β and w the rotation and transversal
displacement amplitudes, respectively, and ρ the plate density (see [13] for further
details). Thus, rescaling the problem with λ := ρω2/t2, we obtain the following,
which is the spectral problem associated to Problem 2.1.

Problem 2.2. Find λ ∈ R and 0 �= (β,w) ∈ H1
0(Ω)

2 ×H1
0(Ω) such that a(β, η) + (γ,∇v − η) = λ

[
(w, v) +

t2

12
(β, η)

]
∀(η, v) ∈ H1

0(Ω)
2 ×H1

0(Ω),

γ =
κ

t2
(∇w − β).

This paper deals with the finite element approximation of Problems 2.1 and 2.2.
It is well known that both are well-posed (see [9] and [13]). Furthermore, we will use
the following regularity result for the solution of (2.1) (see [2]):

‖β‖2,Ω + ‖w‖2,Ω + ‖γ‖0,Ω + t ‖γ‖1,Ω ≤ C
(
t2‖θ‖0,Ω + ‖f‖0,Ω

) ≤ C |(θ, f)|t ,(2.2)

where, for any open subset O of Ω and any integer k, ‖ · ‖k,O denotes the standard
norm of Hk(O) or Hk(O)2, as corresponds, and |(·, ·)|t is the norm in L2(Ω)2 × L2(Ω)
induced by the weighted inner product on the right-hand side of the first equation in
(2.1) (see [13]).
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2.2. Discrete problems. In what follows, we consider two lowest-degree meth-
ods on isoparametric quadrilateral meshes for the approximation of Problem 2.1: the
so-called MITC4 (see [7]) and an extension to quadrilaterals of a method introduced
in [12] that we call DL 4. Both methods are based on relaxing the shear terms in (2.1)
by introducing an interpolation operator called a reduction operator.

Let {Th} be a family of decompositions of Ω into convex quadrilaterals, satisfying
the usual condition of regularity (see, for instance, [19]); i.e., there exist constants
σ > 1 and 0 < � < 1 independent of h such that

hK ≤ σρK , |cosϑiK | ≤ �, i = 1, 2, 3, 4, ∀K ∈ Th,

where hK is the diameter of K, ρK the diameter of the largest circle contained in K,
and ϑiK , i = 1, 2, 3, 4, the four angles of K.

Let K̂ := [0, 1]2 be the reference element. We denote by Qi,j(K̂) the space of
polynomials of degree less than or equal to i in the first variable and to j in the
second one. Also, we set Qk(K̂) = Qk,k(K̂).

Let K ∈ Th. We denote by FK a bilinear mapping of K̂ onto K, with Jaco-
bian matrix and determinant denoted by DFK and JFK

, respectively. The regularity
assumptions above lead to

ch2
K ≤ JFK

≤ Ch2
K ,

with c and C depending only on σ and � (see [19]). In particular, JFK
> 0, and hence

FK is a one-to-one map. Let 'i, i = 1, 2, 3, 4, be the edges of K; then 'i = FK('̂i),

with '̂i being the edges of K̂. Let τ̂i be a unit vector tangent to '̂i on the reference
element; then τi := DFK τ̂i/‖DFK τ̂i‖ is a unit vector tangent to 'i on K (see Figure
2.1).

1
1

1

22

44

3

3

F

τ

1

1

K

τ

τ

τ

y

x

τ
K

K

Fig. 2.1. Bilinear mapping onto an element K ∈ Th.

Let

N (K̂) :=
{
p̂ : p̂ ∈ Q0,1(K̂)×Q1,0(K̂)

}
,
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and, from this space, we define through covariant transformation

N (K) :=
{
p : p ◦ FK = DF−t

K p̂, p̂ ∈ N (K̂)
}
.

Let us remark that the mapping between N (K) and N (K̂) is a kind of “Piola trans-
formation” for the “rot” operator, rot p := ∂p1/∂x2 − ∂p2/∂x1. (The Piola trans-
formation is defined for the “div” operator in, for example, [9].) Then we have the
following results which are easily established (see [23, 24]):∫


i

p · τi =
∫

̂i

p̂ · τ̂i, i = 1, 2, 3, 4,(2.3)

and

(rot p) ◦ FK = J−1
FK

r̂ot p̂ in K̂.(2.4)

We define the lowest-order rotated Raviart–Thomas space (see [21, 24])

Γh := {ψ ∈ H0(rot,Ω) : ψ|K ∈ N (K) ∀K ∈ Th} ,
which will be used to approximate the shear stress γ. We remark that, since Γh ⊂
H0(rot,Ω), the tangential component of a function in Γh must be continuous along
interelement boundaries and vanish on ∂Ω. In fact, the integrals (2.3) of these tan-
gential components are the degrees of freedom defining an element of Γh.

We consider the “interpolation” operator

R : H1(Ω)2 ∩H0(rot,Ω) −→ Γh,(2.5)

defined by (see [21]) ∫



Rψ · τ
 =
∫



ψ · τ
 ∀ edge ' of Th,(2.6)

where, from now on, τ
 denotes a unit vector tangent to '. Clearly, the operator R
satisfies ∀ψ ∈ H1(Ω)2 ∫

K

rot(ψ −Rψ) = 0 ∀K ∈ Th.(2.7)

Taking into account the rotation mentioned above, it is proved in Theorem III.4.4 of
[14] that

‖ rotRψ‖0,Ω ≤ C‖ψ‖1,Ω(2.8)

and

‖ψ −Rψ‖0,Ω ≤ Ch‖ψ‖1,Ω.(2.9)

To approximate the transverse displacements, we will use the space of standard
bilinear isoparametric elements

Wh :=
{
v ∈ H1

0(Ω) : v|K ∈ Q(K) ∀K ∈ Th
}
,

where, ∀K ∈ Th, Q(K) :=
{
p ∈ L2(K) : p ◦ FK ∈ Q1(K̂)

}
.
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The following lemma establishes some relations between the spaces Γh and Wh.
Lemma 2.1. The following properties hold:

∇Wh = {µ ∈ Γh : rotµ = 0}
and

R(∇w) = ∇(wI) ∀w ∈ H2(Ω),

where wI is the Lagrange interpolant of w on Wh.
Proof. For µ ∈ Γh and K ∈ Th, let µ̂ ∈ N (K̂) be such that µ|K ◦ FK = DF−t

K µ̂.

Then, according to (2.4), we have rotµ|K ◦ FK = J−1
FK

r̂ot µ̂. Hence, since JFK
> 0,

rotµ = 0 if and only if r̂ot µ̂ = 0.
On the other hand, note that if µ̂ ∈ N (K̂), then µ̂ = (a+bŷ, c+dx̂), with a, b, c, d ∈

R, and r̂ot µ̂ = d− b. Therefore, r̂ot µ̂ = 0 if and only if µ̂ = (a+ dŷ, c+ dx̂) = ∇̂v̂ for
v̂ = ax̂+ cŷ + dx̂ŷ ∈ Q1(K̂).

Thus rotµ|K = 0 if and only if µ|K = (DF−t
K µ̂) ◦ F−1

K = ∇v, with v = v̂ ◦ F−1
K ∈

Q(K).
To prove the second property, since we have already proved that ∇wI ∈ Γh, it

is enough to show that the degrees of freedom defining R(∇w) and ∇wI coincide.
Indeed, consider an edge ' with end points A and B as in Figure 2.2. Then,∫




R(∇w) · τ
 =
∫



∇w · τ
 = w(B)− w(A) = wI(B)− wI(A) =

∫



∇wI · τ
,

and we conclude the proof.

A
B

K

τ

Fig. 2.2. Geometry of K.

The two methods that we analyze in this paper differ only in the space used to
approximate the rotations. Let us now specify them:
MITC4: The spaces Wh and Γh are the ones defined above, whereas the space of

standard isoparametric bilinear functions is used for the rotations; namely,

H1
h :=

{
η ∈ H1

0(Ω)
2 : η|K ∈ Q(K)2 ∀K ∈ Th

}
.

DL 4: While for this methodWh and Γh are the same as forMITC4, the space for the
rotations is enriched by using a rotation of a space used for the approximation
of the Stokes problem in [14].

In fact, for each edge '̂i of K̂, i = 1, 2, 3, 4, let p̂i be cubic functions vanishing
on '̂j for j �= i. Namely, p̂1 = x̂ŷ(1− ŷ), p̂2 = x̂ŷ(1− x̂), p̂3 = ŷ(1− x̂)(1− ŷ),
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and p̂4 = x̂(1− x̂)(1− ŷ) (see Figure 2.1). Then we define pi := (p̂i ◦ F−1
K )τi,

and we set

H2
h :=

{
η ∈ H1

0(Ω)
2 : η|K ∈ Q(K)2 ⊕ 〈p1, p2, p3, p4〉 ∀K ∈ Th

}
.

From now on we use Hh to denote any of the two spaces H1
h or H2

h. In both meth-
ods we use R defined by (2.5)–(2.6) as reduction operator. Then, the discretization of
Problem 2.1 can be written in both cases as follows.

Problem 2.3. Find (βh, wh) ∈ Hh ×Wh such that a(βh, η) + (γh,∇v −Rη) = (f, v) +
t2

12
(θ, η) ∀(η, v) ∈ Hh ×Wh,

γh =
κ

t2
(∇wh −Rβh).

(2.10)

On the other hand, the discretization of Problem 2.2 is as follows.

Problem 2.4. Find λh ∈ R and 0 �= (βh, wh) ∈ Hh ×Wh such that a(βh, η) + (γh,∇v −Rη) = λh
[
(wh, v) +

t2

12
(βh, η)

]
∀(η, v) ∈ Hh ×Wh,

γh =
κ

t2
(∇wh −Rβh).

Existence and uniqueness of solution for Problem 2.3 follow easily (see [12]).
Regarding Problem 2.4, it leads to a well-posed generalized matrix eigenvalue problem,
since the bilinear form in the right-hand side of the first equation is an inner product.

3. H1 error estimates. To prove optimal error estimates in H1 norm, we will
use the abstract theory developed in [12]. In particular, sufficient conditions to obtain
such estimates have been settled in Theorem 3.1 of this reference. By virtue of Lemma
2.1, this theorem reads as follows in our case.

Theorem 3.1. Let Hh, Wh, Γh, and the operator R be defined as above. Let
(β,w, γ) and (βh, wh, γh) be the solutions of (2.1) and (2.10), respectively. If there

exist β̃ ∈ Hh and an operator Π : H0(rot,Ω) ∩H1(Ω)2 −→ Γh satisfying

‖β − β̃‖1,Ω ≤ Ch‖β‖2,Ω,(3.1)

‖η −Πη‖0,Ω ≤ Ch‖η‖1,Ω ∀η ∈ H1(Ω)2 ∩H0(rot,Ω),(3.2)

and

rot

(
t2

κ
Πγ +Rβ̃

)
= 0,(3.3)

then the following error estimate holds true:

‖β − βh‖1,Ω + t‖γ − γh‖0,Ω + ‖w − wh‖1,Ω ≤ Ch (‖β‖2,Ω + t‖γ‖1,Ω + ‖γ‖0,Ω) .

Then, our next step is to construct an approximation β̃ of β and an operator Π
satisfying the hypotheses of the previous theorem for each one of the methods MITC4
and DL 4.



1758 DURÁN, HERNÁNDEZ, HERVELLA-NIETO, LIBERMAN, RODRÍGUEZ

3.1. MITC4. Several studies have been carried out for this method in, for ex-
ample, [6], [12], and [17]. Since the variational equations for plates have a certain
similitude with those of the Stokes problem, the main results are based on properties
already known for the latter. An order h of convergence is obtained in those refer-
ences only for uniform meshes of square elements. Moreover, more regularity of the
solutions is also required. Although these results can be adapted for parallelogram
meshes, they cannot be extended to general quadrilateral ones.

In what follows we obtain error estimates optimal in order and regularity for
this method on somewhat more general meshes. We assume specifically the following
condition.

Assumption 3.1. The mesh Th is a refinement of a coarser partition T2h,
obtained by joining the midpoints of each opposite edge in each M ∈ T2h (called
macroelement). In addition, T2h is a similar refinement of a still coarser regular
partition T4h.

Let

Qh :=
{
qh ∈ L2

0(Ω) : qh|K = cK , cK ∈ R, ∀K ∈ Th
}
,

where L2
0(Ω) :=

{
q ∈ L2(Ω) :

∫
Ω
q = 0

}
. Note that, for parallelogram meshes, we

have Qh = rot Γh, but this does not hold for general quadrilateral meshes.
For each macroelement M ∈ T2h, we introduce four functions qi, i = 1, 2, 3, 4,

taking the values 1 and −1 according to the pattern of Figure 3.1.

1

1 1

1

q
1

1 1

q

1

1

q

1

1

q

1 1 1

1

1

1

2 3 4

|| |

|

|

|

Fig. 3.1. Bases for the macroelements.

Let

Qh4 := {qh ∈ Qh : qh|M = cMq4, cM ∈ R ∀M ∈ T2h} ,

and let Q̃h be its L2(Ω) orthogonal complement on Qh; then

Q̃h := {qh ∈ Qh : qh|M ∈ 〈q1, q2, q3〉 ∀M ∈ T2h} .

We associate to these spaces the subspace of H1
h defined by

H̃1
h :=

{
ηh ∈ H1

h :

∫
Ω

rot ηh qh = 0 ∀qh ∈ Qh4
}
.

The following lemma provides the approximation β̃ required by Theorem 3.1.
Moreover, this β̃ ∈ H̃1

h, and this fact will be used below to define the operator Π
required by the same theorem.
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Lemma 3.2. Let β ∈ H1
0(Ω). Then there exists β̃ ∈ H̃1

h such that∫
Ω

rot(β̃ − β)qh = 0 ∀qh ∈ Q̃h,

and the estimate (3.1) holds true.
Proof. The proof follows from the results in section VI.5.4 of [9] by changing

“div” to “rot” and rotating the fields 90◦, which in their turn are based on the results
for isoparametric elements in [22] (see also [19]).

Our next step is to define the operator Π satisfying the requirements of Theorem
3.1. To do this, we will use a particular projector P̃ onto rot Γh.

We have already mentioned that, in general, Qh �= rot Γh. In fact, it is simple to
show that

rot Γh =

{ ∑
K∈Th

cK
JFK

χK : cK ∈ R ∀K ∈ Th
}
∩ L2

0(Ω),(3.4)

where χK denotes the characteristic function of K.
For each macroelement M ∈ T2h, we consider the bilinear mapping FM as shown

in Figure 3.2. Therefore, for any ηh ∈ Γh we have

rot ηh|M =
1

JFM

4∑
i=1

ciχKi ,

where Ki are the four elements in M (see Figure 3.2).

F

3

12

4

2 1

3 4

M

1

1

K

K K

K
K K

K K

M

Fig. 3.2. Bilinear mapping on macroelements.

We define P̃ : L2
0(Ω) −→ rot Γh as follows: given p ∈ L2

0(Ω),

∀M =

4⋃
i=1

Ki ∈ T2h, P̃ p|M =

4∑
i=1

ci
JFM

χKi ,

with ci chosen such that∫
M

P̃ p qi =

∫
M

pqi, i = 1, 2, 3, and

∫
M

P̃ p q4 = 0.
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Straightforward computations show that P̃ is well defined by the equations above and
that they can be equivalently written∫

Ω

P̃ p qh =

∫
Ω

pqh ∀qh ∈ Q̃h and

∫
Ω

P̃ p qh = 0 ∀qh ∈ Qh4.(3.5)

The following properties of this operator will be used in what follows.
Lemma 3.3. The following estimates hold ∀p ∈ L2(Ω):

‖p− P̃ p‖0,Ω ≤ C‖p‖0,Ω,(3.6)

‖p− P̃ p‖−1,Ω ≤ Ch‖p‖0,Ω.(3.7)

Proof. To verify (3.6) it is enough to prove that ‖P̃ p‖0,Ω ≤ C‖p‖0,Ω. From the

definition of P̃ we have∫
M

(P̃ p)2 =

∫
M

P̃ p

(
4∑
i=1

ci
JFM

χKi

)
≤ 1

min
M
JFM

∫
M

P̃ p

(
4∑
i=1

ciχKi

)
.

On the other hand, if we write
∑4
i=1 ciχKi

in terms of the basis functions qi, we obtain∑4
i=1 ciχKi

=
∑4
i=1 diqi, with di related to ci by

d1
d2
d3
d4

 =
1

2


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1



c1
c2
c3
c4

 .
Hence

|di| ≤ 2 max
1≤j≤4

|cj |, i = 1, 2, 3, 4.

Therefore, from the definition of P̃ we have∫
M

P̃ p

(
4∑
i=1

ciχKi

)
=

∫
M

P̃ p

(
4∑
i=1

diqi

)
=

3∑
i=1

di

(∫
M

pqi

)

≤ ‖p‖0,M
(

3∑
i=1

|di| ‖qi‖0,M
)
≤ C|M |1/2‖p‖0,M

(
max

1≤j≤4
|cj |
)

≤ Cmax
M
JFM
‖p‖0,M‖P̃ p‖0,M ,

where we have used that∫
Kj

(P̃ p)2 = c2j

∫
Kj

1

J2
FM

≥ |Kj |
max
M
J2
FM

c2j

and that |M | ≤ C|Kj |, j = 1, 2, 3, 4, with C depending only on σ and �. Now, using
the inequalities above and noting that, for a quadrilateral regular mesh, maxM JFM

≤
CminM JFM

with a constant C independent of h, we obtain (3.6).

To verify (3.7), let P : L2(Ω) −→ Q̃h be the orthogonal projection onto Q̃h. Let
v ∈ H1

0(Ω) be such that ‖v‖1,Ω = 1. By the definition of P , (3.6), and the fact that

Q̃h contains the piecewise constants over T2h, we have
(p− P̃ p, v) = (p− P̃ p, v − Pv) ≤ ‖p− P̃ p‖0,Ω‖v − Pv‖0,Ω

≤ C‖p‖0,Ω‖v − Pv‖0,Ω ≤ Ch‖p‖0,Ω‖v‖1,Ω.
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Thus we conclude (3.7).
Now we are in order to define an operator Π as required in Theorem 3.1.
Lemma 3.4. Let (β,w, γ) be the solution of (2.1) and β̃ ∈ H̃1

h be as in Lemma
3.2. Then there exists an operator Π : H0(rot,Ω) ∩ H1(Ω)2 −→ Γh such that (3.2)
and (3.3) hold true.

Proof. For η ∈ H0(rot,Ω) ∩ H1(Ω)2, let Πη := R(η − Lη), where Lη := curlφ :=
(−∂φ/∂x2, ∂φ/∂x1), with φ ∈ H1(Ω) being a solution of

−∆φ = rotRη − P̃ (rotRη) in Ω,

with homogeneous Neumann boundary conditions. Note that this problem is compat-
ible since its right-hand side belongs to rot Γh ⊂ L2

0(Ω). Then the standard estimates
for the Neumann problem yield

‖Lη‖m+1,Ω ≤ ‖ rotRη − P̃ (rotRη)‖m,Ω, m = −1, 0.(3.8)

Also note that

rotLη = −∆φ = rotRη − P̃ (rotRη).(3.9)

From the definition of the operator Π, we have

‖η −Πη‖0,Ω ≤ ‖η −Rη‖0,Ω + ‖RLη‖0,Ω.
The first term on the right-hand side is bounded by (2.9), while for the second term
we use again (2.9), (3.8), Lemma 3.3, and (2.8) to obtain

‖RLη‖0,Ω ≤ ‖Lη −RLη‖0,Ω + ‖Lη‖0,Ω ≤ Ch‖Lη‖1,Ω + ‖Lη‖0,Ω
≤ Ch‖ rotRη − P̃ (rotRη)‖0,Ω + C‖ rotRη − P̃ (rotRη)‖−1,Ω

≤ Ch‖ rotRη‖0,Ω ≤ Ch‖η‖1,Ω.
Thus we conclude (3.2).

To prove (3.3), note that (2.7) and Lemma 3.2 yield∫
Ω

rot
[
R(β̃ − β)

]
qh = 0 ∀qh ∈ Q̃h,

whereas, since β̃ ∈ H̃1
h, from (2.7) and the definition of H̃1

h we have∫
Ω

rotRβ̃ qh =

∫
Ω

rot β̃ qh = 0 ∀qh ∈ Qh4.

Hence, since rotRβ̃ ∈ rot Γh, from (3.5) we conclude that P̃ (rotRβ) = rotRβ̃. There-
fore,

rotRβ̃ = P̃ (rotRβ) = − t
2

κ
P̃ (rotRγ),(3.10)

because of the definition of γ in (2.1) and the fact that rotR(∇w) vanishes, as a
consequence of Lemma 2.1.

On the other hand, note that

rotRLγ = rotLγ.(3.11)
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Indeed, rotRLγ and rotLγ both belong to rot Γh (the latter because of (3.9)). Then,
from the characterization (3.4) of this space, it is enough to verify that

∫
K
rotRLγ =∫

K
rotLγ ∀K ∈ Th, which in its turn is a consequence of (2.7). Therefore, from the

definition of Π, (3.11), and (3.9), we obtain

rotΠγ = rotR(γ − Lγ) = rotRγ − rotLγ = P̃ (rotRγ),

which together with (3.10) allows us to conclude (3.2).

3.2. DL 4. The convergence of this method follows immediately from that of
MITC4. However, we have an alternative proof valid for any regular mesh without
the need of Assumption 3.1.

In this case, to define the approximation β̃ of β and the operator Π satisfying the
hypotheses of Theorem 3.1, we use some known results for the Stokes problem (see
Girault and Raviart [14]).

Lemma 3.5. There exists β̃ ∈ H2
h such that (3.1) holds true. Furthermore,

Rβ̃ = Rβ.
Proof. By using results from [14] (section 3.1, chapter II) and taking into account

a rotation of the space H(div,Ω), it follows that for β ∈ H1
0(Ω)

2 there exists β̃ ∈ H2
h

such that ∫



(β̃ − β) · τ
 = 0 ∀' ∈ Th,

and

|β̃ − β|m,Ω ≤ Chk−m|β|k,Ω, m = 0, 1, k = 1, 2.

Then R(β̃ − β) = 0 because of the definition of R, whereas (3.1) corresponds to the
inequality above for k = 2 and m = 1.

Lemma 3.6. There exists an operator Π : H0(rot,Ω) ∩ H1(Ω)2 −→ Γh such that
(3.3) and (3.2) hold.

Proof. Because of the previous lemma we have R(β̃−β) = 0. On the other hand,
rotR(∇w) = 0 because of Lemma 2.1. Then it is enough to take Π = R to obtain
(3.3), whereas (3.2) follows from (2.9).

3.3. Main result in H1 norm. Now we are in position to establish the error
estimates. As above, in the case of MITC4, we consider meshes satisfying Assumption
3.1.

Theorem 3.7. Given (θ, f) ∈ L2(Ω)2 × L2(Ω), let (β,w) and (βh, wh) be the
solutions of Problems 2.1 and 2.3, respectively. Then there exists a constant C, inde-
pendent of t and h, such that

‖β − βh‖1,Ω + ‖w − wh‖1,Ω ≤ Ch|(θ, f)|t.
Proof. The proof is a direct consequence of Lemmas 3.2, 3.4, 3.5 and 3.6, Theorem

3.1, and the a priori estimate (2.2).

4. L2 error estimates. Our next goal is to prove L2 error estimates optimal in
order and regularity. To do this, we follow the techniques in [13], where a triangular
element similar to DL 4 is analyzed, although the arguments therein cannot be directly
applied to our case. Let us remark that, in the case of MITC4, this result completes
the analysis carried out in [10, 18] for higher-order methods.
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Our proofs are based on a standard Nitsche duality argument. However, since
the methods are nonconforming, additional consistency terms also arise. Then higher-
order estimates must be proved for these terms too, which is the most delicate part
of the paper.

First, we introduce the dual problem corresponding to (2.1). Let (ϕ, u)∈H1
0(Ω)

2×
H1

0(Ω) be the solution of
a(η, ϕ) + (∇v − η, δ) = (v, w − wh) + (η, β − βh)

∀(η, v) ∈ H1
0(Ω)

2 ×H1
0(Ω),

δ =
κ

t2
(∇u− ϕ).

(4.1)

By taking η = 0 in (4.1), we have

div δ = wh − w.(4.2)

An a priori estimate analogous to (2.2) yields for this problem

‖ϕ‖2,Ω + ‖u‖2,Ω + ‖δ‖0,Ω + t ‖δ‖1,Ω ≤ C (‖β − βh‖0,Ω + ‖w − wh‖0,Ω) .(4.3)

The arguments in the proof of Lemma 3.4 in [13] can be used in our case leading
to the following result.

Lemma 4.1. Given (θ, f) ∈ L2(Ω)2 × L2(Ω), let (β,w, γ) and (βh, wh, γh) be the
solutions of (2.1) and (2.10), respectively. Let (ϕ, u, δ) be the solution of (4.1). Let
ϕ̃ ∈ Hh be the vector field associated to ϕ by Lemma 3.2 or 3.5 for MITC4 or DL 4,
respectively. Then there exists a constant C, independent of t and h, such that

‖β − βh‖0,Ω + ‖w − wh‖0,Ω ≤ Ch2|(θ, f)|t + |(βh −Rβh, δ)|+ |(γ, ϕ̃−Rϕ̃)|‖β − βh‖0,Ω + ‖w − wh‖0,Ω .

Our next step is to prove that the last term in the inequality above is O(h2) too.
A similar result has been proved in [13] in the case of triangular meshes. That proof
relies on a technical result for the rotated Raviart–Thomas interpolant R (Lemma 3.3
of that reference). It is easy to check that the arguments given there do not apply for
quadrilateral elements. Therefore, we need to introduce new arguments, and this is
the aim of the following lemma.

Lemma 4.2. Given ζ ∈ H(div,Ω) and ψ ∈ H1
0(Ω)

2, there holds

|(ζ, ψ −Rψ)| ≤ Ch2

(∑
K

|Rψ − ψ|21,K
)1/2

‖div ζ‖0,Ω + Ch‖ rot(Rψ − ψ)‖0,Ω ‖ζ‖0,Ω.

Proof. For K ∈ Th, let sK ∈ H1(K) be a solution of

−∆sK = rot(Rψ − ψ) in K,

with homogeneous Neumann boundary conditions. By virtue of (2.7) we know that
the above problem is compatible. Hence sK satisfies

‖ curl sK‖m+1,K ≤ C‖ rot(Rψ − ψ)‖m,K , m = −1, 0.(4.4)

The Laplace equation above can be equivalently written

rot [curl sK − (Rψ − ψ)] = 0,
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and, hence, there exists rK ∈ H1(K) (unique up to an additive constant) such that

∇rK = curl sK − (Rψ − ψ).(4.5)

Moreover, from the homogeneous Neumann boundary condition satisfied by sK , we
have ∇rK · τ
 = −Rψ · τ
 +ψ · τ
 for each edge ' of K. Thus, if we define G ∈ L2(Ω)2

such that G|K = ∇rK , then G ∈ H0(rot,Ω) and rotG = 0.
Hence there exists r ∈ H1(Ω)/R such that G = ∇r in Ω. Furthermore, since

G ∈ H0(rot,Ω), r can be chosen in H1
0(Ω) and the additive constants defining rK on

each K ∈ Th can be fixed as to satisfy r|K = rK .
Let A and B be as in Figure 2.2. Then, because of (2.6), we have

r(B) = r(A) +

∫



∇rK · τ
 = r(A) +
∫



(−Rψ + ψ) · τ
 = r(A).

Thus r vanishes at all nodes of Th, since r|∂Ω = 0. Hence a standard scaling argument
on each element K yields ‖r‖0,K ≤ Ch2|rK |2,K (see, for instance, [11]), and then, by
using (4.5) and (4.4), we have

‖r‖0,K ≤ Ch2 |∇rK |1,K ≤ Ch2
(
|curl sK |1,K + |Rψ − ψ|1,K

)
(4.6)

≤ Ch2
[
‖rot(Rψ − ψ)‖0,K + |Rψ − ψ|1,K

]
≤ Ch2 |Rψ − ψ|1,K .

On the other hand, let (·, ·)K be the usual inner product in L2(K) and P the
orthogonal projection onto the constant functions. Because of (2.7), we have, ∀η ∈
H1

0(Ω),(
rot(Rψ − ψ), η)

K

‖η‖1,K =

(
rot(Rψ − ψ), η − Pη)

K

‖η‖1,K ≤ ‖rot(Rψ − ψ)‖0,K ‖η − Pη‖0,K‖η‖1,K
.

Hence

‖rot(Rψ − ψ)‖−1,K ≤ Ch ‖rot(Rψ − ψ)‖0,K .

Now, let S ∈ L2(Ω)2 be such that S|K = curl sK . Therefore, because of (4.4) we have

‖S‖20,Ω =
∑
K∈Th

‖curl sK‖20,K ≤
∑
K∈Th

‖rot(Rψ − ψ)‖2−1,K(4.7)

≤ Ch2
∑
K∈Th

‖rot(Rψ − ψ)‖20,K ≤ Ch2 ‖rot(Rψ − ψ)‖20,Ω .

Finally, from (4.5) we obtain

|(ζ, ψ −Rψ)| =
∣∣∣∣∫

Ω

ζ · ∇r +
∫

Ω

ζ · S
∣∣∣∣ ≤ ‖div ζ‖0,Ω ‖r‖0,Ω + ‖ζ‖0,Ω ‖S‖0,Ω ,

and the lemma follows by using (4.6) and (4.7).
To obtain a bound of the consistency term in Lemma 4.1, there remains only to

estimate the terms involving (Rψ − ψ) of the previous lemma. To this aim, we use
the analogue of Theorem 4.3 in [24] applied to our situation in the space H(rot,Ω),
which reads

|ψ −Rψ|1,K ≤ C
(
|ψ|1,K + hK |rotψ|1,K

)
≤ ‖ψ‖2,K(4.8)
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and

‖rot(ψ −Rψ)‖0,K ≤ C
(
δK
hK
|rotψ|0,K + hK |rotψ|1,K

)
,(4.9)

where δK is a measure of the deviation of the quadrilateral K from a parallelogram,
as defined in Figure 4.1.

vv

vδK
=K

v -v=

2 1

v12

Fig. 4.1. Geometrical definition of δK .

Note that for shape-regular meshes clearly δK/hK ≤ C ∀K ∈ Th. On the other
hand, {Th} is said to be a family of asymptotically parallelogram meshes when there
exists a constant C such that maxK∈Th (δK/hK) ≤ Ch for all the meshes.

Now we are in position to estimate the consistency term in Lemma 4.1.
Lemma 4.3. Let βh, δ, γ, and ϕ̃ be as in Lemma 4.1. Then there holds

|(βh −Rβh, δ)|+ |(γ, ϕ̃−Rϕ̃)|
‖β − βh‖0,Ω + ‖w − wh‖0,Ω ≤ Ch

(
h+ t max

K∈Th
δK
hK

)
|(θ, f)|t.

Proof. First, we have

|(βh −Rβh, δ)| ≤
∣∣((βh − β)−R(βh − β), δ)∣∣+ |(β −Rβ, δ)| .

By using (2.9), Theorem 3.7, and (4.3), we obtain∣∣((βh − β)−R(βh − β), δ)∣∣ ≤ Ch ‖βh − β‖1,Ω ‖δ‖0,Ω ≤ Ch2 |(θ, f)|t ‖δ‖0,Ω
≤ Ch2 |(θ, f)|t

(
‖β − βh‖0,Ω + ‖w − wh‖0,Ω

)
.

On the other hand, by the definition of γ in (2.1) and the estimate (2.2), we have

|rotβ|0,K =
t2

κ
|rot γ|0,K ≤ Ct |(θ, f)|t .

Then, by using Lemma 4.2, (4.8), (4.9), the estimate above, (2.2), (4.2), and (4.3),
we have

|(β −Rβ, δ)| ≤ Ch2

(∑
K

|Rβ − β|21,K
)1/2

‖div δ‖0,Ω + Ch ‖rot(Rβ − β)‖0,Ω ‖δ‖0,Ω

≤ Ch2 ‖β‖2,Ω ‖div δ‖0,Ω + Ch

(
max
K∈Th

δK
hK
|rotβ|0,Ω + h |rotβ|1,Ω

)
‖δ‖0,Ω

≤ Ch2 |(θ, f)|t ‖div δ‖0,Ω + Ch

(
h+ t max

K∈Th
δK
hK

)
|(θ, f)|t ‖δ‖0,Ω

≤ Ch
(
h+ t max

K∈Th
δK
hK

)
|(θ, f)|t

(
‖β − βh‖0,Ω + ‖w − wh‖0,Ω

)
.
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The term |(γ, ϕ̃ − Rϕ̃)| can be bounded almost identically by using Lemma 3.2
for MITC4 or Lemma 3.5 for DL 4 to estimate ‖ϕ̃− ϕ‖1,Ω and the fact that

−div γ = f in Ω,

which follows by taking η = 0 in the first equation of (2.1). Therefore, we obtain

|(γ, ϕ̃−Rϕ̃)| ≤ Ch
(
h+ t max

K∈Th
δK
hK

)
|(θ, f)|t

(
‖β − βh‖0,Ω + ‖w − wh‖0,Ω

)
,

which allows us to conclude the proof.
Finally, we can establish an L2(Ω) error estimate. As above, in the case of MITC4

elements, we consider meshes satisfying Assumption 3.1.
Theorem 4.4. Given (θ, f) ∈ L2(Ω)2 × L2(Ω), let (β,w) and (βh, wh) be the

solutions of Problems 2.1 and 2.3, respectively. Then there exists a constant C, inde-
pendent of t and h, such that

‖β − βh‖0,Ω + ‖w − wh‖0,Ω ≤ Ch
(
h+ t max

K∈Th
δK
hK

)
|(θ, f)|t .

Proof. The proof is a direct consequence of Lemmas 4.1 and 4.3.
Corollary 4.5. The following error estimate holds for any family of asymptot-

ically parallelogram meshes:

‖β − βh‖0,Ω + ‖w − wh‖0,Ω ≤ Ch2 |(θ, f)|t .
Remark 4.1. The asymptotically parallelogram assumption on the meshes is not

necessary as long as h > αt for α fixed. Indeed, according to Theorem 4.4, for general
regular meshes with h > αt, we have

‖β − βh‖0,Ω + ‖w − wh‖0,Ω ≤ Cαh2|(θ, f)|t.
Note that the condition h > αt is fulfilled in practice for reasonably large values of α.

5. The spectral problem. The aim of this section is to study how the eigen-
values and eigenfunctions of Problem 2.4 approximate those of Problem 2.2. We do
this in the framework of the abstract spectral approximation theory as stated, for
instance, in the monograph by Babuška and Osborn [5]. In order to use this the-
ory, we define operators T and Th associated to the continuous and discrete spectral
problems, respectively.

We consider the operator

T : L2(Ω)2 × L2(Ω) −→ L2(Ω)2 × L2(Ω),

defined by T (θ, f) := (β,w), where (β,w) ∈ H1
0(Ω)

2×H1
0(Ω) is the solution of Problem

2.1. Note that T is compact as a consequence of estimate (2.2). Since the operator is
clearly self-adjoint with respect to (·, ·)t, then, apart from µ = 0, its spectrum consists
of a sequence of finite multiplicity real eigenvalues converging to zero. Note that λ is
an eigenvalue of Problem 2.2 if and only if µ := 1/λ is an eigenvalue of T , with the
same multiplicity and corresponding eigenfunctions.

As shown in [13], each eigenvalue µ of Problem 2.1 converges to some limit µ0

when the thickness t→ 0. Indeed, µ0 is an eigenvalue of the operator associated with
the Kirchhoff model of the same plate (see Lemma 2.1 in [13]). From now on, for
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simplicity, we assume that µ = 1/λ is an eigenvalue of T which converges to a simple
eigenvalue µ0, as t goes to zero (see section 2 in [13] for further discussions).

Now, analogously to the continuous case, we introduce the operator

Th : L2(Ω)2 × L2(Ω) −→ L2(Ω)2 × L2(Ω),

defined by Th(θ, f) := (βh, wh), where (βh, wh) ∈ Hh×Wh is the solution of Problem
2.3. The operator Th is also self-adjoint with respect to (·, ·)t. Clearly, the eigenvalues
of Th are given by µh := 1/λh, with λh being the strictly positive eigenvalues of
Problem 2.4, and the corresponding eigenfunctions coincide.

As a consequence of Theorem 3.7, for each simple eigenvalue µ of T , there is
exactly one eigenvalue µh of Th converging to µ as h goes to zero (see, for instance,
[16]). The following theorem shows optimal t-independent error estimates. Let us
remark that the results of this theorem are valid for both methods MITC4 and DL 4,
although, for the former, under Assumption 3.1 on the meshes as in the previous
section.

Theorem 5.1. Let λ and λh be simple eigenvalues of Problems 2.2 and 2.4,
respectively, such that λh → λ as h → 0. Let (β,w) and (βh, wh) be corresponding
eigenfunctions normalized in the same manner. Then, under the assumptions stated
above, there exists C > 0 such that, for t and h small enough, there holds

‖β − βh‖1,Ω + ‖w − wh‖1,Ω ≤ Ch.
Furthermore, for any family of asymptotically parallelogram meshes, there hold

‖β − βh‖0,Ω + ‖w − wh‖0,Ω ≤ Ch2

and

|λ− λh| ≤ Ch2.

Proof. The proof, which relies on Theorem 3.7 and Corollary 4.5, is essentially
the same as those of Theorems 2.1, 2.2, and 2.3 in [13].

6. Numerical experiments. In this section, we report some numerical exper-
iments carried out with both methods applied to the spectral problem, Problem 2.2.

First, we have tested the two methods by using different meshes, not necessar-
ily satisfying the assumptions in the theorems above. We have considered a square
clamped moderately thick plate of side-length L and thickness-to-span ratio t/L = 0.1.
We report the results obtained with both types of elements using the following three
families of meshes:
T U
h consists of uniform subdivisions of the domain into N × N subsquares for N =

4, 8, 16, . . . (see Figure 6.1). Clearly, these are parallelogram meshes satisfying
Assumption 3.1.

T A
h consists of “uniform” refinements of a nonuniform mesh obtained by splitting the

square into four quadrilaterals. Each refinement step is obtained by subdi-
viding each quadrilateral into the other four, by connecting the midpoints
of the opposite edges. Thus we obtain a family of N × N asymptotically
parallelogram-shape-regular meshes as shown in Figure 6.2. Furthermore, for
N = 4, 8, 16, . . ., these meshes satisfy Assumption 3.1.

T T
h consists of partitions of the domain into N×N congruent trapezoids, all similar to

the trapezoid with vertices (0, 0), (1/2, 0), (1/2, 2/3), and (0, 1/3), as shown
in Figure 6.3. Clearly, these are not asymptotically parallelogram meshes and
they do not satisfy Assumption 3.1.
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N = 4 N = 8 N = 16

Fig. 6.1. Uniform square meshes T U
h .

N = 4 N = 8 N = 16

Fig. 6.2. Asymptotically parallelogram meshes T A
h .

N = 4 N = 8 N = 16

Fig. 6.3. Trapezoidal meshes T T
h .

Let us remark that the third family was used in [3, 4] to show that the order of
convergence of some finite elements deteriorate on these meshes in spite of the fact
that they are shape-regular.

We have computed approximations of the free-vibration angular frequencies ω =
t
√
λ/ρ corresponding to the lowest-frequency vibration modes of the plate. In order

to compare the obtained results with those in [1], we present the computed frequencies
ωhmn in the nondimensional form

ω̂mn := ωhmnL

[
2(1 + ν)ρ

E

]1/2
,

m and n being the numbers of half-waves occurring in the mode shapes in the x and
y directions, respectively.

Tables 6.1 and 6.2 show the four lowest-vibration frequencies computed by our
method with successively refined meshes of each type, T U

h , T A
h , and T T

h . Each table
also includes the values of the vibration frequencies obtained by extrapolating the
computed ones as well as the estimated order of convergence. Finally, each table also
includes in its last column the results reported in [1]. In every case, we have used a
Poisson ratio ν = 0.3 and a correction factor k = 0.8601. The reported nondimensional
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frequencies are independent of the remaining geometrical and physical parameters,
except for the thickness-to-span ratio.

Table 6.1
Scaled vibration frequencies ω̂mn computed with MITC4.

Mesh Mode N = 16 N = 32 N = 64 Extrap. Order [1]
ω̂11 1.6055 1.5946 1.5919 1.5910 2.01 1.591

T U
h ω̂21 3.1042 3.0550 3.0429 3.0389 2.03 3.039

ω̂12 3.1042 3.0550 3.0429 3.0389 2.03 3.039
ω̂22 4.3534 4.2850 4.2681 4.2625 2.02 4.263
ω̂11 1.6073 1.5951 1.5921 1.5911 2.01 1.591

T A
h ω̂21 3.1094 3.0563 3.0433 3.0390 2.02 3.039

ω̂12 3.1190 3.0586 3.0438 3.0390 2.03 3.039
ω̂22 4.3711 4.2894 4.2692 4.2626 2.02 4.263
ω̂11 1.6112 1.5961 1.5923 1.5910 1.99 1.591

T T
h ω̂21 3.1129 3.0575 3.0436 3.0388 1.99 3.039

ω̂12 3.1306 3.0618 3.0446 3.0388 2.00 3.039
ω̂22 4.3916 4.2955 4.2708 4.2622 1.96 4.263

Table 6.2
Scaled vibration frequencies ω̂mn computed with DL 4.

Mesh Mode N = 16 N = 32 N = 64 Extrap. Order [1]
ω̂11 1.5956 1.5922 1.5913 1.5910 1.98 1.591

T U
h ω̂21 3.0711 3.0470 3.0409 3.0388 1.99 3.039

ω̂12 3.0711 3.0470 3.0409 3.0388 1.99 3.039
ω̂22 4.3136 4.2754 4.2657 4.2624 1.98 4.263
ω̂11 1.5929 1.5915 1.5912 1.5910 1.94 1.591

T A
h ω̂21 3.0592 3.0441 3.0402 3.0388 1.96 3.039

ω̂12 3.0732 3.0476 3.0411 3.0389 1.98 3.039
ω̂22 4.3136 4.2756 4.2658 4.2624 1.96 4.263
ω̂11 1.5927 1.5914 1.5911 1.5910 2.21 1.591

T T
h ω̂21 3.0606 3.0445 3.0403 3.0388 1.94 3.039

ω̂12 3.0654 3.0453 3.0405 3.0390 2.05 3.039
ω̂22 4.3131 4.2754 4.2657 4.2623 1.96 4.263

It can be clearly seen that both methods converge for the three types of meshes
with an optimal O(h2) order. Hence none of the two particular assumptions on the
meshes (Assumption 3.1 and the assumption of being asymptotically parallelogram)
seem to be actually necessary.

As a second test, we have made a numerical experiment to assess the stability of
the methods as the thickness t goes to zero. We have used a sequence of clamped plates
with decreasing values of the thickness-to-span ratios: t/L = 0.1, 0.01, 0.001, 0.0001.
All the other geometrical and physical parameters have been taken as in the previous
test.

We have computed again approximations of the free-vibration angular frequencies
ω = t

√
λ/ρ. The quotients ω/t are known to converge to the corresponding vibration

frequencies of an identical Kirchhoff plate (i.e., to the frequencies obtained from the
Kirchhoff model for the deflection of a similar zero-thickness ideal plate; see Lemma
2.1 from [13]). Because of this, we present now the computed frequencies ωhmn scaled
in the following manner:

ω̃mn := ωhmn
L

t

[
2(1 + ν)ρ

E

]1/2
.
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Table 6.3
Scaled vibration frequency ω̃11 computed with DL 4 for different thickness-to-span ratios t/L.

Mesh t/L N = 16 N = 32 N = 64 Extrap. Order
0.1 15.9561 15.9220 15.9133 15.9104 1.98
0.01 17.5778 17.5485 17.5412 17.5387 1.99

T U
h 0.001 17.5975 17.5685 17.5612 17.5588 2.00

0.0001 17.5976 17.5687 17.5614 17.5590 2.00
0 (extrap.) 17.5977 17.5687 17.5614 17.5590 2.00

0.1 15.9286 15.9151 15.9116 15.9104 1.94
0.01 17.5368 17.5382 17.5385 17.5387 1.87

T A
h 0.001 17.5563 17.5580 17.5586 17.5588 1.74

0.0001 17.5565 17.5582 17.5588 17.5590 1.74
0 (extrap.) 17.5565 17.5582 17.5588 17.5590 1.76

0.1 15.9272 15.9141 15.9113 15.9105 2.21
0.01 17.5681 17.5450 17.5395 17.5377 2.05

T T
h 0.001 17.5901 17.5671 17.5608 17.5585 1.89

0.0001 17.5903 17.5673 17.5611 17.5588 1.89
0 (extrap.) 17.5903 17.5674 17.5611 17.5588 1.89

The obtained results have been qualitatively similar for both methods. We report
only those obtained with DL 4, since the performance of MITC4 has been assessed in
many other papers (see, for instance, [8], as well as [15] for the vibration problem).

We present in Table 6.3 the results for the lowest-frequency vibration mode, with
the same meshes as in the previous test. In each case, for each thickness-to-span
ratio t/L, we have computed again an extrapolated, more accurate value of the scaled
vibration frequency and the estimated order of convergence. Finally we have also
estimated by extrapolation the limit values of the scaled frequencies ω̃mn as t goes
to zero.

Table 6.4
Extrapolated values as (t/L) → 0 of the scaled vibration frequencies ω̃mn computed with DL 4.

Mesh Mode N = 16 N = 32 N = 64 Extrap. Order
ω̂11 17.5977 17.5687 17.5614 17.5590 2.00

T U
h ω̂21 36.2064 35.9115 35.8374 35.8125 1.99

ω̂12 36.2064 35.9115 35.8374 35.8126 1.99
ω̂22 53.4123 52.9570 52.8428 52.8045 1.99
ω̂11 17.5565 17.5583 17.5588 17.5590 1.76

T A
h ω̂21 35.9947 35.8590 35.8243 35.8123 1.97

ω̂12 36.2003 35.9102 35.8371 35.8124 1.99
ω̂22 53.3174 52.9353 52.8374 52.8037 1.97
ω̂11 17.5904 17.5673 17.5611 17.5588 1.89

T T
h ω̂21 36.0770 35.8823 35.8303 35.8113 1.90

ω̂12 36.2500 35.9259 35.8412 35.8112 1.94
ω̂22 53.5074 52.9936 52.8526 52.7993 1.87

Note that the extrapolated values for each thickness-to-span ratio are almost
identical for the three meshes. Moreover, although the estimated orders of convergence
seem to deteriorate a bit as t/L goes to zero for the nonuniform meshes, the values
obtained with these meshes are better than those computed with the uniform mesh
(i.e., closer to the extrapolated ones), even for the coarser meshes. Therefore, this
test suggests that the method is locking-free for any kind of regular mesh.

Finally, we report in Table 6.4 the corresponding extrapolated values as t/L goes
to zero for the four lowest-scaled vibration frequencies. It can be seen from this table
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that the results are essentially the same as for ω̃11. Furthermore, the computed orders
of convergence are even closer to 2.

Further experiments with MITC4 have been reported in [15], including other
boundary conditions and the extension of this method to compute the vibration modes
of Naghdi shells.
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Abstract. The main purpose of this paper is to give numerical algorithms and the error analysis
for delay quadratic problems in the calculus of variations. These methods are new, efficient, and
accurate and have a global a priori error of O(h2), where h is the distance between any two successive
node points.

We also derive the results for the general, numerical, delay problem, but we focus on proving
our results in the simpler quadratic case since the extra technical numerical details have been given
previously by the second author. In addition, the authors have previously shown how to reformulate
general delay constrained problems in optimal control theory/constrained calculus of variations as
unconstrained delay problems. Thus our numerical results and methods will hold for these general
constrained problems also.

Finally, we note that our algorithm, which solves the stationary condition(s) numerically, avoids
the more difficult problems of piecing the solution of second order equations together and requires
less smoothness in the solution. Thus we replace difficult second order boundary value problems
with the easier task of approximating definite integrals involving first order derivatives.
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1. Introduction. The specific purpose of this paper is to give numerical meth-
ods and efficient algorithms for extremal values of functionals in the form

J(y) =
1

2

∫ b

a

[r(t)y′2(t) + r̄τ (t)y′2τ (t) + p(t)y2(t) + p̄τ (t)y2τ (t)]dt,(1.1)

where yτ (t) ≡ y(t − τ), etc. and 0 < τ < b − a. This presentation represents the
quadratic form theory for delay problems associated with the more general integral

I(y) =

∫ b

a

f(t, y, y′, yτ , y′τ )dt.(1.2)

For either (1.1) or (1.2), we assume

y(t) = α(t), t ∈ [a− τ, α],(1.3)

and the usual smoothness conditions as in [3] to pose a well-defined problem.
The problems of the above type have been considered by several investigators.

Eller and Aggarwal [5] presented an optimal control solution for a linear time varying
system with delay. The formulation is complex because it requires solution of a system
of partial differential equations. Several investigators have used Walsh, block pulse,
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shifted Legendre, and other polynomial approaches to solve linear and nonlinear op-
timal control problems with delay [4, 5, 9, 11, 14]. Although these papers develop
algorithms to solve the problems, they do not provide convergence proof for the al-
gorithms. References [12] and [10, 13, 15] presented formulations and algorithms for
optimal control computations for linear and nonlinear time delay systems. Although
these papers provide some error bound and convergence criteria, they do not develop
expressions for the order of convergence.

A complete variational theory for (1.2) has been given by the authors in [3, 1, 2],
including constrained delay problems in optimal control theory/calculus of variations.
Thus our methods in this paper will allow us to obtain numerical results for delay
variational problems with linear constraints and, with a little more work, a complete
numerical theory for general, constrained, delay problems. We have chosen to concen-
trate on (1.1) since the results are so important in applied problems, and by doing so
we will avoid difficult technical problems and problems of exposition for the reader.

Our paper is divided as follows. In section 2 we give the basic variational theory
for (1.1). This motivates section 3, where we derive our basic algorithm for (1.1). In
section 4 we derive the local error for our algorithm and then our main result, that
the algorithm has a global a priori error of O(h2), where h is the distance between
node points.

In section 5 we derive our basic results a second way, using the more general
results for (1.2) applied to (1.1). In section 6 we consider an example to demonstrate
our numerical results.

2. The basic variational theory. The purpose of this section is to derive
the necessary analytic conditions for the stationary conditions for our delay problem
in (1.1), which, in turn, leads to our numerical algorithm in section 4. The three
conditions we obtain, which are necessary (and sufficient) for the stationary condition
J ′(y, z) = 0 for all admissible arcs z(t), exactly yield the tools to get an analytic/closed
form solution if one can be easily calculated.

We will see in section 4 that our numerical methods follow from solving J ′(yh, zk)=
0, where zk is the kth linear spline element and yh(t) is the numerical solution for
step size h.

Thus we have the following analytic results for (1.1).
Theorem 1. If y(t) yields an extremal value for J(y) in (1.1), then

(i) r(t)y′(t) =
∫ t
b−τ p(s)y(s)ds+ c1 or d

dt (ry
′) = py for b− τ < t < b,

(i)T y′(b) = 0 if y(b) is not given,

(ii) R(t)y′(t) =
∫ t
a
P (s)y(s)ds+ c2 or d

dt (Ry
′) = Py for a < t < b− τ , and

(ii)T R(t)y′(t)|(b−τ)− = r(t)y′(t)|(b−τ)+ ,
where c1 and c2 are constants and

R(t) = [r(t) + r̄(t+ τ)], P (t) = [p(t) + p̄(t)].(2.1)

We note that (i) is the well-known Euler–Lagrange equation for nondelay prob-
lems which, in this case, holds on b − τ < t < b while (ii) is the same with the
delay. Condition (i)T is the expected transversality condition at t = b. There is no
transversality condition at t = a since y(a) = α(a) is specified in (1.3). Condition
(ii)T is a piecing or consistency condition for the two second order equations. Thus
we have two equations and three boundary conditions as required. Surprisingly, this
delay problem, which initially looks quite formidable, can be profitably viewed as a
translation problem on a < t < b − τ , a classical problem on b − τ < t < b, and a
consistency condition at t = b− τ .
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To obtain these results we begin with F ′(0) = 0, where F (ε) = J(y + εz), ε in R.
Thus

0 =
d

dε
J(y + εz)

∣∣∣∣
ε=0

= J ′(y, z) =

∫ b

a

[r(t)y′(t)z′(t) + r̄τ (t)y′τ (t)z′τ (t) + p(t)y(t)z(t)

+ p̄τ (t)yτ (t)zτ (t)]dt

=

∫ b−τ

a

{[r(t) + r̄(t+ τ)]y′(t)z′(t) + [p(t) + p̄(t+ τ)]y(t)z(t)}dt

+

∫ b

b−τ
(r(t)y′(t)z′(t) + p(t)y(t)z(t))dt

=

∫ b−τ

a

[R(t)y′(t)z′(t) + P (t)y(t)z(t)]dt+

∫ b

b−τ
(r(t)y′(t)z′(t) + p(t)y(t)z(t))dt

=

∫ b−τ

a

[
R(t)y′(t)−

∫ t

a

P (s)y(s)ds

]
z′(t)dt

+

∫ b

b−τ

[
r(t)y′(t)−

∫ t

b−τ
p(s)y(s)ds

]
z′(t)dt

+ z(t)

∫ t

a

P (s)y(s)ds

∣∣∣∣b−τ
a

+ z(t)

∫ t

b−τ
p(s)y(s)ds

∣∣∣∣b
b−τ
,

where we have used integration by parts in the last equality and the change of variables
t̄ = t+ τ and then t = t̄ for the previous equality.

We obtain (i) by choosing z(t) ≡ 0 on [a, b−τ ] and z(b) = 0. Specifically, a funda-

mental lemma in the classical calculus of variations has the result that
∫ t2
t1
q(t)z′(t)dt =

0 for all z(t) such that z(t1) = z(t2) = 0 implies q(t) ≡ c1 on [t1, t2].
Choosing z(t) ≡ 0 on [a, b− τ ] and using (i) imply (i)T since

0 =

∫ b

b−τ
c1z
′(t)dt+ z(t)

∫ t

b−τ
P (s)y(s)ds

∣∣∣∣b
b−τ

= c1[z(b)− z(b− τ)] + z(b)

∫ b

b−τ
P (s)y(s)ds

= z(b)

[
c1 +

∫ b

b−τ
P (s)y(s)ds

]
= r(b)[R(b)y′(b)]

so that if y(b) is not specified, z(b) is not zero, and hence y′(b) = 0.
To obtain (ii) we use (i) and (i)T , and hence if z(a) = z(b−τ) = 0, the fundamental

lemma implies the result.
Finally, the earlier results imply

0 = c2[z(b− τ)− z(a)] + c1[z(b)− z(b− τ)] + z(b− τ)

∫ b−τ

a

P (t)y(t)dt

+ z(b)

∫ b

b−τ
p(t)y(t)dt

= z(b− τ)

[
−c1 + c2 +

∫ b−τ

a

P (t)y(t)dt

]
+ z(b)

[
c1 +

∫ b

b−τ
p(t)z(t)dt

]
= t(b− τ)[−c1 +R(b− τ)y′(b− τ)−] + z(b)[r(b)y′(b)].
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Now z(b)y′(b) = 0, as before, so

c1 = R(b− τ)y′(b− τ)−,

and the result follows by taking t→ (b− τ)+ in (i).

3. Numerical algorithm. In this section we develop our numerical algorithm
for the quadratic problem defined by (1.1) and (1.3).

Taking the variation of J(y) in (1.1) along the z direction, we obtain the condition

J ′(y, z) =

∫ b

a

[ry′z′ + pyz + r̄y′τz
′
τ + p̄yτzτ ]dt = 0,(3.1)

where z is an arbitrary function except that it vanishes at t = b and for t ∈ [a− τ, a].
Intuitively, with z(k)(t) defined below, as the linear spline element of size h, we

replace the exact condition (3.1) for arbitrary admissible z(t) with J ′h(yh, zh) = 0,
where yh =

∑
Akz

(k) is the approximate solution for each h.
For simplicity in the discussion to follow, we define

I ′1(y, z) =

∫ b

a

[r(t)y′(t)z′(t) + p(t)y(t)z(t)]dt,(3.2)

I ′2(y, z) =

∫ b

a

[r̄(t)y′τ (t)z′τ (t) + p̄(t)yτ (t)zτ (t)]dt.(3.3)

Hence

J ′(y, z) = I ′1(y, z) + I ′2(y, z).(3.4)

We begin our construction by a partition of [a, b]. Thus let N be a positive integer.
Divide the interval [a, b] into N equal parts; then the length of each part is h =
(b − a)/N . Label the node points as tk = a + kh for k = 0, 1, . . . , N . For k =
1, 2, . . . , N − 1, define the one dimensional spline hat functions as

z(k)(t) =



0, t ≤ tk−1,

t− tk−1

h
, tk−1 ≤ t ≤ tk,

tk+1 − t
h

, tk ≤ t ≤ tk+1,

0, t ≥ tk+1.

(3.5)

Using (3.5), the variation of I1(y) along z(k) can be written as

I1(y, z(k)) =
1

h

∫ tk

tk−1

[r(t)y′(t) + p(t)y(t)(t− tk−1)]dt

+
1

h

∫ tk+1

tk

[−r(t)y′(t) + p(t)y(t)(tk+1 − t)]dt.(3.6)

For computational purposes, (3.6) can be approximated as

I ′1(y, z(k))
.
= r(t∗k−1)

yk − yk−1

h
+ p(t∗k−1)

yk−1 + yk
2

h

2

− r(t∗k)
yk+1 − yk

h
+ p(t∗k)

yk+1 + yk
2

h

2
,(3.7)
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where

t∗k−1 =
tk + tk−1

2
and t∗k =

tk + tk+1

2
(3.8)

and yk, k = 0, 1, . . . , N , are the numerical values of y(tk). To compute I ′2(y, z(k)),

note that z
(k)
τ will be zero until t = tk−1 + τ . Hence I ′2(y, z(k)) can be written as

I ′2(y, z(k)) =

∫ tk+τ

tk−1+τ

[y′τ (t)z′τ (t)r̄(t) + p̄(t)yτ (t)zτ (t)]dt

+

∫ tk+1+τ

tk+τ

[r̄(t)y′τ (t)z′τ (t) + p̄(t)yτ (t)zτ (t)]dt.(3.9)

By a direct shift of time axis, (3.9) reduces to

I ′2(y, z(k)) =

∫ tk

tk−1

[r̄(t+ τ)y′(t)z′(t) + p̄(t+ τ)y(t)z(t)]dt

+

∫ tk+1

tk

[r̄(t+ τ)y′(t)z′(t) + p̄(t+ τ)y(t)z(t)]dt.(3.10)

Following the approach presented above, (3.10) can be approximated as

I ′2(y, z(k)) = r̄(t∗k−1 + τ)
yk − yk−1

h
+ p̄(t∗k−1 + τ)

yk−1 + yk
2

h

2

−r̄(t∗k + τ)
yk+1 − yk

h
+ p̄(t∗k + τ)

yk+1 + yk
2

h

2
.(3.11)

Combining (3.7) and (3.11), we get

I ′(y, z(k)) =
{
r(t∗k−1) + r̄(t∗k−1 + τ)

}yk − yk−1

h

+
{
p(t∗k−1) + p̄(t∗k−1 + τ)

}
(yk−1 + yk)

h

4

−{r(t∗k) + r̄(t∗k + τ)
}yk+1 − yk

h

+
{
p(t∗k) + p̄(t∗k + τ)

}
(yk+1 + yk)

h

4
.

(3.12)

Notice that for b− τ ≤ tk ≤ b, the r̄(t+ τ) and p̄(t+ τ) terms drop out.
Therefore, using (2.1), (3.12) can be written as follows.
For a ≤ tk < b− τ , we have

R(t∗k−1)
yk − yk−1

h
+ P (t∗k−1)(yk−1 + yk)

h

4

−R(t∗k)
yk+1 − yk

h
+ P (t∗k)(yk + yk+1)

h

4
= 0.

(3.13)

For b− τ < tk ≤ b, we have

r(t∗k−1)
yk − yk−1

h
+ p(t∗k−1)(yk−1 + yk)

h

4

− r(t∗k)
yk+1 − yk

h
+ p(t∗k)(yk + yk+1)

h

4
= 0.

(3.14)
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For tk = b− τ , we have

R(t∗k−1)
yk − yk−1

h
+ P (t∗k−1)(yk−1 + yk)

h

4

− r(t∗k)
yk+1 − yk

2h
+ p(t∗k)(yk + yk+1)

h

8
= 0.

(3.15)

Equations (3.13)–(3.15) provide the numerical algorithm to solve the quadratic opti-
mal control problem defined in section 5. If y(b) is given, we have exactly the number
of equations we need. Otherwise, the condition (i)T in Theorem 1 is approximated
by yN − yN−1 = 0.

Two final comments are important:
1. For convenience, we have assumed in (3.15) that b− τ is a node point of our

partition. If it is not, the numerical process ignores this continuity condition,
and we obtain the same O(h2) result.

2. Anyone can present a heuristic algorithm as we have done in (3.13)–(3.15).
The justification of the local error being O(hq), with q ≥ 2, shows that our
algorithm makes sense. The global error establishes the main claim for this
algorithm.

4. Derivation of local and global errors. The purpose of this section is to
derive the local and global errors for algorithm (3.13)–(3.15). In the previous section,
different expressions were given: a ≤ tk < b − τ , b − τ < tk ≤ b, and tk = b − τ .
Accordingly, the expressions for the local error for the three cases must be derived
separately.

For a ≤ tk < b− τ , we define L(t, h) as

L(t, h) = R(t∗k−1)
y(tk)− y(tk−1)

h
+ P (t∗k−1)(y(tk) + y(tk−1))

h

4

−R(t∗k)
y(tk+1)− y(tk)

h
+ P (t∗k)(y(tk) + y(tk+1))

h

4
(4.1)

as the local error in a ≤ tk < b − τ . In the discussion to follow, unless the time
parameter is specified, it will be assumed that the functions are computed at tk. The
Taylor series for y(tk+1), y(tk−1), R(t∗k), R(t∗k−1), P (t∗k), and P (t∗k−1) can be written
as [

ytk+1

ytk−1

]
= y ± hy′ + 1

2
h2y′′ ± 1

6
h3y′′′ + · · · ,(4.2)

[
R(t∗k)
R(t∗k−1)

]
= R± 1

2
hR′ +

1

8
h2R′′ ± 1

48
h3R′′′ + · · · ,(4.3)

[
P (t∗k)
P (t∗k−1)

]
= P ± 1

2
hP ′ +

1

8
h2P ′′ ± 1

48
h3P ′′′ + · · · .(4.4)

Substituting (4.2)–(4.4) into (4.1) and simplifying, we obtain

L(t, h) = (−Ry′′ −R′y′ + Py)h+

(
−1

6
R′y′′′ − 1

8
R′′y′′ − 1

24
R′′′y′

+
1

4
Py′′ +

1

4
P ′y′ +

1

8
P ′′y

)
h3 +O(h5).(4.5)
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Using the Euler–Lagrange equation in Theorem 1, it follows that

L(t, h) = O(h3) in a ≤ tk < b− τ.(4.6)

For b− τ ≤ tk ≤ b we define the local error L(t, h) as

L(t, h) =
1

2

[
r(t∗k−1)

y(tk)− y(tk−1)

h
+ p(t∗k−1)(y(tk) + y(tk−1))

h

4

− r(t∗k)
y(tk+1)− y(tk)

h
+ p(t∗k)(y(tk) + y(tk+1))

h

4

]
.(4.7)

The Taylor series for r(t∗k), r(t∗k−1), p(t∗k), and p(t∗k−1) can be written as[
r(t∗k)
r(t∗k−1)

]
= r ± 1

2
hr′ +

1

8
h2r′′ ± 1

48
h3r′′′ + · · · ,(4.8)

[
p(t∗k)
p(t∗k−1)

]
= p± 1

2
hp′ +

1

8
h2p′′ ± 1

48
h3p′′′ + · · · .(4.9)

Substituting (4.2), (4.8), and (4.9) into (4.7) and simplifying, we obtain

L(t, h) = (−ry′′ − r′y′ + py)h+

(
−1

6
r′y′′′ − 1

8
r′′y′′ − 1

24
r′′′y′

+
1

4
py′′ +

1

4
p′y′ +

1

8
p′′y
)
h3 +O(h5).(4.10)

Using (5.9), it follows, once again, that

L(t, h) = O(h3) in b− τ < tk ≤ b.(4.11)

For tk = b− τ we define the local error L(t, h) as

L(t, h) = R(t∗k−1)
y(tk)− y(tk−1)

h
+ P (t∗k−1)(y(tk) + y(tk−1))

h

4

− r(t∗k)
y(tk+1)− y(tk)

2h
+ p(t∗k)(y(tk) + y(tk+1))

h

8
.(4.12)

For simplicity in the derivation to follow, define tk = b − τ = c. Since tk = b − τ
is a corner point, y(tk−1) and y(tk+1) must be expanded at c− and c+, respectively.
Keeping this in mind, the Taylor series for y(tk+1) and y(tk−1) can be written as

y(tk−1) = y − hy′(c−) +
1

2
h2y′′(c−)− 1

6
h3y′′′(c−) + · · · ,(4.13)

y(tk+1) = y + hy′(c+) +
1

2
h2y′′(c+)− 1

6
h3y′′′(c+) + · · · .(4.14)

It is assumed that R(t), P (t), r(t), and p(t) are sufficiently smooth at t = b − τ .
Therefore, the Taylor expansions of R(t∗k−1), P (t∗k−1), r(t∗k), and p(t∗k) given by (4.3),



1780 OM PRAKASH AGRAWAL AND JOHN GREGORY

(4.4), (4.8), and (4.9), respectively, are still valid for tk = b − τ . Substituting (4.3),
(4.4), (4.8), (4.9), (4.13), and (4.14) into (4.12) and simplifying, we obtain

L(t, h) = Ry′(c−)−1

2
ry′(c+)

+

[
−1

2
Ry′′(c−)− 1

2
R′y′(c−)+

1

2
Py− 1

4
ry′′(c+)− 1

4
r′y′(c+)+

1

4
py

]
h

+

[
1

6
Ry′′′(c−) +

1

4
R′y′′(c−) +

1

8
R′′y′(c−) − 1

4
Py′(c−)− 1

4
P ′y

− 1

12
ry′′′(c+)− 1

8
r′y′′(c+)− 1

16
r′′y′(c+) +

1

8
p′y +

1

8
py′(c+)

]
h2

+

[
− 1

12
R′y′′′(c−)− 1

16
R′′y′′(c−)− 1

48
R′′′y′(c−) +

1

8
Py′′(c−)

+
1

8
P ′y′(c−) +

1

16
P ′′y − 1

24
r′y′′′(c+)− 1

32
r′′y′′(c+)

− 1

96
r′′′y′(c+) +

1

16
py′′(c+) +

1

16
p′y′(c+) +

1

32
p′′y
]
h3

+O(h4).(4.15)

Using (4.15), the differential (5.4) and (5.5), and the corner condition (5.6), it follows
that

L(t, h) = O(h2) at tk = b− τ.(4.16)

We note, once again, that we have established consistency for our algorithm by
showing that if y(t) satisfies the conditions in Theorem 1 or (5.8)–(5.10), then L(t, h) =
O(h3) for t �= b− τ and L(t, h) = O(h2) for t = b− τ .

Thus we have the following theorem.
Theorem 2. The algorithm (3.13)–(3.15) is consistent as described directly above.
We note that the algorithm along with the values for y(a) and y(b), or y(b)

replaced by the numerical transversality condition for y′(b) = 0, yN −yN−1 = 0, leads
immediately to a well-defined set of numerical values yk, k = 0, 1, . . . , N , which are
approximation values of y(ak), where y(t) is a unique solution to our problem. The
purpose of Theorem 3 is to see how good the approximation is.

Theorem 3. If eh = y(ak)− yh(ak), where y(t) is the unique solution described
above and yh(ak) = yk for fixed h > 0, given by our algorithm as described above in
Theorem 2, then for h sufficiently small there exists C > 0 independent of h such that

‖eh‖∞ ≤ Ch2 or ‖eh‖2 ≤ Ch2.(4.17)

In fact, this theorem will hold in a variety of situations: (a) when y is an m
vector, (b) when the algorithm is generated in the obvious way with nonquadratic
f as in section 3, and (c) when a constraint delay problem is reformulated as an
unconstrained problem.

For example, in (a) above, for y(t) an m vector, we use ‖x‖2 to denote the 2-norm
and ‖x‖∞ to denote the max-norm; thus, if x = (x1, x2, . . . , xm), then

‖x‖2 =
√

(x1)2 + (x2)2 + · · ·+ (xm)2,

‖x‖∞ = max
1≤k≤m

|xk|,

and the equality ‖x‖∞ ≤ ‖x‖2 ≤ m‖x‖∞ follows immediately.
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The proof of Theorem 3 is very long and complicated. It involves proving a long
string of inequalities by use of Rayleigh–Ritz methods and Gershgorin’s theorem.
Details are found in [7] when the boundary conditions are given and in [6] when they
are arbitrary.

For completeness, the inequalities are

C1h‖Eh‖22
❤1

= C1
h2

h
EThEh

❤2

≤ C2E
T
h

1

h
Jmh Eh

❤3

= C2

∫ b

a

e′Th e
′
hdt

❤4

= C2(eh, eh)

❤5

≤ C3H0(eh)

❤6

≤ ¯̄Hh(eh)

❤7

= EThM
hEh

❤8

= h3(EThQh +QThEh) +O(h5)

❤9

= C4h
3‖Eh‖2‖Qh‖2

❥10

≤ C5h
5/2‖Eh‖2.

We will not define the symbols, to protect the innocent, but “T” denotes transpose.
In the quadratic case, ❤8 can be omitted. The result MhEh is obtained by using
Theorem 2 and the definition of yh(ak).

Thus ‖Eh‖2 ≤ Ch3/2, and the final result can be obtained as described in [7] or
[6] or by the results for sparse symmetric matrix.

5. The general problem. The purpose of this section is to briefly describe the
results for the more general, delay calculus of variations problem, as given in [1]. We
will show that these results lead to those in section 2 and motivate how the numerical
algorithm in the more general case is obtained.

Thus our basic problem is

min I(y) =

∫ b

a

f(t, y(t), y′(t), yτ (t), y′τ (t))dt,(5.1)

subject to the terminal conditions given by

y(t) = α(t), t ∈ [a− τ, a],(5.2)

y(b) = yb,(5.3)

where yτ (t), etc., is given above. It is shown in [1] that the above problem leads to
the differential equations

d

dt
fy′(t) +

d

dt
fy′τ (t+ τ) = fy(t) + fyτ (t+ τ), a ≤ t ≤ b− τ,(5.4)

d

dt
fy′(t) = fy(t), b− τ ≤ t ≤ b,(5.5)

and the corner condition

fy′((b− τ)−)− fy′((b− τ)+) + fy′τ (t+ τ)
∣∣
t=(b−τ)− = 0.(5.6)

Recalling that our specialized quadratic problem was

J(y) =
1

2

∫ b

a

[r(t)y′2(t) + r̄τ (t)y′2τ (t) + p(t)y2(t) + p̄τ (t)y2τ (t)]dt,(1.1)
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comparing (5.1) and (1.1), we observe that for the quadratic problem

f(t, y(t), y′(t), yτ (t), y′τ (t)) =
1

2
[r(t)y′2(t) + p(t)y2(t) + r̄(t)y′2τ (t) + p̄(t)y2τ (t)].(5.7)

Substituting (5.7) into (5.5)–(1.1), we obtain the differential equations

d

dt
[R(t)y′(t)] = P (t)y(t), a ≤ t ≤ b− τ,(5.8)

d

dt
[r(t)y′(t)] = p(t)y(t), b− τ ≤ t ≤ b,(5.9)

and the corner conditions

R(b− − τ)y′(b− − τ)− r(b+ − τ)y′(b+ − τ) = 0.(5.10)

These results are those of Theorem 1 in slightly different notation.
A numerical algorithm for (5.1)–(5.3) which also results in an error bound of order

O(h2) will be presented in a later paper.

6. Example. In this section, we consider a numerical example to describe the
algorithm developed in the paper, and we show that the numerical results agree with
the error bound given in (4.17).

The problem is described as follows: Find the minimum of the functional

I(y) =
1

2

∫ π

0

((y′)2 + (y′τ )2 − y2 − y2τ )dt(6.1)

such that

y(t) = 0, t ∈ [−π/4, 0],(6.2)

and

y(π) = 1,(6.3)

where τ = π/4. In this example, we have r(t) = r̄(t) = −p(t) = −p̄(t) = 1. Following
the approach presented in Theorem 1, it can be demonstrated that the solution of
above problem is

y(t) =

{ −2 sin(t), 0 ≤ t < 3π/4,
−3 sin(t)− cos(t), 3π/4 < t ≤ π.(6.4)

For computational purposes, the time domain is divided into n equal divisions. Sub-
stituting the values of r(t), r̄(t), p(t), and p̄(t) into (3.13)–(3.15), we arrive at the
following algorithm for this example.

For 0 ≤ tk < 3π/4,

1

h
(−yk−1 + 2yk − yk+1) +

h

4
(yk−1 + 2yk + yk+1) = 0.(6.5)

For 3π/4 < tk ≤ π,

1

2h
(−yk−1 + 2yk − yk+1) +

h

8
(yk−1 + 2yk + yk+1) = 0.(6.6)
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For tk = 3π/4,

1

2h
(−2yk−1 + 3yk − yk+1) +

h

8
(2yk−1 + 3yk + yk+1) = 0.(6.7)

Here h = π/n, and yk, k = 1, . . . , n−1, are the computed values of y(t) at t = tk = kh.
Note that y0 = 0 and yn = 1.

For numerical simulation, we take n = 8, 16, and 32. The table below shows the
analytical results and the numerical errors eh1 = eh(h = 1/8), eh2 = eh(h = 1/16),
and eh3 = eh(h = 1/32) for n = 8, 16, and 32 and the error ratios r1 = eh1/eh2 and
r2 = eh2/eh3. From the table it is clear that as the time interval is reduced from h
to h/2, the error reduces by a factor of 4. Thus the numerical results also justify our
claim that our algorithm leads to an O(h2) global pointwise error.

t y(t) eh1(h = 1/8) eh2(h = 1/16) eh3(h = 1/32) r1 = eh1/eh2 r2 = eh2/eh3
0 0 0 0 0

0.0982 -0.196 0.000665719
0.1963 -0.3902 0.005347356 0.001325356 4.035
0.2945 -0.5806 0.001976645
0.3927 -0.7654 0.043607135 0.010538135 0.002613135 4.138 4.033
0.4909 -0.9428 0.003229526
0.589 -1.1111 0.015419534 0.003819534 4.037
0.6872 -1.2688 0.004383432
0.7854 -1.4142 0.082106438 0.019846438 0.004916438 4.137 4.037
0.8836 -1.546 0.005419093
0.9817 -1.6629 0.023680775 0.005870775 4.034
1.0799 -1.7638 0.006287471
1.1781 -1.8478 0.110940935 0.026820935 0.006650935 4.136 4.033
1.2763 -1.9139 0.006969329
1.3744 -1.9616 0.029149439 0.007229439 4.032
1.4726 -1.9904 0.007440547
1.5708 -2 0.12659 0.03061 0.00759 4.136 4.033
1.669 -1.9904 0.007680547
1.7671 -1.9616 0.031139439 0.007719439 4.034
1.8653 -1.9139 0.007699329
1.9635 -1.8478 0.126990935 0.030720935 0.007620935 4.134 4.031
2.0617 -1.7638 0.007477471
2.1598 -1.6629 0.029340775 0.007280775 4.03
2.2580 -1.5460 0.007019093
2.3562 -1.4142 0.111796438 0.027046438 0.006706438 4.133 4.033
2.4544 -1.1302 0.006000601
2.5525 -0.8352 0.021167913 0.005249913 4.032
2.6507 -0.5323 0.004452054
2.7489 -0.2242 0.060212235 0.014577235 0.003616235 4.131 4.031
2.8471 0.0861 0.002746204
2.9452 0.3955 0.007455314 0.001849314 4.031
3.0434 0.7011 0.000932306
3.1416 1 0 0 0

7. Conclusions. A numerical scheme has been presented for time delay qua-
dratic problems in the calculus of variations. It has been demonstrated that the
algorithm has a global a priori error of O(h2), where h is the distance between any two
successive node points. As opposed to solving time delay differential equations, our
methods require weaker smoothness conditions, and they avoid the need for satisfying
the transversality and corner conditions explicitly.

A numerical example has been presented to demonstrate the numerical scheme
and to verify the a priori error conditions. Numerical results agree with the pro-
posed global error bound. Although numerical results have been presented in only
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one example, the algorithm can be applied to a large class of time delay quadratic
problems.
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Abstract. We develop and analyze wavelet based adaptive schemes for nonlinear variational
problems. We derive estimates for convergence rates and corresponding work counts that turn out
to be asymptotically optimal. Our approach is based on a new paradigm that has been put forward
recently for a class of linear problems. The original problem is transformed first into an equivalent one
which is well posed in the Euclidean metric �2. Then conceptually one seeks iteration schemes for the
infinite dimensional problem that exhibits at least a fixed error reduction per step. This iteration is
then realized approximately through an adaptive application of the involved operators with suitable
dynamically updated accuracy tolerances. The main conceptual ingredients center around nonlinear
tree approximation and the sparse evaluation of nonlinear mappings of wavelet expansions. We prove
asymptotically optimal complexity for adaptive realizations of first order iterations and of Newton’s
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1. Introduction.

1.1. Background and objectives. Adaptive wavelet schemes for numerically
solving a wide class of variational problems have been recently studied in [8, 9] from
the perspective of asymptotic estimates for convergence rates and corresponding work
counts. The problems covered by that analysis include elliptic boundary integral equa-
tions and elliptic boundary value problems but also indefinite problems of elliptic type
such as the Stokes problem. Two requirements were essential in this context: (i) the
variational problem induces an operator L that is an isomorphism from some Hilbert
space H onto its dual; (ii) this Hilbert space permits a wavelet characterization; i.e.,
the H-norm of an element is equivalent to a weighted �2-norm of its wavelet coeffi-
cients. It could then be shown that certain adaptive schemes exhibit an asymptotically
optimal accuracy/work balance within a certain range of convergence rates depending
on the choice of wavelet bases. The precise meaning of this statement is explained in
the Meta-Theorem below. To our knowledge for the above range of linear problems
such complexity estimates have been established so far only for wavelet methods. Just
recently, a similar result was proved for adaptive finite element methods for Laplace’s
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equation in two space dimensions [4].
In this paper we wish to explore the convergence rates and the computational

complexity of certain new adaptive wavelet schemes for nonlinear problems for which
no results of the above type seem to be known so far.

Our primary concern here is not to develop a specific algorithm for a concrete
application. We are rather interested in developing a numerically realizable new algo-
rithmic paradigm in a fairly general context of nonlinear problems and in analyzing its
principal complexity features. Therefore, the various algorithmic ingredients will at
times not be discussed in full detail but only to an extent that clarifies their principal
asymptotic complexity.

The new paradigm is based upon the adaptive evaluation of (linear and nonlin-
ear) operators in the course of an ideal iteration for the infinite dimensional problem
formulated in the wavelet coordinate domain. Such perturbed iterations will lead
to an algorithm SOLVE that (with a proper initialization) produces for any target
accuracy ε a finitely supported vector of coefficients ū(ε) that approximates the array
of wavelet coefficients of the exact solution (of the underlying variational problem)
in �2 with accuracy ε. The choice of wavelet basis will then imply that the corre-
sponding finite expansion approximates the exact solution with accuracy Cε in the
energy norm, where C depends only on the wavelet basis. In order to identify the
essential mechanisms governing such schemes, we will consider nonlinear variational
problems on various levels of generality. The results will be purely asymptotic in
nature. They reveal asymptotically optimal work/accuracy balances interrelating the
achieved target accuracy with the required computational work and associated adap-
tively generated number of degrees of freedom. More precisely, we shall prove results
of the following type.

Meta-Theorem. If the exact solution can be approximated as a linear combina-
tion of N wavelets (subject only to certain tree restrictions on the distribution of active
coefficients) to accuracy of order N−s (for a certain range of s), then the support of
the output ū(ε) of SOLVE for target accuracy ε grows at most as ε−1/s, uniformly
in ε, and the computational complexity also stays proportional to the support size. In
this sense, the scheme tracks the exact solution at asymptotically minimal cost.

Note that the above-mentioned tree restriction on the permitted distribution of
active coefficients is the analogue of locally refined meshes in the finite element context.

We shall outline now how we approach results of the above type.

1.2. The basic paradigm. The classical approach to numerically solving (lin-
ear and nonlinear) variational problems is concerned with the following issues:

(c1) well-posedness of the given variational problem;
(c2) discretization of the infinite dimensional problem so as to obtain a finite

system of algebraic equations;
(c3) well-posedness of the finite system of equations and error analysis;
(c4) numerical solution of the finite system of equations.

It is important to note that (c1) is often hidden in the analysis and that (c3) is, in
general, not a direct consequence of (c1). Typical examples even in the linear case
are saddle point problems. It is well known that, for Galerkin discretizations to be
stable, the trial spaces for the different solution components have to satisfy a certain
compatibility condition (Ladyšhenskaya–Babǔska–Brezzi (LBB)-condition). For non-
linear problems one can often establish only local uniqueness of solutions so that some
care is required to ensure that the discrete problems approximate the correct solution
branch. Thus the discrete problems do not necessarily inherit the “nice properties” of
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the original infinite dimensional problem. Depending on the choice of the discretiza-
tion, one might introduce “new difficulties.” The typical obstructions encountered in
(c4) are the large size of the discrete systems and possible ill-conditioning. The latter
issue interferes with the need to resort to iterative solvers, due to the size and spar-
sity of the systems. Attempts to reduce computational complexity are often based on
adaptive and hence possibly economic discretizations. A reliable control of adaptive
refinements, however, depends usually in a sensitive way on the particular type of the
problem, and rigorous complexity estimates are generally not available yet.

A new paradigm has been explored in [9] for linear variational problems. It aims
at closely intertwining the analysis–discretization–solution process. The basic steps
there read as follows:

(n1) well-posedness of the given variational problem;
(n2) transformation of the infinite dimensional problem into an equivalent problem

in �2 which is well posed in the Euclidean metric;
(n3) the derivation of an iterative scheme for the infinite dimensional �2-problem

that exhibits a fixed error reduction per iteration step;
(n4) numerical realization of the iterative scheme by an adaptive application of

the involved infinite dimensional operators within some finite dynamically
updated accuracy tolerances.

Thus the starting point (n1) is the same as (c1), although it takes a somewhat more
exposed and explicit role in the new setting, as will be explained later. The main
difference is that one aims at staying as long as possible with the infinite dimensional
problem, which one hopes is given in a favorable format. Of course, it remains to see
in each concrete case how to exploit (n2) in order to guarantee a fixed error reduction
in (n3). We shall present several strategies regarding this task. Only at the very end,
when it comes to applying the operators in the ideal iteration scheme (n4), does one
enter the finite dimensional realm. However, the finite number of degrees of freedom
is determined at each stage by the adaptive application of the operator so that at no
stage is any specific trial space fixed. Roughly speaking, the “nice properties” of the
infinite dimensional problem are preserved through adaptive evaluations. In fact, one
can show that thereby compatibility conditions like the LBB-condition indeed become
void [9, 13].

The main goal of the present paper is to show how to carry over this paradigm,
already existing for linear problems, to the nonlinear setting. On a theoretical level,
one then encounters three major issues, namely,

(a) the choice of tolerances in (n4) to ensure that the perturbed iteration con-
verges to the correct solution;

(b) the design of economic approximate application schemes for the possibly non-
linear infinite dimensional operators;

(c) estimating the complexity of the scheme.
Here (a) means that any given target accuracy ε is achieved after finitely many steps.
(b) is the most crucial part and will be discussed in detail in the course of the paper.
Clearly (b) is closely related to (c). As in [8, 9, 13], we will measure complexity
by the number of adaptively generated degrees of freedom N = N(ε) required by the
adaptive scheme to achieve the target accuracy ε and the corresponding number of
floating point operations (which, of course, is aimed at staying proportional to N(ε)).
Estimating the asymptotic work/accuracy balance N(ε) ↔ ε will be a central theme
in the subsequent developments. This part differs significantly from the classical error
analysis for finite element methods and relies on concepts from harmonic analysis and
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nonlinear approximation.
Of course, on a practical level one will encounter in each concrete case further

obstacles concerning quantitative information about constants and initial guesses. We
shall discuss variational problems on a different level of generality in order to indicate
possible strategies of acquiring such information or to identify those issues that require
additional work.

Finally, a comment on (n3) is in order. Aiming at a fixed error reduction per
iteration step means that one is content with a first order scheme. So why not go
for faster iteration schemes? The answer to this question is not completely clear.
Indeed, a higher order method may not automatically win for the following reason.
Usually a higher order method is more costly in function evaluations. In the present
context this means, according to (n4), it is more costly in the adaptive application
of the full infinite dimensional operators within some dynamically updated accuracy
tolerance. Preserving the higher order of the ideal iteration also in its perturbed form
in connection with the higher demands of function evaluations may very well increase
the cost of each iteration step so as to offset the potential gain of a better error
reduction. So with regard to the objective of reaching a target accuracy at possibly
low overall computational cost, the role of higher order schemes remains unclear. In
fact, it will be seen that asymptotic optimality can indeed be achieved already with
simple first order outer iterations. Nevertheless, we shall show that it is also possible
to retain second order convergence of the adaptive version of Newton’s scheme so as
to arrive at an overall scheme with asymptotically optimal solution complexity, which
may offer quantitative advantages over the first order versions.

1.3. Organization of material. The paper is organized as follows. In section
2 we describe (n1), (n2), and (n3) for a general setting that will host all subsequent
specifications. In section 3 we distinguish several classes of variational problems to
which the subsequent developments will refer frequently, namely, (L) linear problems,
(SL) semilinear elliptic problems, and (GNL) more general nonlinear problems where
we have to assume the existence of locally unique solutions. In section 4 we formulate
the prototype of an adaptive perturbed first order iteration which is based on two
main ingredients, namely, approximate residual evaluations and a certain coarsening
scheme. In particular, the residual approximations involve the adaptive application
of linear or nonlinear (infinite dimensional) operators. Assuming at this stage that
these ingredients are indeed available, we address for the most general setting first
only issue (a) to clarify for which choice of dynamically updated accuracy tolerances
is convergence guaranteed. The remaining sections will be devoted to issues (b) and
(c) for the problem types (L), (SL), and (GNL).

In section 5 we review briefly concrete realizations of these ingredients for the
linear case (L) and indicate the concepts needed for their complexity analysis. This
serves two purposes. First, these results will be used in the last section in connec-
tion with Newton iterations. Second, they motivate our treatment of the nonlinear
case. In section 6 we introduce some new concepts needed to deal with nonlinear
problems. They center upon tree approximation and related coarsening techniques.
This enables us to formulate the notion of s∗-sparsity as the key criterion for con-
trolling the complexity of the adaptive schemes in the nonlinear case. Drawing on
several results from [10], we develop in section 7 adaptive evaluation schemes that are
proven to be s∗-sparse and thus lead to asymptotically optimal results in the sense
of the above Meta-Theorem. To our knowledge these are the first convergence and
complexity estimates for adaptive solvers for nonlinear problems. Finally, in section
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8 we develop an adaptive Newton scheme and analyze its complexity. It differs in
essential ways from the schemes discussed in the previous sections which are based
on first order iterations. In particular, we show that the quadratic convergence of the
outer iteration can in some sense be preserved in the adaptive context.

2. The setting. We describe now the setting for which the above paradigm will
be discussed.

2.1. The general problem format. The variational problems mentioned in
step (n1) above will always have the following format. Let H be a Hilbert space with
norm ‖ · ‖H, and let H′ denote its dual endowed with the norm

‖v‖H′ := sup
w∈H

〈w, v〉
‖w‖H ,

where 〈·, ·〉 is the dual pairing between H and H′ (with respect to L2 as the pivot
space). The Hilbert space H will always refer to a bounded domain Ω with spatial
dimension d. Suppose that f ∈ H′ and

F : H → H′(2.1)

is a (possibly nonlinear) mapping. We consider the numerical solution of the problem:
Find u ∈ H such that

〈v, F (u) − f〉 =: 〈v,R(u)〉 = 0 ∀v ∈ H.(2.2)

The objective in (n1) is the identification of a suitable space H so that (2.2) is well
posed in the following sense. Recall that the Frechét derivative DR(z) = DF (z) is a
mapping from H to H′, defined by the duality

〈v,DR(z)w〉 = lim
h→0

1

h
〈v,R(z + hw) −R(z)〉.(2.3)

The problem (2.2) is called well posed if F has the following properties:
A1. F possesses a continuous Frechét derivative; i.e., R ∈ C1(H,H′) as a mapping

v �→ R(v).
A2. There exists a solution u ∈ H to (2.2), and in addition to (2.1) the Frechét

derivative DF of F at v in some neighborhood U of u is an isomorphism from
H onto H′; i.e., for v ∈ U there exist positive finite constants cv,F , Cv,F such
that

cv,F ‖w‖H ≤ ‖DF (v)w‖H′ ≤ Cv,F ‖w‖H ∀ w ∈ H, v ∈ U .(2.4)

Clearly A2 ensures that the solution u is locally unique.

2.2. Wavelet coordinates and an equivalent �2-problem. The transforma-
tions for (n2) will be based on suitable wavelet bases. For a detailed discussion of
such bases, we refer the reader to the literature (see, e.g., [5, 6, 14, 11]) and collect
here only the relevant facts. A wavelet basis Ψ = {ψλ : λ ∈ J } ⊂ H has the follow-
ing properties: The indices λ ∈ J encode typical information about the wavelet ψλ,
namely, its type, its location k(λ), and its scale |λ|.

We shall now explain the meaning of “suitable” in the present context. We will
always assume that the wavelets have compact support Sλ := suppψλ, λ ∈ J , which
scales as diam (Sλ) ∼ 2−|λ|.
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Furthermore, aside from finitely many functions ψλ, λ ∈ Jφ ⊂ J , |λ| = j0,
representing the coarsest scale j0, the wavelets ψλ, λ ∈ J \Jφ, have vanishing moments
of some order m ∈ N; i.e., these wavelets are orthogonal to all polynomials of order
m.

Finally, each v ∈ H has a unique expansion
∑

λ∈J vλψλ such that

c1‖v‖
2(J ) ≤
∥∥∥∥∥∑
λ∈J

vλψλ

∥∥∥∥∥
H
≤ C1‖v‖
2(J )(2.5)

holds for some positive constants c1, C1; i.e., Ψ forms a Riesz basis for H. Note that
(unlike the quoted references) we have normalized the wavelets here in the energy
space H associated with the variational problem (2.1), (2.2); i.e., ‖ψλ‖H = 1, λ ∈ J .
Again such bases are known whenever H is a product of Sobolev spaces (or closed
subspaces of Sobolev spaces, determined, e.g., by homogeneous boundary conditions
or vanishing integral means).

In the following, we will always use boldface notation v to denote the wavelet
coefficients of a given function v ∈ H with respect to the basis Ψ (and analogously
for u,w ∈ H).

Next note that by duality (2.5) implies

C−1
1 ‖(〈w,ψλ〉)λ∈J ‖
2(J ) ≤ ‖w‖H′ ≤ c−1

1 ‖(〈w,ψλ〉)λ∈J ‖
2(J ).(2.6)

We can now transform (2.2) into wavelet coordinates. Defining

R(v) := (〈ψλ, R(v)〉 : λ ∈ J ) whenever v =
∑
λ∈J

vλψλ,(2.7)

the original problem (2.2) is obviously equivalent to finding u ∈ �2(J ) so that

R(u) = 0.(2.8)

Now note that the Jacobian DR(v) = DF(v) is given by

DR(v) = (〈ψλ, DR(v)ψν〉)λ,ν∈J ,(2.9)

where again DR = DF is the Frechét derivative of the mapping R. Combining the
norm equivalences (2.5), (2.6) with the mapping property (2.4) shows in what sense
(2.8) is now well posed in �2; see, e.g., [9] for a proof.

Remark 2.1. Under the above assumptions A1 and A2, one has for any v =∑
λ∈J vλψλ ∈ U

c21cv,F ‖w‖
2(J ) ≤ ‖DF(v)w‖
2(J ) ≤ C2
1Cv,F ‖w‖
2(J ), w ∈ �2(J ).(2.10)

2.3. The basic iteration. According to (n3), we wish to devise an iterative
scheme for the problem (2.8) such that each step reduces the current error at least by
a fixed rate ρ < 1. The schemes we shall consider will have the form

un+1 = un −BnR(un),(2.11)

where the (infinite, possibly stage dependent) matrix Bn is yet to be chosen. For
instance, Bn = αI corresponds to a fixed point or Richardson iteration, while for
Bn := DR(un)−1 (2.11) becomes Newton’s method.
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We proceed now to discuss several instances of this setting.

3. The scope of reference problems. We shall address the variational prob-
lem (2.2) for the following different levels of generality:

(SL) semilinear elliptic boundary value problems, covering the case (L) of linear
problems as a special case;

(GNL) general nonlinear problems.
The explicit discussion of (SL) will serve several purposes. First, this class is

specific enough to permit a complete complexity analysis for a globally convergent
adaptive scheme. In particular, we shall be able to obtain in this case concrete bounds
on initial guesses or how to find a suitable damping parameter in Bn = αI. Second,
this class is a model representative for the interplay between a linear (diffusion) op-
erator and a nonlinear part. On one hand, it covers linear problems (L) as special
cases. Briefly reviewing the essential features of linear problems in this context comes
in handy for three reasons. It provides a guideline for the treatment of nonlinear
problems. It is a necessary prerequisite for the later discussion of Newton’s method.
Most importantly, in the presence of a nonlinearity, the complexity analysis for the
linear case has to be modified in order to treat problems where both linear and non-
linear operators are involved. It will be instructive to see the conceptual distinctions
and how the treatment of nonlinear problems builds on ingredients from the linear
case.

Finally, in (GNL) we relax our assumptions on the structure of R to a great
extent. We pay for this by making stronger assumptions on initial guesses and be-
ing content with locally convergent first order iterations on the infinite dimensional
level.

We shall exemplify step (n3) for all three cases (L), (SL), and (GNL) in this or-
der. Except for the last section, this will be based on first order iteration schemes
for the underlying infinite dimensional problem. It will be seen along the way that
it then suffices to employ stationary “preconditioners” Bn = B to obtain asymp-
totically optimal complexity estimates (although more flexible nonstationary choices
may well result in quantitative improvements in practical realizations). The use of
truly nonstationary Bn will be necessary only in connection with Newton’s method in
section 8.

3.1. Semilinear (SL) and linear (L) elliptic problems. Suppose that a(·, ·)
is a continuous bilinear form on a Hilbert space H endowed with the norm ‖ · ‖H,
which is H-elliptic; i.e., there exist positive constants c, C such that

c‖v‖2
H ≤ a(v, v), a(v, w) ≤ C‖v‖H‖w‖H ∀ v, w ∈ H.(3.1)

The simplest example is

a(v, u) := 〈∇v,∇u〉 + κ〈v, u〉, κ ≥ 0, 〈v, w〉 =

∫
Ω

vw,(3.2)

and H = H1
0 (Ω) (the space of functions with first order weak derivatives in L2 whose

traces vanish on the boundary Γ = ∂Ω) endowed with the norm ‖v‖2
H := ‖∇v‖2

L2(Ω) +

κ‖v‖2
L2(Ω).
In principle, the subsequent analysis will also cover elliptic integral operators with

positive order such as the hypersingular operator.
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To introduce a nonlinearity, we suppose that G : R → R is a function with the
following property:

P1. The mapping v �→ G(v) takes H into its dual H′ and is stable in the sense that

‖G(u) −G(v)‖H′ ≤ CG(max {‖u‖H, ‖v‖H})‖u− v‖H, u, v ∈ H,(3.3)

where t → CG(t) is a nondecreasing function of t.
The problem: Given f ∈ H′, find u ∈ H such that

〈v, F (u)〉 := a(v, u) + 〈v,G(u)〉 = 〈v, f〉 ∀ v ∈ H(3.4)

is of the form (2.2) with R(v) = F (v) − f .
Remark 3.1. If we assume in addition to P1 that G is monotone (as in (3.6)),

i.e., (u− v)(G(u) −G(v)) ≥ 0 for u, v ∈ R, then (3.4) has for every f ∈ H′ a unique
solution u ∈ H. Moreover, the problem is well posed in the sense of (2.4) with
constants cv,F := c, Cv,F := C + CG(‖v‖H), where c, C are the constants from (3.1)
and CG(s) is the constant from (3.3) in P1.

Proof. The argument follows standard lines. Under the above assumptions it is
easy to show that the operator F , defined by (3.4), is also monotone and coercive.
One can then invoke the Browder–Minty theorem (see, e.g., [22, Theorem 9.45]) to
conclude existence, while the strict monotonicity guaranteed by the quadratic part
also ensures uniqueness. To confirm the validity of (2.4) with the above constants,
let A be the linear operator defined by 〈w,Av〉 = a(w, v), for all w, v ∈ H, and note
that, in view of (3.1),

c‖v‖H ≤ ‖Av‖H′ ≤ C‖v‖H, v ∈ H,(3.5)

with c, C from (3.1). Since we have DF (v)w = Aw + G′(v)w, the assertion follows
easily from (3.5), P1, and the monotonicity of G.

Remark 3.2. Alternatively one can argue that, under the above assumptions, G is
of potential type so that (3.4) is the Euler equation of a convex minimization problem
with a strictly convex functional; see, e.g., [24, Proposition 42.6].

As an example, it is not hard to verify that the weak formulation of the boundary
value problem

−∆u + u3 = f in Ω, u = 0 on ∂Ω,(3.6)

is of the form (3.4), where for H = H1
0 (Ω) the above assumptions hold for d ≤ 3, and

that it satisfies the monotonicity assumption of Remark 3.1.
An equivalent �2-formulation (n2). We turn now to step (n2) in the present set-

ting. In order to rewrite (3.4) in wavelet coordinates, let A = (a(ψλ, ψν))λ,ν∈J denote
the wavelet representation of the operator A, and set f = (〈ψλ, f〉 : λ ∈ J )T . In ad-
dition, define in analogy to (2.7) G(v) := (〈ψλ, G(v)〉)λ∈J . Then u =

∑
λ∈J uλψλ is

the unique solution of (3.4) if and only if u solves

R(u) := Au+G(u) − f = 0.(3.7)

Note that, in view of (2.6), f belongs to H′ if and only if f ∈ �2(J ). Clearly, by
our assumptions on a(·, ·), A is symmetric positive definite. Moreover, it follows from
Remarks 2.1 and 3.1 that (2.10) holds for R in (3.7). In particular, this covers the
case G ≡ 0, where (2.10) takes the form

cA‖v‖
2(J ) ≤ ‖Av‖
2(J ) ≤ CA‖v‖
2(J ), v ∈ �2(J ),(3.8)

with cA = c21c, CA = C2
1C, and c1, C1, c, C from (2.5) and (3.1).
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We end this section with the simple observation that monotonicity of G carries
over into the discrete setting, namely,

(u− v)T (G(u) −G(v)) ≥ 0, u,v ∈ �2(J ).(3.9)

In fact, denoting by Ψ̃ the dual basis to Ψ, we have by definition of G(u)

u− v =
∑
λ∈J

(uλ − vλ)ψλ, G(u) −G(v) =
∑
λ∈J

〈G(u) −G(v), ψλ〉ψ̃λ.

Thus (3.9) follows from monotonicity of G and biorthogonality. Due to (3.1), F is
also monotone so that (3.9) holds also for F.

Gradient iterations (n3). We now address (n3) for the above class of semilinear
elliptic problems. The simplest option is to take Bn = αI, which gives the iteration

un+1 = un − αR(un), n ∈ N0.(3.10)

We have to find some α > 0 for which this iteration converges in �2(J ) with a
guaranteed error reduction ρ < 1. To this end, note that, by (2.8), un+1 − u =
un − u− α(R(un) −R(u)), so that

un+1 − u =

(
I− α

∫ 1

0

(A+ DG(u+ s(un − u)))ds

)
(un − u)

=: (I− αM(un,u)) (un − u).(3.11)

By (3.9) and (3.8), the smallest eigenvalue of the matrix M(un,u) is bounded from
below by cA. To bound the spectral radius of M(un,u), note that, by (2.5) and (2.6),
one has ‖G(v) − G(w)‖
2(J ) ≤ Ĉ(max {‖v‖
2(J ), ‖w‖
2(J )})‖v − w‖
2(J ), where

Ĉ(s) := C2
1CG(C1s) and C1, CG(s) are the constants from (2.5) and (3.3) for G,

respectively. It follows from (3.8) and (3.3) in P1 that ‖M(un,u)‖
2(J )→
2(J ) ≤
CA + Ĉ(‖u− un‖
2(J )). Given some knowledge about the behavior of the stability

constant CG(s) when s increases, we can estimate Ĉ(‖u− un‖
2(J )) with the aid of
an a priori estimate for ‖un−u‖
2(J ). To this end, note that again by (2.8) and (3.7),
one has for any v ∈ �2(J )

‖u− v‖
2(J )‖R(v)‖
2(J ) ≥ (u− v)T (R(v) −R(u)) = (u− v)T
(
A(u− v)

+ G(u) −G(v)
) ≥ cA‖u− v‖2


2(J ),

where we have used (3.8) and (3.9) in the last step. Hence we obtain

‖u− v‖
2(J ) ≤ c−1
A ‖R(v)‖
2(J ), ‖u‖
2(J ) ≤ c−1

A

(‖G(0)‖
2(J ) + ‖f‖
2(J )

)
.(3.12)

Thus, for any fixed initial guess v = u0, we have a computable bound

‖u0 − u‖
2(J ) ≤ c−1
A

(‖R(u0)‖
2(J )

)
=: δ0(3.13)

and therefore a bound for Ĉ(δ0).
Remark 3.3. Given u0 and δ0 from (3.13), suppose that α > 0 satisfies

0 < α < 2/(CA + Ĉ(δ0))(3.14)

for Ĉ(δ0) defined above so that

ρ = ρ(α) := max {|1 − cAα|, |1 − α(CA + Ĉ(δ0))|} < 1.(3.15)
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Then, denoting by Bδ(u) the ball of radius δ with center u, we have

sup
v∈Bδ0

(u)

‖I− α
(
A+ DG(v)

)‖
2(J )→
2(J ) =: ρ < 1.(3.16)

Hence we obtain ‖I− αM(un,u)‖
2(J )→
2(J ) ≤ ρ, which, in view of (3.11), yields

‖u− un‖
2(J ) ≤ ρ‖u− un−1‖
2(J ), n ∈ N.(3.17)

Of course, a better error reduction would result from an optimal stage dependent
step size αn. Keeping Remark 3.2 in mind, one can show that (3.7) are the Euler
equations of a strictly convex minimization problem on �2(J ). For a given un the
residual r := f −Aun −G(un) is the direction of the corresponding steepest descent
starting from un. The minimum along this direction is given by the zero α = αn
of the function g(α) =

(
f − A(un + αr) − G(un + αr)

)T
r = 0. We shall later

discuss ways of approximately evaluating the terms in g(α). Noting that g′(α) =
−rT (A + DG(un + αr))r, one could think of using such routines for performing a
Newton step with the above initial guess for α to solve approximately g(α) = 0.

We conclude this section with a remark on the linear case (L), which is to find
u ∈ H such that

a(v, u) = 〈v, f〉 ∀ v ∈ H ⇐⇒ Au = f .(3.18)

Note that (3.5) follows from (3.1) but may still hold for indefinite problems, which
still implies, in view of Remark 2.1, the validity of (3.8). In this case, when G ≡ 0,
the matrix ATA is symmetric positive definite, and the iteration

un+1 = un − αAT (Aun − f), n = 0, 1, 2, . . . ,(3.19)

converges with a fixed error reduction ρ < 1, provided that 0 < α < 2/C2
A; i.e., (3.19)

has the form (2.11) with Bn := αAT . An analogue for the general nonlinear case
(GNL) will be given below.

For saddle point problems there are actually alternatives that avoid squaring
the problem (in wavelet coordinates). One option is to employ an Uzawa iteration for
applying the Schur complement operator, which conceptually also leads to an iteration
of the form (3.10) for the Schur complement [13, 17].

Of course, in either case, step (n4) requires eventually approximating the weighted
residual BnR(un), which in the above linear case amounts to approximating f and
approximately evaluating the infinite matrix A (respectively, AT ). We shall address
this issue later in some detail.

3.2. The general nonlinear case—locally convergent schemes (GNL).
While the assumptions in the previous setting allow us to conclude convergence of
the ideal infinite dimensional scheme for any initial guess u0, one often has to be
content with weaker assumptions (and correspondingly weaker conclusions). In the
literature, variational problems of the type (2.2) are frequently studied under general
assumptions on R, such as A1 and A2, that typically guarantee local convergence
of an iterative scheme to a locally unique solution provided that a sufficiently good
initial guess is known; see, e.g., [21, 23].

Our plan here is to exemplify the above paradigm under assumptions A1 and A2,
provided that a sufficiently good initial approximation is known. According to (n2),
we consider again the equivalent formulation (2.8) in wavelet coordinates and turn to
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devising a suitable iteration of the form (2.11) that converges for a sufficiently good
initial guess. To this end, we assume that

u0 ∈ Bδ(u) := {v : ‖v − u‖
2(J ) < δ},(3.20)

where δ will be specified below.
As mentioned before, a possible choice for Bn could involve the Jacobian, which

leads to Newton’s method. However, under the above weak assumptions on R, we
wish to avoid at this point requiring higher order smoothness conditions and consider
first the following much simpler option. An analogue to the least squares iteration
(3.19) would be Bn := DR(un)T . An even simpler alternative, which is presumably
less computationally demanding, is to take the stationary matrix

B = DR(u0)T ,(3.21)

provided that δ is sufficiently small. Let us point out next that for a sufficiently good
initial guess u0

W(v) := v − αDR(u0)TR(v)

is a contraction on Bδ(u). In fact,

W(z) −W(v) = (z− v) − αDR(u0)T (R(z) −R(v))

=
(
I− αDR(u0)TDR(v)

)
(z− v) + o(‖z− v‖
2(J ))

=
(
I− αDR(u0)TDR(u0)

)
(z− v) + o(‖z− v‖
2(J ))

+ O(ε(δ)‖z− v‖
2(J )),(3.22)

where we have used assumption A1 and where ε(δ) tends to zero as δ → 0. By A1 and
A2, DR(u0) is still an isomorphism from H onto H′ when δ is sufficiently small. Thus,
by Remark 2.1, the positive definite matrix DR(u0)TDR(u0) is an automorphism on
�2(J ). Therefore, for α > 0 satisfying

α‖DR(u0)TDR(u0)‖
2(J )→
2(J ) < 2,(3.23)

W is a contraction on Bδ(u). Furthermore, the iterates

un+1 = un − αDR(u0)TR(un), n = 0, 1, . . . ,(3.24)

stay in Bδ(u). In fact, as above,

un+1 − u = un − u− αDR(u0)T (R(un) −R(u))

= (I− αDR(u0)TDR(u0))(un − u) + o(‖un − u‖
2(J ))

+ O(ε(δ)‖un − u‖
2(J )).

Hence, for α as above and δ sufficiently small, i.e., ‖I−αDR(u0)TDR(u0)‖
2(J )→
2(J )

=: b < 1 and o(1)+O(ε(δ)) < 1− b, one has ‖un+1−u‖
2(J ) < δ. We can summarize
these observations as follows.

Remark 3.4. Under the above assumptions there exist a δ0 > 0 and a positive α
such that for any δ ≤ δ0 and u0 ∈ Bδ(u) the iteration (3.24) converges to the locally
unique solution u of (2.8). Moreover, there exists some ρ < 1 such that

‖un − u‖
2(J ) ≤ ρ‖un−1 − u‖
2(J ), n = 1, 2, . . . .(3.25)
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4. A perturbed first order iteration scheme. We shall now turn to step
(n4) under the assumption that (2.11) gives rise to a fixed error reduction ρ per
iteration step. Recall that by (3.17) and (3.25), this is indeed already the case for
(L), (SL), and (GNL) for the corresponding stationary choices of Bn = B. In order to
minimize technicalities we shall consider only this case in connection with such first
order schemes. In order to arrive at computable versions of these schemes, we have
to approximate the weighted residuals BR(un) in each step. Already in the linear
case (L), this requires approximating the application of an infinite matrix to a finitely
supported vector and approximating the given data f . In the nonlinear cases (SL),
(GNL), the additional difficulty is to approximately evaluate the nonlinear expressions
R(uj).

Our strategy can be outlined as follows. In the present section we shall address
only issue (a) from section 1.2, namely, How accurate must these approximations
be to be chosen at a given stage of the iteration so as to guarantee convergence
to the correct solution? We shall do so at this point under the assumption that a
subroutine for approximating the weighted residuals BR(v) with desired accuracy is
at our disposal. Once (a) has been clarified for the general scope of problems, we
shall in subsequent sections then narrow down step by step the specific requirements
on the basic subroutine, develop concrete realizations for the various problem types
(L), (SL), and (GNL), and analyze their complexity.

Thus for the time being we assume now that for R(·) = F(·) − f a routine with
the following property is given.

RES [η,B,F, f ,v] → wη determines for any positive tolerance η and any finitely
supported input v a finitely supported wη satisfying

‖BR(v) −wη‖
2(J ) ≤ η.(4.1)

The need for the following further ingredient is at this point less obvious. It will be
applied after a certain finite number of perturbed iterations based on the application
of RES. It will be seen later that this is crucial for controlling the complexity of the
scheme.

CCOARSE [η,v] → wη determines for any positive tolerance η and any finitely
supported input vector v a finitely supported output vector wη such that

‖v −wη‖
2(J ) ≤ η,(4.2)

while the support of wη is minimized subject to certain constraints on the distribution
of its entries.

The constraints mentioned in CCOARSE will depend on the particular appli-
cation and will be specified later. A perturbed iteration based on these ingredients
requires specifying a suitable initialization.

Initialization. We distinguish the following three cases for the choice of the initial
guess.

(L) In the linear case R(v) = Av − f , we can set u0 := 0 so that an initial error
bound is given, directly in view of (3.8), by ‖u−u0‖
2(J ) = ‖u‖
2(J ) ≤ c−1

A ‖f‖
2(J ) =:
ε0. Moreover, in the positive definite case, any fixed α < 2/CA in B = αI and
α < 2/C2

A in B = αAT for the general least squares formulation ensure that I−BA
is a contraction on B = �2(J ).

(SL) In the case of semilinear elliptic problems (3.7), (3.4), we recall from (3.12)
that for u0 = 0 the initial error is bounded by

‖u‖
2(J ) ≤ c−1
A

(‖G(0)‖
2(J ) + ‖f‖
2(J )

)
=: ε0.(4.3)



ADAPTIVE SCHEMES FOR NONLINEAR PROBLEMS 1797

We choose B = B2ε0(u) and B := αI for a fixed α < 2/(CA + Ĉ(2ε0)), α ≤ 1, so that
(3.16) holds for δ0 = 2ε0 and ρ = ρ(α) < 1, defined in (3.15).

(GNL) For the locally convergent scheme, we adhere to the assumptions made in
section 3.2. For any fixed δ < δ0 (the parameter from Remark 3.4) which satisfies
(1 + α)δ < δ0, where α is the constant from (3.23), we choose u0 according to (3.20).
In this case, we have B = αDR(u0)T , and ε0 := δ is a valid initial error bound which
ensures that for v ∈ B := Bδ(u) the matrix I−BDR(v) is a contraction.

Thus in all cases (L), (SL), and (GNL) one has under the above premises

‖u− u0‖
2(J ) ≤ ε0.(4.4)

In order to control the perturbations caused by applications of RES, it will be
convenient to extract the following fact from the above considerations.

Remark 4.1. For each of the above choices of B in (L), (SL), and (GNL) and the
respective neighborhoods B of the exact solution u specified in the initialization, one
has

‖(v − z) −B(R(v) −R(z))‖
2(J ) ≤ ρ‖v − z‖
2(J ), v, z ∈ B,(4.5)

where ρ < 1 is the respective error reduction rate in (3.17) for the iteration (2.11).
Proof. The linear case (L) is obvious.
In the case (SL) of the semilinear elliptic problem (3.4), respectively, (3.7), one

has for B = αI (with α specified in the initialization), by the same reasoning used in
(3.11),

v − z− α(R(v) −R(z)) =

(
I− α

(
A+

∫ 1

0

DG(z+ s(v − z))ds

))
(v − z).

The assertion follows then from (3.16).
Finally, for (GNL) (see section 3.2), the claim follows from (3.22) for B =

αDR(u0)T and α satisfying (3.23) with B = Bδ(u).
The following last prerequisite will allow us to control the number of calls of RES

before applying a coarsening step.
Remark 4.2. For each of the above choices of B in (L), (SL), and (GNL) and for

the respective neighborhoods B of the exact solution u, there exists a positive finite
constant β such that

‖u− v‖
2(J ) ≤ β‖BR(v)‖
2(J ), v ∈ B.(4.6)

Proof. Of course, in principle, this follows from (4.5) by the triangle inequality.
However, β then depends on ρ for which only a poor estimate may be available. For
(L) and (SL) one obtains better bounds as follows. From (3.7) and (3.9) we infer that

‖R(v)‖
2(J ) = sup
z 
=0

zT (A(v − u) +G(v) −G(u))

‖z‖
2(J )
≥ (v − u)TA(v − u)

‖v − u‖
2(J )

≥ cA‖v − u‖
2(J ).

Thus (4.6) holds with β = 1/(αcA). Similarly β = 1/(αc2A) works for the least
squares formulation (3.19). For (GNL) we have by our assumptions that ‖B(R(v) −
DR(v))(v − u)‖
2(J ) ≤ o(‖v − u‖
2(J )) so that in a sufficiently small neighborhood
of u (4.6) follows from the well-posedness relation (2.10).
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We can now describe our computable analogue of (2.11). For this we choose any
fixed summable sequence (ωj)j∈N0 , which, for convenience, we arrange to sum to one∑∞

j=0 ωj = 1, and a fixed constant C∗ which depends on the specific realization of
the routine CCOARSE; see sections 5.2 and 6.2.
SOLVE [ε,R,u0] → ū(ε)

(i) Choose some ρ̄ ∈ (0, 1). Set ū0 = u0 and the corresponding initial bound ε0
according to the above initialization, and define j = 0;

(ii) If εj ≤ ε, stop and output ū(ε) := ūj ; else set v0 := ūj and k = 0
(ii.1) Set ηk := ωkρ̄

kεj and compute

rk = RES [ηk,B,F, f ,v
k], vk+1 = vk − rk.

(ii.2) If

β
(
ηk + ‖rk‖
2(J )

) ≤ εj/(2(1 + 2C∗)),(4.7)

set ṽ := vk and go to (iii). Else set k + 1 → k and go to (ii.1).

(iii) CCOARSE [
2C∗εj

2(1+2C∗) , ṽ] → ūj+1, εj+1 = εj/2, j + 1 → j, go to (ii).

Let us confirm first that the choice of accuracy tolerances in SOLVE implies
convergence.

Proposition 4.3. The iterates ūj produced by the scheme SOLVE satisfy

‖u− ūj‖
2(J ) ≤ εj(4.8)

so that, in particular, ‖u− ū(ε)‖
2(J ) ≤ ε. By (2.5), this means∥∥∥∥∥∥u−
∑

λ∈Λ(ε)

ū(ε)λψλ

∥∥∥∥∥∥
H

≤ C1ε,(4.9)

where C1 is the constant from (2.5) and Λ(ε) := suppu(ε).
Moreover, the number of updates in step (ii.1) prior to a coarsening step is uni-

formly bounded by some fixed K ∈ N , independent of ε and the data.
Proof. We assume the above initialization and employ a simple perturbation

argument using induction on j. We fix a value of j and let uk := uk(v0) be the exact
iterates uk+1 = uk −BR(uk) with initial guess u0 = v0 = ūj . Hence

vk+1 − uk+1 = vk − uk − (rk −BR(uk))

= vk − uk −B(R(vk) −R(uk)) + (BR(vk) − rk).(4.10)

Next we wish to invoke (4.5). To do this we need to make sure that the iterates
vk,uk stay in the neighborhood B mentioned in Remark 4.1. In the linear case (L)
there is no constraint, i.e., B = �2(J ). Let us look at the semilinear case (SL) next.
By the induction assumption we know that ‖u − ūj‖
2(J ) ≤ εj ≤ ε0. Therefore,

‖u−uk‖
2(J ) ≤ ρk‖u−u0‖
2(J ) ≤ ρk‖u− ūj‖
2(J ) ≤ ρkεj . So uk ∈ B for all k ≤ K.

Also v0 = ūj ∈ B. Thus suppose that vk is in B. We wish to show that then also
vk+1 ∈ B. To this end, let ρ∗ be the true reduction rate in (2.11) (for which ρ(α)
from (3.15) might be a poor estimate) and set ρ̂ := max {ρ∗, ρ̄}. Then we infer from
(4.5), (4.10), and the definition of rk in step (ii) that

‖vk+1 − uk+1‖
2(J ) ≤ ρ∗‖vk − uk‖
2(J ) + ωkρ̄
kεj

≤
(

k∑
l=0

ρk−l∗ ωlρ̄
l

)
εj ≤ ρ̂kεj ,(4.11)
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where we have used that u0 = v0. Moreover, since

‖vk+1 − u‖
2(J ) ≤ ρ̂kεj + ‖uk+1 − u‖
2(J ) ≤ 2ρ̂kεj ,(4.12)

we see that vk+1 ∈ B = B2ε0(u) so that the iteration can be advanced.
For the locally convergent scheme (GNL) with B = αR(u0)T , the reasoning is

analogous. The choice of the initial guess ensures that (ρ + α)εj ≤ (ρ + α)ε0 ≤
(1 + α)ε0 ≤ δ0. Then the above arguments for (SL) yield again (4.15) so that all
iterates stay in B = Bδ0(u).

Now note that by (4.12),

‖rk‖
2(J ) ≤ ‖vk+1 − u‖
2(J ) + ‖vk − u‖
2(J ) ≤ 4ρ̂k−1εj

so that

β(ηk + ‖rk‖
2(J )) ≤ βεj(ωkρ̂ + 4)ρ̂k−1.(4.13)

Hence, choosing

K := min {k ∈ N : β(ωkρ̂ + 4)ρ̂k−1 ≤ 1/(2(1 + 2C∗))},(4.14)

we see that (4.7) is met after at most K steps. Moreover, (4.6) says that

‖u− ṽ‖
2(J ) ≤ εj
2(1 + 2C∗)

.(4.15)

Thus in all cases the estimate (4.8) follows now immediately from step (iii) in
SOLVE, the definition of CCOARSE, and (4.2). Finally, (4.9) is an immediate
consequence of the norm equivalence (2.5) and (4.8).

Thus, for an idealized infinite dimensional scheme of order one in (n3), we know
how to choose the tolerances in the routines RES and CCOARSE so as to guarantee
convergence. Moreover, the true error reduction rate need not be known, and one
can use any (possibly too optimistic) guess ρ̄. Of course, choosing ρ̄ too small, the
intermediate tolerances get perhaps unnecessarily small.

Our paradigm for solving nonlinear problems is built on the availability of numer-
ical algorithms such as CCOARSE and RES. The remainder of this paper shows
how to construct concrete practical realizations of these algorithms in various settings
and then shows how, under suitable controls on the computations in these algorithms,
we can give complexity estimates for the entire numerical scheme SOLVE. More pre-
cisely, we wish to determine its work/accuracy balance, i.e., given any target accuracy
ε, how many degrees of freedom N = N(ε) := #Λ(ε), where Λ(ε) := supp ū(ε), are
needed to achieve it, and what is the associated (asymptotic) computational work. Of
course, one hopes to keep the latter quantity proportional to N(ε) so that the number
of degrees of freedom is a reasonable complexity measure. In the following section
we shall address these issues first for the linear case (3.18). We review quickly the
relevant facts from [8, 9] tailored somewhat to the present situation. On one hand,
they will serve as building blocks for the general nonlinear case. On the other hand,
they also help to bring out some conceptual distinctions.

5. Realization and complexity analysis in the linear case (L). Recall
from (3.10) that in the linear case, BR(v) = α(Av− f) (or αAT (Av− f)). Thus one
part of approximating the residual is to approximate given data, here in the form of
the right-hand side f , which, in general, is an infinite sequence.
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5.1. Coarsening and best N-term approximation. We will also assume in
what follows that all coefficients of f are known and thus in principle accessible. In
practice this may require a preprocessing step that computes for some overall target
accuracy ε̄ (depending on the desired solution accuracy) an approximation fε̄ satisfying
‖f − fε̄‖
2(J ) ≤ ε̄ and then orders the entries by size. Once this has been done, any
coarser approximations needed in the course of the iteration process can be produced
by the following simplest version of CCOARSE, introduced and analyzed in [8].

COARSE [η,v] → vη associates with any finitely supported input v a vector vη
such that

‖v − vη‖
2(J ) ≤ η, #suppw ≥ #suppvη, whenever ‖v −w‖
2(J ) ≤ η.(5.1)

Thus COARSE determines for a given finitely supported vector a new vector
with the smallest possible support deviating no more than a prescribed tolerance
from the input. There is no constraint on the distribution of active indices in this
case. Ordering the entries of v sizewise, this can be realized by summing entries in
increasing order until the sum of their squares reaches η2. For a detailed description
of this routine, see [8]. In fact, a strict ordering is not necessary. The same effect
is realized by collecting the entries in binary bins, which avoids a log factor at the
expense of a fixed factor in the accuracy tolerance [1].

The routine COARSE can be used to approximate the data f as follows:

RHS [η, f ] := COARSE [η − ε̄, fε̄],(5.2)

whenever η > ε̄.
Note that COARSE is a nonlinear process that realizes a given accuracy tol-

erance at the expense of a minimal number of degrees of freedom. It is therefore a
version of best N -term approximation in �2(J ). In fact, defining

σN,
2(J )(u) := min
#suppv≤N

‖u− v‖
2(J ),(5.3)

one has for any v ∈ �2(J )

σN,
2(J )(v) = ‖v − vN‖
2(J ) =

(∑
n>N

|v∗n|2
)1/2

,(5.4)

where (v∗n)n∈N is the nonincreasing rearrangement of v. Thus vN is obtained by
retaining the N largest (in modulus) terms of v and setting all other entries to zero.
Depending on the context, vN will be viewed as a sequence in �2(J ) or a vector in
R
N .

The best N -term approximation sets a lower bound for the complexity that could
ever be achieved by a scheme like SOLVE. In fact, it will serve as our benchmark
in the case of linear variational problems of the form (3.18). In order to make this
precise, we introduce the corresponding approximation classes

As := {v ∈ �2(J ) : σN,
2(J )(v) <∼ N−s},
which we endow with the quasi norm ‖v‖As := supN∈N NsσN,
2(J )(v). Clearly, every
v with finite support belongs to As for any s > 0. The question is, Does SOLVE
produce for any target accuracy ε an approximate solution within that tolerance at
a computational expense that stays bounded by Cε−1/s whenever the exact solution
belongs to As, at least for some range of s > 0?
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5.2. Adaptive application of compressible matrices. It remains to approx-
imate the action of A on a finitely supported vector v. While the treatment of the
right-hand side data has been already seen to comply with best N -term approximation
complexity, the question arises whether Av can be approximated with a similar effi-
ciency. This has been answered affirmatively in [8], and we briefly recall the relevant
facts from there.

Due to the vanishing moment property of wavelets, the wavelet representation of
many operators turns out to be quasi-sparse. The following quantification of sparsity
is appropriate [8].

We shall use the notation (αj)
∞
j=1 to denote a summable sequence of positive

numbers:
∑∞

j=1 αj < ∞. A matrix C is said to be s∗-compressible, C ∈ Cs∗ , if for
any 0 < s < s∗ and every j ∈ N there exists a matrix Cj with the following properties:
For some summable sequence (αj)

∞
j=1, Cj is obtained by replacing all but the order

of αj2
j entries per row and column in C by zero and satisfies

‖C−Cj‖
2(J )→
2(J ) ≤ Cαj2
−js, j ∈ N.(5.5)

Specifically, wavelet representations of differential (and also certain singular inte-
gral) operators fall into this category. One typically has then estimates of the type

|a(ψλ, ψµ)| <∼ 2−σ||λ|−|µ||,(5.6)

where σ > d/2 depends on the regularity of the wavelets.
In order to describe the essence of an approximate application scheme for com-

pressible matrices, we abbreviate for any finitely supported v the best 2j-term ap-
proximations by v[j] := v2j and define

wj := Ajv[0] +Aj−1(v[1] − v[0]) + · · · +A0(v[j] − v[j−1])(5.7)

as an approximation to Av. Obviously this scheme is adaptive in that it exploits
directly information on v. In fact, if A ∈ Cs∗ , then the triangle inequality together
with the above compression estimates yield for any fixed s < s∗

‖Av −wj‖
2(J ) ≤ c

‖v − v[j]‖
2(J )︸ ︷︷ ︸
σ2j ,�2(J )(v)

+

j∑
l=0

αl2
−ls ‖v[j−l] − v[j−l−1]‖
2(J )︸ ︷︷ ︸

<∼ σ
2j−l−1,�2(J )

(v)

 ,(5.8)

where v[−1] := 0. One can now exploit the a posteriori information offered by the
quantities σ2j−l−1,
2(J )(v) to choose the smallest j for which the right-hand side of
(5.8) is smaller than a given target accuracy η and set wη := wj . Since the sum is
finite for each finitely supported input v, such a j does indeed exist. This leads to
a concrete multiplication scheme (see [8, 2] for a detailed description, analysis, and
implementation) which we summarize as follows.

APPLY [η,A,v] → wη determines for any finitely supported input v a finitely
supported output wη such that

‖Av −wη‖
2(J ) ≤ η.(5.9)

The complexity of this scheme would be asymptotically optimal if the size of
supp (wη) and the corresponding work count remain bounded by C(Nη +#supp (v)),
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where Nη is the smallest N such that σN,
2(J )(Av) ≤ η. We shall see that this is
indeed the case for a certain range of decay rates of σN,
2(J )(v).

The main result concerning APPLY can be formulated as follows [8].
Theorem 5.1. Suppose that C ∈ Cs∗ and that 0 < s < s∗. Then, in addition to

(5.9), for any input vector v with finite support, wη = APPLY [η,C,v] satisfies
(i) ‖wη‖As <∼ ‖v‖As ,

(ii) #suppwη <∼ ‖v‖1/s
As η−1/s and #flops <∼ #suppv + ‖v‖1/s

As η−1/s,
where the constants in these estimates depend only on s when s is small. Moreover,
any C ∈ Cs∗ is bounded on As as long as s < s∗.

Thus, when dealing with linear problems (3.18), an approximation within the
tolerance η > 0 to the weighted residualBR(v) = α(Av−f) for any finitely supported
input v can be computed as

RESlin[η, αI,A, f ,v] := α
(
APPLY

[ η

2α
,A,v

]
−RHS

[ η

2α
, f
])

,(5.10)

where RHS is given by (5.2). The same ideas can be used in the least squares case
(3.19), where again RHS can be composed of COARSE and APPLY; see [9] for
details.

Remark 5.1. Since by Theorem 5.1 f ∈ As, whenever the solution u belongs to As,
the above considerations and analogous facts about COARSE from [8] show that the

output fη of RHS [η, f ] satisfies ‖fη‖As <∼ ‖u‖As and #supp fη <∼ η−1/s‖u‖1/s
As .

These observations provide the following result.
Proposition 5.2. If the sequence of wavelet coefficients u of the exact solution

u of (3.18) belongs to As and if A belongs to Cs∗ with s∗ > s, then, for any finitely
supported input v, the output wη of the scheme RESlin [η, αI,A, f ,v] satisfies

‖wη‖As <∼ (‖v‖As + ‖u‖As) ,

# suppwη <∼ η−1/s
(
‖u‖1/s

As + ‖v‖1/s
As

)
, η > 0,

(5.11)

where the constants in these estimates depend only on s.
Proposition 5.2 controls the complexity within each iteration block (ii) of per-

turbed iterations where, however, the constants may build up. To avoid this is exactly
the role of step (iii) in SOLVE, which is based on the following “coarsening lemma”
from [8]. (The following version can be found in [7].)

Proposition 5.3. Let a be some fixed number strictly larger than 1. If v ∈ As

and ‖v − w‖
2(J ) ≤ η with #suppw < ∞, then w̄η := COARSE [aη,w] satisfies
‖v − w̄η‖
2(J ) ≤ (1 + a)η and

#supp w̄η <∼ ‖v‖1/s
As η

−1/s, ‖w̄η‖As <∼ ‖v‖As ,(5.12)

where the constants in these estimates depend only on s when s becomes small.
By Proposition 5.3, the coarsening step (iii), with the above algorithm COARSE

used as CCOARSE, pulls a current approximation to the unknown u toward its best
N -term approximation and controls the As-norms of the approximations, indepen-
dently of the possible increase of these norms caused by several preceding applications
of RES, provided that 2C∗ > 1. Thus, in connection with COARSE, one can take
any fixed C∗ > 1/2 in (4.7) and step (iii) of SOLVE.

Let us denote by SOLVElin the specification of SOLVE obtained by usingRESlin

and COARSE in place of RES, respectively, CCOARSE. We emphasize that adap-
tivity enters the scheme SOLVElin solely through the adaptive application of A and
the residual check (4.7).
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Under the above premises, Propositions 5.2 and 5.3 allow one to show that
SOLVElin exhibits optimal complexity in the sense that it realizes the Meta-Theorem
from section 1.1 with (unconstrained) best N -term approximation as a benchmark.

Remark 5.4. We conclude this section by recalling that u ∈ As is, for instance,
implied by a certain Besov regularity of u. In fact, when H = Ht (a Sobolev space of
smoothness t), u ∈ Bt+ds

τ (Lτ ), with τ−1 = s+ 1/2, implies u ∈ As. This can be used
to identify circumstances under which the adaptive scheme performs asymptotically
better than a scheme based on uniform refinements. Recall that Bt+ds

τ (Lτ ) is the
“largest” space of smoothness t + sd embedded in Ht.

6. The nonlinear case. In view of the fact that SOLVE has the same structure,
regardless of whether the involved operators are linear or nonlinear, our strategy will
be to follow closely the above lines also when the variational problem (2.2) is nonlinear.
In principle, this will prove successful, although some important modifications of the
ingredients will be encountered. The main distinction lies in the sparsity measure in
that the role of best (unrestricted) N -term approximation will be replaced by best
tree approximation. This constraint on the distribution of active coefficients arises
naturally when analyzing the approximate evaluation of nonlinear expressions R(v).
Moreover, index sets with tree structure are analogous to locally refined meshes in
adaptive finite element methods.

6.1. Tree approximation and coarsening. Let us explain first what we mean
by a tree structure associated to the set of wavelet indices. In the simplest case of
a one dimensional basis ψλ = ψj,k = 2j/2ψ(2j · −k), this structure is obvious: each
index (j, k) has two children (j + 1, 2k) and (j + 1, 2k + 1). A similar tree structure
can be associated to all available constructions of wavelet basis on a multidimensional
domain: to each index λ one can assign m(λ) ≥ 2 children µ such that |µ| = |λ| + 1,
where m(λ) might vary from one index to another but is uniformly bounded by some
fixed M . We shall use the notation µ ≺ λ (µ � λ) in order to express that µ is a
descendent of λ (or equals λ) in the tree. We also have the property

µ ≺ λ ⇒ Sµ ⊂ Sλ,(6.1)

where we recall that Sλ := suppψλ. A set T ⊂ J is called a tree if λ ∈ T implies
µ ∈ T whenever λ ≺ µ.

If the tree T ⊂ J is finite, we define the set L = L(T ) of outer leaves as the set
of those indices outside the tree whose parent belongs to the tree

L := {λ ∈ J : λ !∈ T , λ ≺ µ =⇒ µ ∈ T }.(6.2)

We shall make use of the easily verifiable relation

#T ∼ #L(T ),(6.3)

where the constants depend only on the number M of children.
Note that L(T ) plays the role of a (locally refined) mesh. Associating to any

sequence v = (vλ) in �2(J ), another sequence ṽ = (ṽλ) whose entries are defined by

ṽλ :=

∑
µ�λ

|vµ|2
1/2

,(6.4)
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one readily confirms that µ ≺ λ implies ṽλ ≥ ṽµ and

‖v − v|T ‖2

2(J ) =

∑
λ∈L(T )

ṽ2
λ.(6.5)

Recall that in the linear case we have been able to compare the performance
of SOLVE with the best (unconstrained) N -term approximation. We want now to
develop sparsity measures that respect tree structure. Once a suitable measure has
been identified, one can follow conceptually the lines of section 3. The counterpart for
the spaces As are now the analogous spaces defined via best tree N -term approximation
where the distribution of active coefficients in an approximant has a tree structure;
see [10]. In fact, let

σtree
N,
2(J )(v) := min {‖v −w‖
2(J ) : T := suppw is a tree and #T ≤ N}.(6.6)

Any minimizing tree will be called TN (v). We define now

As
tree := {v ∈ �2(J ) : σtree

N,
2(J )(v) <∼ N−s},(6.7)

which again becomes a quasi-normed space under the quasi norm

‖v‖As
tree

:= sup
n∈N

Nsσtree
N,
2(J )(v).(6.8)

One can again relate the membership of v to As
tree to the regularity of the corre-

sponding expansion v [10].
Remark 6.1. Let H = Ht for some t > 0. If the wavelet expansion v with

coefficient sequence v belongs to Bt+sd
τ ′ (Lτ ′) for some τ ′ satisfying τ ′ > (s + 1/2)−1,

then v ∈ As
tree. Thus, in terms of regularity, As

tree differs from As by a little additional
regularity imposed on the respective expansions, due to the stronger metric Lτ ′ , τ ′ >
τ . Thus a tree approximation rate N−s can still be achieved for much larger spaces
than Ht+sd, which governs the corresponding rate for uniform refinements.

6.2. Tree coarsening. We shall specify next a coarsening routine CCOARSE
that preserves tree structures and, as before, applies to finitely supported sequences.
It will be referred to as TCOARSE. Its definition requires some preparation. Given
w, a tree T = T ∗(η,w) is called η-best for w if

‖w −w|T ‖
2(J ) ≤ η and #T = min {#T ′ : ‖w −w|T ′‖
2(J ) ≤ η, T ′ a tree}.

Requiring best trees will be too stringent from a practical point of view. Therefore,
we shall be content with the following relaxed version. A tree T = T (η,w) is called
(η, C)-near best (or briefly near best when the parameters are clear from the context)
if

‖w −w|T ‖
2(J ) ≤ η and #T ≤ C#T ∗(η/C,w).

The action of TCOARSE can now be described as follows.
TCOARSE [η,w] → w̄η determines for a fixed constant C∗ ≥ 1, any finitely

supported input w, and any tolerance η > 0 an (η, C∗)-near best tree T (η,w) and sets
w̄η := w|T (η,w).

The realization of this routine can be based on either one of the two algorithms
for generating near best tree approximations developed in [3]. To apply the results
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from [3] in the present situation, the role of the partition P associated in [3] to a tree
T is played here by the set L(T ) of outer leaves; recall (6.5). Moreover, for λ ∈ L(T ),
the local error terms for a given v ∈ �2(J ) are here given by e(λ) := ṽ2

λ. Obviously,
the e(λ) are subadditive in the sense of [3]. Hence the results from [3] apply. To use
the algorithm from [3], we need to know the values w̃λ, λ ∈ T (suppw), the smallest
tree containing the support of w. Summing the squares of the entries of w starting
from the leaves of T (suppw) and working toward the roots provide these quantities
at an expense of #T (suppw) operations. Combining this with Theorem 5.2 from [3]
establishes the following fact.

Proposition 6.2. For any given finitely supported input w, the computational
cost of the output w̄η produced by TCOARSE [η,w] remains proportional to #T (supp
w). The underlying tree T (η,w) is (η, C∗)-near best, where C∗ is the constant ap-
pearing in the estimate (5.8) in Theorem 5.2 of [3].

The routine TCOARSE will be used as CCOARSE in step (iii) of SOLVE.
The constant C∗ appears in the stopping criterion in step (ii.2) of SOLVE and in
the coarsening step (iii). In analogy to the linear case, its purpose is to control the
As

tree-norms of the approximants. This is made precise by the following counterpart
to Proposition 5.3.

Proposition 6.3. If v ∈ As
tree and ‖v −w‖
2(J ) ≤ η with #suppw < ∞, then

w̄η := TCOARSE [2C∗η,w] satisfies

#supp w̄η <∼ ‖v‖1/s
As

tree
η−1/s, ‖v − w̄η‖
2(J ) ≤ (1 + 2C∗)η,(6.9)

and

‖w̄η‖As
tree

<∼ ‖v‖As
tree

,(6.10)

where the constants depend only on s when s → 0 and on C∗ in TCOARSE.
Proof. The second estimate in (6.9) follows from the triangle inequality. As for

the first estimate in (6.9), assume that v ∈ As
tree and consider the best N -term tree

TN (v) for v defined by (6.6). We first note that

‖w −w|TN (v)‖
2(J ) ≤ ‖(w − v)|J\TN (v)‖
2(J ) + ‖v − v|TN (v)‖
2(J )

≤ η + ‖v − v|TN (v)‖
2(J ).(6.11)

According to the definition of the norm ‖·‖As
tree

by (6.8), we have ‖v−v|TN (v)‖
2(J ) ≤
η for some N <∼ ‖v‖1/s

As
tree

η−1/s. Therefore, ‖w −w|TN (v)‖
2(J ) ≤ 2η so that by the

definition of the (2C∗η, C∗)-near best tree T (2C∗η,w), we have

#T (2C∗η,w) ≤ C∗#T ∗(2η,w) ≤ C∗#TN (v) ≤ C∗N <∼ ‖v‖1/s
As

tree
η−1/s,(6.12)

which proves the first estimate in (6.9). It remains to prove (6.10). We wish to show
that for each δ > 0 there exists a tree Tδ such that

‖w̄η − w̄η|Tδ‖
2(J ) ≤ δ and #(Tδ) <∼ ‖v‖1/s
As

tree
δ−1/s.(6.13)

The existence of such a tree has been already established for δ = η. Now consider first
the case δ ≤ 2(1+2C∗)η. In this case, we take Tδ := supp w̄η = T (2C∗η,w). In fact,
since then ‖w̄η − w̄η|Tδ‖
2(J ) = 0, the first relation in (6.13) holds trivially. More-

over, since #(Tδ) = #(T (2C∗η,w)) <∼ ‖v‖1/s
As

tree
η−1/s <∼ ‖v‖1/s

As
tree

δ−1/s, the second

estimate in (6.13) is also valid.
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Now consider the case δ > 2(1 + 2C∗)η. Let Tδ := TN (v) be a best N -term tree
for v, where N will be chosen in a moment. Note that

‖w̄η − w̄η|Tδ‖
2(J ) ≤ ‖(w̄η − v)|J\Tδ‖
2(J ) + ‖v − v|TN (v)‖
2(J )

≤ (1 + 2C∗)η + ‖v − v|TN (v)‖
2(J ) ≤ δ,(6.14)

provided that δ−(1+2C∗)η ≥ ‖v−v|TN (v)‖
2(J ). This holds for some N <∼ ‖v‖1/s
As

tree
(δ−

(1 + 2C∗)η)−1/s ≤ 21/s‖v‖1/s
As

tree
δ−1/s, which confirms (6.13) also in the case δ >

2(1 + 2C∗)η. This finishes the proof.

6.3. The key requirement. Up to this point, we have not imposed any con-
ditions on the subroutine RES, which is used to approximate the residual at each
iteration. In later realizations of the routine RES, the support of its output will
have tree structure which we will therefore assume to hold from now on without
further mention. We will now introduce a condition, called s∗-sparsity, motivated
by the analysis of the previous section for the linear case; see Proposition 5.2. We
will then show that whenever RES is s∗-sparse, the algorithm SOLVE is optimal
in its rate/complexity for the range of error decay rates σtree

N,
2(J )(u) <∼ N−s with
s < s∗. The subsequent section will then show how to construct s∗-sparse routines
for nonlinear problems.

We say that the scheme RES used to approximate residuals is s∗-sparse if, in
addition to (4.1), the following property holds.

s∗-sparsity. Whenever the exact solution u of (2.8) belongs to As
tree for some

s < s∗, then one has for any finitely supported input v and any tolerance η > 0 that
the output wη := RES [η,B,F, f ,v] satisfies

#suppwη ≤ Cη−1/s(‖v‖1/s
As

tree
+ ‖u‖1/s

As
tree

+ 1),

‖wη‖As
tree

≤ C
(‖v‖As

tree
+ ‖u‖As

tree
+ 1
)
,

(6.15)

where C depends only on s when s → s∗. Moreover, the number of operations needed

to compute wη stays proportional to C(η−1/s(‖v‖1/s
As

tree
+ ‖u‖1/s

As
tree

+1)+#T (suppv)),

where again T (suppv) denotes the smallest tree containing suppv.
The occurrence of ‖u‖As

tree
in the above estimates is already plausible from the

linear case, as explained in Remark 5.1.
It will be understood in what follows that TCOARSE is used as CCOARSE

and that a proper initialization is used that complies if necessary with the requirements
on the quality of the initial guess (see section 5) so that, in particular, the respective
variant of the iteration (2.11) satisfies (3.17).

Under these premises we now show that s∗-sparsity implies asymptotically optimal
complexity of the scheme SOLVE.

Theorem 6.1. Assume that the scheme RES is s∗-sparse for some s∗ > 0. If
the exact solution u of (2.8) belongs to As

tree for some s < s∗, then the approximations
ū(ε) satisfy for every target accuracy ε > 0

‖u− ū(ε)‖
2(J ) ≤ ε,(6.16)

while

#supp ū(ε) ≤ Cε−1/s‖u‖1/s
As

tree
, ‖ū(ε)‖As

tree
≤ C‖u‖As

tree
,(6.17)

where the constant C depends only on s when s → s∗. Moreover, the number of

operations needed to compute ū(ε) remains bounded by Cε−1/s‖u‖1/s
As

tree
.
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Proof. The first part follows directly from Proposition 4.3. From (4.15) we know
that the result ṽ after at most K perturbed iterations in the (j + 1)st block of step
(ii) in SOLVE satisfies ‖u− ṽ‖
2(J ) ≤ εj/(2(1 + 2C∗)). Now Proposition 6.3 ensures
that then

‖ūj+1‖As
tree

≤ C‖u‖As
tree

, #supp ūj+1 ≤ Cε
−1/s
j ‖u‖1/s

As
tree

.(6.18)

Moreover, the computational work required by the routine TCOARSE stays, by
Proposition 6.2, proportional to the support size of ṽ, since the support of ṽ, as an
output of RES, has tree structure. Here it is important to note that the constant C
is independent of the input ṽ of TCOARSE. Thus for j > 0 the input of the first
application of RES in step (ii) of SOLVE satisfies (6.18). Since there are only at
most a uniformly bounded number K of applications of RES in each iteration block,
ṽ also satisfies (6.18) with a constant depending now on the number of updates (ii.1)
bounded by K; see (4.14). (Here we have tacitly assumed that the initial guess has
been subjected to a TCOARSE so that it also satisfies (6.18). Otherwise, we would
have to add #suppu0 to the above estimates.) The estimate in (6.17) now follows
from these estimates for the terminal value of j. This also shows that the number of
operations remains proportional to #supp ū(ε).

We shall discuss below how to obtain schemes RES that are s∗-sparse for certain
s∗ > 0 and what limits the value of s∗.

7. Nonlinear evaluation schemes. Just as the efficient application of com-
pressible matrices A was pivotal for the adaptive solution in the linear case (L), we
need efficient evaluation schemes for F(v) that allow us to realize the residual ap-
proximation in RES. Such a scheme has been already proposed in [10] for a class of
nonlinearities F that will be described next.

7.1. A class of nonlinear mappings. We shall be concerned with nonlinear
operators of the form

V = (v1, . . . , vn) �→ w = F (Dα1v1, . . . , D
αnvn),(7.1)

acting from H×· · ·×H to the dual H′. (Here αi = (αi,1, . . . , αi,d) are multi-indices.)
This clearly covers our previous example of a single argument n = 1 but also further
important cases like the nonlinearity appearing in the Navier–Stokes equations. Al-
though we shall not address variational problems involving nonlinearities of several
arguments in this paper, we shall present the evaluation schemes in this somewhat
greater generality because they are important for such applications and because we
shall apply the case of two arguments later in connection with Newton’s scheme.

We shall first describe our requirements on F in the wavelet coordinate domain
and point out later circumstances under which these requirements are met.

Denoting by vi = (vi,λ) the arrays of the wavelet coefficients of the function vi,
setting V = (v1, . . . ,vn), and defining the corresponding discrete mapping F by

F(V) := (〈ψλ, F (Dα1v1, . . . , D
αnvn)〉)λ∈J ,(7.2)

we make the following basic assumptions.
Assumption 1. F is a Lipschitz map from (�2(J ))n into �2(J ),

‖F(U) − F(V)‖
2(J ) ≤ C

n∑
i=1

‖ui − vi‖
2(J ),(7.3)
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with C = C(maxi{‖ui‖
2(J ), ‖vi‖
2(J )}), where x �→ C(x) is a positive nondecreasing
function.

Bearing the norm equivalences (2.5), (2.6) in mind, we see that property P1 from
section 3.1 is a special case of Assumption 1 for n = 1.

Assumption 2. There exists a constant γ > d/2 such that, for any finitely
supported V (i.e., with all vi finitely supported) and w = F(V), we have for λ ∈ Jψ
the estimate

|wλ| ≤ C sup
µ : Sλ∩Sµ 
=∅

(
n∑
i=1

|vi,µ|
)

2−γ(|λ|−|µ|),(7.4)

where C = C(maxi ‖vi‖
2(J )) and x �→ C(x) is a positive nondecreasing function.
The parameter γ plays a similar role as the compressibility range s∗ for the wavelet

representation of linear operators.
Nonlinear mappings that satisfy the above assumptions are, for instance, those

with polynomial growth. In the special case of a single argument, a typical condition
reads

|F (k)(v)| <∼ (1 + |v|)(p−k)+ , k = 0, . . . , n∗, for some n∗ ≥ 1,(7.5)

where a+ := max {0, a}.
Remark 7.1. Suppose that H = Ht is a Sobolev space of smoothness order t > 0

(or a closed subspace determined by, e.g., homogeneous boundary conditions). One
can show that, for the special case n = 1, (7.5) implies Assumptions 1 and 2 and, in
particular, property P1, with no condition on p when t ≥ d/2 and otherwise provided
that

1 ≤ p < p∗ :=
d + 2t

d− 2t
;(7.6)

see [10].
In the general case, when the nonlinear map F has the form F (Dα1u1, . . . , D

αnun),
we impose the growth condition

|DβF (x1, . . . , xn)| ≤ C

n∏
i=1

(1 + |xi|)[pi−βi]+ , |β| = 0, 1, . . . , n∗,(7.7)

for some pi ≥ 0 and n∗ a positive integer. The following fact (covering Remark 7.1)
has been proven in [10].

Theorem 7.1. Suppose that H = Ht is a closed subspace (determined by, e.g.,
homogeneous boundary conditions) of Ht(Ω) for some t ≥ 0. Assume that the growth
assumptions (7.7) hold at least with n∗ = 0. Then F maps H×· · ·×H to H′ whenever
t ≥ 0 satisfies (

1

2
− t

d

)
+

+

n∑
i=1

pi

(
1

2
− t

d
+

|αi|
d

)
+

< 1.(7.8)

If in addition n∗ = 1, then we also have under the same restriction

‖F (u) − F (v)‖H′ ≤ C

n∑
i=1

‖ui − vi‖H,(7.9)
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where C = C(maxi{‖ui‖H, ‖vi‖H}) and x → C(x) is nondecreasing, and therefore,
on account of (2.5), Assumption 1 holds.

For the verification of Assumption 2, we treat separately the polynomial case for
which we have the growth condition

|DβF (x1, . . . , xn)| ≤ C

n∏
i=1

(1 + |xi|)pi−βi , βi ≤ pi,(7.10)

and DβF = 0 if βi > pi for some i, where the pi are positive integers. We recall the
following result from [10].

Theorem 7.2. Assume that the wavelets belong to Cm and have vanishing mo-
ments of order m (i.e., are orthogonal to Pm−1 the space of polynomials of total
degree at most m − 1) for some positive integer m. Then Assumption 2 holds for
γ = r + t + d/2 with the following values of r:

(i) If F satisfies (7.7) with p such that
∑n

i=1 pi(d/2 − t + |αi|)+ < d/2 + t, then
r = #min{m,n∗, p∗}$, where p∗ = min{pi : i s.t. d/2 − t + |αi| > 0}.

(ii) If F satisfies (7.10) with p such that
∑n

i=1 pi(d/2− t+ |αi|)+ < d/2 + t, then
r = m.

7.2. An adaptive evaluation scheme. The schemes for approximating F(V)
consist of two conceptual steps: (i) the prediction of a possibly small set of indices
that covers the significant coefficients of F(V) using only knowledge of the indices
of the significant coefficients of the input V; (ii) a sufficiently accurate computation
of those coefficients of F(V) that correspond to the predicted index set. Once the
predicted sets are known, one can invoke the techniques developed in [16] to tackle the
latter task. A more detailed treatment of this issue will be given elsewhere. Motivated
by the results in [16], we shall work in what follows with the following assumption.

Assumption E. The entries wλ = F(v)λ can be computed (with sufficient accu-
racy) on average at unit cost.

Therefore, we shall concentrate here only on task (i) under the assumption that
the computation can be done in linear time; see the discussion of this issue in [16].
We recall now briefly the construction from [10] of good predictions for mappings
satisfying Assumptions 1 and 2. For j = 0, 1, . . . , and each component vi of V we
define the near best trees introduced in section 6.2

Ti,j := T
(

2jε

1 + j
,vi

)
,(7.11)

by invoking the thresholding algorithm from [3]. Moreover, it can be shown that
for any tree T there exists an expansion T̃ such that for some constant C one has
#T̃ ≤ C#T , while for any λ ∈ L(T̃ ) the number of µ ∈ L(T̃ ) such that Sλ ∩ Sµ != ∅
is bounded by C; see Lemma 3.1 in [10]. We denote these expansions of Ti,j by T̃i,j
and set

T̃j :=

n⋃
i=0

T̃i,j and ∆j := T̃j \ T̃j+1.(7.12)

In order to build a tree which will be adapted to w = F(V), we introduce

α :=
2

2γ − d
> 0,(7.13)
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where γ is the constant in (7.4), and for each µ ∈ ∆j , we define the influence set

Λε,µ := {λ : Sλ ∩ Sµ != ∅ and |λ| ≤ |µ| + αj}.(7.14)

We then define T by

Tε(F,V) = T := Jφ ∪
(
∪µ∈T̃0Λε,µ

)
.(7.15)

The following fact has been shown in [10, Theorem 5.1].
Theorem 7.3. Assume that F satisfies Assumptions 1 and 2. Given any V ∈

(�2(J ))n, we have the error estimate

‖F(V) − F(V)|T ‖
2(J ) <∼ ε.(7.16)

Moreover, if V ∈ (As
tree)

n for some s ∈ (0, 2γ−d
2d

)
, we have the estimate

#(T ) <∼ ‖V‖1/s
(As

tree)
nε
−1/s + #(Jφ).(7.17)

We therefore have F(V) ∈ As
tree and

‖F(V)‖As
tree

<∼ 1 + ‖V‖(As
tree)

n .(7.18)

The constants in these above inequalities depend only on ‖V‖
2(J ), the space dimen-
sion d, and the parameter s.

This suggests the following routine for approximating F(V) for any finitely sup-
ported vector V:
EV [ε,F,V] → wε. Given the inputs ε > 0 and V with finite support do:
Step 1: Invoke TCOARSE [2jε/(1 + j),vi], i = 1, . . . , n, to compute the trees

Ti,j := T
(

2jε

C0(j + 1)
,vi

)
,(7.19)

where C0 = C0(‖v‖) is the constant involved in (7.16) for j = 0, . . . , J , and stop for
the smallest J such that TJ is empty (we always have J <∼ log2(‖V‖
2(J )/ε)).

Step 2: Derive the expanded trees T̃i,j, the layers ∆j, and the outcome tree T =
Tε(F,V) according to (7.15).
Step 3: Compute the coefficients F(V)λ, λ ∈ T ; see [16].

A more detailed discussion of this scheme can be found in [10].
We can now formulate concrete realizations of the scheme SOLVE that are suit-

able for nonlinear problems. We shall use TCOARSE as our version of CCOARSE.
Moreover, for the semilinear elliptic problem (3.4) we can take

RESell[η, αI,A,G, f ,v] := α (APPLY [η/3,A,v]

+EV [η/3,G,v] −RHS [η/3, f ]) ,(7.20)

where RHS is defined here as in (5.2) but with COARSE replaced by TCOARSE.
For the general nonlinear problem (GNL), we shall now devise a residual approxi-

mation for the scheme from section 3.2 withBn := B. Suppose that ‖B‖
2(J )→
2(J ) ≤
CB , and set

RESlc[η,B,F, f ,v] := APPLY
[
η/2,B,

(
EV [η/4CB ,F,v]

−RHS [η/4CB , f ]
)]
.(7.21)

Of course, we have assumed here that the matrix B is compressible. In particular, for
the stationary choice B = DR(u0) this might be expected to be the case. We shall
return to this issue later.
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7.3. Complexity estimates. We have just explained how to obtain concrete
realizations of the scheme SOLVE in each of the three cases (L), (SL), (GNL). The
remainder of this section will be devoted to giving a complexity analysis of these
schemes. The following theorem summarizes the properties of Algorithm EV; see [10,
Theorem 3.4].

Theorem 7.4. Given the inputs ε > 0, a nonlinear function F such that F
satisfies Assumptions 1 and 2, and a finitely supported vector V, then the output tree
T has the following properties:

P1. ‖F(V) − F(V)|T ‖ ≤ ε.
P2. For any 0 < s < 2γ−d

2d (see Theorem 7.3),

#(T ) ≤ C‖V‖1/s
(As

tree)
nε
−1/s + #(Jφ) =: Nε(7.22)

with C a constant depending only on the constants appearing in Theorem 7.3.
P3. Moreover, the number of computations needed to find T is bounded by C(Nε+

#T (V)), where Nε is the right-hand side of (7.22) and T (V) is the smallest tree
containing suppv.

Recall that in the case of semilinear equations, R involves a linear and a nonlinear
operator as in (3.2) or (3.4). Also recall from Theorem 5.1 that when the wavelet
representation A of the linear operator A defined by

〈w,Av〉 = a(v, w), v, w ∈ H = Ht,

belongs to Cs∗ , then A is bounded on As with s < s∗. However, when nonlinear
operators are also involved, Theorem 6.1 tells us that the spaces As

tree should now
play the role of As. Thus we shall prove in Proposition 7.4 below the boundedness of
A with respect to this slightly stronger norm.

To prepare for Proposition 7.4, we make some remarks.
Remark 7.2. It has been shown in [12] that when A is a local operator, i.e.,

〈v,Aw〉 = 0 whenever |supp v ∩ suppw| = 0, and when A is still bounded as a
mapping from Ht+a to H−t+a for a ≤ m + d/2, where m is less than or equal to the
order of differentiability and vanishing moments of the wavelets ψλ, then one has

|a(ψλ, ψν)| <∼ 2−σ||λ|−|ν||, σ = t + m + d/2.(7.23)

Moreover, we know from Proposition 3.4 in [8] that in this case A belongs to Cs∗ with

s∗ =
t + m

d
=

2σ − d

2d
.(7.24)

Note that σ agrees with the value of γ in Assumption 2 or at least depends in
an analogous way on the spatial dimension, the order of the operator, and the order
of the vanishing moments and the smoothness of the wavelets; see Theorem 7.2 (ii).
Moreover, the condition s < s∗ with s∗ from (7.24) agrees with the constraint on s
from Theorem 7.3 formulated in terms of γ.

Remark 7.3. One can show that for piecewise polynomial wavelets, s∗ can be
chosen larger than in (7.24); see [2].

By definition one has As
tree ⊂ As. We shall need the following refinement of

Theorem 5.1.
Proposition 7.4. Under the assumptions from Remark 7.2 on the linear part

A, let

σ = m + t + d/2.(7.25)
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Then one has for s < 2σ−d
2d

‖Av‖As
tree

<∼ ‖v‖As
tree

, v ∈ As
tree;(7.26)

that is, A maps As
tree boundedly into itself.

Proof. By assumption (3.1), A is a topological isomorphism from H onto H′ and
obviously satisfies Assumption 1. We need to show that Assumption 2 holds for all
γ′ < σ, defined by (7.25). To this end, note that (7.23) provides

|(Av)λ| ≤
∑

|ν| ≤ |λ|,
Sν ∩ Sλ �= ∅

|vν |2−σ(|λ|−|ν|) +
∑

|ν| > |λ|,
Sν ∩ Sλ �= ∅

|vν |2−σ(|λ|−|ν|)2−2σ(|ν|−|λ|)

≤ sup
|ν| ≤ |λ|,

Sν ∩ Sλ �= ∅

2−γ
′(|λ|−|ν|)|vν |

∑
|ν| ≤ |λ|,

Sν ∩ Sλ �= ∅

2−(σ−γ′)(|λ|−|ν|)

+ sup
|ν| > |λ|,

Sν ∩ Sλ �= ∅

|vν |2−σ(|λ|−|ν|) ∑
|ν| > |λ|,

Sν ∩ Sλ �= ∅

2−2σ(|ν|−|λ|).

We now check that both sums appearing on the right-hand side are bounded indepen-
dently of λ provided that γ′ < σ. Indeed, in the first sum, for any k > |λ|, there is a
bounded number C0 of indices ν with |ν| = k such that Sν ∩ Sλ != ∅. Hence this sum
is bounded by C0

∑∞
j=0 2−j(σ−γ

′). For the second sum, note that for |ν| = |λ| + k,

there are at most C02
kd indices ν for which Sν ∩Sλ != ∅. Since, by (7.25), 2σ > d, this

sum can also be bounded by a geometric series. We have thus verified Assumption
2 for all γ′ < σ. The assertion now follows from Theorem 7.3 and the restriction on
s given in Theorem 7.3. However, in contrast to the general nonlinear case, we can
dispense here with the constant term in the right-hand side of (7.26); see Remark 3.2
in [10].

Note that the support of the output of the scheme APPLY from section 5.2
generally does not have tree structure. In order to ensure that the output of RES
complies with our previous assumption that its support has tree structure, we shall
employ the following modification of APPLY while keeping the notation unchanged.
First, the original version of APPLY is carried out with target accuracy η/2. We
then apply TCOARSE to the output with target accuracy η/2 so that (5.9) is still
valid.

We shall make use of the following consequence of Proposition 7.4.
Corollary 7.5. Under the same assumptions as in Proposition 7.4 let s < s∗.

Then wη = APPLY [η,A,v] satisfies

(i) #flops <∼ #T (suppv) + ‖v‖1/s
As

tree
η−1/s, #suppwη <∼ ‖v‖1/s

As
tree

η−1/s;

(ii) ‖wη‖As
tree

<∼ ‖v‖As
tree

.
Proof. Let ŵ denote the output of the original version of APPLY with target

accuracy η/2. The first estimate in (i) for ŵ follows directly from Theorem 5.1 (ii)
and the fact that ‖ · ‖As <∼ ‖ · ‖As

tree
even with #T (suppv) replaced by suppv.

Now the cost of the subsequent application of TCOARSE with target accuracy
η/2, yielding wη, is, by Proposition 6.2, proportional to #T (suppv). This confirms
the first estimate in (i). Next note that, since the chunks (v[j] − v[j−1]) have disjoint

supports, for each j the vector wj , defined by (5.7), can be interpreted as wj = C(j)v,
where the matrix C(j) is a compressed version of A defined as follows. All columns
with indices outside suppv[j] are zero. The columns of C(j) whose indices belong
to supp (v[k] − v[k−1]), k ≤ j, agree with the corresponding columns in the matrix
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Aj−k. Therefore, since the Aj are derived from A by replacing certain entries by zero,
we conclude that C(j) is obtained by replacing certain entries in A by zero. Thus
the C(j) still satisfy (7.23) uniformly in j. Assumptions 1 and 2 also remain valid.
Thus Proposition 7.4 can be applied to C(j) with constants independent of j, which
provides ‖ŵ‖As

tree
<∼ ‖v‖As

tree
. Therefore, one also has ‖wη‖As

tree
<∼ ‖v‖As

tree
, which

is (ii). Since TCOARSE produces a near best tree approximation, we conclude that

#suppwη <∼ ‖ŵ‖1/s
As

tree
η−1/s, which, in view of the previous remark, confirms the

second estimate in (i) and finishes the proof.
We have now collected all the ingredients needed to confirm s∗-sparsity of the

residual approximations defined before. We start with (7.20) for the case (SL).
Corollary 7.6. Let γ be the parameter given in Theorem 7.2 for the respective

nonlinear mapping G. Suppose that σ, defined by (7.25), satisfies σ ≥ γ. Then
RESell, defined by (7.20), is s∗-sparse with s∗ := 2γ−d

2d .
Proof. We have to verify the validity of (6.15) for s < s∗. If u ∈ As

tree for
some s < s∗, then Proposition 7.4 and Theorem 7.4 imply that f ∈ As

tree and
‖f‖As

tree
<∼ ‖u‖As

tree
. Hence, since TCOARSE satisfies completely analogous prop-

erties with regard to As
tree as COARSE with respect to As (see [8]), we conclude

that the output fη of RHS [η, f ] satisfies

#supp fη <∼ η−1/s‖u‖1/s
As

tree
, ‖fη‖As

tree
<∼ ‖u‖As

tree
.(7.27)

Furthermore, Corollary 7.5 says that the output of APPLY remains bounded in
As

tree, while Theorem 7.4 ensures that the same is true for the output of EV. Hence,
by (7.20), one has for wη := RESell[η, αI,A,G, f ,v]

‖wη‖As
tree

<∼
(‖v‖As

tree
+ ‖u‖As

tree
+ 1
)
,(7.28)

which is the second estimate in (6.15). The first estimate in (6.15) follows also from
(7.27), Theorem 7.4, and Corollary 7.5 (i). Since the supports of the outputs ofRESell

and TCOARSE have tree structure, the required bounds for the operations count
follow (under Assumption E) from P3 in Theorem 7.4 and Corollary 7.5 (i). This
completes the proof.

Combining Corollary 7.6 with Theorem 6.1 yields the first main result of this
paper.

Theorem 7.5. Under the same assumptions as in Corollary 7.6, suppose that
the solution u =

∑
λ∈J uλψλ satisfies u ∈ As

tree for some s < s∗ := (2γ − d)/(2d).
Then the approximate solution u(ε) =

∑
λ∈Λ(ε) ū(ε)λψλ produced by SOLVE (with

the initialization for the semilinear problem) after finitely many steps satisfies

‖u− u(ε)‖H ≤ C1ε.

Moreover,

#(flops), #(Λ(ε)) <∼ ε−1/s
(
1 + ‖u‖1/s

As
tree

)
,(7.29)

and

‖ū(ε)‖As
tree

<∼ ‖u‖As
tree

,(7.30)

where the constants depend only on ‖u‖
2(J ), on the constants in (2.5), (3.8), (3.3),
and on s when s → s∗ or s → 0.
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Let us briefly discuss now the locally convergent scheme from section 2.3. We
shall assume that for the general problem (2.2) the nonlinear map in (2.1) satisfies
Assumptions 1 and 2. Moreover, we assume that a sufficiently good initial guess
u0 is given so that the error reduction (3.25) holds and that SOLVE is initialized
accordingly; see section 5.

Corollary 7.7. Let γ be the parameter given in Theorem 7.2 for the respective
nonlinear mapping F . Moreover, assume that the matrix B = Bn appearing in (2.11)
satisfies decay estimates like (7.23) for some σ ≥ γ. Then the scheme RESlc defined
by (7.21) is s∗-sparse for s∗ := (2γ − d)/(2d).

Proof. The assertion follows again from Proposition 7.4 and Theorem 7.4.
Corollary 7.8. Under the assumptions of Corollary 7.7, the assertion of The-

orem 7.5 remains valid for the locally convergent scheme based on RESlc.
We end this section with analyzing the compressibility of the special choice B =

DR(u0)T . We consider H = Ht and only nonlinear maps of a single argument n = 1
and the subcritical case t < d/2, p < p∗; recall (7.6). Recall from (2.9) that the entries
of DR(u0)T = DR(u0) have the form wλ,ν := 〈ψλ, ψνR′(u0)〉. Since, in view of the

H = Ht-normalization of the ψλ, one has ‖ψλ‖L∞ ∼ 2( d
2−t)|λ|, the same arguments

as used in the proof of Theorem 4.2 in [10] yield

|wλ,ν | <∼ ‖ψλ‖L∞ inf
P∈Pr

‖P − ψνR
′(u0)‖L1(Sλ) <∼ 2−(r+ d

2 +t)|λ||ψνR′(u0)|W r(L∞(Sλ)),

where we assume without loss of generality that |λ| ≥ |ν|. Moreover, we obtain

|ψνR′(u0)|W r(L∞(Sλ) <∼ max
l≤r

|ψν |W r−l(L∞(Sλ))|R′(u0)|W l(L∞(Sλ)).

Abbreviating as before σ = r + d
2 + t, we can estimate the first factor by

2( d
2−t)|ν|2(r−l)|ν| = 2σ|ν|2−(2t+l)|ν|,(7.31)

while the second factor can be estimated along the lines of the proof of Theorem 4.2
in [10] as

|R′(u0)|W l(L∞(Sλ)) <∼ max
k=1,...,l

‖u0‖m+k−1

2(J )

× sup
µ:Sµ∩Sλ∩Sν 
=∅

|u0
µ|2(l+(p−1)ε)|µ|2(p−1)( d

2−t)|µ|,(7.32)

where ε > 0, ji ∈ N, and

m :=

{
(p− l − 1)+ if ‖u0‖
2(J ) ≥ 1,
0 if ‖u0‖
2(J ) < 1.

As in [10], we can choose ε so that

2(l+(p−1)ε)|µ|2(p−1)( d
2−t)|µ| <∼ 2(l+ d

2 +t)|µ|2−ε|µ|2−( d
2−t)|µ| = 2−ε|µ|2(l+2t)|µ|.

Thus, combining (7.31) and (7.32), we obtain

|wλ,ν | <∼ C(‖u0‖
2(J ))2
−σ||λ|−|ν|| sup

µ:Sµ∩Sλ∩Sν 
=∅
|u0
µ|2−ε|µ|2(r+2t)(|µ|−|ν|).(7.33)

Note that the first factor C(‖u0‖
2(J ))2
−σ||λ|−|ν|| represents the same scalewise decay

of the entries as in the matrix A in (7.23). This ensures that DR(u0) belongs to Cs∗
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with s∗ given by (7.24). However, the entries are weighted by additional u0-dependent
factors that could, in principle, become rather large when the finite expansion u0

contains basis functions from high scales overlapping Sλ. Nevertheless, these factors
depend only on u0 (and hence on the accuracy δ of the initial guess) but not on
the accuracy by which DR(u0) is applied through the scheme APPLY. Therefore,
in principle, one obtains asymptotically optimal complexity, however, with possibly
poor quantitative behavior.

8. Newton’s method. In concrete cases, the error reduction ρ obtained in
(3.25) or (3.17) may be so close to one that the number K of necessary updates in
the perturbed scheme SOLVE may become fairly large. So, in spite of its asymptotic
optimality, the quantitative performance may be poor. We shall therefore address
Newton’s method, corresponding to Bn = (DR(un))−1 in (2.11), as an example
where the ideal scheme permits a faster error decay. The adaptive realization of
Newton’s method, applied to the infinite dimensional problem (2.2) or, better yet,
(2.8), does not quite fit into the format of SOLVE, explaining its separate treatment
in this section.

Note that, for Bn = (DR(un))−1, (2.11) can be reformulated as follows. Given
an initial guess un, the next iterate un+1 is determined by solving

DR(un)wn = −R(un)(8.1)

and setting

un+1 := un +wn.(8.2)

We are not interested here in the weakest assumptions under which the iterative
scheme (8.2) converges to a locally unique solution. We are instead content here with
the following setting: Recall that the mapping R in the variational problem (2.2) has
the form

R(v) = F (v) − f,(8.3)

where throughout this section we shall confine the discussion again to nonlinear maps
F of a single argument satisfying the growth condition (7.5) for some n∗ ≥ 1. (Of
course, F can have a linear part as in (3.4).) Therefore, we have, in particular, that
R and F have the same Frechét derivative DR(v) = DF (v). Moreover, we assume
that for some open ball U ⊂ H one has the following:

(N1) The Frechét derivative DR(v) : w �→ DR(v)w is an isomorphism from H to
H′ (see (2.4)), and there exists ω > 0 such that for all v ∈ U and y such that
v + y ∈ U , we have

‖(DR(v))−1(DR(v + y) −DR(v))y‖H ≤ ω‖y‖2
H.(8.4)

(N2) There exists a solution u ∈ U and an initial guess u0 in U such that

‖u− u0‖H ≤ δ < 2/ω and Bδ(u) ⊆ U(8.5)

with ω from (N1).
Given the validity of (N1) and (N2), standard arguments can be employed to prove
that all iterates

un+1 = un −DR(un)−1R(un),(8.6)
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arising from Newton’s method formulated in H, remain in U and satisfy

‖u− un‖H < δ for n ∈ N and lim
n→∞ ‖u− un‖H = 0.(8.7)

In fact, one has quadratic convergence

‖u− un+1‖H ≤ ω

2
‖u− un‖2

H, n = 0, 1, 2, . . . ;(8.8)

see, e.g., [18, 19]. Finally, note that, by (2.5), the corresponding iterates in wavelet
coordinates satisfy

‖u− un+1‖
2(J ) ≤ ω̃‖u− un‖2

2(J ), n ∈ N0, ω̃ :=

C2
1ω

2c1
.(8.9)

Let us check that (N1) holds, for instance, in the semilinear case (SL) when F is
defined by (3.4) with monotone (scalar valued) G which satisfies (7.5) with n∗ ≥ 2.
We have already seen (see Remark 3.1) that DR(v) = DF (v) is an isomorphism from
H to H′. In order to verify (8.4), it therefore suffices to show that

‖(G′(v + y) −G′(v))y‖H′ ≤ ω‖y‖2
H.(8.10)

For this, we remark that

‖(G′(v+y)−G′(v))y‖H′ ≤ max
t∈[0,1]

‖G′′(v+ ty)y2‖H′ = ‖y‖2
H max
z∈U,‖w‖H≤1

‖T (z, w,w)‖H′

with the mapping T defined by

T (v, w, z) = G′′(v)wz.(8.11)

Now, it is easy to check that if G satisfies (7.5) for some p and n∗ ≥ 2, then T satisfies
(7.7) with p1 = [p − 2]+, p2 = p3 = 1, and n∗ replaced by n∗ − 2, and therefore,
according to Theorem 7.1,

ω := max
z∈U,‖w‖H≤1

‖T (z, w,w)‖ < ∞,(8.12)

as desired. The purpose of this section is to show how the approximate solution of
the linear problem (8.1) can be performed again by an iterative scheme along the
lines of [9]. By our assumption (N1), we know that DR(z) is an isomorphism from
H to H′ provided that z ∈ U and hence DR(z) satisfies (2.10). Given this mapping
property (2.10), the adaptive scheme from [9] can actually be applied under fairly
general assumptions on the linear isomorphism. For the sake of simplicity, we shall
assume that DR(z) is symmetric positive definite. This is true, for example, in the
case (SL) when G is monotone. Recall from Remark 3.3 that one can then find a
parameter α > 0 such that I− αDR(v) is a contraction.

The heart of the envisaged adaptive Newton scheme will be to solve the linear
problem (8.1) approximately with the aid of a variant, which will be called SOLVEN,
of the scheme SOLVElin discussed in section 3. Before we describe the ingredients of
SOLVEN, let us point out two issues to be addressed when designing these ingredients
and analyzing their complexity.

(a) The first point concerns the application of the Jacobian. Approximating
at each stage the Jacobian DR(un) in order to use the APPLY scheme based on
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(5.7) might be computationally very expensive. (b) The second point concerns the
complexity of approximately solving the linear problem (8.1). Recall from Theorem
6.1 that the logic of complexity estimates is to infer from a certain compressibility (or
regularity) of the solution a corresponding convergence rate of the adaptive scheme.
In the context of the Newton iteration, such a property will be assumed about the
solution u of the original nonlinear problem (2.8) which, however, does not necessarily
imply the same property for the solutions of the subproblems (8.1). So it is initially
not clear how to derive complexity estimates for the resolution of these subproblems.
It will be seen though that the solutions to these subproblems become increasingly
closer to elements having the necessary properties, a fact that, as it turns out, can be
exploited as long as the subproblems are not solved too accurately. In particular, the
question then arises whether the quadratic convergence of the Newton scheme can be
preserved.

We now turn to collecting the ingredients of the adaptive Newton scheme. First,
the coarsening will be again done by TCOARSE even though the problem is linear.
More importantly, the RES scheme will be of the form RESlin from (5.10) but with
different schemes playing the roles of APPLY and RHS.

In view of the above issue (a), we shall pursue here the following approach.
Recall from (2.9) that for any v, z ∈ �2(J ) and corresponding v =

∑
λ∈J vλψλ,

z =
∑

λ∈J zλψλ ∈ H,

DR(z)v = (〈ψλ, DR(z)v〉 : λ ∈ J ),(8.13)

where DR(z) is the Frechét derivative of R at z. This suggests employing the scheme
EV[ε,Q,V] with V := (z,v) and Q(V) := DR(z)v = DF(z)v. We have seen that
this scheme has the optimal complexity provided that Q fulfills Assumptions 1 and 2.

For F defined by (3.4), the mapping Q has the form

Q(z,v) := (A+ DG(z))v.(8.14)

TheA part obviously satisfies Assumption 1. We also have seen that it fulfills Assump-
tion 2 under the hypothesis from Remark 7.2. It remains to verify these assumptions
for the part

DG(z)v = (〈ψλ, G′(z)v〉 : λ ∈ J ).(8.15)

For this, we simply remark that if G satisfies (7.5) for some p and n∗ ≥ 1, the mapping
(z, v) �→ G′(z)v satisfies (7.7) with p1 = [p− 1]+, p2 = 1, and n∗ replaced by n∗ − 1.
Hence Theorems 7.1 and 7.2 ensure that the mapping (z,v) �→ DG(z)v satisfies
Assumptions 1 and 2 in section 7.1.

This suggests the following routine.
APPLYN [η,DR(z),v] → wη determines for any tolerance η > 0 and any finitely

supported input vectors v and z a finitely supported output vector wη such that

‖DR(z)v −wη‖
2(J ) ≤ η,(8.16)

through

APPLYN [η,DR(z),v] := EV [η,Q, (z,v)],(8.17)

where the routine EV was introduced in section 7.2.
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It remains to specify the routine RHS. Here it is issue (b) that calls for some
further preparations. The main point is that if the current right-hand sides in (8.1)
are not approximated too accurately, then one actually approximates a nearby right-
hand side of a problem whose solution is known to be sufficiently sparse and thus can
be approximated efficiently by a linear version of SOLVE.

Remark 8.1. Suppose that R is twice Frechét differentiable and that u is the
exact solution of (2.8). Then there exists a constant Ĉ such that, for any z such that
z =

∑
λ∈J zλψλ ∈ U ,

‖DR(z)(u− z) +R(z)‖
2(J ) ≤ Ĉ‖u− z‖2

2(J ).(8.18)

Proof. One has

−R(z) = R(u) −R(z) = DR(z)(u− z) + O
(
‖u− z‖2


2(J )

)
,

which confirms the claim.
We shall employ the following routine in which Ĉ is the constant of Remark 8.1.
RHSN[η,R, z] → rη(z) is defined for any finitely supported z with z ∈ U such

that ‖u− z‖
2(J ) ≤ ξ and for any η/2 > Ĉξ2by

RHSN [η,R, z] := −
(
EV

[η
2
− Ĉξ2,F, z

]
−RHS [η/2, f ]

)
,(8.19)

where RHS is defined by (5.2) but with TCOARSE used as CCOARSE.
The role of the above conditions on z and η will become clear later.
We are now prepared to describe the version of SOLVE to be used for the ap-

proximate solution of the Newton systems (8.1) as follows.
SOLVEN[η,R, z] → wη determines for a given z ∈ �2(J ), such that z ∈ U , an

approximate solution wη of the system DR(z)w = −R(z) satisfying

‖w −wη‖
2(J ) ≤ η,(8.20)

by invoking SOLVElin[η,DR(z),−R(z)] → wη, where, under the above assumptions
on z and η, in step (ii) of SOLVE the residual approximation

RESN[η, αI, DR(z),−R(z),v]

:= α
(
APPLYN

[ η

2α
,DR(z),v

]
−RHSN

[ η

2α
,R, z

])
,(8.21)

and in step (iii) TCOARSE is used.
Note that, in view of (8.3), the evaluation of R also requires the approximation of

the data f as stated explicitly in (8.19). From Theorems 7.3 and 7.4 and Proposition
6.3 we infer, as in Remark 5.1, that u ∈ As

tree implies f ∈ As
tree, and its η-accurate tree

approximation satisfies estimates of the form #supp fη <∼ η−1/s‖u‖1/s
As

tree
, ‖fη‖As

tree
<∼

‖u‖As
tree

.
Moreover, whenever Q(z,v) := DR(z)v satisfies Assumptions 1 and 2, we can

apply Theorems 7.3 and 7.4 to conclude that the outputwη ofAPPLYN [η,DR(z),v]
satisfies

#suppwη <∼ η−1/s
(
1 + ‖z‖1/s

As
tree

+ ‖v‖1/s
As

tree
+ ‖u‖1/s

As
tree

)
,

‖wη‖As
tree

<∼ 1 + ‖z‖As
tree

+ ‖v‖As
tree

+ ‖u‖As
tree

.
(8.22)
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Likewise, the output rη(z) of RHSN [η,R, z] satisfies

#supp rη(z) <∼ η−1/s
(
1 + ‖z‖1/s

As
tree

)
,

‖rη(z)‖As
tree

<∼ 1 + ‖z‖As
tree

.
(8.23)

Recalling from (6.15) the definition of s∗-sparsity, we can infer from (8.22) the follow-
ing consequence.

Remark 8.2. Let s∗ := (2γ − d)/(2d), where γ is the parameter associated with
F by Theorem 7.2. Then the scheme RESN, defined by (8.21), is s∗-sparse whenever
‖z‖As

tree
<∼ 1.

We can now formulate an adaptive Newton iteration as follows.
NEWTON [ε, R, ū0] → ū(ε) determines, for any finitely supported initial guess

ū0 whose corresponding expansion u0 satisfies (8.5), an approximate solution ū(ε)
satisfying

‖u− ū(ε)‖
2(J ) ≤ ε,(8.24)

by the following steps:
(i) Set ε0 := c−1

1 δ, j = 0.
(ii) If εj ≤ ε, stop and output ū(ε) := ūj. Otherwise, choose some ηj > 0 (see

(8.27) below), and perform

SOLVEN [ηj ,R, ūj ,0] → w̄j .

(iii) Let (see (8.9))

û := ūj + w̄j , η̂j := ω̃ε2j + ηj , ūj+1 := TCOARSE [2C∗η̂j , û]

(where C∗ is the constant from section 6.2), and set εj+1 := (1 + 2C∗)η̂j,
j + 1 → j, and go to (ii).

The choice of the dynamic tolerance ηj in step (ii) is yet to be specified. The
first requirement is to keep the iterates ūj in the right neighborhood of the solution,
which means that the corresponding expansions ūj lie in Bδ(u). For this we shall use
the following lemma.

Lemma 8.1. Fix a positive number β < 1, and assume that δ > 0 is chosen
sufficiently small to ensure that, in addition to (8.5),

δ <
c31

(1 + 2C∗)C3
1ω

(8.25)

and

(1 + 2C∗)ω̃δ
c1

< β.(8.26)

Then the condition ηj ≤ η0 < δ/(2(1 + 2C∗)C1) implies that ūj ∈ Bδ(u) for all
subsequent approximate iterates. Moreover, if

ηj ≤ εj (β − (1 + 2C∗)ω̃εj)
1 + 2C∗

, j = 0, 1, . . . ,(8.27)

one has for η̂j defined in step (iii) of NEWTON

εj+1 = (1 + 2C∗)η̂j ≤ βεj , j = 0, 1, . . . .(8.28)
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Proof. Denoting by u1 the exact solution of DR(ū0)u1 = −R(ū0) and recalling
from step (i) that ‖u− ū0‖
2(J ) ≤ c−1

1 δ = ε0, the vector û produced in steps (ii) and
(iii) satisfies, by (8.9) and (8.20),

‖u− û‖
2(J ) ≤ ‖u− u1‖
2(J ) + ‖u1 − û‖
2(J ) ≤ ω̃c−2
1 δ2 + η0.

Thus, taking the coarsening step into account, we infer from (2.5) and (8.9) that

‖u− ū1‖H ≤ C1‖u− ū1‖
2(J ) ≤ (1 + 2C∗)C1(ω̃c
−2
1 δ2 + η0)

=
(1 + 2C∗)C3

1ωδ
2

2c31
+ (1 + 2C∗)C1η0.

Thus when, e.g.,
(1+2C∗)C3

1ωδ
2

2c31
< δ/2, which is (8.25), it suffices to take η0 < δ/(2(1+

2C∗)C1) at the initial stage j = 0 to ensure that

‖ū1 − u‖H < ‖u− u0‖H,

which verifies that ū1 ∈ Bδ(u). We can now iterate this result; e.g., using ū1 in
place of ū0, we obtain that ū2 ∈ Bδ(u), and so on. Now when (8.26) holds, we have
β > (1 + 2C∗)ω̃ε0 so that the condition (8.27) on ηj is feasible for j = 0. Moreover,
(8.27) implies that εj+1 = (1 + 2C∗)η̂j ≤ βεj , which is (8.28). This ensures that the
error bounds εj decay to zero so that (8.27) remains feasible for all j. This completes
the proof.

Proposition 8.3. Assume that δ and ηj satisfy (8.25), (8.26), and (8.27), re-
spectively. Then the scheme NEWTON terminates after finitely many steps and
produces a finitely supported vector ū(ε) satisfying

‖u− ū(ε)‖
2(J ) ≤ ε.(8.29)

Thus, by (2.5), ∥∥∥∥∥∥u−
∑

λ∈supp ū(ε)

u(ε)λψλ

∥∥∥∥∥∥
H

≤ C1ε.

Proof. We employ a simple perturbation argument as in the proof of Lemma 8.1.
Let uj+1 denote the exact Newton iteration uj+1 = ūj −DR(ūj)−1R(ūj). By step
(i) we know that ‖u − ū0‖
2(J ) ≤ ε0. Then, supposing that ‖u − ūj‖
2(J ) ≤ εj , we
infer from (8.9) that

‖u− uj+1‖
2(J ) ≤ ω̃ε2j .(8.30)

Hence, denoting by wj := uj+1 − ūj the exact solution of DR(ūj)w = −R(ūj), we
obtain, according to step (iii),

‖u− ūj+1‖
2(J ) ≤ ‖u− uj+1‖
2(J ) + ‖uj+1 − û‖
2(J ) + ‖û− ūj+1‖
2(J )

≤ ω̃ε2j + ‖wj − w̄j‖
2(J ) + 3η̂j ≤ ω̃ε2j + ηj + 2C∗η̂j
= (1 + 2C∗)η̂j = εj+1,(8.31)

which advances the induction assumption. By (8.28), this finishes the proof.
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It remains to analyze the work/accuracy rate of NEWTON. So far the only
condition on the tolerances ηj in step (ii) of NEWTON is (8.27), which ensures
only that the error bounds εj decay to zero. This would allow us to keep ηj propor-
tional to εj , which would result in an overall first order error reduction rate. On the
other hand, choosing ηj proportional to ε2j , the error bounds εj decay, by step (iii),
quadratically. However, according to the earlier discussion of issue (b), the subprob-
lem (8.1) should not be resolved too accurately, as reflected by the above right-hand
side scheme RHSN; see (8.19). The following main result of this section says that
within these constraints on the tolerances ηj one can still realize an outer convergence
rate, ranging from first to second order, in such a way that the overall scheme exhibits
optimal rate/complexity.

Theorem 8.2. Suppose that (N1), (N2), and the above hypotheses on F hold.
Assume that δ satisfies (8.25) and (8.26) for some fixed β < 1. Moreover, assume
that at the jth stage of NEWTON the tolerance ηj is in addition to (8.27) subjected
to the condition

ηjρ
K ≥ ζĈε2j for some fixed ζ > 1,(8.32)

where ρ,K are the constants from (3.17) and (4.14). Then, for any target accuracy
ε > 0, NEWTON outputs after finitely many steps a finitely supported vector ū(ε)
satisfying ‖u− ū(ε)‖
2(J ), and hence∥∥∥∥∥∥u−

∑
λ∈supp ū(ε)

ū(ε)λψλ

∥∥∥∥∥∥
H

≤ C1ε.

Moreover, if Q(z,v) = DR(z)v fulfills Assumptions 1 and 2, and if the solution u of
(2.8) belongs to As

tree for some s < s∗ = (2γ−d)/(2d), the output u(ε) of NEWTON
has the following properties:

‖u(ε)‖As
tree

<∼ ‖u‖As
tree

, #suppu(ε) <∼ ‖u‖1/s
As

tree
ε−1/s.(8.33)

Under Assumption E the number of floating point operations needed to compute ū(ε)
remains proportional to #suppu(ε).

It is understood that in the final step ηj is chosen within the above constraints as
large as possible so as to attain the target accuracy. Note that, as indicated before,
within the above constraints on ηj (see (8.27), (8.32)) the convergence rate of the
outer inexact Newton iteration can be chosen to vary between linear and quadratic
convergence.

Proof of Theorem 8.2. First, observe that in step (iii) one has at the jth stage,
by the first part of (8.31),

‖u− û‖
2(J ) ≤ ‖u− uj+1‖
2(J ) + ‖uj+1 − û‖
2(J ) ≤ ω̃ε2j + ηj = η̂j .(8.34)

Hence, by Proposition 6.3 and step (iii), we obtain

‖ūj+1‖As
tree

<∼ ‖u‖As
tree

, #supp ūj+1 <∼ ‖u‖1/sε
−1/s
j+1 .(8.35)

Moreover, by Proposition 6.2, the computational work required by the application of
TCOARSE remains proportional to #supp û since the support of û already has tree
structure.



1822 ALBERT COHEN, WOLFGANG DAHMEN, AND RONALD DEVORE

Now let us discuss the computational complexity in step (ii) encountered between
the coarsening steps. Here it is important that the Newton updates (8.1) are, in view
of (8.32), not computed too accurately. In fact, under this constraint the approxi-
mation of R(ūj), computed in SOLVEN, is incidentally also a sufficiently accurate
approximation to G(ūj); see Remark 8.1. To explain this, recall (8.19) and set

Yj := EV [ηj − Ĉε2j ,−R(ūj)].

Then one has, by Remark 8.1,

‖G(ūj) −Yj‖
2(J ) ≤ ‖G(ūj) +R(ūj)‖
2(J ) + ‖R(ūj) +Yj‖
2(J )

≤ Ĉε2j + ηj − Ĉε2j = ηj .

Thus, within the accuracy range permitted by (8.32), the routine RHSN invoked by
SOLVEN satisfies the accuracy requirements for the perturbed equation DR(ūj)ŵ =
G(ūj), whose solution is, by definition of G(ūj), just ŵj = u − ūj . Now we infer
from Remark 8.2, Theorem 6.1, and (8.35) that

#supp w̄j <∼ η
−1/s
j ‖u− ūj‖1/s

As
tree

<∼ η
−1/s
j ‖u‖1/s

As
tree

,

that the computational complexity has the same bound, and that ‖w̄j‖As
tree

<∼ ‖u‖As
tree

.
The same bounds hold for û. By definition of ηj , the computational complexity of
step (ii) in NEWTON and, by the previous remarks, also of TCOARSE in step

(iii) therefore remains bounded by C‖u‖1/sε
−1/s
j+1 , which completes the proof.
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Abstract. When a partial differential equation in an unbounded domain is solved numerically,
it is necessary to introduce artificial boundary conditions. In this paper, a general class of absorbing
boundary conditions is constructed for one-dimensional Schrödinger-type equations discretized in
space by finite differences. For this, rational approximations to the transparent boundary conditions
are used. We study the simplest case in detail, obtaining an estimate for the full discrete error
and showing that the discrete problem is weakly unstable. Moreover, we show numerically that
the discrete problems associated to higher order absorbing boundary conditions are more unstable.
Several numerical experiments confirm the results previously obtained.
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1. Introduction. Let us consider the initial value problem for a Schrödinger-
type equation given by

∂tu(x, t) =
−i
c

(∂xxu(x, t) + V u(x, t)), x ∈ R, t ≥ 0,

u(x, 0) = u0(x), x ∈ R,
(1.1)

where c is a real constant. (In this paper, we suppose without loss of generality that
c > 0; the case c < 0 is analogous.) Moreover, we suppose that the potential V
is constant, and we assume that when x /∈ (xl, xr), the initial value u0(x) vanishes.
We remark that, to obtain the transparent boundary conditions (TBCs) below, it
suffices that V is constant when x /∈ (xl, xr). The study of (1.1) arises in a wide
variety of applications. Two well-known cases are the one-dimensional time dependent
Schrödinger equation for a particle with mass m [15],

i�∂tΨ = − �
2

2m
∂2
xΨ + VΨ,

and the Fresnel equation for the evolution of a paraxial electrical field E along the
z-direction in a Cartesian coordinate system [12, 21],

2in0k0∂zE = ∂2
xE + (n2 − n2

0)k2
0E.(1.2)

For practical purposes, the numerical approximation is computed only in a finite sub-
domain. Therefore, it is necessary to introduce suitable boundary conditions. For
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example, if transparent, i.e., reflection-free, boundary conditions are used, then the
solution in the finite subdomain is exactly the original solution. However, such condi-
tions are nonlocal in time for Schrödinger-type equations [5, 23], and therefore their
computational cost is high. An interesting idea is to consider fast evaluations of
these TBCs [4, 14]. Another possibility is to use local absorbing boundary conditions
(ABCs), allowing only small reflections. These ABCs have been studied in several
contributions [2, 6, 7] for (1.1). We have proved in [2] that the spatial semidiscretiza-
tions of the problems obtained with these ABCs may be weakly ill-posed and that
they are worse-posed for higher order ABCs.

As an alternative, in the literature we can find some works where TBCs or ABCs
are obtained for a semidiscrete or fully discrete problem [9, 14, 22, 23]. These ap-
proaches are specific for the chosen discretization, but a better absorption is usually
obtained.

In this paper, we are going to consider ABCs for the semidiscrete problem in space
[1] (we will call them SABCs). This way, we obtain much more absorption than with
the ABCs proposed in [2] with the same value of the spatial stepsize. Our idea is simi-
lar to the one proposed by Halpern in [9], where a systematic method to obtain ABCs
for the one-dimensional wave equation semidiscretized in space with finite differences
is explained. We have also considered finite differences for the discretization in space
of (1.1), and we have obtained the TBCs for this problem. As they are nonlocal, we
construct a class of local ABCs by using interpolatory rational approximations to the
Fourier symbol of the TBCs. Our first result is that the discrete problems obtained
with these SABCs are weakly unstable in a similar way to those with ABCs in [2],
with an instability that can only be compensated when the absorption is high. It
seems that this instability may probably appear if other ABCs for Schrödinger-type
equations are obtained in a similar way.

In the literature, several implementations for ABCs similar to the one considered
in this paper have been used for other equations. For instance, Higdon [11] proposes,
in the case of the dispersive wave equation, to choose the interpolatory nodes for the
ABCs in a manual and approximated way. On the other hand, Trefethen and Halpern
[25], for the wave equation, and Halpern and Rauch [10], for diffusion equations,
propose to use several fixed nodes so that the rational approximation is optimal in a
certain norm. Nevertheless, none of these implementations are useful in this case for
the Schrödinger equation due to the instability (see [3]).

In this paper, we study one of the simplest cases of SABCs in detail, and we
make a complete analysis of the error of the full discrete problem with these SABCs.
We remark that, to our best knowledge, the study of the full discrete error has not
been done in other works of the literature on ABCs for Schrödinger-type equations.
For example, this study of the error is an important difference from [2, 6, 7]. There
are three different terms in this error. When the spatial discretization is refined,
the first term, which depends only on the spatial discretization, decreases. However,
the second and third term may grow. The growth of the third term, associated to
the discretization in time, is due to the instability and can be compensated for by
taking smaller stepsizes or by using integrators in time of higher order. Finally, the
second term is associated to the capacity of absorption of the SABCs, and it may be
a small value only when the SABC is suitable for the absorption of the solution of
(1.1). When this term is not small enough, it is possible to use SABCs with a higher
order of absorption. However, it is necessary to take into account that, in this way,
we increase the instability, and the third term of the error may behave worst.
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The paper is organized as follows. The TBCs for the semidiscrete problem are
obtained in section 2. In section 3, we construct one of the simplest SABCs for
this problem. In section 4, we prove that the discrete problem is unstable. The
reflection coefficient for these SABCs is studied in section 5. In section 6, we obtain
an expression for the full discrete error. In section 7, other SABCs are constructed
and studied numerically, showing a similar behavior, although the discrete problems
are more unstable. Finally, in section 8, we present several numerical experiments
showing the results previously obtained.

2. TBCs for the problem semidiscretized in space. Let us express the
initial value problem (1.1) in an abstract way. Let us consider the space X = L2(R)
and the dense subspace D(A) = H2(R). Let us define the linear operator A : D(A) ⊂
X → X by

Au = − i
c
(uxx + V u), u ∈ D(A).

Proposition 2.1. The initial value problem (1.1) may be written in an abstract
way as {

u′(t) = Au(t),

u(0) = u0 ∈ X,
(2.1)

and its generalized solution u(t) := exp(tA)u0 satisfies

‖u(t)‖ = ‖u0‖, t ≥ 0.(2.2)

Proof. Since iA is linear and self-adjoint, we deduce from Stone’s theorem [16]
that A is the infinitesimal generator of a C0-group of unitary operators, exp(tA), on
X. Therefore, (2.1) is well-posed, its generalized solution is u(t) = exp(tA)u0, and
(2.2) is satisfied.

Let us consider now the spatial discretization of the initial value problem (1.1).
Let (xj)j∈Z be a uniform mesh of R, with xj = xl + jh, and denote by uj(t) an ap-
proximation of u(xj , t). For the discretization of (1.1), we have used finite differences:

d

dt
uj =

−i
c

(
uj+1 − 2uj + uj−1

h2
+ V uj

)
, j ∈ Z, t ≥ 0,

uj(0) = u0(xj), j ∈ Z.
(2.3)

Let us consider the space

Xh = l2(Z) =

uh = (uj)j∈Z : ‖uh‖h =

h∑
j∈Z
|uj |2

1/2

<∞

 .
The spaces X and Xh are related through the linear operators

rh : Z ⊂ X → Xh,

u → rhu = (u(xj))j∈Z,
(2.4)

where Z is a subspace such that, for u ∈ Z, we have rhu ∈ Xh. Notice that this
condition is clearly satisfied when we consider the initial value u0 in (1.1) because
u0(x) vanishes for x /∈ (xl, xr).
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The operator A is approximated by the operators

Ah : Xh → Xh,

uh = (uj)j∈Z → Ahuh =

(−i
c

(
uj+1 − 2uj + uj−1

h2
+ V uj

))
j∈Z

.

Since for each h fixed, Ah is a linear and bounded operator and iAh is self-adjoint,
we obtain the following result with a proof similar to that of Proposition 2.1.

Proposition 2.2. Suppose that u0 ∈ X is such that rhu0 ∈ Xh. Then the initial
value problem (2.3) may be written in an abstract way as{

u′h(t) = Ahuh(t),

uh(0) = rhu0 ∈ Xh,
(2.5)

and its solution uh(t) := exp(tAh)uh(0) satisfies

‖uh(t)‖h = ‖rhu0‖h, t ≥ 0.

Let us see now what the dispersion relation of this semidiscrete problem is. Let
us consider a wave solution (uj(t))j∈Z = (exp(i(ηj − ω(η)t)))j∈Z of the problem
discretized in space. Then ω(η) should satisfy the dispersion relation

ω(η) =
2

ch2
(cos(η)− 1) +

V

c
.(2.6)

In practice, we are not going to solve (2.3) for j ∈ Z but for 0 ≤ j ≤ N with
h = L/N, where L = xr − xl, so (xl, xr) = (x0, xN ). Let us obtain the TBC for this
problem.

Let us define the operators Ah,0 : Xh,0 → Xh,0, where

Xh,0 = l2(N,∞) =

uh = (uN , uN+1, . . .) : ‖uh‖2h = h

∞∑
j=N

|uj |2h <∞
 ,

by

(Ah,0uh)N =
−i
c

(−2uN + uN+1

h2
+ V uN

)
,

(Ah,0uh)N−1+j =
−i
c

(
uN−2+j − 2uN−1+j + uN+j

h2
+ V uN−1+j

)
, j ≥ 2.

Proposition 2.3. Let us consider the problem
d

dt
uh,b(t) = Ah,0uh,b(t) + φh(t),

uh,b(0) = 0,

(2.7)

where φh(t) = [−iφ(t)/(ch2), 0, 0, . . .] and φ(t) ∈ L1
loc(0,∞). Then the solution of

(2.7) is

uh,b(t) =

∫ t

0

exp((t− s)Ah,0)φh(s)ds.(2.8)
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Moreover, the Laplace transform ũh,b(iω) =
∫∞
0

exp(−iωt)uh,b(t)dt, with 
(ω) < 0,
satisfies

rj+(V + cω, h)ũN−1+j
b (iω) = φ̃(iω), j ≥ 1,(2.9)

with

r+(η, h) = 1− h
2

2
η + i

√
h2

2
η

(
2− h

2

2
η

)
,

where
√

denotes the squared root with positive real part. Finally, (2.9) can be

analytically extended to C−{ω ∈ C : 
(ω) > 0,(ω) = −V/c,(ω) = −V/c+4/ch2}
and, when ω ∈ R,

rj(V + cω, h)ũN−1+j
b (iω) = φ̃(iω), j ≥ 1,(2.10)

where

r(η, h) =



1− h
2

2
η +

√
h2

2
η

(
h2

2
η − 2

)
if

h2

2
η < 0,

1− h
2

2
η + i

√
h2

2
η

(
2− h

2

2
η

)
if 0 ≤ h

2

2
η ≤ 2,

1− h
2

2
η −

√
h2

2
η

(
h2

2
η − 2

)
if

h2

2
η > 2.

(2.11)

Proof. Since Ah,0 is a linear and bounded operator, the solution of (2.7) is (2.8).
Moreover, iAh,0 is self-adjoint, and we deduce that exp(tAh,0) is a group of unitary
operators. Therefore, the type of exp(tAh,0) is 0. Taking the Laplace transform of

(2.8) with 
(ω) < 0, we have ũh,b(iω) = (iω −Ah,0)−1φ̃h(iω), and then

(Ah,0 − iω)ũh,b(iω) = −φ̃h(iω).

This way, we can obtain the values (ũN−1+j
b )j≥1 from the solution of the recurrence

relation 
−i
c

(
ũN−2+j
b − 2ũN−1+j

b + ũN+j
b

h2
+ (V + cω)ũN−1+j

b

)
= 0, j ≥ 1,

ũN−1
b = φ̃,

(2.12)

with limj→∞ ũN−1+j = 0. The characteristic polynomial of the previous equation is

r2 − 2

(
1− h

2

2
η

)
r + 1,

with η = V + cω. The roots of this polynomial are

r±(η, h) = 1− h
2

2
η ± i

√
h2

2
η

(
2− h

2

2
η

)
,
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and then the solution of (2.12) is

ũN−1+j
b = A1r

j
− +A2r

j
+, j ≥ 0.

We have that |r+| > 1 and |r−| < 1, and then, since ũN−1+j
b goes to 0 as j goes to

∞, A2 = 0. Therefore, ũN−1+j
b = A1r

j
− and since for j = 0, A1 = ũN−1

b = φ̃, we have
that

ũN−1+j
b = φ̃rj−,

which is equivalent to (2.9).
Now, rj+(V + cω, h) has two singularities at ω = −V/c and ω = −V/c + 4/ch2,

and we obtain that (2.10) holds with r(η, h) given by (2.11).
Next, we use that uj(t), j ∈ Z, is a tempered distribution in order to obtain an

expression of the TBC in terms of its Fourier transform. For this, let us denote by
uh(0) = (uj(0))j∈Z ∈ l2(−∞,∞) the initial condition of problem (2.3), and let us
consider the function given by the Fourier series

U(η) =

∞∑
j=−∞

uj(0) exp(−ijη) ∈ L2(−π, π).

In fact, we have supposed that uj(0) = 0 for j /∈ [0, N ], and therefore, U(η) =∑N
j=0 u

j(0) exp(−ijη) is an analytic function of η ∈ [−π, π]. From U(η) we can

obtain (uj(0))j∈Z by means of

uj(0) =
1

2π

∫ π

−π
U(η) exp(ijη)dη.

Proposition 2.4. Keeping the above notation, let (uj(t))j∈Z be the solution of
(2.3). Then, in the sense of the distributions,

uj(t) =
1

2π

∫ ω2

ω1

ûj(ω) exp(iωt)dω,(2.13)

where ω1 = −V/c, ω2 = 4/(ch2) − V/c, and ûj(ω) is the Fourier transform of the
tempered distribution uj(t).

Proof. We consider the solution of (2.3) expressed as

uj(t) =
1

2π

∫ π

−π
U(η) exp(i(jη − ω(η)t))dη, j ∈ Z,

where ω(η) is given by (2.6). This way we have that uj(t) = (I1 + I2)/(2π), where

I1 =

∫ 0

−π
U(η) exp(i(jη − ω(η)t))dη, I2 =

∫ π

0

U(η) exp(i(jη − ω(η)t))dη.

Let us make the change of variable ω = −ω(η) in I1; that is,

η = arccos

(
1− h

2

2
(V + cω)

)
∈ (−π, 0).(2.14)
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Then we have that

I1 =

∫ ω2

ω1

exp(iωt)û1(ω)dω,

where

û1(ω) = U(arccos(ϕ(ω))) exp(ij arccos(ϕ(ω)))
ch2

2
√

1− ϕ(ω)2
,

with ϕ(ω) = 1 − h2(V + cω)/2. Similarly, I2 =
∫ ω2

ω1
exp(iωt)û2(ω)dω, where û2 has

the same expression as û1 with arccos(θ) ∈ (0, π). Therefore, we get (2.13) with
ûj(ω) = û1(ω) + û2(ω). That is, the extension by zero to R of ûj(ω) is the Fourier
transform of uj(t) (also extended by zero for t < 0) for ω ∈ R.

Theorem 2.5 (TBCs). Let uh(t) be the solution of (2.3), and assume that u0(x),
the initial value of (1.1), vanishes when x /∈ (xl, xr) = (x0, xN ), and V is constant.
Then, when h2(V + cω)/2 /∈ (0, 2), ûj(ω) = 0, j ∈ Z, and when h2(V + cω)/2 ∈ (0, 2),
the TBCs are given by

ûN−1(ω) = r(V + cω, h)ûN (ω),(2.15)

û1(ω) = r(V + cω, h)û0(ω),(2.16)

where

r(η, h) = 1− h
2

2
η + i

√
h2

2
η

(
2− h

2

2
η

)
.(2.17)

Proof. Let us obtain the right TBC (2.15). (The proof for the left TBC is similar.)
We take φ(t) = uN−1(t) in Proposition 2.3. Then (uj(t))j≥N , the restriction of the
solution of (2.3), is the solution of (2.7). The result is a straightforward consequence
of Proposition 2.4.

3. The simplest ABC. As we have already mentioned, the TBCs (2.15) and
(2.16) are nonlocal, and thus, for practical purposes, we are going to obtain local
ABCs. For this, we will consider different approximations to r(s, h) which, under the
conditions of Proposition 2.4, is given by (2.17).

Similarly to what we did in [2] for the continuous problem, we are going to consider
approximations

r(V + cω, h) ≈ q(V + cω, h),(3.1)

where q(s, h) is a rational function in s that interpolates r(s, h). We will use the
notation SABC(j1, j2) for the ABCs obtained when we consider q = p1/p2, with p1
and p2 relatively prime polynomials in s with degrees j1 and j2, respectively. Following
the notation in [2], ABC(j1, j2) denotes the ABCs obtained there for the continuous
problem. Moreover, we also call order of absorption the number j1 + j2 + 1.

Let us study now which should be the choice for the interpolatory nodes. Let us
consider a wave solution (uj(t))j∈Z = (exp(i(ηj − ω(η)t)))j∈Z, where ω(η) is given
by the dispersion relation (2.6). We are considering the SABCs obtained by using
the approximation (3.1), and therefore we should choose the interpolatory nodes in
such a way that r(V + cω, h)− q(V + cω, h) is small when ω = −ω(η), that is, when
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V + cω = (2/h2)(1 − cos η). Therefore, the approximation should be good when at
least one of the interpolatory nodes is

s1 =
2

h2
(1− cos η).(3.2)

Moreover, when the velocity of the solution is a unique known value, it is reasonable
to take all the interpolatory nodes as equal.

Let us examine in more detail SABC(1,0), one of the simplest choices for the
approximation (3.1). Let us take q(s, h) = α0 +α1s, the polynomial that interpolates
(2.17) at the points s1 and s2, with s1, s2 ∈ (0, 4/h2), where

α0 = 1 + i
s2c1 − s1c2
s2 − s1 , α1 =

−h2

2
− i c1 − c2
s2 − s1 ,

with

cj = h

√
sj

(
1− h

2

4
sj

)
, j = 1, 2.

(We omit the dependence on s1, s2, and h of the coefficients.) Since h2 ≤ 4/sj for
j = 1, 2, cj ∈ R. Notice that if we take the limit when s1 and s2 go to a unique
positive number b, the approximation we are considering is the Taylor expansion of
first order of r(s, h) at s = b.

Considering this approximation in (2.15) and taking the inverse Fourier transform,
we obtain

d

dt
vN (t) = α̃vN (t) + β̃vN−1(t),

where

α̃ =

(
1− h

2V

2

)
(s1 − s2) + ic1(V − s2)− ic2(V − s1)

c(c2 − c1)− ich
2

2
(s1 − s2)

,

β̃ =
s2 − s1

c(c2 − c1)− ich
2

2
(s1 − s2)

.

Similarly for the left boundary, we have

d

dt
v0(t) = α̃v0(t) + β̃v1(t).

This way we have obtained a first order ordinary differential system

v′h(t) = M(h)vh(t),(3.3)

where vh(t) = [v0(t), v1(t), . . . , vN−1(t), vN (t)]T and

M(h) =


α̃ β̃ 0 0 · · · 0
m̃1 m̃2 m̃1 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 m̃1 m̃2 m̃1

0 · · · 0 0 β̃ α̃

 ∈M(N+1)×(N+1),(3.4)
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with m̃1 = −i/ch2 and m̃2 = i(2 − V h2)/ch2. We have omitted in the notation the
dependence on h and on the interpolatory nodes of the elements of M(h).

4. The full discrete problem with SABC(1,0). We are going to study the
system (3.3) obtained when SABC(1,0) is considered. In order to add these SABCs,
recall that we suppose that the initial value has a support included in the finite interval
(xl, xr) = (x0, xN ), where N ∈ N. Therefore, we take the norm

‖(uj)Nj=0‖[x0,xN ],h =

h N∑
j=0

|uj |2
1/2

.(4.1)

In section 2, we have considered the abstract problem (2.1), which is approximated
by (2.5). We take Yh = CN+1 with the norm (4.1) and denote by Ph the projection
operator

Ph : Xh → Yh,
uh = (uj)j∈Z → Phuh = (uj)0≤j≤N .

(4.2)

Notice that

‖Phuh‖[x0,xN ],h ≤ ‖uh‖h, uh ∈ Xh.

Then we use SABC(1,0) and approximate the solution of (2.5) through the solution
of the ordinary differential system{

v′h(t) = M(h)vh(t),

vh(0) = Phrhu0 ∈ Yh,
(4.3)

where we have used the notation of section 3 for the matrix of coefficients M(h). The
solution of (4.3) is

vh(t) = exp(tM(h))Phrhu0, 0 ≤ t ≤ T.

The last step is the time discretization of (4.3). Since (4.3) is stiff and has very large
eigenvalues close to the imaginary axis, it is necessary to consider an A-stable time
integration method. In this paper, we use A-stable implicit Runge–Kutta methods
(cf. [2]).

Let us take a time stepsize k > 0, and let tn = kn for n > 0. We consider a
Runge–Kutta method of order p whose stability function is given by s(z). Then the
integration in time of (4.3) is given by{

vh,n+1 = s(kM(h))vh,n,

vh,0 = Phrhu0 ∈ Yh,
(4.4)

which provides the numerical approximations

vh,n = s(kM(h))vh,n−1 = sn(kM(h))Phrhu0, 0 ≤ tn ≤ T,

to the values vh(tn). Now, we are interested in the boundedness of ‖sn(kM(h))‖[x0,xN],h

for n ∈ N, that is, in the stability analysis of this time approximation.
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We denote by µ2(M(h)) the logarithmic norm of M(h) (see [8]). From a well-
known result (see, e.g., [8, Theorem IV.11.2]), if µ2(M(h)) ≤ 0 and the Runge–Kutta
method is A-stable, then

‖sn(kM(h))‖[x0,xN ],h ≤ 1 forn ∈ N.

However, this result of stability is not applicable. A straightforward calculation
shows that µ2(M(h)) = 1/(2ch2) +O(h−1), and we cannot reject a possible exponen-
tial instability of the discrete L2 norm of the solution when h goes to 0. This catas-
trophic behavior is not observed in the numerical experiments of section 8 because
M(h) is nonnormal and the estimate provided by the logarithmic norm is not suitable.

If M(h) has a complete eigensystem, then we can study the stability applying
the scalar case (see, e.g., [13]). For this, a necessary condition is given by the fact
that the matrices M(h) are stable, i.e., its eigenvalues have negative real part. Of
course, this fact does not imply the stability of (4.4), but it will allow us to obtain
a more realistic estimate. This result is similar to the situation studied in [2], where
we proved that an analogous problem to (3.3) is only weakly unstable. The following
theorem is a straightforward consequence of Theorem 4.3 of [2] (see also [17]).

Theorem 4.1. Let us consider the matrix

(4.5)

MN (h) =


α(h) β(h) 0 0 · · · 0

−i i(2− δ(h)) −i 0 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 −i i(2− δ(h)) −i
0 · · · 0 0 β(h) α(h)

 ∈M(N+1)×(N+1),

whose coefficients satisfy

α(h) = hα0 + h2α1(h), where α0 < 0, α1(0) = ia1,(4.6)

β(h) = −hα0 + h2β1(h), where β1(0) = ib1,(4.7)

δ(h) = h2δ1(h) ∈ R, where δ1(0) = d1,(4.8)

0 > a1 + b1 + d1,(4.9)

0 > α0(1−N)(a1 + b1 + d1) + 2(α′1(0) + β′1(0)).(4.10)

We shall use the notation αr(h) = (α(h)), αi(h) = 
(α(h)), βr(h) = (β(h)) �= 0,
βi(h) = 
(β(h)) �= 0, where these coefficients satisfy one of the following properties
for 0 < h < h0:

|β(h)| ≤ |αr(h)| or(4.11)

|β(h)| > |αr(h)| and(4.12) √
|β(h)|2 − αr(h)2 < δ(h) + αi(h) < 4−

√
|β(h)|2 − α2

r(h).(4.13)

We will suppose that for 0 < h < h0,

δ(h) + αi(h) <
αr(h)βi(h)

βr(h)
,(4.14)

(δ(h) + αi(h))(2 + βi(h)) < −αr(h)βr(h)− 2βi(h),(4.15)

where γ(h) = 2− δ(h)− αi(h).
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Then, for every h ∈ (0, h0), all the eigenvalues of MN (h) have negative real part.
Making use of Theorem 4.1, we are going to prove the stability of the matrix

M(h), given by (3.4).
Theorem 4.2. We suppose that s1 = s2 = b > 0 is fixed. Let h0 =

√
2/b. Then

all the eigenvalues of the matrix (3.4) have negative real part for 0 < h < h0.
Proof. Notice that since c > 0, it suffices to prove that all the eigenvalues of

ch2M(h) have negative real part. The matrix ch2M(h) is MN (h) with

α(h) = −2
√

1− a2 + i(b− V )h2, β(h) = 2
√

1− a2(a− i
√

1− a2),

where a = 1− h2b/2. Then, hypotheses (4.6)–(4.8) are satisfied for

α0 = −2
√
b < 0, a1 = b− V ∈ R, b1 = −2b ∈ R, d1 = V.

We also have

α′1(0) =
b3/2

4
, β′1(0) =

−5b3/2

4
.

Therefore, hypotheses (4.9) and (4.10) are satisfied, since

a1 + b1 + d1 = −b < 0,

α0(1−N)(a1 + b1 + d1) + 2(α′1(0) + β′1(0)) = −2Nb3/2 < 0.

On the other hand, since h < 2/
√
b,

αr(h) = −2
√

1− a(h)2, αi(h) = (b− V )h2,

βr(h) = 2a(h)
√

1− a(h)2, βi(h) = −2(1− a(h)2).

We have then |β| = |αr|, so (4.11) is satisfied.
Because we are assuming that h <

√
2/b,

δ(h) + αi(h)− αr(h)βi(h)

βr(h)
=

2bh2

−2 + bh2
< 0,

(δ(h) + αi(h))(2 + βi(h)) + αr(h)βr(h) + 2βi(h) = 2bh2(−3 + bh2) < 0,

so hypotheses (4.14) and (4.15) of Theorem 4.1 are satisfied.
Therefore, from Theorem 4.1 we can conclude that for h ∈ (0, h0) (with h0 =√

2/b), all the eigenvalues of M(h) have negative real part.
In a similar way, we have obtained the following more general result (see [17, 20]).
Theorem 4.3. Let us consider the semidiscrete problem obtained when SABC(1,0)

is used with s1 �= s2. Let h0 = 2/
√
s1 + s2. Then all the eigenvalues of matrix (3.4)

have negative real part for 0 < h < h0.
We can conclude the stability from Theorem 4.2 (or Theorem 4.3) whenM(h) has

a complete eigensystem. Nevertheless, asM(h) is nonnormal, the bound of the powers
of M(h) depends on h in the general case, as is proved in the following proposition.

Proposition 4.4. Let L(h) be an invertible matrix such thatM(h)=L(h)J(h)L(h)−1,
where J(h) is in Jordan form. Then we have the stability bound

‖sn(kM(h))‖[x0,xN ],h ≤ κh ‖sn(kJ(h))‖[x0,xN ],h(4.16)
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Fig. 1. Condition number κh as a function of h. ∗ SABC(1,0), ◦ SABC(1,1), × SABC(2,1),
+ SABC(3,2).

for n ∈ N, where κh is the condition number of L(h). Moreover, if M(h) has a
complete eigensystem for h > 0, we have

‖sn(kM(h))‖[x0,xN ],h ≤ κh.(4.17)

Proof. First,

‖sn(kM(h))‖[x0,xN ],h =
∥∥L(h)sn−j(kJ(h))L(h)−1

∥∥
[x0,xN ],h

≤ ‖L(h)‖[x0,xN ],h ‖sn(kJ(h))‖[x0,xN ],h

∥∥L(h)−1
∥∥

[x0,xN ],h

= κh ‖sn(kJ(h))‖[x0,xN ],h ,

and we have obtained (4.16).
If M(h) has a complete eigensystem, that is, J(h) is the diagonal matrix of

eigenvalues, then by Theorems 4.2 and 4.3, we obtain (4.17) from (4.16).
With this stability result, we will prove in section 6 a result of convergence. Now,

we are interested in the study of the behavior of the condition number κh. We have
checked this numerically (see Figure 1), obtaining that κh = O(h−1/2), similarly to
the case of ABC(1,0) in [2]. Therefore, the possible instability of SABC(1,0) is mild,
although the absorption for this SABC is not very high.

To study this weak instability, it is also possible to make an analysis of the
ε-pseudoeigenvalues of M(h) [24]. The ε-pseudospectrum may be calculated using
random perturbations of the matrix M(h). We have computed, for an example of
section 8, the spectrum of M(h) + E (with h = 1/80), where E is a random matrix
of norm ε. In the second column of Table 1, we can see the maximum of the real part
of the eigenvalues computed this way. We observe that the nonnormality of M(h) is
mild for SABC(1,0) because this maximum varies slowly with ε.

Finally, we remark that the instability arising when SABC(1,0) are used is very
weak, and we have not been able to obtain numerical evidence. However, the insta-
bility may be clearly observed when other SABCs with higher orders of absorption
are used because the discrete problems are more stable (see sections 7 and 8).
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Table 1
Maximum of the real part of the ε-pseudoeigenvalues.

ε SABC(1,0) SABC(1,1) SABC(2,1) SABC(3,2)

1.0d−1 1.1254d−3 1.3378d−1 3.7731d−1 8.1664d+2

1.0d−3 −4.7348d−4 −9.1666d−4 −1.1637d−3 1.8658

1.0d−6 −5.6131d−4 −8.7425d−4 −1.1226d−3 −3.8555d−3

1.0d−9 −5.6126d−4 −8.7427d−4 −1.1225d−3 −3.8831d−3

1.0d−12 −5.6126d−4 −8.7427d−4 −1.1225d−3 −3.8832d−3

5. Reflection coefficient. As we have remarked in section 3, the absorption
of SABCs depends strongly on the choice of the interpolatory nodes. There exists a
suitable node to absorb the component of the solution traveling with a given group
velocity. Therefore, the absorption depends on the initial data, as is well displayed in
the numerical experiments of section 8. In this section we are going to measure the
absorption of SABC(1,0) by means of the reflection coefficient in a similar way to the
study in [9]. The analytical results obtained confirm the previous remark.

We will consider only the case s1 = s2 = b ∈ (0, 4/h2), and we will use the notation
x = h2(V + cω)/2, x∗ = h2b/2, so that to obtain SABC(1,0) we have considered the
approximation (3.1) with

q(V + cω, h) = α0 + α1(x− x∗),(5.1)

where

α0 = 1− x∗ + i
√

1− (1− x∗)2, α1 = −1 +
i(1− x∗)√

1− (1− x∗)2 .

5.1. One boundary. First, we will study the problem with just one boundary
at xN . This case is used later to analyze the more practical case of two artificial
boundary conditions. We remark that this case can also be used if the original problem
is semi-infinite with a unique known boundary, for example, Dirichlet or Neumann.

Recall that uh(t) = (uj(t))j∈Z is the solution of the semidiscretized problem in
space (2.3) with an initial condition whose support is included in (xJ , xL) with L < N .
This solution satisfies the TBC (2.15). In Fourier variables,

ûj+1(ω)− 2

(
1− h

2

2
(V + cω)

)
ûj(ω) + ûj−1(ω) = 0, j ∈ Z,

r(V + cω, h)ûN (ω)− ûN−1(ω) = 0.

On the other hand, let vh(t) = (vj(t))j≤N be the solution of the semidiscretized
problem, defined for j ≤ N , with the same initial condition as for the previous problem
and the SABC at xN obtained when considering the approximation (3.1). Its Fourier
transform (v̂j(ω))j≤N satisfies

v̂j+1(ω)− 2

(
1− h

2

2
(V + cω)

)
v̂j(ω) + v̂j−1(ω) = 0, j ≤ N,

q(V + cω, h)v̂N (ω)− v̂N−1(ω) = 0.
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Fig. 2. Reflection coefficient |R| for one boundary as a function of x = h2(V + cω)/2 when
x∗ = 0.5. – SABC(1,0), – – SABC(1,1), – · SABC(2,1), · · · SABC(3,2).

Finally, let us define wj = vj − uj , j ≤ N , the reflected part of the solution caused
by the ABC. Its Laplace transform (w̃j)j≤N satisfies

ŵj+1(ω)− 2

(
1− h

2

2
(V + cω)

)
ŵj(ω) + ŵj−1(ω) = 0, j ≤ N,

q(V + cω, h)ŵN (ω)− ŵN−1(ω) + q(V + cω, h)ûN (ω)− ûN−1(ω) = 0.

For each ω and h, the reflection coefficient is defined as

ŵN (ω) = R(V + cω, h)ûN (ω).(5.2)

Note that it is enough to consider R(V + cω, h) for 0 ≤ h2(V + cω)/2 ≤ 2 because of
the result in Proposition 2.4.

The ideal situation is R ≡ 0, which leads to ŵN (ω) ≡ 0. That is, there is no
reflection, and the boundary condition is transparent. However, R �≡ 0 when we use
ABCs, and the size of R measures the capacity of absorption of the ABCs. In Figure 2,
we can observe the reflection coefficient when x∗ = 0.5.

Since the initial value vanishes for x = xj , j > L, and by using the TBCs (2.15)
and (2.16), we have

ûj(ω) = rL−j(V + cω, h)ûL(ω) for j > L.(5.3)

Similarly, since the reflection vanishes for x = xj , j < N ,

ŵj(ω) = rj−N (V + cω, h)ŵN (ω) for j < N.(5.4)
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Taking into account these relations,

(q − r−1)ŵN = qŵN − ŵN−1 = −qûN + ûN−1 = (r − q)ûN ,

where we have omitted the dependence on ω and h. Therefore, (5.2) is satisfied with

R(V + cω, h) =
r(V + cω, h)− q(V + cω, h)

q(V + cω, h)− r−1(V + cω, h)
.(5.5)

Theorem 5.1. Keeping the above notation, let R(V + cω, h) be the reflection
coefficient when SABC(1,0) with s1 = s2 = b ∈ (0, 4/h2) is considered. Then, we have

|R(V + cω, h)| ≤ min

(
1,

(x− x∗)2
min((x∗)2, (2− x∗)2)

)
for 0 ≤ x ≤ 2, where x = h2(V + cω)/2 and x∗ = h2b/2 ∈ (0, 2).

Proof. In this case q is given by (5.1). We will use the notation αrj = Re(αj),

αij = Im(αj). Taking into account (2.17),

|R| = |α
i
0 + αi1(x− x∗)−√

x(2− x)|
|αi0 + αi1(x− x∗) +

√
x(2− x)| =

∣∣∣∣x(1−x∗)+x∗√
x∗(2−x∗)

−√
x(2− x)

∣∣∣∣∣∣∣∣x(1−x∗)+x∗√
x∗(2−x∗)

+
√
x(2− x)

∣∣∣∣ .
With a straightforward calculus, we have

|R| =
x(1−x∗)+x∗√
x∗(2−x∗)

−√
x(2− x)

x(1−x∗)+x∗√
x∗(2−x∗)

+
√
x(2− x)

≤ 1

for x ∈ [0, 2], having the identity only for x = 0, 2. Let us see now

|R(V + cω, h)| ≤ (x− x∗)2/min((x∗)2, (2− x∗)2).

This bound is a consequence of

|R(V + cω, h)| ≤ (x− x∗)2/(x∗)2

for 0 < x∗ ≤ 1 and

|R(V + cω, h)| ≤ (x− x∗)2/(2− x∗)2

for 1 < x∗ < 2. Both estimates are easily obtained with a straightforward calcula-
tion.

5.2. Two boundaries. In practice we do not have only one boundary as con-
sidered previously but two, and then, the reflected part of the solution caused by the
SABCs will have two components, one traveling to the left and another one to the
right.

As we prove below, the reflection coefficient has in this case two singularities,
when the spatial parameter goes to 0, at the values x = 0 and x = 2. (A similar
situation arises in the case of the wave equation [9].) These values correspond to the
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values of the Fourier components of the solution with group velocity very small or
very high because of the aliasing brought about by the spatial discretization.

In a practical situation, the components of the solution with a very small velocity
take a long time to arrive at the boundary and, on the other hand, the components
with a very large velocity are usually small. As a consequence, in many practical
cases these singularities are not important. However, when we obtain an estimate of
the error in section 6 using the bound of the reflection coefficient, these singularities
bring about a poor estimate of the part of error depending on the absorption.

Let us consider uh(t) = (uj(t))j∈Z as in the previous section. It satisfies both
TBCs

r(V + cω, h)ũ0(iω)− ũ1(iω) = 0,

r(V + cω, h)ũN (iω)− ũN−1(iω) = 0.

Let vh(t) = (vj(t))0≤j≤N be the solution of the semidiscretized problem with the
same initial condition and SABCs in both boundaries; then

v̂j+1(ω)− 2

(
1− h

2

2
(V + cω)

)
v̂j(ω) + v̂j−1(iω) = 0, 0 ≤ j ≤ N,

q(V + cω, h)v̂0(ω)− v̂1(ω) = 0,

q(V + cω, h)v̂N (ω)− v̂N−1(ω) = 0,

where we have omitted the dependence on ω and h of q and vj . As in the previous
section, wj(t) = vj(t)−uj(t), 0 ≤ j ≤ N , will denote the reflected part of the solution
caused by both SABCs. Therefore, omitting the dependence on ω and h,

ŵj+1 − 2

(
1− h

2

2
(V + cω)

)
ŵj + ŵj−1 = 0, 0 ≤ j ≤ N,(5.6)

qŵ0 − ŵ1 = −qû0 + û1,(5.7)

qŵN − ŵN−1 = −qûN + ûN−1.(5.8)

Solving this difference equation, we have

ŵj = A1r
−j +A2r

j−N for 0 ≤ j ≤ N,(5.9)

and due to the TBC (2.15) and (2.16),

ûj = rL−j ûL for j > L, and ûj = rj−J ûJ for j < J.(5.10)

From (5.9) for j = 0, N , we get

ŵ0 = A1 +A2r
−N , ŵN = A1r

−N +A2,

and solving this system for A1 and A2, we obtain

A1 = βŵ0 + γŵN , A2 = γŵ0 + βŵN ,(5.11)

with β = 1/(1 − r−2N ), γ = −r−N/(1 − r−2N ). On the other hand, taking into
account (5.9) and (5.10) in relations (5.7) and (5.8), we get

qŵ0 −A1r
−1 −A2r

1−N = (r − q)û0,

qŵN −A1r
1−N −A2r

−1 = (r − q)ûN .
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Fig. 3. Reflection coefficients max(|K1(12)|, |K2(12)|) for two boundaries as a function of
x = h2(V + cω)/2 when x∗ = 0.5, N = 30, L = 20, J = 10. – SABC(1,0), – – SABC(1,1), – ·
SABC(2,1), · · · SABC(3,2).

Taking into account (5.11), we obtain expressions for ŵ0, ŵN in terms of û0, ûN , and
finally, from (5.9), we have

ŵj = K1(j)ûL+j +K2(j)ûJ−j ,

where the reflection coefficients

K1(j) =
−rLR(R+ r2j)

R2 − r2N , K2(j) =
−r−JR(Rr2j + r2N )

R2 − r2N(5.12)

also depend on V + cω and h, but this dependence is not displayed in the notation.
In Figure 3 we can observe max(|K1(12)|, |K2(12)|) whenN = 30, L = 20, J = 10,

and x∗ = 0.5. As we have previously mentioned, we can see two possible singularities
at x = 0 and x = 2. Let us analyze |K1(j)| and |K2(j)| in more detail.

Theorem 5.2. Let us consider x∗ ∈ (0, 2) and let K1(j), K2(j) be the reflection
coefficients given by (5.12) when using SABC(1,0) with s1 = s2 = b ∈ (0, 4/h2). Then,
for x = h2(V + cω)/2 ∈ (0, 2) and j = 0, . . . N ,

max (|K1(j)|, |K2(j)|) ≤ (N + 1)
(x− x∗)2

min((x∗)2, (2− x∗)2)
.(5.13)

Proof. We will suppose that x∗ ∈ (0, 1). (The proof for 1 ≤ x∗ < 2 is similar.)
First, let us study |K1(j)|. Recall that R = −q2(x, x∗)/q1(x, x∗) < 0, where

q1,2(x, x∗) = x(1− x∗) + x∗ ±
√
x(2− x)x∗(2− x∗).(5.14)

Taking into account that for x ∈ (0, 2), |r| = 1 and |R| < 1, we get

|K1(j)| = |R||R+ r2j |
|R2 − r2N | ≤

|R||R+ r2j |
1− |R|2 .

Using now again that |r| = 1 and that R is real and negative,

|R+ r2j |2 = (R+ (r2j))2 + 
(r2j)2 = (1− |R|)2 + 2R((r2j)− 1).
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Thus we have that

|K1(j)|2 ≤ |R|2
(1 + |R|)2

(
1 +

2|R|(1−(r2j))

(1− |R|)2
)
,

and using that |R| < 1,

|K1(j)|2 ≤ |R|2
(

1 +
f(x)q1(x, x∗)2

2x∗(2− x∗)
)
,

where q1(x, x∗) is given by (5.14) and

f(x) =
1−(r2j)

x(2− x)
.

Finally, taking into account Lemmas 5.3 and 5.4 below, we get

|K1(j)| ≤ |R|
(

1 +
j2q1(x, x∗)2

x∗(2− x∗)
)1/2

≤ (j + 1)
(x− x∗)2

(x∗)2
.

Similarly, for K2(j) we obtain

|K2(j)| ≤ (N − j + 1)
(x− x∗)2

(x∗)2
,

and we deduce (5.13).
In the proof of Theorem 5.2, we have used the following technical lemmas, whose

proof can be found in [17].
Lemma 5.3. Let

f(x) =
1−(r2j)

x(2− x)
, x ∈ (0, 2), j ∈ N.

Then f(x) ≤ 2j2.
Lemma 5.4. Let x∗ ∈ (0, 1) and R the reflection coefficient for only one boundary

(5.5) when considering SABC(1,0) with s1 = s2 = b. Then

|R|2
(

1 +
j2q1(x, x∗)2

x∗(2− x∗)
)
≤ (j + 1)2

(x− x∗)4
(x∗)4

,(5.15)

where q1(x, x∗) is given by (5.14).

6. Error analysis. In this section, our goal is to obtain an expression for the
error of the full discretization with SABC(1,0). This error is given in the following
definition.

Definition 6.1. The full discrete global error is given by

eh,n = Phrhu(tn)− vh,n, 0 ≤ tn ≤ T,(6.1)

where vh,n is the solution of (4.4), u(t) is the solution of (2.1), rh is defined in (2.4),
and Ph is defined in (4.2).

The full discrete problem with SABC(1,0) has been obtained with three consec-
utive steps associated with three kinds of error. First, we discretize (2.1) in space
obtaining the problem (2.5). The error made in this step is given by the spatial error

e1h,n = Phrhu(tn)− Phuh(tn), 0 ≤ tn ≤ T,(6.2)

where uh(t) is the solution of (2.5).
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In the second step, we add the SABC(1,0) and we obtain (4.3). The error is now
given by the error of absorption

e2h,n = Phuh(tn)− vh(tn), 0 ≤ tn ≤ T,(6.3)

where vh(t) is the solution of (4.3).
Finally, we use the time discretization introduced in section 4, and the error is

the time global truncation error defined as

e3h,n = vh(tn)− vh,n, 0 ≤ tn ≤ T,(6.4)

where vh,n is the solution of (4.4).
The estimate of the error obtained in Theorem 6.2 is separated into three terms

given by eih,n, i = 1, 2, 3. The error may grow when h goes to zero due to two of these

terms which behave as e3h,n = O(kpκh) and ‖e2h,n‖[x0,xN ],h ≤ εh−2. This is a crucial
difference from the wave equation (cf. [9]).

Nevertheless, notice that the growth is compensated for, in the case of e3h,n, by
the presence of the factor kp, which decreases when k decreases, or when p, the order
of the integrator in time, grows, as is well displayed in the numerical experiments of
section 8. Therefore, the use of methods of high order for the integration in time is
crucial when we use SABCs with high orders of absorption, and the behavior of κh is
worse, as we will see in section 7.

On the other hand, ‖e2h,n‖[x0,xN ],h ≤ εh−2, where ε measures the capacity of
absorption at the boundary and depends only on the solution of the semidiscrete
problem. Nevertheless, we will see at the end of this section that ε can overestimate
the error due to the absorption, and we will analyze better bounds for our numerical
experiments. If the SABCs are suitable to absorb the solution arriving at the bound-
ary, the numerical experiments indicate that the absorption is very high and the error
absorption is small. If this is not the case, the alternative is to consider the higher
order SABCs that are studied in next section. However, the instability is increased
with these higher order SABCs and the term e3h,n may grow. Moreover, due to the bad
absorption of solutions traveling with a velocity distinct to the one associated with
the interpolatory nodes, it is necessary to consider a distinct implementation (see
[3]). Finally, we remark that the factor h−2 is, at least partially, a consequence of the
singularities observed in the reflection coefficient in section 5, affecting components
of the solution traveling with velocities very small or very large.

Then, we have the following result.
Theorem 6.2. We assume that in the initial value problem (2.1), the initial

value u0 ∈ D(A2) = H4(R), and that the hypotheses of Propositions 2.4 and 4.4 are
satisfied. Then the full discrete global error defined in (6.1) can be expressed as

eh,n = e1h,n + e2h,n + e3h,n,

where e1h,n, defined in (6.2), satisfies

‖e1h,n‖[x0,xN ],h = O(h2)(6.5)

and depends only on the spatial discretization. Moreover, for a fixed spatial discretiza-
tion, the term e2h,n, defined in (6.3), depends only on SABC(1,0), and, if s1 = s2 = b,

‖e2h,n‖[x0,xN ],h ≤ εh−2,(6.6)
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where ε measures the capacity of absorption of the solution. Finally, the term e3h,n,
defined in (6.4), depends only on the discretization in time and

‖e3h,n‖[x0,xN ],h = O(kpκh).(6.7)

Proof. With the definition (6.1)

eh,n = Phrhu(tn)− vh,n
= Phrhu(tn)− Phuh(tn) + Phuh(tn)− vh(tn) + vh(tn)− vh,n
= e1h,n + e2h,n + e3h,n.

The value e3h,n = vh(tn) − vh,n is the global truncation error arisen when the
problem (4.3) is time discretized with an A-stable Runge–Kutta method. Then the
proof the estimate (6.7) is very similar to the one used in section 5 of [2].

On the other hand, the proof of (6.5) is a classical result. Finally, we prove the
estimate (6.6) in Lemma 6.3.

Lemma 6.3. With the hypotheses and notation of Theorem 6.2, (6.7) is satisfied.
Proof. Notice that Phuh(tn) is the restriction of the solution of (2.5) to [x0, xN ],

that is, with TBCs, and that vh(tn) is the approximation obtained when we use
SABC(1,0). Therefore, e2h,n = vh(tn) − Phuh(tn) depends only on the absorption of
the solution of (2.5) with SABC(1,0).

Let us suppose that 0 < h2b/2 ≤ 1. (The proof for 1 < h2b/2 < 2 is similar.)
With the notation of section 5, we have

‖e2h,n‖[x0,xN ],h =

h N∑
j=0

|wj(tn)|2
1/2

.

By Proposition 2.4,

wj(t) =
1

2π

∫ ω2

ω1

exp(iωt)ŵj(ω)dω,

where ω1 = −V/c, and ω2 = −V/c+ 4/(ch2), and we deduce that

|wj(t)|2 ≤ 1

ch2π2

∫ ω2

ω1

|ŵj(ω)|2dω(6.8)

=
1

ch2π2

∫ ω2

ω1

|K1(j)ûL+j(ω) +K2(j)ûJ−j(ω)|2dω.

Using now (5.13),

|wj(t)|2 ≤ 2(N + 1)2c3

h2b4π2

∫ ω2

ω1

(|(ω − ω∗)2ûL+j(ω)|2 + |(ω − ω∗)2ûJ−j(ω)|2) dω.
Making now the change of variable τ = ω − ω∗ and taking into account that N =
O(h−1),

|wj(t)|2 ≤ 2(N + 1)2c3

h2b4π2

∫ ω2−ω∗

ω1−ω∗

(|τ2ûL+j(τ + ω∗)|2 + |τ2ûJ−j(τ + ω∗)|2) dτ
=
C2

h4b4

∫ ω2−ω∗

ω1−ω∗

(|τ2ûL+j
ω∗ (τ)|2 + |τ2ûJ−jω∗ (τ)|2)dτ,
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Table 2
Value of ε̃.

SABC(1,0) SABC(1,1) SABC(2,1) SABC(3,2)

1.2300d−2 5.5623d−4 3.0115d−5 1.3161d−7

where ûjω∗(τ) = ûj(τ + ω∗). Finally, taking into account that J < L, we obtain (6.6)
with

ε =
C

b2

h N∑
j=0

∫ ω2−ω∗

ω1−ω∗

(|τ2ûL+j
ω∗ (τ)|2 + |τ2ûJ−jω∗ (τ)|2)dτ

1/2

.

We also note that it is possible, although only numerically, to obtain an estimate
of the absorption using the last term of (6.8) from which we deduce a bound

‖e2h,n‖[x0,xN ],h ≤ ε̃h−1,

where ε̃ is given in terms of the reflection coefficients K1(j), K2(j). This bound
obviously will be smaller than the previous one and has the advantage that we can
use it for other SABCs of higher order. We have calculated numerically the value
for ε̃ for the experiment considered in section 8 for the initial datum with α = 20◦,
σ = 10 (as in Figure 4), L = 100, tn = 500, and h = 0.1, obtaining the results of
Table 2. It is plain that these values are small pointing out that the absorption is
high. Moreover, the value of ε̃ decreases when the order of absorption increases.

7. Other ABCs. In section 3 we studied the procurement of SABC(1,0). Let
us consider now other different choices for the approximation (3.1).

SABC(0,0). Let q = α0 be the function that interpolates r(s, h) at s1. The
SABC obtained this way is

vN−1(t) = α0v
N (t).

In this case, we obtain a system v′h = Mvh with vh = [v1, . . . , vN−1]T and M ∈
M(N−1)×(N−1) such that µ2(M) < 0. Therefore, the problem is stable. Nevertheless,
as the absorption of these SABCs is too small, we will not consider them for the
numerical experiments of section 8.

SABC(1,1). Let q(s, h) = (α0 + α1s)/(1 + α2s) be a rational function that
interpolates r(s, h) at s1, s2, and s3. An approximation of (2.15) is then

(1 + α2(V + cω))v̂N−1(ω) = (α0 + α1(V + cω))v̂N (ω),

obtaining this way

β0v
N−1(t) + β1

d

dt
vN−1(t) = β2v

N (t) + β3
d

dt
vN (t)

for certain coefficients βj depending on s1, s2, and s3. Finally, taking into account
the spatial discretization (2.3) we are considering for dvN−1/dt, we obtain

d

dt
vN (t) = γ0v

N (t) + γ1v
N−1(t) + γ2v

N−2(t).

A similar expression is obtained for the left boundary.
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Notice that in the limit case when s1 = s2 = s3 = b, the approximation we
are considering in (3.1) is the Padé (1,1) expansion of r(V + cω, h) at ω = ω∗, with
ω∗ = (b− V )/c.

This way, we have reduced the problem to the resolution of a system v′h = Mvh
with vh = [v0, v1, . . . , vN−1, vN ]T and M ∈M(N+1)×(N+1).

SABC(2,1). Continuing this approach, let q(s, h) = (α0 +α1s+α2s
2)/(1+α3s)

be a rational function that interpolates r(s, h) at s1, s2, s3, and s4. This gives rise to

β0v
N−1 + β1

d

dt
vN−1 = β2v

N + β3
d

dt
vN + β4

d2

dt2
vN .

Let us define now the new function zN (t) = dvN (t)/dt. If in the previous expression,
we also take into account (2.3) for j = N − 1, we get

d

dt
zN = γ0z

N + γ1v
N + γ2v

N−1 + γ3v
N−2

for certain coefficients γj depending on s1, s2, s3, and s4. Therefore, we have obtained
a system v′h = Mvh with vh = [z0, v0, . . . , vN , zN ]T and M ∈M(N+2)×(N+2).

SABC(3,2). Let us consider now the rational function q = p1/q1 with p1 and
q1 polynomials of degree 3 and 2 in s, respectively, that interpolates r(s, h) at sj ,
j = 1, . . . , 6. We obtain this way the following ABC for the right boundary:

β0v
N−1 + β1

d

dt
vN−1 + β2

d2

dt2
vN−1 = β3v

N + β4
d

dt
vN + β5

d2

dt2
vN + β6

d3

dt3
vN .(7.1)

Taking (2.3) into account for j = N − 1 and taking the derivative with respect to t,
we get

d2

dt2
vN−1 = m̃1

d

dt
vN + m̃1m̃2v

N + (m̃2
1 + m̃2

2)vN−1 + 2m̃1m̃2v
N−2 + m̃2

1v
N−3.

On the other hand, let us define the functions zN (t) = dvN (t)/dt and wN (t) =
d2vN (t)/dt2. In this way, (7.1) gives rise to

d

dt
wN = γ0w

N + γ1z
N + γ2v

N + γ3v
N−1 + γ4v

N−2 + γ5v
N−3

for certain coefficients γj depending on the points of interpolation. In this case,
we have obtained a system v′h = Mvh with vh = [w0, z0, v0, . . . , vN , zN , wN ]T and
M ∈M(N+3)×(N+3).

Regarding the stability, the case of SABC(1,1) has been studied in [18, 19], where
it is proved that the eigenvalues of the matrices of the associated discrete problems
have a negative real part when the three interpolatory are equal.

In the other cases, we have checked numerically that all the eigenvalues of the
matrices associated to the previous SABCs have negative real part. All of them are
nonnormal and a study of the ε-pseudospectra shows that the rate of nonnormality
is higher for the most ABCs. In this way, Table 1 shows, for an example of what is
discussed in section 8, the maximum of the real part of the eigenvalues of M + E,
where E is a random matrix of norm ε andM is the matrix associated to the indicated
SABC.

In Figure 1 we can see the behavior of the condition number κh for the different
SABCs. It is O(h−3/2) for SABC(1,1), O(h−2) for SABC(2,1), and O(h−7/2) for
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SABC(3,2). Therefore, for the same stepsize k, the behavior of the error term e1h,n
(6.7) is worse for higher order ABCs.

On the other hand, we have checked numerically (see Figure 2) that in the case
s1 = s2 = s3 = b, the reflection coefficient for one boundary satisfies

|R(V + cω, h)| ≤ min

(
1,

(x− x∗)m
min((x∗)m, (2− x∗)m)

)
,

where m is the order of the ABCs used. We have also checked the following bound
for the reflection coefficients in the case of two boundaries (see Figure 3):

max (|K1(j)|, |K2(j)|) ≤ (N + 1)
(x− x∗)m

min((x∗)m, (2− x∗)m)
.

This way we see that for a fixed value of h, the higher the order of the ABCs is, the
better the reflection coefficient behaves.

The numerical experiments of section 8 confirm the previous estimates.
SABC(2,0). Finally, if we consider the polynomial of order two that inter-

polates r(s, h) at the points s1, s2, and s3, we obtain a system v′h = Mvh with
M ∈M(N+1)×(N+1). Nevertheless, we have checked numerically that this matrix has
eigenvalues with positive real part, giving rise to an unstable problem. This result is
similar to the one obtained in [2] for ABC(2,0).

8. Numerical experiments. We are going to consider the Fresnel equation
(1.2) with n = 1, n0 = cos(21.8◦), λ = 0.832, and k0 = 2π/λ. The experiments we
are going to present in this section are similar to those in [2] for the continuous case.
We will consider, as in [2, 7, 22, 23], the following kind of initial conditions for the
experiments:

u0(x) = exp

(
−

( x̄
σ

)2
)

exp(iτ x̄), x ∈ [0, L],(8.1)

with x̄ = x − L/2 and τ = −n0k0 tan(α). This initial condition, which is discretized
by taking rhu0(x) = (u0(jh))j∈Z, will give rise to a solution traveling with a velocity
tanα. In fact, the exact solution can be calculated explicitly and is given by

u(x, t) =

(
1− 4it

cσ2

)−1/2

exp

(
i

c
(τ2 − V )t

)
exp

(
iτ x̄−

(
x̄+ 2τt

c

)2

σ2 − 4it
c

)
.(8.2)

The dispersion relation for the numerical solution is given by

ω(τh) =
2

ch2
(cos(τh)− 1) +

V

c
.(8.3)

Notice that, although this value is a good approximation to the dispersion relation of
the theoretical solution when h is small, in general they are different.

We are going to study numerically the behavior of the SABCs obtained in this
paper and compare them with the ABCs previously obtained in [2]. The interpolatory
nodes sj are considered equal to a unique positive number b. We draw in each case
the relative L2 norm error of the numerical solution with respect to the analytical
solution given by (8.2), that is,

‖vh,n − Phrhu(tn)‖[x0,xN ],h

‖Phrhu0‖[x0,xN ],h

=
‖vh,n − Phrhu(tn)‖[x0,xN ],h

‖rhu(tn)‖h .



DISCRETE ABSORBING BOUNDARY CONDITIONS 1847

0 50 100 150 200 250 300 350 400 450 500
10

-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

(a)
0 50 100 150 200 250 300 350 400 450 500

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

(b)

Fig. 4. Error as a function of time. (a) – –∗ ABC(1,0), – –◦ ABC(1,1), – –× ABC(2,1), – –
+ ABC(3,2), –∗ SABC(1,0), –◦ SABC(1,1), –× SABC(2,1), –+ SABC(3,2). (b) ABC(3,2): – –∗
N = 8000, – –◦ N = 16000, – –× N = 32000, – –+ N = 64000; SABC(3,2): –∗ N = 8000, –◦
N = 16000.

Let us consider the Fresnel equation along with the initial condition (8.1) with
α = 20◦, σ = 10, and L = 200. Notice that, numerically, this initial condition is 0 at
the boundary. (This assumption is made in the deduction of the TBC in section 2.)
We have chosen the optimal value for b given by (3.2) with η = τh, obtained by using
the discrete dispersion relation (8.3) and a spatial stepsize h = .0125. We have carried
out the integration in time with the implicit mid-point rule (IMPR) with a stepsize
k = 0.2. In Figure 4(a) we can observe the results in terms of relative error for the
SABCs previously obtained in this paper (SABC(j1,j2)) and for the ABCs obtained in
[2] for the continuous problem (ABC(j1,j2)). We can observe that the error for t ≤ 300
is approximately the same for every ABC. This is due to the fact that until that time,
the solution is traveling through the interior domain and it has not arrived to the
boundary. Therefore, until that time, the error is caused by the discretization in the
interior domain, which is the same for every ABC. In this paper, we are interested in
the error caused by the different ABCs when the solution reaches the boundary, which
for the example of Figure 4(a) happens for t > 300 approximately. We see that in
every case the results obtained with the SABCs are better than the ones for the ABCs
of the same order. This difference is bigger when the order of the boundary condition
is higher. Notice that the reflections for ABC(1,1), ABC(2,1), and ABC(3,2) are
almost the same. This does not happen for the SABCs for the semidiscrete problem.
Let us try to explain this fact.

The ABC(j1,j2) has been built as an approximation to the TBC for the continuous
problem and not for the problem semidiscretized in space. In this way, the reflection
caused by the ABC(j1,j2) depends not only on the order of absorption (j1 + j2 + 1)
but also on the difference between the TBC for the continuous problem and that
for the semidiscretized one. Thus it is expected that in Figure 4(a), the reflection for
ABC(j1,j2) will be smaller if h decreases. This can be seen in Figure 4(b) for ABC(3,2)
and SABC(3,2). We have considered the same initial condition and the same stepsize
k as in Figure 4(a), but now we have taken different spatial stepsizes. We observe
that while for SABC(3,2) the reflection does not change with h, for ABC(3,2) the
results are better the smaller h is. This way, in order to obtain with ABC(3,2) a
similar result to that of SABC(3,2) with N = 8000, 16000, we should consider a much
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Fig. 5. Error as a function of time. –∗ SABC(1,0), – –◦ SABC(1,1), – · –× SABC(2,1), · · · +
SABC(3,2).

smaller value for h. Therefore, the use of the SABCs for the semidiscretized problem
allows us to use bigger values of h.

In Figure 4(a) we also observe that the results obtained for the SABC(j1,j2)
are due to the order of the different SABCs. We have shown in section 4 that the
discrete problems associated to these SABC(j1,j2) are weakly unstable; nevertheless,
this is not visible in Figure 4(a). This is due to the kind of initial condition we are
considering, which is zero at the boundary and gives rise to a solution traveling with
a fixed velocity. Since we are taking the optimal choice for the interpolatory nodes,
there is a great absorption when the solution reaches the boundary. This cancels the
bad behavior due to the weak instability of these problems.

It is essential that the initial condition is zero at the boundary as we can see in
Figure 5, where we have taken the same initial condition as in the previous experi-
ments but with L = 40. Now the value of the initial condition at the boundary is
approximately 0.018. Of course, we are breaking a basic hypothesis used in section 2
for the construction of SABCs. We have considered the same stepsizes as in Fig-
ure 4(a) and the optimal value for b. The results now are quite different from those
observed in Figure 4(a). The instability of the discrete problems is now visible, and
we can observe a large initial growth of the error. Moreover, the higher the order of
absorption of SABC is, the bigger the growth is. As a consequence, the absorption
is worse for higher order SABCs. Similar experiments can be done considering initial
conditions that are not regular, obtaining similar results to those in [2].

In Theorem 6.2, we have seen that there exist two elements of the error that can
grow when h goes to zero. These terms measure the capacity of absorption of the
SABC and the error of the discretization in time. This behavior can be observed by
taking a value for b different from the optimal so that these elements are big enough.
Let us consider the initial condition (8.1) with α = 30◦, σ = 3, and L = 36. (Notice
it is zero at the boundary.) In Figure 6 we observe the results obtained when we use
SABC(3,2), the worst case of instability studied in this paper, with a value for b very
different from the optimal. The integration in time is carried out with the IMPR with
k = 0.1 and values of h decreasing. We see that for h = 36/80000, the smaller value
considered, the error grows.
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Fig. 6. Error as a function of time. SABC(3,2) IMPR. k = 0.1, –∗ N = 10000, – –◦ N = 20000,
– · –× N = 40000, · · · + N = 80000.
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Fig. 7. Error as a function of time. SABC(3,2) (a) N = 80000; –∗ DIRK3 k = 0.1; IMPR: –
–◦ k = 0.1, – · –× k = 0.05, · · ·+ k = 0.025. (b) DIRK3 k = 0.1; –∗ N = 80000, – –◦ N = 1600000,
– · –× N = 1320000.

This behavior can be lessened by decreasing k or by increasing the order of the
integrator in time. This is seen in Figure 7(a), where we have carried out the in-
tegration in time first with a diagonally implicit Runge–Kutta method (DIRK3) of
order 3 with h = 36/80000, k = 0.1, and second with the IMPR for decreasing values
of k. With this experiment, the influence of the error term, which is O(κhk

p) (see
section 6), is checked numerically. Nevertheless, we emphasize that the use of an
integrator of high order in time will only improve the behavior of this term, but the
problem is still unstable. This is observed in Figure 7(b), where we have used DIRK3
with k = 0.1 and where we have considered smaller values for h than in Figure 7(a).
As expected, the unstable behavior again arises. On the other hand, we remark that
the error of absorption is quite large because the value for b is very distinct from the
optimal.

The previous experiments have been carried out considering initial conditions that
give rise to solutions traveling with a quite small velocity. We have obtained similar
conclusions with other numerical experiments made with higher velocities.
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Abstract. We consider a singularly perturbed convection-diffusion problem in a rectangular do-
main. It is solved numerically using a first-order upwind finite-difference scheme on a tensor-product
piecewise-uniform Shishkin mesh with O(N) mesh points in each coordinate direction. It is known
[G. I. Shishkin, Grid Approximations of Singularly Perturbed Elliptic and Parabolic Equations, Rus-
sian Academy of Sciences, Ural Branch, Ekaterinburg, Russia, 1992 (in Russian)] that the error is
almost-first-order accurate in the maximum norm. We decompose the error into a sum of continu-
ous almost-first-order terms and the almost-second-order residual under the assumption ε ≤ CN−1,
where ε is the singular perturbation parameter and C is a constant. This error expansion is applied
to obtain maximum-norm error estimates for the Richardson extrapolation technique and derive
bounds on the errors in approximating the derivatives of the true solution by divided differences
of the computed solution. The analysis uses a decomposition of the true solution requiring fewer
compatibility conditions than in earlier publications. Numerical results are presented that support
our theoretical results.

Key words. convection-diffusion, upwind scheme, singular perturbation, error expansion,
Richardson extrapolation, approximation of derivatives, Shishkin mesh
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1. Introduction. The main result of this paper is a certain error expansion for
the singularly perturbed two-dimensional convection-diffusion problem

Lu := −ε�u+ b1ux + b2uy + cu = f in Ω = (0, 1)× (0, 1),
u = 0 on ∂Ω.

(1.1)

Here ε is a small parameter that satisfies 0 < ε � 1, while b1(x, y), b2(x, y), c(x, y)
are smooth functions with

b1(x, y) > β1 > 0, b2(x, y) > β2 > 0, c(x, y) ≥ 0 for all (x, y) ∈ Ω̄,(1.2a)

where β1, β2 are positive constants. To simplify the presentation we assume that

β1 = β2 = β > 0.(1.2b)

Note that all the results of this paper also hold true for the general case (1.2a); see
Remarks 1.1 and 4.5.

The solution of problem (1.1) has exponential layers at the outflow boundaries
x = 1 and y = 1 (see [8, 10]). We are interested in ε-uniform numerical methods that
resolve the boundary layers. One approach is using layer-adapted highly nonuniform
meshes.

Problem (1.1) is discretized using the standard first-order upwind scheme

LNuN :=
(−ε(δ2x + δ2y) + b1,ijD−x + b2,ijD

−
y + cij

)
uNij = fij in ΩN ,

uNij = 0 on ∂ΩN .
(1.3)
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Here δ2x, δ
2
y, D

−
x , D

−
y are the standard finite-difference differentiation operators; see

notation (2.1). Note from [11, 8, 10] that this scheme satisfies the maximum principle.
We discretize on the mesh Ω̄N = ω̄σ,N × ω̄σ,N = {(xi, yj) ∈ Ω̄ : i, j = 0, . . . , N}

that is the tensor-product of two equal piecewise-uniform meshes. Each of these one-
dimensional meshes ω̄σ,N is constructed by dividing each of the subintervals [0, 1− σ]
and [1− σ, 1] into N/2 equal subintervals of width H and h, respectively:

xi = yi =

{
iH for i = 0, . . . , N/2, where H = 2(1− σ)/N,
(1− 2σ) + ih for i = N/2, . . . , N, where h = 2σ/N.

(1.4)

Shishkin [13] was the first to suggest such piecewise-uniform meshes for problems
like (1.1) with the mesh transition parameter σ := min{(2/β) ε lnN, 1/2}. For sim-
plicity we assume that

ε ≤ CN−1,(1.5)

which is not a restriction in practical situations. This assumption implies that

σ =
2

β
ε lnN.(1.6)

Note also that N−1 < H < 2N−1 and

h

ε
=

4

β
N−1 lnN, e−β(1−xN/2)/ε = e−β(1−yN/2)/ε = e−βσ/ε = N−2.(1.7)

Further, let ∂ΩN be the set of mesh points on the boundary, i.e., ∂ΩN = Ω̄N ∩ ∂Ω,
while ΩN = Ω̄N\∂ΩN is the set of the internal mesh points.

Thus the domain Ω̄ is dissected by the transition lines x = 1 − σ and y = 1 − σ
into four parts

Ω2 := [0, 1− σ]× (1− σ, 1], Ω12 := (1− σ, 1]× (1− σ, 1],
Ω̄0 := [0, 1− σ]× [0, 1− σ], Ω1 := (1− σ, 1]× [0, 1− σ].

The restriction of the mesh Ω̄N to each of them is a rectangular uniform mesh.
Remark 1.1. The analogue of Ω̄N for β1 �= β2 is the tensor-product rectangular

mesh ω̄σ1,N × ω̄σ2,N , where σk, Hk, hk, ω̄σk,N , for k = 1, 2, are defined similarly to σ,
H, h, ω̄σ,N with βk used instead of β; see, e.g., [8, p. 101].

The paper is organized as follows. Most of the notation is collected in section 2. In
section 3 we analyze a decomposition of the true solution into an asymptotic expansion
of order one and its residual. This decomposition and our estimates of its components
require fewer compatibility conditions than in earlier publications [13, 7].

In section 4 we present a certain error expansion for the upwind scheme (1.3)
on the Shishkin mesh (1.4). Shishkin [13] gave an ε-uniform almost-first-order esti-
mate of the error in the discrete maximum norm, which was slightly improved in [5,
Remark 3.3] to

‖uNij − u(xi, yj)‖ ≤ CN−1 lnN.

We decompose the error into a sum of continuous almost-first-order terms and the
almost-second-order residual (Theorem 4.1). This error expansion is applied in sub-
section 4.1 to obtain maximum-norm error estimates for the Richardson extrapolation
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technique, and in subsection 4.2 to derive bounds on the errors in approximating the
derivatives. Section 5 is devoted to the proof of Theorem 4.1.

Similar error expansions were constructed in [9, 4] for one-dimensional convection-
diffusion problems. These error expansions were used there to analyze the Richardson
extrapolation technique. We mainly follow the analysis in [9], extending it to the two-
dimensional problem. In subsection 4.2 we obtain a two-dimensional analogue of the
one-dimensional estimates [1, 3, 4]. We follow the approach of [4], where, to analyze
a defect correction method, the error expansion was also used to obtain bounds on
the differences of the error in two adjoining nodes.

Richardson extrapolation applied to singularly perturbed problems was also stud-
ied in earlier publications of Shishkin [12, 14], where ε-uniform maximum-norm er-
ror estimates were obtained for a one-dimensional parabolic problem and a two-
dimensional elliptic problem in an infinite strip.

Numerical results supporting our theory are presented in section 6.

2. Notation. Throughout the paper we use the following notation. Let k be a
nonnegative integer and α ∈ (0, 1]. The standard notation Ck(Ω̄) is used for the space
of functions whose derivatives up to order k are continuous on Ω̄, with the norm

‖v‖k =
∑

0≤l≤k

∑
i+j=l

max
(x,y)∈Ω̄

∣∣∣∣ ∂i+j∂xi∂yj
v(x, y)

∣∣∣∣ .
As usual, we simply write C(Ω̄) and ‖v‖ when k = 0. The notation Ck,α(Ω̄) is used
for the space of Hölder continuous functions with the norm∥∥v∥∥

0,α
= sup
x,x′∈Ω̄, x �=x′

|v(x)− v(x′)|
‖x− x′‖αe

,
∥∥v∥∥

k,α
=
∥∥v∥∥

k
+
∑
i+j=k

∥∥∥∥ ∂i+j

∂xi∂yj
v

∥∥∥∥
0,α

,

where ‖ · ‖e is the Euclidean norm in R2. Further, we shall use the notation C1,1(Ω̄)
when α = 1, and C1,α(Ω̄) only when α ∈ (0, 1).

Let v be a discrete function defined on Ω̃N ⊂ Ω̄N . By ‖v‖Ω̃N = maxΩ̃N |vij | we
denote the discrete maximum norm of v on Ω̃N . Sometimes we shall simply write ‖v‖
when Ω̃N = Ω̄N .

The finite-difference operators are defined in a standard manner by

hi := xi − xi−1, D−x vij :=
vij − vi−1,j

hi
, δ2xvij :=

D−x vi+1,j −D−x vij
(hi + hi+1)/2

,

hj := yj − yj−1, D−y vij :=
vij − vi,j−1

hj
, δ2yvij :=

D−y vi,j+1 −D−y vij
(hj + hj+1)/2

.

(2.1)

Here vij is any discrete function. Note that when it is clear that v(x, y) is a continuous
function, we shall sometimes use the notation vij := v(xi, yj), while when it is clear
that vij is a discrete function, we shall sometimes use the notation v(xi, yj) := vij .

For an arbitrary Ω̃ ⊂ Ω̄ and arbitrary constants a, b on Ω̄N define the function

Eij(a, Ω̃; b) =
{
a for (xi, yj) ∈ Ω̃,

b for (xi, yj) ∈ Ω̄N\Ω̃.
We shall also use other similar notation, e.g., Eij(a, i ≤ N/2; b).

Throughout the paper, C, sometimes subscripted, denotes a generic positive con-
stant that is independent of ε and any mesh used.
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3. Decomposition of the solution. In this section we decompose the solu-
tion into an asymptotic expansion of order one and its residual. We estimate the
components of this decomposition and their derivatives.

Theorem 3.1. Let α ∈ (0, 1), and β be from (1.2). Suppose that f ∈ C3,1(Ω̄)
and satisfies the compatibility conditions

f(0, 0) = f(0, 1) = f(1, 1) = f(1, 0) = 0,(3.1a) (
f

b1

)
y

(0, 0) =

(
f

b2

)
x

(0, 0),(3.1b) (
1

b1

(
b1
∂

∂x
− b2 ∂

∂y
− c
)[

f

b1

])
y

(0, 0) =

(
f

b2

)
xx

(0, 0).(3.1c)

Then the boundary-value problem (1.1) has a classical solution u ∈ C3,α(Ω̄), and this
solution can be decomposed as

u = (u0 + v0 + w0 + z0) + ε(u1 + v1 + w1 + z1) + ε
2R,

where u0 ∈ C3,1(Ω̄), u1 ∈ C1,1(Ω̄), ∂k

∂xk v1,
∂k

∂yk
w1 ∈ C1,1(Ω̄) for k ≥ 0, z1 ∈ C3(Ω̄),

R ∈ C1,1(Ω̄), and

‖u0‖3,1+‖u1‖1,1 ≤ C, u0(x, 0) = u0(0, y) = 0, u0,xx(0, 0) = u0,yy(0, 0) = 0,(3.2)

v0(x, y) = −u0(1, y)e
−b1(1,y)(1−x)/ε, w0(x, y) = −u0(x, 1)e

−b2(x,1)(1−y)/ε,

z0(x, y) = u0(1, 1)e
−b1(1,1)(1−x)/ε−b2(1,1)(1−y)/ε,

(3.3)

∥∥∥∥ ∂k∂xk v1(x, ·)
∥∥∥∥

1,1,[0,1]

≤ Cε−ke−β(1−x)/ε,∥∥∥∥ ∂k∂ykw1(·, y)
∥∥∥∥

1,1,[0,1]

≤ Cε−ke−β(1−y)/ε for 0 ≤ k ≤ 3,

(3.4a)

∣∣∣∣ ∂k+m∂xk∂ym
z1(x, y)

∣∣∣∣ ≤ Cε−(k+m)e−β((1−x)+(1−y))/ε for 0 ≤ k +m ≤ 3,(3.4b)

‖R‖ ≤ C, |LR(x, y)| ≤ C(1 + ε−1e−β(1−x)/ε + ε−1e−β(1−y)/ε).(3.5)

Remark 3.1. In (3.4a) by ‖ ∂k

∂xk v1(x, ·)‖1,1,[0,1] we denote the norm of the function
∂k

∂xk v1(x, y) as a function of the variable y in the space C1,1[0, 1] of Hölder continuous
functions. The second line in (3.4a) should be understood similarly.

Remark 3.2. Note that C1,1(Ω̄) = W 2,∞(Ω), and for any function in C1,1(Ω̄)
its second partial derivatives exist almost everywhere [2, pp. 151, 154]. Hence, since
R ∈ C1,1(Ω̄), in (3.5) the second inequality is to be understood in the sense that it
holds true almost everywhere.

Remark 3.3. Shishkin [13, Theorem III.2.1] decomposed the solution into a
smooth part and a layer part so that the layer part lay in the null space of L. A
similar decomposition was constructed by Linß and Stynes [7]. They presented a full
analysis and the explicit compatibility conditions. The solution was decomposed into
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an asymptotic expansion of order one and its residual. Then the residual was com-
bined with the smooth part of the solution so that the layer part “almost” lay in the
null space of L. Note that the hypotheses of our theorem are weaker than those of
[7, Theorem 5.1]. In particular, since we do not combine the smooth part with the
residual ε2R and do not estimate the derivatives of the latter, our decomposition is
useful only for small values of ε, e.g., under our assumption (1.5), but we require fewer
compatibility conditions at the corner (0, 0).

Proof. We mainly follow the proof and the notation of [7, Theorem 5.1], but omit
certain parts of this proof that are unnecessary for our decomposition, and combine
certain terms in a different manner.

By [7, Lemma 2.1], the compatibility conditions (3.1a) combined with f ∈ C3,1(Ω̄)
imply that u ∈ C3,α(Ω̄).

We decompose u as in [7]. Thus, u0 and u1 are the solutions of the reduced
problems [7, (5.2)]. Note that the boundary conditions u0(x, 0) = u0(0, y) = 0 for u0

yield u0,xx(0, 0) = u0,yy(0, 0) = 0 in (3.2), while the first estimate in (3.2) is obtained
applying [7, Theorem 4.1] twice. First, u0 ∈ C3,1(Ω̄) since f ∈ C3,1(Ω̄), while (3.1)
implies the compatibility conditions [7, (4.8a), (4.8b), (4.8c)]. Second, u1 ∈ C1,1(Ω̄)
since �u0 ∈ C1,1(Ω̄), while the compatibility condition �u0(0, 0) = 0 corresponds to
[7, (4.8a)].

Furthermore, v1 and w1 are given explicitly by [7, (5.11b), (5.15b)], while z1 is
the solution of the problem [7, (5.17b), (5.17c)]. By [7, Lemma 5.2], the compatibility
condition f(1, 1) = 0 implies that there exists z1 ∈ C3(Ω̄) satisfying (3.4b).

Estimates (3.5) are derived similarly to [7, (5.31)] and the argument that follows
it. Note that in [7] R ∈ C2,α(Ω̄), while we have R ∈ C1,1(Ω̄); see Remark 3.2. The
first estimate in (3.5) follows from the second by the maximum/comparison principle
extended to functions in the Sobolev space W 1,2(Ω) (see [2, section 8.1]).

4. Error expansion and its applications. In this section we present an ex-
pansion of the error of the upwind scheme (1.3) on the Shishkin mesh (1.4), (1.6)
into a sum of continuous first-order terms and the second-order residual. This error
expansion is applied in subsection 4.1 to obtain ε-uniform maximum-norm error es-
timates for the Richardson extrapolation technique, and in subsection 4.2 to derive
bounds on the errors in approximating the derivatives.

Theorem 4.1. Suppose that (1.5) and the conditions of Theorem 3.1 are satisfied.
Let uN be the solution of the discrete problem (1.3) on the mesh (1.4), (1.6). Then

uNij − u(xi, yj) = HΦ(xi, yj) +

(
h

ε

)
Ψ(xi, yj) +RNij ,(4.1)

where Φ(x, y) and Ψ(x, y) are defined in terms of u0, v0, w0, and z0 from Theorem 3.1,
and ϕ(x, y) ∈ C1,1(Ω̄) such that

‖ϕ‖1,1 ≤ C,(4.2)

as follows:

Φ(x, y) = ϕ(x, y)− ϕ(1, y)e−b1(1,y)(1−x)/ε − ϕ(x, 1)e−b2(x,1)(1−y)/ε
+ ϕ(1, 1)e−b1(1,1)(1−x)/ε−b2(1,1)(1−y)/ε,

(4.3)

Ψ(x, y) = ε−1(1− x)
(
b21(1, y)v0 + b

2
1(1, 1)z0

)
2

+ ε−1(1− y)
(
b22(x, 1)w0 + b

2
2(1, 1)z0

)
2

,

(4.4)
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while the residual RNij satisfies
|RNij | ≤ CN−2 Eij(1, Ω̄N0 ; ln2N).(4.5)

Proof. The whole of section 5 is devoted to the proof of this theorem; see also
Remark 4.1.

Remark 4.1. A careful inspection of the proof of Theorem 4.1 shows that

LN (uN − u) = H
(b1u0,xx + b2u0,yy)

2

+

(
h

ε

)[
εb1(v0,xx + z0,xx)

2
+
εb2(w0,yy + z0,yy)

2

]
+ . . . ,

where . . . denotes the terms whose contribution to the error is of almost-second order;
see (5.1), (5.2), (5.7), (5.16), (5.18). The standard approach is to define the auxiliary
continuous problems

LΦ̄ =
(b1u0,xx + b2u0,yy)

2
in Ω, Φ̄ = 0 on ∂Ω,(4.6a)

LΨ̄1 =
εb1(v0,xx + z0,xx)

2
in Ω, Ψ̄1 = 0 on ∂Ω,(4.6b)

LΨ̄2 =
εb2(w0,yy + z0,yy)

2
in Ω, Ψ̄2 = 0 on ∂Ω,(4.6c)

and derive the error expansion

uNij − u(xi, yj) = HΦ̄(xi, yj) +

(
h

ε

)
[Ψ̄1(xi, yj) + Ψ̄2(xi, yj)] + · · · ,

where . . . denotes almost-second-order terms; see, e.g., [9] for the one-dimensional
case. Our proof mainly follows the analysis of [9], extending it to the two-dimensional
case, but, as we shall see, the solutions of the two-dimensional auxiliary problems (4.6)
are only in C1,α(Ω̄) since the first-order compatibility conditions are violated. Since
the solutions of (4.6) do not exhibit enough smoothness for our analysis, our error
expansion (4.1) uses their asymptotic expansions of order zero; see Remarks 4.2–4.4.

Remark 4.2. ϕ(x, y) used in Theorem 4.1 is the solution of the reduced problem

b1ϕx + b2ϕy + cϕ =

(
b1u0,xx + b2u0,yy

)
2

in Ω, ϕ(x, y) = 0 if x = 0 or y = 0,(4.7)

where u0 is from Theorem 3.1.
Remark 4.3. Φ(x, y) in (4.3) is an asymptotic expansion of order zero for the

solution Φ̄(x, y) of problem (4.6a). We chose to use Φ(x, y) instead of Φ̄(x, y) since,
as we shall prove in Lemma 5.7, Φ(x, y) ∈ C1,1(Ω̄), while by [7, Lemma 2.1], we
have Φ̄(x, y) ∈ C1,α(Ω̄) for α ∈ (0, 1). Note that generally Φ̄(x, y) /∈ C2,α(Ω̄) for any
α ∈ (0, 1), since the right-hand side (b1u0,xx+ b2u0,yy)/2 does not generally vanish at
(1, 1) and thus does not satisfy one of the compatibility conditions.

Remark 4.4. Decompose Ψ(x, y) in (4.4) as Ψ = (Ψ1 + Ψ̃1) + (Ψ2 + Ψ̃2); see
(5.8) for details. Note that Ψ1(x, y)+Ψ̃1(x, y) and Ψ2(x, y)+Ψ̃2(x, y) are asymptotic
expansions of order zero for the solutions Ψ̄1(x, y) and Ψ̄2(x, y) of problems (4.6b),
(4.6c). By (3.3), one can easily check that Ψ1, Ψ̃1, Ψ2, and Ψ̃2 are chosen so that

−εΨ1,xx + b1(1, y)Ψ1,x =
b1(1, y)εv0,xx

2
, −εΨ̃1,xx + b1(1, 1)Ψ̃1,x =

b1(1, 1)εz0,xx
2

,

−εΨ2,yy + b2(x, 1)Ψ2,y =
b2(x, 1)εv0,yy

2
, −εΨ̃2,yy + b2(1, 1)Ψ̃2,y =

b1(1, 1)εz0,yy
2

.
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Remark 4.5. If β1 �= β2 and the mesh ω̄σ1,N × ω̄σ2,N described in Remark 1.1 is
used, then we have a slightly different error expansion:

uNij − u(xi, yj) = H1Φ1(xi, yj) +H2Φ2(xi, yj)

+

(
h1

ε

)
[Ψ1 + Ψ̃1](xi, yj) +

(
h2

ε

)
[Ψ2 + Ψ̃2](xi, yj) +RNij .

Here Ψ1 + Ψ̃1 and Ψ2 + Ψ̃2 are the first and the second terms on the right-hand side
in (4.4)—see Remark 4.4 and (5.8)—while Φ1 and Φ2 are defined by (4.3) with Φ and
ϕ replaced by Φk and ϕk for k = 1, 2. These functions ϕ1 and ϕ2 are the solutions of
the reduced problem (4.7) with the right-hand side (b1u0,xx + b2u0,yy)/2 replaced by
b1u0,xx/2 and b2u0,yy/2, respectively.

4.1. Richardson extrapolation. Now we shall see that the error expansion
given by Theorem 4.1 immediately implies ε-uniform maximum-norm error estimates
for the Richardson extrapolation technique.

In this subsection for the mesh Ω̄N we shall use the slightly different notation
Ω̄σ,N := Ω̄N = ω̄σ,N × ω̄σ,N . We shall also use the tensor-product rectangular mesh
Ω̄σ,2N := ω̄σ,2N × ω̄σ,2N = {(x̃i, ỹj) ∈ Ω̄ : i, j = 0, . . . , 2N}. Here ω̄σ,2N is a
piecewise-uniform mesh with the meshsizes h/2 and H/2 obtained uniformly bisecting
the original mesh ω̄σ,N . Note that ω̄σ,2N is also described by (1.4) with the same mesh
transition parameter σ (1.6) and N replaced by 2N . The two rectangular meshes are
nested; i.e., Ωσ,N = {(xi, yj)} ⊂ Ωσ,2N = {(x̃i, ỹj)}, and (xi, yj) = (x̃2i, ỹ2j).

Let ũ2N
ij = ũ2N (x̃i, ỹj) be the solution of the discrete problem (1.3) on the mesh

Ωσ,2N . Then under the conditions of Theorem 4.1, in addition to (4.1) we have

ũ2N(x̃i, ỹj)− u(x̃i, ỹj) = 1

2
HΦ(x̃i, ỹj)

1

2

(
h

ε

)
Ψ(x̃i, ỹj) + R̃2N(x̃i, ỹj).

Hence

[ 2ũ2N(xi, yj)− uNij ]− u(xi, yj) = 2R̃2N(xi, yj)−RNij ,
and we arrive at the following.

Corollary 4.2. Under the conditions of Theorem 4.1, we have∣∣[ 2ũ2N(xi, yj)− uNij ]− u(xi, yj)
∣∣ ≤ CN−2 Eij(1, Ω̄0; ln

2N)

= C

{
N−2 in Ω̄N ∩ Ω̄0,

N−2 ln2N in Ω̄N\Ω̄0.

Thus, while the two computed solutions uNij and ũ2N
ij are almost-first-order ac-

curate, their linear combination [2ũ2N(xi, yj) − uNij ] is almost-second-order accurate
ε-uniformly.

4.2. Approximation of derivatives. In this subsection we apply the error
expansion given by Theorem 4.1 to derive bounds on the errors in approximating the
derivatives of the true solution by divided differences of the computed solution.

Corollary 4.3. Under the conditions of Theorem 4.1, we have

∣∣D−x eNij ∣∣+ ∣∣D−x uNij − ux(xi−1/2, yj)
∣∣ ≤ C


N−1 in Ω̄N ∩ Ω̄0,

N−1ln2N in Ω̄N ∩ Ω2,
N−1lnN/ε in Ω̄N ∩ (Ω1 ∪ Ω12),

(4.8a)
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∣∣D−y eNij ∣∣+ ∣∣D−y uNij − uy(xi, yj−1/2)
∣∣ ≤ C


N−1 in Ω̄N ∩ Ω̄0,

N−1ln2N in Ω̄N ∩ Ω1,
N−1lnN/ε in Ω̄N ∩ (Ω2 ∪ Ω12),

(4.8b)

where eNij = uNij − u(xi, yj) is the error, while xi−1/2 and yj−1/2 are the midpoints of
the segments [xi−1, xi] and [yj−1, yj ].

Proof. Since (4.8a) and (4.8b) are similar, we shall prove only bound (4.8a).
By Theorem 3.1 and (1.5), (2.1), (1.4), the second inequality (4.8a) follows from the
bound on |D−x eNij |, so we need prove only the first bound (4.8a).

By Theorem 4.1, we have

D−x e
N
ij = HD−x Φ(xi, yj) +

(
h

ε

)
D−x Ψ(xi, yj) +D

−
xRNij .(4.9)

First, using (4.5), (2.1), (1.4), we get estimate (4.8a) for |D−xRNij |.
Further in this proof and later throughout the paper, we shall use the inequalities

ε−1(1− x)e−b1(1,y)(1−x)/ε ≤ Ce−β(1−x)/ε,
ε−1(1− y)e−b2(x,1)(1−y)/ε ≤ Ce−β(1−y)/ε.

(4.10)

Define

Φ̂(x, y) = ϕ(x, y)− ϕ(x, 1)e−b2(x,1)(1−y)/ε, Ψ̂(x, y) =
ε−1(1− y)b22(x, 1)w0(x, y)

2
.

Since |D−x Φ̃ij | ≤ maxΩ̄ |Φ̂x|, then by (4.2) we have |D−x Φ̂ij | ≤ C. This implies esti-

mate (4.8a) also for |HD−x Φ̂ij |.
Similarly, we get |D−x Ψ̂ij | ≤ C. Note that in Ω̄0∪Ω1 we have the sharper estimate

|D−x Ψ̂ij | ≤ CN−2, since (3.3) and (1.7) imply that maxΩ̄0∪Ω1
|Ψ̂x| ≤ CN−2. Hence,

|(h/ε)D−x Φ̂ij | also satisfies inequality (4.8a).

We proceed similarly with D−x (Φ − Φ̂)ij and D−x (Ψ − Ψ̂)ij . Using (4.3), (4.4),

(3.3), we obtain |D−x (Φ − Φ̂)ij | + |D−x (Ψ − Ψ̂)ij | ≤ 1/ε. However, in Ω̄0 ∪ Ω2 we

need sharper estimates. By (2.1), we have |D−x (Φ− Φ̂)ij | ≤ (2/H)maxΩ̄0∪Ω2
|Φ− Φ̂|.

Combining this with (3.3), (1.7), we get |D−x (Φ− Φ̂)ij | ≤ CN−1 in Ω̄0∪Ω2. Similarly,

|D−x (Ψ− Ψ̂)ij | ≤ CN−1 in Ω̄0 ∪Ω2. Hence, |HD−x (Φ− Φ̂)ij | and |(h/ε)D−x (Ψ− Ψ̂)ij |
also satisfy inequality (4.8a).

Combining the estimates that we derived for the right-hand terms in (4.9), we
obtain the first bound (4.8a). This completes the proof.

5. Proof of Theorem 4.1.

5.1. Discrete maximum/comparison principle and its corollaries. In this
subsection we state the comparison lemmas that will be used to prove Theorem 4.1.

It is well known that the upwind scheme (1.3) satisfies the discrete maximum/
comparison principle, which implies the following comparison lemma.

Lemma 5.1. Let Ω̃N be a connected submesh of ΩN .

(i) If |LNvij | ≤ LNBij in Ω̃N and |vij | ≤ Bij on ∂Ω̃N , then |vij | ≤ Bij in Ω̃N .

(ii) If vij = 0 on ∂Ω̃N , then ‖v‖Ω̃N ≤ β−1‖LNv‖Ω̃N .

(iii) If LNvij = 0 in Ω̃N , then ‖v‖Ω̃N ≤ ‖v‖∂Ω̃N .
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Proof. See [11, Chapter IV] and [8, Chapter 13].
The following three lemmas follow from Lemma 5.1(i). We defer their proofs to

Appendix A.
Lemma 5.2. If LNvij = 0 in ΩN and |vij | ≤ e−β(1−xi)/ε on ∂ΩN , then |vij | ≤

CN−2 for i ≤ N/2.
Lemma 5.3. (i) If |LNvij | ≤ e−β(1−xi)/ε in ΩN and vij = 0 on ∂ΩN , then |vij | ≤

CN−1 in Ω̄N , and |vij | ≤ CN−2 for i ≤ N/2.
(ii) If |LNvij | ≤ Eij(ε−1e−β(1−xi)/ε, i > N/2; 0) in ΩN and vij = 0 on ∂ΩN , then

|vij | ≤ CEij(N−1, i ≤ N/2; 1).
(iii) Let |LNvij | ≤ ε−1e−β(1−xi)/ε for i > N/2, where vij is defined for i =

N/2, . . . , N , j = 0, . . . , N , and vij = 0 on the boundary of this submesh, i.e., if
i = N/2, N or j = 0, N . Then |vij | ≤ C for i ≥ N/2.

Remark 5.1. Clearly, the analogues of Lemmas 5.2 and 5.3, with x, i replaced by
y, j, also hold true.

Lemma 5.4. If |LNvij | ≤ Eij(0, Ω̄0; 1) and vij = 0 on ∂ΩN , then |vij | ≤
Cε Eij(1, Ω̄0; lnN) ≤ CN−1 Eij(1, Ω̄0; lnN).

5.2. Error and truncation error. We shall derive a representation of the error

eNij := uNij − u(xi, yj).
One can easily check that LNeNij = −LNuij+(Lu)ij =: rij [u]. Here for the truncation
error we have used the notation

rij [v] := −LNvij + (Lv)ij .(5.1)

Recalling the decomposition of u given by Theorem 3.1, we have

LNeN = r[u0 + v0 + w0 + z0] + εr[u1 + v1 + w1 + z1] + ε
2r[R].(5.2)

Furthermore, we study the contributions to the error of each of the right-hand side
terms separately.

In this section and the related appendices we shall use the notation

L1v := −εvxx + b1(x, y)vx, L2v := −εvyy + b2(x, y)vy,
LN1 v := −εδ2xv + b1(x, y)D−x v, LN2 v := −εδ2yv + b2(x, y)D−y v,

(5.3)

r1,ij [v] := −LN1 vij + (L1v)ij , r2,ij [v] := −LN2 vij + (L2v)ij ,(5.4)

so that L = L1 + L2 + c, L
N = LN1 + LN2 + c, and r[v] = r1[v] + r2[v].

5.3. Contribution of ε2r[R] in the maximum norm. The contribution to
the error of this component of the right-hand side in (5.2) is described by the following
result.

Lemma 5.5. If LNwij = rij [R] in ΩN , where R is from (3.5), and wij = 0 on
∂ΩN , then ‖w‖ ≤ Cε−1N−1.

Proof. Obviously,

‖w‖ ≤ ‖w +R‖+ ‖R‖.(5.5)

Since rij [R] = −LNRij +(LR)ij , we have LN [w+R]ij = (LR)ij . Recalling (3.5) and
applying Lemmas 5.1(ii), 5.3(i), and 5.1(iii), we get

‖w +R‖ ≤ C(1 + ε−1N−1) + max
∂ΩN
|Rij |.
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Combining this with (5.5), (3.5) and observing that (1.5) implies 1 ≤ Cε−1N−1, we
complete the proof.

Remark 5.2. The proof of this lemma does not use any estimates of the deriva-
tives of R and thus allows us to use a decomposition of the solution requiring fewer
compatibility conditions; see Remark 3.3.

Now, by (1.5), we have the following.

Corollary 5.6. If LNvij = ε2rij [R] in ΩN , where R is from (3.5), and vij = 0
on ∂ΩN , then |v| ≤ CN−2.

5.4. Contribution of r[u0]. The contribution to the error of this component
of the right-hand side in (5.2) is described by the following two lemmas.

Lemma 5.7. (i) The reduced problem (4.7) has a solution ϕ(x, y) ∈ C1,1(Ω̄) such
that ‖ϕ‖1,1 ≤ C, and thus Φ(x, y) from (4.3) using this function ϕ is also in C1,1(Ω̄).

(ii) If w satisfies

LNwij =

(
b1u0,xx + b2u0,yy

)
ij

2
in ΩN , wij = 0 on ∂ΩN ,(5.6)

then

|wij − Φ(xi, yj)| ≤ CN−1 Eij(1, Ω̄0; lnN).

Proof. (i) Note that ϕ is the solution of the reduced problem (4.7) with the
right-hand side

(
b1u0,xx + b2u0,yy

)
/2, which, by (3.2), is in C1,1(Ω̄) and vanishes at

the corner (0, 0), i.e., satisfies the compatibility condition [7, (4.8a)]. Hence, applying
[7, Theorem 4.1], we have ϕ(x, y) ∈ C1,1(Ω̄). This implies that Φ(x, y) ∈ C1,1(Ω̄).

(ii) This part of the proof is given in Appendix B.

Lemma 5.8. If LNvij = rij [u0] in ΩN , where u0 is from Theorem 3.1, and vij = 0
on ∂ΩN , then

|vij −HΦ(xi, yj)| ≤ CN−2 Eij(1, Ω̄0; lnN).

Proof. Recalling (5.1) and using Taylor series expansions and (3.2), we obtain∣∣rij [u0]− (hib1u0,xx + hjb2u0,yy)ij/2
∣∣ ≤ C(εN−1 +N−2)‖u0‖3 ≤ CN−2.

Furthermore, since hi = hj = H for (xi, yj) ∈ Ω̄0, we have∣∣rij [u0]−H (b1u0,xx + b2u0,yy)ij
∣∣ ≤ C[N−1 Eij(0, Ω̄0; 1) +N

−2].(5.7)

Combining this with LN (vij −Hwij) = rij [u0]−H(b1u0,xx + b2u0,yy)ij , where wij is
from Lemma 5.7, we get∣∣LN (vij −Hwij)

∣∣ ≤ C[N−1 Eij(0, Ω̄0; 1) +N
−2].

Now, applying Lemmas 5.4 and 5.1(ii), we have

|vij −Hwij | ≤ CN−2 Eij(1, Ω̄0; lnN).

By Lemma 5.7, this yields the statement of the lemma.
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5.5. Contribution of r[v0 + w0 + z0]. Now we shall study the contribution
to the error of the component r[v0 + w0 + z0] of the right-hand side in (5.2).

The main result of this subsection is the following.
Lemma 5.9. If LNvij = rij [v0 + w0 + z0] in ΩN , where v0, w0, z0 are from

Theorem 3.1 and vij = 0 on ∂ΩN , then∣∣∣∣vij − (hε
)
Ψ(xi, yj)

∣∣∣∣ ≤ CN−2 Eij(1, Ω̄0; ln
2N),

where Ψ is from (4.4).
The whole subsection is devoted to the proof of this lemma.
Decompose Ψ from (4.4) as Ψ = Ψ1 +Ψ2 + Ψ̃1 + Ψ̃2, where

Ψ1(x, y) :=
ε−1(1− x)b21(1, y)v0

2
, Ψ̃1(x, y) :=

ε−1(1− x)b21(1, 1)z0
2

,

Ψ2(x, y) :=
ε−1(1− y)b22(x, 1)w0

2
, Ψ̃2(x, y) :=

ε−1(1− y)b22(1, 1)z0
2

.

(5.8)

Regarding the components of this decomposition, see Remark 4.4.
Now decompose v from Lemma 5.9 as vij = Vij +Wij + Zij , where

LNV = r[v0] in ΩN ,

∣∣∣∣V − (hε
)
Ψ1

∣∣∣∣ ≤ CN−2 on ∂ΩN ,(5.9a)

LNW = r[w0] in ΩN ,

∣∣∣∣W − (hε
)
Ψ2

∣∣∣∣ ≤ CN−2 on ∂ΩN ,(5.9b)

LNZ = r[z0] in ΩN ,

∣∣∣∣Z − (hε
)
(Ψ̃1 + Ψ̃2)

∣∣∣∣ ≤ CN−2 on ∂ΩN .(5.9c)

Note that such a decomposition of the boundary condition vij = 0 on ∂ΩN is possible.

Indeed, if x = 1 or y = 1, we have Ψ1(x, y) + Ψ̃1(x, y) = Ψ2(x, y) + Ψ̃2(x, y) = 0,
while if x = 0 or y = 0, we have |Ψ1| + |Ψ2| + |Ψ̃1| + |Ψ̃2| ≤ Cε−2 ≤ CN−2. Hence,
|Ψ1 +Ψ2 + Ψ̃1 + Ψ̃2| ≤ CN−2 on ∂ΩN .

Since (xi, yj) ∈ Ω̄0 if both i, j ≤ N/2, Lemma 5.9 follows from (5.10):∣∣∣∣Vij − (hε
)
Ψ1(xi, yj)

∣∣∣∣ ≤ CN−2 Eij
(
ln2N, i >

N

2
; 1

)
,(5.10a) ∣∣∣∣Wij −

(
h

ε

)
Ψ2(xi, yj)

∣∣∣∣ ≤ CN−2 Eij
(
ln2N, j >

N

2
; 1

)
,(5.10b) ∣∣∣∣Zij − (hε

)
[Ψ̃1(xi, yj) + Ψ̃2(xi, yj)]

∣∣∣∣ ≤ CN−2 Eij ]
(
ln2N, i, j >

N

2
; 1

)
.(5.10c)

Further, we shall prove that (5.10) follows from the following two lemmas.
Lemma 5.10. For V , W , Z from (5.9) we have

|Vij | ≤ CN−2 for i ≤ N

2
,(5.11a)

|Wij | ≤ CN−2 for j ≤ N

2
,(5.11b)

|Zij | ≤ CN−2 if i ≤ N

2
or j ≤ N

2
.(5.11c)
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Proof. We defer the proof of this lemma to Appendix C.

Define the auxiliary discrete functions ψ1,ij for i = N/2, . . . , N , j = 0, . . . , N ;

ψ2,ij for i = 0, . . . , N , j = N/2, . . . , N ; and ψ̃1,ij , ψ̃2,ij for i, j = N/2, . . . , N as
follows. Let them satisfy the discrete equations

(LNψ1)ij =
ε(b1v0,xx)ij

2
for i =

N

2
+ 1, . . . , N − 1, j = 1, . . . , N − 1,(5.12a)

(LNψ2)ij =
ε(b2w0,yy)ij

2
for i = 1, . . . , N − 1, j =

N

2
+ 1, . . . , N − 1,(5.12b)

(LN ψ̃1)ij =
ε(b1z0,xx)ij

2
for i, j =

N

2
+ 1, . . . , N − 1,(5.12c)

(LN ψ̃2)ij =
ε(b2z0,yy)ij

2
for i, j =

N

2
+ 1, . . . , N − 1,(5.12d)

and the following conditions on the boundaries of the submeshes, where they are
defined:

ψ1,ij = Ψ1(xi, yj) if i =
N

2
, N or j = 0, N,(5.13a)

ψ2,ij = Ψ2(xi, yj) if i = 0, N or j =
N

2
, N,(5.13b)

ψ̃k,ij = Ψ̃k(xi, yj) if i =
N

2
, N or j =

N

2
, N, k = 1, 2.(5.13c)

Lemma 5.11. For ψ1, ψ2, ψ̃1, ψ̃1 defined by (5.12), (5.13) and Ψ1, Ψ2, Ψ̃1, Ψ̃1

from (5.8) we have

|ψ1,ij −Ψ1(xi, yj)| ≤ C
(
h

ε

)
for i =

N

2
+ 1, . . . , N,(5.14a)

|ψ2,ij −Ψ2(xi, yj)| ≤ C
(
h

ε

)
for j =

N

2
+ 1, . . . , N,(5.14b)

|ψ̃k,ij − Ψ̃k(xi, yj)| ≤ C
(
h

ε

)
for i, j =

N

2
+ 1, . . . , N, k = 1, 2.(5.14c)

Proof. This lemma is proved in Appendix C.

Lemma 5.12. Estimates (5.10) follow from Lemmas 5.10 and 5.11.

Proof. To get the statement of this Lemma, it suffices to prove that

(a) estimate (5.10a) follows from (5.11a) and (5.14a),
(b) estimate (5.10b) follows from (5.11b) and (5.14b),
(c) estimate (5.10c) follows from (5.11c) and (5.14c).

(a) By (5.8), (3.3), (4.10), (1.7), we have |Ψ1(xi, yj)| ≤ CN−2 for i ≤ N/2.
Combining this with (5.11a), we get (5.10a) for i ≤ N/2. Since we have (5.14a), then
to obtain (5.10a) for i > N/2, it suffices to prove that∣∣∣∣Vij − (hε

)
ψ1,ij

∣∣∣∣ ≤ C (hε
)2

for i >
N

2
,(5.15)

where ψ1 is defined by (5.12a), (5.13a). Recalling the notation (5.4) and using Taylor



ERROR EXPANSION FOR A TWO-DIMENSIONAL UPWIND SCHEME 1863

series expansions and (3.2), (3.3), for i > N/2 we get∣∣∣∣r1,ij [v0]− h(b1v0,xx)ij2

∣∣∣∣ ≤ Ch2ε−3e−β(1−xi+1)/ε,(5.16) ∣∣r2,ij [v0]∣∣ ≤ (2ε+ b2,ijN
−1) max

y∈[0,1]
|v0,yy(xi, y)| ≤ CN−1e−β(1−xi)/ε.

Note that, by (1.7), (1.5), we have N−1 ≤ Ch2ε−3 and e−β(1−xi+1)/ε ≤ Ce−β(1−xi)/ε,
while LN [V − (h/ε)ψ1] = r1[v0] + r2[v0]− hb1v0,xx/2. Hence,∣∣∣∣LN [Vij − (hε

)
ψ1,ij

]∣∣∣∣ ≤ C (hε
)2

ε−1e−β(1−xi)/ε for i >
N

2
.

Note that (5.9a), (5.13a) imply |V −(h/ε)ψ1| ≤ CN−2 on ∂ΩN , while (5.10a), (5.13a)
imply |Vij− (h/ε)ψ1,ij | = |Vij− (h/ε)Ψ1(xi, yj)| ≤ CN−2 for i = N/2. Now, applying
Lemmas 5.3(iii) and 5.1(iii), we obtain (5.15). This completes part (a) of the proof.

(b) This part of the proof is analogous to part (a).
(c) Since this part of the proof is similar to part (a), we skip certain details. By

(5.8), (3.3), (4.10), (1.7), we have |Ψ̃1(xi, yj)| + |Ψ̃2(xi, yj)| ≤ CN−2 if i ≤ N/2 or
j ≤ N/2. Combining this with (5.11c), we get (5.10c) if i ≤ N/2 or j ≤ N/2. Since
we have (5.14c), then, to obtain (5.10c) for i, j > N/2, it suffices to prove that∣∣∣∣Zij − (hε

)
(ψ̃1,ij + ψ̃2,ij)

∣∣∣∣ ≤ C (hε
)2

for i, j >
N

2
.(5.17)

Note that LN [Z − (h/ε)(ψ̃1 + ψ̃2)] = (r1[z0] − hb1z0,xx/2) + (r2[z0] − hb2z0,yy/2).
Hence, using Taylor series expansions and (3.2), (3.3), for i, j > N/2 we get∣∣∣∣∣

(
r1[z0]− hb1z0,xx

2
+r2[z0]− hb2z0,yy

2

)
ij

∣∣∣∣∣≤Ch2ε−3(e−β(1−xi)/ε+ e−β(1−yj)/ε),(5.18)

which yields∣∣∣∣LN [Zij − (hε
)
(ψ̃1,ij + ψ̃2,ij)

]∣∣∣∣ ≤ C (hε
)2

ε−1(e−β(1−xi)/ε + e−β(1−yj)/ε).

Combining this with the boundary conditions from (5.9c), (5.10c), (5.13c) and apply-
ing Lemmas 5.3(iii) and 5.1(iii), we obtain (5.17). This completes the proof.

Proof of Lemma 5.9. By Lemmas 5.10, 5.11, and 5.12, we have (5.10), which
yields the statement of Lemma 5.9.

5.6. Contribution of εr[u1 + v1 + w1 + z1]. The contribution to the error
of this component of the right-hand side in (5.2) is described by the following lemma.

Lemma 5.13. If LNvij = εrij [u1 + v1 +w1 + z1] in ΩN , where u1, v1, w1, z1 are
from Theorem 3.1, and vij = 0 on ∂ΩN , then

|vij | ≤ CN−2 Eij(1, Ω̄0; lnN).

Proof. Since this result is very close to the well-known theorem by Shishkin
[13, Theorem 2.3], [8, Theorem 13.2], while the argument is standard, we shall only
sketch the proof. Note that it simplifies the argument that the truncation error in
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the right-hand side is multiplied by ε. By (3.2), (1.5), we have |εr[u1]| ≤ CεN−1 ≤
CN−2. By (3.4), (1.7), we get |εr1,ij [v1 + z1]| ≤ C(h/ε)e−β(1−xi)/ε for i > N/2,
and |εr1,ij [v1 + z1]| ≤ Ce−β(1−xi+1)/ε ≤ CN−2 for i ≤ N/2. The term εr2[w1 + z1]
is estimated similarly. We have to be careful with Taylor series expansions of v1
and w1 since ∂k

∂xk v1 and ∂k

∂yk
w1 are generally in C1,1(Ω̄). By (3.4a) and Remark 3.1,

we estimate as follows:∣∣r2,ij [v1]∣∣ ≤ C∥∥v1(xi, ·)∥∥1,1,[0,1]
≤ Ce−β(1−xi)/ε,∣∣r1,ij [w1]

∣∣ ≤ C∥∥w1(·, yj)
∥∥

1,1,[0,1]
≤ Ce−β(1−yj)/ε.

Combining our estimates of all the components of the right-hand side and applying
Lemmas 5.1(ii) and 5.3(i),(ii), we get the statement of the lemma.

5.7. Proof of Theorem 4.1. The statement of the theorem is obtained by
recalling (5.1), (5.2) and combining Corollary 5.6 and Lemmas 5.8, 5.9, 5.13.

6. Numerical results. In this section we present numerical results illustrating
our estimates for the Richardson extrapolation technique (Corollary 4.2) and on the
errors in approximating the derivatives (Corollary 4.3).

We study the performance of the upwind scheme and the Richardson extrapola-
tion technique when applied to the test problem from [6] in which b1 = 2, b2 = 3,
c = 1,

u(x, y) = 2 sinx (1− e−2(1−x)/ε) y2(1− e−3(1−y)/ε),

and the right-hand side f is chosen so that (1.1) is satisfied. This problem was solved
numerically using the upwind scheme (1.3) on the tensor-product piecewise-uniform
Shishkin mesh from Remark 1.1 with β1 = 1.9, β2 = 2.9.

In Table 6.1 we present the errors before and after the Richardson extrapolation.
The odd rows contain the maximum nodal errors eN := ‖uNij −u(xi, yj)‖ in the speci-
fied subdomains of Ω̄, while the even rows contain the rates of convergence computed
by the standard formula r(eN ) = log2(e

N/e2N ). Clearly, the Richardson extrapola-
tion technique decreases the nodal errors and increases the rates of convergence. Note
that the errors are very similar for ε = 10−6 and ε = 10−8, which confirms that our
estimates are ε-uniform. The rates of convergence are slightly worse than predicted
by Corollary 4.2. However, since our rates of convergence are consistent with those
for the analogous one-dimensional problems [9, 4], we expect the rates of convergence
to increase as N increases, similarly to [9, 4].

Table 6.1
Maximum nodal errors before and after Richardson extrapolation.

ε = 10−6 ε = 10−8

Before extrapolation After extrapolation Before extrapolation After extrapolation

N Ω̄0 Ω̄\Ω̄0 Ω̄0 Ω̄\Ω̄0 Ω̄0 Ω̄\Ω̄0 Ω̄0 Ω̄\Ω̄0

32 4.944e-2 1.430e-1 1.069e-3 1.404e-2 4.944e-2 1.430e-1 1.069e-3 1.404e-2
0.901 0.623 1.727 1.265 0.901 0.623 1.727 1.265

64 2.649e-2 9.288e-2 3.230e-4 5.842e-3 2.649e-2 9.288e-2 3.229e-4 5.842e-3
0.944 0.690 1.782 1.412 0.944 0.690 1.782 1.412

128 1.377e-2 5.759e-2 9.388e-5 2.195e-3 1.377e-2 5.759e-2 9.391e-5 2.195e-3
0.978 0.748 1.832 1.517 0.978 0.748 1.832 1.517

256 6.990e-3 3.429e-2 2.638e-5 7.669e-4 6.990e-3 3.429e-2 2.638e-5 7.669e-4
0.991 0.790 0.991 0.790

512 3.518e-3 1.984e-2 3.518e-3 1.984e-2
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Table 6.2
Maximum nodal errors in approximating the derivatives.

‖D−
x u

N − ux‖ ‖D−
y u

N − uy‖
ε = 10−6 ε = 10−8 ε = 10−6 ε = 10−8

N Ω̄0 Ω2 Ω̄0 Ω2 Ω̄0 Ω1 Ω̄0 Ω1

64 3.841e-2 8.811e-2 3.841e-2 8.811e-2 5.199e-2 1.819e-1 5.199e-2 1.819e-1
0.938 0.711 0.938 0.711 1.001 0.811 1.001 0.811

128 2.005e-2 5.384e-2 2.005e-2 5.384e-2 2.598e-2 1.037e-1 2.598e-2 1.037e-1
0.961 0.764 0.961 0.764 0.991 0.824 0.991 0.824

256 1.030e-2 3.171e-2 1.030e-2 3.171e-2 1.307e-2 5.856e-2 1.307e-2 5.856e-2
0.974 0.805 0.974 0.805 0.996 0.838 0.996 0.838

512 5.241e-3 1.815e-2 5.241e-3 1.815e-2 6.554e-3 3.277e-2 6.554e-3 3.277e-2

Table 6.3
Maximum nodal errors in approximating ε-weighted derivatives.

ε ‖D−
x u

N − ux‖ ε‖D−
y u

N − uy‖
ε = 10−6 ε = 10−8 ε = 10−6 ε = 10−8

N Ω1 Ω12 Ω1 Ω12 Ω2 Ω12 Ω2 Ω12

64 2.524e-1 3.115e-1 2.524e-1 3.115e-1 3.739e-1 4.661e-1 3.739e-1 4.661e-1
0.475 0.517 0.475 0.517 0.479 0.521 0.479 0.521

128 1.816e-1 2.176e-1 1.816e-1 2.176e-1 2.684e-1 3.248e-1 2.684e-1 3.248e-1
0.616 0.641 0.616 0.641 0.618 0.644 0.618 0.644

256 1.185e-1 1.395e-1 1.185e-1 1.395e-1 1.749e-1 2.079e-1 1.749e-1 2.079e-1
0.712 0.728 0.713 0.728 0.714 0.729 0.714 0.729

512 7.233e-2 8.427e-2 7.233e-2 8.427e-2 1.066e-1 1.254e-1 1.066e-1 1.254e-1

Tables 6.2 and 6.3 are clear illustrations of Corollary 4.2. In these tables we
present the maximum nodal errors in approximating the derivatives and their rates
of convergence computed as in Table 6.1.

In summary, our numerical results confirm our theoretical results.

Appendix A. Proof of Lemmas 5.2, 5.3, and 5.4 from subsection 5.1. If
the conditions of Lemma 5.1(i) are satisfied, we say that Bij is a barrier function for
vij . Define the auxiliary discrete functions

Bi :=


2

(
1 +

αh

ε

)−N/2(
1 +

αH

ε

)−(N/2−i)
, i = 0, . . . ,

N

2
,(

1 +
αh

ε

)−(N−i)
+

(
1 +

αh

ε

)−N/2
, i =

N

2
, . . . , N,

(A.1)

B̄i :=


2

(
ε

β

) (
1 +

βH

ε

)−(N/2−i)
, i = 0, . . . ,

N

2
,

2

(
ε

β

)
+ σ − (N − i)h, i =

N

2
, . . . , N.

(A.2)

It is assumed here that {xi}Ni=0 are the nodes of the mesh (1.4), (1.6). Furthermore,
we shall use Bi and B̄i normalized in different manners as discrete barrier functions.

Lemma A.1. For any positive α the discrete function Bi from (A.1) is such that
e−α(1−xi)/ε < Bi ≤ CE(N−2α/β , i ≤ N/2; 1) and (−εδ2x + αD−x )Bi ≥ 0.

Proof. The lower bound for Bi follows from the inequality e−t ≤ (1+ t)−1, which
holds true for t ≥ 0, with t := αhi/ε. The upper bound for Bi is obvious for i > N/2.

For i ≤ N/2, it follows from (1 + t)−1 ≤ e−t+t
2

, which we have for t > 0. Setting

t := αh/ε, we get Bi ≤ 2(1+αh/ε)−N/2 ≤ 2e−ασ/ε+(αh/ε)2N/2. Further, (1.7) implies

e−ασ/ε ≤ N−2α/β and e(αh/ε)
2N/2 ≤ e. This proves the upper bound for Bi.
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The second inequality is checked using (1.4) and (2.1). In fact, (−εδ2x+αD−x )Bi =
0 for i �= N/2 and (−εδ2x + αD−x )Bi > 0 for i = N/2.

Proof of Lemma 5.2. Use Bi from Lemma A.1 with α := β as a barrier function
for vij . Note that LNBi ≥ (b1,ij − β)D−x Bi ≥ 0.

Lemma A.2. The discrete function Bi from (A.1) with α := β/2 is such that
Bi ≤ CE(N−1, i ≤ N/2; 1) and LNBi ≥ Ce−β(1−xi)/εE(N, i ≤ N/2; ε−1).

Proof. This lemma follows from Lemma A.1. The first property is obvious. To
prove the second, note that LNBi ≥ (b1,ij − β/2)D−x Bi ≥ (β/2)D−x Bi. By (2.1),
(1.5), (1.4), calculations show that D−x Bi = (hi + 2ε/β)−1Bi and (hi + 2ε/β)−1 ≥
CE(N, i ≤ N/2; ε−1). Recalling that Bi > e

−(β/2)(1−xi/ε) ≥ e−β(1−xi/ε), we complete
the proof.

Proof of Lemma 5.3. This lemma follows from Lemma A.2.
(i) By (1.5), use CN−1Bi as a barrier function for vij .
(ii), (iii) Use CBi as a barrier function for vij .
Proof of Lemma 5.4. By (1.4), (1.6), for the discrete function B̄i defined in (A.2)

we have 0 < B̄i ≤ Cε Eij(1, i ≤ N/2; lnN). Combining this with the analogous
estimate for B̄j and (1.5), we get

0 < B̄i + B̄j ≤ Cε Eij(1, Ω̄0; lnN) ≤ CN−1 Eij(1, Ω̄0; lnN).

By (2.1), (1.4), calculations show that D−x B̄i = 1 for i > N/2, while D−x B̄i ≥ 0 for
i ≤ N/2. In particular, D−x B̄N/2 = 2(1 + βH/ε)−1. Further, LN B̄i ≥ b1,ij ≥ β for
i > N/2, while LN B̄i ≥ (−εδ2x + βD−x )B̄i = 0 for i < N/2. For i = N/2 we also have
LN B̄i ≥ 0, which follows from

LN B̄i ≥
(−εδ2x + βD−x )B̄i = [β + 2ε(h+H)−1

]
D−x B̄i −

[
2ε(h+H)−1

]
D−x B̄i+1,

where i = N/2. These imply that LN B̄i ≥ β Eij (0, i ≤ N/2; 1). Combining this
estimate with its analogue for LN B̄j , we obtain

LN (B̄i + B̄j) ≥ β Eij(0, Ω̄0; 1).

Hence, (Bi +Bj)/β is a barrier function for vij .

Appendix B. Proof of Lemma 5.7(ii).
Proof. Note that (4.3) implies that Φ(x, y) = 0 if x = 1 or y = 1. Further,

|Φ(x, y)| ≤ Cε ≤ CN−1 on ∂Ω. Hence,

|wij − Φij | ≤ CN−1 on ∂ΩN .(B.1)

To study LN (w−Φ), note that, by (4.7), (5.6), we have LNwij = (b1ϕx+b2ϕy+cϕ)ij .
Hence

LN (w − Φ) = (b1ϕx + b2ϕy + cϕ− LNϕ) + LN (ϕ− Φ).(B.2)

Using Taylor series expansions, (1.5), and (4.2), which was proved in Lemma 5.7(i),
we obtain for the first term on the right-hand side that

|(b1ϕx + b2ϕy + cϕ)ij − LNϕij | ≤ C(N−1 + ε)‖ϕ‖1,1 ≤ CN−1.(B.3)

To estimate LN (ϕ− Φ), we define

Φ1(x, y) := ϕ(1, y)e−b1(1,y)(1−x)/ε, Φ2(x, y) := ϕ(x, 1)e−b2(x,1)(1−y)/ε,

Φ12(x, y) := ϕ(1, 1)e−b1(1,1)(1−x)/ε−b2(1,1)(1−y)/ε,
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so that ϕ− Φ = Φ1 +Φ2 − Φ12. Thus, recalling the notation (5.3), we have

LN (ϕ− Φ) = LN1 (Φ1 − Φ12) + L
N
2 (Φ2 − Φ12) + L

N
2 Φ1 + L

N
1 Φ2

+ c(Φ1 +Φ2 − Φ12).
(B.4)

For i ≤ N/2, using (1.3), (2.1), (1.4), and (1.7), we obtain

|LN1 (Φ1 − Φ12)ij | ≤ CNe−β(1−xi+1)/ε ≤ CNe−β(σ−h)/ε ≤ CN−1.(B.5)

Consider i > N/2. First note that

−εΦ1,xx + b1(1, y)Φ1,x = 0, −εΦ12,xx + b1(1, 1)Φ12,x = 0,

while the left-hand sides here are slightly different from L1Φ1 and L1Φ12. Hence,

LN1 (Φ1 − Φ12)ij = (LN1 − L1)(Φ1 − Φ12)ij + [b1(xi, yj)− b1(1, yj)]Φ1,x(xi, yj)

− [b1(xi, yj)− b1(1, 1)]Φ12,x(xi, yj).

Using Taylor series expansions to estimate the first term on the right-hand side, and
the inequalities |b1(x, y)− b1(1, y)| ≤ C(1− x) and |b1(x, y)− b1(1, 1)| ≤ C[(1− x) +
(1− y)] combined with (4.10) to estimate the other terms, we obtain

|LN1 (Φ1−Φ12)| ≤ C(hε−2e−β(1−xi+1)/ε+e−β(1−xi)/ε) ≤ C(hε−2eβh/ε+1)e−β(1−xi)/ε.

Combining this with (B.5) and noting that, by (1.7), (1.5), h ε−2 ≥ C and eβh/ε ≤ C,
we get

|LN1 (Φ1 − Φ12)ij | ≤ C
[(
h

ε

)
Eij
(
ε−1e−β(1−xi)/ε, i >

N

2
; 0

)
+N−1

]
.(B.6)

Furthermore, one can easily see that

|LN2 Φ1,ij | ≤ C‖ϕ‖1,1e−β(1−xi)/ε ≤ Ce−β(1−xi)/ε.(B.7)

Combining (B.4) with (B.6), (B.7), and their analogues for LN2 (Φ2−Φ12) and L
N
1 Φ2,

and then with (B.2), (B.3), we finally get the estimate

|LN (w − Φ)ij | ≤ C
[(
h

ε

)
Eij
(
ε−1e−β(1−xi)/ε, i >

N

2
; 0

)
+

(
h

ε

)
Eij
(
ε−1e−β(1−yj)/ε, j >

N

2
; 0

)
+ e−β(1−xi)/ε + e−β(1−yj)/ε +N−1

]
.

Combining this with (B.1) and applying Lemmas 5.1(ii),(iii) and 5.3(i),(ii), we obtain

|wij − Φij | ≤ C
[(
h

ε

)
Eij
(
N−1, i ≤ N

2
; 1

)
+

(
h

ε

)
Eij
(
N−1, j ≤ N

2
; 1

)
+N−1

]
≤ C

[(
h

ε

)
Eij(N−1, Ω̄0; 1) +N

−1

]
.

By (1.7), this yields the statement of Lemma 5.7(ii).
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Appendix C. Proof of Lemmas 5.10 and 5.11.
Proof of Lemma 5.10. (a) Obviously,

|V | ≤ |V + v0|+ |v0|,(C.1)

where v0 is defined in (3.3). Since r[v0] = −LNv0 + Lv0, we have LN [V + v0] = Lv0.
One can easily check that −εv0,xx + b1(1, y)v0,x = 0 holds true and implies that
L1v0 = [b1(x, y) − b1(1, y)]v0,x. Combining this with |b1(x, y) − b1(1, y)| ≤ C(1 − x)
and (4.10), we get |L1v0| ≤ Ce−β(1−x)/ε, while |(L2 + c)v0| ≤ Ce−β(1−x)/ε. Hence,
|Lv0| ≤ Ce−β(1−x)/ε, which yields∣∣LN [V + v0]ij

∣∣ ≤ Ce−β(1−xi)/ε in ΩN .

Combining this with the boundary condition

|(V + v0)ij | ≤
(
h

ε

)
|Ψ1,ij |+ CN−2 + |v0,ij | ≤ C(e−β(1−xi)/ε +N−2) on ∂ΩN ,

and applying Lemmas 5.1(ii), 5.2, 5.3(i), we get |(V + v0)ij | ≤ CN−2 for i ≤ N/2.
Combining this with (C.1), (3.3), and (1.7), we complete part (a) of the proof.

(b) This part of the proof is analogous to part (a).
(c) Since this part of the proof is similar to part (a), we skip certain details.

Again, we have |Z| ≤ |Z + z0| + |z0|, where z0 is defined in (3.3), which implies
LN [Z + z0] = Lz0. Further, −εz0,xx + b1(1, 1)z0,x = 0 and −εz0,yy + b2(1, 1)z0 = 0
imply Lz0 = [b1(x, y)−b1(1, 1)]z0,x+[b2(x, y)−b2(1, 1)]z0,y+cz0. By (3.3), this yields
|Lz0| ≤ Ce−β[(1−x)+(1−y)]/ε. Hence,

∣∣LN [Z + z0]ij
∣∣ ≤ Ce−β[(1−xi)+(1−yj)]/ε in ΩN ,

while |(Z+z0)ij | ≤ C(e−β[(1−xi)+(1−yj)]/ε+N−2) on ∂ΩN . Applying Lemmas 5.1(ii),
5.2, 5.3(i), we get |(Z + z0)ij | ≤ CN−2 for i ≤ N/2, and |(Z + z0)ij | ≤ CN−2 for
j ≤ N/2. Combining these two estimates, we proceed similarly to part (a).

Proof of Lemma 5.11. (a) By (5.13a), we have ψ1 − Ψ1 = 0 on the boundary of
the submesh {(xi, yj) : i = N/2, . . . , N, j = 0, . . . , N} where ψ1 is defined.

In this part of the proof we consider only i > N/2. Recalling the notation (5.3),
we introduce the following decomposition:

LN (ψ1 −Ψ1) = (LNψ1 − L1Ψ1)− (LN1 Ψ1 − L1Ψ1)− (LN2 + c)Ψ1.

Using Taylor series expansions and (5.8), (3.3), (4.10), we have

|LN1 Ψ1 − L1Ψ1| ≤ Chε−2e−β(1−xi+1)/ε, |(LN2 + c)Ψ1| ≤ Ce−β(1−xi)/ε.

In addition, we claim that

|LNψ1,ij − (L1Ψ1)ij | ≤ Ce−β(1−xi)/ε.(C.2)

Since (1.5), (1.7) imply that h ε−2 ≥ C and e−β(1−xi+1)/ε ≤ Ce−β(1−xi)/ε, we have

|LN (ψ1 −Ψ1)ij | ≤ C(h/ε) ε−1e−β(1−xi)/ε.

Further, by Lemmas 5.1(iii) and 5.3(iii), we get |ψ1,ij −Ψ1(xi, yj)| ≤ C(h/ε+N−2),
which yields statement (a) of the lemma.

To prove our claim (C.2), it suffices to check that∣∣∣∣b1(x, y)εv0,xx2
− L1Ψ1

∣∣∣∣ ≤ Ce−β(1−x)/ε.(C.3)
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By Remark 4.4, we have −εΨ1,xx + b1(1, y)Ψ1,x = b1(1, y)εv0,xx/2, which implies

L1Ψ1 =
b1(x, y)εv0,xx

2
+ [b1(x, y)− b1(1, y)]

(εv0,xx
2
− v0,x

)
.

Furthermore, using (3.3), (4.10), and |b1(x, y)− b1(1, y)| ≤ C(1− x), we obtain (C.3)
and thus complete part (a) of the proof.

(c) This part of the proof is slightly different from part (a); namely, we have to
estimate LN2 Ψ̃1 more carefully. Note that we consider only i, j > N/2 in part (c). Us-
ing the notation (5.4), we have LN2 Ψ̃1 = −r2[Ψ̃1]−L2Ψ̃1. Further, (5.8), (3.3), (4.10)
imply that |L2Ψ̃1| ≤ Ce−β(1−x)/ε and |r2,ij [Ψ̃1]| ≤ Chε−2e−β(1−yj+1)/ε. Combining
these two estimates, we proceed as in part (a).

(b), (d) These parts of the proof are analogous to parts (a) and (c), respec-
tively.
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Abstract. We propose replacing the classical Gauss–Laguerre quadrature formula by a trun-
cated version of it, obtained by ignoring the last part of its nodes. This has the effect of obtaining
optimal orders of convergence. Corresponding quadrature rules with kernels are then considered
and optimal error estimates are derived also for them. These rules are finally used to define stable
Nyström-type interpolants for a second kind of integral equation on the real semiaxis whose solutions
decay exponentially at ∞.

Key words. Gauss–Laguerre rules, integral equations, Nyström interpolants

AMS subject classifications. 65D30, 65R20

DOI. 10.1137/S0036142901391475

1. Introduction. Consider the classical Gauss–Laguerre quadrature formula∫ ∞
0

wα(x)f(x)dx =

m∑
i=1

λαmif(x
α
mi) +Rm(f),(1)

where we have set wα(x) = xαe−x, α > −1, and xαm1 < xαm2 < · · · < xαmm. Then,
associate with it the “truncated” rule∫ ∞

0

wα(x)f(x)dx =
∑

0<xα
mi
≤4θm

λαmif(x
α
mi) +Rθ

m(f),(2)

where 0 < θ < 1 is arbitrarily chosen. For notational convenience, in the following we
will set λi := λαmi and xi := xαmi.

Let us denote by AC = AC(R+) the set of all real functions which are absolutely
continuous on any bounded subinterval of (0,∞). In [13] we have shown that for
functions f ∈W 1

r (wα), with

W 1
r (wα) = W 1

r = {f (r−1) ∈ AC : ‖f (r)ϕrwα‖L1 <∞},

r ≥ 1 an integer, and ϕ(x) =
√
x, the following estimate holds:

|Rθ
m(f)| ≤ c

(‖f (r)ϕrwα‖L1

mr/2
+ e−am‖fwα‖L1

)
,(3)

where the constants c and a are independent of f and m.
Thus we can expect to obtain the same accuracy given by (1) using only a fraction

of its nodes. For instance, in the examples considered in [13], using (2) with θ = 1
4 and
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m = 4, 8, 16, 32, 64, 128, i.e., taking only the first 2,5,10,19,39,78 nodes, respectively,
we had the same accuracy which was given by the complete rule (1).

In section 2 we obtain, using a simpler proof, a new error estimate more con-
venient than (3) (see Theorem 2.7), which includes (3) as a particular case. Both
these estimates, apart from an O(e−an) term, a being a positive constant, are of the
same order of the best L1-polynomial approximation of functions in W 1

r (wα). Fur-
ther, we show that an error estimate of this quasi-optimal order cannot hold for the
(nontruncated) Gauss–Laguerre rule (1).

In the same section we introduce a special sequence of (truncated) Lagrange
interpolation operators, based on a fraction of the Gauss–Laguerre nodes. As a major
result, we prove the uniform boundedness of this sequence in proper subspaces of L2

wα

and derive an optimal interpolation error estimate. As a consequence of this estimate
we also obtain a new bound for Rθ

m(f), which does not require the absolute continuity
of the function f . Thus our truncation procedure combines an optimal error bound
with an O(m) function evaluation saving.

Our new error bounds are needed in section 3 to derive a similar error estimate
for corresponding product-type rules for integrals of the form∫ ∞

0

wα(x)k(x, y)f(x)dx,

with kernels k(x, y) which may have weak singularities.
Then, in section 4, we use the above truncated product rules to define Nyström-

type interpolants for a class of integral equations whose solutions decay exponentially
to a constant at ∞ and prove stability and convergence estimates for them. These
latter results hold under weaker conditions than those required in [12]. Nevertheless,
these new conditions are not satisfied yet, for example, by the well-known linear
transport equation considered in [12]. For the latter, to prove stability we are forced
to modify the interpolant in a neighborhood of infinity, where anyway we know that
the solution is practically constant.

The numerical results we present in section 4 confirm the benefits given by the
truncated rule. Furthermore, truncation greatly reduces the magnitude of the condi-
tion number associated with the linear system generated by the Nyström method.

2. Truncated Lagrange interpolation and Gauss–Laguerre rules. To
prove the results of this section we introduce some notation and recall some well-
known results.

We denote by L2 the set of all real measurable functions in R
+ = (0,∞) which

are square integrable and by ‖f‖L2 = (
∫∞
0

f2(x)dx)1/2 its usual norm. Having set
wα(x) = xαe−x, x > 0, α > −1, we shall write f ∈ L2

wα
if f
√
wα ∈ L2 and ‖f‖L2

wα
=

‖f√wα‖L2 . For each f ∈ L2
wα

, the polynomial Sm(f ;x) =
∑m−1

k=0 ck(f)pk(x), of
degree m− 1, is the mth Fourier sum of f associated with the system of orthonormal
Laguerre polynomials {pm} and ck(f) =

∫∞
0

w(x)pk(x)f(x)dx.
For notational convenience, here and in the following we omit in the representation

of pk, ck, Sm the dependence upon wα.
Finally, we denote by Em(f)L2

wα
= ‖f −Sm(f)‖L2

wα
the error of the best polyno-

mial approximation in L2
wα

.
Next we introduce the scale of subspaces [12]

L2
wα,s = {f ∈ L2

wα
: ‖f‖L2

wα,s
<∞}, s ≥ 0 real,
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where ‖f‖L2
wα,s

=
(∑∞

i=0(i+ 1)sc2i (f)
)1/2

. Moreover, we recall the following estimate

[3]:

Em(f)L2
wα
≤ cωr

ϕ

(
f,

1√
m

)
L2

wα

, r < m,(4)

where the positive constant c is independent of f and m,

ωr
ϕ(f, t)L2

wα
= Ωr

ϕ(f, t)L2
wα

+ infp∈Pr−1
‖f − p‖L2

wα
(0,4r2t2)

+ infp∈Pr−1
‖f − p‖L2

wα(
1
t2
,∞)

with 4r2t4 < 1,

Ωr
ϕ(f, t)L2

wα
= sup

0<h≤t
‖∆r

hϕf‖L2
wα

(Ih), ϕ(x) =
√
x, Ih = [4r2h2, 1/h2],

and

∆r
hϕf(x) =

r∑
k=0

(−1)k
(

r
k

)
f

(
x+

h
√
x

2
(r − 2k)

)
.

By using the previous modulus of continuity we have the equivalence

‖f‖L2
wα,s
∼ ‖f‖L2

wα
+

∫ 1

0

[
Ωr
ϕ(f, t)L2

wα

ts+1/2

]2

dt

1/2

,(5)

which is true for r ≥ s ∈ R
+ (see [3]). We recall that A ∼ B means that c−1 ≤

A/B ≤ c for some constant c independent of the parameters A and B.
Finally, we recall that (see [12]) L2

wα,0 = L2
wα

and, for a positive integer s, we
have

L2
wα,s = W 2

s := {f ∈ L2
wα

: f (s−1) ∈ AC and ‖f (s)ϕs‖L2
wα

<∞}

and

‖f‖L2
wα,s
∼ ‖f‖W 2

s
= ‖f‖L2

wα
+ ‖f (s)ϕs‖L2

wα
,

where the equality between the spaces of functions is in the sense of the norm equiv-
alence. In [12] a criteria for detecting an estimate of the real s, such that f ∈ L2

wα,s,
has been given.

If f ∈ C0(A), A = [a, a + δ], δ > 0, and ωk(f, t)L2(A) denotes the ordinary
modulus of continuity of order k in L2(A) defined in [21], then we have (see [8])

√
δmax
x∈A
|f(x)| ≤ c

[
‖f‖L2(A) +

√
δ

∫ δ

0

ωk(f, t)L2(A)

t3/2
dt

]
.(6)

Here and in the following c, c1, c2 denote constants which may take different values
on different occurrences. Incidentally we notice that when f ∈ C0(A), the exponent
3/2 in (6) cannot be replaced by a smaller number [8].
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Another estimate that we shall need is the following one (see [3]):(∫ ∞
2m

(1+δ)
λ

|Pm(x)xβe−λx|pdx
)1/p

≤ c1e
−c2m

(∫ ∞
0

|Pm(x)xβe−λx|pdx
)1/p

,(7)

which holds for any polynomial Pm(x) of degree m and real p, δ, λ > 0, β > −1/p,
with constants c1 and c2 independent of m and Pm and depending only on δ.

Taking for example δ = 1
4 , λ = 1

2 , p = 2, and β = α
2 in (7), we also have

‖f√wα‖L2(5m,∞) ≤ ‖(f − Sm(f))
√
wα‖L2(5m,∞) + ‖Sm(f)

√
wα‖L2(5m,∞)

≤ Em(f)L2
wα

+ c1e
−c2m‖Sm(f)‖L2

wα≤ Em(f)L2
wα

+ c1e
−c2m‖f‖L2

wα
.

(8)

Using (8), we further obtain

‖f‖L2
wα
≤ 1

1− c1e−c2m
[‖f√wα‖L2(0,5m) + Em(f)L2

wα
].(9)

From (9) we conclude that, in order to approximate a function f ∈ L2
wα

by using
polynomials, it is sufficient to approximate a “finite-section” of f , say, fj , that is equal
to f in a “large” interval containing the origin, is equal to zero otherwise, and has
the same smoothness of f .

By using the zeros x1 < · · · < xm of the Laguerre polynomial pm(x), the con-
struction of an fj is described next. We recall that all these zeros are contained in

the interval (0, 4m) and that xm ∼ 4m−m
1
3 (see [20]).

Choosing a real 0 < θ < 1 and m sufficiently large, we define the integer j = j(m)
as

xj := min
k
{xk : xk ≥ 4θm}.

We take a nondecreasing function ψ ∈ C∞(R), with ψ(x) = 0 when x ≤ 0 and
ψ(x) = 1 for x ≥ 1, and define

ψj(m)(x) = ψj(x) = ψ

(
x− xj

xj+1 − xj

)
.

Finally, we consider the function

fj(m) = fj = f − ψjf,(10)

which has the same degree of smoothness of f . Notice that fj(x) = f(x) for x ≤ xj
and fj(x) = 0 for x ≥ xj+1.

Then, by using (7) with λ = 1
2 , p = 2, and β = α

2 , it is simple to prove that, if

we set M =  θ
1+δm� ∼ m,

‖f − fj‖L2
wα

Em(fj)L2
wα‖fj − SM (f)‖L2

wα

 ≤ c1[EM (f)L2
wα

+ e−c2m‖f‖L2
wα

],(11)

where the constants c1, c2 are independent of f and m.
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Remark 2.1. Bounds very similar to (11) hold also when the space L2
wα

is replaced

by Lp
w, 1 ≤ p ≤ ∞, with weight w(x) =

√
wα(x)x

a(1 + x)b ∈ Lp, norm ‖fw‖Lp , and
limx→0,∞(fw)(x) = 0 when p =∞.

By Lm(f) we denote the Lagrange polynomial based on the zeros of pm(x) and
associated with the function f . Thus we consider

Lm(fj ;x) =

j∑
k=1

lk(x)f(xk),

where {lk(x)} denotes the fundamental Lagrange polynomials. The following result
then holds.

Lemma 2.2. Whenever f ∈ C0(R+) satisfies the condition∫ 1

0

ωr
ϕ(f, t)L2

wα

t3/2
dt <∞,

for some r ≥ 1, we have

‖Lm(fj)‖L2
wα
≤ c

[
‖f‖L2

wα
+

1
4
√
m

∫ 1/
√
m

0

ωr
ϕ(f, t)L2

wα

t3/2
dt

]
,(12)

where the constant c is independent of m and f.
Proof. We start from the equality

‖Lm(wα, fj)‖2L2
wα

=

j∑
k=1

λkf
2(xk).

Using (6) with δ = ∆xk = xk−xk−1, a = xk−1, x0 = 0, and A = [xk−1, xk] ≡ Ik, k =
1, 2, . . . , j, we have

√
wα(xk)|f(xk)|∆xk ≤ c

[
‖f‖L2(Ik) +

√
∆xk

∫ ∆xk

0

ωr(f, t)L2(Ik)

t3/2
dt

]√
wα(xk).

Further, √
wα(xk)‖f‖L2(Ik) ≤ c‖f√wα‖L2(Ik)

and

√
wα(xk)ω

r(f, t)L2(Ik) =
√

wα(xk) sup
h≤t

(∫ xk

xk−1

[∆r
hf(x)]

2dx

) 1
2

≤ c sup
h≤t

(∫ xk

xk−1

wα(x)[∆
r
hf(x)]

2dx

) 1
2

=: cω̃r(f, t)L2
wα

(Ik).

Thus we have

√
wα(xk)|f(xk)|

√
∆xk ≤ c

[
‖f√wα‖L2(Ik) +

√
∆xk

∫ ∆xk

0

ω̃r(f, t)L2
wα

(Ik)

t3/2
dt

]
.(13)
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Recalling (see [14]) that

λk ∼ wα(xk)∆xk,

taking the square of (13) and summing the corresponding terms for k = 1, 2, . . . , j,
we obtain

j∑
k=1

λkf
2(xk) ≤ c

‖f‖2L2
wα

+

j∑
k=1

(√
∆xk

∫ ∆xk

0

ω̃r(f, t)L2
wα

(Ik)

t3/2
dt

)2
 .(14)

To estimate the last sum, we remark first that (see [14]) ∆xk ∼
√

xk

m , k = 1, . . . , j,
uniformly with respect to m and k. Then we replace t by

√
xkt in the integral. The

kth element of this sum is then dominated by

1√
m

[∫ 1/
√
m

0

ω̃r(f,
√
xkt)L2

wα
(Ik)

t3/2
dt

]2

.

For t ≤ m−1/2 let Γ(x) = Γt(x) such that Γ(r−1) ∈ AC and

‖(Γ− f)
√
wα‖L2 + tr‖Γ(r)ϕr√wα‖L2

≤ 2 infg{‖(f − g)
√
wα‖L2 + tr‖g(r)ϕr√wα‖L2}

=: 2Kϕ(f, t
r)L2

wα
≤ cωr

ϕ(f, t)L2
wα

.

The last bound is obtained using Theorem 2.1 in [3].
Then, setting Ikr = [xk−1, xk + r∆xk],

ω̃r(f,
√
xkt)L2

wα
(Ik) ≤ ω̃r(f − Γ,

√
xkt)L2

wα
(Ik) + ω̃r(Γ,

√
xkt)L2

wα
(Ik)

≤ c(‖(f − Γ)
√
wα‖L2(Ikr) + (

√
xkt)

r‖Γ(r)√wα‖L2(Ikr))

≤ c(‖(f − Γ)
√
wα‖L2(Ikr) + tr‖Γ(r)ϕr√wα‖L2(Ikr)) =: K̃ϕ(f, t)L2

wα
(Ikr).

Using the Minkovski inequality (see (6.13.8) in [7]), from (14) we have

‖Lm(fj)
√
wα‖L2

≤ c

‖f√wα‖L2 + 1
4
√
m

∫ 1/
√
m

0

[
j∑

k=1

K̃ϕ(f, t)
2
L2

wα
(Ik)

]1/2

t−3/2dt


≤ c

‖f‖L2
wα

+ 1
4
√
m

[∫ 1/
√
m

0

Kϕ(f, t
r)L2

wα

t3/2
dt

]2
 ;

(15)

hence (12) follows.
Theorem 2.3. Under the same assumptions of Lemma 2.2 we have

‖f − Lm(fj)‖L2
wα
≤ c1

[
1

m1/4

∫ 1/
√
m

0

ωr
ϕ(f, t)L2

wα

t3/2
dt+ e−c2m‖f‖L2

wα

]
,(16)
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where c1 and c2 are two positive constants independent of m and f .
Moreover, if f ∈ L2

wα,s with s > 1
2 , then

‖f − Lm(fj)‖L2
wα
≤ c

ns/2
‖f‖L2

wα,s
.(17)

Proof. Having set PM = SM (f), M =  θ
1+δm� < m, we can write

‖f − Lm(fj)‖L2
wα
≤ ‖f − fj‖L2

wα
+ ‖fj − PM‖L2

wα

+‖Lm((f − PM )j)‖L2
wα

+ ‖Lm(ψjPM )‖L2
wα

,(18)

where

PMj = PM − ψjPM .

By (11) the sum of first two terms is dominated by

c1[EM (f)L2
wα

+ e−c2m‖f‖L2
wα

] ≤ c1ω
r
ϕ

(
f,

1√
m

)
+ e−c2m‖f‖L2

wα

≤ c

m1/4

∫ 1/
√
m

0

ωr
ϕ(f, t)L2

wα

t3/2
dt+ e−cm‖f‖L2

wα
.

About the third term, by using Lemma 2.2 and recalling the property

ωr
ϕ(f + g, t) ≤ c[ωr

ϕ(f, t) + ωr
ϕ(g, t)],

which follows directly from the definition of ωr
ϕ, we have

‖Lm((f − PM )j)‖L2
wα
≤ c

m1/4

∫ 1/
√
m

0

ωr
ϕ(f − PM , t)L2

wα

t3/2
dt

+ c‖f − PM‖L2
wα
≤ c

m1/4

∫ 1/
√
m

0

ωr
ϕ(f, t)L2

wα

t3/2
dt+

c

(
√
m)r
‖P (r)

M ϕrwα‖2

+ c‖f − Pm‖L2
wα
≤ c

m1/4

∫ 1/
√
m

0

ωr
ϕ(f, t)L2

wα

t3/2
dt+ cωr

ϕ(f, t)L2
wα

.

The last bound is obtained by using Theorem 3.7 in [3]. Therefore,

‖Lm((f − PM )j)‖L2
wα
≤ c

m1/4

∫ 1/
√
m

0

ωr
ϕ(f, t)L2

wα

t3/2
dt.

Finally,

‖Lm(ψjPM )‖2L2
wα

=

m∑
k=j+1

λkP
2
M (xk) ∼

m∑
k=j+1

wα(xk)∆xkP
2
M (xk).

By (13) with f = PM and r = 1, we get

wα(xk)P
2
M (xk)∆xk ≤ c(‖PM

√
wα‖2L2(Ik) + (∆xk)

2‖P ′M
√
wα‖2)

≤ c

(
‖PM‖2L2

wα
(Ik) +

m2/3

√
m
‖P ′Mϕ‖2L2

wα
(Ik)

)
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since for k > j we have ∆xk ≤ cm1/3
√

xk

m (see [14]).
Summing on k > j, it follows that

‖Lm(ψjPM )‖L2
wα
≤ c‖PMwα‖L2(4θm,∞) +

m1/3

√
m
‖P ′Mϕwα‖L2(4θm,∞).

Now we apply (7) and then the Bernstein inequality (see [3, Theorem 3.2]), and
we obtain

‖Lm(ψjPM )‖L2
wα
≤ c1e

−c2m‖PM‖L2
wα
≤ c1e

−c2m‖f‖L2
wα

,

and the proof is completed.
If f ∈ L2

wα,s with r > s > 1
2 , then we also have

1

m1/4

∫ 1/
√
m

0

ωr
ϕ(f, t)L2

wα

t3/2
dt =

1

m1/4

∫ 1/
√
m

0

ts−1ωr
ϕ(f, t)L2

wα

ts+1/2
dt

≤ 1√
2s− 1

1

ms/2

∫ 1/
√
m

0

[
ωr
ϕ(f, t)L2

wα

ts+1/2

]2

dt

1/2

≤ c

ms/2
‖f‖L2

wα,s
.

Bound (17) then follows from (16).
Remark 2.4. Proceeding as in [15, p. 285], it can be shown that when f ∈

L2
wα,s, s > 1

2 , for any real 0 ≤ t ≤ s we have

‖f − Lm(fj)‖L2
wα,t
≤ c

m
s−t
2

‖f‖L2
wα,s

.(19)

From this it follows that the operator

Lwα
m : f → Lm(fj)

is uniformly bounded in L2
wα,s, s > 1

2 , in the sense that

sup
m
‖Lwα

m ‖L2
wα,s→L2

wα,s
<∞.(20)

Corollary 2.5. If in (2) f ∈ L2
wα,s with s > 1

2 , then

|Rθ
m(f)| ≤ c

ms/2
‖f‖L2

wα,s
.(21)

Proof. The bound follows immediately from (17) and Schwarz’s inequality.
Remark 2.6. Bounds (16) and (20) are of the same order as that of the best

polynomial approximation error in L2
wα,s (see [12]). Moreover, (20) holds also when

f is not absolutely continuous.
As stated by (19), the new operator Lwα

m is uniformly bounded in L2
wα,s.

Finally, we remark that bounds (19) and (20) have been obtained by assuming
f ∈ L2

wα,s, where wα(x) = xαe−x. In [12], where the function f is interpolated
by Lm(f), similar upper bounds were derived by assuming f ∈ L2

wq
α,s

, with wq
α =

xαe−qx, 0 < q < 1.
As mentioned in the introduction, in [13] a corresponding estimate, given in terms

of weighted L1 norm, were obtained. This can, however, be derived with a much
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simpler proof, as we shall do in the next theorem, where we consider functions f ∈
W 1

1 (wα).
In the following we define

L1
w =

{
f :

∫ ∞
0

w(x)|f(x)|dx <∞
}

.

Theorem 2.7. For any f ∈W 1
1 (wα) we have

∣∣Rθ
m(f)

∣∣ ≤ c1

[
EM−1(f

′)L1
ϕwα√

m
+ e−c2m‖f‖L1

wα

]
,

where c1 and c2 are independent of m and f .
Proof. First, we recall that the estimates in (11) are true also in L1

wα
.

Taking fj = f − ψjf as in (10), we have

Rθ
m(f) =

∫ ∞
0

[f(x)− fj(x)]wα(x)dx

+

∫ ∞
0

fj(x)wα(x)dx−
m∑
k=1

λk(wα)fj(xk) = Fm(f) +Rm(fj),

where Rm(f) is the remainder term of the Gauss–Laguerre rule (1). By (11) and
Favard’s theorem (see [3, Theorem 3.3]) we have

|Fm(f)| ≤
∫ ∞

4θm

|f(x)wα(x)|dx
≤ EM (f)L1

wα
+ c1e

−c2m‖fwα‖L1

≤ c√
m

EM−1(f
′)L1

wαϕ
+ c1e

−c2m‖fwα‖L1 .

(22)

For Rm(fj) we use Peano’s theorem (see [2]) and write

Rm(fj) =

∫ ∞
0

Rm((· − t)0+)f
′
j(t)dt, (x− t)0+ =

{
1, t < x,
0, t ≥ x.

For 0 ≤ t ≤ xm,1,

|Rm((· − t)0+)| =
∣∣∣∣∣
∫ ∞

0

(x− t)0+wα(x)dx−
m∑
k=1

λk(wα)(xk − t0)
0
+

∣∣∣∣∣
=

∣∣∣∣−∫ t

0

wα(x)dx

∣∣∣∣ ≤ c

√
t

m
wα(t),

while for t > xm,1, using the result given in [5, p. 105], we have

|Rm((· − t)0+)| ≤ λm(wα, t).

Therefore,

|Rm(fj)| ≤
∫ xj+1

0

|Rm((· − t))||f ′j(t)|dt.
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However, when t ≤ xj+1 we also have λm(wα, t) ≤ c
√

t
mwα(t) and

|Rm(fj)| ≤ c√
m

∫ xj+1

0

|f ′j(x)ϕ(x)wα(x)|dx

≤ c

(
1√
m
‖f ′ϕwα‖L1 + ‖fwα‖L1(4θm,∞)

)
,

since ψ′j(x) = 0 if x ≤ xj and ψ′j(x) ≤ (∆xj)
−1‖ψ′‖∞ ∼

√
m

ϕ(xj)
for x ∈ (xj , xj+1).

Thus, for each polynomial Q of degree M =  θm1+θ � ∼ m such that

‖(f −Q)wα‖L1 ≤ cEM (f)wα,1,

we also have

|Rm((f −Q)j)| ≤ c

(‖(f −Q)′ϕwα‖L1√
m

+ ‖(f −Q)wα‖L1(4θm,∞)

)
.

Here and in the next lines the constant c is independent of f and m.
From the inequality (see [3])

‖(f −Q)′ϕwα‖L1 ≤ c(
√
m‖(f −Q)wα‖L1 + EM−1(f

′)L2
ϕwα,1

),

using the Favard theorem we obtain the bound

|Rm((f −Q)j)| ≤ c√
m

EM−1(f
′)L2

ϕwα,1
.

Since

|Rm(fj)| = |Rm(fj −Q)| ≤ |Rm((f −Q)j)|+ |Rm(ψjQ)|
and

|Rm(ψjQ)| ≤
∫ ∞

4θm

|Q(x)|wα(x)dx+

m∑
k=j+1

λk|Q(xk)|,

using (7) and proceeding as in the proof of Theorem 2.3 we have

|Rm(ψjQ)| ≤ ce−Am‖fwα‖L1 ,

where c and A are independent of f and m. The theorem then easily follows.
We remark that from this estimate, using the Favard theorem we easily obtain

(3). The same estimate can also be applied to wider classes of functions—for example,
to Besov spaces (see [3]).

We also notice that while the remainder of the truncated rule satisfies the bound
given in Theorem 2.7, the full Gauss–Laguerre rule (1) can only satisfy an error
estimate of type

|Rm(f)| ≤ c

m1/6
‖f ′ϕwα‖L1 ,(23)

which has been derived in [13]. That is, the exponent 1/6 of m in (23) is optimal.
This is confirmed by the following result, which we prove in the case α = 0.
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Theorem 2.8. For any integer m ≥ 2 there exists a function fm(x) such that
fm ∈ AC, with ‖f ′mϕw0‖L1 <∞, and

Rm(fm) ∼ c

m1/6
‖f ′mϕw0‖L1 ,(24)

where the constant c is independent of m and fm.
Proof. Set am = xm − 2 and notice that for m ≥ 2 we have xm−1 < am < xm.

Then define the function

fm(x) =

 0 in [0, am),
x− am in [am, xm),
2 in [xm,∞).

Obviously fm ∈ AC and ‖f ′mϕw0‖L1 <∞. Recalling Peano’s error representation

Rm(f) =

∫ ∞
0

[∫ ∞
0

(x− t)0+w0(x)dx−
m∑
i=1

λi(xi − t)0+

]
f ′(t)dt(25)

and replacing f by fm defined above, we have

Rm(fm) =

∫ xm

am

[e−t − λm]f ′m(t)dt.(26)

Further,

√
mRm(fm) =

√
m

∫ xm

am

f ′m(t)e−tdt−√mλm

∫ xm

am

f ′m(t)dt =: Am −Bm.

For the first term Am we have

Am =
√
m

∫ xm

am

1√
t
f ′m(t)

√
te−tdt ∼ ‖f ′mϕw0‖L1 .

For the second one,

Bm =
√
mλm

∫ xm

am

f ′m(t)
√
te−t(t−

1
2 et)dt,

after noticing that

e−2 exm

√
xm − 2

≤ et√
t
≤ exm

√
xm

and (see [9])

λm ∼ cm
1
3 e−xm ,

we have

Bm ∼ m
1
3 ‖f ′mϕw0‖L1 .

Estimate (24) then follows.
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3. Error bounds for the truncated product rule. In this section we apply
the truncation, previously defined for the Gauss–Laguerre formulas, to product inte-
gration rules for integrals which exhibit a kernel ky(x) = k(x, y). This is in view of the
construction of Nyström-type interpolants for the numerical solution of corresponding
integral equations. This application will be considered in the final section.

The product rules we consider have the form∫ ∞
0

wα(x)k(x, y)f(x)dx =

m∑
i=1

wi(y)f(xi) +Rm(ky; f),(27)

with

wi(y) = wi(k; y) =

∫ ∞
0

wα(x)k(x, y)li(x)dx = λiSm(ky;xi).

They are of interpolatory type; that is, they are obtained by replacing f(x) by its
Lagrange interpolation polynomial Lm(f ;x) associated with the zeros {xi} of the
Laguerre polynomial pm(x). For the construction of the coefficients wi(y) of these
rules and convergence properties, see [11], [12].

As in the case of (1), we associate with (27) its “truncation”∫ ∞
0

wα(x)k(x, y)f(x)dx =
∑

0<xi≤4θm

wi(y)f(xi) +Rθ
m(ky; f),(28)

where 0 < θ < 1 is arbitrarily chosen.

For this rule we derive some estimates which are fundamental for proving stability
and convergence properties for our Nyström interpolants.

As for the remainder of (2), using (17) it is straightforward to derive the following
bound for the remainder term Rθ

m(ky; f) in (28).

Theorem 3.1. If for a given y we have ‖ky‖L2
wα

< ∞ and f ∈ L2
wα,s, s > 1

2 ,
then

|Rθ
m(ky; f)| ≤

c‖ky‖L2
wα

ms/2
‖f‖L2

wα,s
,

where the constant c is independent of m, f , and ky.

By making a weaker assumption on the kernel ky(x), we are also able to derive
a bound for Rθ

m(ky; f) given in terms of a weighted L∞ norm of f . The function f
could not be in L2

wα
. Although this bound will not be used in section 4, we think that

it is of interest on its own and could have some applications.

Let u(x) =
√

wα(x)(
x

1+x )
a(1+x)b, v(x) =

√
wα(x)(

x
1+x )

A(1+x)B , andW (g;x) =

1+log+ x+log+ |g(x)|. Moreover, let the real constants a, b, A,B satisfy the conditions
A ≤ a, a > −1 + max

(−α
2 ,

1
4

)
, A ≤ min

(
α
2 ,− 1

4

)
, b < −1/4, B ≥ −7/12, and

B ≥ b+ 1/6. Then (see [17]) the following bound holds:∫ ∞
0

|Sm(F ;x)u(x)|dx ≤ c

[
1 +

∫ ∞
0

|F (x)|v(x)W (F ;x)dx

]
,(29)

where the constant c is independent of m and F .

The next result then follows.
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Lemma 3.2. Let b < −1/4, and assume the conditions

‖f√wα(x)(1 + ·)−b‖∞ <∞ and

B(ky) := sup
y≥0

∫ ∞
0

e−
x
2 xγ(1 + x)−A|ky(x)|W (ky;x)dx <∞,

γ =
α

2
+ min

(
α

2
,−1

4

)
.

(30)

Then ∫ ∞
0

|Lm(fj ;x)k(x, y)wα(x)|dx ≤ c(1 +B(ky))‖f√wα(1 + ·)−b‖∞,(31)

where the constant c is independent of m and f .
Proof. Set gm(x) = sgn Lm(fj ;x). Then

∆ =

∫ ∞
0

|Lm(fj ;x)k(x, y)wα(x)|dx =

m∑
i=1

λiSm(kygm;xi)fj(xi)

=

j∑
i=1

λiSm(kygm;xi)f(xi)(1 + xi)
−b(1 + xi)

b;

hence, recalling (13),

∆ ≤ c‖f√wα(1 + ·)−b‖∞
j∑

i=1

√
wα(xi)(1 + xi)

b∆xi|P (xi)|,

where P = Sm(kygm).
At this point it is sufficient to show that the last sum is uniformly bounded with

respect to m. To this end, notice that, because of (13) with f = P and r = 1,√
wα(xi)(1 + xi)

b∆xi|P (xi)| ≤ c

∫ xi

xi−1

|P (x)wα(x)(1 + x)b|dx

+
c√
m

∫ xi

xi−1

|P ′(x)|√xwα(x)(1 + x)b|dx,

since ∆xi ≤ c
√

xi

m . Therefore,

∆ ≤ c‖fj√wα(1 + ·)−b‖∞
[∫ xj

0

|P (x)
√

wα(x)(1 + x)b|dx

+
1√
m

∫ xj

0

|P ′(x)√x
√

wα(x)(1 + x)b|dx
]
.

By applying a Bernstein inequality (see [16]) to the last integral, we obtain

∆ ≤ c‖fj√wα(1 + ·)−b‖∞
∫ ∞

0

|Sm(kygm, x)
√

wα(x)(1 + x)b|dx.(32)

Now we recall (29) with A = min(α2 ,− 1
4 ), a = 0, and B = 0. The integral in (32)

is dominated by the corresponding bound given by (31).



QUADRATURES OVER (0,∞) AND NYSTRÖM METHODS 1883

The proof is then completed.
Further, by considering the quantity

j∑
i=1

λiSm(ky;xi)f(xi)

and proceeding as we have done to bound ∆, we obtain

sup
m

j∑
i=1

λi
|Sm(ky, xi)|√

wα(xi)(1 + xi)−b
≤ c <∞.(33)

Theorem 3.3. Under the same assumptions of Lemma 3.2 we have

sup
y≥0
|Rθ

m(ky; f)| ≤ c1[EM−1(f)L∞
σ
+ e−c2m‖f‖L∞

σ
], σ(x) =

√
wα(x)(1+x)−b,(34)

where the constant c is independent of m and f .
Proof. Write

Rθ
m(ky; f) =

∫ ∞
0

[f(x)− fj(x)]k(x, y)wα(x)dx(35)

+

[∫ ∞
0

fj(x)k(x, y)wα(x)dx−
m∑
i=1

wi(y)fj(xi)

]
.

For the first term on the right-hand side of (35) we have

Γ :=

∣∣∣∣∫ ∞
0

(f(x)− fj(x))k(x, y)wα(x)dx

∣∣∣∣ =
∣∣∣∣∣
∫ ∞
xj

ψj(x)f(x)k(x, y)wα(x)dx

∣∣∣∣∣ .
Thus

Γ ≤
∫ ∞

4θm

|f(x)
√

wα(x)(1 + x)−bk(x, y)
√

wα(x)(1 + x)b|dx

≤
{

sup
[4θm,∞)

|f(x)
√

wα(x)(1 + x)−b|
}∫ ∞

4θm

|k(x, y)|
√

wα(x)dx (b < 0)

≤ c1[EM (f)L∞
σ

+ e−c2m‖f‖L∞
σ
] sup
y≥0

EM (ky)L1√
wα

,

that is,

Γ ≤ c1[EM−1(f)L∞
σ

+ e−c2m‖f‖L∞
σ
],

since

EM (f)L∞
σ
≤ EM−1(f)L∞

σ

and

sup
y≥0

EM (Ky)L1√
wα
≤ B(k).
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The second term in (35) is dominated by∫ ∞
0

|fj − qm−1|(x)|k(x, y)|wα(x)dx +

m∑
i=1

λi|Sm(ky;xi)||fj(xi)− qm−1(xi)|

=: A1 +A2

for each qm−1 ∈ Pm−1. Moreover,

A1 ≤
(∫ ∞

0

|k(x, y)|
√

wα(x)(1 + x)bdx

)
‖(fj − qm−1)σ‖∞,

A2 ≤ c‖(fj − qm−1)σ‖∞.

The bound of A2 follows from (33). Taking the infimum over qm−1 and the sup over
y, it follows that

A1 +A2 ≤ cEm−1(fj)L∞
σ
≤ c1[EM−1(f)L∞

σ
+ e−c2m‖f‖L∞

σ
];

hence (34) follows.
In the next section, to prove the stability of our Nyström interpolants, we shall

need to consider the so-called (see [19]) companion rule, associated with (28), that is,
obtained by taking in (28) the absolute values of ky(x) and wi(y). This is∫ ∞

0

wα(x)|ky(x)|h(x)dx =
∑

0<xi≤4θm

|wi(y)|h(xi) +Rc,θ
m (ky;h).(36)

In particular, we shall need to prove its convergence, as m → ∞, for a certain class
of functions h(x). To this end, Theorem 3.4 and Proposition 3.5 are of importance.

Theorem 3.4. If for a given y we have ‖ky‖L2
wα

<∞ and h ∈ L2
wα,1, then

|Rc,θ
m (ky;h)| ≤ c‖h‖L2

wα,1

[
ωϕ

(
ky,

1√
m

)
L2

wα

+
1√
m
‖ky‖L2

wα

]
,

where the constant c is independent of ky and m.
Proof. Writing

|Rc,θ
m (ky;h)| =

∣∣∣∣∣
∫ ∞

0

|ky(x)|h(x)wα(x)dx−
j∑

i=1

λi|Sm(ky;xi)|h(xi)
∣∣∣∣∣

≤
∫ ∞

0

|ky(x)− Sm(ky;x)|h(x)wα(x)dx (=: A1)

+

∣∣∣∣∣
∫ ∞

0

|Sm(ky;x)|h(x)wα(x)dx−
j∑

i=1

λi|Sm(ky;xi)|h(xi)
∣∣∣∣∣ (=: A2)

and recalling (4), for A1 we have

A1 ≤ ‖h‖L2
wα
‖ky − Sm(ky)‖L2

wα
≤ c‖h‖L2

wα
ωϕ

(
ky,

1√
m

)
L2

wα

.
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Moreover, if in Theorem 2.7 we take f(x) = |Sm|h(x) = |Sm(ky;x)|h(x) and recall
that

EM−1(f
′)L1

ϕwα
≤ ‖f ′ϕwα‖L1 ,

then we have

A2 = |Rθ
m(|Sm|h)| ≤ c1

[
e−c2m‖Smhwα‖L1 +

‖(Smh)′ϕwα‖L1√
m

]
.

By applying Cauchy’s inequality we further have

A2 ≤ c1‖h‖L2
wα,1

[(
1√
m

+ e−c2m
)
‖Sm − ky + ky‖L2

wα
+

1√
m
‖S′mϕ‖L2

wα

]

≤ c‖h‖L2
wα,1

[
Em(ky)L2

wα
+

1√
m
‖S′mϕ‖L2

wα
+

1√
m
‖ky‖L2

wα

]
.

Because of Theorem 3.7 in [3], the sum of the first two terms in the last line is bounded
by ωϕ(ky,

1√
m
). Thus the bound for |Rc,θ

m (ky;h)| is proved.
The next result is needed to define the final behavior of the remainder terms

Rc,θ
m (ky;h) as m→∞.
Proposition 3.5. If supy≥0 ρ(y)‖ky‖L2

wα
<∞ for a bounded nonnegative weight

function ρ(y), then

lim
m→∞ sup

y≥0
ρ(y)ωr

ϕ

(
ky,

1√
m

)
L2

wα

= 0 with r ≥ 1.

Proof. Setting dk =
∫∞
0

ky(x)pk(x)wα(x)dx, from the assumption made it follows
that

sup
y≥0

ρ(y)

∞∑
k=0

d2
k(ky) = sup

y≥0
ρ(y)‖ky‖L2

wα
<∞;

hence

lim
m→∞ sup

y≥0
ρ(y)

∑
k>m

d2
k(ky) = 0, that is, lim

m→∞ sup
y≥0

ρ(y)Em(ky)L2
wα

= 0.

However (see [3]),

ρ(y)ωr
ϕ

(
ky,

1√
m

)
L2

wα

≤ cr
(
√
m)r

m∑
k=0

(1 + k)
r
2−1ρ(y)Ek(ky)L2

wα

∼
∑m

k=0(1 + k)
r
2−1ρ(y)Ek(ky)L2

wα∑m
k=0(1 + k)

r
2−1

.

Since the latter expression tends to zero as m→∞, uniformly with respect to y, we
have

lim
m→∞ sup

y≥0
ρ(y)ωr

ϕ

(
ky,

1√
m

)
L2

wα

= 0.
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Remark 3.6. If in (36) we take h ≡ 1 and consider the full sum, i.e., i = 1, . . . ,m,
then, using arguments similar to those of Theorem 3.4, it is possible to show, assuming
supy≥0 ‖ky‖L2

wα
< ∞, that the corresponding quadrature remainder term tends to

zero, as m → ∞. This in turn implies that supy≥0

∑m
i=1 |wi(y)| < ∞. In [12] this

property was proved under the stronger assumption that supy≥0 ‖ky‖L2
wα,s

< ∞ for

some s > 1/3.

4. A Nyström-type interpolant. As in [12], here we consider integral equa-
tions of the form

u(y)− µ

∫ ∞
0

k(x, y)u(x)dx = f(y),(37)

whose solutions decay at least as e−βx, β = 1
2 + ε, ε > 0, for x→∞, to a finite value

u(∞).
A class of integral equations of this type arises naturally from the equations of

Mellin type defined on a finite interval (see [18]). Thus consider

u(s)− µ

∫ 1

0

k

(
t

s

)
u(t)

t
dt = f(s), 0 < s ≤ 1,(38)

and set t = e−x, s = e−y; we have

v(y)− µ

∫ ∞
0

k(e−(y−x))v(x)dx = f(e−y),(39)

with

v(x) = u(e−x).

We recall (see [4]) that often u(t) ∼ tσ, σ > 1
2 , near the origin, so that the (weakly)

singular behavior at t = 0 is transformed, by the above change of variable, into the
exponential decay e−σx. Thus the method we examine in this section could be used
to solve the above Mellin equations.

A test equation of type (37) we have considered in [11], [12] is

u(y)− 1

4

∫ ∞
0

E1(|x− y|)u(x)dx =
1

2
,(40)

where E1(x) =
∫∞
x

e−t

t dt is the well-known exponential integral. This equation arises,
for example, in the modeling of the neutron transfer in an infinite slab. The solution
u(x) has the behavior 1 + o(e−βx) as x → ∞, with β = 0.9575, and has a weak

singularity at the origin, of the form
√

2
2 + O(xε) with ε > 0 as small as we like (see,

for example, [6]).
The Nyström interpolant we propose requires us to preliminarily rewrite (37) in

the form

v(y)− µey
∫ ∞

0

e−xk(x, y)v(x)dx = g(y),

where

v(x) = ex[u(x)− u(∞)]
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and

g(y) = ey
{
f(y)− u(∞)

[
1− µ

∫ ∞
0

k(x, y)dx

]}
,

that is,

(I − µK)v = g.(41)

To do this one needs to know a priori the value u(∞), which is, however, often the
case. This assumption is also made, for example, in the product integration method
proposed in [6]. Then, using the corresponding truncated product rule of form (26),
we obtain

(I − µKm)vm = g(42)

with

Kmvm(y) =

j∑
i=1

w̄i(y)vm(xi), w̄i(y) = eywi(y),

that is,

vm(y) = g(y) + µKmvm(y).(43)

Notice that applying our truncated quadrature rule does not mean performing a finite
section of (41).

Both (41) and (42) will be examined in the weighted space

X := {v ∈ L∞(0,∞) : ‖v‖X := ‖ρ(x)v(x)‖∞ <∞},

where ρ(x) = e(− 1
2+ε1)x, with some 0 < ε1 ≤ ε.

The values {vm(xi)} are obtained by solving the linear system (hopefully nonsin-
gular)

vm(xl)− µKmvm(xl) = g(xl), l = 1, . . . , j.(44)

Recalling Remark 3.6, it is now possible to claim that the method is indeed stable
in X, whenever the kernel k(x, y) satisfies certain assumptions.

Lemma 4.1. If

‖K‖X→X = sup
y≥0

ρ(y)‖k̄yρ−1‖L1
w0

<∞, k̄y = eyk(x, y),(45)

and

sup
y≥0

ρ(y)‖k̄y‖L2
w0

<∞,(46)

then

limm→∞‖Km‖X→X ≤ ‖K‖X→X .(47)
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Proof. In the case of assumption (46), property (47) follows immediately from
Theorem 3.4 and Proposition 3.5, since

‖Km‖X→X ≤ sup
y≥0

ρ(y)

j∑
i=1

|w̄i(y)|ρ−1(xi).

Notice that to prove this lemma we have used Theorem 3.4, which requires h(x) ≡
ρ−1(x) ∈ L2

wα,1.
If the operator K in (41) satisfies the condition

‖K‖X→X < |µ|−1,(48)

standard analysis (see [1]) and Theorem 3.1 give the following main result.
Theorem 4.2. If conditions (46) and (48) are verified, then for all m sufficiently

large the operator I − µKm is invertible and

‖(I − µKm)−1‖X→X ≤ c.

Moreover,

‖v − vm‖X ≤ c‖(K −Km)v‖X ≤ c
‖v‖L2

w0,s

m
s
2

(49)

whenever v ∈ L2
w0,s, s > 1

2 .
Notice that if we define um(x) = e−xvm(x) + u(∞), then

‖v − vm‖X = sup
x≥0
|e( 1

2+ε1)x[u(x)− um(x)]|.

Unfortunately, it is possible for condition (46) to be not satisfied by the kernel of
the integral equation one has to solve. If, for example, we consider (40) and rewrite
it in the form (see [11])

v(y)− 1

4
ey
∫ ∞

0

e−xk(x, y)v(x)dx = −1

4
ey[e−y − yE1(y)],(50)

where

k(x, y) = E1(|x− y|), v(x) = ex[u(x)− 1],(51)

and (see [12]) v ∈ L2
w0,s with s not smaller than 3

2 − δ, δ > 0, as close as we like to 0,
then it is not difficult to verify, by direct calculation, that assumption (46) of Lemma
4.1 does not hold because of the factor eε1y in ρ(y), while condition (48) is satisfied.
Incidentally, we notice that if the kernel were e−εyE1(|x− y|), with ε > 0 as small as
we like, then also condition (46) would be satisfied.

On the other hand, in the weight ρ(y) we have taken ε1 > 0 to be allowed to
apply Theorem 3.4. This happens also if in (37) we take the Picard kernel k(x, y) =
e−|x−y|. Therefore, for these two equations we cannot apply Theorem 4.2 and hence
claim stability, although practical computation shows that our interpolants are indeed
stable. In our opinion this is due to the (weighted) L2 estimates we have used to prove
Theorem 3.4. A proof of stability using more general tools is needed. Ours is based
on the use of the companion rule (36) and Theorem 3.4, and this seems to be a bit
restrictive. However, at present this question remains unanswered.
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To be able to prove stability in the latter two cases, we need to modify our
interpolant when y > C, C being a positive constant arbitrarily large. In particular,
for simplicity we define the trivially modified operator

K̄mv(y) =

{
Kmv(y) if 0 ≤ y ≤ logA,
Kv(y) if y > logA,

(52)

where A is a positive constant that can be chosen as large as one likes. Of course
this is not satisfactory from a theoretical point of view: when y > logA, we should
modify Kmv(y) by introducing a discrete operator which can be explicitly evaluated.
However, for simplicity and because the constant A can be chosen arbitrarily large,
we have made the choice (52). We recall that the solution of our equation decays
exponentially at infinity, to a constant we assume to know a priori.

In this case we have

‖K̄m‖X→X ≤ max

{
sup

0≤y≤logA
ρ(y)

j∑
i=1

|w̄i(y)|ρ−1(xi), ‖K‖X→X

}
,

that is,

lim
m→∞ ‖K̄m‖X→X ≤ ‖K‖X→X .

Thus, if ‖K‖X→X < |µ|−1, then also ‖K̄m‖X→X < |µ|−1 for all m sufficiently large.
However, this implies stability and the convergence estimate (49).

Instead of applying our method to an artificial equation constructed in order to
satisfy the conditions required by Theorem 4.2, we have preferred to consider a case
of practical interest, taken by many authors, such as (40). For this equation, the
modified version of the method described above is stable and convergent with order
not smaller than O(m−3/2+ε) (see [12]). In the case of (37) with the Picard kernel,

µ = 1/4 and f(y) = 1/2, whose solution is u(x) = 1 − (1 − 2−
1
2 )e
− x√

2 , the order of
convergence is higher than any negative power of m.

In [12] the Nyström interpolant based on the nontruncated rule (27) has been
examined from the numerical point of view and compared with a product integration
method proposed in [6]. In particular, numerical evidence on the efficiency of the first
method was given. Since in [12] this method has already shown to be competitive,
here we do not present any further comparisons. We simply show the improvement
that the truncation we propose generates with respect to the nontruncated version.

In the following tables we report some numerical results obtained by applying our
unmodified Nyström interpolant (43) to the test equation (40), after having rewritten
it in the form (41). In particular, in Table 1 we report a sample of relative errors
{em(tl)} obtained by using the nontruncated product rule, i.e., choosing j = m in
(42). In the following three tables we list the corresponding relative errors generated
by our truncated rule, applied with θ = 1/8, 1/16, 1/32. These errors are very similar.
The choice θ = 1/32 allows to obtain an accuracy similar to that given by the complete
rule, using about 1/5 of its abscissas.

While it is known that u(0) =
√

2
2 , to compute the relative errors at the other

points, we have taken, as reference values, those obtained with m = 180 in Table
1 and with m = 512 in Tables 2, 3, and 4. The integer m = 180 could not be
increased because of overflow problems due to the Matlab exponential function. All
computation has been performed on a PC using Matlab.
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Table 1

j = m
m em(0) em(0.1) em(0.5) em(1) em(5) em(10)
4 3.59e-3 3.46e-3 1.53e-4 4.55e-4 4.05e-6 8.88 e-8
8 1.28e-3 8.96e-4 2.29e-4 4.45e-5 4.09e-6 2.28e-7
16 4.02e-4 1.05e-4 3.23e-5 4.74e-5 4.49e-7 2.25e-8
32 1.18e-4 1.7 e-5 2.23e-5 1.08e-7 2.63e-7 1.28e-8
64 3.34e-5 7.47e-8 4.28e-7 1.62e-7 3.41e-8 1.88e-9
128 9.19e-6 2.7 e-6 2.7 e-7 1.4 e-7 1.26e-8 1.81e-10

Table 2

θ=1/8
m j em(0) em(0.1) em(0.5) em(1) em(5) em(10)
4 2 4.73e-3 4.65e-3 6.35e-4 1.72e-3 6.9 e-4 6.61e-6
8 3 8.09e-4 6.34e-4 5.93e-4 1.005e-4 7.47e-4 3.95e-6
16 7 3.88e-4 1.14e-4 2.69e-5 3.36e-5 1.5 e-6 5.33e-6
32 14 1.18e-4 1.62e-5 2.29e-5 7.6 e-9 3.01e-7 2.08e-8
64 28 3.34e-5 1.01e-6 8.9 e-7 4.71e-8 3.51e-8 1.78e-9
128 56 9.19e-6 3.79e-6 2.02e-7 6.71e-8 1.12e-8 1.06e-10
256 113 2.49e-6 1.17e-8 3.7 e-8 9.48e-8 5.89e-10 7.63e-11

Table 3

θ=1/16
m j em(0) em(0.1) em(0.5) em(1) em(5) em(10)
4 1 1.45e-3 1.42e-3 9.67e-3 1.57e-2 8.26e-4 8.3 e-6
8 2 3.37e-3 2.47e-3 1.56e-3 3.25e-3 7.4 e-4 1.03e-5
16 5 2.85e-4 1.77e-4 1.77e-5 6.52e-5 4.62e-4 7.46e-6
32 10 1.25e-4 2.95e-5 3.12e-5 5.6 e-6 3.87e-6 5.63e-6
64 20 3.35e-5 9.6 e-7 8.31e-7 7.87e-8 6.55e-8 5.63e-9
128 40 9.19e-6 3.79e-6 2.02e-7 6.72e-8 1.12e-8 1.06e-10
256 80 2.49e-6 1.17e-8 3.7 e-8 9.48e-8 5.9 e-10 7.62e-11

Table 4

θ=1/32
m j em(0) em(0.1) em(0.5) em(1) em(5) em(10)
4 1 1.44e-3 1.42e-3 9.67e-3 1.57e-2 8.26e-4 8.3 e-6
8 2 3.37e-3 2.47e-3 1.56e-3 3.25e-3 7.39e-4 1.03e-5
16 3 5.39e-4 1.26e-3 8.26e-4 1.46e-3 7.71e-4 8.39e-6
32 7 6.64e-5 1.07e-4 4.42e-5 6.37e-5 5.81e-4 5.7 e-6
64 14 3.66e-5 1.88e-6 2.81e-6 7.12e-6 2.52e-6 4.87e-6
128 28 9.29e-6 3.88e-6 1.08e-7 2.44e-8 3.05e-8 4.94e-10
256 57 2.49e-6 1.16e-8 3.71e-8 9.48e-8 5.9 e-10 7.56e-11

Table 5

2-norm condition numbers
m j = m θ = 1/8 θ = 1/16 θ = 1/32
4 3.07E00 1.36E00 1.00E00 1.00E00
8 9.84E03 1.56E00 1.30E00 1.30E00
16 1.83E15 2.37E00 1.85E00 1.44E00
32 3.17E39 6.73E00 2.49E00 1.92E00
64 1.57E06 5.48E00 2.52E00
128 7.69E18 7.36E05 4.26E00
256 1.76E43 3.56E18 3.16E05
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Truncation also reduces significantly the magnitude of the condition numbers of
the final linear systems (see Table 5).

However, we have also noticed that in all cases considered, in spite of the values
of the condition numbers, no error propagation has shown up. Actually, following the
idea suggested in [10], we could replace, for example, the linear system generated by
the nontruncated rule by the equivalent (preconditioned) one

λ
1/2
l exl

m∑
i=1

ai

[
λ
−1/2
i e−xiδil − λ

−1/2
i

4
wi(xl)

]
= λ

1/2
l g(xl), l = 1, . . . ,m,(53)

where ai = λ
1/2
i vm(xi) and g(x) = − ex

4 [e−x−xE1(x)], which turns out to be perfectly
conditioned. The corresponding results however are very similar to those produced
by the original system.
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Abstract. We investigate some basic properties of the proper orthogonal decomposition (POD)
method as it is applied to data compression and model reduction of finite dimensional nonlinear
systems. First we provide an analysis of the errors involved in solving a nonlinear ODE initial value
problem using a POD reduced order model. Then we study the effects of small perturbations in
the ensemble of data from which the POD reduced order model is constructed on the reduced order
model. We explain why in some applications this sensitivity is a concern while in others it is not.
We also provide an analysis of computational complexity of solving an ODE initial value problem
and study the computational savings obtained by using a POD reduced order model. We provide
several examples to illustrate our theoretical results.

Key words. proper orthogonal decomposition, model reduction, dynamical systems, numerical
methods
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1. Introduction.

1.1. Background on proper orthogonal decomposition. Proper orthogo-
nal decomposition (POD), also known as Karhunen–Loève decomposition or principal
component analysis, provides a technique for analyzing multidimensional data. This
method essentially provides an orthonormal basis for representing the given data in
a certain least squares optimal sense. The POD method may be applied to infinite
dimensional data such as fluid flow patterns as well. Truncation of the optimal basis
provides a way to find optimal lower dimensional approximations of the given data.

In addition to being optimal in a least squares sense, POD has the property
that it uses a modal decomposition that is completely data dependent and does not
assume any prior knowledge of the process that generates the data. This property
is advantageous in situations where a priori knowledge of the underlying process is
insufficient to warrant a certain choice of basis. It also helps in exploring patterns in
data that may reveal some insight into the underlying process that generates it.

Combined with the Galerkin projection procedure, POD provides a powerful
method for generating lower dimensional models of dynamical systems that have a
very large or even infinite dimensional phase space. The fact that this approach al-
ways looks for linear (or affine) subspaces instead of curved submanifolds makes it
computationally tractable. However, it must be noted that POD does not neglect the
nonlinearities of the original vector-field. This is so because if the original dynamical
system is nonlinear, then the resulting POD reduced order model will also typically
be nonlinear.

These properties of POD are the reason for its wide application in data analysis,
data compression, and model reduction in various fields of engineering and science.
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Applications of POD include image processing [22], data compression, signal analysis
[2], modeling and control of chemical reaction systems [12, 25, 26], turbulence models
[14], coherent structures in fluids [14], control of fluids [10], electrical power grids
[21, 20, 18], and wind engineering to name a few.

Extensions and modifications to POD have been proposed by various researchers
to accommodate properties of the applications at hand. For instance, instead of
time averaging, arclength-based averaging has been found to be useful in capturing
dynamics involving “intermittent” attractors in [12]. The predefined POD method
has been studied in [8], where modes are selected not only on the basis of energy of
the data but also on some prior knowledge of the system. Structure preserving model
reduction based on POD for mechanical systems with Lagrangian structure has been
developed in [15].

Systems with symmetry deserve special attention. Several authors have made
important contributions. Expanding the data set using symmetry was proposed in
[27, 28, 29], and later works have shown that it is an essential step in capturing the
correct dynamics [3, 4]. Methods for combining reduction theory with POD have been
developed in [23].

1.2. Contributions of this work. In this paper we study some basic ques-
tions about POD. We focus on finite dimensional systems and follow a deterministic
approach. The contributions of this paper include a study of the errors involved in
solving an initial value problem using a POD reduced order model of a dynamical
system, the sensitivity of the results of POD to perturbations in the data that is used
to form the reduced model, as well as computational efficiency gained in using POD
in model reduction applications. Even though these are some fundamental questions
relating to POD, we believe that they have not been given sufficient attention in the
literature.

1.3. Outline of the paper. The rest of the paper is organized as follows. In
section 2, we review the POD method as it is applied in data representation as well as
in model reduction. In section 3, we present some mathematical preliminaries on the
manifold of projection matrices and finite time solution norms of linear time invariant
systems. The former is relevant in the sensitivity analysis, and the latter will be use-
ful since throughout this paper we derive particular results for linear time invariant
systems. In section 4, we provide an error analysis of the POD method of model re-
duction as applied to a general nonlinear system. An example is provided to illustrate
the various factors affecting the errors. In section 5, we study the sensitivity of the
POD projection matrix P (Proposition 5.4), the projected data ỹ, and the reduced
model solution ŷ to perturbations in the data x that is used to form the reduced
model. We also study the particular case y = x, where the particular data/solution
y for which the reduced model is applied is the same as the ensemble of data x from
which the reduced model is constructed. Two examples are provided to illustrate the
sensitivity results, one focusing on the y = x case. In section 6, we present an esti-
mate of the computational complexity involved in integrating a system of ODEs with
and without the use of POD reduced order models. We also provide two examples to
illustrate the various factors affecting the computational savings. Finally, in section
7, we make concluding remarks.

2. Proper orthogonal decomposition (POD). POD provides a method for
finding the best approximating subspace to a given set of data. Originally POD was
used as a data representation technique. For model reduction of dynamical systems,
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POD may be used on data points obtained from system trajectories obtained via
experiments, numerical simulations, or analytical derivations. Additional information
may be found in [14, 19, 17, 16].

2.1. POD in data representation. We shall assume that the data points lie
in R

n. In the case of a dynamical system this is the phase space. A data set is a
collection xα ∈ R

n, where α ∈ I. The index set I may be a finite set {1, . . . , N}, or a
time interval [0, T ], or more generally of the form I = [0, T ]× {1, . . . , N}. The latter
corresponds to a collection of trajectories. For example, in an image coding problem
I is a finite discrete set. In model reduction of dynamical systems, I could be of the
more general form above. We define an inner product between sets of data x1 and
x2 with the same index set I in the obvious way. For example, if x1 and x2 are each
a collection of N trajectories in the common interval [0, T ], i.e., xαi : [0, T ] → R

n for
α = 1, . . . , N and i = 1, 2, then

(x1, x2) =

N∑
α=1

∫ T

0

(xα1 (t))
Txα2 (t)dt.

The corresponding norm is denoted ‖.‖.
Remark 2.1. Note that we are using the inner product in our data space (Rn) to

induce an inner product in the space of data sets with the same index set.

We shall explain the POD method using the index set I = [0, T ] × {1, . . . , N}.
Given a data set x, POD seeks a subspace S ⊂ R

n so that the total square distance

‖x− ρSx‖2 =
N∑

α=1

∫ T

0

‖xα(t)− ρSx
α(t)‖2dt

is minimized. Here ρS is the orthogonal projection onto the subspace S and ρSx is
the projected data set. The solution to this problem requires the construction of the
correlation matrix defined by

R =

N∑
α=1

∫ T

0

xα(t)(xα(t))T dt.

Note that R is symmetric positive semidefinite. Let λ1 ≥ λ2 · · · ≥ λN ≥ 0 be the
ordered eigenvalues of R. Then the minimum value of ‖x − ρSx‖2 over all k(≤ n)
dimensional subspaces S is given by

∑n
j=k+1 λj [14]. In addition the minimizing S is

the invariant subspace corresponding to the eigenvalues λ1, . . . , λk.

Often it may be best to find an affine subspace as opposed to a linear subspace.
This requires us first to find the mean value of the data points

x̄ =
1

NT

N∑
α=1

∫ T

0

xα(t)dt

and then construct the covariance matrix R̄ given by

R̄ =

N∑
α=1

∫ T

0

(xα(t)− x̄)(xα(t)− x̄)T dt.
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Let S0 be the invariant subspace of the largest k eigenvalues of R̄. Then the best
approximating affine subspace S passes through x̄ and is obtained by shifting S0 by
x̄. Algebraically the projection onto the subspace S is given by

z = ρ(x− x̄),(2.1)

where z ∈ R
k are coordinates in the subspace S, x ∈ R

n are coordinates in the original
coordinate system in R

n, and the matrix ρ of the projection consists of row vectors
φT
i (i = 1, . . . , k), where φi are the unit eigenvectors corresponding to the largest k

eigenvalues of R̄. Note that given any point p ∈ S with coordinates z ∈ R
k, the

coordinates x ∈ R
n of the same point in the original coordinate system are given by

x = ρT z + x̄.

The affine projection x̃ ⊂ S of a point x ∈ R
n in the original coordinates is given by

x̃ = P (x− x̄) + x̄,

where P = ρT ρ ∈ R
n×n is the matrix of the (linear) projection expressed in the

original coordinate system in R
n.

Remark 2.2. Note that the reduced subspace is uniquely characterized by the
pair (x̄, P ). Different data sets may lead to the same pair (x̄, P ), and the detailed
information about the data x is lost.

2.2. POD in model reduction. The POD method may also be used in obtain-
ing a lower dimensional model of a dynamical system. In this case, having found the
approximating subspace for our system data, the next task is to construct a vector-
field on this subspace that represents the reduced order model. The procedure we
describe is known as Galerkin projection and has been widely used in reducing PDEs
to ODEs by projecting onto appropriate basis functions that describe the spatial vari-
ations in the solution. The procedure is applicable to any subspace; the subspace
need not be obtained from the POD method. See [14] for more details.

Suppose the original dynamical system in R
n is given by a vector-field f ,

ẋ = f(x, t).

Let S ⊂ R
n be the best k dimensional approximating affine subspace with projection

given by (2.1). A vector-field fa in the subspace S is constructed by the following rule:
for any point p ∈ S compute the vector-field f(p, t) and take the projection ρf(p, t)
onto the subspace S to be the value of fa(p, t). If z are the subspace coordinates of
p, then fa(z, t) = ρf(ρT z + x̄, t). Thus we obtain the following reduced model:

ż = fa(z, t) = ρf(ρT z + x̄, t).(2.2)

If we are solving an initial value problem with x(0) = x0, then in the reduced model
one has the initial condition z(0) = z0, where

z0 = ρ(x0 − x̄).

Hence the approximating solution x̂(t) in the original coordinates in R
n is given by

x̂(t) = ρT z(t) + x̄.

From the above it is easy to see that the approximating solution x̂(t) is the solution
to the following initial value problem:

˙̂x = Pf(x̂, t); x̂(0) = x̂0 = P (x0 − x̄) + x̄.(2.3)

Note that x̂0 is just the projection of x0 onto the affine subspace S.
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3. Mathematical preliminaries.

3.1. Manifold of projection matrices. Let P ⊂ R
n×n be the manifold of

all rank k(< n) (orthogonal) projection matrices. (P is known in the literature as
the Grassmannian [6].) For a general introduction to manifolds, tangent spaces, and
differentiation on manifolds, see [1, 6]. Since we will be dealing with variations E of
projections P ∈ P in our POD sensitivity analysis, we need a characterization of the
tangent space TPP to P at a given point P ∈ P. The variation E ∈ TPP cannot be
any arbitrary matrix. In fact, the dimension of P and hence that of TPP for any P
is k(n− k).

Without loss of generality, we can induce an orthonormal change of coordinates
in R

n such that a given projection P becomes the canonical projection (P0) in these
coordinates, i.e.,

P0 =

[
Ik×k 0k×n−k

0n−k×k 0n−k×n−k

]
.

In many places in our analysis we shall assume the use of these canonical coordinates.

Let V = TP0P, i.e., the tangent space to P at the canonical projection P0. Using
the relations P 2 = P and PT = P (symmetric) and letting P = P0, it is easy to see
that V consists of matrices of the form[

0k×k Xk×n−k
XT

n−k×k 0n−k×n−k

]
,

where X is arbitrary. We will use the Frobenius norm for projection matrices P and
their variations E in our analysis. We consider the basis {Eij : i = 1, . . . , k; j =
1, . . . , n− k} for V , where

Eij =

[
0 Xij

XT
ij 0

]
and Xij is the k× (n− k) matrix with all zeros except for a 1 in the (i, j)th element.
Clearly ‖Eij‖ = √2.

Remark 3.1. It may be noted that Eij corresponds to an infinitesimal rotation of
the subspace S (onto which P0 projects) in the plane of the coordinates xi and xj+k.
Consider the family of subspaces S(θ) which are spanned by

{e1, . . . , ei−1, cos θei + sin θej+k, ei+1, . . . , ek},

where e1, . . . , en are the canonical basis vectors in R
n. Note that when θ = 0, S

corresponds to the image of P0. Computing the corresponding family of projection
matrices P (θ), we can see that Eij = dP

dθ (θ = 0).

3.2. Finite time response of a linear time invariant system with time
varying input. Some of the analysis in this paper requires estimating the norm of
the trajectory of a linear time invariant system in a finite interval in response to a
forcing input term.

Consider the system

ẋ = Ax+ u
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(where x ∈ R
n) with input u(t) ∈ R

n and initial condition x(0) = x0 in the interval
[0, T ]. The solution is

x(t) =

∫ t

0

eA(t−τ)u(τ)dτ + eAtx0.

This may be written in the form

x = F (T ;A)u+G(T ;A)x0,(3.1)

where F (T ;A) : L2([0, T ],R
n) → L2([0, T ],R

n) and G(T ;A) : R
n → L2([0, T ],R

n)
are linear operators. It is in general very difficult to obtain sharp estimates for the
norms of F (T ;A) and G(T ;A), and in fact this basically reduces to the problem of
estimating the norm of the matrix exponential. As such we shall not provide an
estimate, but we remark that these norms grow exponentially with T at a rate that is
determined by the largest real part of any eigenvalue of A and in addition depend on
the nonnormality of A. See [11] for an estimate of matrix exponential. In our analysis
we shall estimate ‖x‖ as

‖x‖ ≤ ‖F (T ;A)‖‖u‖+ ‖G(T ;A)‖‖x0‖,(3.2)

expressing the results in terms of ‖F (T ;A)‖ and ‖G(T ;A)‖.
4. Error analysis of the POD method of model reduction. Consider solv-

ing the initial value problem ẋ = f(x, t), x(0) = x0, using a POD reduced order model
in the interval [0, T ]. Then in effect we are solving the initial value problem (2.3).
We shall derive an estimate for the error e(t) = x̂(t) − x(t). Denote the component
of e(t) orthogonal to the subspace S by eo(t) and the component parallel to S by
ei(t). Thus eo(t) and ei(t) are orthogonal vectors. Hence by definition Peo(t) = 0
and Pei(t) = ei(t). It is important to observe that eo(t) comes from the first part of
the method, i.e., the subspace approximation. It is the error between x(t) and its pro-
jection onto the subspace S. If one is considering a data compression problem, then
eo(t) = e(t). But since we form a reduced order model by projecting the vector-field
onto S, we make further approximations resulting in the additional error ei(t).

Remark 4.1. Note that for any function g : [0, T ] → R
n, ‖g(t)‖ is a norm in R

n

which shall be the 2-norm throughout this paper. The function norm will be denoted
by ‖g‖, and unless explicitly stated otherwise it will be assumed to be the 2-norm.

We can derive an error estimate for ei(t) in terms of eo(t). Differentiating eo(t)+
ei(t) = x̂(t)− x(t) and substituting into the ODEs for x̂ and x, we get

ėo + ėi = Pf(x̂, t)− f(x, t).

Multiplying on the left by P and using P 2 = P , we obtain the initial value problem
for ei(t):

ėi = P (f(x(t) + eo(t) + ei, t)− f(x(t), t)); ei(0) = 0.(4.1)

Note that ei(0) = 0 since the starting point x̂0 is the projection of x0 onto S. Thus the
error ei is governed by (4.1), where we may regard x(t) and eo(t) as forcing terms. See
Figure 4.1, where x is the true solution, x̃ the projected solution, and x̂ the solution
of the reduced model. The errors ei and eo are also shown.

In the case of a linear time invariant system ẋ = Ax, (4.1) takes a simple form:

ėi = PAei + PAeo(t); ei(0) = 0.(4.2)
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ei

eo

x

x̃

x̂

S

Fig. 4.1. POD error.

Applying the notation of (3.1), we get the estimate

‖ei‖2 ≤ ‖F (T ; Â)‖‖Ã‖ε.
Hence the total error is

‖e‖2 ≤
(
‖F (T ; Â)‖‖Ã‖+ 1

)
ε.(4.3)

Here Â = ρAρT and Ã = ρAρTc , where ρ is the projection in subspace coordinates
(P = ρT ρ), and ρc is the orthogonal complement to ρ. ε is the 2-norm of eo (i.e.,
‖eo‖2 = ε).

Before we state a proposition for the general nonlinear case, recall the definition
of a logarithmic norm related to a 2-norm of a square matrix A ∈ R

k×k denoted by
µ(A):

µ(A) = lim
h→0,h>0

‖I + hA‖2 − 1

h
,

where I is the identity matrix [13].
Proposition 4.2. Consider solving the initial value problem ẋ = f(x, t), x(0) =

x0, using the POD reduced order model in the interval [0, T ]. Let ρ ∈ R
k×n be the

relevant projection matrix, and let S denote the affine subspace onto which POD
projects. Write the solution (of the full model) x(t) and the solution x̂(t) of the
reduced model as

x(t) = ρTu(t) + ρTc v(t) + x̄

and

x̂(t) = ρTu(t) + ρTw(t) + x̄

so that the errors eo(t) and ei(t) and the projected solution x̃(t) are given by

eo(t) = −ρTc v(t),

ei(t) = ρTw(t),
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and

x̃(t) = ρTu(t) + x̄.

Note that u(t) ∈ R
k, w(t) ∈ R

k, and v(t) ∈ R
n−k. Let γ ≥ 0 be the Lipschitz constant

of ρf(x, t) in the directions orthogonal to S in a region containing x(t) and x̃(t). To
be precise, suppose

‖ρf(x̃(t) + ρTc v, t)− ρf(x̃(t), t)‖ ≤ γ‖v‖
for all (v, t) ∈ D ⊂ R

n−k× [0, T ], where the region D is such that the associated region
D̃ = {(x̃(t) + ρTc v, t) : (v, t) ∈ D} ⊂ R

n× [0, T ] contains (x̃(t), t) and (x(t), t) for all
t ∈ [0, T ]. Let µ(ρ∂f

∂x (x̄+ ρT z, t)ρT ) ≤ µ̄ for (z, t) ∈ V ⊂ R
k × [0, T ], where the region

V is such that it contains (u(t), t) and (u(t) +w(t), t) for all t ∈ [0, T ] and µ denotes
the logarithmic norm related to the 2-norm. Let ε = ‖eo‖2. Then the error ei in the
∞-norm satisfies

‖ei‖∞ ≤ ε
γ√
2µ̄

√
e2µ̄T − 1,(4.4)

and the 2-norm of the total error satisfies

‖e‖2 ≤ ε

√
1 +

γ2

4µ̄2
(e2µ̄T − 1− 2µ̄T ).(4.5)

Proof. We shall closely follow the ideas in [13, pp. 54–60]. Since

ẇ(t) = ρf(x̄+ ρTu(t) + ρTw(t), t)− ρf(x̄+ ρTu(t) + ρTc v(t), t),

for h > 0 using Taylor expansion we have

‖w(t+ h)‖ = ‖w(t) + hρf(x̄+ ρTu(t) + ρTw(t), t)− hρf(x̄+ ρTu(t) + ρTc v(t), t)‖
+O(h2)

≤ ‖w(t) + hρf(x̄+ ρTu(t) + ρTw(t), t)− hρf(x̄+ ρTu(t), t)‖
+ h‖ρf(x̄+ ρTu(t) + ρTc v(t), t)− ρf(x̄+ ρTu(t), t)‖+O(h2).

Applying the mean value theorem to η �→ η + hρf(x̄+ ρT η, t), we get

‖w(t) + hρf(x̄+ ρTu(t) + ρTw(t), t)− hρf(x̄+ ρTu(t), t)‖
≤
(

max
η∈[u(t),u(t)+w(t)]

∥∥∥∥I + hρ
∂f

∂x
(x̄+ ρT η, t)ρT

∥∥∥∥) ‖w(t)‖,
where for any two vectors η1, η2 in R

k, [η1, η2] denotes the line segment joining the
two. It follows that

‖w(t+ h)‖ − ‖w(t)‖
h

≤ µ̄‖w(t)‖+ γ‖v(t)‖+O(h),

where the O(h) term may be uniformly bounded independent of w(t) [13]. Then it
follows from Theorem 10.3 of [13] (also see Theorem 10.6 in [13]) that

‖ei(t)‖ = ‖w(t)‖ ≤ γ

∫ t

0

eµ̄(t−τ)‖v(t)‖dτ,
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since ei(t) = ρTw(t). After applying the Cauchy–Schwarz inequality on the right side,
we get

‖ei(t)‖ ≤ γ√
2µ̄

√
e2µ̄t − 1

√∫ t

0

‖eo(τ)‖2dτ.(4.6)

From this we readily obtain (4.4). Also bounding
√∫ t

0
‖eo(τ)‖2dτ by ε and integrating

(4.6), we obtain an upper bound for ‖ei‖2 which can be combined with ‖eo‖2 to get
(4.5).

Remark 4.3. This analysis separates the two different errors and provides a bound
for the total error in terms of the projection error ε of the true solution x(t). The value
of ε depends only on the true solution x(t) and on the pair (P , x̄) which determines
the reduced order model (but not directly on f). If P and x̄ were computed from
the true solution x(t) in the interval [0, T ] (this is somewhat an ideal situation), then

ε =
√∑n

j=k+1 λj , where λi are the eigenvalues of the covariance matrix. However, if

the reduced model was computed from some other trajectories as often is the case in
applications of model reduction methods, then ε would depend on how close x(t) was
to the trajectories used as data in addition to the quantity

∑n
j=k+1 λj (typically the

fractional error ε
‖x‖2 will be larger than

∑n
j=k+1 λj∑n
j=1 λj

). For instance, in hybrid systems

such as power systems where discrete events abruptly change some system parameters,
data obtained from trajectories before the event results in a reduced order model with
a large ε for simulations after the event [7].

Example 1. This example serves to illustrate the various factors that affect ei
given the same projection error eo. We shall consider a linear time invariant system
ẋ = Ax; x(0) = x0. Assume A has distinct eigenvalues and that it possesses some
fast decaying modes (eigenvalues with large negative real parts). Let S ⊂ R

n be the
invariant subspace corresponding to the rest of the eigenvalues, where S is k(< n)
dimensional. If we have sufficiently many trajectories that have initial conditions
symmetrically placed with respect to S, then the POD method will pick S as the
subspace to project onto. We shall assume this to be the case. Performing an or-
thonormal change of coordinates if needed, we may assume that S corresponds to the
last n− k coordinates being zero. In these coordinates, the A matrix has the form

A =

[
A1 A12

0 A2

]
,

where A1 ∈ R
k×k, A12 ∈ R

k×(n−k), and A2 ∈ R
(n−k)×(n−k). In fact the real Schur

decomposition of A will put it in the above form. We shall say A is “block normal”
if the off diagonal block A12 = 0.

Also note that

ρ =
[

Ik×k 0k×(n−k)

]
and

ρc =
[
0(n−k)×k I(n−k)×(n−k)

]
.

Hence µ̄ = µ(A1) and γ = ‖A12‖.
For a given initial condition and time interval, the error eo relates to the last

three components of the solution and does not change if A2 is unchanged. We can
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independently change µ̄ and γ by changing A1 and A12, respectively. We kept A2

unchanged, thus keeping ε = ‖eo‖2 unchanged, and studied the effects of changing
A1 (and hence µ̄) and A12 (and hence γ) independently on the POD error. First we
chose

A1 =


−0.1000 0 0

0 −0.1732 2.0

0 −2.0 −0.1732

 ,

A12 =


0.3893 0.5179 −1.543
1.390 1.300 0.8841

0.06293 −0.9078 −1.184

 ,

and

A2 =


−1.0 0 0

0 −1.226 −0.7080
0 0.7080 −1.226

 .

Note that the eigenvalues of A2 have large negative real parts compared to the eigen-
values of A1, and the eigenvalues of A are the union of these two sets. The correspond-
ing µ̄ = −1 and γ = 2.4419. We randomly chose an initial condition and computed
x(t), x̃(t), and x̂(t) in the interval [0, 5]. Note that the reduced model has dimension
3 and that the last three components of both x̃(t) and x̂(t) are zero. Similarly, the
first three components of ei(t) and eo(t) are zero. See Figure 4.2, where only the
nonzero components are plotted. The computed value of the projection error was
ε = ‖eo‖2 = 1.4575. The sup-norm and the 2-norm of the error in the subspace S
were also computed and found to be ‖ei‖∞ = 1.5589 and ‖ei‖2 = 2.5733. The bounds
provided by the theory were ‖ei‖∞ ≤ 6.3271 and ‖ei‖2 ≤ 10.7930.

The second choice was to keep A1 and A2 the same but scale A12 down by a
factor of 2. We kept the same initial condition and time interval. This results in the
same µ̄, but γ = 1.2209. In fact, according to (4.2), the effect of scaling A12 affects
the error ei linearly, and we expect ei(t) to be scaled down by the same factor of 2.
Figure 4.3 shows a plot of ei(t) for both cases. This highlights how the rate of change
of S components of the vector-field in the directions orthogonal to S affect the error.
In the extreme case when A12 = 0 (i.e., A is “block normal”), the components of the
vector-field parallel to S are invariant in the directions perpendicular to S, and the
error ei is zero. Thus the error ei is zero for a matrix that is “block normal” (with
respect to a decomposition of the space based on “fast decay” and the rest of the
eigenmodes) if the POD indeed captures the attracting subspace S correctly.

The error ei is more influenced by µ̄ than γ (as long as γ > 0), and µ̄ is supposed
to capture the growth or decay of solutions of the vector-field of the reduced model.
Keeping A2 and A12 the same, we changed A1 so that

A1 =


−0.1000 0 1.0

0 −0.1732 2.0

0 −2.0 −0.1732

 .
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Fig. 4.2. Example 1 on POD error. Solid: Projected solution x̃(t). Dashed: Reduced model so-
lution x̂(t). Dotted: Projection error eo(t). Only the three nonzero components x̃1, x̃2, x̃3, x̂1, x̂2, x̂3
and eo4, eo5, eo6 are plotted.
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Fig. 4.3. Example 1 on POD error. The effect of scaling A12 on the error ei in the subspace
S. Solid: ei for unscaled A12. Dotted: ei for scaled down A12. Only the three nonzero components
are plotted.

The corresponding µ̄ = 0.3647. Note that this does not change the eigenvalues of
A1, but it does change its normality. This choice of A1 is no longer normal, and
even though the eigenvalues remain the same, the short term behavior of ei(t) is
changed. In fact, ei(t) does not decay as much as in the normal case. This results
in ‖ei‖∞ = 2.2088 and ‖ei‖2 = 3.4565. The bounds provided by the theory are
‖ei‖∞ ≤ 25.4739 and ‖ei‖2 ≤ 28.3330.

5. Sensitivity of POD to perturbations in data. Given a data set x, POD
constructs a projection P (x) onto a subspace which may then be used to approxi-
mate some other data set y. If POD is applied to model reduction to compute the
approximation ŷ to the true solution y of some ODE initial value problem, then the
projection P (x) will influence ŷ. Typically in POD applications the data set x comes
from experimental measurement or numerical computations. Hence the data x has
some error associated with it. Therefore, it is important to study the effect of these
errors on the outcome of the POD model reduction procedure. In this section, we
shall theoretically investigate the effect of infinitesimal perturbations of x on P (x), ỹ,
and ŷ. We also look at the special case when y = x.
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5.1. POD sensitivity factor. Let x be a data set, and let P (x) be the corre-
sponding POD projection. In this section, we analyze the sensitivities of the POD
projection matrix P (x), with respect to variations in the data x. Our analysis applies
to any data set x taking values in R

n, but for simplicity of exposition we assume x to
be a single trajectory (x : [0, T ]→ R

n) whenever we need to be concrete.
Shifting the origin in data space if necessary, we may assume the mean data values

x̄ = 0. In addition, we can find an orthonormal change of coordinates such that the
covariance matrix of x is diagonal. We shall call this a canonical coordinate system
for data set x. Assuming the use of these canonical coordinates, let

x =

n∑
α=1

xαeα,(5.1)

where eα are the standard basis vectors in R
n. Then it can be shown that the scalar

data sets xα are orthogonal. More specifically,

(xα, xβ) = λαδα,β .

Here λ1, λ2, . . . , λn are the eigenvalues of the covariance matrix of x. If, in addition, we
permute the coordinates such that λ1 ≥ λ2 · · · ≥ λn ≥ 0 are the ordered eigenvalues,
then we call this an ordered canonical coordinate system. Throughout the rest of the
analysis, we shall assume that, after ordering, λk > λk+1 unless stated otherwise.

The POD projection matrix P ∈ P ⊂ R
n×n is defined as the minimizer of the

function

e(P, x) = (Px− x, Px− x).

Differentiating with respect to P in the direction of E, we obtain

∂e

∂P
(E) = 2(Px− x,Ex).

Thus stationary points P of e are given by the condition

(Px− x,Ex) = 0, E ∈ TPP.

Performing an orthonormal change of coordinates if necessary, we may assume P = P0

(canonical projection) is a stationary point. Then all variations E ∈ V = TP0P.
Requiring (P0x − x,Eijx) = 0 for all Eij gives us the conditions that (xi, xj+k) = 0
for all 1 ≤ i ≤ k and 1 ≤ j ≤ n − k. This shows that all the stationary points of
e are given by P that project onto any of the k dimensional invariant subspaces of
the covariance matrix of x. A solution P to the above equation will be a strong local

minimum if and only if the second derivative ∂2e
∂P 2 is positive definite and this may be

shown to be equivalent to λk > λk+1. Under this assumption, P is also a well-defined
function of x locally.

Lemma 5.1. Without loss of generality, let P = P0 be a stationary point in some
canonical coordinate system (this may not be ordered). Let E ∈ V and Ẽ ∈ V be given
by

E =

[
0k×k Xk×n−k

XT
n−k×k 0n−k×n−k

]
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and

Ẽ =

[
0k×k X̃T

k×n−k
X̃n−k×k 0n−k×n−k

]
.

Then the Hessian satisfies

∂2e

∂P 2
(E)(Ẽ) = 2(XTx1, X̃

Tx1)− 2(Xx2, X̃x2).(5.2)

Proof. Since e is a function on the manifold P, one could introduce local coordi-
nates on P to compute the Hessian of e at a stationary point. However, we shall use a
coordinate independent method which allows us to work with matrices and keep the
algebra simple. It may be shown that if P (t, s) is a smooth mapping from R

2 into P
such that P (0, 0) = P0, Pt(0, 0) = E ∈ V and Ps(0, 0) = Ẽ ∈ V and if ∂e

∂P (P0) = 0,
then the Hessian at P = P0 is given by

∂2e

∂P 2
(E)(Ẽ) = ets(0, 0),

where P and e are regarded as functions of t and s and subscripts denote partial
derivatives.

Differentiating e = 2(Px− x, Px− x) with respect to t, we get

et = 2(Ptx, Px− x),

and differentiating again with respect to s, we get

ets = 2(Ptsx, Px− x) + 2(Ptx, Psx).(5.3)

Suppose

Pts(0, 0) =

[
W1 W2

W3 W4

]
.

The matrices W1,W2,W3, and W4 are not arbitrary but satisfy some relations. These
are obtained by differentiating the relation P 2 = P twice. In fact, we get

PtsP + PtPs + PsPt + PPts = Pts,

and after substituting expressions for P, Pt, Ps, and Pts (at (t, s) = (0, 0)) in the above
and using the fact that Pts is symmetric, we obtain that W1 = −X̃XT −XX̃T ,W4 =
X̃TX+XT X̃,WT

3 = W2, where W2 is an arbitrary k× (n−k) matrix. It then follows
that Pts(0, 0) = F +W , where

F =

[ −X̃XT −XX̃T 0

0 X̃TX +XT X̃

]
and

W =

[
0 W2

WT
2 0

]
,

and hence W ∈ V . Hence from (5.3) we obtain

ets(0, 0) = 2(Fx, P0x− x) + 2(Wx,P0x− x) + 2(Ex, Ẽx).
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Since ∂e
∂P = 0 at P (0, 0) = P0 by assumption and W ∈ V , it follows that (Wx,P0x−

x) = 0. Let x = (x1, x2), where x1(t) ∈ R
k and x2(t) ∈ R

n−k. It is easy to see that

(Ex, Ẽx) = (Xx2, X̃x2) + (XTx1, X̃
Tx1),

where the inner products on the right-hand side are in the appropriate function spaces.
Since (Fx, P0x − x) = ((P0 − 1)Fx, x), after computing (P0 − 1)F it can be shown
that

(Fx, P0x− x) = −(X̃TXx2 +XT X̃x2, x2) = −2(Xx2, X̃x2).

Equation (5.2) follows from this.

Remark 5.2. From (5.2) it may be shown that the Hessian ∂2e
∂P 2 has Eij as its

eigenvectors with corresponding eigenvalues 2(λi − λj+k) for 1 ≤ i ≤ k and 1 ≤ j ≤
n−k (note that we did not order the eigenvalues). Thus the stationary point P = P0

is a strong minimum (maximum) if and only if the first k eigenvalues are strictly
greater (smaller) than the rest. It is clear that if, after ordering, λk > λk+1, then
there is a unique strong minimum and a unique strong maximum. The rest of the
stationary points are saddle points.

The sensitivity of P to variations in data x is given by dP
dx (δx), the directional

derivative of P with respect to x in the direction δx, where δx : [0, T ] → R
n is

assumed to be a unit-norm variation of x (‖δx‖ = 1). It suffices to consider zero mean
variations. This is because one may decompose any variation δx ∈ L2([0, T ] → R

n)
into a constant function plus a zero mean function, and it is easy to see that the
constant function part affects only the mean value x̄ of the data while the zero mean
function part affects only the projection P .

Remark 5.3. Variations of variables are denoted by prefix δ except for variations
of P , which are denoted by E (or Ẽ, etc.). We will use the 2-norm for functions and
the Frobenius norm for matrices P and E.

The norm ‖dPdx ‖ is defined by∥∥∥∥dPdx
∥∥∥∥ = sup‖δx‖=1

∥∥∥∥dPdx (δx)

∥∥∥∥
and measures the worst-case sensitivity of P to unit-norm variations of x. However,
it makes more sense to consider the nondimensional quantity defined by

Sk(x) =

∥∥∥∥dPdx
∥∥∥∥ ‖x− x̄‖,(5.4)

which we shall call the POD sensitivity factor. It is the worst-case ratio (in the limit

of zero perturbation) of the perturbation of P to the fractional perturbation δ(x−x̄)
‖x−x̄‖ .

We use x− x̄ instead of x because P depends only on x− x̄. If we scale the data set x
by a constant c ∈ R, then both x̄ and x− x̄ also scale by c, but P remains unchanged
(P (cx) = P (x)). The definition of Sk takes care of this scaling symmetry. In fact, we
get Sk(x) = Sk(cx). Note that the suffix k stands for the dimension of the reduced
subspace S ⊂ R

n in which the projected data lives.
Proposition 5.4. Consider applying POD to a data set x to find the best approx-

imating k(< n) dimensional subspace. Let the ordered eigenvalues of the covariance
matrix of the data x be given by λ1 ≥ · · · ≥ λn. Suppose λk > λk+1, which ensures
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that P (x) is well defined. Then

Sk(x) = max
i≤k, j≤n−k

√
2

√
λi + λj+k

λi − λj+k

√
λ1 + · · ·+ λn ≥

√
2.(5.5)

Furthermore, in the ordered canonical coordinates corresponding to data x, the unit-
norm variation δx that causes the maximal variation in P is given by

δx =
E ĩ,j̃(x− x̄)√
λĩ + λj̃+k

,(5.6)

where i = ĩ and j = j̃ maximize the right-hand side of (5.5).
Proof. In this proof we will use ordered canonical coordinates. Differentiating

∂e
∂P (E) = 0 totally with respect to x in the δx direction, we get

∂2e

∂P 2
(E)

(
dP

dx
(δx)

)
+

∂2e

∂P∂x
(E)(δx) = 0 ∀E ∈ V.(5.7)

Hence dP
dx (δx) is implicitly defined through the above equation.

The mixed partial ∂2e
∂P∂x is given by

∂2e

∂P∂x
(E)(δx) = 2(Ex, (P − 1)δx) + 2(Eδx, (P − 1)x)

= 2((PE − E)x, δx) + 2((EP − E)x, δx)

= −2(Ex, δx),

(5.8)

where in the first step we used the fact that ET = E and PT = P , and in the
second step we used the fact that PE + EP = E (which comes from P 2 = P ). Note
that if x̄ �= 0, then e = (P (x − x̄) − (x − x̄), P (x − x̄) − (x − x̄)). Even though we
assumed without loss of generality that x̄ = 0, when we take variations of x we need
to consider the corresponding variations of x̄. However, since we care only about
zero mean variations δx, for those the corresponding variation δx̄ = 0. Hence we are
justified in neglecting the term x̄.

It is instructive to examine the finite dimensional space U of R
n-valued functions

defined by

U = span{E′(x− x̄) : E′ ∈ V }.(5.9)

From (5.8) (note that we assumed x̄ = 0) it can be seen that if δx is orthogonal to

U , then ∂2e
∂P∂x = 0, and hence by (5.7) dP

dx (δx) = 0. Since we are only interested in
variations δx that introduce nonzero variations in P , we shall assume δx ∈ U . It can
be shown that the map E′ ∈ V → E′(x− x̄) ∈ U is an isomorphism. This is readily
seen by evaluating this map on the basis Eij and showing that Eij(x − x̄) = Eijx
form an independent set. In fact,

Eijx = xiej+k + xj+kei,

and hence

(Eijx,Elmx) = λi + λj+k, l = i, j = m,

= 0 otherwise.
(5.10)
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Hence {Eijx : i = 1, . . . , k; j = 1, . . . , n − k} is an orthogonal set (and is clearly
independent as well).

Substitute (5.2) and (5.8) into the implicit equation (5.7) for dP
dx , and let

dP

dx
(δx) =

[
0 X̃

X̃T 0

]
and δx = (δx1, δx2), where δx1(t) ∈ R

k and δx2(t) ∈ R
n−k. Then we obtain an

equation for X̃:

(XTx1, X̃
Tx1)− (Xx2, X̃x2) = (Xx2, δx1) + (XTx1, δx2) ∀X ∈ R

k×(n−k).(5.11)

Let δx = E′x ∈ U , where

E′ =
∑
l,m

αlm
Elm√

λl + λm+k

,

and let X̃ =
∑

l,m βlmXlm. Substituting these into (5.11) for X = Xij , we get

βij = αij

√
λi + λj+k

λi − λj+k
.

Hence it follows that

dP

dx
(δx) =

∑
i,j

αij

√
λi + λj+k

λi − λj+k
Eij .(5.12)

The requirement that ‖δx‖ = 1 is equivalent to
∑

i,j α
2
ij = 1. Since ‖Eij‖ = √2, it

follows that ∥∥∥∥dPdx
∥∥∥∥ = max

i≤k, j≤n−k

√
2

√
λi + λj+k

λi − λj+k
,(5.13)

with the maximizing unit-norm variation δx given by (5.6). (Note that we need to
replace x by x− x̄, since we assumed for simplicity that x̄ = 0.) The equation in (5.5)
follows from this. The inequality in (5.5) follows because

max
i≤k,j≤n−k

√
λi + λj+k

λi − λj+k

√
λ1 + · · ·+ λn ≥ max

i≤k,j≤n−k
λi + λj+k

λi − λj+k
≥ 1.

The following corollary is obvious from the above proof.
Corollary 5.5. Assuming λk > λk+1 as before and the use of ordered canonical

coordinates, the linear map δx ∈ U �→ E(x−x̄) ∈ U , where E = dP
dx (δx), is self-adjoint

and has as its eigenvectors the orthonormal basis of U given by {uij} for i = 1, . . . , k
and j = 1, . . . , n− k, which are defined by

uij = Eij(x− x̄) =
xiej+k + xj+kei√

λi + λj+k

.

The corresponding eigenvalues are
λi+λj+k

λi−λj+k
. Hence the induced 2-norm of this operator

is λk+λk+1

λk−λk+1
.
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x

x + δx

(x̄,P (x) = P )

(x̄ + δx̄, P (x + δx) = P + E)

x̃

ξ = ‖x̃− x‖2

x̃ + δx̃1

ξ + δξ1 = ‖x̃ + δx̃1 − x‖2

x̃ + δx̃2

ξ + δξ2 = ‖x̃ + δx̃2 − x‖2

x̃ + δx̃

ξ + δξ = ‖x̃ + δx̃− x‖2
Fig. 5.1. POD sensitivity for y near x: This shows the four different possibilities of using

the reduced models computed from x and y = x + δx to approximate these data sets. The solid
arrows indicate the construction of a POD reduced model from a data set. A pair of dashed and
dotted arrows together show the reduced model being applied to a data set to obtain a reduced and
approximate data set. The approximate data obtained and its square error with respect to x are
shown on the far right.

Remark 5.6. Proposition 5.4 was concerned with the POD method of finding the
best approximating affine subspace using the mean and the covariance matrix of the
data x. Instead, if we considered the POD method of finding the best approximating
linear subspace using the correlation matrix, then we get the same equations and the
same final expression (5.5) for Sk(x) (in the definition of the space U , (x− x̄) needs to
be replaced by x). However, x, the perturbation δx, and the worst-case perturbation
of δx as well as functions in the space U are no longer necessarily zero mean.

5.2. Sensitivity of the projected data ỹ = P (x)(y − x̄) + x̄ and the
error ‖ỹ − y‖2 when y = x and/or y = x+ δx. In some applications the POD
reduced model (x̄, P (x)) constructed from a data set x may be used to approximate
x itself (y = x situation) or some nearby data y = x + δx. For instance, consider
coding a 512 × 512 grey scale image by dividing it into subimages of size 8 × 8 to
provide an ensemble of 4096(= 64× 64) points in the 64 dimensional subimage space.
Suppose that by applying POD to this ensemble we find a subspace of dimension 6
that captures 99.9% of the energy. We could then apply the POD projection to the
subimages and code the entire image using 4096 × 6 grey scale values. This is the
y = x situation. If we have a sequence of nearby images (such as in video), then we
can use the same reduced model (x̄, P (x)) for the nearby images y = x+ δx.

From a theoretical point of view, several different sensitivities may be of interest.
These are shown in Figure 5.1. The sensitivities δx̃1 and δξ1 correspond to the
situation where the same reduced model (x̄, P (x)) (obtained from x) is applied to
both x and to a nearby y = x + δx. The quantity δx̃1 is the perturbation of the
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approximate data, and δξ1 is the perturbation of the square error ξ = ‖x̃−x‖2. Thus

δx̃1 = (P (x)(x+ δx− x̄) + x̄)− x̃

and

δξ1 = ‖(x̃+ δx̃1)− (x+ δx)‖2 − ξ,

where x̃ = P (x)(x − x̄) + x̄. This is the most common kind of sensitivity one is
interested in in practice. Note that the reason for considering the square of the error
rather than the error ‖x̃− x‖ itself is because the square root is not smooth when its
argument is zero.

The sensitivities δx̃2 and δξ2 correspond to the situation where two nearby re-
duced models (x̄, P (x)) and (x̄+ δx̄, P (x+ δx) are applied to the same data x. Thus

δx̃2 = (P (x+ δx)(x− (x̄+ δx̄)) + (x̄+ δx̄))− x̃

and

δξ2 = ‖(x̃+ δx̃2)− x‖2 − ξ.

The sensitivities δx̃ and δξ correspond to the situation where two nearby reduced
models (x̄, P (x)) and (x̄+ δx̄, P (x+ δx)) are applied to the respective data sets x and
x+ δx from which they were constructed. Thus

δx̃ = (P (x+ δx)((x+ δx)− (x̄+ δx̄)) + (x̄+ δx̄))− x̃

and

δξ = ‖(x̃+ δx̃)− (x+ δx)‖2 − ξ.

We provide a useful and easy-to-prove lemma stated without proof.
Lemma 5.7. Let L : H → H be a linear operator in the Hilbert space H. Let K ⊂

H be a closed linear subspace of H. Then we can write H = K ⊕K⊥. Furthermore,
suppose L(K) ⊂ K and L(K⊥) ⊂ K⊥ and that the restrictions L|K and L|K⊥ are
bounded operators. Then ‖L‖2 = max{‖L|K‖2, ‖L|K⊥‖2}.

Proposition 5.8. Consider applying POD to a data set x to find the best approx-
imating k(< n) dimensional subspace. Let the ordered eigenvalues of the covariance
matrix of the data x be given by λ1 ≥ · · · ≥ λn. Suppose λk > λk+1, which en-
sures that P (x) is well defined. Consider the sensitivities depicted in Figure 5.1. For
unit-norm (infinitesimal) variations δx of x, the worst-case variations are given by

‖δx̃1‖ = ‖δx‖,(5.14)

‖δx̃2‖ = λk + λk+1

λk − λk+1
> 1,(5.15)

‖δx̃‖ = λk +
√

λkλk+1

λk − λk+1
> 1,(5.16)

|δξ1| = |δξ| = 2‖x̃− x‖ = 2
√

ξ,(5.17)

δξ2 = 0.(5.18)

(All norms are 2-norms.)
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Proof. We shall use the ordered canonical coordinate system whenever necessary.
We define some relevant subspaces. As before we shall consider the data x to be a

single trajectory x : [0, T ]→ R
n for simplicity of exposition. However, the results will

hold for more general types of data. We shall assume x ∈ L2([0, T ],R
n), the space of

all square integrable R
n-valued functions in [0, T ]. Let Z ⊂ L2([0, T ],R

n) denote the
(closed) subspace of all zero mean functions:

Z =

{
x ∈ L2([0, T ],R

n) :

∫ T

0

xdt = 0

}
.

Its orthogonal complement Z⊥ is finite dimensional and consists of functions that are
constant-valued (almost everywhere) in [0, T ]. We shall further decompose Z into the
orthogonal sum Z = W ⊕ Y , where

W = span

{
xα√
λα

eβ : α = 1, . . . , ñ, β = 1, . . . , n

}
.(5.19)

Here ñ is the number of nonzero eigenvalues of the covariance matrix associated
with trajectory x (thus W depends on x), and xα are its components in the ordered
canonical coordinate system. Since Y is the orthogonal complement of W in Z, it
is closed. The nñ dimensional W is further decomposed into the orthogonal sum
W = U ⊕ U2 ⊕ V1 ⊕ V2, where

U = span

{
uij =

xiej+k + xj+kei√
λi + λj+k

: i = 1, . . . , k; j = 1, . . . , n− k

}
,

U2 = span

{
u2
ij =

λj+kxiej+k − λixj+kei√
λiλj+k(λi + λj+k)

: i = 1, . . . , k; j = 1, . . . , ñ− k

}
,

V1 = span

{
xieα√

λi

: i = 1, . . . , k; α = 1, . . . , k

}
,

V2 = span

{
xj+keβ+k√

λj+k

: j = 1, . . . , ñ− k; β = 1, . . . , n− k

}
.

It should be noted that the spanning elements above form orthonormal bases for the
respective subspaces. Furthermore, define Ũ = U ⊕ U2 and V = V1 ⊕ V2. Also note
that U defined above is the same as in (5.9).

The perturbation δx̃1 is given by

δx̃1 = P (x)(x+ δx− x̄) + x̄− P (x)(x− x̄)− x̄

and simplifies to δx̃1 = P (x)δx. Hence the worst perturbation δx is in the image of
P (x), resulting in δx̃1 = δx. Note that this holds for finite as well as infinitesimal
perturbations.

The variation δx̃2 is given by

δx̃2 = E(x− x̄) + (1− P (x))δx̄,

where E = dP
dx (δx). Note that δx ∈ Z⊥ implies that E = 0 and hence that δx̃2 =

(1−P )δx̄ ∈ Z⊥. Also note that δx ∈ Z implies δx̃2 ∈ Z. Furthermore, if δx ∈ Z and
δx ⊥ U , then δx̃2 = 0. If δx ∈ U , then δx̃2 = E(x − x̄) ∈ U ⊂ Z. From Corollary
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5.5 and Lemma 5.7 it is clear that the worst-case variation ‖δx̃2‖ = λk+λk+1

λk−λk+1
> 1 and

that it corresponds to δx = xkek+1+xk+1ek√
λk+λk+1

.

The variation δx̃ is given by

δx̃ = E(x− x̄) + Pδx− Pδx̄+ δx̄.

Denote by L the operator that maps δx to δx̃. The following are easy to establish:
L(Z) ⊂ Z, L(Z⊥) ⊂ Z⊥, L(W ) ⊂ W , L(Y ) ⊂ Y , L(V ) ⊂ V , and L(Ũ) ⊂ Ũ . If
δx ∈ Z⊥, then δx̃ = δx = δx̄, so ‖L|Z⊥‖ = 1. If δx ∈ Z and δx ⊥ Ũ , it follows that
δx̃ = Pδx. Hence by Lemma 5.7

‖L‖ = max{‖L|Ũ‖, 1}.

It can be verified that the following orthonormal basis of Ũ are eigenvectors of
the finite dimensional operator L|Ũ : Ũ → Ũ :{

xiej+k√
2λi

+
xj+kei√
2λj+k

,
xiej+k√

2λi

− xj+kei√
2λj+k

,
xiej̃+k√

2λi

: i = 1, . . . , k; j = 1, . . . , ñ− k;

j̃ = ñ− k + 1, . . . , n− k

}
.

The eigenvectors {xiej̃+k√
2λi
} all have eigenvalue 1. The eigenvectors {xiej+k√

2λi
+

xj+kei√
2λj+k

}

have corresponding eigenvalues
λi+
√

λiλj+k

λi−λj+k
> 1. The eigenvectors {xiej+k√

2λi
− xj+kei√

2λj+k

}

have corresponding (positive) eigenvalues
λi−
√

λiλj+k

λi−λj+k
< 1. Hence the norm ‖L|Ũ‖ is

given by the largest eigenvalue
λk+
√

λkλk+1

λk−λk+1
> 1. Hence ‖L‖ = λk+

√
λkλk+1

λk−λk+1
.

The (infinitesimal) variation δξ1 is given by

δξ1 = 2(x̃− x, δx̃1 − δx) = (x̃− x, (P − 1)δx),

and hence the worst case is when δx = ± x̃−x
‖x̃−x‖ and results in |δξ1| = 2‖x̃− x‖.

The variation δξ is given by

δξ = 2(x̃− x, δx̃− δx)
= 2(x̃− x,E(x− x̄)) + 2(x̃− x, (1− P )δx̄) + 2(x̃− x, (1− P )δx)
= 2(x̃− x, (1− P )δx).

As before, the worst-case variation is given by δx = ± x̃−x
‖x̃−x‖ and results in |δξ| =

2‖x̃− x‖.
The variation δξ2 is given by

δξ2 = 2(x̃− x, δx̃2)
= 2(x̃− x,E(x− x̄)) + 2(x̃− x, (1− P )δx̄).

Since x̃− x ∈ V2, E(x− x̄) ∈ U , and (1− P )δx̄ ∈ Z⊥, it follows that δξ2 = 0.
Remark 5.9. The above proposition shows that the projected data x̃ may become

extremely sensitive to perturbations in the data set when λk ≈ λk+1. However, the
(square of the) error itself does not show this sensitivity. This is related to the fact
that when λk = λk+1 there are infinitely many choices for P (x) and thus for x̃, and
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these different choices for x̃ may be quite different from each other. However, they
all have exactly the same error

√
λk+1 + · · ·+ λn. It should also be noted that our

sensitivity results hold for infinitesimal variations, and finite perturbations are likely
not to be as sensitive as the first derivative may suggest.

Example 2. This example illustrates a situation where the reduced model solution
is very sensitive to perturbations of the trajectory x used as POD data. We consider
a dissipative ODE example which has a periodic orbit which is a global attractor.
Consider the ODE

ẋ = A(x− f(t)) + f ′(t), x ∈ R
n,

where f : R → R
n is smooth. Observe that for any choice of A and f , x = f(t) is a

trajectory of this system. We exploit this fact to independently choose f(t) and A to
create an interesting example which highlights some of the potential problems with
the POD procedure.

We chose f(t) to be periodic and A to be a constant matrix with all of its eigen-
values in the complex left half plane. Thus x = f(t) will be a global attractor of this
system. Specifically we chose f(t) to be of the form

f(t) =

(√
a1 sin

(
2πt

25

)
,
√
a2 cos

(
2πt

25

)
,
√
a3 sin

(
4πt

25

)
,
√
a4 cos

(
4πt

25

))T

,

where ai are real nonnegative constants. This trajectory has period 25. If we use
this trajectory in the interval [0, 50] (two periods) as POD data, we will get a reduced
model with x̄ = 0 and a diagonal covariance matrix R with Rii = 25ai. This is because
the component functions of f(t) in the interval [0, 50] form an orthogonal set. If we
choose a4 = 0 (or very small), then the POD procedure based on this trajectory will
give a reduced model ODE by projecting onto the first three components in R

4. This
projection will preserve all (or almost all) of the energy of the POD data trajectory.
Now consider a matrix A that has all of its eigenvalues in the complex left half plane,
but its submatrix consisting of the first three rows and columns (i.e., the projection
of A onto the first three components in R

4) has an eigenvalue in the complex right
half plane. Such a choice of A will lead to a reduced model which is unstable. If
a4 = 0, the global attractor x = f(t) will still be a trajectory of the reduced model
but it will not be an attractor. Thus the qualitative behavior of the reduced model
will be quite different even though the POD procedure is based on a global attractor
of a dissipative system.

In order to find such an A, we first chose A to be diagonalizable with eigenvalues

λ(A) = {−0.7 + 0.4i,−0.7− 0.4i,−0.2,−0.1}.
Then by trial and error, applying random similarity transformations, we found an A
with the above canonical form such that its submatrix consisting of the first three
rows and columns had an eigenvalue of about 1.8 in the complex right half plane.

If we choose a4 = 0, then with k = 3 we do not expect high sensitivity to per-
turbations in the data. However, we get an interesting example where doing POD on
a lower dimensional global attractor still leads to a reduced model which is unstable
and qualitatively different. Since we were interested in studying the effects of per-
turbations in the POD data on the final outcome of a POD reduced model solution,
instead of choosing a4 = 0, we chose the following values for ai:

a1 = 5, a2 = 0.5, a3 = 0.011, a4 = 0.01,
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Fig. 5.2. Example 2: True solution x(t).

where a3 ≈ a4. With this choice, a reduced model of dimension k = 3 will capture
most of the energy, but we will expect high sensitivity to small perturbations in the
POD data. We chose the initial value problem with x(0) = f(0) and time interval
[0, 50]. Thus the solution trajectory is x = f(t) and consists of two periods. In order
to incoorporate the effects of numerical errors, we computed the solution using the
MATLAB solver ode45 and then computed the POD reduced model of dimension
k = 3 numerically. We also numerically computed the projected trajectory x̃ as well
as the solution x̂ of the reduced ODE model. We found that the POD procedure
preserved 99.8% of the energy and that the sensitivity factor was Sk = 480. We found
‖x‖ = 11.75 and ‖x̃‖ = 11.74. The reduced model solution was highly unstable and
‖x̂‖ = 1.25×1038. The eigenvalues of the reduced model matrix were {1.80,−0.281+
0.217i,−0.281− 0.217i}.

Then we perturbed the trajectory x by δx in the direction given by (5.6) that
creates the worst perturbation in P . We chose ‖δx‖ = 0.1. We then computed
the POD reduced model corresponding to x + δx and also computed the perturbed
projected trajectory x̃ + δx̃ as well as the perturbed reduced model solution x̂ + δx̂.
Figure 5.2 shows a plot of the numerically computed true solution x(t) (i.e., the full
model solution). Figures 5.3 and 5.4 show how a small perturbation in x leads to
a larger perturbation in x̃, and Figure 5.5 shows an even larger perturbation in x̂.
We also observed that while the unperturbed reduced model projected almost onto
the first three components in R

4, the perturbed reduced model was projecting onto a
subspace that consisted of the span of {e1, e2} and a combination of e3 and e4, and
this subspace was rotated from the span of {e1, e2, e3} by an angle of about 41◦ (ei
being the standard basis vectors in R

4). It was also observed that the eigenvalues of
the perturbed reduced model matrix were {2.89,−0.337,−0.166}, which correspond
to a larger instability and a qualitatively different nonoscillatory behavior from that
of the unperturbed reduced model.

This example illustrates two potential inadequacies of the POD method. One
is that even capturing 100% of the energy of a globally attracting low dimensional
trajectory may still lead to a POD reduced model with the wrong dynamics. Second,
it also illustrates how POD sensitivity to the data trajectory may lead to qualitatively
different reduced models.

The first problem is related to two factors. One is that a single trajectory (even
a global attractor) or a set of trajectories alone does not carry all the information
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Fig. 5.3. Example 2. Perturbation of x: Solid: x; dashed: x+ δx. The perturbation is so small

( ‖δx‖‖x‖ = 0.0085) that the two trajectories are barely distinguishable. Note that all four components

are plotted for both x and x+δx. The perturbation is only noticeable in the two smaller components.

0 5 10 15 20 25 30 35 40 45 50
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Fig. 5.4. Example 2. Perturbation of x̃: Solid: x̃; dashed: x̃ + δx̃. The perturbation is larger
than that of x but still not noticeable for the two large components.

about the dynamics. Second, the projection of a vector-field onto a given subspace
does not preserve its stability characteristics. Our example has these characteristics
and in addition has a high sensitivity factor.

5.3. Effect of POD sensitivity in data representation and model re-
duction. Consider the reduced model (x̄, P (x)) obtained from a data set x. Sup-
pose we apply this reduced model to represent another data set y and obtain ỹ =
P (x)(y − x̄) + x̄. The previous subsection was concerned with the special situation
where y = x. In general situations, the data set y is different from x. The variation
δỹ due to a variation δx is given by

δỹ = E(y − x̄) + δx̄− Pδx̄,

where E is the corresponding variation of P . Since ‖E‖ ≤ Sk
‖δ(x−x̄)‖
‖x−x̄‖ (assuming

‖x− x̄‖ �= 0), we obtain

‖δỹ‖ ≤ Sk
‖y − x̄‖
‖x− x̄‖‖δ(x− x̄)‖+ ‖δx̄‖.



1916 MURUHAN RATHINAM AND LINDA R. PETZOLD

0 5 10 15 20 25 30 35 40 45 50
−2

0

2

4

6

8

10

12

14
x 10

61

Fig. 5.5. Example 2. Perturbation of x̂: Solid: x̂; dashed: x̂ + δx̂. Note that x̂ appears to be
zero since it is of the order 1038, while x̂+ δx̂ is of the order 1061.

Assuming further that ‖y‖ �= 0, we obtain the following fractional sensitivity relation:

‖δỹ‖
‖y‖ ≤ Sk

‖y − x̄‖
‖y‖

‖δ(x− x̄)‖
‖x− x̄‖ +

‖δx̄‖
‖y‖ .(5.20)

Now let us consider the case where we use the reduced model (x̄, P (x)) to compute
the solution of an ODE initial value problem for a linear time invariant system ẏ = Ay,
with initial condition y(0) = y0 in the interval [0, T ]. Let y denote the true solution
and ŷ denote the reduced model solution. Then ŷ satisfies the initial value problem
˙̂y = PAŷ, ŷ(0) = P (y0 − x̄) + x̄. Taking variations, we get

δ ˙̂y = PAδŷ + EAŷ,

with initial condition δŷ(0) = E(y0 − x̄) − Pδx̄ + δx̄. Hence applying the estimate
(3.2), we get

‖δŷ‖ ≤ ‖F (T ;PA)‖‖E‖‖A‖‖ŷ‖+ ‖G(T ;PA)‖‖E‖‖y0 − x̄‖+ ‖G(T ;PA)‖‖δx̄‖,

where F and G are defined by (3.1). Since ‖E‖ ≤ Sk
‖δ(x−x̄)‖
‖x−x̄‖ , it follows that

‖δŷ‖
‖ŷ‖ ≤

(
‖F (T ;PA)‖‖A‖+ ‖G(T ;PA)‖‖y0 − x̄‖

‖ŷ‖
)

Sk
‖δ(x− x̄)‖
‖x− x̄‖

+ ‖G(T ;PA)‖ ‖δx̄‖‖x− x̄‖ .
(5.21)

Example 3. We considered the same initial value problem of Example 2 in the
same interval. However, instead of using the true solution as POD data, we used the
set of eight trajectories x obtained by solving the system in the same interval with
the symmetrically placed initial conditions x(0) = ei and x(0) = −ei for i = 1, . . . , 4,
where ei ∈ R

4 are the standard basis vectors as POD data, and computed the rank 3
projection matrix P (x). The sensitivity factor was Sk = 10.140. We then perturbed
this data set x in the direction given by (5.6) (this gives the worst perturbation in
P ) by an amount ‖δx‖ = 0.5. The norm of the data set was ‖x‖ = 54.070, and
‖x− x̄‖ = 52.90. Thus we had the fractional change ‖δx‖/‖x− x̄‖ = 0.0095. We also
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Fig. 5.6. Example 3. Perturbation of ỹ: Solid: ỹ; dashed: ỹ + δỹ.
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Fig. 5.7. Example 3. Perturbation of ŷ: Solid: ŷ; dashed: ŷ + δŷ.

computed the projections P (x) and P (x + δx) corresponding to the data sets x and
x+ δx.

Denote by y the true solution of the initial value problem. (This is the same as
x(t) of Example 2 in Figure 5.2.) We applied both reduced models P (x) and P (x+δx)
to compute ỹ = P (x)(y − x̄) + x̄ and ỹ + δỹ = P (x + δx)(y − x̄ − δx̄) + x̄ + δx̄, the
projected solutions. Figure 5.6 shows the two different projected solutions.

We then computed the reduced model solutions ŷ and ŷ+δŷ corresponding to P (x)
and P (x + δx), respectively. These are plotted in Figure 5.7. This again illustrates
how a small perturbation in the POD data set may cause a large perturbation in the
reduced model solution.

Remark 5.10. In this section we basically saw how POD results may be very
sensitive to slight perturbations in the data when λk ≈ λk+1. However, one needs to
be careful in interpreting these results. This raises the question of whether one should
consider the sensitivity factor Sk (in addition to the projection error

√
λk+1 + · · ·+ λn)

as an important factor in choosing an appropriate dimension k for the reduced model.
Sometimes the distribution of eigenvalues may be such that seeking higher accuracy
may lead to a high sensitivity factor Sk. The importance of Sk depends on the na-
ture of the application. It must also be noted that our sensitivity analysis holds only
for infinitesimal perturbations; the sensitivity for finite perturbations is likely to be
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different. For instance, infinitesimal analysis predicts that in the limit λk → λk+1

the sensitivity of P with respect to x grows indefinitely. However, since projection
matrices live on a compact set (‖P‖ = 1), the finite perturbations of P cannot grow
indefinitely. As mentioned in Remark 5.9, when y ≈ x, for data compression type
problems we have already argued that the sensitivity factor is not a serious issue.
However, in reduced order models for ODEs, Examples 2 and 3 show how a small
perturbation in the POD data may lead to very large perturbations in the reduced
model solutions.

In addition, we would like to note that in iterative methods based on POD such
as the DIRM method [20, 21], the convergence of the iterations will depend on the
sensitivity factor. This has been theoretically and numerically demonstrated in [20].

6. Computational complexity of POD reduced order models. Since the
POD method of model reduction results in a smaller dimensional system of ODEs, one
might expect computational savings when integrating the resulting system. However,
this may not be so in practice. In this section we shall take a close look at the
complexity of computation for integrating a system of ODEs (initial value problems)
and evaluate the savings if any in using the POD method.

To be precise, by complexity we shall mean the asymptotic behavior of the number
of floating point operations (flops—addition, multiplication, and elementary functions
each count as one flop) involved per integration step as the system size n (k for re-
duced models) becomes very large. Table 6.1 shows the complexity of various basic
operations that are used in integration of ODEs. All matrices are n× n and vectors
are n dimensional. Banded matrices are assumed to have b+ 1 nonzero entries sym-
metrically placed around the diagonal. See [11] for details on complexity of linear
algebraic operations. We slightly abuse the notation and denote by f(n) the number
of flops involved in computing a nonlinear vector-field f(x, t), where f : R

n×R→ R
n.

Computing the reduced order vector-field ρf(ρT z+ x̄, t) could potentially be more ex-
pensive than f(n). If this is naively treated as a composition of functions, then the
complexity is f(n)+4nk (two matrix-vector multiplications should be included). De-
pending on the form of f , one may not be able to improve on this. However, often
the analytical formula ρf(ρT z+ x̄, t) may be simplified, especially if f is a polynomial

in x. We shall denote the complexity of this term by f̂(k, n). This may be bounded
as follows:

f̂(k, n) ≤ f(n) + 4nk.

For Jacobian evaluations we have assumed the use of centered finite differences. See
[9] for efficient numerical evaluation of banded Jacobians by finite difference approx-

imation. Throughout the rest of this section we will assume that f(n) and f̂(k, n)
are of order greater than or equal to n and k, respectively. Under this assumption we
can ignore the subtractions and divisions involved in computing the finite differences.
If analytical Jacobians are used, the corresponding complexity is likely to be similar
[5]. It must be noted that even if the original Jacobian is banded, the reduced model
Jacobian is not likely to be.

First we shall consider a linear time invariant system ẋ = Ax. Table 6.2 shows
the asymptotic complexities for various cases. The explicit method considered is for-
ward Euler, and the implicit method considered is backward Euler. The explicit case
(xn = xn−1+hnAxn−1) involves basically a matrix-vector product. The implicit case
involves solving the equation (I−hnA)xn = xn−1 at each time step. We assumed that
this is done by Gaussian elimination, first doing an LU decomposition and then two
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Table 6.1
Complexity of some basic operations. Dense and banded refer to the full model Jacobians.

Jacobian evaluation assumes centered finite differencing.

Dense Banded

Matrix-vector product Ab 2n2 2bn

LU decomposition 2n3

3
b2n
2

Triangular linear system solve n2 bn

Nonlinear function evaluation f(n) f(n)

Nonlinear function evaluation (reduced model) f̂(k, n) f̂(k, n)

Nonlinear Jacobian evaluation 2nf(n) 2(b+ 1)f(n)

Nonlinear Jacobian evaluation (reduced model) 2kf̂(k, n) 2kf̂(k, n)

Table 6.2
Asymptotic complexity for linear systems.

Full model Reduced model Full model Reduced model
explicit explicit implicit implicit

Dense 2n2 2k2 n3

15
k3

15

Banded 2bn 2k2 ( b
2

20
+ 3b+ 2)n k3

15

triangular system solves (one forward and one backward). Usually the LU decomposi-
tion needs to be computed only whenever the time step hn changes. Throughout this
section we shall assume that on average, the LU decomposition needs to be computed

only once every 10 time steps. Thus we obtain a complexity of n3

15 +2n2+ n2

10 +
n
10 ∼ n3

15

for a dense matrix A and ( b
2

20 + 3b + 2)n for a banded matrix A (the quantity b is
held constant). If a POD reduced order model of dimension k(< n) is used, then we
replace n by k in most of the expressions except for that for banded A (the reduced
model matrix ρAρT is not likely to be banded, and we shall assume it to be dense). It
must be noted that in several examples when n→∞, the adequate size k of a reduced
model remains constant after an initial growth. This is especially true in discretized
PDE systems, since a finite number of empirical modes are adequate to capture any
given percentage of the energy. As a result the asymptotic formulae for k → ∞ are
often not applicable.

For nonlinear systems ẋ = f(x, t), the explicit method (forward Euler) involves
evaluating xn = xn−1 + hnf(xn−1, tn−1); hence the complexity is f(n) + 2n ∼ f(n).
If the reduced model is used, then one needs to evaluate ρf(ρT zn−1 + x̄, tn−1), and

the corresponding complexity is f̂(k, n) + 2k ∼ f̂(k, n).

For the implicit case one needs to solve the nonlinear system of equations

F (xn) � xn − xn−1 − hnf(xn, tn) = 0

for xn. This is done typically by Newton iteration[
I − hn

∂f

∂x

]
δ(m)
n = xn−1 − x(m−1)

n + hnf(x
(m−1)
n , tn),(6.1)

where δ
(m)
n = x

(m)
n − x

(m−1)
n is the correction. Ideally

∂f

∂x
=

∂f

∂x
(x(m−1)

n , tn);
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Table 6.3
Asymptotic complexity for nonlinear systems.

Full model Reduced model Full model Reduced model
explicit explicit implicit implicit

Dense f(n) f̂(k, n) nf(n)
5

+ n3

15
kf̂(k,n)

5
+ k3

15

Banded f(n) f̂(k, n) bf(n)
5

+ b2n
20

kf̂(k,n)
5

+ k3

15

hence the Jacobian should be evaluated at every Newton iteration inside a given time
step. In practice it has been observed that one could get away with keeping the
Jacobian unchanged not only during the Newton iteration but also for a few time
steps, without severely compromising the accuracy. We assumed that the Jacobian
update and the LU decomposition typically need to be done only once every 10 time
steps. Note that the right-hand side of (6.1), however, needs to be computed at every
Newton iteration. The evaluation of the right-hand side alone requires an asymptotic
complexity of f(n) at every Newton iteration for the full model. For the model
reduced system one needs to evaluate ρf(ρT zn+ x̄, tn), which involves an asymptotic

complexity of f̂(k, n). It is reasonable to assume that the number of Newton iterations
per time step is on average a number independent of system size n (or k for the reduced
model). Often in practice this could be about 2. Thus asymptotically the complexity
of the Jacobian evaluations dominates over the complexity of evaluating the right-
hand side of (6.1). Under these assumptions we get the asymptotic complexities
shown in Table 6.3.

For nonlinear systems with explicit solver the asymptotic savings depend solely on
the complexity of the nonlinear function evaluations f(n) and f̂(k, n). Hence savings
can be expected only if ρf(ρT z + x̄, t) can be analytically simplified.

For nonlinear systems with implicit solver the complexity has two components:
one from the nonlinear function evaluations and the other from the linear algebra.
Depending on the complexity of f (or f̂ for reduced models), one of these terms
may be dominant. Asymptotic savings achieved depend on several factors including
complexity of f(n) and f̂(k, n) as well as the assumptions on asymptotic behavior of
k as n→∞.

In our complexity analysis we have made several assumptions which are not always
valid in practice. Even though most of these assumptions are reasonable, the combined
error in our estimate of computational savings can sometimes be wrong by more than
a factor of 10. For instance, we looked at complexity per time step. This is useful only
if both the full model and the reduced model took more or less the same number of
time steps. In the two examples here, the number of time steps did not vary by more
than a factor of 2, except for the case of the explicit solver applied to the nonlinear
PDE example with reduced model dimension k = 6. The asymptotic formulae may
not be very applicable for the reduced models because of their smaller size. In addition
we ignored computations associated with adaptive stepsize control, which seem to be
a significant percentage, for the banded Jacobian case.

It must also be noted that we assumed that we care only about the solution value
at the final time (or perhaps only at a few different points in the time interval), and
this allowed us to ignore the cost of computing x̂ = ρT z + x̄. The next two examples
illustrate how various complex factors can affect the computational savings achieved
by the use of POD reduced order models.

Example 4 (RC circuit—dense Jacobian). We considered the example of an
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electric circuit with resistors and capacitors. By connecting each node to every other
node, we obtain a dense Jacobian. One of the nodes is considered the ground (has
zero voltage). Such a circuit with n nodes other than ground is described by a first
order system of n linear ODEs. The current ijk from the jth node to the k node is
given by

ijk = gjk(vj − vk) + cjk(v̇j − v̇k),

where gjk and cjk are the appropriate conductances and the capacitances, and v ∈ R
n

is the vector of node voltages. We may add a nonlinearity to the resistors to obtain

ijk = gjk(vj − vk) + hjk(vj − vk)
3 + cjk(v̇j − v̇k).

These equations when combined with Kirchoff’s current law give rise to an equation
v̇ = f(v).

We chose the parameter values somewhat ad hoc so that the resulting linearized
system had a reasonable range of eigenvalues. We chose a system with n = 500. A
random initial condition was chosen, and the time interval was chosen to be [0, 2].
Both linear and nonlinear versions were simulated, with both explicit and implicit
solvers ode45 and ode15s from MATLAB. Reduced order models were computed
from the resulting trajectories and applied to both the linear and nonlinear systems.
A reduced order model of size k = 50 was used, even though a size of k = 2 would
have preserved more than 99% of the energy. The reason for using k = 50 is that
k = 2 is too small for the asymptotic formulae to be valid. The number of floating
point operations as counted in MATLAB are shown in Table 6.4.

The asymptotic complexity of function evaluations for this example are given by

f(n) = Cn2,

where C = 13 for the nonlinear (cubic) case and C = 2 for the linear case. The
complexity for the nonlinear reduced model is

f̂(k, n) = Cn2 + 4nk,

when ρf(ρT z + x̄) is not analytically simplified. Since f(x) is cubic for the nonlinear
case, it is possible to analytically simplify ρf(ρT z+ x̄). This will improve the savings
achieved by the reduced order model. In fact assuming that we get a cubic polynomial
(in z) with all the possible monomials (dense cubic), we can estimate the complexity of

f̂ . Table 6.5 compares the complexities of f̂ after analytical simplification (assuming
a dense cubic) for different values of k with that of f(n). It is clear that for values of
k = 15 or k = 8 we can expect significant savings.

We can see from Table 6.6 that the savings predicted by our theory is within an
order of magnitude of the actual savings. It must be noted that our theory is only
valid asymptotically as n and k get arbitrarily large and that our theory was based
on forward and backward Euler methods, while the example used a Runge–Kutta
method for the explicit case and a numerical differentiation formula (NDF) for the
implicit case [24]. The discrepancies are due to several other factors as well. One
is that the reduced model size k = 50 is not large enough to use the asymptotic
formula. This is an important factor in the linear implicit case but not in the explicit
case. Another reason is that the number of steps taken were different for the full
model and the reduced model. Furthermore, there are computations associated with
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Table 6.4
Computational cost in 103 flops: RC circuit. Full model versus unsimplified reduced model with

k = 50.

Full model Reduced model (unsimplified, k = 50)
Linear explicit 37, 632 645

Nonlinear explicit 238, 382 305, 041
Linear implicit 646, 460 2, 323

Nonlinear implicit 2, 609, 800 400, 177

Table 6.5
Cost (in flops) of f and simplified f̂ : RC circuit.

Full model Reduced model Reduced model Reduced model
n = 500 k = 50 k = 15 k = 8
3250000 2342500 24450 2624

Table 6.6
Computational savings ratio: RC circuit, unsimplified reduced model with k = 50.

Observed savings Asymptotic theoretical savings
Linear explicit 58 100

Nonlinear explicit 0.78 1
Linear implicit 278 1000

Nonlinear implicit 6.5 10

adaptive stepsize control which were not accounted for by our theory. The latter was a
significant factor in the explicit case. We found that the computations associated with
adaptive stepsize control grew linearly with system dimension. Furthermore, we found
that the Jacobian evaluations were done much less often than the LU decomposition,
contrary to our initial assumption. In fact there was only one Jacobian evaluation for
the whole simulation in all of the implicit solvers.

Example 5 (reaction-diffusion PDE in one dimension—banded Jacobian). We
considered the one dimensional reaction diffusion equation

xt = 0.1xss − cx3

in the spatial interval s ∈ [0, 6] with zero boundary conditions. We discretized the
spatial dimension on a uniform grid of n interior points using centered differences
for both first and second derivatives. This yields a system of ODEs: ẋ = f(x) with
x ∈ R

n. We chose two values c = 0 and c = 1. The first gives rise to a linear
system and the second to a nonlinear system, both being dissipative. In both cases
the Jacobian is a tridiagonal matrix (hence is banded with b = 2). We chose a system
of size n = 499 and used a reduced order model of size k = 50. The following smooth
initial condition was chosen:

x(0, s) = exp

(
− (s− 3)2

9

)
sin2(

πs

2
), s ∈ [0, 6].

The time interval of simulation was [0, 5]. We simulated the systems with two dif-
ferent MATLAB solvers: ode23 (explicit) and ode15s (implicit). The cost of the
computation is shown in Table 6.7.

The asymptotic complexity of function evaluations for this example is given by

f(n) = Cn,
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Table 6.7
Computational cost in 103 flops: One dimensional PDE example, full model and unsimplified

reduced model with k = 50.

Full model Reduced model (unsimplified, k = 50)
Linear explicit 149, 150 69, 527

Nonlinear explicit 182, 310 1, 342, 400
Linear implicit 1, 732 3, 508

Nonlinear implicit 2, 089 30, 458

Table 6.8
Computational savings factor: One dimensional PDE example, k = 50, unsimplified f̂ .

Observed savings Asymptotic theoretical savings
Linear explicit 2.1 0.6

Nonlinear explicit 0.14 0.048
Linear implicit 0.49 0.49

Nonlinear implicit 0.069 0.002

where the constant C = 2(b+ 1) = 6 for the linear case and C = 10 for the nonlinear
case. The complexity of the nonlinear reduced model function evaluations is

f̂(k, n) = Cn+ 4nk,

when ρf(ρT z + x̄) is not analytically simplified.
The computational savings achieved and the theoretical asymptotic values are

compared in Table 6.8. With the exception of the nonlinear implicit case, the asymp-
totic theory is within an order of magnitude of the observed values. For the same
reasons as in the dense Jacobian case, one cannot expect the theory to be very accu-
rate. In addition, in the banded Jacobian case there are other factors. Since the costs
associated with overhead such as stepsize control as well as the rest of the computa-
tional costs grow linearly with system size for the unreduced systems, it is no longer
valid to neglect the cost of such overhead even asymptotically. Hence the theory un-
derestimates the cost for the unreduced case. This basically explains why the savings
were better than predicted by theory. Another reason for the observed discrepancies
is that MATLAB (version 5) does not take advantage of the banded structure of the
Jacobian. It uses only the sparsity pattern. As a result, the cost of LU decomposition
and triangular system solves is greater than that predicted by the theory.

It must be noted that one reason why there are no computational savings is
due to the fact that the cost of function evaluation is significantly worse for the
reduced model in the nonlinear case: f̂ ≈ 10n + 4nk = 210n � 10n ≈ f(n). This
was with no expression simplification applied to ρf(ρT z + x̄). If we simplify the
expression and treat it as a dense cubic, the cost of evaluation (for the k = 50

case) is f̂ = 2342500 � 104790 = 217n, which is even worse. This is because the
cubic nonlinearity in f is diagonal in the original x coordinates, while the simplified
expression for f̂(z) is (typically) a dense cubic. The cost of evaluating a dense cubic

R
k → R

k is of order k4

3 and can be prohibitively large if k is not sufficiently small.
However, if we use a smaller reduced order model of size k = 6, which in this example
preserves all of the energy of the solution trajectory up to eight digit accuracy, we
indeed get significant computational savings. For k = 6, the cost of function evaluation
(assuming a dense cubic) is only ≈ 996 flops. Table 6.9 shows the savings factor for

k = 6 when the simplified expression for nonlinear f̂ is used and compares this with the
theoretical asymptotic values. The theoretical values are within an order of magnitude
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Table 6.9
Computational savings factor: One dimensional PDE example, k = 6, simplified nonlinear f̂ .

Observed savings Asymptotic theoretical savings
Nonlinear explicit 860 105
Nonlinear implicit 10.9 1.75

of the observed values. The discrepancies are again due to various factors.

This example illustrates how a multitude of factors affects the computational costs
of using a POD reduced model in place of the full original model.

7. Conclusions. We investigated some basic properties of the POD method in
finite dimensions. We provided an analysis of the errors involved in computing the
solution of a nonlinear ODE initial value problem using a POD reduced order model.
In addition to providing quantitatively reasonable error estimates, the analysis also
explains the various factors that affect the error.

We also provided a sensitivity analysis of the POD method. We introduced the
POD sensitivity factor which was a nondimensional measure of the sensitivity of the
resulting projection with respect to perturbations in the data. We studied the effect
of data perturbation on the projected data as well as the reduced model solution of
the POD method. The POD sensitivity factor is relevant in some applications of POD
while it is not in some other applications. We provided a discussion of this issue.

In addition to the error and sensitivity analysis, we also provided an analysis of
computational complexity in using the POD reduced model in computing the solution
to an ODE initial value problem. Our analysis showed that the computational savings
achieved by POD depend on several factors and that the complexity of the nonlinear
function evaluations can significantly affect the savings that might be gained by the
use of a POD reduced model. Our examples suggest that combining expression sim-
plification with reduced order models (for the class of polynomial vector-fields) may
achieve significant savings if the reduced models are small enough.

Acknowledgment. We would like to thank the reviewers for their constructive
comments.
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Abstract. We propose a fully conservative front tracking algorithm for systems of nonlinear
conservation laws. The algorithm improves by one order in its convergence rate over most finite
difference schemes. Near tracked discontinuities in the solution, the proposed algorithm has O(∆x)
errors, improving over O(1) errors commonly found near a discontinuity. Numerical experiments
which confirm these assertions are presented.
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1. Introduction. We propose and demonstrate a tracking finite difference algo-
rithm for the problem of nonlinear conservation laws which is (a) fully conservative
and (b) improves the local error by one power of ∆x near tracked discontinuities. The
one dimensional (1D) version of these ideas was presented in [9], and a preliminary
(but different) two dimensional (2D) algorithm with the same properties was given in
[8], while the results were announced in [10].

Discontinuities in the solution of systems of nonlinear hyperbolic conservation
laws are a primary difficulty for numerical simulation. These equations have both
linear and nonlinear discontinuities, and (perhaps counterintuitively) the former are
more difficult. Nonlinear discontinuities are self-focusing, and their numerical solution
does not grow in width with time. The linear discontinuities in contrast do grow and
may typically occupy 4 to 10 mesh cells in width.

Front tracking was introduced to give special treatment to discontinuities. A ro-
bust validated code has been developed and used in production simulation of fluid in-
stabilities [5, 7, 6, 4]. See also the URL http://www.ams.sunysb.edu/∼shock/FTdoc/
FTmain.html.

In this paper, we address an algorithmic issue—formulation of a conservative
tracking algorithm. In its original formulation, conservation was enforced only in
regular grid cells, those not cut by the tracked front. The missing points of the
computational stencil, in the case of a front cutting through the stencil, are filled
in as ghost cells, with the state values obtained by extrapolation from nearby front
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states of the same component. Thus the state values are double-valued near the front,
with the left-component states extending by extrapolation for a small distance into
the right component, and vice versa. The use of ghost cell states was introduced into
front tracking in 1980 [11]. With the ghost states thus defined, the interior solver
follows a conventional finite difference algorithm.

The algorithm proposed in the present study is conservative for all grid cells,
including the irregular ones cut by the front. This algorithm presented is related to
earlier work of Swartz and Wendroff [18], Harten and Hyman [14], Chern and Colella
[2], and Pember et al. [16] but differs from these works in several ways. Chern and
Colella and Pember et al. redistribute mass from small cells to nearby large ones to
preserve stability and conservation. This issue is addressed here by merging small
cells. Swartz and Wendroff discussed only the 1D algorithm. Pember et al. [16]
reviews these earlier works in 1995. We emphasize here tracking of a contact rather
than the shock tracking of [2].

2. Conservative tracking. Consider the 1D system of conservation laws

∂u

∂t
+� · f(u) = 0.(1)

Weak or discontinuous solutions of this equation are not unique, and the equation
must be supplemented by an entropy condition [17]. In the case of discontinuities,
the partial derivatives in (1) are not defined, and Rankine–Hugoniot conditions

n · ([f ]− v[u]) = 0(2)

apply. Here [A] = A+ − A− is the jump in the quantity across the interface, v is
the velocity of the interface, and n is a unit normal to the interface. In fact, (2)
results from (1) if the derivatives in (1) are interpreted in the sense of distributions.
Representing (1) in integral form, for a moving discontinuity surface S bounding a
time-dependent volume V , we have

∂

∂t

∫
V

udV +

∫
S

n · (f(u)− vu)dS = 0.(3)

Thus n · (f − vu) is the dynamic flux, which replaces the usual flux f for the time-
independent surface.

The essence of the new algorithm introduced here is to track the front in space
and time, based on the following three steps:

1. Construction of the space-time interface to follow the moving solution dis-
continuity. This will follow the grid-based construction [7] and extend it to
space-time.

2. Construction of space-time finite volume cells, starting as a partition of a
regular space-time cell. The cells cut by the space-time interface are defined as
irregular. To ensure an adequate Courant–Friedrichs–Lewy (CFL) restriction,
portions of such irregular cells with too small a top (at tn+1) or no top at all
are merged with neighbor cells.

3. Godunov-type finite volume differencing with limiters to ensure continuity of
the dynamic flux (3), so that the algorithm is conservative on a cell by cell
basis.

To explain these steps at a more detailed but still simple level, we consider in
one dimension an interface whose position at time t is σe(t), and we assume a linear
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approximation σ(t) to σe(t) on [tn, tn+1]. The 1D algorithm is divided into two cases.
We consider only the first case, in which the cell merger from step 2 above is not
required. We assume that the approximate interface does not cross a mesh cell center
within the time interval [tn, tn+1]. Thus for some mesh index i, xi ≤ σ(tn), σ(tn+1) ≤
xi+1. We displace the cell boundary located at x1+1/2 to the interface location. This
change results in a redefinition of the cell average quantity, to yield

Umi = (∆m
i,e)
−1

∫ σe(tm)

xi−1/2

u(x, tm)dx,(4)

Umi+1 = (∆m
i+1,e)

−1

∫ xi+3/2

σe(tm)

u(x, tm)dx(5)

for m = n, n+ 1, where ∆m
j,e is the interval over which Umj is averaged.

Denote by Umi on [xi−1/2, σ(tm)] and Umi+1 on [σ(tm), xi+3/2] the numerical ap-
proximations of Umi and Umi+1, respectively, and let ∆m

j be the interval over which
Umj is averaged. Integrating the hyperbolic system over the two trapezoidal regions
[xi−1/2, σ(t)] × [tn, tn+1] and [σ(t), xi+3/2] × [tn, tn+1], the finite difference equation
for irregular cells is replaced by

∆n+1
i Un+1

i = ∆n
i Uni −∆t{Fn+1/2

int −Fn+1/2
i−1/2 },(6)

∆n+1
i+1 Un+1

i+1 = ∆n
i+1Uni+1 −∆t{Fn+1/2

i+3/2 −Fn+1/2
int },(7)

where Fn+1/2
int is the numerical approximation to the flux

F
n+1/2
int =

1

∆t

∫ tn+1

tn

(f(u(σe(t), t))− seu(σe(t), t)) dt(8)

across the exact interface. Here σe(t) and se = dσe/dt. The definition (8) gives equal
values when evaluated on either side of the interface due to the Rankine–Hugoniot
condition (2).

Let s(t) = dσ/dt be the speed of the numerically tracked interface σ(t). The choice
of the numerical shock speed is discussed in [3]. Assume a smooth solution in the
interior region excluding the tracked waves. Also we assume that the Riemann solution
associated with (1) depends Lipschitz-continuously on the left and right states which
define the Riemann problem. Using a second order monotonic upstream-centered
scheme for conservation law (MUSCL) reconstruction, we first reconstruct a piecewise
linear function on each cell out of the cell averages at t = tn to yield the approximate
left and right states Unl ,Unr at σe(tn) so that Unl − u(σe(tn)−, tn) = O(∆x2) and
Unr − u(σe(tn)+, tn) = O(∆x2). Solving the Riemann problem with the above two
approximate states, we obtain a shock speed sn which satisfies sn−se(tn) = O(∆x2).
Therefore, the approximate tracked interface position at t = tn + 1

2∆t is

σn+1/2 = σ(tn) +
1

2
∆t · sn = σe(tn+1/2) +O(∆t2).

Using a Taylor expansion, we reconstruct the approximate left and right states Un+1/2
l ,

Un+1/2
r at (σn+1/2, tn+1/2) from the MUSCL reconstruction so that

Un+1/2
l − u(σe(tn+1/2)−, tn+1/2) = O(∆x2)(9)
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and

Un+1/2
r − u(σe(tn+1/2)+, tn+1/2) = O(∆x2).(10)

Finally, solving a Riemann problem with the left and right states Un+1/2
l and Un+1/2

r ,
we obtain the half time step shock speed sn+1/2 = se(tn+1/2) +O(∆t2), and the new

two sides states Un+1/2
l1 and Un+1/2

r1 across the interface we want to track. Since the
exact solution is smooth near the interface, the new states still satisfy (9) and (10).
This construction gives a local error O(∆x3) for the propagated shock position

σn+1
e = σn + sn+1/2∆t+O(∆t3).

In fact,

σn+1
e − σn =

∫ tn+1

tn

se(t)dt

=

∫ tn+1

tn

[se(tn+1/2) + s
′
e(tn+1/2)(t− tn+1/2) +O(∆t2)]dt

= se(tn+1/2)∆t+O(∆t3)

(11)

to give the desired accuracy. Let the numerical flux across the tracked front associated
with the Riemann problem defined by these two states be

Fn+1/2
i = f(Un+1/2

l1 , tn+1/2)− sn+1/2Un+1/2
l1 .

This flux satisfies

Fn+1/2
i = F

n+1/2
i +O(∆x2)

and is continuous when evaluated from either side of the discontinuity.
The proof that this algorithm is conservative and (for one dimension only) im-

proves its convergence rate near the tracked discontinuity by O(∆x2) is given in [9].

3. The 2D algorithm. Consider the two space dimensional system of conser-
vation laws

∂u

∂t
+
∂f(u)

∂x
+
∂g(u)

∂y
= 0,(12)

defined in a spatial domain Ω. The discontinuities of u, assumed to lie on curves, are
organized to form an INTERFACE, which is propagated from one time level to the
next.

In the present study, we require at each time level that the INTERFACEs are
topologically equivalent to a union of nonintersecting line segments or circles [13].
Thus we postulate that triple or multiple CURVE intersection points do not occur.
Each CURVE is assigned an orientation which remains unchanged during the propa-
gation of the INTERFACE. The discretized CURVE is piecewise linear and connected
and composed of BONDs. Each BOND is a pair of INTERFACE POINTs or POINTs
and (conceptually) the straight line segment joining them. Assume a decomposition
of the plane by a rectangular grid with mesh spacing ∆x, and assume the boundary
∂Ω of Ω lies on grid lines. If the POINTs are all on the interior of cell edges with
at most one POINT occurring on the interior of any given grid cell edge, then the
INTERFACE is called grid-based [7].
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The front POINTs are propagated through the Riemann solutions in the normal
direction followed by a tangential sweep to update the states on the front. Propa-
gation [5, 7, 6, 4] of the POINTs of a grid-based INTERFACE will yield a general
INTERFACE, not grid-based, as there is no reason for a propagated POINT to lie
on a grid cell edge just because it starts on one. The general idea of the grid-based
construction is as follows: we consider this propagated INTERFACE as a collection
of polygonal CURVEs in �2. Crossing points of the CURVE with grid cell edges are
inserted as new POINTs. The propagated old POINTs (named images of propaga-
tion in this sense) will be deleted. The CURVE is then reconstructed as straight line
segments joining these new POINTs. In this process, the CURVE is displaced by an
amount O(∆x2), assuming that the CURVE is smooth, so that all angles between
neighboring BONDs are O(∆x). See also [15, 7, 6] for detailed discussions of the
grid-based INTERFACE construction.

Let Bni be a BOND on the grid-based INTERFACE In at the old time step tn,
and let B̄n+1

i be the image BOND after the propagation of the end POINTs of Bni . A
new grid-based INTERFACE In+1 is reconstructed through the new POINTs which
are produced by the intersection of the image BONDs and the gridline segments.
Therefore, each new POINT Pn+1

i corresponds to an old BOND Bni , but the inverse
is not true, because some bonds will not intersect with any gridline segment. On
the other hand, since an image BOND may have several intersections with different
gridline segments, several new POINTs may correspond to a single BOND Bni .

The finite difference method presented here for (12) is an explicit finite volume
integration scheme. The spatial domain Ω has two dimensions. The solution of
u evolves with respect to time, and we treat the temporal dimension as the third
dimension. We join the spatial INTERFACEs at two consecutive time steps to
form a space-time interface. Assume we have a space-time discretization {Vi} which
conforms to the space-time interface as u evolves in one time step from time tn to
tn+1. We solve (12) explicitly in this region. Treating each Vi as a control volume,
we integrate (12) over Vi. By the divergence theorem, we have

|Vi(tn+1)|ū |tn+1= |Vi(tn)|ū |tn −
∫
∂Vi

(u, f(u), g(u)) · ndS,(13)

where ū |tn+1
= 1
|Vi(tn+1)|

∫
|Vi(tn+1)| u(x, y, tn+1)dxdy is defined as a cell average, |Vi(tn+1)|

is the face area of Vi(tn+1) at time tn+1, and n is the outward normal to the space-time
surfaces of Vi. We wish to calculate ū |tn+1

, the solution to (12) at time tn+1.
The major issues in designing the conservative algorithm are (1) to obtain the

space-time INTERFACE, (2) to determine the discretization {Vi}, and (3) to calculate
the fluxes defined on the space-time surfaces of Vi.

To construct a finite volume decomposition which respects the space-time in-
terface, we identify the crossings of the approximate space-time interface with the
space-time hexahedron. We split the space-time hexahedron whose interior is cut by
the space-time interface into parts, each of which belongs to only one side of the space
time interface. For the purpose of maintaining numerical stability (the CFL time step
restriction), we merge those cells with small top area to form a polyhedron with top
area bigger than 0.5∆x2.

3.1. Construction of the space-time interface. In the current section, we
solve the following problem: given two piecewise linear spatial grid-based INTER-
FACEs (CURVEs) which are separated in time by a step �t, construct (triangulate)
a surface joining them. We call this joining surface the space-time interface. The
space-time interface thus formed is also grid-based, as a three-dimensional (3D) inter-
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face (two spatial and one temporal dimensions). The local configurations within a
single grid cell for such a 3D grid-based interface have been discussed in [6]. We
introduce two hypotheses regarding the old and new spatial interfaces. These hy-
potheses limit the local complexity of the interface. More complicated topological
structures will not be included in the scope of this paper.

Hypothesis 1. The INTERFACE is assumed to be grid-based. There is no
topological change of the INTERFACE during the time interval of computation. Each
CURVE is topologically equivalent to a line segment with its two end points on the
boundary, or a circle contained in the interior of Ω. No CURVE is totally contained
within a square of side 2∆x made up of four cells.

Hypothesis 2. The CFL number is less than 1
2 so that each POINT of the

INTERFACE is propagated a distance less than 1
2∆x within a single time step.

Assume Hypothesis 1. For a grid-based INTERFACE In, each POINT on In is
a crossing POINT; there exists at most one crossing POINT on each grid cell edge.
No crossing is deleted during the reconstruction of the grid-based INTERFACE, as
such deletion would indicate a change of topology. Propagation of In POINTs at one
single time step gives a new INTERFACE In+1

0 . The new grid-based INTERFACE
In+1 is reconstructed from In+1

0 through the algorithm discussed above.
After the reconstruction of In+1

0 , the order of POINT s on the reconstructed IN-
TERFACE In+1 agrees with the natural order of the POINT s on In in the following
sense: Let Bn1 be an In BOND connecting adjacent POINTs P1 and P2. Let B

n
2 be an

In BOND following Bn1 , connecting adjacent POINTs P2 and P3. After propagation,
Bn1 is mapped onto an In+1

0 linear segment Bn+1
1 with a left end point M1 as the

image of P1 and a right end point M2 as the image of P2; similarly, Bn2 is mapped
onto Bn+1

2 of In+1
0 with a left end point M2 and a right end point M3 as the image

of P3. The reconstruction first inserts into In+1
0 the crossing points of In+1

0 with grid
lines as new POINT s. The insertion of new POINT s does not change the orienta-
tion or order of the polygon Bn+1

1

⋃
Bn+1

2 , which preserves its order from the polygon
Bn1
⋃
Bn2 . Similarly, the removal of POINT s, with the deformation of the polygon

to connect with the remaining POINT s by linear segment, is order-preserving. Thus
grid-based In+1 reconstructed from In+1

0 by connecting the new POINT s as above
described preserves the POINT order.

For the grid-based method, every INTERFACE POINT lies on a cell edge. A
POINT P is assigned on index (i, j) if it is located within a half grid size (0.5∆x)
away from the grid node (i, j). The proximity Prox P of P includes nine dual grid
cells centered at grid node (i− 1 to i+ 1, j − 1 to j + 1).

Assume P1 and P2 are the start and end POINTs of BOND Bn+1 on In+1; the
(i, j) indices of these two POINT s can be identical, adjacent, or diagonally adjacent.
The proximity Prox B of BOND Bn+1 is defined as Prox P1 ∩ Prox P2. Therefore,
the following hold.

(1) If (i, j) indices of P1 and P2 are identical, say, both are (i, j), Prox B is the
nine dual grid cells centered at nodes (i− 1 to i+ 1, j − 1 to j + 1).

(2) If (i, j) indices of P1 and P2 are adjacent, say, (i, j) for P1 and (i + 1, j) for
P2, then Prox B includes the six dual grid cells centered at nodes (i to i+1,
j − 1 to j + 1). Prox B for the case in which the second index of P1 and P2

differs by 1 is similarly defined.
(3) If (i, j) indices of P1 and P2 are diagonally adjacent, say, (i, j) for P1 and

(i+1,j+1) for P2, Prox B includes the four dual grid cells centered at nodes
(i to i+ 1, j to j + 1).
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Fig. 1. Region of influence of a bond Bni .

A POINT of In which is located inside the proximity of Bn+1 is called a spatially
nearest POINT of Bn+1 on In. If a BOND Bn+1 of In+1 is the result of propagation
followed by the grid-based reconstruction of a single BOND Bn on In, then Bn is
called the parent BOND and Bn+1 is the child BOND. In this case, Bn+1 is formed
by the insertion of crossing POINTs into the propagated image of Bn. The region of
influence of any BOND in Figure 1 is the region within 0.5∆x of the points on the
BOND.

Proposition 1. Assume Hypotheses 1, 2. Let P1 and P2 be two adjacent POINTs
connected by a reconstructed grid-based bond Bn+1 of In+1. If P1 is produced (through
propagation and intersection of a bond with a gridline segment) by Bn1 of In, P2 is
produced by Bn2 of In, and the curve on In is oriented so that Bn2 follows Bn1 , then
there exists at least one POINT between the start of Bn1 and the end of Bn2 which lies
within the proximity of Bn+1.

Proof. Let C with corner nodes (i, j), (i + 1, j), (i, j + 1), and (i + 1, j + 1) be
the cell containing Bn+1. Assume Bn1 �= Bn2 . In this case, to produce Bn+1, all the
propagated POINTs between (including) the end of Bn1 and the start of Bn2 must lie
in the cell C at the new time step tn+1. By Hypothesis 2, all the corresponding old
points must be in the proximity defined by P1 and P2, because the shortest distance
from the boundary of the cell C to the boundary of the proximity is at least 0.5∆x.

Next we assume Bn1 = Bn2 . In this case, Bn1 is the parent BOND of Bn+1 and
the entire Bn+1 must be within the region of influence of Bn1 . Since the proximity of
Bn+1 is the intersection of the proximities of the two POINTs P1 and P2, it is the
smallest when the indices of P1 and P2 are diagonally adjacent, a property we now
assume. The proximity is the rectangle ABCD in Figure 2. We want to prove that
at least one POINT of Bn1 is located within the rectangle ABCD. To prove this, we
show that the parent BOND Bn1 cannot have both POINTs outside the proximity.

We now draw the boundary of the region of influence of all the grid-based bonds
with both end POINTs outside the proximity of Bn+1. The inner boundary of this
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Fig. 2. Region of influence of all bonds completely outside the proximity of Bn+1 of which the
(i, j) indices of Bn+1 end points P1 and P2 are diagonally adjacent.

region is the polygon abcdefgh as in Figure 2. If the parent BOND Bn1 has both
end points outside the proximity, then Bn+1, lying in its region of influence, should
be completely outside the polygon abcdefgh. Thus it must lie in one of the four
small regions near one corner of the cell C. Since the polygon cuts the edges of the
cell C at a distance 0.5(

√
2 − 1)∆x ≈ 0.207∆x from the four cell corners, the mesh

indices of the end POINTs of Bn+1 cannot be diagonally adjacent. Therefore, no
bond with both end POINTs outside the proximity ABCD can be the parent bond of
Bn+1. Therefore, at least one end point of Bn must be located within the proximity
ABCD.

The other two cases, when the indices of P1 and P2 are identical or adjacent, have
a larger proximity for Bn1 . Similar but easier arguments prove Proposition 1 in these
cases. This completes the proof.

Proposition 2. Assume Hypotheses 1, 2. Let Bn+1
1 with end points P1 and

P2, and Bn+1
2 with end point P2 and P3 be two adjacent BONDs on In+1 in their

natural order. Let Bn1 , Bn2 , and Bn3 be the bonds on In which produce P1, P2, and
P3. Denote the spatially nearest POINTs to Bn+1

1 on In as group 1 and the spatially
nearest POINTs to Bn+1

2 on In as group 2. There exist a POINT M1 in group 1 and
a POINT M2 in group 2 such that (1) M1 is a POINT between (including) the start
of Bn1 and the end of Bn2 , and M2 is a POINT between (including) the start of Bn2
and the end of Bn3 ; (2) M1 precedes or equals M2 in the orientation of In.

Proof. If Bn1 , B
n
2 , and B

n
3 are three distinct bonds, we take M1 as any POINT

between (including) the end of Bn1 and the start of Bn2 andM2 as any POINT between
(including) the end of Bn2 and the start of Bn3 . This choice satisfies Proposition 2 in
view of Proposition 1.

Next we consider the case Bn1 = Bn2 �= Bn3 . We select M1 as one of the end
POINTs of Bn1 which is in group 1. Such a POINT exists by Proposition 1. M2 can
be selected between (including) the end of Bn2 to the start of Bn3 . M1 and M2 satisfy
Proposition 2. The case Bn1 �= Bn2 = Bn3 is similar.
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Fig. 3. The triangulated space-time interface.

Finally, we consider Bn1 = Bn2 = Bn3 . In this case, P1, P2, and P3 lie on a straight
line. It is obvious that Proposition 2 holds for the following three cases: (1) the start
of Bn1 in both Prox Bn+1

1 and Prox Bn+1
2 ; (2) the end of Bn1 in both Prox Bn+1

1 and
Prox Bn+1

2 ; and (3) the start of Bn1 in Prox Bn+1
1 and the end of Bn1 in Prox Bn+1

2 .
We now prove that it is impossible to have the end of Bn1 in Prox Bn+1

1 \ Prox
Bn+1

2 and the start of Bn1 in Bn+1
2 \ Prox Bn+1

1 . For this to occur, the propagation
of both the start and the end points of Bn1 must completely pass through the region
of Prox Bn+1

1 ∩ Prox Bn+1
2 . It is easy to verify that the widths of the intersection

in both the x and y directions are at least ∆x. However, the maximum propagation
distance in one time step is 0.5∆x. The proof is complete.

The surface triangles in space-time are formed by joining the POINTs of In+1

and In. Each triangle has a side taken from a single linear segment (BOND) of either
In+1 or In and an opposite POINT from the other. We denote a space-time interface
triangle which is composed of a BOND at time tn+1 and an opposite POINT from
In as an upper triangle, and a triangle which is composed of a BOND at time tn
and an opposite POINT from In+1 as a lower triangle. The space-time interface
triangulation is organized into the following two steps:

1. We first form the upper triangles of the space-time interface. For each In+1

BOND Bn+1
m whose start and end POINT s are Pm and Pm+1, we find by

Proposition 1 the spatially nearest POINT s on In. Denote these POINTs
as group m. Select one POINT Mm from each group m to form the list
[M1,M2,M3, . . . ] with the same orientation as In (due to Proposition 2); Mi

and Mi+1 are not necessarily distinct. Connect each Mm to Pm and Pm+1 to
form upper triangles.

2. The gap on the space-time interface left by step 1 is filled by lower triangles.
Each BOND Bnk on the In is located between a pair of distinct POINTs
Mk and Mk+1. Mk and Mk+1 are connected to a common POINT on In+1

during the construction of the upper triangles. Connect this common POINT
to the start and end POINTs of Bnk to form a lower triangle. This completes
the space-time interface triangulation.

Figure 3 shows the triangulated space-time interface. Each triangle is distin-
guished from its neighbors by contrasting grey shades.
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Fig. 4. Hexahedra and partial polyhedra before volume merging.

3.2. Construction of the space-time hexahedra. We connect the nodes of
a cell Dni at time t = tn to the nodes of the corresponding cell Dn+1

i at time t = tn+1

to form a space-time hexahedron. We call Dn+1
i the top of the hexahedron and Dni

the bottom. We call a hexahedron mixed if the interface passes through its interior,
otherwise, it is pure. The mixed hexahedra are divided into pure partial hexahedra,
and if necessary, these are combined with neighbors to form a finite volume space-
time grid suitable for construction of a conservative difference algorithm in section 3.3.
They are adjacent if they share a nontrivial surface which does not meet the space-
time interface. Two space-time polyhedra are neighboring if they share a nontrivial
vertical line segment which is part of the grid line connecting two corresponding grid
nodes at the time levels tn and tn+1 (denoted by a vertical grid line) that does not
cross the space-time interface. It is easy to see that two adjacent or neighboring
polyhedra must be on the same side of the space-time interface.

The mixed hexahedron is separated by the space-time interface into several parts,
each of which lies on one side of the space-time interface. These parts are called pure
partial hexahedra or, in short, partial hexahedra. We can similarly define a cell to
be pure, mixed, or partial. Any partial hexahedron with a trivial or small top will
be merged with an adjacent pure hexahedron or partial hexahedron having a top of
minimal size.

Figure 4 shows the control volumes constructed on one side of the space-time in-
terface. Adjacent hexahedra or pure partial polyhedra are represented by contrasting
grey shades. Only the volumes near the space-time interface are displayed.

Recalling that two adjacent hexahedra are on the same side of the interface, the
following lemma [8] ensures the eventual success of the merging algorithm.

Lemma 1. Assume Hypothesis 1. If a space-time polyhedron is constructed by
merging any number of adjacent partial hexahedra with no top, then the polyhedron
will be adjacent to a pure or partial hexahedron on the same side of the space-time
interface.

Proof. At least one nontrivial piece of the side surface of the polyhedron is not on
the boundary or the space-time interface; otherwise, the topological structure of the
INTERFACE changes during this time step and Hypothesis 1 is violated. The proof
is complete.
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Fig. 5. A top view of the polyhedra merging process. The solid line represents In+1, and the
dashed line represents In. There are four polyhedra in the four upper left mesh blocks: polyhedron 1
with bottom ABC and no top, polyhedron 2 with bottom face BHGC and no top, polyhedron 3 with
bottom face ACED and the triangular top KEJ, and polyhedron 4 with a square bottom CGFE
and the trapezoidal top KLFE. They will be merged into one polyhedron with bottom ACBHGFED
and top KLFEJ.

Hypotheses 1 and 2 and Lemma 1 ensure that each partial hexahedron with no
top and away from the boundary is adjacent to or neighboring one with a nontrivial
top. However, for a partial hexahedron with no top and at the boundary, Hypothesis 2
may not be sufficient if the interface intersects the boundary at a small angle. We need
to adjust the CFL number so that the intersection point between the INTERFACE
and the boundary moves a distance less than ∆x along the boundary during the time
step in order to reach the same property.

We require a hypothesis to limit the local geometric complexity of the INTER-
FACE. To simplify the proof that the merging algorithm converges (rapidly), we
state it in a stronger than necessary form. See section 3.4 for a discussion of this
issue.

Hypothesis 3. Each partial hexahedron having top area smaller than 1
2∆x

2 is
adjacent to or neighboring one with top area greater than or equal to 1

2∆x
2.

Because the flux exchange among control volumes is through the shared space-
time surfaces, we merge only adjacent partial hexahedra on the same side of the space-
time interface and not neighboring ones. For this reason, merger is accomplished in
stages, i.e., recursively. The merging process then is stated as follows.

Assume Hypothesis 3. Recursively merge every pure or partial hexahedron having
a top area greater than or equal to 1

2∆x
2 with adjacent partial hexahedra having no

top or top area smaller than 1
2∆x

2 which have not been merged elsewhere until none
of the partial hexahedron having no top or top area smaller than 1

2∆x
2 is left. Denote

the resulting space-time polyhedra the big hexahedra. The merging process then is
complete. Partial polyhedra generated at each merging stage are called intermediate
hexahedra.

As illustrated in Figure 5, polyhedron 4 with a square bottom face CGFE and
top face area KLFE greater than 1

2∆x
2 forms the center of merging. The merged

polyhedra include polyhedron 3 with bottom face ACED and a small triangular top
KEJ , polyhedron 2 with bottom face BHGC and no top, and polyhedron 1 with
bottom face ABC and no top. Polyhedra 2 and 3 are adjacent to 4, while polyhedron
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Fig. 6. Control volumes after merging.

1 is diagonally adjacent to 4. In the merging process, polyhedra 2 and 3 are absorbed
by polyhedron 4 first. A intermediate hexahedron with bottom face ACBHGFED is
formed. Polyhedron 1 is adjacent to it. Finally, this intermediate hexahedron absorbs
polyhedron 1, resulting in a big hexahedron with bottom face ABHGFED and top
face KLFEJ .

Determined by Lemma 1 and Hypothesis 3, it is easy to see that a big hexahedron
contains no more than a fixed number of pure or partial hexahedra so that the merging
process stops rapidly. Actually in most cases the merging process yields big hexahedra
consisting of two pure or partial hexahedra. The number of pure or partial hexahedra
in the big hexahedron could become larger if the radius of curvature of the moving
CURVE is small. In fact, we have the following observation.

Assume Hypothesis 3. Let a pure or pure partial hexahedron H with top area
greater than 1

2∆x
2 be contained inside a space-time cell with cell index (i, j). If

H forms a big hexahedron by absorbing pure partial hexahedra during the merging
process, the bottom faces of these pure partial hexahedra which merge with H are
located inside a square, centered at (i, j), with side 3∆x.

Figure 6 shows the control volumes on two sides of the space-time interface after
the merging process. Only the volumes near the space-time interface are displayed.

Theorem 1. Assume Hypotheses 1–3. After the merging algorithm, every partial
hexahedron having no top or top area smaller than 1

2∆x
2 will be merged into a big

hexahedron having top area greater than or equal to 1
2∆x

2 on the same side of the
interface. The interior of each big hexahedron is connected.

3.3. The reconstruction, limiter, and numerical scheme. Suppose at the
time level t = tn we know the approximate state averages on each cell, regular,
irregular, or partial. We want to reconstruct a piecewise linear state function on
these cells with second order accuracy. The reconstruction of the piecewise linear
state function on irregular cells follows [1], with modifications to the limiter and some
simplification. Let Dni be a pure cell, regular, irregular, or partial, with approximate
state average Ui and cell center (centroid) Yi, surrounded by any of the types of
cells Dnj , D

n
k , D

n
l , D

n
m with approximate state averages Unj ,Unk ,Unl ,Unm and cell centers

Yj , Yk, Yl, Ym, respectively, on the same side of the INTERFACE . Let Ũi = Ui+(a, b) ·
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(X −Yi) be the second order accurate linear state function on Dni , where a, b are two
constants. Choose any two surrounding cells, say, Dnj , D

n
k so that Yi, Yj , Yk are not

colinear. We can determine a, b by solving the following equation:

Ũi(Yj) = Unj ,
Ũi(Yk) = Unk .

(14)

Further, for the solution of the above equation to be well conditioned, we require
the angle θ formed by line segments YiYj and YiYk to satisfy 0 < θ1 < θ < θ2 <
π, where θ1, θ2 are two constants. We repeat the above procedure until we find
all possible solutions, say, ai, bi, for all 0 ≤ i ≤ I, where I ≤ 4. Then we set
a = minmod{a1, . . . , aI} and b = minmod{b1, . . . , bI}. When there are not enough
surrounding cells on the same side of the INTERFACE, we choose a, b = 0 so that
the reconstruction becomes first order.

When Dni is a regular cell surrounded by regular cells, the reconstruction process
is simpler. Let the cell center of Dni be (i1∆x, i2∆y) with neighboring cell centers
{((i1 + k1)∆x, (i2 + k2)∆y)|k1, k2 = −1, 0, 1}. Let

xslopei = minmod{[U((i1 + k1)∆x, (i2 + k2)∆y)
−U((i1 + k1 − 1)∆x, (i2 + k2)∆y)]/∆x |

k1 = 0, 1; k2 = −1, 0, 1},
(15)

and

yslopei = minmod{[U((i1 + k1)∆x, (i2 + k2)∆y)
−U((i1 + k1)∆x, (i2 + k2 − 1)∆y)]/∆y |

k1 = −1, 0, 1; k2 = 0, 1},
(16)

and define

Ũi = Ui + xslopei · (x− i1∆x) + yslopei · (y − i2∆y).
This second order reconstruction is better suited in multiple dimensions than in the
operator splitting single line reconstruction (or limiter) for a uniform rectangular grid
because, for example, an untracked discontinuity in two dimensions may be in the
form of a strip of width between 2∆x and 3∆x. When the strip is almost parallel
to and fully covers the line in which the single line reconstruction occurs, one cannot
expect the limiter to choose any smooth solutions nearby.

Next we apply the technique of section 3.2 to generate space-time hexahedra
between time levels tn and tn+1. Let H be a big hexahedron with top Dn+1, bottom
Dn, and triangle sides {Si} with a unit outer normal ni and centroid Zi. Notice
that some elements of the {Si} may be on the approximate space-time interface.
Integrating (12) over H, we obtain

|Dn+1| Un+1 = |Dn| Un −
∑
i

∫
Si

(u, f, g) · nids.(17)

Here |Dn| represents the area of Dn, and similarly |Si| is the area of Si.
The numerical scheme can be written as

|Dn+1|Un+1 = |Dn|Un −
∑
i

|Si|(Ũi,m, f(Ũi,m), g(Ũi,m)) · ni.(18)
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The fluxes through triangle sides {Si} can be calculated by a higher order Godunov-
type algorithm.

We first calculate Ũi,m as follows: First use a Cauchy–Kowalewski procedure on
the reconstructed state function on each side of Si to get second order approximate
states at Zi on the respective sides of Si, say, Ui,l and Ui,r. If Si is not on the tracked
space-time interface, we can simply use a Riemann solver, say, R, to get the middle
state on Si, i.e.,

Ũi,m = R(Ui,l, Ui,r).

If Si is on the tracked space-time interface, we use the Riemann solver to get the left
and the right side states Ũi,l and Ũi,r on the wave we are supposed to track and the

wave speed νi. Then Ũi,m in (18) can be replaced by either Ũi,l or Ũi,r, depending
on whether l or r is located within H or not. Also, the ni in (18) should be replaced

by ñi/|ñi|, where ñi = (−νi
√
n2
ix + n

2
iy, nix, niy), ni = (nit, nix, niy). Note that ñi is

normal direction of the tracked space-time wave from the Riemann solver; therefore,
this modification ensures that the Rankine–Hugoniot condition is satisfied.

The finite volume difference algorithm constitutes a flux through each boundary
of the full, partial, and big hexahedron. Since the flux through a boundary face of
the hexahedron is identical when viewed from either side of the face, we have the
following theorem.

Theorem 2.
∑
cells |Dn|Un in the finite volume difference scheme is conserved

so that its increment over any time interval is equal to the net influx at the boundary.
Away from the INTERFACE the scheme is clearly a second order scheme. For

the cells along the INTERFACE, its local error is one order lower than in the 1D case
since we use a piecewise linear approximation to the smooth INTERFACE and the
local displacement error of this approximation is O(∆x2). The scheme is one order
better than untracked schemes, which typically have O(1) local error at the untracked
fronts.

Theorem 3. Suppose the exact space-time interface and the solution on either
side of it are smooth. Then the L∞ error is O(∆x) for cells adjacent to the INTER-
FACE.

Proof. Let the INTERFACE at tn be exact, and let H be a big hexahedron
adjacent to the approximate space-time interface. We apply the finite volume scheme
to obtain the approximate state average Un+1

i at the time level tn+1, with top T and
bottom B and side boundaries {Si}, where each Si is a triangle. The INTERFACE
at time tn+1 has an O(∆x2) displacement from the exact interface. The exact space-
time interface will cut H into two pieces. Let H1 be the piece on the same side of the
interface as H. Let T1, B1, and S

1 be the top, bottom, and side boundaries of H1,
respectively. Let Un+1

T1
, UnB1

be the exact state averages over T1 and B1, respectively.

Choosing UnB = UnB1
, we want to show that Un+1

T1
− Un+1

T = O(∆x). In fact, from
(18),

|T |Un+1
T = |B|UnB −

∑
i

|Si|(Ũi,m, f(Ũi,m), g(Ũi,m)) · ni.(19)

The exact solution satisfies

|T1|Un+1
T1

= |B1|UnB1
−
∫
S1

(u, f(u), g(u)) · nds.(20)
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Note that |B|UnB = |B1|UnB1
. Also, the numerical flux in (19) approximates the exact

flux in (20) to at least O(∆x3). In fact, when Si is not on the approximate space-time
interface, this is easily seen since

∫
Si
(u, f, g) · nids = |Si|(u, f, g)(Zi) · ni +O(∆x4).

Next suppose that Si is on the approximate space-time interface. Because of
the smoothness of the exact space-time interface, it has an O(∆x2) displacement er-
ror to the exact one. The difference between their respective areas is of O(∆x3).
The area of

⋃
Si is O(∆x2). Also, the choices of Ũi,m and ni in (19) ensure that

(Ũi,m, f(Ũi,m), g(Ũi,m)) · ni in (19) is a first order approximation to the integrand
in (20) at any point within an O(∆x) distance from the centroid Zi of Si. Thus∫
Si
(u, f, g) ·nids = |Si|(u, f, g)(Zi) ·ni+O(∆x3) in the case that Si is on the approx-

imate space-time interface. Therefore, we have

Un+1
T1
− Un+1

T = (|T1|Un+1
T1
− |T |Un+1

T )/|T |+ Un+1
T1

((|T | − |T1|)/|T |)
= (O(∆x4) +O(∆x3))/O(∆x2) +O(∆x3)/O(∆x2)
= O(∆x),

(21)

where O(∆x4) and O(∆x3) in the first bracket follow from the local error of the
numerical approximation of the flux defined on the non space-time interface and
space-time interface, respectively. The proof is complete.

3.4. Cell level complexity and interface topological change. Because the
dynamic evolution of the INTERFACE often leads to geometrically complex situa-
tions, Hypothesis 3 might fail. For example, the Richtmyer–Meshkov (RM) instability
develops very long and thin structures at the tips of bubbles and spikes at late time;
see Figure 7 for an illustration.

The narrow structures and approximate or actual bifurcations will degrade the
algorithm. Excessive cell merging to ensure CFL stability will degrade accuracy, and
in any case actual bifurcations are (presently) excluded. We require a robust algorithm
to solve problems for which any of the above occurs. We propose that these situations

I I
n n+1 I

n In+1

Fig. 7. Limits on the merging process. In is represented by the dashed line and In+1 by the
solid line. At the time tn+1 level, in the first frame, the triangular cell at the tip is adjacent to
a triangular cell and quadrilateral only; all of these cells form partial hexahedra having top area
smaller than 1

2
∆x2 and thus require further merger. In the second frame, the two branches of the

curve near the tip of In and In+1 are close and parallel to each other (forming a thin wall), thus
forming a set of neighboring polyhedra with top area smaller than 1

2
∆x2.
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Table 1
Comparison of error analysis for the test problem (22) for Burgers’ equation.

Method N L1 error L1 order ΣUi∆xi

30 6.83e-2 - 1.732

Untracked 60 3.49e-2 0.969 1.733

120 1.63e-2 1.10 1.733

240 8.24e-3 0.984 1.733

30 2.80e-2 - 1.721

Nonconservatively 60 6.89e-3 2.02 1.716

tracked 120 4.23e-3 0.704 1.742

240 2.01e-3 1.07 1.741

30 2.17e-2 - 1.732

Conservatively 60 7.07e-3 1.62 1.733

tracked 120 2.11e-3 1.74 1.733

240 6.04e-4 1.80 1.733

should be resolved by locally nonconservative tracking using the ghost cell algorithm
of the authors [12]. Since these events will often occur on a lower dimensional space-
time manifold, they will not impact the formal order of accuracy of the algorithm.

4. Numerical examples. In this section we present numerical examples show-
ing the convergence and conservation properties of the conservative front tracking
scheme.

4.1. Burgers’ equation. Consider Burgers’ equation ∂u
∂t + ∂

∂x (
1
2u

2) = 0 on
[0, 6]× [0, T ], with initial conditions

u(x, 0) =

{
0.2 ∗ (x− 1)2 + 0.2, x ∈ [1, 3],

0.2, elsewhere.
(22)

In Table 1 we present numerical results at (T = 3.2) using three different methods:
the untracked MUSCL scheme, the nonconservatively (shock) tracked scheme with
an MUSCL interior solver, and the conservatively (shock) tracked scheme with an
MUSCL interior solver. Here the column labeled L1 error indicates the L1 norm of
u− Ũ , where u is the exact solution and Ũ is the second order approximate solution
reconstructed from the piecewise constant numerical solution U at time T . Figure 8
displays the comparison of the numerical results obtained with N = 30 cells. For all
of section 4, the CFL number is equal to 0.4.

4.2. 1D Euler equations. Next we conduct a convergence test for the 1D Euler
equations for a gamma law gas, γ = 1.4. We consider a tracked shock wave interacting
with C∞ data (a rarefaction wave with smooth edges). The computational domain
is [0, 4] with flow-through boundary conditions. At time T = 0 there is a right facing
rarefaction wave in (1, 2) and a left moving shock at x = 3. The left facing shock
interacts with the rarefaction wave by the final time T = 1. We first define the initial
states V0 as follows: on [0, 1], the density, pressure, and velocity are 2.0, 0.5, and
−1.0, respectively. On [1, 2], V0 has a centered rarefaction wave, ending at a pressure
1.5. On [2, 3], the state is constant. On [3, 4], the velocity is −1.5. Since the first
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Fig. 8. Comparison of numerical results for Burgers’ equation.

Table 2
Comparison of L1 errors.

Nonconserv. tracked Conserv. tracked

N L1 error L1 order L1 error L1 order

100 0.0373 - 0.0395 -

200 0.0135 1.47 0.0106 1.90

400 0.00649 1.06 0.00361 1.55

800 0.00290 1.16 0.000891 2.02

1600 0.00148 0.970 0.000245 1.86

3200 0.000761 0.960 0.0000615 1.99

derivatives of V0 have jumps at the rarefaction wave edges, we smooth the initial data
V0 so that

U0(x) :=

{
V0(1)(2− β(x)) + V0(2)(β(x)− 1), x ∈ (1, 2),

V0(x), elsewhere,

where β(x) = 1
2 (sinπ(x− 3

2 )+3). We conduct the convergence test with the smoothed
initial states U0. The interior scheme is the second order MUSCL scheme with the
shock wave tracked conservatively in one case and nonconservatively in the other. It
is compared with a very fine (N = 12800, conservatively tracked) numerical solution
to calculate the error in the L1 norm. The comparison of the L1 errors is shown
in Table 2; the shock position errors σe − σn are compared in Table 3, where σe
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Table 3
Comparison of shock position errors.

Nonconserv. tracked Conserv. tracked

N σe − σ order σe − σ order

100 -4.20e-6 - 2.90e-4 -

200 -4.58e-6 - 9.15e-5 1.66

400 -2.54e-5 - 1.71e-5 2.42

800 -2.29e-5 - 2.85e-6 2.58

1600 -1.12e-5 1.03 9.70e-6 1.55

3200 -5.38e-6 1.06 2.00e-7 2.28

Fig. 9. Front plot for the simulation of a horizontally moving contact discontinuity. The first
frame displays the initial position of the contact; the second displays it after moving horizontally
one quarter domain width in 169 time steps.

denotes the exact shock position and σn denotes the numerical shock position. The
conservatively tracked scheme is second order accurate.

4.3. 2D advection. We conduct a horizontal advection conservation test for the
Euler equations to compare the fully conservative tracking scheme to the nonconser-
vative tracking scheme. The numerical experiments were performed on a rectangular
1 × 2 domain with a 40 × 80 grid, displacing the interface horizontally half the do-
main width in 337 time steps. For the lower and upper boundaries of the domain, we
use flow-through boundary conditions on which the states are normally extrapolated
from the interior, and periodic conditions on the side boundaries. We use a poly-
tropic gas, with polytropic exponent γ = 1.4. The contact discontinuity separating
distinct gas states is tracked. The interface is sinusoidally perturbed with frequency
2.0 and amplitude 0.3. The initial configuration and the one-quarter width displaced
configuration are shown in Figure 9. Excellent preservation of the sine wave is evident.
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Table 4
Conservation error.

Conservation Error

Conservative tracking Nonconservative tracking

Mass 0.0 0.21%

x-mom 0.0 0.21%

Energy 0.0 0.21%

Fig. 10. Spike amplitude in the RM instability simulations, as functions of time. The con-
servative tracked amplitude for a coarse grid is in approximate agreement with the nonconservative
tracked amplitude for a fine grid.

In Table 4, we compare the total conservation for the two methods, which is
defined for the mass as

(final mass− initial mass + boundary mass flux)/(initial mass),(23)

with similar definitions for other conserved quantities. The conservative quantities
refer to the lower gas in Figure 9. The total mass, momentum, and energy in the
computational domain for the conservative tracking scheme show essentially perfect
conservation, while the nonconserved tracking shows conservation errors of 0.21%.

4.4. Richtmyer–Meshkov instability. A Richtmyer–Meshkov (RM) instabil-
ity is generated when a shock wave refracts through a perturbed interface which
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Fig. 11. Front plot for the RM instability simulations. The upper row shows the plots of
nonconservatively tracked interface at time = 1.38. The lower row shows the plots of conservatively
tracked interface at the same time. For both rows, from left to right, are 40 × 80, 80 × 160 and
160 × 320 grids, respectively.

separates fluids of differing densities. We compare simulations produced by the con-
servative and the nonconservative tracking schemes.

The numerical experiments were performed on a rectangular 1×2 domain, with a
40 × 80 grid, the lower and upper boundaries with flow-through boundary conditions,
and periodic conditions for the side boundaries.

The initial configuration consists of a Mach 5.0 shock in a polytropic gas (with
unshocked density 1.0) striking an interface separating two polytropic gases (both
have polytropic exponent γ = 1.40). The preshock contact density ratio is 1 : 5. The
interface is sinusoidally perturbed with wavelength 1.0 and amplitude 0.1. Figure 11
shows the interface evolution of the RM instability; the initial configuration is shown
as the left column. We also performed refined nonconservatively tracked simulations
with 80 × 160 and 160 × 320 grids. The results indicate the convergence of the
growth rate with nonconservative simulation to that of the conservative simulation
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when the computational mesh of the nonconservative simulation is refined. The 40×80
conservatively tracked solution appears to be comparable to both the finest (160×320)
nonconservatively and conservatively tracked solutions, while the nonconservatively
coarse grid run (40× 80) tends to have a smaller growth rate. See Figures 10 and 11.

5. Conclusions. We have proposed a new fully conservative front tracking al-
gorithm. The algorithm is derived from an integral formulation of the PDEs. The
1D version of the algorithm is fully second order accurate away from the intersection
of tracked waves. This has been determined by both the formal derivation and nu-
merical experiments. In two dimensions, we provided the formal derivation that the
scheme should be second order in the interior region and first order near the front.
The convergence of bubble growth rate in the simulation of the RM instability seems
to support this claim. Numerical tests in one and two dimensions demonstrate the
improved conservation and convergence properties of the algorithm. The stability of
the algorithm is verified by numerical experiments.

Conservative tracking is fundamentally an exercise in computational geometry to
define the space-time interface. The finite volume differencing defined by the geometry
follows standard algorithms. Further study of the space-time interface construction
is called for. A robust algorithm may include nonconservative tracking for regions of
greater local complexity than the conservative space-time interface construction will
support.
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Abstract. An exact trajectory of a dynamical system lying close to a numerical trajectory is
called a shadow. We present a general-purpose method for proving the existence of finite-time shad-
ows of numerical ODE integrations of arbitrary dimension in which some measure of hyperbolicity
is present and there are either 0 or 1 expanding modes, or 0 or 1 contracting modes. Much of the
rigor is provided automatically by interval arithmetic and validated ODE integration software that is
freely available. The method is a generalization of a previously published containment process that
was applicable only to two-dimensional maps. We extend it to handle maps of arbitrary dimension
with the above restrictions, and finally to ODEs. The method involves building n-cubes around
each point of the discrete numerical trajectory through which the shadow is guaranteed to pass at
appropriate times. The proof consists of two steps: first, the rigorous computational verification of a
simple geometric property, which we call the inductive containment property, and second, a simple
geometric argument showing that this property implies the existence of a shadow. The computa-
tional step is almost entirely automated and easily adaptable to any ODE problem. The method
allows for the rescaling of time, which is a necessary ingredient for successfully shadowing ODEs.
Finally, the method is local, in the sense that it builds the shadow inductively, requiring information
only from the most recent integration step, rather than more global information typical of several
other methods. The method produces shadows of comparable length and distance to all currently
published results. Finally, we conjecture that the inductive containment property implies the exis-
tence of a shadow without restriction on the number of expanding and contracting modes, although
proof currently eludes us.
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1. Introduction. Consider the initial value problem (IVP) for an autonomous
ordinary differential equation (ODE)

y′(t) = f(y(t)),(1.1)

y(t0) = y0,(1.2)

where the ODE (1.1) is called the defining equation, (1.2) is called the initial condition,
y is an n-dimensional vector, and f is an n-dimensional vector-valued function. Stan-
dard forward error analysis (e.g., Dahlquist and Björck (1974) or Kahaner, Moler, and
Nash (1989)) tells us that, for a large class of ODEs, it is impossible in fixed-precision
arithmetic to produce a numerical solution to an IVP which remains uniformly close
to the exact solution for a long time. As a result, forward error bounds are impractical
in such cases. However, one can often guarantee that a numerical solution remains
uniformly close not to the solution starting at the initial condition specified, but in-
stead to the exact solution to the ODE (1.1) starting at a nearby initial condition. In
other words, if one allows the initial condition to have a nonzero error, just as one is
satisfied with a nonzero error at all other times (Murdock (1995)), then it may be pos-
sible to guarantee that the numerical solution remains uniformly close to some exact
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solution for a long time. Such an exact solution is called a shadow of the numerical
solution.

Backward error analysis is a general term applied to methods of error analysis
that relate a numerical solution to the exact solution of a “nearby” problem (Cor-
less (1994), for example). In the context of IVPs for ODEs, “nearby” has at least
two interpretations: we can either perturb the defining equation, or we can perturb
the initial condition. Defect-based and other backward error analyses allow a time-
dependent perturbation to the defining equation while leaving the initial condition
untouched. In contrast, shadowing perturbs only the initial condition. For many
physical systems which are modelled using ODEs, the governing equations are well
defined, and virtually all error is introduced by imprecise knowledge of initial condi-
tions and/or by numerical error in the computation of the solution. In these contexts,
shadowing may a be more appropriate method of error analysis than defect-based
methods. On the other hand, rigorous shadowing as presented in this paper and else-
where is extremely expensive. Whereas nonrigorous defect-controlled methods are of
roughly equal expense compared to more traditional integration methods, rigorous
shadowing requires validated ODE integration, which at present tends to be several
orders of magnitude more expensive in both time and memory than nonvalidated
methods, even for low-dimensional problems. Thus, the goal of shadowing should not
be to validate every numerical solution computed, but instead to study under what
conditions we can expect a numerical solution to have a shadow.

Procedures for finding shadows usually involve some sort of fixed-point method.
These include nonrigorous numerical methods akin to Newton’s method (Grebogi et
al. (1990); Quinlan and Tremaine (1992); Hayes (1995)) and methods that employ
a theorem to prove the existence of a shadow, usually relying on Brouwer’s fixed-
point theorem or the Newton–Kantorovich theorem (Sauer and Yorke 1991; Chow
and Palmer 1991, 1992; Chow and Van Vleck 1994).

An important advance has been the realization that ODEs differ fundamentally
from maps in that they have errors in time as well as in space. By employing a
rescaling of time, shadow lengths for ODEs can be increased by several orders of
magnitude (Coomes, Koçak, and Palmer (1994b), (1995a), (1995b); Van Vleck 1995),
even allowing the proof of existence of periodic trajectories near periodic pseudotra-
jectories (Coomes, Koçak, and Palmer (1994a); Coomes, Koçak, and Palmer (1997)).
Shadowing has also been used to demonstrate that conservative integrations that ap-
proximately satisfy a first integral can have shadows that exactly satisfy it (Coomes
(1997)), and that more explicit control of the numerical error in the stable versus
unstable subspaces can lead to better shadowing results (Van Vleck (2000)). An
interesting application has been to prove that a chaotic trajectory exists near an ap-
parently chaotic pseudotrajectory (Stoffer and Palmer 1999). Hayes (2001) provides
a more detailed survey of ODE shadowing results.

This paper extends the work of Grebogi, Hammel, Yorke, and Sauer (1990)(here-
after GHYS), who introduced an elegant geometrical method called containment for
proving the existence of shadows. Their proof is valid for iterated maps in two dimen-
sions, and is also practical for two-dimensional ODE problems that do not require a
rescaling of time. We extend their results to maps of arbitrary dimension in which
some measure of hyperbolicity is present and there are either 0 or 1 expanding modes,
or 0 or 1 contracting modes. Although we firmly believe that containment can work
with an arbitrary number of expanding and contracting directions, proving the gen-
eral case is a work in progress. We also introduce a new method complementary to
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containment that facilitates a rescaling of time. In contrast to the above methods
that use a fixed-point result, containment, including our new rescaling of time, uses
an entirely geometrical argument. We rigorously verify the conditions of our theo-
rems using validated ODE integration (Nedialkov (1999); Nedialkov, Jackson, and
Corliss (1999)) and demonstrate that containment is capable of proving the existence
of shadows of IVPs for ODEs that are of comparable quality to any currently in the
literature. We also demonstrate how containment can reproduce the proof of chaos
given by Stoffer and Palmer (1999).

The outline of the paper is as follows. Section 2 presents the ideas for the proofs
of containment in an informal, geometrical setting. We present the actual proofs in
section 3. Formally, these proofs break into two steps. First, we must prove that
the numerical trajectory satisfies a certain property called the inductive containment
property (ICP, for short). The ICP can be proven computationally to hold, using
a validated ODE integrator; we defer discussion of how this is done until section
4. Second, we must show that a numerical trajectory that satisfies the ICP has a
shadow. We prove this for maps in n dimensions for the cases in which there is
either one expanding or one contracting direction while all the others do the opposite
(3.1), or all directions either expand or contract (3.2). The method to rescale time is
presented in section 5. Section 6 presents experimental results and comparisons with
previous work, followed in section 7 by our conclusions.

2. Informal description of containment. Although containment was the first
method introduced for proving the existence of finite-time shadows of numerical orbits,
it has not, to our knowledge, been pursued beyond its initial conception. In this paper
we demonstrate that, at least in the restricted cases discussed, containment is about
as strong as any method currently in the literature.

2.1. Definitions. In this paper, an orbit is a discrete sequence of points, a
solution is a continuous curve, and a trajectory more generally refers to either an
orbit or a solution, depending upon the context. The prefix pseudo- will be used to
denote an approximate orbit, solution, or trajectory, although sometimes it will be
omitted if the meaning is clear from the context.

Shadowing of numerical orbits was first applied to iterated maps.
Definition 2.1. An orbit of an iterated map consists of a sequence of points xi

generated by the recurrence xi+1 = ϕ(xi) for some map ϕ.
Definition 2.2. A homeomorphism is a map which is continuous, one-to-one,

and onto.
For our purposes, we restrict ϕ to being a homeomorphism.
Definition 2.3. A pseudo-orbit, or noisy orbit, for ϕ satisfies yi+1 = ϕ(yi)+δi,

where δi is the noise introduced at step i. If ‖δi‖ < δ for all i, then it is called a δ-
pseudo-orbit for ϕ.

Definition 2.4. The exact orbit {xi}Ni=0 is an ε-shadow of the pseudo-orbit
{yi}Ni=0 if ‖yi − xi‖ < ε for i = 0, . . . , N .

Numerical solutions to ODEs can often be viewed as iterated maps by defining
xi+1 = ϕhi(xi), where ϕhi is the time-hi solution operator for the IVP (1.1), (1.2).
The time-hi solution operator is a homeomorphism as long as f in (1.1) is bounded
and Lipschitz continuous over the domain of interest (Ascher, Mattheij, and Russell
(1988)). For small hi, a one-step numerical method approximates ϕhi by ϕ̃hi and then
computes a sequence of discrete points yi+1 = ϕ̃hi(yi) representing approximations
to y(ti+1), where ti+1 = ti + hi. We will term such a discrete sequence of points a
pseudotrajectory. If the pseudotrajectory satisfies a local error tolerance of δ such that
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‖yi+1 − ϕhi(yi)‖ ≤ δ, then we call it a δ-pseudotrajectory. If hi is constant, we can
drop it as a subscript and treat the pseudotrajectory as a pseudo-orbit of the iterated
map ϕ ≡ ϕh.

2.1.1. Hyperbolicity and pseudohyperbolicity. One of the most important
concepts in shadowing is that of hyperbolicity. Essentially, a system of ODEs is
hyperbolic if the variational equation along a solution y(t) displays exponential di-
chotomy (Palmer 1988). This means that a perturbation δ to the solution y(t) at
time t = t0, z(t0) = y(t0)+δ produces a new solution z(t) with one of two properties:
if δ lies in the stable subspace of y(t), then z(t) converges exponentially to y(t) as t
increases; if δ lies in the unstable subspace, then z(t) diverges exponentially away from
y(t) as t increases. More details can be found in Hayes (2001) or Palmer (1988). If
a system is hyperbolic, then the angle between the stable and unstable subspaces is
always bounded away from 0 (see GHYS).

This paper deals not with hyperbolic systems, but with systems whose pseudo-
trajectories are shadowable for finite but nontrivial lengths of time even though they
are not hyperbolic. For this to occur, a system must display pseudohyperbolicity.
We say that a system is pseudohyperbolic if a small perturbation to a trajectory y(t)
produces a new solution z(t) which falls into one of two classes: those which tend to
diverge exponentially away from y(t) as t increases, and those that tend to converge
exponentially towards y(t) as t increases. In addition, z(t) should behave in this
manner over nontrivial periods of time. In short, a pseudohyperbolic system should
“mimic” the behavior of a hyperbolic system over finite but nontrivial periods of time.
This notion could be quantified by, for example, attempting to find the stable and
unstable subspaces using refinement (GHYS; Quinlan and Tremaine (1992); Hayes
(1995), (2001)), and then performing least-squares fits to exponential curves of the
growth and decay of these subspaces.

2.2. Containment in two dimensions. The first studies of shadows of pseu-
dohyperbolic systems with both expanding and contracting directions appear to be
Beyn (1987) and Hammel, Yorke, and Grebogi (1987). Hammel, Yorke, and Grebogi
(1988) and GHYS provide the first proof of the existence of a shadow for a nonhy-
perbolic system over a nontrivial length of time. Their method consists of two steps.
First, they refine a noisy trajectory using an iterative method that produces a nearby
trajectory with less noise. When refinement converges to the point that the noise
is of the order of the machine precision, they invoke containment, which can prove
the existence of a nearby exact trajectory. Their containment method, which we now
describe, is directly applicable only to two-dimensional maps.

Let {yi}Ni=0 ⊂ R2 be a two-dimensional δ-pseudo-orbit of ϕ. As i increases, orbits
separated from each other by a small distance along the expanding direction diverge
on average away from each other, while orbits separated by a small distance along
the contracting direction approach each other on average. The containment process
consists of building a parallelogramMi around each point yi of the pseudo-orbit such
that two sides C±1

i are approximately normal to, and separated from each other along,
the contracting direction, while the other two sides E±1

i are approximately normal
to, and separated from each other along, the expanding direction.1 The diameter of

1Note that this naming convention is exactly opposite to that of GHYS, because in two dimensions
they emphasized the direction to which the sides of Mi were parallel. In higher dimensions, the faces
of an n-cube are not parallel to a unique direction, and it is the direction along which a face is
separated from the center of the n-cube that matters. We change the naming convention now to
avoid confusion later.
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Fig. 2.1. Containment in two dimensions, reproduced from GHYS. The horizontal direction is
contracting, and the vertical direction is expanding.

Mi will bound the distance from the pseudo-orbit to the shadow. In order to prove
the existence of a shadow, the image of Mi under ϕ must intersect Mi+1 such that
ϕ(Mi) makes a “plus sign” with Mi+1 (Figure 2.1). To ensure that this property
holds, GHYS require a bound on the second derivative of ϕ, and the amounts of
expansion and contraction need to be resolvable to within the machine precision. The
proof of the existence of an exact orbit then relies on the following argument. For any
i ∈ {0, 1, . . . , N−1} let γi be a continuous curve inMi connecting the expanding sides
E−1
i and E+1

i . Its image ϕ(γi) is then stretched such that there is a section of ϕ(γi)
lying wholly withinMi+1, and in particular ϕ(γi) leaves Mi+1 through the expanding
sides E±1

i+1 at both ends. Let γi+1 be a continuous subsection of ϕ(γi) lying wholly

within Mi+1 connecting the expanding sides E±1
i+1. Repeating this process along the

orbit produces γN lying wholly within the final parallelogram MN . Then any point
xN ∈ γN traced backwards via ϕ−1 yields a point xi ∈ γi ⊂ Mi, i = N − 1, . . . , 1, 0.
Note that {xi}Ni=0 is an exact orbit. Moreover, since xi,yi ∈ Mi, we infer that
‖xi − yi‖ ≤ ε, where ε bounds the diameter of Mi, i = 0, . . . , N . Thus, {xi}Ni=0 is
an ε-shadow of {yi}Ni=0. We make the intuitive argument described here rigorous in
section 3.

With this picture in mind, there is a nice geometric interpretation of the require-
ment that the angle between the stable and unstable directions be bounded away from
0: if the angle gets too small, then the parallelogram essentially loses a dimension, and
ϕ(Mi) can not make a “plus sign” with Mi+1. Practically speaking, this occurs when
the angle becomes comparable to the noise amplitude of the pseudo-orbit. Hence, the
more accurate the orbit, the longer it can be shadowed (GHYS, Quinlan and Tremaine
(1992)).

2.3. Containment in three dimensions. The process described by GHYS
is not directly applicable to systems with more than two dimensions, and GHYS
provided no indication of how it could be extended beyond two dimensions. We
describe how the method can be extended to three dimensions, in which there are
precisely two interesting cases:

(i) One expanding direction and two contracting (Figure 2.2). Assume that
the z direction is expanding, while the x and y directions are contracting.
(We assume, for simplicity of exposition and for ease of drawing, that these
three directions are roughly orthogonal, although in practice they need only
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Fig. 2.2. Containment in three-dimensions, case (i): one expanding direction and two contracting.

be resolvable from each other.) Then, analogously to the two-dimensional
argument, assume we can draw a cubeMi of diameter no larger than ε around
each noisy point yi, and, for i = 0, 1, . . . , N − 1, assume we can verify that
ϕ(Mi) maps overMi+1 so that ϕ stretchesMi into a long, thin tube, a segment
of which lies wholly in Mi+1. Then, precisely as in the two-dimensional case,
we can prove that an ε-shadow of {yi}Ni=0 exists as follows. We introduce
a curve γi that runs approximately along the expanding (vertical) direction
from any point on the top of Mi to its bottom. If ϕ(Mi) maps over Mi+1 as
in Figure 2.2, then we are guaranteed that a contiguous section of ϕ(γi) lies
inside Mi+1, connecting its top and bottom along the expanding direction.
This segment of ϕ(γi) becomes γi+1. Any point xN ∈ γN ⊂ MN can be
traced backwards via ϕ−1 to a point xi ∈ γi ⊂Mi for i = 0, 1, . . . , N − 1. As
in the two-dimensional case, {xi}Ni=0 is an ε-shadow of {yi}Ni=0.

(ii) Two expanding and one contracting direction. We note that if time is reversed
in such a system, then expanding and contracting directions reverse their
roles. Thus, we simply look at the pseudotrajectory in reverse and apply the
above argument. That is, we set zi = yN−i, i = 0, . . . , N , and apply the
above argument to the noisy trajectory {zi}Ni=0.

3. Containment theorems and proofs.

3.1. Containment in n dimensions with one expanding direction. Here
we provide a proof of what we call the (n, 1)-inductive containment theorem: the
n-dimensional case in which precisely one direction is expanding, while all the others
contract. Previous proofs of containment required explicit a priori bounds on spatial
derivatives, whereas our proof requires no such bounds.2

Let Mi be a parallelepiped in Rn with faces F ji , for i = 0, . . . , N and j =
±1, . . . ,±n, with opposite signs in the superscript representing opposite faces of a
parallelepiped (see Figure 3.1). Without loss of generality, we assume that the first
direction is the “expanding” one. We will denote the union of a set of faces by
listing all of them in the superscript; for example, F±2,...,±n

i represents the set of
all the faces of Mi except F−1

i and F+1
i . Let ∂EMi ≡ F−1

i ∪ F+1
i ≡ F±1

i and

∂CMi ≡
⋃n
j=2 F

−j
i ∪ F+j

i ≡ F±2,...,±n
i . Let ϕ : Rn → Rn be a homeomorphism. Let

2Of course, our validated ODE integration (Nedialkov (1999)) must compute bounds on deriva-
tives in order to compute enclosures, but these bounds are not a priori; they are computed on-the-fly,
and if a bounds check fails, we can always try a smaller timestep to compensate.
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Fig. 3.1. The image ϕ(Mi) and Mi+1 for two dimensions. The dark curves at the bottom and
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i ).

int X represent the interior of X. Then Mi and Mi+1 satisfy the (n, 1)-ICP if
(1) ϕ(F±1

i ) ∩Mi+1 = ∅, and ϕ(F−1
i ) and ϕ(F+1

i ) are on opposite sides of the
infinite slab between the two hyperplanes containing F−1

i+1 and F+1
i+1.

(2) ∃Qi+1, a parallelepiped in Rn with each face Gji+1 parallel to the correspond-

ing face F ji+1 of Mi+1 for j = ±1, . . . ,±n, such that
(a) ϕ(Mi) ⊂ int Qi+1,
(b) F±2,...,±n

i+1 ∩Qi+1 = ∅, and ∀j ∈ {2, . . . , n}, F−ji+1 and F
+j
i+1 are on opposite

sides of the infinite slab between the two hyperplanes containing G−ji+1

and G+j
i+1.

Let γ0 ⊂ M0 be a simple curve joining F−1
0 to F+1

0 , but otherwise remaining in the
interior of M0. That is,

γ0 ∩ F−1
0 �= ∅ ∧ γ0 ∩ F+1

0 �= ∅ ∧ int γ0 ⊂ int M0.

Theorem 3.1 ((n, 1)-inductive containment theorem). If Mi and Mi+1 satisfy
the (n, 1)-ICP ∀i = 0, . . . , N − 1, then ∀i = 0, . . . , N

∃ simple curve γi ⊆ ϕi(γ0) s.t. γi∩F−1
i �= ∅ ∧ γi∩F+1

i �= ∅ ∧ int γi ⊂ intMi.
(3.1)
That is, γi touches the boundary of Mi in precisely two places, connecting F

−1
i to

F+1
i , but otherwise remains entirely inside Mi.
Proof. We proceed by induction on i. The proof of the base case i = 0 is

immediate, by the definition of γ0. For the inductive case, assume ∃ a simple curve
γi ⊆ ϕi(γ0) such that γi∩F−1

i �= ∅ ∧ γi∩F+1
i �= ∅ ∧ int γi ⊂ intMi. From ICP(1),

ϕ(F±1
i ) ⊂ Qi+1, and the fact that Qi+1 is convex, we know that Qi+1 intersects both

F−1
i+1 and F+1

i+1; and from ICP(2(b)), Qi+1 does not intersect F±2,...,±n
i+1 . Thus, since

Qi+1 is convex, Qi+1 −Mi+1 is disconnected by the slab defined in ICP(1) into two



SHADOWING NUMERICAL ODEs BY CONTAINMENT 1955

0 1
x x x x x x x x x x

Fig. 3.2. Schematic representation of the sets γ−1(s−1) (dots) and γ−1(s+1) (×’s).

disjoint components,3 say Q−1
i+1 and Q+1

i+1, each containing one of ϕ(F±1
i ), by ICP(1).

Without loss of generality, assume ϕ(F ji ) ⊂ Qji+1, j = ±1. Now, consider one of

the components, say Q−1
i+1. It contains one of the two endpoints of ϕ(γi), since one

endpoint is in ϕ(F−1
i ) ⊂ Q−1

i+1, while the other endpoint of ϕ(γi) is in ϕ(F
+1
i ) ⊂ Q+1

i+1.
Since γi is a simple curve and ϕ is a homeomorphism, ϕ(γi) is a simple curve. Now,
Q−1
i+1∩Q+1

i+1 = ∅, and ϕ(γi) connects the two. Thus, ϕ(γi) must cross the boundary of

Q−1
i+1. This boundary consists of exactly two mutually exclusive patches, one of which

is a subset of ∂Qi+1, the other a subset of F−1
i+1. Since ϕ(γi) ⊂ ϕ(Mi) ⊂ int Qi+1,

we infer that ϕ(γi) ∩ ∂Qi+1 = ∅, and so ϕ(γi) leaves Q
−1
i+1 through F−1

i+1. A similar

argument shows that ϕ(γi) leaves Q
+1
i+1 through F

+1
i+1. Thus, ϕ(γi)∩F ji+1 �= ∅, j = ±1.

It remains to show that there exists a segment γi+1 of ϕ(γi) which is a simple curve
and maintains the property defined in (3.1).

Since ϕ(γi) is a simple curve, there exists a parameterization γ(t) for t ∈ [0, 1]
such that γ([0, 1]) = ϕ(γi) and γ(t) is a homeomorphism (Munkres (1975)). Let
sj = ϕ(γi) ∩ F ji+1, j = ±1. Now, s−1 and s+1 are disjoint sets since F−1

i+1 ∩ F+1
i+1 = ∅,

and they are compact because (1) F ji+1 for j = ±1 are compact; (2) γi is compact, ϕ is
a homeomorphism, and so ϕ(γi) is compact; and (3) the intersection of two compact
sets in Rn is compact. Finally, γ−1(s±1) are compact because γ is a homeomorphism.
To prove that there exists a simple curve γi+1 ⊂ ϕ(γi) such that γi+1 ∩ F−1

i+1 �= ∅,
γi+1∩F+1

i+1 �= ∅, and int γi+1 ⊂ int Mi+1, we need to show that there exist two points
in [0, 1], one each from γ−1(s−1) and γ−1(s+1), such that no points from either set
are between them (see Figure 3.2). This will prove that there exists a simple curve,
which is a section of ϕ(γi), that connects F

−1
i+1 to F+1

i+1 without otherwise intersecting
∂Mi+1. To this end, let G = γ−1(s−1) and R = γ−1(s+1), and note that G and R
are compact, disjoint, nonempty subsets of [0, 1]. The following lemma completes the
proof.

Lemma 3.2. Let G and R be (possibly infinite) disjoint, compact, nonempty
subsets of [0, 1]. Then ∃g ∈ G, r ∈ R such that (g, r) ∩ (G ∪ R) = ∅, where we have
assumed without loss of generality than g < r.

Proof. Consider the function f(x, y) = |x− y| over the subset G×R of the plane.
Since f is continuous and G × R is compact, f attains its minimum at some point
(g, r) ∈ G× R. That is, |g − r| ≤ |g′ − r′| for any other g′ ∈ G, r′ ∈ R. Thus, there
is no element of either set G or R between g and r, and so the open interval (g, r) is
disjoint from G ∪R.

Theorem 3.3 (shadowing containment theorem). Let ϕ be a homeomorphism.
Let {Mi}Ni=0 be a sequence of parallelepipeds enclosing a pseudotrajectory {yi}Ni=0.
Let ε be the maximum diameter of Mi for i = 0, 1, . . . , N . Let γi ⊂ Mi, γi �= ∅, i =
0, . . . , N , and let γi+1 ⊆ ϕ(γi), i = 0, . . . , N − 1. Then ∃ an ε-shadow {xi}Ni=0 of
{yi}Ni=0. That is, there is an exact trajectory {xi}Ni=0 of ϕ such that ‖xi − yi‖ < ε,
i = 0, . . . , N .

3This is because F−1
i+1 and F+1

i+1 are each patches of an (n− 1)-dimensional hyperplane residing
in n dimensions, and so they each disconnect any convex set they intersect, as long as that convex
set does not intersect their boundaries ∂F−1

i+1 and ∂F+1
i+1, respectively.
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Proof. Since ϕ is a homeomorphism, ϕ−1 is a well-defined function. Pick any
point xN ∈ γN , and recursively define xi = ϕ−1(xi+1), i = N − 1, N − 2, . . . , 0. Since
γi+1 ⊆ ϕ(γi), ϕ

−1(γi+1) ⊆ γi, and so by induction xi ∈ γi for i = N,N − 1, . . . , 0.
Since yi ∈Mi and xi ∈ γi ⊂Mi, ‖yi − xi‖ ≤ diam(Mi) ≤ ε, i = 0, . . . , N .

Thus, applying Theorem 3.3 to an orbit satisfying the (n, 1)-ICP implies the
existence of a shadow.

Remark 3.1. Note that Theorem 3.3 is independent of the number of dimensions
n, and of the number of expanding and contracting directions, because the only parts
of the inductive containment theorem that are used are the conclusions that γi+1 ⊆
ϕ(γi) for i = 0, 1, . . . , N − 1 and ∅ �= γi ⊂ Mi for i = 0, . . . , N . The 0-expanding
and 0-contracting directions are handled separately. We conjecture that the general
(n, k)-inductive containment theorem (work in progress) will also assert this property,
so that the above shadowing containment theorem is applicable to the general (n, k)
case, in which k directions are expanding and n− k are contracting.

As mentioned previously, the case with one contracting dimension while the other
n − 1 directions expand can be handled simply by reversing the arrow of time and
applying the above argument. We call this the (n, n−1) case. Another proof, which is
more likely to be generalizable to an arbitrary number of expanding and contracting
directions, is presented in Hayes (2001).

3.2. Containment with zero contracting or zero expanding directions.
For completeness, we mention the trivial cases in which all directions are contracting,
or all directions are expanding. We call these the (n, 0) and (n, n) cases, respectively.
The former case is entirely trivial, because the problem is stable: if ϕ(Mi) ⊂ Mi+1

for all i, then clearly any exact solution starting in M0 will be in Mi for all i > 0.
Similarly, if all directions are expanding, then we apply the same argument in the
reverse direction: if ϕ−1(Mi+1) ⊂ Mi for all i, then any exact solution finishing in
MN , traced backwards, lies in Mi for i = N − 1, N − 2, . . . , 0.

3.3. Discussion. The four cases (n, 0), (n, 1), (n, n−1), and (n, n) cover all cases
for n = 1, 2, 3. That is, the theorems in this paper can prove the existence of shadows
for any n-dimensional system, n ≤ 3, in which some measure of pseudohyperbolicity
is present. Furthermore, although the proofs, for simplicity, deal only with a single
function ϕ, the induction argument could just as easily use a different function ϕi at
each step. In particular, ϕi could be the ODE time-hi solution operator ϕhi . Thus,
modulo a rescaling of time (which we discuss below), the above proofs can be used to
find shadows of noisy trajectories of ODE systems, as well as maps, with up to three
dependent variables. They can also be used in the case of n dependent variables,
with the restriction that solutions have either one expanding and n − 1 contracting
directions, or one contracting and n− 1 expanding directions.

Finally, we believe that a generalized (n, k)-ICP implies the existence of a shadow
(work in progress; more discussion in Hayes (2001)).

3.4. Proving the existence of chaotic orbits. Following the analysis of Stof-
fer and Palmer (1999), we describe how to use containment to prove the existence of
chaotic orbits. We quote directly from their introduction.

The idea is to construct two periodic pseudo-orbits which happen to be
close to each other at some point. We call this the branching point. Then
it is possible to construct an infinite number of pseudo-orbits as follows.
You follow one or the other of the periodic pseudo-orbits. When you reach
the branching point, you either stay on your periodic orbit for at least one
more loop, or else you switch to the other periodic orbit. Each time you
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arrive at the branching point you can again choose to stay or to switch,
ad infinitum. Assume that for each such pseudo-orbit there is a unique
orbit of the system which is close to the pseudo-orbit. Then the dynamical
system indeed behaves chaotically, at least in a certain neighbourhood of
the two periodic pseudo-orbits. (Stoffer and Palmer 1999)

To use this approach together with containment to prove the existence of a chaotic
orbit, assume that the first orbit has a sequence of N parallelepipeds Mi satisfying
the (n, k)-ICP with MN = M0. Then the (n, k)-inductive containment theorem can
be invoked ad infinitum around this periodic pseudo-orbit and proves the existence of
infinitely long exact orbits that remain in the vicinity of this pseudo-orbit.4 Similarly,
assume that the second orbit has a sequence of P parallelepipeds Qi satisfying the
(n, k)-ICP with QP = Q0. Assume further thatMi = Qj for some i, j. ThenMi = Qj
is the branching point, the (n, k)-inductive containment theorem can be invoked ad
infinitum around both of these pseudo-orbits, and each time we pass Mi = Qj we
can choose which pseudo-orbit to follow. The (n, k)-inductive containment theorem
proves that a shadow follows us as we go.

4. Verifying the inductive containment property. We present one method
of verifying that the general (n, k)-ICP holds for a given pseudotrajectory derived
from the numerical solution of an ODE. (Three more methods for verifying the ICP
are presented in Hayes (2001).) We note in passing that this scheme (as well as
the other three discussed in Hayes (2001)) could easily be adapted to the simpler
problem of maps. We require the use of validated interval arithmetic, or a validated
ODE integrator if ϕ derives from an ODE. The validated ODE integrator that we
use is called VNODE (Nedialkov (1999); Nedialkov, Jackson, and Corliss (1999)).
VNODE works with n-dimensional parallelepipeds and satisfies the following property:
given an n-dimensional parallelepiped A and a timestep h, VNODE will return an
n-dimensional parallelepiped B such that ϕh(A) ⊂ B, where ϕh is the time-h solution
operator. For the purposes of this description, we will denote the output B by ϕ̄h(A).
Thus,

ϕh(A) ⊂ ϕ̄h(A).

We will usually omit the timestep parameter h; we will talk only of ϕ, keeping in
mind that, in the induction, ϕ can be different for each step.

We verify the ICP using an iterative method that we have found empirically to
require about 3–4 validated integrations per step on average, independent of n. This
method rigorously verifies the ICP in the cases for which we have proven the inductive
containment theorem and is the method we actually used to produce our numerical
results. Three noniterative, deterministic methods are presented in Hayes (2001);
however, we found this method to be the most efficient with the validated ODE solver
we used (Nedialkov (1999)).

We first look at the simple two-dimensional case in which one of the directions is
expanding, while the other is contracting. To begin, assume that the only information
provided by our validated ODE integration is an outer bound ϕ̄(Mi) on ϕ(Mi). Then,
it is not possible to verify the (2, 1)-ICP with only one validated integration, because
this information can only prove contraction, not expansion, as shown in Figure 4.1.
In both Figures 4.1(a) and 4.1(b), ϕ̄(Mi) is a valid enclosure of ϕ(Mi). In both
figures, ϕ̄(Mi) can be used to prove that ϕ(Mi) has contracted in the horizontal

4Slightly more is required to prove the existence of periodic orbits or to prove uniqueness.
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Fig. 4.1. Enclosure methods can prove contraction but not expansion.
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Fig. 4.2. (a) The two validated integrations required to prove the (2, 1)-ICP. (b) A potential
problem, which is solved by doing a (cheap) point integration of one point on each expanding face,
to verify that there are points of ϕ(Mi) on both side of Mi+1.

direction. However, enclosure methods cannot directly prove expansion, as Figure
4.1(b) illustrates: although ϕ̄(Mi) is a valid enclosure of ϕ(Mi), it is not a very good
one, because the actual image ϕ(Mi) of Mi has not expanded in any direction. To
solve this problem, we perform two validated integrations; refer to Figure 4.2(a).
The first integration (solid rectangles) is a forward integration that provides ϕ̄(Mi),
which in turn gives us a bound on the size of ϕ(Mi) in the contracting directions
(depicted as the horizontal direction in the figure). Now, assume we can find anMi+1

which satisfies the ICP not with ϕ(Mi), but with ϕ̄(Mi). (If we cannot find such an
Mi+1, then our method fails and we cannot prove the existence of a shadow beyond
step i.) A validated integration backwards (dashed rectangles) is then performed on
Mi+1, giving ϕ̄

−1(Mi+1). If ϕ̄−1(Mi+1) proves that contraction has occurred in the
nominally expanding directions when moving back from Mi+1 to Mi, then we argue
that expansion in forward time has occurred, as follows. Choose any x ∈ Mi −
ϕ̄−1(Mi+1). Since x /∈ ϕ̄−1(Mi+1) ⊃ ϕ−1(Mi+1), this implies ϕ(x) ∈ ϕ(Mi)−Mi+1.
Since F±1

i ⊂Mi−ϕ̄−1(Mi+1), this tells us that ϕ(F
±1
i )∩Mi+1 = ∅. This is insufficient

to prove ICP(1), as illustrated in Figure 4.2(b): perhaps ϕ̄(Mi) is a loose enclosure
of ϕ(Mi), and all of ϕ(Mi) is actually on one side of Mi+1. To verify that this is not
the case, we pick one point on each of F+1

i and F−1
i and perform a validated point
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Fig. 4.3. Shortcomings of the two-integration method: sometimes it can not prove expansion
even if the Mi+1 is valid.

integration of each (which can be done cheaply) to verify that they land on opposite
sides of Mi+1.

5 Since there is exactly one expanding direction, Mi+1 cuts ϕ̄(Mi) into
two disjoint sets, and a simple continuity argument shows that the two faces in their
entirety land on opposite sides of Mi+1, thus verifying ICP(1). A similar argument
in reverse time shows that the chosen Mi+1 also verifies ICP(2(b)).

The argument of the previous paragraph clearly applies just as well in n dimen-
sions when there is one expanding direction and n− 1 contracting directions, for the
same reasons that the two-dimensional proof of containment is easily transformed into
Theorem 3.1 (Hayes (2001)). To prove that it also works when there is one contracting
direction and n − 1 expanding directions, note that there is a precise symmetry be-
tween the two cases (one expanding vs. one contracting): if we simultaneously reverse
the order of {Mi}Ni=0, giving Li =MN−i, and let ψ = ϕ−1, then the above argument
applies to the sequence {Li}Ni=0 using ψ as the homeomorphism. Thus, by symmetry,
this method is also rigorous in the case when there is one contracting direction and
n− 1 expanding ones.

Figure 4.3 illustrates that it is possible to choose an Mi+1 that satisfies the ICP
but for which we cannot verify that the ICP holds. This occurs when Mi+1 is chosen
to be “almost as large” as ϕ̄(Mi) in the expanding directions; then, the excess when
computing ϕ̄−1(Mi+1) swamps the contraction that occurs when integrating the ex-
panding direction backwards in time. We solve this problem by iteratively shrinking
Mi+1 in the nominally expanding directions until ϕ̄−1(Mi+1) fits inside Mi in those
directions. If we shrink Mi+1 to size zero in the expanding direction without being
able to integrate it backwards to fit inside Mi, then the method fails, and we cannot
prove the existence of a shadow beyond step i. We have found empirically that, when
the algorithm is succeeding, no more than 2 to 3 backwards integrations are usually
required, independent of n. The number of backwards integrations is occasionally
significantly larger, when the system encounters areas of nonhyperbolicity.

If the system were hyperbolic, then the nominally expanding directions would al-
ways expand, and the nominally contracting directions would always contract. How-
ever, in systems that are only pseudohyperbolic, the nominally expanding directions

5We have found empirically that this problem must be very rare, because it has not happened
even once during our experiments. We suspect that it may be possible to prove the ICP without this
extra point integration, but we have not devoted much thought to this matter.
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Fig. 4.4. Example of the nominally expanding direction contracting too much for our integrator
to prove contraction in the backwards direction.

may expand most of the time, but not always, and vice versa for the contracting direc-
tions. One of the reasons our shadowing method can fail is if a nominally expanding
direction contracts too much or for too long a time (Figure 4.4). Then, the expanding
dimensions of Mi can become so small that no backwards integration from Mi+1 can
fit inside Mi in the nominally expanding directions.

4.1. Implementation issues and discussion. In the original paper that de-
scribed containment, Grebogi et al. (GHYS) appear to have used boxes Mi of fixed
size and found that smaller boxes seemed to work better. In contrast, our method dy-
namically grows and shrinks the Mi as i progresses, in an effort to maintain the ICP.
In fact, we find it advantageous to choose the expanding dimension of Mi to be fairly
large, to allow us to “absorb” possible future nonexpansion, in an effort to avoid the
situation depicted in Figure 4.4. Similarly, we choose the contracting dimensions to be
relatively small, to avoid the opposite effect (allowing us to “absorb” noncontraction
without the nominal contracting dimensions becoming too large). Practically, we find
that our “boxes” can be extremely long and thin: typically, they are of length 10−3 to
10−6 in the expanding dimensions, and as small as 10−12 to 10−14 in the contracting
dimensions.

Referring once again to Figure 4.4, we note that when containment fails, the “ex-
panding” dimension ofMi has often shrunk to almost the same size as the contracting
dimension, and both can be quite small (say, 10−12), whereas when containment is
“working,” the expanding dimension of Mi can be several orders of magnitude larger
than the contracting dimension. It is interesting to note that this implies that the
hardest parts of an orbit to shadow are the places where our bounds on the distance
between the noisy and shadow orbits are smallest, i.e., where we can prove that they
are unusually close together. This appears counterintuitive but may be related to
the one-dimensional result of Chow and Palmer (1991), in which they proved that
shadows must maintain a minimum distance from the noisy orbit.

5. Rescaling time.

5.1. Informal description. Containment as presented thus far has put no re-
strictions on ϕ other than that it is a homeomorphism. As has also been mentioned,
all of our theorems and proofs have been based on a single application of ϕ, and
there is no explicit connection between the ϕ used at one step and the one used on
the next. Thus, everything said thus far is also applicable if we allow ϕ to change
between steps. In particular, at each step we could use the time-hi solution operator
ϕhi , with hi being the length of the ODE integration timestep taken at step i. The re-
sulting method for shadowing numerical ODE integrations has been dubbed the map
method by Coomes, Koçak, and Palmer (1994b), (1995a), (1995b). However, ODE
integrations suffer from errors in time. For systems in which the y′ direction lacks
even pseudohyperbolicity, errors in time (which manifest themselves in phase space as
errors in the y′ direction) can lead to short shadowing times that can be dramatically
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increased if time is rescaled. In this section, we describe how containment can be
augmented to allow for the rescaling of time.

Our idea for rescaling time in containment was inspired in part by the rescaling
of time developed by Coomes, Koçak, and Palmer (1994b), (1995a) (although our
proofs are very different from theirs), and partly by the idea of the Poincaré section,
also known as a Poincaré map or return map. There are several variations on this
idea, but the one that concerns us is the following. Assume that the solution to
an ODE is “almost periodic,” in the sense that the solution passes through some
fixed neighborhood of a given plane H approximately every T time units, where H is
approximately perpendicular to the trajectory at the point where it crosses the plane.
The Poincaré map generates the sequence of points at which the trajectory intersects
H. To accomplish the general rescaling of time, we modify this idea to remove the
almost-periodic requirement of the orbit, and simply place a plane Hi in the vicinity
of the solution at time ti, placed so that Hi is approximately perpendicular to y′(ti).
Note that we do not compute Hi; we only prove that it exists.

To facilitate containment, we must extend the idea of the Poincaré section to
encompass a small ensemble of solutions. To that effect, we wish to take a set
Mi−1 ⊂ Hi−1, where the diameter of Mi−1 is small, and place an (n− 1)-dimensional
hyperplane Hi approximately normal to the flow in the vicinity of ϕhi−1

(Mi−1). Then
we define the Poincaré section of the set ϕhi−1

(Mi−1) pointwise as follows. Let ∆hi−1

bound the time interval over which the ensemble ϕhi−1
(Mi−1) crosses Hi:

∀x ∈Mi−1 ∃h ∈ [hi−1 −∆hi−1/2, hi−1 +∆hi−1/2] s.t. ϕh(x) ∈ Hi,

where we assume that, for each x, the h chosen is unique. That is, we take the point-
by-point Poincaré section of the points in Mi−1 with respect to the plane Hi. We
call this a splash operation, because we imagine that the points in Mi−1, evolving
via ϕh for h ∈ [hi−1−∆hi−1/2, hi−1 +∆hi−1/2], “splash” through Hi approximately
simultaneously, and we assume that each trajectory intersectsHi precisely once during
that interval; see Figure 5.1.

Our intent is to build (n− 1)-dimensional parallelepipeds Mi inside Hi and then
show that the point-by-point Poincaré section atHi—the splash operation—is a home-
omorphism. We can then directly apply the previously proven containment theorems
to the (n− 1)-dimensional Mi’s, which are each contained in the (n− 1)-dimensional
hyperplane Hi, for an ODE system of n equations.

We note that since rescaling time via the splash operation effectively deletes one
dimension from the problem, and since our map containment theorems are rigorous in
three dimensions, this means that the methods presented in this paper are capable of
rigorously shadowing ODE solutions of up to four dimensions, as long as a rescaling
of time is applied.

5.2. Theorem: Splash is a homeomorphism. Refer to Figure 5.2. Let Qi
be an n-dimensional parallelepiped. Let F±1

i be the two opposing faces of Qi that are
approximately normal to y′ inside Qi, and let vi be the unit normal vector to these
two faces, with vi pointing from F−1

i to F+1
i . That is, vi is approximately parallel to

y′ inside Qi. Let D be the distance between F−1
i and F+1

i along vi. Let the infinite
hyperplanes containing F−1

i and F+1
i be H−1

i and H+1
i , respectively, and let Zi be

the closed infinite slab between them. Let Bi be a parallelepiped with faces parallel
to Qi satisfying Qi ⊂ Bi ⊂ Zi, with two of the faces of Bi contained in H±1

i . Let
{f(x) · vi | x ∈ Bi} ⊂ [v0, v1], and assume 0 < v0 ≤ v1.
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i-1h i-1φ     (Μ    )
H i-1

i-1M

x

i-1h xφ     (  )

H i

Fig. 5.1. The “splash” operation depicted for a two-dimensional ensemble evolving in a three-
dimensional configuration space. Mi−1 is embedded in the plane Hi−1 and evolves through one
timestep to ϕhi−1

(Mi−1). As depicted, the ensemble is about to splash through Hi.

Lemma 5.1. If a trajectory remains in Bi while it is in Zi, then it remains in Zi
for at least time εti ≡ D/v1 and at most ε̄

t
i ≡ D/v0.

Proof. Let y(t) be a trajectory that remains in Bi while it is in Zi. Let z(t) =
y(t) · vi. Since 0 < v0 ≤ z′(t) ≤ v1 and the width of Bi in the vi direction is D, the
maximum time to cross Bi is D/v0, while the minimum time to cross is D/v1.

Let f̄(Bi) be an enclosure of {f(x) | x ∈ Bi}. Let Si be a parallelepiped enclosure
of {Zi ∩ (Qi + hf̄(Bi)) | h ∈ [−ε̄ti, ε̄ti]}, and assume Si ⊆ Bi.

Remark 5.1. Si is intended to enclose the distance that a trajectory can drift
from Qi along the direction approximately perpendicular to y′ as it travels across Zi.
This is required because a point in Qi may not remain in Qi when it is “splashed”
onto Hi. The following lemma formalizes this statement.

Lemma 5.2. Any trajectory intersecting Qi remains in Si while in Zi, and thus
remains in Bi as well.

Proof. Since Si ⊆ Bi, f̄(Bi) bounds y′ ≡ f inside Si. Since a trajectory remaining
in Bi as it crosses Zi does so in time ≤ ε̄ti, and since Si ⊂ Bi, {hf̄(Bi) | h ∈ [−ε̄ti, ε̄ti]}
encloses the maximum possible distance from Qi that a trajectory can travel in time
|ε̄ti| while it remains in Bi. Thus, since Qi ⊂ Si ⊆ Bi, {Qi + hf̄(Bi) | h ∈ [−ε̄ti, ε̄ti]}
encloses the position of any trajectory y(t) that is within time ε̄ti of intersecting Qi,
unless y(t) leaves Zi during that time. Intersecting with Zi completes the proof.

Let Hi be any plane perpendicular to vi which intersects the interior of Qi. That
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Hi

vi

Z

Zi

i

Qi

Si

Bi

D

H H
i i

+1-1

Fig. 5.2. The objects used in Lemmas 5.1–5.4. Note that the left and right sides of Qi, Si, Bi,
and Zi are all in the planes H−1

i , H+1
i , respectively; they have been drawn as distinct for illustrative

purposes only.

is, Hi lies strictly between H−1
i and H+1

i .
Lemma 5.3. Every trajectory intersecting Qi intersects Hi at precisely one point

while it crosses Zi.
Proof. Let y(t) be a trajectory that intersects Qi. By Lemma 5.2, y(t) remains in

Si ⊆ Bi while it crosses Zi. Let z(t) = y(t)·vi. Let the z coordinates of H−1
i ,Hi, H+1

i

be z−1, z0, z+1, respectively. While the trajectory remains in Si ⊆ Bi, z
′(t) ≥ v0 > 0,

and, since z(t) is continuous, it increases monotonically while y(t) remains in Si,
taking on each value between z−1 and z+1 precisely once, by the intermediate value
theorem. In particular, it takes on the value z0 precisely once and thus crosses Hi
precisely once.

Assume that Qi is an enclosure of ϕhi−1(Mi−1). For a point x ∈Mi−1, let ϕi−1(x)
be the unique point in Hi defined by Lemma 5.3. Let M̄i = Si∩Hi. Clearly, M̄i is an
enclosure of ϕi−1(Mi−1). To show that ϕi−1 applied to Mi−1 is a homeomorphism,
we need to show that it is continuous and one-to-one. We first prove it is one-to-one.

Let εt > 0 be given. Recall ε̄ti as defined in Lemma 5.1.
Assumption 1. Assume ε̄ti < εt and /∃ distinct x,y ∈ Mi−1 such that y = ϕt(x)

for |t| < εt.
Each of the assumptions introduced in this section is assumed to hold throughout

the remainder of section, once it is introduced.
Lemma 5.4. Each point in ϕi−1(Mi−1) comes from only one point in Mi−1.
Proof. Assume to the contrary that there exist distinct x,y ∈ Mi−1 such that

ϕi−1(x) = ϕi−1(y) = z ∈ M̄i. Since ϕhi−1
(x), ϕhi−1

(y) both splash to z, they are
on the same trajectory, and since they are both in Qi, the time-shift between them
is ≤ ε̄ti. Thus, ∃t1, t2 such that ϕt1(x) = z = ϕt2(y) with |t1 − t2| ≤ ε̄ti. Then
y = ϕt1−t2(x), contradicting Assumption 1.
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Theorem 5.5. ϕi−1 applied to Mi−1 is one-to-one.
Proof. Lemma 5.3 proves that ϕi−1(Mi−1) is many-to-one, and Lemma 5.4 proves

it is one-to-many. Thus, it is one-to-one.
We now prove that ϕi−1(x) is continuous for all x ∈Mi−1.
Assumption 2. ϕt(x) exists and is continuous in both t and x ∀x ∈ Mi−1 and

∀t such that ϕt(x) ∈ Bi. Note that this is true as long as f is Lipschitz continuous
(Stuart and Humphries (1996, Theorem 2.1.12)).

We will need the following theorem.
Theorem 5.6. If y and z each satisfy the differential equation y′(t) = f(y(t)) on

the interval [t0, t1], and if f is Lipschitz continuous with constant L, then ∀t ∈ [t0, t1],

‖y(t)− z(t)‖ ≤ ‖y(t0)− z(t0)‖eL(t−t0).

Proof. See Theorem 112J of Butcher (1987).
For a point x ∈Mi−1, let hi−1(x) be that unique timestep defined by ϕhi−1(x)(x)∈

Hi. That is, ϕi−1(x) specifies where x goes, and hi−1(x) specifies how long it takes
to get there.

Lemma 5.7. If f is Lipschitz continuous, then ∀x0 ∈Mi−1, hi−1(x) is continuous
at x = x0.

Proof. For simplicity, we will drop the subscript from hi−1(x) during this proof.
Let L be the Lipschitz constant for f . Then by Theorem 5.6, for any x0,x,

‖ϕh(x0)(x)− ϕh(x0)(x0)‖ ≤ ‖x− x0‖eLh(x0) ≡ δ3(x,x0).

Since we are interested only in the behavior of h(x) in a neighborhood of x0, choose
x ∈ Mi−1 close enough to x0 so that ϕh(x0)(x) ∈ Bi. Now, since ϕh(x0)(x0) ∈
Hi, the distance from ϕh(x0)(x) to Hi is also bounded above by δ3(x,x0). Since
ϕh(x0)(x) ∈ Bi, the maximum time to intersect Hi is δ3(x,x0)/v0. Thus, h(x) ∈
[h(x0) − δ3(x,x0)/v0, h(x0) + δ3(x,x0)/v0]. The continuity of h(x) at x0 follows by
letting x→ x0.

Lemma 5.8. ϕi−1(x) is continuous ∀x ∈Mi−1.
Proof. By definition, ϕi−1(x) = ϕhi−1(x)(x), and by construction, ϕhi−1(x)(x) ∈

Si ⊆ Bi. Since the composition of two continuous functions is continuous and Lemma
5.7 asserts that hi−1(x) is continuous, Assumption 2 directly implies that ϕi−1(x) is
continuous.

Thus, ϕi−1(x) ≡ ϕhi−1(x)(x) is the unique splash point of x in Hi.
Finally, the second part of Assumption 1 cannot be taken for granted. The

following lemma is applied at step i to give us the second part of Assumption 1 at
step i+ 1.

Let Wi be an infinite slab with width E > D in the vi direction, parallel to Zi
such that Zi ⊂ Wi. Let Ci be a parallelepiped with sides parallel to Qi, also with a
width of E in the vi direction, satisfying Mi ⊂ Ci ⊂Wi, where Mi is built inside Hi
to satisfy the ICP with Mi−1 under ϕi−1. Let E+1 > 0 be the distance from Hi in
the vi direction to the face of Wi, and let E−1 > 0 be the distance to the opposite
face of Wi. Note that E−1 +E+1 = E. Let {f(x) ·vi | x ∈ Ci} ⊂ [u0, u1], and assume
0 < u0 ≤ u1. Let f̄(Ci) be an enclosure of {f(x) | x ∈ Ci}. Let Ti be a parallelepiped
enclosure of {Wi ∩ (Mi + hf̄(Ci)) | h ∈ [−εt, εt]}, and assume Ti ⊆ Ci.

Assumption 3. Assume E/u1 > εt. That is, the minimum crossing time of Ci is
greater than εt.

Lemma 5.9. /∃ distinct x,y ∈Mi such that y = ϕt(x) for |t| < εt.
Proof. Substituting Mi for Qi, Wi for Zi, Ti for Si, and Ci for Bi in Lemmas

5.1–5.3, we see that
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(1) If a trajectory remains in Ci while it is in Wi, then it remains in Wi for at
least time E/u1 and at most E/u0. By a similar argument, the minimum and
maximum times between such a trajectory’s entering Ci and intersecting Hi
are E−1/u1 and E−1/u0, respectively, and the corresponding times between
such a trajectory’s intersecting Hi and exiting Ci are E+1/u1 and E+1/u0.

(2) Any trajectory intersecting Mi remains in Ti while it is in Wi, and thus it
remains in Ci.

(3) Every trajectory intersecting Mi intersects Hi at precisely one point while it
remains in Wi, where Hi ⊂Wi and Hi is parallel to the planes enclosing Wi.

Thus, by point (3), to intersect Hi more than once inside Mi, a trajectory must,
at least, first traverse the distance from Hi to ∂Ci, exit and then reenter Ci, and
traverse the distance from ∂Ci back to Hi. By point (1), it takes time at least
E−1/u1+E+1/u1 = E/u1 to do so. By Assumption 3, E/u1 > εt. Thus, no trajectory
can intersect Mi, exit Ti, and then reenter Ti to again intersect Mi in time less than
εt.

Remark 5.2. The base case of the induction is produced by substituting M0 for
Mi in Lemma 5.9, after building suitable W0, C0, and T0.

5.3. Algorithmic details. Algorithmic verification of the requirements for the
above theorems and lemmas is fairly straightforward: Qi is simply the enclosure of
ϕhi−1(Mi−1) given to us by VNODE; the size of Bi is computed heuristically in an
effort to ensure that Si ⊆ Bi, and if our first guess is incorrect, we simply increase its
size until Si ⊆ Bi, or fail if increasing the size of Bi results in 0 ∈ {f(x) ·vi | x ∈ Bi};
εt, which is an upper bound on the time error introduced at each step by the rescaling
of time, must currently be prechosen by trial and error, although we believe that
good, simple heuristics for choosing it probably exist. The sole complication is in
maintaining the property that Qi has a pair of faces approximately normal to y′

inside Qi. Note that VNODE maintains a rotation matrix Ai, which represents the
orientation of the parallelepiped Qi. Let the columns of Ai be aji , j = 1, . . . , n. We
simply assign a1

i to be parallel to our best estimate of y′(ti). VNODE then ensures
that a1

i+1 evolves via the variational equation to be approximately parallel to y′(ti+1).
To account for the slow buildup of error that would allow a1

i to drift away from y′(ti),
we reset a1

i to be parallel to the computed y′(ti) at each timestep. This corresponds
to rotating Qi about its center by a small angle θ, computed by solving

cos(θ) =
a1
i · y′(ti)

‖a1
i ‖ ‖y′(ti)‖

,

where a1
i is the vector computed via evolution of the ODE from the previous timestep,

and y′(ti) is the value of y′ computed directly from the right-hand side of the ODE
at the current timestep. The largest distance a point in Qi will move as a result of
this rotation is rθ, where r is the distance of the furthest corner in Qi from its center.
Thus, after rotating Qi by θ, we increase its size by rθ in all directions, thus ensuring
that it still encloses ϕhi−1(Mi−1).

A simple variable stepsize algorithm was used: whenever containment of a par-
ticular step succeeds, we increase the stepsize by a small factor; whenever it fails, we
decrease the stepsize by a factor of 2. We do not explicitly fail due to small step-
size, because too small a stepsize results in failures in other parts of the method, for
example, as depicted in Figure 4.4.

6. Results and discussion. In this section, we present results of our contain-
ment method for ODEs, compare our results to those of others, discuss some of the
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Fig. 6.1. The “Lorenz butterfly.”

interesting implementation details of our method, and comment on observations of
the behavior of our method, including how it sometimes fails.

6.1. Quantitative comparisons with other methods.

6.1.1. The Lorenz system of equations. The Lorenz equations (Lorenz (1963)), x′

y′

z′

 =

 σ(y − x)
ρx− y − xz
xy − βz

 ,(6.1)

define a dissipative dynamical system (i.e., energy is not conserved), which was orig-
inally constructed to be a very simplified weather model. It can be shown (Coomes,
Koçak, and Palmer (1995a)) that, under the Lorenz equations, the set

U = {(x, y, z) : ρx2 + σy2 + σ(z − 2ρ)2 ≤ σρ2β2/(β − 1)}

is forward invariant: any solution that is in U at time t0 remains in U for all time
t ≥ t0. All the methods discussed in this section solve the Lorenz equations with
the classical parameter values σ = 10, ρ = 28, β = 8/3 (Lorenz (1963)). It is easy
to show that, for these parameter values, the cube [0, 15]3 lies in U , and so for our
experiments we chose initial conditions randomly inside this cube. A set of initial
conditions in this cube will invariably produce a solution whose three-dimensional
shape has been dubbed the “Lorenz butterfly” (Figure 6.1). Schematically, the Lorenz
butterfly consists of two two-dimensional disks in three-space with a “bridge” between
them. The two disks together are termed a “chaotic attractor,” because solutions
tend to remain in the disks but jump chaotically from one to the other and back
again. Solutions lack pseudohyperbolicity in the direction of the flow (Van Vleck
(1995); Coomes, Koçak, and Palmer (1994b), (1995a)), and so a rescaling of time
is required to shadow them effectively. As should be clear from Figure 6.1 and the
above description, in addition to the y′ direction, at any given point a solution has
one contracting direction, which is perpendicular to the disk currently housing the
solution, and one expanding direction, directed radially from the center of the disk.
Provided a rescaling of time is employed, solutions to the Lorenz equations display
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Table 6.1
Comparison of shadow lengths for the Lorenz system. VV=Van Vleck (1995); CKP = Coomes,

Koçak, and Palmer (1994b), (1995a).

Author Local error Global error Map method Rescaling time

VV 10−6 10−5 1–2 102 ∼ 104

Hayes 10−6 10−5 10 ∼ 50 103 ∼ 105

CKP 10−13 10−9 10 ∼ 100 ≥ 105

Hayes 10−13 10−9 10 ∼ 1000 ≥ 7.7×105
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Fig. 6.2. Distribution of shadow lengths computed by containment with a rescaling of time.
Each panel shows a sorted list of shadow lengths for 80 simulations of the Lorenz equations. The
horizontal axis is simply a label for each shadow; the vertical axis is its length. The magnitude of
the noise (i.e., the local error) in the noisy orbits is about 10−6 in the left graph and 10−13 in the
right.

remarkable pseudohyperbolicity for extremely long periods of time. Thus, this system
is a prime first candidate for testing shadowing methods.

We will compare our results to the only other published results on shadowing the
Lorenz equations using a rescaling of time: Van Vleck (1995), whose results could
be made rigorous but currently are not; and Coomes, Koçak, and Palmer (1994b),
(1995a), whose results are completely rigorous.

First, with no rescaling of time (the “map method”), Van Vleck gives two exam-
ples of shadows with a local error6 of about 10−5 lasting 1.04 and 1.38 time units;
Coomes, Koçak, and Palmer have six examples with local error of about 10−13 lasting
9.7, 9.8, 9.9, 9.9, 86, and 126 time units. For this paper, we have simulated hundreds
of shadows with various local errors. We have found that with local errors of about
10−5, containment finds shadows that last between 1 and 30 time units, with a median
and mean of about 20. With local errors of 10−13, we find shadows lasting between
10 and 1000 time units, again with a mean and median about halfway through that
range. Thus, it appears that, without a rescaling of time, the containment method is
capable of finding shadows that are about an order of magnitude longer than other
existing methods.

With a rescaling of time, Van Vleck gives many examples of shadows (with a
local error of about 10−6) ranging from 102 to 104 time units. Coomes, Koçak, and
Palmer (with a local error of 10−13) give six examples of shadows lasting at least
105 time units; they do not attempt to find longer shadows, so in fact their method

6The local errors used in the current paper were normalized to have comparable size per-unit-
step to other methods, even though variable stepsize methods were used both for the validated ODE
integration (Nedialkov (1999)) and for choosing the size of shadow steps.
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may be capable of finding shadows longer than 105. The corresponding numbers for
containment are 102 to 105 for local errors of 10−6, and 102 to almost 106 for local
errors of 10−13. The results are summarized in Table 6.1.7 It is clear that containment
is at least as powerful as the other existing methods. It is worth noting that our results
for local errors of 10−13 were produced using only a 17th-order Taylor series, whereas
Coomes, Koçak, and Palmer used a Taylor series of 31st order.

Figure 6.2 shows two sets of results of shadow lengths, including the rescaling of
time. The first is for eighty solutions with local error of approximately 10−6, and the
second for eighty solutions with local error of approximately 10−13. The sharp increase
in shadow lengths occurring just left of center in the first figure is probably due to
the fact that, other than choosing v0 (cf. Figure 5.2 on page 1963) to be parallel
to y′(t0), the directions of the faces of M0 are currently chosen at random. As a
result, we sometimes choose nominally expanding and contracting directions that are
not sufficiently close to the actual expanding and contracting directions. Thus, many
shadows fail early due to this problem. However, if our nominally chosen directions
are (by luck) close enough to the actual ones, then we get over this hump to find much
longer shadows. There is probably a more clever way to choose the initial M0, but
we have not yet studied this problem closely. This problem becomes less pronounced
as the local error decreases and is virtually absent in the right figure, which has local
error δ = 10−13.

In addition, our shadowing distances (i.e., the maximum distance between the
shadow and the numerical trajectory) are comparable to the methods of the above
authors: for orbits with noise 10−6 and 10−13, our method and those of Van Vleck
and Coomes, Koçak, and Palmer find shadowing distances of approximately 10−5 and
10−9, respectively. For containment, these sizes are based on εt and the maximum
size of Mi over all i, which are at least in part user-controlled. For Van Vleck and
Coomes, Koçak, and Palmer the shadowing distances are computed analytically based
upon global bounds of various computed quantities.

6.1.2. Other systems of equations. We have reproduced the shadowing ex-
periments of several other authors, usually getting comparable results, as illustrated
in Table 6.2. We discussed results for the Lorenz system in the previous section. In
this section, we provide results for three other problems.

Forced damped pendulum. We first compare our results for the forced damped
pendulum problem,

y′′ + ay′ + sin y = b cos t,

to those of GHYS, Sauer and Yorke (1991), and Chow and Van Vleck (1994). These
authors use the values a = 0.2, b = 2.4 and a = 1, b = 2.4, with initial conditions
(y, y′) = (0, 0), and mention that they get similar results with other pairs of values of
a, b and initial conditions. We used the above two pairs of values for a, b and various
random initial conditions in the unit square [0, 1]2. We convert the second-order
equation to two first-order equations by assigning y1 = y, y2 = y′, giving

y′1 = y2,

7Our attempts to find the longest possible shadows for the latter case have been repeatedly con-
founded by having either workstation or disk crashes (independent of our code) while our simulations
were running. The longest shadow we have observed is thus 7.7×105, even though, had our machines
not crashed, the shadows might have been longer.
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Table 6.2
Comparison of shadow lengths for four systems. For our results, the lengths shown are typical

results after attempting many trials with the given local and global errors; the results of others are
taken from their respective publications. Legend: δ = local error; ε = global space error; εt = global
time error (if none is listed for our method, then we did not rescale time); L = shadow length; CKP
= Coomes, Koçak, and Palmer (1994b), (1995a); SY = Sauer and Yorke (1991); CVV = Chow and
Van Vleck (1994a); VV = Van Vleck (1995); NR = not rigorous.

System Auth. δ ε εt L Comment

Lorenz
VV 10−6 10−5 104 NR
Hayes 10−6 10−5 2.5× 10−5 103–105

CKP 10−13 10−9 ≥ 105

Hayes 10−13 10−9 2.5×10−9 ≥ 7.7× 105

Forced damped
pendulum

SY 10−18 10−9 3× 104 High machine precision
Hayes 10−15 10−6 10−3 103–3× 104

CVV 10−6 10−3 104 NR
Hayes 10−6 10−5 10−3 103

CVV 10−11 10−8 103 NR
Hayes 10−11 10−8 10−3 103

Forced van
der Pol

Periodic attractor

VV 10−5 10−4 104 NR
Hayes 10−5 10−6 3× 10−5 ≥ 105

Logistic
equation

CVV 10−7 5× 10−6 9.22 y0 = 0.01, fixed L, NR
Hayes 10−7 10−6 9.22
CVV 10−7 5× 10−6 18.46 y0 = 10−4, fixed L, NR
Hayes 10−7 10−6 18.46

y′2 = b cos t− sin y1 − ay2.

GHYS and Sauer and Yorke (1991) use extended precision arithmetic with a ma-
chine epsilon of 10−29 to generate a trajectory with local truncation error rigorously
bounded by 10−18 per step, which allows them to find a shadow of length 3 × 104

and rigorous maximum distance 10−9 from their noisy trajectory. In comparison,
we use standard IEEE754 floating-point numbers and arithmetic and obtain a local
truncation error of about 10−15 at best, so our shadow distances are significantly less
stringent at 10−6, and tend to be shorter, although in a few instances we successfully
found shadows of length ∼ 3×104. Given that Sauer and Yorke used higher precision,
we are not surprised that our shadows tend to be shorter and not as close as theirs.
Comparing our results to Chow and Van Vleck (1994), we see our method is capable
of rigorously proving the existence of a shadow which is closer, but lasts for a shorter
time, than their method does; on the other hand, our result is rigorous, whereas theirs
is not, because they do not rigorously bound numerical errors before applying their
theorem.

The primary problem with shadowing this system appears to be that it is nonau-
tonomous. We currently handle a nonautonomous system by converting it to an au-
tonomous system with one component of our solution, y0, representing time: y0(0) =
t0, y′0(t) = 1. This has several drawbacks: (1) the new component is decidedly non-
hyperbolic; (2) assuming we can solve the linear system y′ = 1 exactly, the interval
representing y0 then accumulates roundoff error, and as time progresses, the error in
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y0 grows; (3) this is exacerbated by the minimum absolute error in y0 increasing as
εmacht, where εmach is the machine precision; (4) finally, the error in the computation
of cos(y0) adds to the error. These drawbacks, however, do not seem to adequately
explain our poor shadowing results for this system. Perhaps the difficulties would
vanish if a native procedure for validated integration of nonautonomous systems were
used, or if we used higher precision, as did Sauer and Yorke (1991).

Forced van der Pol. The forced van der Pol equation,

x′′ + α(x2 − 1)x′ + x = β cos(ωt),

is studied by Van Vleck (1995). He defines the parameters implicitly with α = k =
σ = 2/5, where k = β/(2α) and σ = (1 − ω2)/α, and uses the initial conditions
(x, x′) = (0, 0). We try this initial condition, as well as others chosen randomly in
the unit square [0, 1]2, and we convert the second-order equation to two first-order
equations by assigning y1 = x, y2 = x′, giving

y′1 = y2,

y′2 = β cos(ωt)− (y2
1 − 1)αy2 − y1.

This equation has a hyperbolic periodic attractor, which all solutions approach asymp-
totically, and so this system is easy to shadow. With a local truncation error of 10−6,
Van Vleck found numerical shadows of length 104 and distance 10−4, while we went
significantly further, finding rigorous shadows lasting 105 and longer with a distance of
10−6. Since solutions asymptotically approach a periodic solution that is hyperbolic,
we conjecture that containment could be maintained indefinitely.

Logistic equation. Finally, the logistic equation,

y′ = y(1− y), y(0) = ζ, 0 < ζ � 1,

was studied by Chow and Van Vleck (1994). In this problem, there is an unstable
fixed point at y = 0 and a stable fixed point at y = 1. Chow and Van Vleck attempt
shadowing two solutions, both starting at y(0) = ζ and integrating until y(T ) ≈ 1−ζ.
If ζ = 10−2, then T ≈ 9.22, and if ζ = 10−4, then T ≈ 18.46. In both cases, we use a
local truncation error of δ = 10−7. We find that we easily match their results, noting
again that ours are rigorous, while theirs are not. In fact, we find that we can prove
the existence of these shadows for ε ≈ 10δ for δ down to about 10−14.

6.2. Qualitative comparisons with other methods. First and foremost, our
method has only been proven to work in a limited number of special cases. General-
izing the (n, k)-ICP to arbitrary (n, k) is straightforward Hayes (2001). Proving that
it implies the existence of a shadow is more difficult, and is in progress. See Hayes
(2001) for more discussion.

Although containment is rigorous, it appears to be less robust than nonrigorous
methods. For example, in two examples out of three, the nonrigorous results of Chow
and Van Vleck (1994) produced shadows that were about an order of magnitude
longer than we could produce using containment. In addition, Hayes (1995) presented
convincing evidence that the gravitational n-body problem is shadowable, and yet
containment could prove the existence of shadows lasting only 1% as long as those
found nonrigorously in Hayes (1995). Even worse, the VNODE package (Nedialkov
(1999)) is capable of providing a validated enclosure of an IVP for the n-body problem
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which is about ten times as long as the containment-produced shadow! Clearly, if an
enclosure of an IVP exists, then a shadow exists for the associated point solution for at
least as long. Thus, at least for some problems, our implementation of containment
is incapable of finding shadows even though they exist. This does not necessarily
imply that the theorems proved in section 2.2 are deficient; it probably means that
our implementation for verifying that the ICP holds can be improved, for example by
reducing the excess of the validated numerical integrator.

Our method requires some a priori guesses; for example, the maximum and min-
imum sizes of the Mi, and the maximum time rescaling εt, need to be chosen before
the algorithm runs. We typically had to choose these numbers by trial and error for
each problem; if a certain εt did not work, for example, we often found that increas-
ing it or decreasing the maximum size of Mi would allow us to find longer or closer
shadows, respectively. Van Vleck’s (1995) method also requires some a priori guess-
work to make a rescaling of time work. Although Coomes, Koçak, and Palmer do not
discuss their choice of parameters, it is likely that they require significant guesswork
to find parameters that satisfy their theorems as well. Finally, all shadowing meth-
ods currently in the literature appear to require guesswork to discover the number of
expanding and contracting dimensions and to choose a local error δ which is stringent
enough to satisfy their respective theorems.

It is also not trivial to see how containment could be parallelized, since each Mi

depends onMi−1. Possibly an iterative method that guesses all the {Mi}Ni=0 and then
iteratively refines them in parallel could be constructed; this may also be related to
two-point boundary value problems (Ascher, Mattheij, and Russell (1988)).

On the other hand, containment appears to have several advantages over other
methods.

• We use an off-the-shelf validated integrator (Nedialkov (1999)) to verify that
ICP holds; this integrator is almost as easy to use as any standard integrator,
and thus getting the code “up and running” on a new problem usually takes
only a few minutes. Another advantage of this simplicity is that it requires
the user to have no deeper understanding of the system than knowing the
defining equations.8

• Although the success of containment may depend, of course, upon global
properties of the system, the method itself is local. By that we mean that
it requires information only from the previous step to extend the length of
the shadow. Several other methods require computing, storing, and updat-
ing global information such as the extent of nonhyperbolicity (cf. Chow and
Palmer’s p parameter 1991, 1992).

7. Conclusions. We have extended the simple and elegant containment method
of producing shadows from two-dimensional maps to maps of arbitrary dimension in
which some measure of hyperbolicity is present and there is either 0 or 1 expanding
modes, or 0 or 1 contracting modes, and added a rescaling of time to allow con-
tainment to work better for ODEs. We have demonstrated that this new method
produces shadows of ODE integrations that are of comparable quality and length to
any currently in the literature, and noted how it can be used to prove the existence
of chaos.

8Some may consider this a disadvantage.
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Abstract. In the present paper we propose least squares formulations for the numerical solution
of exterior boundary value problems. The partial differential equation is a first order system in
a bounded subdomain, and the unbounded subdomain is treated by means of boundary integral
equations. The first order system is derived from a strongly elliptic second order system. The
analysis of the present least squares formulations is reduced to the analysis of the Galerkin method
for the coupling of finite element and boundary element methods (FEM and BEM) of the second
order problem. The least squares approach requires no stability condition. However, it requires
the computation of negative as well as of half integer Sobolev norms. The arising linear systems
can be preconditioned to have condition numbers ∼ 1. The present methods benefit strongly from
the use of biorthogonal wavelets on the coupling boundary and the computation of corresponding
equivalent norms in Sobolev spaces. In particular, the application of Green’s formula leads to an
efficient discretization of least squares formulations.
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1. Introduction. The combined use of the finite element method (FEM) and the
boundary element method (BEM), also called coupling of FEM and BEM, is already
known as a very powerful tool to solve a large class of transmission problems in physics
and engineering sciences (see, e.g., [13], [22], [27], [31], [33], [37], and the references
therein). In addition, the interest in using mixed FEMs instead of the usual FEM
has been increasing during the last few years. Indeed, the combination of mixed finite
elements with either boundary integral equations or Dirichlet-to-Neumann mappings
has been recently used to solve several interior and exterior boundary value problems
appearing in potential theory and elasticity (see, e.g., [2], [8], [20], [23], [25], and [34]).

The reasons for this new interest arise mainly from structural mechanics, where
the use of mixed FEMs allows us to compute stresses more accurately than dis-
placements, whereas the utilization of boundary elements or Dirichlet-to-Neumann
mappings is more appropriate for linear homogeneous materials in bounded and un-
bounded domains. In the framework of dual-mixed methods, the recent papers [8] and
[34], dealing with an exterior problem from potential theory and the linear elasticity
problem, respectively, are the first ones on the subject that consider the H(div; Ω)
spaces in the finite element domain, and the two boundary integral equations approach
from [13] and [27] in the boundary element region. Now, the method from [8] and [34]
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was extended in [20], [25], and [2], where a suitable combination of dual-mixed FEM
with either BEM or Dirichlet-to-Neumann mappings was applied to some nonlinear
transmission problems. However, this extension has not been completely successful
since the derivation of explicit finite element subspaces satisfying the corresponding
discrete inf-sup conditions is still an open problem. As a first attempt to overcome
this difficulty, we examined in [3] the use of a primal-mixed FEM. More recently,
we obtained quite satisfactory results, at both the continuous and discrete levels, by
applying what we called a dual-dual mixed variational formulation (see [4], [21], and
[24]). This latter approach requires an extension of the usual Babuska–Brezzi the-
ory to a special class of nonlinear variational problems with constraints, which was
derived with full details in [19].

On the other hand, a possibility that has not been fully investigated yet is the
utilization of least squares methods. As is well known, this approach avoids the
necessity of inf-sup conditions, and hence it becomes attractive to use it jointly with
mixed finite element formulations. One of the main methods, introduced in [1], uses
the general theory of elliptic boundary value problems of Agmon–Douglis–Nirenberg
and reduces the system to the minimization of a least squares functional that consists
of a weighted sum of the residuals occurring in the equations and the boundary
conditions. This is a generalization of both the method of Jespersen [32] and the
method of Wendland [39]. Another approach, mostly used for second order elliptic
problems written as first order systems, introduces a least squares functional and
studies the resulting minimization problem by proving that the hypotheses of the
Lax–Milgram lemma are satisfied on appropriate spaces (see, e.g., [9] and [35]). More
recently, a least squares functional involving a discrete inner product related to the
inner product in the Sobolev space of order −1 was introduced in [5], and an approach
more closely coupled to the Galerkin method was studied by the same authors in [6].

Following the approach of [5], [6], the design of the least squares method re-
quires the use of some negative and half integer Sobolev norms, such as the norms
of H−1(Ω) and H−1/2(Γ), which seem to be difficult to compute in practice. How-
ever, due to recent results in multilevel preconditioning [7] and multiscale methods or
wavelet approximations (see [14], [16], [36]), these norms are computable in suitable
finite dimensional subspaces. Moreover, in the framework of multiscale methods or
biorthogonal wavelets, these computations are fairly simple and can be carried out
within optimal complexity. We would like to mention that these approaches give rise
to positive definite system matrices that can be easily preconditioned. In particular,
using multilevel methods, one can reduce the condition numbers to O(1).

In the present paper we will discuss various least squares formulations. Most of
them follow obviously from the underlying equations. The first approach requires the
flux to be in H(div; Ω) and minimizes the equilibrium equation in the L2(Ω)-norm
(see [9]), whereas the other ones perform the minimization in the H−1(Ω)-norm.
Although this and similar approaches lead to some difficulties when developing a
functional analytical setting, it turns out from our investigations that one can avoid
these problems completely by using the functional J3 (see section 3 below). This
functional is based on partial integration, i.e., Green’s formula, and requires no re-
strictions concerning H(div; Ω) spaces. In fact, it is easy to implement and needs no
further attention, compared to the other schemes, when computing discrete Sobolev
norms. The approach of [15] provides an abstract setting considering an invertible
operator L = (Li,j) :

∏
iHi →

∏
iH
′
i mapping the product of Sobolev spaces

∏
iHi

into its dual
∏

iH
′
i. We would like to emphasize that J3 is the only functional that
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can be cast into this abstract framework.
For the computation of the discrete Sobolev norms in the bounded subdomain Ω,

there are mainly two possibilities, the use of wavelet bases (see [15], [17]) or, alterna-
tively, the utilization of suitable preconditioners (see [5], [6]), which are applicable to
standard multigrid finite element discretizations. For the computation of the Sobolev
norms along the boundary, we recommend wavelet bases. Obviously, the stability of
least squares methods is guaranteed under weak assumptions, e.g., invertibility of the
operators. However, it is worth mentioning that the negative and half integer Sobolev
norms can be computed only on finite dimensional test spaces. This requires an addi-
tional truncation or projection to get a computable discrete formulation. Therefore,
stability is not automatically guaranteed by the continuous formulation but must
be proven. Our present proofs are completely based on the theory for the Galerkin
scheme of the second order problem. From these results, we conclude the stability
of the present methods. Only in the case of the functional J4 (see section 3 below)
do we have to enlarge the test spaces slightly. An important feature of the present
approaches is that, for the least squares discretizations of the boundary integral oper-
ators, we need only the coefficients of the Galerkin matrices of the layer potentials and
not of compositions of layer potentials (see section 7). Finally, it is worth mentioning
that in the framework of multiscale methods these matrices are sparse and that there
are already several techniques available to precondition them (see, e.g., [36], [38]).

Consequently, the purpose of the present work is to examine the use of least
squares formulations for the coupling of mixed FEM and BEM, as applied to linear
exterior boundary value problems. This must be considered as the first step toward
the future extension to nonlinear exterior transmission problems. The rest of the pa-
per is organized as follows. In section 2 we describe the exterior second order model
problem and apply the boundary integral equation method to reduce it to an equiv-
alent nonlocal boundary value problem in a bounded annular domain. Then, after
setting the flux as a new unknown, the nonlocal problem is rewritten as a first order
system, which yields the underlying equations for the discretization. Various contin-
uous least squares formulations, induced by this first order system, are introduced
in section 3. Although existence and uniqueness for the least squares minimization
problems can be easily deduced from the mapping properties of the underlying oper-
ators, we provide explicit proofs by using coercivity estimates of the usual variational
formulation for the coupling procedure, since the method of these proofs can be used
for the validation of the corresponding results for the discrete least squares formula-
tions in section 5. Next, in section 4 we define the finite dimensional subspaces. The
discrete least squares formulations and the corresponding error analysis are studied
in section 5. In section 6 we give a brief description of the equivalence of norms based
on wavelet bases and indicate the utilization of these functions for the present least
squares approach. In addition, we remark how to use the wavelet bases provided by
[17] for the treatment of three dimensional problems. In the last section we consider
a numerical example and demonstrate how to set up the discrete matrices related to
the minimization of J3.

2. The exterior boundary value problem. Let G be a bounded and simply
connected domain in R

2 with Lipschitz-continuous boundary ∂G, and let ΓD and ΓN

be two disjoint subsets of ∂G such that |ΓD| �= 0 and ∂G = ΓD ∪ ΓN . In addition,
let Ω be the annular domain bounded by ∂G and a second Lipschitz-continuous curve
Γ whose interior region contains G. We denote Ωe := R

2 − (G ∪ Ω). Then, given
f ∈ L2(Ω) and a matrix valued function a(·) := (aij(·))2×2, we consider the following
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exterior boundary value problem: Find u ∈ H1
loc(R

2 −G) such that

u = 0 on ΓD and (a∇u) · n = 0 on ΓN ,

−div (a∇u) = f in Ω ,

lim
x→x0
x∈Ω

u(x) = lim
x→x0
x∈Ωe

u(x) ∀x0 ∈ Γ ,

lim
x→x0
x∈Ω

a(x)∇u(x) · n(x0) = lim
x→x0
x∈Ωe

∇u(x) · n(x0) ∀x0 ∈ Γ ,

−∆u = 0 in Ωe , u(x) = O(1) as ‖x‖ → +∞ ,

(2.1)

where n (resp., n(x0)) denotes the unit outward normal to ∂Ω (to x0 ∈ ∂Ω). Here,
we assume that aij ∈ L∞(Ω) and that there exists α > 0 such that

α ‖z‖2 ≤ zT a(x) z ∀ z ∈ R
2 and for almost all x ∈ Ω .(2.2)

We observe that the fourth and fifth equations of (2.1) constitute the usual transmis-
sion conditions along the interface Γ.

In what follows, we use the boundary integral equation method in the region Ωe

and reduce the problem (2.1) to a nonlocal boundary value problem on the bounded
domain Ω. To this end, we let

E(x, y) := − 1

2π
log ‖x− y‖

be the fundamental solution of the Laplacian and recall that the Green representation
formula in Ωe becomes

u(x) =

∫
Γ

{
∂

∂n(y)
E(x, y)u(y)− E(x, y)

∂u

∂n
(y)

}
dsy − λ ∀x ∈ Ωe,

where λ is an unknown constant.
Then, according to the well-known jump conditions of the layer potentials, and

using the transmission conditions from (2.1), we obtain the integral equations

0 =

(
1

2
I − K

)
u+Vσ + λ on Γ ,

σ = −Wu +

(
1

2
I−K′

)
σ on Γ ,

(2.3)

where we have introduced the new unknown σ := (a∇u) ·n on Γ, and V, K, K′, and
W are the boundary integral operators of the simple, double, adjoint of the double,
and hypersingular layer potentials, respectively.

Now, the condition at infinity of u implies that σ satisfies∫
Γ

σ ds =

∫
Γ

(a∇u) · n ds = 0 ,

which means that σ ∈ H−1/2
0 (Γ), where H

−1/2
0 (Γ) := {τ ∈ H−1/2(Γ) : 〈τ, 1〉 = 0},

and, hereafter, 〈·, ·〉 denotes the duality pairing between H−1/2(Γ) and H1/2(Γ) with
respect to the L2(Γ)-inner product.
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In this way, the original exterior boundary value problem (2.1) reduces to the

following nonlocal boundary value problem in Ω: Find (u, σ, λ) ∈ H1(Ω)×H−1/2
0 (Γ)×

R such that

u = 0 on ΓD and (a∇u) · n = 0 on ΓN ,

−div (a∇u) = f in Ω ,

σ = (a∇u) · n on Γ ,

σ = −Wu +

(
1

2
I−K′

)
σ on Γ ,

0 =

(
1

2
I − K

)
u+Vσ + λ on Γ .

(2.4)

We now introduce the flux θ := a∇u. Since σ ∈ H−1/2
0 (Γ) and θ · n = σ on Γ,

we note that the unknown θ must belong to H0(div; Ω), where

H0(div; Ω) :=
{
ζ ∈ H(div; Ω) : ζ · n = 0 on ΓN and 〈ζ · n, 1〉 = 0

}
.

As usual, H(div; Ω) is the space of functions ζ ∈ [L2(Ω)]2 such that div ζ ∈ L2(Ω).
Provided with the inner product

(θ, ζ)H(div;Ω) := (θ, ζ)[L2(Ω)]2 + (div θ,div ζ)L2(Ω) ,

H(div; Ω) is a Hilbert space. Here, (·, ·)[L2(Ω)]2 and (·, ·)L2(Ω) denote the inner products

of the spaces indicated. Moreover, for all ζ ∈ H(div; Ω), ζ · n ∈ H−1/2(Γ) and there
holds ‖ζ · n‖H−1/2(Γ) ≤ ‖ζ‖H(div;Ω) (see [26] for the proof of these results).

Consequently, our problem (2.4) can be rewritten as the following equivalent first

order system: Find (θ, u, σ, λ) ∈ H0(div; Ω)×H1(Ω)×H−1/2
0 (Γ)× R such that

u = 0 on ΓD ,

θ − a∇u = 0 and − div θ = f in Ω ,

σ = θ · n on Γ ,

σ = −Wu +

(
1

2
I−K′

)
σ on Γ ,

0 =

(
1

2
I − K

)
u+Vσ + λ on Γ .

(2.5)

This system is the starting point for the least squares formulations that we propose
below in section 3.

Before ending the present section, we recall that the boundary integral operators
used above are formally defined by

(Vτ)(x) :=

∫
Γ

E(x, y) τ(y) dsy ∀ τ ∈ H−1/2(Γ) , ∀x ∈ Γ ,

(Kµ)(x) :=

∫
Γ

∂

∂n(y)
E(x, y)µ(y) dsy ∀µ ∈ H1/2(Γ) , ∀x ∈ Γ ,
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(K′τ)(x) :=

∫
Γ

∂

∂n(x)
E(x, y) τ(y) dsy ∀ τ ∈ H−1/2(Γ) , ∀x ∈ Γ ,

(Wµ)(x) := − ∂

∂n(x)

∫
Γ

∂

∂n(y)
E(x, y)µ(y) dsy ∀µ ∈ H1/2(Γ) , ∀x ∈ Γ .

Moreover, their main mapping properties are collected in the following lemma.
Lemma 2.1. Let Γ be a Lipschitz boundary. The operators

V : H−1/2+s(Γ) −→ H1/2+s(Γ), K : H1/2+s(Γ) −→ H1/2+s(Γ),

K′ : H−1/2+s(Γ) −→ H−1/2+s(Γ), W : H1/2+s(Γ) −→ H−1/2+s(Γ)

are continuous for all s ∈ [−1/2, 1/2]. Furthermore, there exist positive constants
α1, α2 such that

〈τ,Vτ〉 ≥ α1 ‖τ‖2H−1/2(Γ) ∀ τ ∈ H−1/2
0 (Γ)

and

〈Wµ, µ〉 ≥ α2 ‖µ‖2H1/2(Γ) ∀µ ∈ H1/2
0 (Γ) ,

where

H
1/2
0 (Γ) := {µ ∈ H1/2(Γ) : 〈1, µ〉 = 0} .

Proof. See [12].

3. The continuous least squares formulations. According to the system
(2.5), and taking into account the least squares formulations already described in
section 1, we consider here four different approaches.

First, we introduce the operator P0 : H1/2(Γ)→ H
1/2
0 (Γ), where

P0 µ := µ − 1

|Γ| 〈1, µ〉 ∀µ ∈ H
1/2(Γ) .(3.1)

Note that P0 µ ≡ 0 for all constant µ on Γ and that there exists C > 0, depending
only on Γ, such that

‖P0 µ‖H1/2(Γ) ≤ C ‖µ‖H1/2(Γ) ∀µ ∈ H1/2(Γ) .(3.2)

Then, we define the space

H1
ΓD

(Ω) := { v ∈ H1(Ω) : v = 0 on ΓD}
and consider the following minimization problem: Find (θ, u, σ) ∈ X1 := H0(div; Ω)×
H1

ΓD
(Ω)×H−1/2

0 (Γ) such that

J1(θ, u, σ) = min
(ζ,v,τ)∈X1

J1(ζ, v, τ) ,(3.3)

where J1 is the quadratic functional defined by

J1(ζ, v, τ) := ‖a∇v − ζ‖2[L2(Ω)]2 + ‖div ζ + f‖2L2(Ω)

+
∥∥Wv + ζ · n− ( 1

2I−K′
)
τ
∥∥2

H−1/2(Γ)
+
∥∥P0

[(
1
2I−K

)
v +Vτ

]∥∥2

H1/2(Γ)
.

(3.4)
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In what follows, let H−1(Ω) denote the dual of H1
ΓD

(Ω). Then, since the fourth
equation from (2.5) must be understood at least in the distributional sense, it suffices
to assume that the data f belongs to H−1(Ω) and that the unknown θ is sought in
the space

H :=
{
ζ ∈ [L2(Ω)]2 : ζ · n = 0 on ΓN and ζ · n ∈ H−1/2

0 (Γ)
}
,

which is endowed with the norm of [L2(Ω)]2.
The above remark leads us to the following minimization problem: Find (θ, u, σ) ∈

X2 := H ×H1
ΓD

(Ω)×H−1/2
0 (Γ) such that

J2(θ, u, σ) = min
(ζ,v,τ)∈X2

J2(ζ, v, τ) ,(3.5)

where J2 is the quadratic functional defined by

J2(ζ, v, τ) := ‖a∇v − ζ‖2[L2(Ω)]2 + ‖div ζ + f‖2H−1(Ω)

+
∥∥Wv + ζ · n− ( 1

2I−K′
)
τ
∥∥2

H−1/2(Γ)
+
∥∥P0

[(
1
2I−K

)
v +Vτ

]∥∥2

H1/2(Γ)
.

(3.6)

We remark that the only differences between (3.3)–(3.4) and (3.5)–(3.6) lie in the
norm that measures the error arising from the equilibrium equation (div ζ + f) = 0,
and on the space in which the unknown θ lives. In any case, it is easy to see that
the minimum of both J1 and J2 is attained for any solution (θ, u, σ) of problem (2.5).
Also, it is important to mention that, instead of the first term in the definitions of J1

and J2, one may use the weighted norm ‖a−1/2 (a∇v − ζ)‖2[L2(Ω)]2 , which leads to a

better conditioning of the corresponding discrete problems (see [15] for details).
The use of norms is motivated by the proper functional analytical setting L : X→

X′. The paper [15] provides a general framework for least squares methods based on
variational formulations. In contrast to Galerkin methods, the least square methods
are stable if and only if L is normally solvable, i.e., if ImL ⊂ X′ is a closed subset of
X′. However, the previous formulations do not fit exactly into the framework of [15].
Nevertheless, there is a slight modification of the functional J2 fitting into this setting
which can be derived from the variational formulation of the second order problem.
This realization facilitates the implementation; see section 7. Taking the equation
−div ζ = f in its weak form, we can apply Green’s theorem(

(div − δΓ ⊗ ·n)ζ, v
)
L2(Ω)

:= (div ζ, v)L2(Ω) − 〈ζ · n, v〉 = − (ζ,∇v)[L2(Ω)]2

for all v ∈ H1
ΓD

(Ω). Here δΓ ⊗ τ is a distribution in H−1(Ω) which is supported on
the interface boundary Γ. We remark that by duality and the trace theorem we find

‖δΓ ⊗ τ‖H−1(Ω) <∼ ‖τ‖H−1/2(Γ) ∀ τ ∈ H−1/2(Γ).

Hence we derive

|(div ζ − δΓ ⊗ ζ · n, v)L2(Ω)| = |(div ζ, v)L2(Ω) − (ζ · n, v)L2(Γ)| = |(ζ,∇v)L2(Ω)|
≤ ‖ζ‖[L2(Ω)]2‖v‖H1

ΓD
(Ω).

According to the abstract setting in [15], we consider the operator

L =

L1,1 L1,2 L1,3

L2,1 L2,2 L2,3

L3,1 L3,2 L3,3

 :

 [L2(Ω)]2

H1
ΓD

(Ω)

H
−1/2
0 (Γ)

→
[L2(Ω)]2

H−1(Ω)

H
1/2
0 (Γ)
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given by

L =

 −I a∇ 0
div − δΓ ⊗ ·n −δΓ ⊗Wγ δΓ ⊗

(
1
2I−K′

)
0 P0

(
1
2I−K

)
γ P0V

 ,
where γ denotes the trace operator γ : H1

ΓD
(Ω) → H1/2(Γ). For the sake of brevity,

we use the notation Wv = Wγv. Consequently, following [15], we introduce the

Hilbert space X3 := [L2(Ω)]2 ×H1
ΓD

(Ω)×H−1/2
0 (Γ) and X′3 as the dual space of X3

with respect to the canonical L2-inner product. This yields the following least squares
minimization problem: Find (θ, u, σ) ∈ X3 such that

J3(θ, u, σ) = min
(ζ,v,τ)∈X3

J3(ζ, v, τ) ,(3.7)

where J3 is the quadratic functional defined by

J3(ζ, v, τ) := ‖a∇v − ζ‖2[L2(Ω)]2 +
∥∥P0

[(
1
2I−K

)
v +Vτ

]∥∥2

H1/2(Γ)

+
∥∥div ζ + f − δΓ ⊗ (Wv + ζ · n− ( 1

2I−K′
)
τ)
∥∥2

H−1(Ω)
.

(3.8)

Though this minimization problem looks unusual, it is relatively simple to implement.
One advantage of this formulation is that the flux can be chosen simply in [L2(Ω)]2.
Let us notice that this approach is the only one which does not assume that ζ ∈ H
or ζ · n ∈ H−1/2

0 (Γ), which in turn requires ζ ∈ H(div; Ω). Therefore, it is the only
least squares formulation which can be cast in the abstract setting of [15].

For the sake of completeness, we mention that there is another more simplified
version which is obtained by inserting the transmission condition θ · n = σ directly
into the above formulation. Then, the trace norms ‖ · ‖H1/2(Γ) and ‖ · ‖H−1/2(Γ)

in (3.6) are redundant, and we can derive a simpler minimization problem: Find
(θ, u) ∈ X4 := H ×H1

ΓD
(Ω) such that

J4(θ, u) = min
(ζ,v)∈X4

J4(ζ, v) ,(3.9)

where J4 is the quadratic functional defined by

J4(ζ, v) := ‖a∇v − ζ‖2[L2(Ω)]2 + ‖div ζ + f‖2H−1(Ω)

+
∥∥P0

[(
1
2I−K

)
v +V(ζ · n)

]∥∥2

H1/2(Γ)
.

(3.10)

Since H−1(Ω), H1/2(Γ), and H−1/2(Γ) are Hilbert spaces, the norms are defined
by the corresponding inner products (·, ·)H−1(Ω), 〈·, ·〉H−1/2(Γ), and 〈·, ·〉H1/2(Γ). For
example, the quadratic functional J4 can be rewritten by

J4(ζ, v) := (a∇v − ζ,a∇v − ζ)[L2(Ω)]2 + (div ζ + f,div ζ + f)H−1(Ω)

+ 〈P0

[(
1
2I−K

)
v +V(ζ · n)

]
,P0

[(
1
2I−K

)
v +V(ζ · n)

]〉H1/2(Γ) .

In what follows, we develop the necessary tools to study the solvability and dis-
crete approximations of our least squares formulations. However, the second, third,
and fourth formulation are sharper than the first one. In fact, the resulting conver-
gence rate is higher, and the system matrices can be preconditioned quite well. In
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the third and fourth formulations, the H−1/2-norm is avoided. Moreover, in the third
formulation, the flux is computed by means of Green’s theorem; see section 7. This
means that we need neither ζ · n nor the assumption ζ · n ∈ H−1/2(Γ) explicitly. In
our opinion, it is the most favorable approach. The fourth formulation looks most
simple, and it avoids the computation of the hypersingular operator W. However,
its discretization requires some kind of stabilization, which will be discussed below in
section 5. Therefore, throughout the rest of the paper, we will just concentrate on
the problems (3.5)–(3.6), (3.7)–(3.8), and (3.9)–(3.10). Since the computation of the
L2(Ω)-inner product offers no difficulties, the corresponding extension to (3.3)–(3.4)
will be straightforward.

Now, following the general setting from [15], we find that (3.3), (3.5), and (3.7)
are equivalent to

Ji(θ, u, σ) = min
(ζ,v,τ)∈Xi

Ji(ζ, v, τ) ,(3.11)

with

Ji(ζ, v, τ) =
1

2
Bi

(
(ζ, v, τ), (ζ, v, τ)

) − Gi(ζ, v, τ) + const,(3.12)

i = 1, 2, 3, with corresponding bilinear forms Bi : Xi×Xi → R, and linear functionals
Gi : Xi → R. An analogous setting holds for (3.10). Then, the minimization problems
are equivalent to the following linear equations: Find (θ, u, σ) ∈ Xi such that

Bi

(
(θ, u, σ), (ζ, v, τ)

)
= Gi(ζ, v, τ)(3.13)

for all (ζ, v, τ) ∈ Xi. This equation is solved approximatively on a finite dimensional
subspace in Xi. Therein, the major difficulty is the computation of the underlying
bilinear and linear forms. However, this can be done only approximatively, which
means Bi is replaced by some discrete bilinear form Bh

i .

4. Coercivity estimates. It is easy to prove, using the mapping properties of
the boundary integral operators (cf. Lemma 2.1) and (3.2), that B2, B3, and B4 are
symmetric and bounded in the corresponding energy norms. In addition, G2, G3,
and G4 are also bounded. Therefore, in order to conclude the unique solvability of
our least squares formulations (3.5)–(3.6), (3.7)–(3.8), and (3.9)–(3.10), it remains to
show that B2, B3, and B4 are strongly coercive in X2, X3, and X4, respectively. Usu-
ally, coercivity estimates for least squares formulations are valid under much weaker
conditions than for Galerkin formulations since only the normal solvability of the op-
erator is required. Since the Sobolev norms cannot be computed exactly (see below),
we need to apply a more sophisticated tool for the investigation of the present dis-
crete least squares methods. For this purpose, we have to state some previous results
concerning the Galerkin scheme of the original second order nonlocal boundary value
problem (2.4).

First, proceeding in the usual way (see, e.g. [13], [22], [27]), we find that the weak

formulation of (2.4) reduces to the following: Find (u, σ) ∈ H := H1
ΓD

(Ω)×H−1/2
0 (Γ)

such that

A
(
(u, σ), (v, τ)

)
= F(v, τ) ∀ (v, τ) ∈ H ,(4.1)

where A : H×H→ R is the bounded bilinear form defined by

A
(
(u, σ), (v, τ)

)
:= (a∇u,∇v)[L2(Ω)]2 + 〈Wu, v〉 − 〈( 1

2I−K′
)
σ, v〉

+ 〈τ,Vσ〉 + 〈τ, ( 1
2I−K

)
u〉

(4.2)
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for all (u, σ), (v, τ) ∈ H, and F ∈ H′ is given by

F(v, τ) :=

∫
Ω

f v dx ∀ (v, τ) ∈ H .(4.3)

The product space H is endowed with the corresponding norm, that is,

‖(v, τ)‖H :=
{ ‖v‖2H1(Ω) + ‖τ‖2H−1/2(Γ)

}1/2
.

In what follows, given two expressions a and b, the relation a <∼ b means that a
is bounded by some constant times b uniformly in all parameters upon which a and b
may depend. An analogous definition holds for the relation a >∼ b. Also, a ∼ b means

that a <∼ b and a >∼ b.
Lemma 4.1. The bilinear form A is strongly coercive in H, that is,

A
(
(v, τ), (v, τ)

)
>∼ ‖(v, τ)‖2H ∀ (v, τ) ∈ H .

Proof. Using that K′ is the adjoint of K, we obtain from (4.2) that

A
(
(v, τ), (v, τ)

)
= (a∇v,∇v)[L2(Ω)]2 + 〈Wv, v〉 + 〈τ,Vτ〉 .

Since |ΓD| �= 0, Poincaré’s inequality yields the equivalence between the norm and
the seminorm of H1(Ω) in the subspace H1

ΓD
(Ω), which, together with (2.2), implies

that

(a∇v,∇v)[L2(Ω)]2 >∼ ‖v‖2H1(Ω) ∀ v ∈ H1
ΓD

(Ω) .

Then, the above inequality and the coerciveness properties of V and W given in
Lemma 2.1 complete the proof.

For the sake of completeness, we also provide the following consequence of the
previous lemma.

Theorem 4.2. There exists a unique solution (u, σ) ∈ H of the variational
formulation (4.1). Moreover, there holds the a priori estimate ‖(u, σ)‖H <∼ ‖F‖H′ .

Proof. The proof is a straightforward application of the Lax–Milgram
lemma.

The following lemma reveals a well-known fact about boundary integral operators.

Lemma 4.3. For u ∈ H1/2
0 (Γ) and σ ∈ H−1/2

0 (Γ), the following holds:∥∥Wu+ ( 1
2I+K′)σ

∥∥
H−1/2(Γ)

∼ ∥∥P0

[
( 1
2I−K)u+Vσ

]∥∥
H1/2(Γ)

.(4.4)

Proof. The proof follows easily from the equality W = −( 1
2I+K′)V−1( 1

2I−K)
together with the mapping properties of the double layer potential operators in the
spaces H±1/2(Γ).

Theorem 4.4. For all functions (θ, u, σ) ∈ X2 := H ×H1
ΓD

(Ω)×H−1/2
0 (Γ), the

following a priori estimate is valid:

‖u‖H1(Ω) + ‖θ‖[L2(Ω)]2 + ‖σ‖H−1/2(Γ)
<∼ ‖a∇u− θ‖[L2(Ω)]2 + ‖div θ‖H−1(Ω)

+
∥∥Wu+ θ · n− ( 1

2I−K′)σ
∥∥
H−1/2(Γ)

+
∥∥P0

[
( 1
2I−K)u+Vσ

]∥∥
H1/2(Γ)

.

(4.5)
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Moreover, for all (θ, u, σ) ∈ X3 := [L2(Ω)]2 ×H1
ΓD

(Ω)×H−1/2
0 (Γ) there holds

‖u‖H1(Ω) + ‖θ‖[L2(Ω)]2 + ‖σ‖H−1/2(Γ)
<∼ ‖a∇u− θ‖[L2(Ω)]2

+
∥∥div θ − δΓ ⊗

[
Wu+ θ · n− ( 1

2I−K′)σ
]∥∥

H−1(Ω)

+
∥∥P0

[
( 1
2I−K)u+Vσ

]∥∥
H1/2(Γ)

.

(4.6)

In addition, for any (θ, u) ∈ X4 := H ×H1
ΓD

(Ω) there holds the a priori estimate

‖u‖H1(Ω) + ‖θ‖[L2(Ω)]2 + ‖θ · n‖H−1/2(Γ)
<∼ ‖a∇u− θ‖[L2(Ω)]2

+ ‖div θ‖H−1(Ω) +
∥∥P0

[
( 1
2I−K)u+V(θ · n)

]∥∥
H1/2(Γ)

.
(4.7)

Proof. We provide a particular proof of this result because we need this reasoning
below to prove the main theorem, Theorem 5.1. By virtue of Theorem 4.2 we estimate

‖u‖H1(Ω) + ‖σ‖H−1/2(Γ)
<∼ sup

δ∈H−1/2
0 (Γ)

1

‖δ‖H−1/2(Γ)

{〈δ, ( 1
2I−K)u+Vσ〉}

+ sup
v∈H1

ΓD
(Ω)

1

‖v‖H1(Ω)

{
(a∇u,∇v)[L2(Ω)]2 + 〈Wu− ( 1

2I−K′)σ, v〉
}

<∼ sup
δ∈H−1/2

0 (Γ)

1

‖δ‖H−1/2(Γ)

{〈δ, ( 1
2I−K)u+Vσ〉}

+ sup
v∈H1

ΓD
(Ω)

1

‖v‖H1(Ω)
{ (a∇u− θ,∇v)[L2(Ω)]2 + (θ,∇v)[L2(Ω)]2

+〈Wu− ( 1
2I−K′)σ, v〉 } .

Next, we apply the divergence theorem and use that θ · n = 0 on ΓN , whence

‖u‖H1(Ω) + ‖σ‖H−1/2(Γ)
<∼ sup

δ∈H−1/2
0 (Γ)

1

‖δ‖H−1/2(Γ)

{〈δ, ( 1
2I−K)u+Vσ〉}

+ sup
v∈H1

ΓD
(Ω)

1

‖v‖H1(Ω)

{
(a∇u− θ,∇v)[L2(Ω)]2 − (div θ, v)[L2(Ω)]2

+ 〈Wu+ θ · n− ( 1
2I−K′)σ, v〉

}
,

which implies both estimates, (4.5) and (4.6), immediately. We remark that we have
used the trace theorem ‖v‖H1/2(Γ)

<∼ ‖v‖H1(Ω) and the fact that v|ΓD
= 0 for all

v ∈ H1
ΓD

(Ω). To prove (4.7) we choose σ = θ · n in (4.5) and apply the result of
Lemma 4.3.

5. Finite element approximations. For the definition of the Ritz and Galer-
kin methods for (3.11)–(3.12), we consider finite dimensional subspaces Xh

i := Xi
h ×

Vh × Sh of Xi and assume the following.
• Approximation property of Vh. There exists d := dV > 1 such that for all
s < min{ 3

2 , d} and for all u ∈ Hd(Ω)

inf
vh∈Vh

‖u− vh‖Hs(Ω) <∼ hd−s‖u‖Hd(Ω) .

• Inverse property of Vh. For all vh ∈ Vh and for all t < s < 3
2 there holds

‖vh‖Hs(Ω) <∼ ht−s‖vh‖Ht(Ω) .
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Similar properties are also assumed for Xi
h and Sh with constants dX and dS , respec-

tively.
Typical candidates for these spaces are finite element spaces Vh, subordinated to a

triangulation Th = {τk} of Ω consisting of triangles or quadrilaterals τk with diameter
hk. The above properties are valid for shape regular quasi-uniform triangulations.
The results for (3.11)–(3.12) remain valid also for nonuniform triangulations. The
results with respect to J4 seem to be also true on nonuniform grids. (Perhaps the
proof becomes rather technical.)

Here d denotes polynomial degree on each triangle. Since Vh ⊂ H1
ΓD

(Ω), the
functions vh ∈ Vh are assumed to be continuous on Ω. For a consistent discretization
it is sufficient to choose dX = dV − 1 = d− 1. The spaces Sh are defined analogously
on the boundary, and they should be exact at least of order dS = d− 1.

The H−1(Ω)-norm on Vh can be computed by introducing the operator Th :
H−1(Ω) → Vh, where for each f ∈ H−1(Ω) the function wh := Thf is the unique
function in Vh satisfying

(∇wh,∇vh)[L2(Ω)]2 = (f, vh)L2(Ω) ∀ vh ∈ Vh .(5.1)

The computation of the operator Th requires the solution of a Neumann problem
which is relatively expensive. For an efficient computation it is much more feasible to
use a symmetric preconditioner Bh : V ∗h → Vh instead of Th satisfying

‖Bhfh‖H1
ΓD

(Ω) ∼ ‖fh‖H−1(Ω) ∀ fh ∈ V ∗h(5.2)

or, equivalently,

(Thfh, fh)L2(Ω) ∼ (Bhfh, fh)L2(Ω) ∀ fh ∈ V ∗h ,(5.3)

where V ∗h ⊂ H−1(Ω) is a suitable finite dimensional subspace. Such preconditioners
are available from multigrid or multilevel algorithms [5], [6], in which case one can
choose V ∗h = Vh, as well as from wavelet bases [15], where the space V ∗h is generated
by the dual wavelet basis.

Now, in order to compute the inner products 〈·, ·〉H±1/2(Γ), one can use, ac-

cording to Lemma 2.1, that 〈λ, λ〉H1/2(Γ) ∼ 〈Wλ, λ〉 for all λ ∈ H1/2
0 (Γ) and that

〈σ, σ〉H−1/2(Γ) ∼ 〈σ,Vσ〉 for all σ ∈ H−1/2
0 (Γ), which, however, are not accessible

for numerical computations. Again we have to consider only H±1/2(Γ)-norms and
〈·, ·〉H±1/2(Γ)-inner products on finite dimensional subspaces. However, one can apply
a preconditioner Dh for W in the same way as described above; see, e.g., [30] and

[36]. It is computable on a finite dimensional subspace Ṽh(Γ) of H
1/2
0 (Γ) and satisfies

〈Wλh, λh〉 ∼ 〈Dhλh, λh〉 ∀λh ∈ Ṽh(Γ) .(5.4)

Similarly, we introduce an operator Ch as a preconditioner for V satisfying

〈σh,Vσh〉 ∼ 〈σh,Chσh〉 ∀σh ∈ S̃h ,(5.5)

where S̃h is a finite dimensional subspace of H
−1/2
0 (Γ). In the case in which one

is dealing only with traditional boundary elements, we simply have Ṽh = Vh|Γ and
S̃h = Sh. For a wavelet preconditioner we refer to the subsequent section.

Since these operators are symmetric and coercive, we define for notation’s con-

venience the square roots B
1/2
h by (B

1/2
h )∗B1/2

h = Bh, and we set up C
1/2
h and D

1/2
h



1986 G. N. GATICA, H. HARBRECHT, AND R. SCHNEIDER

similarly. In addition, we define Vh(Γ) := Vh|Γ ∩H1/2
0 (Γ) and let Ph : H1

ΓD
(Ω)→ Vh,

Qh : H1/2(Γ)→ Sh, and Qh : H−1/2(Γ)→ Vh(Γ) be bounded projectors with adjoint
operators P ∗h : H−1(Ω) → V ∗h , Q

∗
h : H−1/2(Γ) → S̃h and Q∗h : H1/2(Γ) → Ṽh(Γ),

respectively. Then, according to (5.2), (5.4), and (5.5), we deduce that

(BhP
∗
h f, P

∗
h f)L2(Ω) ∼ ‖P ∗h f‖2V ∗

h
∀ f ∈ H−1(Ω) ,

〈DhQ
∗
h λ,Q

∗
h λ〉 ∼ ‖Q∗h λ‖2H1/2(Γ) ∀λ ∈ H1/2

0 (Γ) ,(5.6)

〈Q∗h σ,Ch Q
∗
h σ〉 ∼ ‖Q

∗
h σ‖2H−1/2(Γ) ∀σ ∈ H−1/2

0 (Γ) .

The above means that we will use truncated bilinear forms instead of the original
ones for the computation of the Galerkin solutions. Certainly, this truncation may
influence the stability of the methods. Hence we prove next that stability is not
violated by this procedure.

Theorem 5.1. For arbitrary functions (θh, uh, σh) ∈ Xh
2 , the following a priori

estimate holds:

‖uh‖H1(Ω) + ‖θh‖[L2(Ω)]2 + ‖σh‖H−1/2(Γ)
<∼ ‖a∇uh − θh‖[L2(Ω)]2

+ ‖B1/2
h P ∗h div θh‖L2(Ω) +

∥∥C1/2
h Q

∗
h

[
Wuh + θh · n− ( 1

2I−K′)σh
]∥∥

L2(Γ)
(5.7)

+
∥∥D1/2

h Q∗hP0

[
( 1
2I−K)uh +Vσh

]∥∥
L2(Γ)

,

and for (θh, uh, σh) ∈ Xh
3 we find

‖uh‖H1(Ω) + ‖θh‖[L2(Ω)]2 + ‖σh‖H−1/2(Γ)
<∼ ‖a∇uh − θh‖[L2(Ω)]2

+
∥∥B1/2

h P ∗h
(
div θh − δΓ ⊗

[
Wuh + θh · n− ( 1

2I−K′)σh
])∥∥

L2(Ω)
(5.8)

+
∥∥D1/2

h Q∗hP0

[
( 1
2I−K)uh +Vσh

]∥∥
L2(Γ)

.

Proof. We estimate the expression in the same fashion as in the proof of The-
orem 4.4. First we observe that the stability of the Galerkin scheme implies the
estimate

‖uh‖H1(Ω) + ‖σh‖H−1/2(Γ)
<∼ sup

δh∈Sh

1

‖δh‖H−1/2(Γ)

{〈δh, ( 1
2I−K)uh +Vσh〉

}
+ sup

vh∈Vh

1

‖vh‖H1(Ω)

{
(a∇uh,∇vh)[L2(Ω)]2 + 〈Wuh − ( 1

2I−K′)σh, vh〉
}

<∼
∥∥Q∗hP0

[
( 1
2I−K)uh +Vσh

]∥∥
H1/2(Γ)

+ ‖a∇uh − θh‖[L2(Ω)]2

+
∥∥P ∗h (div θh − δΓ ⊗

[
Wuh + θh · n− ( 1

2I−K′)σh
])∥∥

H−1(Ω)

<∼
∥∥D1/2

h Q∗hP0

[
( 1
2I−K)uh +Vσh

]∥∥
L2(Γ)

+ ‖a∇uh − θh‖[L2(Ω)]2

+
∥∥B1/2

h P ∗h
(
div θh − δΓ ⊗

[
Wuh + θh · n− ( 1

2I−K′)σh
])∥∥

L2(Ω)
,
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where we have used the properties of the operators Bh and Dh. From this estimate the
assertion (5.8) follows immediately. One can prove the estimate (5.7) similarly.

This suggests that one has to solve the linear problem

Bh
i

(
(θh, uh, σh), (ζh, vh, τh)

)
= Gh

i (ζh, vh, τh) , i = 2, 3 ,(5.9)

with the truncated bilinear forms Bh
i : Xh

i ×Xh
i → R and the functionals Gh

i : Xh
i →

R. The computation of the bilinear forms Bh
1 , Bh

2 , and Bh
4 requires the computation

of div ζ, which is possible, e.g., if ζ ∈ H(div; Ω) or Xh ⊂ H, despite the fact that the
energy space using Bh

2 or Bh
4 is [L2(Ω)]2. The differentiation of ζ can be avoided with

the aid of Green’s theorem. This is used in the third formulation using Bh
3 , which

requires only that ζ ∈ [L2(Ω)]2, i.e., Xh ⊂ [L2(Ω)]2.
It turns out that, for the fourth formulation, the truncation must be performed

on a finer grid to preserve the stability. Here, the bilinear form Bh
4 : Xh

4 ×Xh
4 → R is

defined by

Bh
4

(
(θh, uh), (ζh, vh)

)
:= (a∇uh − θh,a∇vh − ζh)[L2(Ω)]2

+ (BhP
∗
h div θh, P

∗
h div ζh)L2(Ω)

+ 〈Dh′Q∗h′ P0

[(
1
2I−K

)
uh +V(θh · n)

]
, Q∗h′ P0

[(
1
2I−K

)
vh +V(ζh · n)

]〉L2(Γ) ,

where the positive parameter h′ has to be chosen such that h′ <∼ h, that is, h′ ≤ c h
for a sufficiently small constant c. In fact, we have the following result.

Theorem 5.2. Assume that θh · n ∈ Sh for all θh ∈ Xh. Then there exists a
mesh size h′ <∼ h such that for uh ∈ Vh and θh ∈ Xh there holds the a priori estimate

‖uh‖H1(Ω) + ‖θh‖[L2(Ω)]2 + ‖θh · n‖H−1/2(Γ)
<∼ ‖a∇uh − θh‖[L2(Ω)]2

+
∥∥B1/2

h P ∗h div θh
∥∥
L2(Ω)

+
∥∥D1/2

h′ Q
∗
h′ P0

[
( 1
2I−K)uh +V(θh · n)

]∥∥
L2(Γ)

.

Proof. Given (θh, uh) ∈ Xh × Vh, we take σh := θh · n in the estimate (5.7) and
then apply Lemma 4.3 to obtain

‖uh‖H1(Ω) + ‖θh‖[L2(Ω]2 + ‖θh · n‖H−1/2(Γ)
<∼ ‖a∇uh − θh‖[L2(Ω]2

+
∥∥B1/2

h P ∗h div θh
∥∥
L2(Ω)

+
∥∥P0

[
( 1
2I−K)uh +V(θh · n)

]∥∥
H1/2(Γ)

<∼ ‖a∇uh − θh‖[L2(Ω]2 + ‖B1/2
h P ∗h div θh‖L2(Ω)(5.10)

+
∥∥Q∗h′ P0

[
( 1
2I−K)uh +V(θh · n)

]∥∥
H1/2(Γ)

+
∥∥(I −Q∗h′)P0

[
( 1
2I−K)uh +V(θh · n)

]∥∥
H1/2(Γ)

.

Next, using the approximation and inverse properties of the subspaces involved, we
get ∥∥(I −Q∗h′)P0

[
( 1
2I−K)uh +V(θh · n)

]∥∥
H1/2(Γ)

<∼ (h′)α
∥∥P0

[
( 1
2I−K)uh +V(θh · n)

]∥∥
H1/2+α(Γ)

<∼ (h′)α
{‖uh‖H1/2+α(Γ) + ‖θh · n‖H−1/2+α(Γ)

}
<∼ (h′)αh−α

{‖uh‖H1(Ω) + ‖θh · n‖H−1/2(Γ)

}
.

(5.11)
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Therefore, replacing (5.11) back into (5.10), choosing h′ <∼ h, and using (5.6), we
conclude the proof.

The error analysis of both methods then is a standard application of the well-
known second Strang lemma.

Theorem 5.3. The bilinear forms Bh
i , i = 2, 3, satisfy

Bh
i

(
(θh, uh, σh), (θh, uh, σh)

) ∼ ‖(θh, uh, σh)‖2Xi
,

and the following convergence estimate holds in both cases:

‖u− uh‖H1(Ω) + ‖θ − θh‖L2(Ω) + ‖σ − σh‖H−1/2(Γ)
<∼ hd−1‖u‖Hd(Ω) .

In addition, there exists h′ <∼ h such that the bilinear form Bh
4 satisfies

Bh
4

(
(θh, uh), (θh, uh)

)
>∼ ‖uh‖2H1(Ω) + ‖θh‖2L2(Ω) + ‖θh · n‖2H−1/2(Γ) ,

and the following convergence estimate holds:

‖u− uh‖H1(Ω) + ‖θ − θh‖L2(Ω) + ‖θ · n− θh · n‖H−1/2(Γ)
<∼ hd−1‖u‖Hd(Ω) .

6. Wavelet bases and related matrices. In the framework of the present
least squares methods, we would like to recommend the use of wavelet bases at least
for the discretization of the boundary integral operators. Wavelet bases facilitate
the computation of the Sobolev norms. In fact, one can exploit several features si-
multaneously, namely, the computation of the half integer Sobolev norms [15], the
preconditioning [14], [36], together with a sparse discretization by matrix compres-
sion [16], [36], [38], and the use of wavelet bases for an adaptive approximation [11].
The matrix compression accelerates computation with the boundary element matrices
enormously. In fact, it reduces the quadratic complexity dealing with full matrices
of size N to order N or N logaN ; cf. [36]. This might be not a major concern for
two dimensional problems, since the finite element part already has N2 unknowns.
However, for three dimensional problems the complexity of the boundary element part
would dominate that of the finite element part. Therefore, fast methods for boundary
integral equations become necessary when dealing with very large systems of integral
equations [28].

Wavelet bases, and, in particular, wavelet bases for boundary integral equations,
is by now a well-studied subject. There are many excellent accounts about wavelets
in general, and for boundary integral equations we refer the reader to the survey
paper [14] and the references therein. Here we focus only on those aspects which are
important for the present purpose. Particularly, more information about wavelet least
squares methods is contained in [15].

In general, a multiresolution analysis consists of a nested family of finite dimen-
sional subspaces

S0 ⊂ · · · ⊂ Sj ⊂ Sj+1 ⊂ · · · ,

where, e.g.,
⋃
j≥0 Sj is supposed dense in L2(Γ). For example, we may consider

Sj = Sh with h ∼ 2−j and where
⋃
j≥0 Sj is dense in H−1/2(Γ).

Each space Sj is defined by a single-scale basis, i.e., Sj = span{ϕjk : k ∈ ∆j},
where ∆j denotes a suitable index set with cardinality #∆j ∼ 2nj . These basis
functions might be classical piecewise constant or piecewise linear basis functions for
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boundary element methods. The wavelets Ψj = {ψjk : k ∈ ∇j = ∆j+1 \∆j} are the

bases of complementary spaces Wj = span{ψjk : k ∈ ∇j} of Sj in Sj+1, i.e.,

Sj+1 = Sj ⊕ Wj , Sj ∩ Wj = {0} .

In what follows, we adhere to the following shorthand notation. We write ψ−1
k := ϕ0

k

and ∇−1 := ∆0. By Ψj we denote the (column-) vector Ψj = (ψlk)k∈∇l,−1≤l<j . For a
given vector v ∈ R

#∆j , we write simply

ΨT
j v = vTΨj =

j−1∑
l=−1

∑
k∈∇l

vl,kψ
l
k .

It is supposed that the collection Ψj builds a uniformly stable basis of Sj+1 and a
Riesz-basis in L2. This property is guaranteed if there exists a biorthogonal, or dual,
collection Ψ̃ = {ψ̃lk : k ∈ ∇l, l ≥ −1} generating spaces S̃0 ⊂ · · · ⊂ S̃j ⊂ · · · such

that 〈ψ̃jk, ψil〉 = δk,lδi,j . In this case, every v ∈ L2(Γ) has the representations

v = 〈v, Ψ̃〉TΨ , v = 〈v,Ψ〉T Ψ̃ .(6.1)

Then the projectors Qj and Q∗j are given by

Qjv = 〈v, Ψ̃j〉TΨj , Q∗jv = 〈v,Ψj〉T Ψ̃j .

In addition, the wavelets are supposed to be local on the corresponding scale. We
refer to [14], [17], and [36] for further details.

Let γ := sup{s ∈ R : Sj ⊂ Hs(Γ)} and γ̃ be defined analogously. Then, for a
given function v, the following norm equivalences hold:

‖v‖2Hs(Γ) ∼
∑
l≥−1

2−2ls ‖〈v, Ψ̃l〉‖2, ‖v‖2H−s(Γ) ∼
∑
l≥−1

22ls ‖〈v,Ψl〉‖2,(6.2)

where −γ̃ < s < γ. It is important to remark that one does not need the dual basis
for the computation of the norm.

To describe the application of these norm equivalences, let us take a single oper-
ator and consider h′ ≤ h, for example. Let Φj′ be a wavelet basis for the traces of
Vh′ on the boundary Γ. Then, we define the matrix Vh′,h := 〈P0(VΨj),Φj′〉, where

h′ = 2−j
′

and h = 2−j , which is nothing but a part of the Galerkin matrix for the
operator V together with the diagonal matrix D−2s

h′,h′ = diag(2−2ls). For instance, we

compute the H1/2(Γ)-norm by setting s = 1/2 and obtain

‖QjP0(VΨj)‖2H1/2(Γ) ∼ cTj V
T
h′,hD

−1
h′,h′Vh′,hcj .

This means that the preconditioner defined in the previous section is of the form
Dhu = ΨjD

−1
h,h〈Ψj , u〉. The other parts of the system matrices are derived similarly.

For the combination of finite element spaces and the use of the Bramble–Pasciak–
Xu (BPX) preconditioner for the computation of the H−1(Ω)-inner products and
wavelet bases on the boundary we need to apply the wavelet transform (we refer to
[28] and [29] for further details). We would like to remark that the size of the matrix
VT

h′,hD
−1
h′,h′Vh′,h is already ∼ 2jn × 2jn and can be sparsified by wavelet matrix

compression.
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Remark. Wavelets on surfaces are defined in, e.g., [17] and [18]. The first construc-
tion in [17] seems to be simpler than the final one in [18]. Since in [17] the duality
is based on a modified inner product 〈·, ·〉 defined via the local parametrizations, a
comment about the use of this construction is required for the correct utilization of
these bases computing H1/2(Γ)-inner products according to (6.2). Instead of using
the inner products 〈f, ψjk〉, one has to use the modified inner product 〈·, ·〉, whereas for
the computation of the H−1/2(Γ)-inner products one has to use the canonical inner
product 〈·, ·〉.

Remark. A major restriction of the present approach is that the traces along
the boundary Γ of the spaces Vh must also admit a multiresolution analysis. This
restriction can be removed by introducing an additional unknown µ ∈ H1/2(Γ) for
the traces of u along Γ like in [10]. Here µ will be discretized by wavelet bases.
This means that the coupling is defined by a slightly weaker condition; see [10]. The
generalization of the present method to this case is rather straightforward.

7. Numerical results. In this section, we show how to compute the correspond-
ing system matrices and right-hand sides for the minimization of the functional J3 and
present some numerical results. The energy space of J3 is X3 = [L2(Ω)]2×H1

ΓD
(Ω)×

H
−1/2
0 (Γ). For a conforming discretization this requires only ζh ∈ Xh ⊂ [L2(Ω)]2,

which, for instance, allows the functions in Xh to be discontinuous. In our tests
we use both piecewise constant functions and continuous piecewise linear functions
subordinated to the triangulation Th. The trial functions uh ∈ Vh ⊂ H1

ΓD
(Ω) are cho-

sen piecewise linear and continuous, and σh ∈ Sh ⊂ H−1/2(Γ) consists of piecewise
constant functions.

It is worthwhile describing in more detail the present realization of that least
squares method. Abbreviating

g(θh, uh, σh) := div θh − δΓ ⊗ (θh · n)− (δΓ ⊗ [Wuh − ( 1
2I−K′)σh

])
,

the discrete bilinear form Bh
3 : Xh

3 ×Xh
3 → R is defined by

Bh
3

(
(θh, uh, σh), (ζh, vh, τh)

)
:= (a∇uh − θh,a∇vh − ζh)[L2(Ω)]2

+
(
BhP

∗
h g(θh, uh, σh), P ∗h g(ζh, vh, τh)

)
L2(Ω)

+ 〈DhQ
∗
hP0

[(
1
2I−K

)
uh +V(θh · n)

]
, Q∗hP0

[(
1
2I−K

)
vh +V(ζh · n)

]〉L2(Γ) ,

and the linear functional Gh
3 : Xh

3 → R is given by

Gh
3 (ζh, vh, τh) :=

(
P ∗h f, P

∗
h g(ζh, vh, τh)

)
L2(Ω)

.

Let us denote by Φh the vector of basis functions φhk ∈ Vh, Θh consists of the basis
functions in Xh, and Λh indicates the vector of basis functions in Sh. To build up the
system matrix and the right-hand side for the corresponding least squares method,
we require the matrices and vectors

Ah := (a∇Φh,∇Φh)[L2(Ω)]2 , Fh := (∇Φh,Θh)[L2(Ω)]2 ,

Gh := (Θh,Θh)[L2(Ω)]2 , fh := (f,Φh)[L2(Ω)]2 ,

together with the matrices of basis functions belonging to the interface boundary

Vh := 〈VΛh,Λh〉 , Kh := 〈KΦh,Λh〉 ,
Wh := 〈WΦh,Φh〉 , Ih := 〈Φh,Λh〉 .
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We use the matrices Ch to define the inner product in H−1/2(Γ) and Bh for the
computation of the inner product in H−1(Ω). We choose Bh as a BPX preconditioner
[7] and Ch := (diagVh)−1, where Vh = 〈VΨh,Ψh〉, is given with respect to a wavelet
basis Ψh of Sh. Then, the corresponding linear system for the present least squares
method can be written in the following form:

 Gh −FT
h 0

−Fh Ah 0
0 0 0

+

 FT
h

Wh

(Kh − 1
2Ih)

Bh

[
Fh Wh (Kh − 1

2Ih)T
]

+

 0
( 1
2Ih −Kh)T

Vh

Ch

[
0 ( 1

2Ih −Kh) Vh

]
θhuh
σh

 = −
 Fh

Wh

(Kh − 1
2Ih)

Bhfh.

This system is preconditioned by the operator diag(Id,Bh,Ch). We remark that
P ∗h
(
div ζh − δΓ ⊗ (ζh · n)

)
is computed from the inner products(

div ζh − δΓ ⊗ (ζh · n), vh
)
L2(Ω)

= − (ζh,∇vh)[L2(Ω)]2 ∀ vh ∈ Vh .

−0.3
−0.2

−0.1
0

0.1
0.2

0.3

−0.2

−0.1

0

0.1

0.2

−1

−0.5

0

0.5

1

1.5

2

2.5

3

G
Γ

Fig. 7.1. The solution u and the initial triangulation of Ω.

For the numerical tests we choose G as the annulus outside the two dimensional
L-shape

[− 1
10 ,

1
10

]2 \ [0, 1
10

]2
and inside an ellipse. Similarly to [29], we consider a
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Fig. 7.2. Error in the energy norm.

problem for which an analytical solution is known. We split

u(x, y) = u1(x, y) + u2(x, y) ∈ C2
(
R

2 \ [−1/20
0

])
with the harmonic function

u1(x, y) =
1

100
· (x+ 1

20 ) + y

(x+ 1
20 )2 + y2

∈ C∞(R2 \ [−1/20
0

])
and the nonharmonic function u2 ∈ C2(R2) defined by

u2(x, y) = 2 +


(

x2

0.32 + y2

0.22 − 1
)3

if x2

0.32 + y2

0.22 ≤ 1,

0 if x2

0.32 + y2

0.22 > 1.



LEAST SQUARES METHODS 1993

1 2 3 4 5 6 7

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Errors in the L2−norm for a piecewise constant flux

E
rr

o
r

Level

Potential u             
Flux θ             
Normal derivative σ

1 2 3 4 5 6 7

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Errors in the L2−norm for a piecewise linear flux

E
rr

o
r

Level

Potential u             
Flux θ             
Normal derivative σ

Fig. 7.3. Error in L2-norms.

The function f := −�u2 ∈ C1(R) is supported in the ellipse with semiaxes 0.3 and 0.2.
Thus, setting g := u|∂G, we obtain a boundary value problem with nonhomogeneous
Dirichlet data at the boundary ΓD = ∂G. The interface boundary Γ is chosen as the
boundary of the ellipse with semiaxes 0.35 and 0.25. The solution u and the initial
triangulation using curved triangles is shown in Figure 7.1.

We depict in Figure 7.2 the errors with respect to the energy norm using piecewise
constant and continuous piecewise linear functions, respectively, for the approximation
of the flux θh. In Figure 7.3 one finds the corresponding errors with respect to the
L2-norms. Note that we use double logarithmic scales.

In the previous sections, we have already proved convergence estimates with re-
spect to the energy norm. The numerical experiments confirm the claimed conver-
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gence rate O(h). This does not include L2-estimates for the potential u. However,
it can be observed that the potential u converges in L2 with the order h2, which is
optimal for piecewise linear functions. The measured convergence rate for flux in L2

is h1 for the piecewise constant approximation. With respect to continuous piecewise
linear functions, it seems to be between h3/2 and h2. However, we have not proved
these types of convergence rates. But we mention that the application of the Aubin–
Nitzsche trick is limited due to the concave vertices of Ω. Obviously, we observe a
better approximation of the flux when using piecewise linear functions.

It is confirmed by our experience that the expenses for the boundary integral
part is small compared to the finite element part if the integral equations are treated
by fast methods. Therefore, the efficiency of the present algorithm is comparable
to the efficiency of corresponding finite element least squares methods for interior
boundary value problems. Wavelet methods are proved to be an efficient tool for
the treatment of boundary integral operators in the coupling. Our approach requires
the same boundary element matrices as the FEM-BEM coupling for the second order
system.
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Abstract. We show here the convergence of the finite volume approximate solutions of a
convection-diffusion equation to a weak solution, without the usual coercitivity assumption on the
elliptic operator and with weak regularity assumptions on the data. Numerical experiments are
performed to obtain some rates of convergence in two and three space dimensions.
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1. Introduction. The scope of this work is the discretization by the cell-centered
finite volume method of convection-diffusion problems on general structured or non-
structured grids. Let Ω be a polygonal (or polyhedral) open subset of R

d (d = 2 or 3);
the problem under study can be written as{

−∆u+ div(vu) + bu = µ in Ω,

u = 0 on ∂Ω,
(1)

with the following hypotheses on the data:

v ∈ (C(Ω))d,

b ∈ L2(Ω), b ≥ 0 a.e. on Ω,

µ ∈M(Ω),

(2)

where M(Ω) = (C(Ω))′ is the dual space of C(Ω), which may also be identified with
the set of bounded measures on Ω. In what follows, we shall consider the usual infinity
norm on C(Ω), and we shall denote by || · ||M(Ω) its dual norm on M(Ω).

Our purpose is to prove the convergence of the cell-centered finite volume scheme
for the discretization of problem (1). Cell-centered schemes for convection-diffusion
equations using rectangular, triangular, or Voronöı grids have been analyzed in a
number of papers, including [27], [18], [23], [26], [29], and [8]. The analysis which we
develop here uses some of the tools which were developed in [14], [20], [15], and [19].
In [15], a convergence result without any assumption of regularity of the solution is
proved. An approximate gradient is constructed in [7]. Noncoercive elliptic equa-
tions with regular H−1 right-hand sides were also recently studied [12]. Finally, a
thorough study of finite volume schemes for linear or nonlinear elliptic, parabolic,
and hyperbolic equations may be found in [14], to which we refer for further details.
The discretization grids which are considered here and in these latter works consist of
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polygonal (or polyhedral) control volumes satisfying adequate geometrical conditions
(which are stated in what follows) and not necessarily ordered in a Cartesian grid.

Let us remark that the analysis which is developed here still holds for equations
of the type

−div
(
k(x)∇u(x))+ div

(
v(x)u(x)

)
+ b(x)u(x) = f(x), x ∈ Ω,(3)

with the following hypotheses on k:

k is a piecewise C1 function from Ω to R;
there exists k0 ∈ R

∗
+ such that k(x) ≥ k0 for almost every x ∈ Ω.

(4)

For the sake of the simplicity of notation, we prefer to deal with the Laplace
operator here, but we shall point out the modifications which are required if the
operator div(k∇.) is considered instead: see Remarks 2.2, 2.4, and 2.6. If now k is a
tensor satisfying the hypotheses

k is a piecewise C1 function from Ω to R
d×d,

for all x ∈ Ω, k(x) is a symmetric matrix,
there exists k0 ∈ R

∗
+ such that k(x)ξ · ξ ≥ k0

for almost every x ∈ Ω and for all ξ ∈ R
d,

(5)

then one may still write the finite volume scheme and obtain some error estimates in
the regular case, but the assumptions on the mesh have to be modified; see [20], [24],
[25], and [8]. However, if the mesh is Cartesian and if for all x ∈ Ω the matrix k(x) is
diagonal, then the mesh is “aligned” with the grid, and the analysis is similar to the
(nonconstant) scalar case of (3).

The originality of the present work with respect to the above-cited works is three-
fold: first, the elliptic operator associated with the convection-diffusion equation is
not assumed to be coercive; second, the convection velocity v is assumed only to be
continuous (it was assumed to be C1 in previous works); third, the right-hand side µ
is supposed only to be a Radon measure.

In the next section, the finite volume scheme for the discretization of (1) is pre-
sented, along with the admissible meshes. We then state the main convergence theo-
rem of this paper (Theorem 2.1), along with some preliminary technical results similar
to those used in [14], [20], [15], the proof of which is given in an appendix. Section 3
is devoted to a priori estimates on the approximate solutions (existence is not proved
at this stage), which will be needed in order to obtain compactness results, and which
also yield the existence and uniqueness of the approximate solution. The proof of
Theorem 2.1, that is, the proof of the convergence of the approximate solutions to
the weak solution of (1), is then given in section 4. Section 5 presents a modified
finite volume scheme, where the measure data whose support is on the edges of the
mesh are taken into account through a jump of the flux between two neighboring cells;
comparing this scheme to the scheme of section 2, the convergence result is easy to
obtain. Finally, in section 6 we present some numerical results in two and three space
dimensions, using Cartesian or unstructured triangular meshes (in two dimensions),
and a spherical mesh in the case of a spherical geometry. These results allow us to
derive some rates of convergence of the method, even though no error estimate is
known theoretically.
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xK xL

K L

dK,σ dL,σ

dσ

σ = K|L ∈ Eint

m(σ)

m(σ) xK

K

σ = K| ∈ Eext

∂Ω

dK,σ = dσ

Fig. 1. Notations for an admissible mesh.

2. Conservative finite volume discretization and convergence result.

Definition 2.1. An admissible mesh of Ω, denoted by M, is given by a finite
partition T of Ω in polygonal (or polyhedral) convex sets (the “control volumes”), by a
finite family E of disjoint subsets of Ω contained in affine hyperplanes (the “edges”),
and by a family P = (xK)K∈T of points in Ω such that

(i) each σ ∈ E is a nonempty open subset of ∂K for some K ∈ T ;
(ii) by denoting EK = {σ ∈ E | σ ⊂ ∂K}, one has ∂K = ∪σ∈EK σ for all K ∈ T ;
(iii) for all K �= L in T , either the (d− 1)-dimensional measure of K ∩L is null,

or K ∩ L = σ for some σ ∈ E, which we denote then by σ = K|L;
(iv) for all K ∈ T , xK is in the interior of K;
(v) for all σ = K|L ∈ E, the line (xK , xL) intersects and is orthogonal to σ;
(vi) for all σ ∈ E, σ ⊂ ∂Ω ∩ ∂K, the line which is orthogonal to σ and going

through xK , intersects σ.

Remark 2.1 (other admissible meshes). Note that property (v) in the above
definition is required in order to obtain a consistent discretization of the normal fluxes
over the boundary of the control domains when using the two-point finite difference
scheme to discretize the normal flux. In fact, the above definition of an admissible
mesh may be extended to geometries of Ω other than a polygon or a polyhedron. For
instance, if Ω = {x ∈ R

d; |x| ≤ r} is a spherical ball of radius r, then a natural
mesh is defined by the control volumes K0 = {x ∈ R

d; |x| ≤ r1/2} and, for i = 1, N ,

Ki = {x ∈ R
d; ri−1/2 ≤ |x| ≤ ri+1/2}, where (ri+1/2)i=1,N ⊂ (0, r] is a given

increasing sequence such that rN+1/2 = r. Let x0 = 0 and, for i = 1, . . . , N , ri ∈
(ri−1/2, ri+1/2); then a discretization of the normal diffusive flux ∇u · n (where n

is the outward normal unit vector) over the sphere {x ∈ R
d; |x| = ri+1/2} by the

two-point scheme ui+1−ui

ri+1−ri is clearly consistent if the solution u to (1) depends only

on r. Moreover, if ri+1/2 = 1
2 (ri+1 − ri), it is consistent of order 2. Hence this class

of spherical discretizations is clearly admissible for the analysis that follows.

The size of the mesh is then defined by size(M) = supK∈T diam(K). We denote
by meas(K) the Lebesgue measure of K ∈ T . The unit normal to σ ∈ EK outward
to K is denoted by nK,σ. An example of interior neighboring cells and of a boundary
cell is given in Figure 1, along with notation.

We define Eint = {σ ∈ E | σ �⊂ ∂Ω} and Eext = E\Eint. If σ ∈ E , meas(σ) is the
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(d − 1)-dimensional measure of σ; if σ = K|L ∈ Eint, dσ is the distance between the
points (xK , xL), and dK,σ denotes the distance between xK and σ; if σ ∈ Eext ∩ EK ,
dσ = dK,σ is the distance between xK and σ. The transmissivity through an edge σ
is

τσ =
meas(σ)

dσ
.

Within the integrals, the letter λ (resp., γ) stands for the d- (resp., (d−1))-dimensional
measure on the domain Ω (resp., on the edges of the mesh). Note that both measures
are denoted by “meas” when applied to a control volume or an edge.

We shall naturally identify the set R
Card(T ) with the set X(T ) of functions defined

a.e. on Ω and constant on each control volume K ∈ T .
Remark 2.2. In the case of the operator div(k∇.), which is considered in (3),

where k is a function from Ω to R or R
d×d which satisfies (4) or (5), admissible meshes

must satisfy the following additional condition:
(vii) For any K ∈ T , the restriction k|K of the function k to any given control

volume K belongs to C1(K).
Furthermore if k is a piecewise C1 function from Ω to R

d×d, the orthogonality
conditions (iv) and (v) have to be modified into the following:

(iv)′ For any K ∈ T , let kK denote the mean value of k on K, that is,

kK =
1

meas(K)

∫
K

kdλ.(6)

The set T is such that there exists a family of points

P = (xK)K∈T such that xK = ∩σ∈EK DK,σ,k ∈ K,

where DK,σ,k is a straight line perpendicular to σ with respect to the scalar
product induced by k−1K such that DK,σ,k ∩ σ = DL,σ,k ∩ σ �= ∅ if σ = K|L.
Furthermore, if σ = K|L, let yσ = DK,σ,k ∩σ (= DL,σ,k ∩σ) and assume that
xK �= xL.

(v)′ For any σ ∈ Eext, let K be the control volume such that σ ∈ EK , and let DK,σ,k

be the straight line going through xK and orthogonal to σ with respect to
the scalar product induced by k−1K ; then there exists yσ ∈ σ ∩ DK,σ,k.

If M is an admissible mesh, and under hypothesis (2), we can define the finite
volume discretization of (1).

By denoting, for K ∈ T and σ ∈ EK ,

bK =
1

meas(K)

∫
K

bdλ and vK,σ =

∫
σ

v · nK,σ dγ,(7)

the scheme is defined by

for all K ∈ T ,
∑
σ∈EK

FK,σ +
∑
σ∈EK

vK,σuσ,+ + meas(K)bKuK = µ(K),(8)

for all σ = K|L ∈ Eint, FK,σ = −τσ(uL − uK),

for all σ ∈ Eext ∩ EK , FK,σ = τσuK ,
(9)

for all σ = K|L ∈ Eint , uσ,+ = uK if vK,σ ≥ 0, uσ,+ = uL otherwise,

for all σ ∈ Eext ∩ EK , uσ,+ = uK if vK,σ ≥ 0, uσ,+ = 0 otherwise.
(10)
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Equations (8)–(10) form a linear system in (uK)K∈T of size Card(T ). Notice
that this scheme is conservative in the sense that if σ = K|L, then FK,σ = −FL,σ and
vK,σ = −vL,σ.

Remark 2.3. The approximation (10) of the convective flux is the classical upwind
scheme, which we choose here because it ensures both the existence of a solution to the
scheme and the maximum principle without any condition on the size of the mesh. If,
instead of the upwind scheme, we used the central difference scheme, then we would
need a condition on the size of the mesh in order to have the existence of a solution
to the scheme and in order for the maximum principle to hold. However, when the
size of the mesh tends to 0, the centered scheme may also be shown to converge. The
upwind scheme is often preferred in applications because of its robustness on coarse
meshes.

Also note that if vK,σ = 0, for some σ = K|L, for example, then (10) does not
determine uσ,+ uniquely since one may take either uσ,+ = uK (since vK,σ ≥ 0) or
uσ,+ = uL (since vL,σ = −vK,σ = 0 ≥ 0). However, this is no real problem since uσ,+
always appears multiplied by vK,σ or vL,σ and thus, if vK,σ = 0, the value of uσ,+
does not matter. (One can, for example, reduce the second sum of (8) to the σ ∈ EK
such that vK,σ �= 0.)

Remark 2.4. In the case of a nonconstant diffusion coefficient as in (3), where k is
a function from Ω to R satisfying (4) or from Ω to R

d×d satisfying (5), one considers
admissible meshes satisfying (vii) of Remark 2.2 and, in the tensor case, also (iv)′

and (v)′ instead of (iv) and (v). For K ∈ T and σ ∈ EK , let

kK,σ =

∣∣∣∣ 1

meas(K)

∫
K

k dλnK,σ

∣∣∣∣(11)

(where | · | denotes the Euclidean norm). Note that, in the scalar case, this yields
in fact kK,σ = 1

meas(K)

∫
K
kdλ. The exact diffusion fluxes k(x)∇u · nK,σ on an edge

σ of the mesh may then be approximated in a consistent way (see [14] and [24]) by
replacing the formulae in (9) by

• internal edges:

FK,σ = −τσ(uL − uK) if σ ∈ Eint, σ = K|L,(12)

where

τσ = meas(σ)
kK,σkL,σ

kK,σdL,σ + kL,σdK,σ
;

• boundary edges:

FK,σ = −τσ(uσ − uK) if σ ∈ Eext and xK /∈ σ,(13)

where

τσ = meas(σ)
kK,σ

dK,σ
·

Let us now state our main result, which we shall prove in the following sections.
Theorem 2.1. If M is an admissible mesh, then there exists a unique solution

to (8)–(10). Moreover, if (Mn)n≥1 is a sequence of admissible meshes such that there
exists ζ > 0 satisfying

for all n ≥ 1, for all K ∈ Tn, for all σ ∈ EK , dK,σ ≥ ζdσ,
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and such that size(Mn) → 0, then, defining un ∈ X(Tn) as the solution of (8)–(10)
for M = Mn, (un)n≥1 converges to u in Lp(Ω) for all p ∈ [1, d

d−2 ), where u is the
unique solution to (1) in the sense


u ∈

⋂
q< d

d−1

W 1,q
0 (Ω),∫

Ω

∇u · ∇ϕdλ−
∫
Ω

uv · ∇ϕdλ +

∫
Ω

buϕdλ =

∫
Ω

ϕdµ, ∀ϕ ∈
⋃
s>d

W 1,s
0 (Ω),

(14)

where
∫
Ω
ϕdµ = 〈µ, ϕ〉(C(Ω̄))′,C(Ω̄). (We recall that W 1,q(Ω) is the set of functions

which belong to Lq(Ω) and such that their derivatives are also in Lq(Ω) and W 1,q
0 (Ω) =

C∞c (Ω)
W 1,q(Ω)

. We also recall that W 1,s
0 (Ω) ⊂ C0(Ω̄) for s > d.)

Remark 2.5. Notice that we do not suppose the existence and uniqueness of a
solution to (14); we will prove both.

Remark 2.6. A convergence result still holds if a nonconstant piecewise C1 dif-
fusion scalar coefficient is considered, i.e., if k satisfies (4) and if (3) is discretized by
the scheme (7), (8), (11)–(13). In fact, in the two-dimensional case, the proof follows
the one given below in the case k = Id. In the three-dimensional case, however,
the regularity of the solution to the dual problem (47), which is used in the proof
of the uniqueness of a solution to (14) (see section 4) is not so clear. Hence in the
3D case, uniqueness of a solution to (14) is not known, and the convergence result of
Theorem 2.1 still holds, but only up to a subsequence.

If one now considers the general tensor case, then some more restrictive assump-
tions are needed on the mesh in order to obtain consistency of the fluxes; see [14]
and [24].

The proof of the existence and uniqueness of a solution to (8)–(10) is based on
a priori estimates on the solutions to this problem, which are obtained with the
discrete W 1,q

0 norm defined as follows.
Definition 2.2 (discrete W 1,q norm). If M is an admissible mesh, vT =

(vK)K∈T ∈ R
Card(T ), and 1 ≤ q <∞, we define

||vT ||1,q,M =

(∑
σ∈E

meas(σ)dσ

(
DσvT
dσ

)q
) 1

q

,

where DσvT = |vK − vL| if σ = K|L ∈ Eint, and DσvT = |vK | if σ ∈ Eext ∩ EK .
Let us now state the main a priori estimate, which will be proved in section 3.

This estimate is crucial to proving the existence of a solution to (8)–(10), and also to
obtaining the compactness properties on approximate solutions which will eventually
yield the convergence result.

Theorem 2.2. Let M be an admissible mesh and ζ > 0 satisfy

for all K ∈ T and all σ ∈ EK , dK,σ ≥ ζdσ.(15)

Then for all q ∈ [1, d
d−1 ) there exists C > 0 depending only on (Ω,v, q, ζ) such that,

if uT ∈ X(T ) is a solution to (8)–(10), then ||uT ||1,q,M ≤ C||µ||M(Ω).
In what follows, we shall use the following properties of the discrete W 1,q

0 norm.
Proposition 2.1 (discrete Poincaré inequality). If 1 ≤ q ≤ 2, M is an admis-

sible mesh, and vT ∈ X(T ), then

||vT ||Lq(Ω) ≤ diam(Ω)||vT ||1,q,M.(16)
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Proposition 2.2 (discrete Sobolev inequality). Let 1 ≤ q ≤ 2, M be an ad-
missible mesh, and ζ > 0 satisfy (15). Then, with q∗ = dq

d−q if q < d and q∗ < ∞
if q = d = 2, there exists C > 0 depending only on (Ω, q, q∗, ζ) such that, for all
vT ∈ X(T ),

||vT ||Lq∗(Ω) ≤ C||vT ||1,q,M.

In fact, it is easily seen that the above inequality also holds for any r ≤ q∗, that
is,

||vT ||Lr(Ω) ≤ C||vT ||1,q,M for any r ≤ q∗.

Proposition 2.3 (discrete Rellich theorem). Let 1 ≤ q ≤ 2 and M be an
admissible mesh. Then there exists C > 0 depending only on (Ω, q) such that, for all
h ∈ R

d and all vT ∈ X(T ), denoting as wT the extension of vT to R
d by 0 outside

Ω, we have∫
Rd

|wT (x+ h)− wT (x)|q dλ(x) ≤ |h|(|h|+ Csize(M))q−1||vT ||q1,q,M.(17)

In particular, if (Mn)n≥1 is a sequence of admissible meshes and vn ∈ X(Tn) is such
that (||vn||1,q,Mn

)n≥1 is bounded, then (vn)n≥1 is relatively compact in Lq(Ω).
Proposition 2.4 (regularity of the limit). Let q ∈ (1, 2] and (Mn)n≥1 be a se-

quence of admissible meshes such that size(Mn)→ 0. If vn ∈ X(Tn), (||vn||1,q,Mn
)n≥1

is bounded, and vn → v in Lq(Ω), then v ∈W 1,q
0 (Ω).

These propositions are easy adaptations of similar results in [14] for the case q = 2
(see also [6] for Proposition 2.2 and [19] for Proposition 2.3). We sketch the proofs of
these propositions in the appendix for the sake of completeness.

3. A priori estimates. The aim of this section is to prove the discrete W 1,q

a priori estimate of Theorem 2.2, which is crucial in the proof of existence of the
scheme and also in obtaining a compactness result which will allow us to prove the
convergence of a sequence of approximate solutions (Theorem 2.1 and its proof in
section 4).

Such a priori estimates were already used for the study of the finite volume ap-
proximation of nonlinear elliptic or parabolic equations; see, e.g., [15], [16]. However,
in those previous works, the estimates were obtained in a discrete H1 norm, in accord
with the regularity of the solution of the continuous problem.

We prove here some a priori estimates on the solution to (8)–(10) in a discreteW 1,q

norm, since the solution to the continuous problem is in W 1,q. As in the continuous
case, it is difficult to obtain an estimate on uT itself. (Note that, in the continuous
case, u is not allowed as a test function in (14).) Hence, as in [19], we shall obtain
estimates on truncations of the approximate solutions, that is, the functions Tk(uT ),
where Tk is defined in Figure 2. However, in [19], we dealt only with the Laplace
operator, whereas here we allow noncoercive convection-diffusion operators. Because
of this noncoercivity, we shall need to start with some weaker estimates, namely, an
estimate on ln(1 + |uT |), as was done in [9] in the continuous case (see also [13]).
In order to obtain this estimate, we shall obtain some estimates on Sk(uT ), where
Sk = Id − Tk is also defined in Figure 2 and section 3.2. Note that, in the diffusion
dominated case, the operator becomes coercive, and the discrete W 1,q estimate may
be directly obtained from the estimates on Tk(uT ), as in [19].
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Fig. 2. The functions Tk and Sk.

Since the function Tk is bounded, the estimate on Tk(uT ) is easy to obtain. The
estimate on Sk(uT ) is more tricky. The convective term is controlled through a bound
of meas(Ek), where Ek = {|uT | > k} (see Corollary 3.1), which is a consequence of
an estimate on ln(1 + |uT |) (see Proposition 3.1).

Each of the estimates we present here has a continuous counterpart; see, for
example, [2], [3] for estimates on nonlinear elliptic equations with measure data and
[9], [10] for estimates on linear and nonlinear noncoercive variational elliptic problems.
Mixing the techniques of [3] and [9] (or [10]), we can prove estimates (and an existence
result) on solutions to linear or nonlinear noncoercive elliptic equations with measure
data.

To obtain the estimates on the solutions to (8)–(10), we adapt to the discrete
setting this mix of techniques of [3] and [9]. Thus, to make the following proofs
easier to understand, we sketch, for each of the discrete estimates, the proof of the
corresponding continuous estimate.

3.1. Estimate on ln(1 + |uT |).
Proposition 3.1. LetM be an admissible mesh. If uT = (uK)K∈T is a solution

to (8)–(10), then

|| ln(1 + |uT |)||21,2,T ≤ 2||µ||M(Ω) + dmeas(Ω) || |v| ||2L∞(Ω)(18)

(where |v| denotes the Euclidean norm of v in R
d).

Before we prove Proposition 3.1, let us state an easy corollary, which is used in
the proof of the estimate of Proposition 3.2.

Corollary 3.1. Let M be an admissible mesh. If uT = (uK)K∈T is a solution
to (8)–(10) and, for k > 0, Ek = {|uT | > k}, then there exists C ∈ R

∗
+ depending

only on (Ω,v) such that

meas(Ek) ≤
C(1 + ||µ||M(Ω))

(ln(1 + k))2
.

Proof of Corollary 3.1. By Proposition 3.1, we get that

|| ln(1 + |uT |)||21,2,T ≤ (2 + dmeas(Ω) || |v| ||2L∞(Ω))(1 + ||µ||M(Ω)).

Therefore, using the discrete Poincaré inequality (Proposition 2.1), we get that there
exists C ∈ R

∗
+ depending only on (Ω,v) such that

|| ln(1 + |uT |)||2L2(Ω) ≤ C(1 + ||µ||M(Ω)).
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Finally, since meas(Ek) = meas({ln(1+ |uT |) ≥ ln(1+k)}), the Chebyshev inequality

yields that meas(Ek) ≤ C(1+||µ||M(Ω))

(ln(1+k))2 .

Proof of Proposition 3.1. Step 0: Sketch of the proof in the continuous case.
Let ϕ(s) =

∫ s
0

dt
(1+|t|)2 . Suppose that µ ∈ H−1(Ω) ∩ L1(Ω), and let u ∈ H1

0 (Ω) be a

variational solution of (1). Using ϕ(u) as a test function in the equation satisfied by
u, and since ϕ is bounded by 1, we find∫

Ω

∇u · ∇u
(1 + |u|)2 dλ+

∫
Ω

buϕ(u) dλ ≤ ||µ||L1(Ω) + || |v| ||L∞(Ω)

∫
Ω

|u| |∇u|
(1 + |u|)2 dλ

≤ C + C

∫
Ω

|∇u|
(1 + |u|) dλ,

where C depends only on ||µ||L1(Ω) and v. Since ∇(ln(1 + |u|)) = sgn(u) ∇u
(1+|u|) and

buϕ(u) ≥ 0 (b is nonnegative and ϕ(s) has the same sign as s), we deduce that

|| |∇(ln(1 + |u|))| ||2L2(Ω) ≤ C + Cmeas(Ω)1/2|| |∇(ln(1 + |u|))| ||L2(Ω),

which gives an estimate on || |∇(ln(1 + |u|))| ||L2(Ω) (and thus, by the Poincaré in-
equality, also on || ln(1 + |u|)||L2(Ω)).

Step 1: Proof of a first discrete estimate. Let ϕ(s) =
∫ s
0

dt
(1+|t|)2 . Multiplying each

equality of (8) by ϕ(uK) and summing on K ∈ T , we have∑
K∈T

∑
σ∈EK

FK,σϕ(uK) +
∑
K∈T

∑
σ∈EK

vK,σuσ,+ϕ(uK) +
∑
K∈T

meas(K)bKuKϕ(uK)

=
∑
K∈T

µ(K)ϕ(uK).(19)

Gathering by edges and using (9), we can write∑
K∈T

∑
σ∈EK

FK,σϕ(uK) =
∑
σ∈E

τσ(uK − uL)(ϕ(uK)− ϕ(uL)),(20)

where we let σ = K|L if σ ∈ Eint, and uL = 0 if σ ∈ Eext ∩ EK .
By the conservativity of the fluxes, still gathering by edges, we find∑

K∈T

∑
σ∈EK

vK,σuσ,+ϕ(uK) =
∑
σ∈E

uσ,+vK,σ(ϕ(uK)− ϕ(uL))

(recall that uL = 0—so that ϕ(uL) = 0—if σ ∈ Eext ∩ EK). If σ ∈ E , we denote
vσ = |vK,σ| for a K ∈ T such that σ ∈ EK (the definition of vσ does not depend on
the choice of such a K) and uσ,− the downstream choice of u; i.e., uσ,− is such that
{uσ,+, uσ,−} = {uK , uL} (where σ = K|L if σ ∈ Eint and uL = 0 if σ ∈ Eext ∩ EK).

Let σ ∈ E ; if vK,σ ≥ 0, then uσ,+ = uK and uσ,− = uL so that vK,σ(ϕ(uK) −
ϕ(uL)) = vσ(ϕ(uσ,+)− ϕ(uσ,−)); if vK,σ < 0, then uσ,+ = uL and uσ,− = uK , which
gives vK,σ(ϕ(uK)−ϕ(uL)) = −vσ(ϕ(uσ,−)−ϕ(uσ,+)) = vσ(ϕ(uσ,+)−ϕ(uσ,−)). Thus,∑

K∈T

∑
σ∈EK

vK,σuσ,+ϕ(uK) =
∑
σ∈E

vσuσ,+(ϕ(uσ,+)− ϕ(uσ,−)).(21)

Since b is nonnegative and ϕ(s) has the same sign as s,∑
K∈T

meas(K)bKuKϕ(uK) ≥ 0.(22)
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Since ϕ is bounded by 1 and T is a partition of Ω,∣∣∣∣∣∑
K∈T

µ(K)ϕ(uK)

∣∣∣∣∣ ≤ ∑
K∈T

|µ(K)| ≤ |µ|(Ω) = ||µ||M(Ω).(23)

Using (20), (21), (22), and (23) in (19), we get

∑
σ∈E

τσ(uK − uL)(ϕ(uK)− ϕ(uL)) ≤ ||µ||M(Ω) +
∑
σ∈E

vσuσ,+(ϕ(uσ,−)− ϕ(uσ,+)).

(24)

We now study each term of the last sum a little more precisely. We use the fact
that ϕ is nondecreasing.

• If uσ,+ ≥ uσ,− and uσ,+ ≥ 0, then ϕ(uσ,−)−ϕ(uσ,+) ≤ 0 and uσ,+(ϕ(uσ,−)−
ϕ(uσ,+)) ≤ 0.

• If uσ,+ ≥ uσ,− and uσ,+ < 0, then 0 > uσ,+ ≥ uσ,−, so that (uσ,+, uσ,−) have
the same sign and |uσ,+| ≤ |uσ,−|.

• If uσ,+ < uσ,− and uσ,+ ≥ 0, then 0 ≤ uσ,+ < uσ,−, so that (uσ,+, uσ,−) have
the same sign and |uσ,+| ≤ |uσ,−|.

• If uσ,+ < uσ,− and uσ,+ < 0, then ϕ(uσ,−)−ϕ(uσ,+) ≥ 0 and uσ,+(ϕ(uσ,−)−
ϕ(uσ,+)) ≤ 0.

By defining A = {σ ∈ E | uσ,+ ≥ uσ,−, uσ,+ < 0} ∪ {σ ∈ E | uσ,+ < uσ,−,
uσ,+ ≥ 0}, we notice that, for all σ ∈ E\A, vσuσ,+(ϕ(uσ,−)−ϕ(uσ,+)) ≤ 0. This gives∑

σ∈E
vσuσ,+(ϕ(uσ,−)− ϕ(uσ,+)) ≤

∑
σ∈A

vσuσ,+(ϕ(uσ,−)− ϕ(uσ,+)).

As vσ ≤ meas(σ)|| |v| ||L∞(Ω), we deduce, using the Cauchy–Schwarz inequality, that∑
σ∈E

vσuσ,+(ϕ(uσ,−)− ϕ(uσ,+))

≤ || |v| ||L∞(Ω)

∑
σ∈A

meas(σ)|uσ,+||ϕ(uσ,−)− ϕ(uσ,+)|

≤ || |v| ||L∞(Ω)

(∑
σ∈A

meas(σ)dσ

) 1
2
(∑
σ∈A

τσu
2
σ,+(ϕ(uσ,−)− ϕ(uσ,+))2

) 1
2

.

However,
∑

σ∈Ameas(σ)dσ ≤
∑

σ∈E meas(σ)dσ = dmeas(Ω) and, if σ ∈ A, (uσ,+, uσ,−)
have the same sign and |uσ,+| ≤ |uσ,−|; thus, by Lemma 3.1 below and Young’s in-
equality,∑

σ∈E
vσuσ,+(ϕ(uσ,−)− ϕ(uσ,+))

≤ (dmeas(Ω))
1
2 || |v| ||L∞(Ω)

(∑
σ∈A

τσ(uσ,− − uσ,+)(ϕ(uσ,−)− ϕ(uσ,+))

) 1
2

≤ 1

2
dmeas(Ω) || |v| ||2L∞(Ω) +

1

2

∑
σ∈E

τσ(uσ,− − uσ,+)(ϕ(uσ,−)− ϕ(uσ,+)).
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For all σ ∈ E , we have {uσ,+, uσ,−} = {uK , uL}, so that (uσ,− − uσ,+)(ϕ(uσ,−)−
ϕ(uσ,+)) = (uK − uL)(ϕ(uK)− ϕ(uL)). Coming back to (24), we obtain∑

σ∈E
τσ(uK − uL)(ϕ(uK)− ϕ(uL)) ≤ 2||µ||M(Ω) + dmeas(Ω) || |v| ||2L∞(Ω) ,(25)

which concludes this step.
Step 2: Estimate on ln(1 + |uT |). We notice that, for all s ∈ R, ln(1 + |s|) =∫ s

0
sgn(t) dt
1+|t| . Thus, for all (x, y) ∈ R

2, by the Cauchy–Schwarz inequality and since ϕ

is nondecreasing,

(ln(1 + |x|)− ln(1 + |y|))2 =

(∫ x

y

sgn(t) dt

1 + |t|
)2

≤ |x− y|
∣∣∣∣∫ x

y

dt

(1 + |t|)2
∣∣∣∣

= |x− y||ϕ(x)− ϕ(y)| = (x− y)(ϕ(x)− ϕ(y)).

Using this upper bound and (25), we deduce the result of the proposition.
Let us now state and prove the technical result that was used in Step 1 of the

above proof.
Lemma 3.1. Let ϕ(s) =

∫ s
0

dt
(1+|t|)2 . If (x, y) ∈ R

2 have the same sign and

|x| ≤ |y|, then

x2(ϕ(y)− ϕ(x))2 ≤ (y − x)(ϕ(y)− ϕ(x)).(26)

Proof of Lemma 3.1. Since ϕ is C1-continuous on R, there exists θ ∈ [x, y] such
that ϕ(y)− ϕ(x) = ϕ′(θ)(y − x), so that, since ϕ is nondecreasing,

x2(ϕ(y)− ϕ(x))2 ≤ x2

(1 + |θ|)2 |y − x| |ϕ(y)− ϕ(x)|

≤ x2

(1 + |θ|)2 (y − x)(ϕ(y)− ϕ(x)).

But |x| ≤ |y| and x and y have the same sign, so that, since θ ∈ [x, y], we have
|θ| ≥ |x|, and (26) is thus a consequence of the previous inequality.

3.2. Estimate on ||uT ||1,q,M. We denote, for k > 0, Tk(s) = max(−k,min(s, k))
and Sk(s) = s− Tk(s) (see Figure 2).

Proposition 3.2. Let M be an admissible mesh and let ζ > 0 be defined by
(15). We suppose that µ satisfies ||µ||M(Ω) ≤ 1. Then there exists k0 > 0 depending

only on (Ω,v, ζ) and, for all m ∈ (1, 2), C > 0 depending only on (Ω,v,m, ζ) such
that, if uT is a solution to (8)–(10) and ϕm(s) =

∫ s
0

dt
(1+|t|)m , we have∑

σ∈E
τσ(Sk0

(uK)− Sk0
(uL))(ϕm(Sk0

(uK))− ϕm(Sk0
(uL))) ≤ C(27)

and ∑
σ∈E

τσ(Tk0
(uK)− Tk0

(uL))(ϕm(Tk0
(uK))− ϕm(Tk0

(uL))) ≤ C,(28)

where we let σ = K|L if σ ∈ Eint and uL = 0 if σ ∈ Eext ∩ EK .
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Remark 3.1. Problem (8)–(10) being linear, there is no loss of generality in the
estimate if we consider measures of norm less than 1, as we will see in Theorem 2.2.

Proof of Proposition 3.2. Step 0: Sketch of the estimate in the continuous case.
Suppose that u ∈ H1

0 (Ω) is a variational solution of (1) with µ ∈ H−1(Ω) ∩ L1(Ω)
satisfying ||µ||L1(Ω) ≤ 1, and take ϕm(Sk(u)) as a test function in (14). Using the
fact that buϕm(Sk(u)) ≥ 0 (b is nonnegative and ϕm(s) and Sk(s) have the same
sign as s), that ∇(Sk(u)) = ∇u, where ∇(Sk(u)) �= 0, and that ϕm is bounded by
1/(m− 1), we have∫

Ω

|∇(Sk(u))|2
(1 + |Sk(u)|)m dλ ≤ 1

m− 1
+ || |v| ||L∞(Ω)

∫
Ω

|u| |∇(Sk(u))|
(1 + |Sk(u)|)m dλ.

However, |u| ≤ k + |Sk(u)| and (1 + |Sk(u)|)2m ≥ (1 + |Sk(u)|)m, so that, by the
Cauchy–Schwarz inequality,∫

Ω

|∇(Sk(u))|2
(1 + |Sk(u)|)m dλ ≤ 1

m− 1
+ C1k

(∫
Ω

|∇(Sk(u))|2
(1 + |Sk(u)|)2m dλ

) 1
2

+ C1

∫
Ω

|Sk(u)|
(1 + |Sk(u)|)m

2

|∇(Sk(u))|
(1 + |Sk(u)|)m

2
dλ

≤ 1

m− 1
+ C1k

(∫
Ω

|∇(Sk(u))|2
(1 + |Sk(u)|)m dλ

) 1
2

+ C1||ψ(Sk(u))||L2(Ω)

(∫
Ω

|∇(Sk(u))|2
(1 + |Sk(u)|)m dλ

) 1
2

,

(29)

where C1 depends only on (Ω,v) and ψ(s) = |s|
(1+|s|)m

2
.

Now, by the Hölder inequality and the Sobolev injection, and since ψ(Sk(u)) = 0
outside Ek = {|u| > k}, there exists r > 2 depending only on d, and C2 depending
only on (Ω, r) (notice that a dependence on Ω takes into account a dependence on d),
such that

||ψ(Sk(u))||L2(Ω) ≤ meas(Ek)
1
2− 1

r ||ψ(Sk(u))||Lr(Ω)

≤ C2meas(Ek)
1
2− 1

r || |∇(ψ(Sk(u)))| ||L2(Ω).
(30)

Since |ψ′(s)| ≤ 1+m
2

(1+|s|)m
2
≤ 2

(1+|s|)m
2
, one has

|| |∇(ψ(Sk(u)))| ||L2(Ω) ≤ 2

(∫
Ω

|∇(Sk(u))|2
(1 + |Sk(u)|)m dλ

) 1
2

.(31)

Gathering (29), (30), and (31), we find C3 depending only on (Ω,v) such that∫
Ω

|∇(Sk(u))|2
(1 + |Sk(u)|)m dλ ≤ C1

m− 1
+ C1k

(∫
Ω

|∇(Sk(u))|2
(1 + |Sk(u)|)m dλ

) 1
2

+ C3meas(Ek)
1
2− 1

r

∫
Ω

|∇(Sk(u))|2
(1 + |Sk(u)|)m dλ.

(32)

Thanks to a continuous equivalent of Corollary 3.1, there exists C4 depending only on
(Ω,v) such that meas(Ek) ≤ C4

(ln(1+k))2 . Thus, there exists k0 > 0 depending only on
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(C4, C3, r) (i.e., on (Ω,v)) such that C3meas(Ek0
)

1
2− 1

r ≤ 1
2 . Applying (32) to this k0

gives ∫
Ω

|∇(Sk0
(u))|2

(1 + |Sk0(u)|)m
dλ ≤ C5,

where C5 depends only on (Ω,v,m), which is the continuous equivalent of (27).
The estimate on Tk0(u) is quite simple and well known (see [2]). Take ϕm(Tk0

(u))
as a test function in the equation satisfied by u; since∇(Tk0

(u)) = 0 outside {|u| ≤ k0}
and (1 + |Tk0

(u)|)2m ≥ (1 + |Tk0(u)|)m, we find∫
Ω

|∇(Tk0
(u))|2

(1 + |Tk0(u)|)m
dλ ≤ 1

m− 1
+ || |v| ||L∞(Ω)

∫
{|u|≤k0}

|u| |∇(Tk0(u))|
(1 + |Tk0(u)|)m

dλ

≤ 1

m− 1
+ || |v| ||L∞(Ω)k0meas(Ω)

1
2

(∫
Ω

|∇(Tk0
(u))|2

(1 + |Tk0(u)|)m
dλ

) 1
2

.

This gives an estimate on Tk0(u) which is the continuous equivalent of (28).
Step 1: Estimate on Sk(uT ). Let M be an admissible mesh, and take uT as a

solution of (8)–(10). Multiplying each equation of (8) by ϕm(Sk(uK)), summing on
K ∈ T , and gathering by edges, we find∑

σ∈E
τσ(uK − uL)(ϕm(Sk(uK))− ϕm(Sk(uL))) +

∑
K∈T

meas(K)bKuKϕm(Sk(uK))

=
∑
K∈T

µ(K)ϕm(Sk(uK))−
∑
σ∈E

vK,σuσ,+(ϕm(Sk(uK))− ϕm(Sk(uL))).(33)

(Recall that if σ ∈ Eint, we use the notation σ = K|L, and if σ ∈ Eext ∩ EK , we set
uL = 0.)

The function ϕm is bounded by 1
m−1 , and T is a partition of Ω, so that∣∣∣∣∣∑

K∈T
µ(K)ϕm(Sk(uK))

∣∣∣∣∣ ≤ 1

m− 1

∑
K∈T

|µ(K)| ≤
||µ||M(Ω)

m− 1
≤ 1

m− 1
.(34)

We again denote by uσ,− the downstream choice of uσ (i.e., uσ,− = uL if vK,σ ≥ 0
and uσ,− = uK otherwise), and vσ = |vK,σ| (for a K ∈ T such that σ ∈ EK); we then
have

−
∑
σ∈E

vK,σuσ,+(ϕm(Sk(uK))− ϕm(Sk(uL)))

=
∑
σ∈E

vσuσ,+(ϕm(Sk(uσ,−))− ϕm(Sk(uσ,+))).

However, as in the proof of Proposition 3.1 (because ϕm◦Sk is nondecreasing), we have
uσ,+(ϕm(Sk(uσ,−)) − ϕm(Sk(uσ,+))) ≤ 0 if σ /∈ A, where A = {σ ∈ E | uσ,+ ≥ uσ,−,
uσ,+ < 0} ∪ {σ ∈ E | uσ,+ < uσ,−, uσ,+ ≥ 0}. Thus,

−
∑
σ∈E

vK,σuσ,+(ϕm(Sk(uK))− ϕm(Sk(uL)))

≤
∑
σ∈A

vσuσ,+(ϕm(Sk(uσ,−))− ϕm(Sk(uσ,+)))

≤ || |v| ||L∞(Ω)

∑
σ∈A

meas(σ)|uσ,+| |ϕm(Sk(uσ,−))− ϕm(Sk(uσ,+))|.(35)
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Let ak,σ =
∫ 1
0
ϕ′m(Sk(uσ,+) + t(Sk(uσ,−)− Sk(uσ,+))) dt ≥ 0, so that

ϕm(Sk(uσ,−))− ϕm(Sk(uσ,+)) = ak,σ(Sk(uσ,−)− Sk(uσ,+)).(36)

We can write∑
σ∈A

meas(σ)|uσ,+| |ϕm(Sk(uσ,−))− ϕm(Sk(uσ,+))|

=
∑
σ∈A

meas(σ)a
1
2

k,σ|uσ,+|a
1
2

k,σ|Sk(uσ,−)− Sk(uσ,+)|

≤
(∑
σ∈A

meas(σ)dσak,σu
2
σ,+

) 1
2
(∑
σ∈A

τσak,σ(Sk(uσ,−)− Sk(uσ,+))2

) 1
2

.

But, by (36), ak,σ(Sk(uσ,−) − Sk(uσ,+))2 = (Sk(uσ,−) − Sk(uσ,+))(ϕm(Sk(uσ,−)) −
ϕm(Sk(uσ,+))), so that∑

σ∈A
meas(σ)|uσ,+| |ϕm(Sk(uσ,−))− ϕm(Sk(uσ,+))|

≤
(∑
σ∈A

meas(σ)dσak,σu
2
σ,+

) 1
2

×
(∑
σ∈A

τσ(Sk(uσ,−)− Sk(uσ,+))(ϕm(Sk(uσ,−))− ϕm(Sk(uσ,+)))

) 1
2

.(37)

Moreover, for all σ ∈ A, uσ,+ and uσ,− have the same sign and |uσ,+| ≤ |uσ,−|. Thus,
for such σ, (Sk(uσ,+), Sk(uσ,−)) have the same sign and |Sk(uσ,+)| ≤ |Sk(uσ,−)| and,
by Lemma 3.2 stated after this proof, we deduce that

ak,σ ≤ 1

(1 + |Sk(uσ,+)|)m ≤ 1.

Since |uσ,+| ≤ k + |Sk(uσ,+)|, we deduce that

ak,σu
2
σ,+ ≤ 2k2 + 2

|Sk(uσ,+)|2
(1 + |Sk(uσ,+)|)m ,

which gives, in (37), using
∑

σ∈Ameas(σ)dσ ≤
∑

σ∈E meas(σ)dσ = dmeas(Ω) and

(α + β)1/2 ≤ α1/2 + β1/2 for all nonnegative (α, β),∑
σ∈A

meas(σ)|uσ,+| |ϕm(Sk(uσ,−))− ϕm(Sk(uσ,+))|

≤
√

2dmeas(Ω)kAk +
√

2Ak

(∑
σ∈A

meas(σ)dσψ(Sk(uσ,+))2

) 1
2

,(38)

where ψ(s) = |s|
(1+|s|)m

2
and

Ak =

(∑
σ∈E

τσ(Sk(uσ,−)− Sk(uσ,+))(ϕm(Sk(uσ,−))− ϕm(Sk(uσ,+)))

) 1
2

=

(∑
σ∈E

τσ(Sk(uK)− Sk(uL))(ϕm(Sk(uK))− ϕm(Sk(uL)))

) 1
2

.
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(Recall that σ = K|L if σ ∈ Eint, that uL = 0 if σ ∈ Eext∩EK , and that {uσ,+, uσ,−} =
{uK , uL} for all σ ∈ E .)

We have, since dK,σ ≥ ζdσ for all K ∈ T and all σ ∈ EK ,

∑
σ∈A

meas(σ)dσψ(Sk(uσ,+))2 ≤
∑
K∈T

ψ(Sk(uK))2

 ∑
σ∈A∩EK | vK,σ≥0

meas(σ)dσ


≤ 1

ζ

∑
K∈T

ψ(Sk(uK))2

(∑
σ∈EK

meas(σ)dK,σ

)

=
1

ζ

∑
K∈T

ψ(Sk(uK))2 × dmeas(K) =
d

ζ
||ψ(Sk(uT ))||2L2(Ω).

By Proposition 2.2, and since ψ(Sk(uT )) = 0 outside Ek = {|uT | > k}, we can thus
find r > 2 and C1 > 0 depending only on (Ω, ζ) such that(∑

σ∈A
meas(σ)dσψ(Sk(uσ,+))2

) 1
2

≤ C1meas(Ek)
1
2− 1

r ||ψ(Sk(uT ))||1,2,M.

But, by Lemma 3.3 below and the definition of Ak,

||ψ(Sk(uT ))||21,2,M =
∑
σ∈E

τσψ(Sk(uK))− ψ(Sk(uL))2 ≤ 4A2
k,

so that (∑
σ∈A

meas(σ)dσψ(Sk(uσ,+))2

) 1
2

≤ 2C1Akmeas(Ek)
1
2− 1

r .

Returning to (38), we thus find∑
σ∈A

meas(σ)|uσ,+| |ϕm(Sk(uσ,−))− ϕm(Sk(uσ,+))|

≤
√

2dmeas(Ω)kAk + 2
√

2C1meas(Ek)
1
2− 1

rA2
k.

(39)

Then (33), (34), (35), (39), and the fact that bKuKϕm(Sk(uK)) ≥ 0 give∑
σ∈E

τσ(uK − uL)(ϕm(Sk(uK))− ϕm(Sk(uL)))

≤ 1

m− 1
+ || |v| ||L∞(Ω)

√
2dmeas(Ω)kAk + 2

√
2|| |v| ||L∞(Ω)C1meas(Ek)

1
2− 1

rA2
k

≤ 1

m− 1
+ C2k

2 +
1

2
A2
k + C2meas(Ek)

1
2− 1

rA2
k,(40)

where C2 depends only on (Ω,v, ζ). However, ϕm and Sk are nondecreasing and Sk
is Lipschitz-continuous with Lipschitz constant 1, and thus

(Sk(uK)− Sk(uL))(ϕm(Sk(uK))− ϕm(Sk(uL)))

≤ (uK − uL)(ϕm(Sk(uK))− ϕm(Sk(uL))),
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and (40) gives∑
σ∈E

τσ(Sk(uK)− Sk(uL))(ϕm(Sk(uK))− ϕm(Sk(uL))) ≤ 2

m− 1
+ 2C2k

2

+ 2C2meas(Ek)
1
2− 1

r

∑
σ∈E

τσ(Sk(uK)− Sk(uL))(ϕm(Sk(uK))− ϕm(Sk(uL))).(41)

By Corollary 3.1, there exists k0 > 0 depending only on (Ω,v, C2, r) (i.e., de-

pending only on (Ω,v, ζ)) such that 2C2meas(Ek)
1
2− 1

r ≤ 1
2 . We deduce from (41)

that∑
σ∈E

τσ(Sk0
(uK)− Sk0(uL))(ϕm(Sk0(uK))− ϕm(Sk0

(uL))) ≤ 4

m− 1
+ 4C2k

2
0,

which gives (27).
Step 2: Estimate on Tk0(uT ). Multiplying each equation of (8) by ϕm(Tk0(uK)),

summing on K ∈ T , and reordering the sums on the edges, we find∑
σ∈E

τσ(uK − uL)(ϕm(Tk0
(uK))− ϕm(Tk0

(uL))) +
∑
K∈T

meas(K)bKuKϕm(Tk0
(uK))

=
∑
K∈T

µ(K)ϕm(Tk0(uK))−
∑
σ∈E

vK,σuσ,+(ϕm(Tk0(uK))− ϕm(Tk0(uL))).(42)

As before, we have ∣∣∣∣∣∑
K∈T

µ(K)ϕm(Tk0
(uK))

∣∣∣∣∣ ≤ 1

m− 1
,(43)

and, with the previous notations,

−
∑
σ∈E

vK,σuσ,+(ϕm(Tk0(uK))− ϕm(Tk0(uL)))

=
∑
σ∈E

vσuσ,+(ϕm(Tk0
(uσ,−))− ϕm(Tk0

(uσ,+)))

≤
∑
σ∈A

vσuσ,+(ϕm(Tk0(uσ,−))− ϕm(Tk0(uσ,+))).

If σ ∈ A, then 0 ≤ uσ,+ ≤ uσ,− or uσ,− ≤ uσ,+ ≤ 0. In either case, if |uσ,+| ≥ k0,
then Tk0(uσ,+) = Tk0(uσ,−), so that ϕm(Tk0(uσ,−)) − ϕm(Tk0(uσ,+)) = 0. Thus, in
the previous sum, we can suppress the terms σ ∈ A such that |uσ,+| ≥ k0 and we
have

−
∑
σ∈E

vK,σuσ,+(ϕm(Tk0
(uK))− ϕm(Tk0

(uL)))

≤ k0
∑
σ∈A

vσ|ϕm(Tk0(uσ,−))− ϕm(Tk0(uσ,+))|

≤ k0|| |v| ||L∞(Ω)

(∑
σ∈E

meas(σ)dσ

) 1
2
(∑
σ∈E

τσ(ϕm(Tk0
(uσ,−))− ϕm(Tk0

(uσ,+)))2

) 1
2

.
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Here ϕm and Tk0 are nondecreasing and ϕm is Lipschitz-continuous with Lipschitz
constant 1; thus, for all σ ∈ E ,

(ϕm(Tk0
(uσ,−))− ϕm(Tk0

(uσ,+)))2

≤ (Tk0
(uσ,−)− Tk0

(uσ,+))(ϕm(Tk0
(uσ,−))− ϕm(Tk0

(uσ,+)))

= (Tk0(uK)− Tk0
(uL))(ϕm(Tk0(uK))− ϕm(Tk0(uL))).

Using this inequality and the fact that
∑

σ∈E meas(σ)dσ = dmeas(Ω), we find

−
∑
σ∈E

vK,σuσ,+(ϕm(Tk0
(uK))− ϕm(Tk0(uL)))

≤ k0|| |v| ||L∞(Ω)

√
dmeas(Ω)

×
(∑
σ∈E

τσ(Tk0(uK)− Tk0(uL))(ϕm(Tk0(uK))− ϕm(Tk0(uL)))

) 1
2

.(44)

Since ϕm and Tk0
are nondecreasing and Tk0

is Lipschitz-continuous with Lipschitz
constant 1, we have

(Tk0
(uK)− Tk0

(uL))(ϕm(Tk0
(uK))− ϕm(Tk0

(uL)))

≤ (uK − uL)(ϕm(Tk0(uK))− ϕm(Tk0(uL))).

Combined with (42), (43), (44), and the fact that bKuKϕm(Tk0
(uK)) ≥ 0, this in-

equality gives∑
σ∈E

τσ(Tk0
(uK)− Tk0

(uL))(ϕm(Tk0
(uK))− ϕm(Tk0

(uL)))

≤ 1

m− 1
+ k0|| |v| ||L∞(Ω)

√
dmeas(Ω)

×
(∑
σ∈E

τσ(Tk0
(uK)− Tk0

(uL))(ϕm(Tk0
(uK))− ϕm(Tk0

(uL)))

) 1
2

,

from which we deduce (28).
What remains is to state and prove the two technical lemmas which were used in

Step 1 of the above proof.
Lemma 3.2. Let m ∈ (1, 2) and ϕm(s) =

∫ s
0

dt
(1+|t|)m . If (x, y) have the same

sign and |x| ≤ |y|, then∫ 1

0

ϕ′m(x+ t(y − x)) dt ≤ 1

(1 + |x|)m .

Proof of Lemma 3.2. Suppose that 0 ≤ x ≤ y. Then, for all t ∈ [0, 1], 0 ≤ x ≤
x+ t(y − x), so that ϕ′m(x+ t(y − x)) = 1

(1+(x+t(y−x)))m ≤ 1
(1+|x|)m . Integrating this

relation on [0, 1] gives the desired inequality. If y ≤ x ≤ 0, we use the fact that ϕ′m is
even and apply the previous result to (−x,−y).

Lemma 3.3. Let m ∈ (1, 2), ϕm(s) =
∫ s
0

dt
(1+|t|)m , and ψ(s) = |s|

(1+|s|)m
2

. Then for

all (x, y) ∈ R
2, one has

(ψ(x)− ψ(y))2 ≤ 4(x− y)(ϕm(x)− ϕm(y)).
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Proof of Lemma 3.3. The function ψ is Lipschitz-continuous and, for all s ∈ R,

|ψ′(s)| =
∣∣∣∣ sgn(s)

(1 + |s|)m
2
−

m
2 sgn(s)|s|

(1 + |s|)1+m
2

∣∣∣∣ ≤ 1 + m
2

(1 + |s|)m
2
≤ 2

(1 + |s|)m
2
,

so that, for all (x, y) ∈ R
2, by the Cauchy–Schwarz inequality,

|ψ(x)− ψ(y)| =
∣∣∣∣∫ x

y

ψ′(s) ds
∣∣∣∣ ≤ ∣∣∣∣∫ x

y

4 ds

(1 + |s|)m
∣∣∣∣ 12 |x− y| 12

≤ 2|ϕm(x)− ϕm(y)| 12 |x− y| 12 .

Taking the power 2 of this inequality and using the fact that ϕm is nondecreasing, we
deduce the desired inequality.

We shall now deduce the key estimate on uT (Theorem 2.2) from Proposition 3.2
and the following lemma.

Lemma 3.4. Let M be an admissible mesh and let ζ > 0 be defined by (15). Let
F : (1, 2) → R

+ be a function. For m ∈ (1, 2), we define ϕm(s) =
∫ s
0

dt
(1+|t|)m . If

vT = (vK)K∈T ∈ X(T ) satisfies, for all m ∈ (1, 2),∑
σ∈E

τσ(vK − vL)(ϕm(vK)− ϕm(vL)) ≤ F (m)

(where we have denoted, as usual, σ = K|L if σ ∈ Eint and uL = 0 if σ ∈ Eext ∩ EK),
then, for all q ∈ [1, d

d−1 ), there exists C > 0 depending only on (Ω, ζ, F, q) such that
||vT ||1,q,M ≤ C.

Proof of Lemma 3.4. Let q ∈ [1, d
d−1 ).

Take m ∈ (1, 2) (fixed later as a function of d and q) and define am,σ =∫ 1
0
ϕ′m(vK + t(vL − vK)) dt. We have ϕm(vK)− ϕm(vL) = (vK − vL)am,σ, so that∑

σ∈E
τσam,σ(DσvT )2 ≤ F (m).

By Hölder’s inequality, we have, since 1 ≤ q < 2,∑
σ∈E

meas(σ)dσ

(
DσvT
dσ

)q

≤
(∑
σ∈E

meas(σ)dσam,σ

(
DσvT
dσ

)2
) q

2
(∑
σ∈E

meas(σ)dσa
− q

2−q
m,σ

) 2−q
2

≤ F (m)
q
2

(∑
σ∈E

meas(σ)dσa
− q

2−q
m,σ

) 2−q
2

.(45)

For all (x, y) ∈ R
2 and all t ∈ [0, 1], one has |x+ t(y − x)| ≤ sup(|x|, |y|), so that

ϕ′m(x+ t(y − x)) =
1

(1 + |x+ t(y − x)|)m ≥
1

(1 + sup(|x|, |y|))m

≥ inf

(
1

(1 + |x|)m ,
1

(1 + |y|)m
)
.
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Taking x = vK , y = vL and integrating the previous inequality on t ∈ [0, 1], we find

am,σ ≥ inf

(
1

(1 + |vK |)m ,
1

(1 + |vL|)m
)
,

which implies

a
− q

2−q
m,σ ≤ sup

(
(1 + |vK |)

mq
2−q , (1 + |vL|)

mq
2−q

)
≤ 2

mq
2−q

(
1 + |vK |

mq
2−q + |vL|

mq
2−q

)
.

We deduce from (45), using the fact that
∑

σ∈E meas(σ)dσ = dmeas(Ω) and re-
ordering the sum on the control volumes,

||vT ||q1,q,M ≤ C1

(
1 +

∑
K∈T

|vK |
mq
2−q

(∑
σ∈EK

meas(σ)dσ

)) 2−q
2

,

where C1 depends only on (F,m, q,Ω). But since dK,σ ≥ ζdσ for all K ∈ T and all
σ ∈ EK , we have

∑
σ∈EK meas(σ)dσ ≤ 1

ζ

∑
σ∈EK meas(σ)dK,σ = d

ζmeas(K), and we
thus obtain

||vT ||q1,q,M ≤ C2

(
1 + ||vT ||

mq
2

L
mq
2−q (Ω)

)
,(46)

where C2 depends only on (F,m, q,Ω). (Notice that, since m > 1, we always have
mq
2−q ≥ 1.)

By Proposition 2.2, there exists C3 depending only on (Ω, q, ζ) such that, if q∗ =
dq
d−q (note that q < d

d−1 ≤ d),

||vT ||Lq∗ (Ω) ≤ C3||vT ||1,q,M.

Using this in (46), we obtain

||vT ||qLq∗ (Ω) ≤ Cq
3C2

(
1 + ||vT ||

mq
2

L
mq
2−q (Ω)

)
.

If q < d
d−1 , one has q

2−q < q∗, so that we can choose m ∈ (1, 2) (depending only

on (q, d)) such that mq
2−q ≤ q∗. We thus obtain, with such a choice of m and Hölder’s

inequality,

||vT ||qLq∗ (Ω) ≤ C4

(
1 + ||vT ||

mq
2

Lq∗ (Ω)

)
,

where C4 depends only on (Ω, ζ, q, F ). Since mq
2 < q (recall that m < 2), this

inequality gives us C5 depending only on (Ω, ζ, q, F ) such that ||vT ||Lq∗ (Ω) ≤ C5, and,
returning to (46), we deduce the desired estimate on ||vT ||1,q,M.

3.3. Proof of Theorem 2.2. Here we give the proof of the key estimate on
||uT ||1,q,M, which was stated in Theorem 2.2 and which is crucial to showing the
existence and convergence of the solution to the finite volume scheme.

Proof of Theorem 2.2. Let Λ > ||µ||M(Ω) (to avoid dividing by 0). Since (8)–(10)

make up a linear problem, we see that uT /Λ is a solution to (8)–(10) with µ/Λ instead
of µ.
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Since ||µ/Λ||M(Ω) ≤ 1, we can apply Proposition 3.2 to uT /Λ; let k0 > 0 de-

pending only on (Ω,v, ζ) given by this proposition. Sk0(uT /Λ) and Tk0(uT /Λ) then
satisfy the hypotheses of Lemma 3.4 with a function F depending only on (Ω,v, ζ).
We deduce from this lemma that, for all q ∈ [1, d

d−1 ), there exists C > 0 depending
only on (Ω,v, ζ, q) such that

||Sk0(uT /Λ)||1,q,M ≤ C and ||Tk0
(uT /Λ)||1,q,M ≤ C.

Since uT /Λ = Sk0
(uT /Λ) + Tk0

(uT /Λ) and || · ||1,q,M is a norm, this gives
||uT /Λ||1,q,M ≤ C, that is to say, ||uT ||1,q,M ≤ CΛ. Letting Λ tend to ||µ||M(Ω),
we obtain the desired estimate on uT .

4. Proof of Theorem 2.1. We first prove the uniqueness of the solution to (14),
which does not involve numerical analysis methods, and then the existence and conver-
gence of the approximate solutions (which yields the existence of a solution to (14)).

Proof of the uniqueness of the solution to (14). This proof uses the regularity
results of [22] on the variational solution to −∆v = f ∈ L2(Ω), v|∂Ω = 0, for Ω

polygonal (or polyhedral) open set in R
d, d = 2 or 3.

Problem (14) being linear, it is sufficient to prove that, if u is a solution to (14)
with µ = 0, then u = 0.

Let θ ∈ L∞(Ω), and take ϕ ∈ H1
0 (Ω) ∩ L∞(Ω) as the solution to∫

Ω

∇ϕ · ∇ψ dλ−
∫
Ω

ψv · ∇ϕdλ +

∫
Ω

bϕψ dλ =

∫
Ω

θψ dλ for all ψ ∈ H1
0 (Ω).(47)

The existence of such a ϕ is ensured by the results of [9]. Letting Θ = θ+v ·∇ϕ−bϕ ∈
L2(Ω), we see that ϕ ∈ H1

0 (Ω) satisfies −∆ϕ = Θ on Ω.
Since Ω is a polygonal (or polyhedral) open set in R

2 or R
3, the results of [22]

give us η > 0 such that ϕ ∈ H
3
2+η(Ω). Thus, by the Sobolev injections (see [1]), there

exists s > d such that ϕ ∈ W 1,s
0 (Ω). (In the case d = 2, to obtain such an s > 2 we

could also have used the result of [28], which is stated for regular open sets but is also
true for open sets with Lipschitz-continuous boundary; see [21].)

Thanks to this additional regularity, a density argument allows us to see that (47)

is also true for ψ ∈ W 1,s′
0 (Ω), where s′ is the conjugate exponent to s, that is, such

that 1
s + 1

s′ = 1.
We can thus use ϕ in the equation satisfied by u and u in the equation satisfied

by ϕ to obtain

0 =

∫
Ω

∇u · ∇ϕdλ−
∫
Ω

uv · ∇ϕdλ +

∫
Ω

buϕ dλ =

∫
Ω

θu dλ.

We deduce from this equality, satisfied for all θ ∈ L∞(Ω), that u = 0, i.e., the
uniqueness of the solution to (14).

Proof of the existence and convergence results. The existence of a unique solution
to (8)–(10) is an immediate consequence of the estimate of Theorem 2.2: Indeed, if
µ = 0, then this theorem shows that any solution to (8)–(10) is null, that is to say,
the square matrix defining this linear system is invertible.

Let us now prove the convergence result. The techniques used here are easy
adaptations of the convergence proof of [14].

Let (un)n∈N be a sequence of functions of L2(Ω) such that un is a solution to
(8)–(10) forM =Mn, where (Mn)n∈N is a family of admissible meshesM satisfying
(15) (for some fixed ζ > 0), and such that size(Mn) tends to 0 as n tends to +∞.
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We first prove (Steps 0 to 5) that if (un)n∈N tends to u in Lp(Ω) for all p < d
d−2 as

n tends to +∞ (and size(Mn) → 0), with u ∈ ∩q< d
d−1

W 1,q
0 (Ω), then u is a solution

to (14).
We then prove (Step 6), thanks to the a priori estimates of section 3, the com-

pactness of the sequence (un)n∈N and conclude, thanks to the uniqueness result which
was proved above, the convergence of (un)n∈N to the solution u to (14).

Step 0: Density argument. By the density of C∞c (Ω) in W 1,s
0 (Ω) for all s ∈ (d,∞)

and by the regularity results on u, it is clearly sufficient to prove that u satisfies the
equations of (14) for all ϕ ∈ C∞c (Ω). Take such a ϕ. Multiplying (8) by ϕ(xK) and
summing over K ∈ T , we have, by the conservativity of the fluxes and by dropping
the index n,∑
σ∈E

τσ(uK − uL)(ϕ(xK)− ϕ(xL)) +
∑
σ∈E

vK,σuσ,+(ϕ(xK)− ϕ(xL))

+
∑
K∈T

meas(K)bKuKϕ(xK) =
∑
K∈T

ϕ(xK)µ(K).(48)

We shall now pass to the limit as size(M) tends to 0 in (48) and prove the
convergence of each of the terms to the corresponding term in (14). In fact, the
proof of convergence of the first and third terms of the left-hand side can be found in
[14] or [15], as can the proof of the second term under a stronger regularity condition.
The proof of convergence of the right-hand side may be found in [19], so that the only
new part in this proof is Step 4, which shows the convergence of the convective term
with a continuous convection velocity (rather than C1 in previous works). However,
we give a quick proof for all terms for the sake of completeness.

Step 1: Convergence of the lower order terms. Denote by ϕT ∈ X(T ) the function
defined by ϕK = ϕ(xK) for all K ∈ T . By the regularity of ϕ, we have ϕT → ϕ
uniformly on Ω as size(M)→ 0, and thus∑

K∈T
ϕ(xK)µ(K) =

∫
Ω

ϕT dµ→
∫
Ω

ϕdµ(49)

as size(M)→ 0. (Notice that ϕT = 0 near ∂Ω for size(M) small enough.)
By regularity of b, bT = (bK)K∈T tends to b in L2(Ω) as size(M)→ 0; thus, since

ϕT → ϕ in L∞(Ω) and uT → u in L2(Ω) (because 2 < d/(d− 2)) as size(M)→ 0, we
have ∑

K∈T
meas(K)bKuKϕ(xK) =

∫
Ω

bT uT ϕT dλ→
∫
Ω

buϕ dλ(50)

as size(M)→ 0.
Step 2: Convergence of the diffusion term. Gathering by control volumes, we

have ∑
σ∈E

τσ(uK − uL)(ϕ(xK)− ϕ(xL)) =
∑
K∈T

uK
∑
σ∈EK

τσ(ϕ(xK)− ϕ(xL)).

But, by regularity of ϕ,

τσ(ϕ(xK)− ϕ(xL)) = −
∫
σ

∇ϕ · nK,σ dγ + meas(σ)RK,σ,
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where |RK,σ| ≤ C1size(M) (C1 does not depend on the mesh) and RK,σ = −RL,σ

whenever σ = K|L ∈ Eint. Thus, gathering by edges,

∑
σ∈E

τσ(uK − uL)(ϕ(xK)− ϕ(xL)) +
∑
K∈T

uK

∫
∂K

∇ϕ · nK dγ

=
∑
K∈T

uK
∑
σ∈EK

meas(σ)RK,σ =
∑
σ∈E

meas(σ)RK,σ(uK − uL).

However, ∣∣∣∣∣∑
σ∈E

meas(σ)RK,σ(uK − uL)

∣∣∣∣∣ ≤ C1size(M)
∑
σ∈E

meas(σ)dσ
DσuT
dσ

= C1size(M)||uT ||1,1,M,

and this last quantity tends to 0 as size(M)→ 0 (because, by Theorem 2.2, ||uT ||1,1,M
stays bounded). By noticing that

∑
K∈T

uK

∫
∂K

∇ϕ · nK dγ =
∑
K∈T

uK

∫
K

∆ϕdλ =

∫
Ω

uT∆ϕdλ,

and since uT → u in L1(Ω) as size(M)→ 0, we deduce that

∑
σ∈E

τσ(uK − uL)(ϕ(xK)− ϕ(xL))→ −
∫
Ω

u∆ϕdλ =

∫
Ω

∇u · ∇ϕdλ(51)

as size(M)→ 0.

Step 3: Preliminary to the convergence of the convection term. (In fact, we prove
here the convergence of the convection term if v is regular.)

Let w ∈ (C1(Ω))d, and define, for K ∈ T and σ ∈ EK , wK,σ =
∫
σ
w · nK,σ dγ.

(Notice that, if σ = K|L ∈ Eint, then wK,σ = −wL,σ.) We want to study the limit, as
size(M)→ 0, of

∑
σ∈E wK,σuσ,+(ϕ(xK)−ϕ(xL)) (that is to say, the convection term

of (48) with w instead of v).

We have∑
σ∈E

wK,σuσ,+(ϕ(xK)− ϕ(xL))

=
∑
K∈T

∑
σ∈EK

wK,σuσ,+ϕ(xK)

=
∑
K∈T

∑
σ∈EK

wK,σ(uσ,+ − uK)ϕ(xK) +
∑
K∈T

ϕ(xK)uK
∑
σ∈EK

wK,σ.(52)

Since
∑

σ∈EK wK,σ =
∫
∂K

w · nK dγ =
∫
K

div(w) dλ, we have

∑
K∈T

ϕ(xK)uK
∑
σ∈EK

wK,σ =

∫
Ω

uT ϕT div(w) dλ→
∫
Ω

uϕdiv(w) dλ(53)

as size(M)→ 0.
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Moreover,∑
K∈T

∑
σ∈EK

wK,σ(uσ,+ − uK)ϕ(xK) =
∑
K∈T

∑
σ∈EK

(uσ,+ − uK)

∫
σ

ϕw · nK,σ dγ

+
∑
K∈T

∑
σ∈EK

(uσ,+ − uK)

∫
σ

(ϕ(xK)− ϕ)w · nK,σ dγ.

Since, for size(M) small enough, the support of ϕ does not intersect the cells K such
that ∂K ∩ ∂Ω �= ∅, we have∑

K∈T

∑
σ=K|L∈EK

uσ,+

∫
σ

ϕw · nK,σ dγ

=
∑

σ∈Eint

uσ,+

(∫
σ

ϕw · nK,σ dγ +

∫
σ

ϕw · nL,σ dγ

)
= 0,

because nK,σ = −nL,σ if σ = K|L ∈ Eint. On the other hand,

−
∑
K∈T

∑
σ∈EK

uK

∫
σ

ϕw · nK,σ dγ = −
∑
K∈T

uK

∫
K

div(ϕw) dλ

= −
∫
Ω

uT div(ϕw) dλ→ −
∫
Ω

udiv(ϕw) dλ

as size(M)→ 0. By regularity of ϕ, we have C5 depending only on ϕ such that∣∣∣∣∣∑
K∈T

∑
σ∈EK

(uσ,+ − uK)

∫
σ

(ϕ(xK)− ϕ)w · nK,σ dγ

∣∣∣∣∣
≤ C5|| |w| ||C(Ω)size(M)

∑
K∈T

∑
σ∈EK

meas(σ)|uσ,+ − uK |

≤ C5|| |w| ||C(Ω)size(M)
∑
σ∈E

meas(σ)DσuT

= C5|| |w| ||C(Ω)size(M)||uT ||1,1,M.

The last quantity tending to 0 as size(M)→ 0, we deduce from the preceding that∑
K∈T

∑
σ∈EK

wK,σ(uσ,+ − uK)ϕ(xK)→ −
∫
Ω

udiv(ϕw) dλ(54)

as size(M)→ 0.
Using (53) and (54) in (52), we obtain∑

σ∈E
wK,σuσ,+(ϕ(xK)− ϕ(xL))→

∫
Ω

uϕdiv(w) dλ−
∫
Ω

udiv(ϕw) dλ

= −
∫
Ω

uw · ∇ϕdλ

(55)

as size(M)→ 0.
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Step 4. Convergence of the convection term. Let ε > 0 and take w ∈ (C1(Ω))d

such that || |v −w| ||C(Ω) ≤ ε. By the regularity of ϕ,∣∣∣∣∣∑
σ∈E

vK,σuσ,+(ϕ(xK)− ϕ(xL))−
∑
σ∈E

wK,σuσ,+(ϕ(xK)− ϕ(xL))

∣∣∣∣∣
≤ C2ε

∑
σ∈E

meas(σ)dσ|uσ,+|,

where C2 depends only on ϕ. Gathering by control volumes, we deduce that∣∣∣∣∣∑
σ∈E

vK,σuσ,+(ϕ(xK)− ϕ(xL))−
∑
σ∈E

wK,σuσ,+(ϕ(xK)− ϕ(xL))

∣∣∣∣∣
≤ C2ε

∑
K∈T

|uK |
∑

σ∈EK | vK,σ≥0
meas(σ)dσ.

However, by our hypothesis on the mesh,
∑

σ∈EK | vK,σ≥0 meas(σ)dσ ≤ ζ−1
∑

σ∈EK
meas(σ)dK,σ = ζ−1dmeas(K), so that∣∣∣∣∣∑

σ∈E
vK,σuσ,+(ϕ(xK)− ϕ(xL))−

∑
σ∈E

wK,σuσ,+(ϕ(xK)− ϕ(xL))

∣∣∣∣∣(56)

≤ C3ε
∑
K∈T

meas(K)|uK | ≤ C4ε,

where C3 and C4 depend neither on the mesh M nor on ε. (
∑

K∈T meas(K)|uK | =
||uT ||L1(Ω) is bounded.)

We also notice that∣∣∣∣∫
Ω

uv · ∇ϕdλ−
∫
Ω

uw · ∇ϕdλ

∣∣∣∣ ≤ C6ε,(57)

where C6 does not depend on ε.
Next using (55) and (57) in (57), we obtain

lim sup
size(M)→0

∣∣∣∣∣∑
σ∈E

vK,σuσ,+(ϕ(xK)− ϕ(xL)) +

∫
Ω

uv · ∇ϕdλ

∣∣∣∣∣ ≤ C7ε,

where C7 does not depend on ε. This being true for any ε > 0, we deduce that∑
σ∈E

vK,σuσ,+(ϕ(xK)− ϕ(xL))→ −
∫
Ω

uv · ∇ϕdλ(58)

as size(M)→ 0.
Step 5: Passage to the limit in the scheme. Using (49), (50), (51), and (58), we

may pass to the limit in (48) to obtain∫
Ω

∇u · ∇ϕdλ−
∫
Ω

uv · ∇ϕdλ +

∫
Ω

buϕ dλ =

∫
Ω

ϕdµ,

which proves that u is a solution to (14).
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Step 6: Proof of the convergence of (un)n∈N. Thanks to Theorem 2.2 and to
Propositions 2.3 and 2.4, we see that (un)n≥1 is relatively compact in Lq(Ω) for all

q ∈ [1, d
d−1 ) and that the adherence values (in Lq(Ω)) of this sequence are in W 1,q

0 (Ω)

(for q ∈ (1, d
d−1 )). Up to a subsequence, we can thus suppose that un → u in Lq(Ω)

for all q ∈ [1, d
d−1 ), with u ∈ ∩q< d

d−1
W 1,q

0 (Ω); by Proposition 2.2 and Theorem 2.2,

(un)n≥1 is also bounded in Lp(Ω) for all p < d
d−2 , so that, by an easy consequence of

the Vitali convergence theorem, un → u in Lp(Ω) for all p < d
d−2 .

By what we have just proved, we see that u is then a solution to (14); since this
solution is unique, this proves that the whole sequence (un)n≥1 converges to u.

As a by-product, this convergence entails the existence of a solution to (14) (which
can be deduced from previous works, for instance, [2] and [9]).

5. A scheme with jump of the fluxes. Until now, we have considered, in the
definition of “admissible mesh,” a partition of Ω into convex polygonal (or polyhedral)
sets. We then defined a finite volume scheme where the conservativity of the numerical
fluxes can be written as FK,σ = −FL,σ for all σ = K|L ∈ Eint.

There is, however, another manner of dealing with the discretization of a right-
hand-side measure, which was implemented, for instance, in [17] for the numerical
simulation of fuel cells. In this formulation, we write that if the support of the
measure intersects a given edge, then there is a jump of the flux on this edge. This
leads to the following scheme.

The meshM that we consider now is defined by a finite family T of polygonal (or
polyhedral) open disjoint subsets of Ω, by a finite family E of subsets of Ω contained
in affine hyperplanes, and by a finite family P = (xK)K∈T of points of Ω such that

(a) T ∪ E is a partition of Ω;
(b) for each σ ∈ E , there exists K ∈ T and a nonempty open subset O of ∂K

such that O ⊂ σ ⊂ O;
(c) items (iii)–(vi) of Definition 2.1 hold.

The notation concerning the mesh is the same as before, and the reader can easily
verify that Propositions 2.1–2.4 are still true for such meshes.

Still defining (bK)K∈T and (vK,σ)K∈T , σ∈EK by (7), the new scheme is

for all K ∈ T ,
∑
σ∈EK

FK,σ +
∑
σ∈EK

vK,σuσ,+ + meas(K)bKuK = µ(K),(59)

for all σ = K|L ∈ Eint , FK,σ = −meas(σ)
dK,σ

(uσ − uK),

for all σ ∈ Eext ∩ EK , FK,σ = τσuK ,
(60)

for all σ = K|L ∈ Eint, FK,σ + FL,σ = −µ(σ),(61)

for all σ = K|L ∈ Eint, uσ,+ = uK if vK,σ ≥ 0 , uσ,+ = uL otherwise,

for all σ ∈ Eext ∩ EK , uσ,+ = uK if vK,σ ≥ 0 , uσ,+ = 0 otherwise.
(62)

Notice that the unknowns of this scheme are (uK)K∈T and (uσ)σ∈E (which rep-
resent approximate values on the edges), but that relation (61) allows us to eliminate
the (uσ)σ∈E ; this scheme can thus be considered as a linear system on (uK)K∈T .

In fact, the elimination of uσ thanks to (61) gives, for σ = K|L ∈ Eint,

FK,σ =
meas(σ)

dσ
(uK − uL)− dL,σ

dσ
µ(σ).
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Thus, this new scheme is in fact the scheme (8)–(10), where we have changed,

for all K ∈ T , µ(K) by µ̃K = µ(K) +
∑

σ∈EK
dL,σ

dσ
µ(σ) (with σ = K|L if σ ∈ Eint,

and dL,σ = 0 if σ ∈ Eext ∩ EK), which is just another way to discretize the measure
µ (forgetting the values of µ on the boundary of the domain, which does not modify
the problem since we consider Dirichlet boundary conditions).

The matrix of (59)–(62) is thus the same as the matrix of (8)–(10), and, since
(µ̃K)K∈T satisfies∑

K∈T
|µ̃K | ≤

∑
K∈T

|µ(K)|+
∑
σ∈E

(
dK,σ

dσ
+

dL,σ
dσ

)
|µ(σ)|

=
∑
K∈T

|µ(K)|+
∑
σ∈E
|µ(σ)| ≤ ||µ||M(Ω)

(because T ∪E is a partition of Ω), the a priori estimates on the solutions to (59)–(62)
are obtained in exactly the same way as the estimates of the solutions to (8)–(10).

We also have, for ϕ ∈ Cc(Ω), for σ = K|L ∈ Eint,∣∣∣∣dL,σdσ
ϕ(xK)µ(σ) +

dK,σ

dσ
ϕ(xL)µ(σ)−

∫
σ

ϕdµ

∣∣∣∣ ≤ ω(ϕ, size(M))|µ(σ)|,

where ω(ϕ, h) is the modulus of continuity of ϕ; thus,∑
K∈T

ϕ(xK)µ̃K →
∫
Ω

ϕdµ

as size(M) → 0, and the convergence of the solution of (59)–(62) as size(M) → 0 is
obtained by the same technique as in the proof of Theorem 2.1.

6. Numerical results. We performed a few simple numerical experiments on
problems to which the exact solution is known, in order to try and obtain some rates
of convergence of the finite volume scheme in the presence of a nonregular right-hand
side. Numerical results were also shown in [11] in the noncoercive case with right-hand
side in H−1, so we shall concentrate here on tests in the irregular data case.

6.1. Comparison of the two finite volume schemes. The first numerical
experiment is concerned with the comparison of the treatment of the singularity in
the one-dimensional case. In this case, the Dirac is not a very “mean” measure, in
the sense that the solution of the problem is continuous; the jump is only on the
derivative. In the first version of the finite volume scheme (scheme (8)–(10), which we
shall call Scheme 1 in what follows), the Dirac measure is taken in its integral form
in the right-hand side, while in the second version (scheme (59)–(62), which we shall
call Scheme 2), the mesh is adapted so as to be able to write the numerical jump of
the flux on a cell interface. We solve −u′′ = δ1/2, u(0) = 0, u(1) = 0, on the interval

(0, 1); the exact solution is u(x) = x
2 for x < .5, u(x) = (1−x)

2 for x ≥ .5. We use
a uniform mesh and ensure that the number of cells is even, so that in the second
scheme, the flux jump is located on a cell interface. The error function e is defined
by e(x) = u(xK) − uK for any x ∈ K, where u(xK) denotes the value of the exact
solution of the continuous problem at point xK , and (uK)K∈T denotes the solution
to the finite volume scheme.

We analyze the rate of convergence by showing the L1, L2, and L∞ norms of the
error e versus the number of cells with a log-log scale in Figure 3.
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Fig. 3. Convergence rates in the one-dimensional case.

Table 1
Values of (C,α) for Schemes 1 and 2, in the one-dimensional case.

α L1 norm L2 norm L∞ norm

Scheme 1 1.0000 1.0000 0.9961

Scheme 2 0.9923 0.9941 0.9961

C L1 norm L2 norm L∞ norm

Scheme 1 0.1250 0.1443 0.2431

Scheme 2 0.2365 0.2768 0.4861

The results show straight lines for all three norms, so that it is natural to try and
evaluate the norms of the error as ||e|| ≡ Chα. The computation of the coefficients C
and α from the numerical results are given in Table 1. These coefficients are computed
using the two finest meshes.

These results show that the two schemes have a rate of convergence which is
roughly the same (close to one) and that the constant C is about twice as large for
Scheme 2 (jump of flux) than for Scheme 1 (Dirac in one cell). This is quite in
accordance with what can be seen from the implementation of the schemes, because
Scheme 2 amounts to spreading the Dirac measure over two cells, instead of the one
in Scheme 1.

6.2. Two- and three-dimensional tests on a Cartesian mesh. We also im-
plemented the finite volume scheme on the square (resp., cubic) domain Ω = (−1, 1)2

(resp., Ω = (−1, 1)3). The domain is discretized with a uniform mesh, and the Lp

norm of the error is computed for an increasing number of cells, so as to evaluate the
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Norm of the error vs.  discretization step,two dimensions

Infinite norm
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α C

L1 norm 2.0000 .1031

L2 norm 2.0000 .0428

L∞ norm 1.7931 .0690

Fig. 4. Convergence rate, two-dimensional case, regular right-hand side.
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Norm of the error vs.  discretization step,two dimensions

Infinite norm
L2 norm
L1 norm

α C

L1 norm .9047 .2421

L2 norm .9965 .3181

Fig. 5. Convergence rate, two-dimensional case, right-hand side Dirac at zero, nonsymmetric
discrete problem.

rate of convergence.
We first tested the two-dimensional code for regular data, obtaining the exact

solution u(x, y) = sinx sin y; results are shown in Figure 4. In this case, since the
mesh is rectangular and the exact solution regular, the consistency error on the flux
is of order 2, and the rate of convergence in the L2 norm can theoretically be shown
to be of order 2 ([14], [20]; see also [5] for a related covolume scheme). The rate
of convergence was computed for the piecewise constant error function defined by
eK = u(xK) − uK for K ∈ T , where u is the exact solution and (uK)K∈T is the
solution to the finite volume scheme.

We then performed some tests with a right-hand side given by a Dirac measure
at 0. The boundary conditions were taken such that the exact solution would be the
restriction of the solution of −∆u = δ0 in the whole set R

2 (resp., R
3). It is well

known that this function lies in Lp(R2) for p ∈ [1,+∞) (resp., Lp(R3) for p ∈ [1, 3)).
We obtain the results (in log-log scale) given in Figure 5. The coefficients C and

α such that ||e|| = Chα are again evaluated for the norms L1(Ω) and L2(Ω), and are
also given in Figure 5.

In these tests, the mesh is such that the point (0, 0) is located at the corner of
the cell [0, h]× [0, h], where h is the discretization step of the mesh. Hence the radial
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Norm of the error vs.  discretization step,two dimensions
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L2 norm 1.0010 .0837

Fig. 6. Convergence rate, two-dimensional case, right-hand side Dirac at zero, symmetric
discrete problem.
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Norm of the error vs.  discretization step,two dimensions
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L2 norm
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L1 norm 0.9131 .0035

L2 norm 0.9350 .0086

L∞ norm 0.9360 .0586

Fig. 7. Convergence rate, two-dimensional case, right-hand side Dirac at zero, nonsymmetric
discrete problem, norm computed on a “regular zone.”

symmetry of the solution is broken by the mesh. If we restore it by allocating one
fourth of the Dirac measure to each of the four cells [0, h] × [0, h], [0, h] × [0,−h],
[−h, 0] × [0, h], and [−h, 0] × [−h, 0], we gain in the order of convergence, as can be
seen in Figure 6. Hence the order of convergence depends on the singularity of the
data, but also on the preservation of the symmetry of the solution.

A question of interest is whether the singular data influences the rate of conver-
gence outside of the region of singularity. In order to check this point, we compute
the norm of the error between the exact and approximate solutions on the region
{x ≤ −.5}×{y ≤ −.5}. We find that, in this case, we recover an order of convergence
close to 1 in all norms if the Dirac measure is located at the corner of a cell, in which
case the symmetry of the solution is not preserved by the discretization (see Figure 7).
In this case, the rate of convergence in the regular zone is perturbed by the singularity
outside this zone. (Recall that the theoretical rate of convergence for regular solutions
on rectangular meshes is 2; see [20], [14].) However, if we restore the symmetry of the
problem as described above, then the rate of convergence is close to 2 (see Figure 8).

We then implemented a three-dimensional Cartesian mesh and found, for the
nonsymmetric discrete problem (Dirac located at a corner of the cell [0, h]3), a rate



2026 JÉRÔME DRONIOU, THIERRY GALLOUËT, RAPHAÈLE HERBIN
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Fig. 8. Convergence rate, two-dimensional case, right-hand side Dirac at zero, located at the
center of the center cell, norm computed on a “regular zone.”
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Norm of the error vs.  discretization step,three dimensions

Infinite norm
L2 norm
L1 norm

α C

L1 norm 0.9670 .3314

L2 norm 0.4809 .2062

Fig. 9. Convergence rate, three-dimensional case, right-hand side Dirac at zero, nonsymmetric
discrete problem.

of convergence close to 1 in norm L1 and .5 in norm L2, as shown in Figure 9. Recall
that in this case the exact solution is in Lp for 1 ≤ p < 3.

If the Dirac measure is distributed on the eight cells neighboring the origin, in
order to symmetrize the discrete problem, as was done in the two-dimensional case,
then one obtains a rate of convergence of 1.631 in the L1 norm and .504 in the L2

norm. This seems to indicate a superconvergence in the L1 norm, although not to the
second order (see also Remark 6.1).

6.3. Two-dimensional tests on an unstructured mesh. We also tested our
algorithm on an unstructured triangular mesh. Numerical experiments for the cell-
centered scheme on triangular meshes were performed in [4] and in [7] in the case of
coercive convection-diffusion equations and regular data. These experiments show a
convergence rate of order 2, as in the finite element case, although this superconver-
gence is still, to our knowledge, an open problem in the finite volume case. We show
in Figure 10 the rate of convergence which we obtain for the Poisson equation where
the right-hand side is a Dirac measure at 0 and the boundary conditions are such that
the exact solution is u(x1, x2) = ln(x21 + x22). The refined meshes are not imbedded,
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Fig. 11. Convergence rate, three-dimensional case, right-hand side Dirac at zero, spherical case.

so that the convergence lines are not straight, but one can figure out that the L1 and
L2 norms of the error between the exact and approximate solutions are bounded by
0.1size(M)0.7.

6.4. Spherical domain and mesh. We also made some experiments for a
three-dimensional spherical problem: We searched for the solution of −∆u = δ0 on
the Euclidean unit ball B(0, 1) of R

3, with boundary conditions such that the exact
solution is the restriction of the solution of −∆u = δ0 in the whole set R

3. The control
volumes are defined by Ki = {x ∈ B(0, 1); ih ≤ |x| ≤ (i+1)h}, for i = 0, . . . , N , where
h = 1

N+1/2 . As we noted in Remark 2.1, such domains and meshes are not strictly

contained in Definition 2.1 of an admissible mesh, since a sphere is hardly a polyhedral
domain, but in fact, the discretization of the normal flux on the boundaries of such a
spherical mesh is clearly consistent when looking at spherical solutions of (1). Indeed,

the numerical flux at interface i + 1/2 is taken as Fi+1/2 = 4πi2h2

h (ui+1 − ui), where
the (ui)i=0,...,N denote the discrete unknowns. In this case, the rate of convergence
of the method was found to be 2 in norm L1 and .5 in norm L2: see Figure 11.

Hence the symmetry of the problem seems to improve the performance of the
method, at least on the L1 norm.

Remark 6.1. We recall that, in the three-dimensional case, the exact solution



2028 JÉRÔME DRONIOU, THIERRY GALLOUËT, RAPHAÈLE HERBIN

Table 2
Convergence rate, three-dimensional case. Left: the right-hand side is a Dirac measure at zero,

spherical case, norm computed on a “regular zone”; right: the right-hand side is a two-dimensional
Lebesgue measure supported on the sphere of radius 1/2. The norm is computed on the whole set Ω.

α C

L1 norm 2.0506 .3411

L2 norm 2.1164 .1720

L∞ norm 2.1295 .2331

α C

L1 norm 1.0506 .1874

L2 norm 0.9993 .1787

L∞ norm 0.9983 .2006

−∆u = δ0 is in L3−ε for any ε > 0; hence we can expect a convergence in Lp for
1 ≤ p < 3. From a convergence in L3−ε for any ε > 0, and a convergence with a
rate hα in L1, one may deduce (from Hölder’s inequality) a convergence in the L2

norm with a rate of at least h
α
4−ε for any ε > 0. The above numerical results are in

accordance with this estimate, both in the spherical case and in the Cartesian case of
section 6.2.

We also give in Table 2 the rate of convergence obtained when computing the
norm of the error on a zone where the solution is regular, i.e., on the set {x ∈ R

3,
|x| > 1/2}. Again, we find in this case a rate of convergence of 2 (even a little more
than 2) for all norms.

If we now search for the solution of −∆u = µ on the three-dimensional unit ball,
with µ the two-dimensional Lebesgue measure supported on the sphere of radius .5,
then the obtained convergence rate is again 1, even though the exact solution is more
regular than the solution to the Dirac problem; see Figure 8. Note that, in this case,
the exact solution is in L∞ (and even in H1).

7. Appendix. Throughout this section, for any q ∈ (1,+∞) we denote by q′ its
conjugate exponent, that is, q′ ∈ (1,+∞) such that 1

q + 1
q′ = 1.

Proof of Proposition 2.1. The case q = 2 is addressed in [14]. We use the same
method for q ∈ [1, 2).

Define, for σ ∈ E and (x, y) ∈ R
d, χσ(x, y) = 1 if σ ∩ [x, y] �= ∅ and χσ(x, y) = 0

otherwise. Let d be a unit vector and define, for x ∈ Ω, y(x) as the point on the
semi-line, with origin x and direction d, such that y(x) ∈ ∂Ω and [x, y(x)] ⊂ Ω. If
σ ∈ E , we let cσ = |nσ · d|, where nσ is a unit normal to σ.

For all x ∈ Ω such that x does not belong to an affine hyperplane generated by
some σ ∈ E , i.e., for almost every x ∈ Ω, we have

|vT (x)| ≤
∑
σ∈E

χσ(x, y(x))DσvT .

(Recall that vT (x) = vK for the K ∈ T such that x ∈ K.) Take such an x and
suppose that, for some σ ∈ E , cσ = 0; we then have χσ(x, y(x)) = 0 (indeed, otherwise
x would belong to the affine hyperplane generated by σ). Thus, the preceding sum
can be reduced to the σ ∈ E such that cσ �= 0, and we can write, thanks to Hölder’s
inequality, for almost every x ∈ Ω,

|vT (x)|q ≤
 ∑

σ∈E | cσ �=0

χσ(x, y(x))dσc
− q

q′
σ

(
DσvT
dσ

)q
 ∑

σ∈E | cσ �=0

χσ(x, y(x))dσcσ


q
q′

.

(63)
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Since we have
∑

σ∈E χσ(x, y(x))dσcσ ≤ diam(Ω) for all x ∈ Ω (see [14]) and∫
Ω
χσ(x, y(x)) dλ(x) ≤ diam(Ω)meas(σ)cσ, we obtain, integrating (63) on Ω,∫

Ω

|vT |q dλ ≤ diam(Ω)
q
q′

∑
σ∈E | cσ �=0

diam(Ω)meas(σ)dσc
1− q

q′
σ

(
DσvT
dσ

)q

.

However, q ≤ 2, so that 1 − q
q′ = 2 − q ≥ 0 and c2−qσ ≤ 1, which concludes this

proof.
Proof of Proposition 2.2. The case d = 2 has already been covered in the course

of the proof of the discrete Sobolev inequalities in [14, inequality (9.73), p. 791].
For d = 3, the case q = 2 may be found in [8]. The case of a general q is similar;

we use the following inequality [14, inequality (9.75), p. 793]: for any wT ∈ X(T ),

∫
Ω

|wT | 32 dλ ≤
(∑
σ∈E

meas(σ)DσwT

) 3
2

.

Applying this to wK = |vK |
2q

3−q sgn(vK), and sinceDσwT ≤ 2q
3−q (|vK |

3(q−1)
3−q +|vL|

3(q−1)
3−q )

·DσvT (with σ = K|L ∈ Eint or vL = 0 if σ ∈ Eext ∩ EK), we deduce, by the Hölder
inequality,(∫

Ω

|vT |
3q

3−q dλ

) 2
3

≤ 2q

3− q

∑
σ∈E

meas(σ)dσ

(
|vK |

3(q−1)
3−q + |vL|

3(q−1)
3−q

) DσvT
dσ

≤ 2q

3− q

(∑
σ∈E

meas(σ)dσ

(
DσvT
dσ

)q
) 1

q

×
(∑
σ∈E

meas(σ)dσ

(
2q

′−1|vK |
3q

3−q + 2q
′−1|vL|

3q
3−q

)) 1
q′

.

However, by the hypothesis on ζ,∑
σ∈E

meas(σ)dσ|vK |
3q

3−q =
∑
K∈T

|vK |
3q

3−q

∑
σ∈EK

meas(σ)dσ

≤ 1

ζ

∑
K∈T

|vK |
3q

3−q

∑
σ∈EK

meas(σ)dK,σ

=
3

ζ

∑
K∈T

meas(K)|vK |
3q

3−q

=
3

ζ
||vT ||

3q
3−q

L
3q

3−q (Ω)
.

Thus, we finally have(∫
Ω

|vT |
3q

3−q dλ

) 2
3

≤ C||vT ||1,q,M||vT ||
3(q−1)
3−q

L
3q

3−q (Ω)
,

where C depends only on (q, ζ), and this gives the desired estimate.
Proof of Proposition 2.3. Define χσ(x, y) as at the beginning of the proof of

Proposition 2.1.
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Suppose first that q > 1, and take h ∈ R
d\{0}. Define, for σ ∈ E , cσ = |nσ · h

|h| |
(where nσ is a unit normal to σ).

We have, for almost every x ∈ Ω (in fact, for all x which do not belong to an
affine hyperplane generated by some σ ∈ E),

|wT (x+ h)− wT (x)| ≤
∑
σ∈E

χσ(x+ h, x)DσvT .(64)

As in the proof of Proposition 2.1, this sum can be limited to those σ ∈ E such that
cσ �= 0, and we have then, by Hölder, for almost every x ∈ Ω,

|wT (x+ h)− wT (x)| ≤
 ∑

σ∈E | cσ �=0

χσ(x+ h, x)dσ
cσ

(
DσvT
dσ

)q
 1

q

×
(∑
σ∈E

χσ(x+ h, x)dσc
q′
q
σ

) 1
q′

.

Since q ≤ 2 (and hence q′/q ≥ 1) and cσ ∈ [0, 1], we have c
q′/q
σ ≤ cσ; however (see [14]),∑

σ∈E χσ(x+ h, x)dσcσ ≤ |h|+ Csize(M), where C depends only on Ω. Thus,

|wT (x+ h)− wT (x)|q ≤ (|h|+ Csize(M))q−1
∑

σ∈E | cσ �=0

χσ(x+ h, x)dσ
cσ

(
DσvT
dσ

)q

.

Since
∫

Rd χσ(x+h, x) dλ(x) ≤ meas(σ)cσ|h|, we deduce, after integrating, the desired
estimate (17).

If q = 1, we simply integrate (64), and this directly gives (bounding
∫

Rd χσ(x+h,
x) dλ(x) by meas(σ)|h|) the estimate.

The compactness result is then an immediate application of Kolmogorov’s theo-
rem, with the use of Proposition 2.1 to obtain a bound in Lq(Ω).

Proof of Proposition 2.4. Applying (17) to vn and passing to the limit n → ∞,
we get, for h ∈ R

d\{0}, ∫
Rd

|w(x+ h)− w(x)|q
hq

dλ(x) ≤ C,

where C does not depend on h and w is the extension of v to R
d by 0 outside Ω.

Since q > 1, this estimate classically gives w ∈ W 1,q(Rd), and, by the regularity
of Ω, since w is the extension of v by 0 outside Ω, v ∈W 1,q

0 (Ω).
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1. Motivation and introduction. The minimization of the functional

I(v) :=
∫

Ω

|Dv| −
∫

Ω

κv in BV
(
Ω; {±1})(1.1)

constitutes a weak formulation of the prescribed mean curvature problem: the hyper
surface ∂{χ = 1} of any minimum point χ has mean curvature κ/(2d) and normal
contact with ∂Ω in a weak sense; cf. Finn [12], and see section 2 for the notation.
Such minimization has applications in capillary surfaces, time discretizations of mean
curvature flow, and phase transition models; see, e.g., [2, 12, 13, 20].

To approximate minimum points of (1.1) numerically, Bellettini, Paolini, and
Verdi [5, 6] observed that I can be “equivalently” minimized in the convex set
BV
(
Ω, [−1, 1]) and considered the additionally regularized minimization of

I(v; ε) :=
∫

Ω

√
ε2 + |Dv|2 −

∫
Ω

κv in BV
(
Ω; [−1, 1])(1.2)

with parameter ε > 0. Discretizing (1.2) with continuous linear finite elements offers
the minimization of “semistrictly” convex functionals which Γ-converge in L1(Ω) to
I as ε and the mesh size decrease to 0 independently. Notice that the case ε = 1 of
(1.2) is also interesting in itself.

The nonuniform convexity of I(·, ε) and the presence of obstacles in (1.2) strongly
suggest the use of adaptive methods; see also [10]. In this connection, it also seems
worthwhile to consider a space-dependent regularization parameter ε. This paper
concerns the adaptive computation of approximations to regular minimum points of
(1.2), where ε is a strictly positive and piecewise constant function. In its theoretical
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part we derive a posteriori error estimators for the discretization of (1.2), which are
used to guide adaptive algorithms in its computational part.

We outline the results and organization of this paper in more detail. In section 2
we introduce the notation used as well as regular and discrete minimum points of (1.2)
together with their variational inequalities. We observe that both types of minimum
points are not unique in general and recall a characterization of their uniqueness.
Furthermore, similar to [15, 17, 18], we associate with the minimum points auxiliary
functionals, which recover information lost by the variational inequalities. The “dis-
crete auxiliary functional,” i.e., the one associated with discrete minimum points, may
however differ from those in [15, 17, 18]. This difference allows for a complete and
thus better localization; see Remark 4.4.

In section 3 we introduce an error notion. It measures a “distance” between the
classes of discrete and regular minimum points including an error in the auxiliary
functional. In addition, it bounds the error in the approximation of the minimum
value in (1.2) from above; see (3.10). The latter means that the error notion is
useful when (1.2) is interpreted as an approximation of (1.1). Moreover, we relate the
introduced error to an adaptation of the Galerkin functional in [17]; this relationship
will guide us in deriving upper and lower a posteriori bounds.

In section 4 we derive a conditional a posteriori upper bound for the aforemen-
tioned error. Here “conditional” means that the upper bound holds under the as-
sumption of an a posteriori condition, i.e., a condition involving only the computed
minimum point and (discretization) data. The upper bound enjoys the following
properties:
• Its indicators do not depend on the particular choice of the discrete minimum
point if the latter is not unique.

• It is uniform in the regularization “parameter” ε.
• Its local indicators inside the discrete contact set are 0 whenever the discrete
minimum point is unique and κ satisfies a local sign condition; the latter holds
particularly in the exact contact set.

• Only weighted jump residuals, weighted data oscillation (which is of higher order),
and indicators controlling a consistency error of the discrete auxiliary functional
are involved; interior residuals do not appear.

Apart from the aforementioned ingredients, the upper bound’s proof utilizes (and
generalizes) ideas of [11, section 5] in regard to the handling of the underlying operator.

In section 5 we derive a posteriori local lower bounds complementing the upper
bound. The lower bound involving the jump residual exhibits a gap with respect to
the upper bound; see Remark 5.1. This gap is related to the quotient of the extreme
eigenvalues of the underlying operator. Its avoidance probably requires information
on the direction of the error. Important ingredients for the proofs of the lower bounds
are section 3, Verfürth’s constructive argument, and, for the lower bound related
to the consistency error of the discrete auxiliary functional, an adaptation of [15,
Lemma 6.4] whose proof is inspired by Lemma 3.3 of Chen and Nochetto [8].

In section 6 we formulate an adaptive algorithm guided by the derived estima-
tors and present several numerical experiments. Studying situations with singular or
nonunique solutions as well as “dynamic” regularization, we illustrate the properties
of the derived estimators.

2. Regular and discrete minimum points. After fixing some notation and
the setting, we introduce regular and discrete minimum points of (1.2) as well as
associated functionals. Furthermore, we discuss some of their properties.
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The following notation is used throughout this article (and, partially, was already
used in section 1). For q ∈ [1,∞] and an open set U ⊂ R

d, the space of Lebesgue-
measurable and q-integrable functions is denoted by Lq(U). We shall write ‖·‖0,q;U
for its norm. For any set A ⊂ R, we define Lq(U ;A) := {v ∈ Lq(U) | v(x) ∈ A for
a.e. x ∈ U}; this notation is used also for analogous subsets of other Banach spaces.
W 1
q (U) is the Sobolev space of Lq(U)-functions that have first weak derivatives in

Lq(U). For ε ∈ L1(U ;R
+) and v ∈ L1(U), we set

(2.1)∫
U

√
ε2 + |Dv|2 := sup

{∫
U

(
εgd+1 + v

d∑
i=1

∂igi

)∣∣∣∣∣ g = (g1, . . . , gd+1) in

C1
0 (U ;R

d+1) and |g| ≤ 1

}
.

Note that (2.1) is the total variation
∫
Ω
|Dv| of v if ε = 0 in U . The subset of L1(U)

of the functions with bounded total variation is denoted by BV(U).
Let Th be a (conforming) triangulation of a bounded, connected, open set Ω in

R
d, d ≥ 2, with Lipschitz boundary ∂Ω. Moreover, let κ ∈ L∞(Ω) and ε ∈ L∞(Ω;R+)

be constant on each T ∈ Th. Finally, let u be a regular minimum point; i.e., u is a
minimum point of (1.2) and u ∈W 1

1 (Ω). Denoting the gradient of v ∈W 1
1 (Ω) by ∇v,

we have
∫
Ω

√
ε2 + |Dv|2 = ∫

Ω

√
ε2 + |∇v|2 and u satisfies the variational inequality

∀ v ∈W 1
1

(
Ω; [−1, 1]), ∫

Ω

a(∇u; ε) · ∇(u− v) ≤
∫

Ω

κ(u− v),(2.2)

where a(p; r) := p/
√
r2 + |p|2 for all p ∈ R

d and r > 0. Note that u is not necessarily
the only regular minimum point. However, if ũ is also a regular minimum point, then

∃ c ∈ R, ũ = u+ c in Ω,(2.3a) [∫
Ω

κ �= 0 or

(
sup
Ω
u = 1 and inf

Ω
u = −1

)]
=⇒ c = 0.(2.3b)

If u is the only regular minimum point, then the condition in (2.3b) is implied.
We associate the functional σε ∈W 1

1 (Ω)
∗ defined by

∀ϕ ∈W 1
1 (Ω), 〈σε, ϕ〉 :=

∫
Ω

κϕ−
∫

Ω

a(∇u; ε) · ∇ϕ(2.4)

with the class of regular minimum points. In fact, σε does not depend on the particular
choice of u thanks to (2.3a). Important properties of σε are (they express that σε is
a subgradient in u of the convex potential associated with the constraint |u| ≤ 1)

σε = κ ≤ 0 in int{u = −1}, σε = κ ≥ 0 in int{u = 1},
σε = 0 in {−1 < u < 1}.(2.5)

Here int{u = −1} (or int{u = 1}) stands for the biggest open subset of Ω on which u is
equal to −1 (or 1) in a distributional sense, while {−1 < u < 1} := ⋃δ>0 int{−1+δ ≤
u ≤ 1− δ}, where int{−1 + δ ≤ u ≤ 1− δ} is the biggest open subset of Ω on which
the given inequalities hold in a distributional sense.

In what follows, we shall use the letter h as lower index to indicate a “discrete
object” or, often together with ε, to indicate the dependence on the triangulation Th.
Let Wh be the space of continuous affine finite elements over Th, i.e.,

Wh :=
{
wh ∈ C0(Ω) | ∀T ∈ Th wh|T ∈ P1(T )

}
.
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Hereafter, Pm(T ) denotes the space of polynomials on T with degree smaller than or
equal to m ∈ N0. Moreover, we set Kh := {wh ∈Wh | |wh| ≤ 1}, which is a subset of
W 1

1

(
Ω, [−1, 1]). An algorithm for the minimization of the functional I(·, ε) in Kh is

described in [6]. Let uh be a minimum point of I(·, ε) in Kh, i.e., a discrete minimum
point. Similarly to a regular minimum point, the discrete minimum point uh satisfies
the discrete variational inequality

∀ vh ∈ Kh,
∫

Ω

a(∇uh; ε) · ∇(uh − vh) ≤
∫

Ω

κ(uh − vh)(2.6)

and may not be the only discrete minimum point; there holds

∃ c ∈ R, ũh = uh + c in Ω,(2.7a) [∫
Ω

κ �= 0 or

(
sup
Ω
uh = 1 and inf

Ω
uh = −1

)]
=⇒ c = 0(2.7b)

if ũh is also a discrete minimum point.
Next, we define a counterpart σεh of the functional σε in (2.4). To this end, we

denote the set of nodes of Wh (or vertices of simplices in Th) by Nh and recall that
the hat functions (φz)z∈Nh

defined by φz ∈ Wh, φz(y) = 0 for y ∈ Nh \ {z}, and
φz(z) = 1 constitute a basis of Wh. The properties of σε in (2.5) are imitated on the
discrete level by

Σz ≤ 0 if uh(z) = −1, Σz ≥ 0 if uh(z) = 1,

Σz = 0 if −1 < uh(z) < 1,
(2.8)

where

Σz :=

[∫
Ω

φz

]−1 [∫
Ω

κφz −
∫

Ω

a(∇uh; ε) · ∇φz
]
.(2.9)

Note that we suppress the dependence of Σz on Th and ε in the notation; this con-
vention will be used also for other computable quantities in the following.

In [15, 17, 18] mass lumping was used to extend (2.8) in the spirit of (2.5).
Here, we shall use another approach which exploits that the hat functions (φz)z∈Nh

constitute a partition of unity on Ω. More precisely, let ωz := suppφz be the support
of φz for any z ∈ Nh and define a function σεh ∈ L∞(Ω) by

σεh =
∑
z∈Nh

σεh,zφz with σεh,z(x) :=

{
κ(x) if z ∈ Cεh,
Σz if z ∈ Nh \ Cεh,

x ∈ ωz,(2.10a)

where the set Cεh of “full-contact nodes” is defined as follows:

if the condition in (2.7b) holds, then

Cεh :=
{
z ∈ Nh | (uh = −1, κ ≤ 0 on ωz) or (uh = 1, κ ≥ 0 on ωz)

}
;(2.10b)

else Cεh := ∅.
Note that σεh depends only on the class of discrete minimum points and not on the
particular choice uh. In general, σεh is not a subgradient in uh of the convex potential
associated with the constraint |uh| ≤ 1. However (we use the convention that simplices
are closed),

σεh = 0 in
⋃{

T ∈ Th : uh(T ) ⊂ ]−1, 1[}(2.11a)
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and, provided that the condition in (2.7b) holds,

σεh = κ ≤ 0 in
⋃{

T ∈ Th : uh = −1, κ ≤ 0 in ωT
}
,(2.11b)

σεh = κ ≥ 0 in
⋃{

T ∈ Th : uh = 1, κ ≥ 0 in ωT
}
,(2.11c)

where ωT denotes the union of all simplices touching T ∈ Th.
The sign conditions on κ in (2.10b) might appear artificial at first glance. They are

crucial, however, because (2.8) provides less information than (2.5). In fact, uh = −1
(or uh = 1) in ωz determines only the sign of

∫
Ω
κφz but not the sign of κ in ωz. See

also Remark 4.5 below.

3. Error and the Galerkin functional. We introduce a functional Gεh that,
for our purposes, plays the same role in the context of the variational inequality (2.2)
as the residual in the context of unconstrained problems. Motivated by properties of
Gεh, we introduce an error notion for couples (uh, σεh) of discrete minimum points uh
and associated functionals σεh. This error notion does not depend on the particular
choice of the discrete minimum point uh and bounds the error in the approximate
minimum value I(uh).

Let the functional Gεh ∈W 1
1 (Ω)

∗ be defined by

〈Gεh, ϕ〉 :=
∫

Ω

a(∇uh; ε) · ∇ϕ+

∫
Ω

σεhϕ−
∫

Ω

κϕ,(3.1)

where uh is a discrete minimum point and σεh is defined as in (2.10). Note that Gεh
does not depend on the particular choice of uh. Definition (3.1) adapts the Galerkin
functional of [17] to the variational inequality (2.2) and the definition (2.10). In
particular, it generalizes the residual Rεh := −div a(∇uh; ε) − κ ∈ W 1

1 (Ω)
∗: if uh

touches neither the lower nor the upper obstacle, then Gεh = Rεh. The residual Rεh
is a key quantity for the derivation of a posteriori estimators; see the books [1, 19] and,
in particular, [11], where the unconstrained case with ε ≡ 1 and Dirichlet boundary
values is analyzed.

We observe that, for any regular minimum point u, definition (2.4) yields

〈Gεh, ϕ〉 =
∫

Ω

[
a(∇uh; ε)− a(∇u; ε)] · ∇ϕ+ 〈σεh − σε, ϕ〉(3.2)

for all ϕ ∈W 1
1 (Ω). The discretization error introduced below will consist of two parts.

The first part is associated with the first term in the right-hand side of (3.2) and can
be considered also in the unconstrained case, while the second part is associated with
the second term and is only relevant if u or uh touches at least one obstacle.

The following immediate generalization of Lemma 3.1 in [11] concerns the first
term in the right-hand side of (3.2).

Lemma 3.1 (monotonicity of a). Let p1, p2 ∈ R
d and r > 0. We have

[
a(p1; r)− a(p2; r)

] · (p1 − p2) =

∣∣∣∣ P1

|P1| −
P2

|P2|
∣∣∣∣2 |P1|+ |P2|

2
(3.3)

with Pi := (pi,−r) ∈ R
d+1 for i = 1, 2.
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Proof. We calculate (note that all dots after the first equal sign denote the scalar
product in R

d+1)

[
a(p1; r)− a(p2; r)

] · (p1 − p2) =

(
P1

|P1| −
P2

|P2|
)
· (P1 − P2)

=

(
P1

|P1| −
P2

|P2|
)
· P1

|P1| |P1| +
(
P2

|P2| −
P1

|P1|
)
· P2

|P2| |P2|.

Combining this with the identity (N1 −N2) ·N1 = 1
2 |N1 −N2|2 for |N1| = |N2| = 1,

we arrive at (3.3).
Lemma 3.1 and the geometrical interpretation for r = 1 of the right-hand side in

(3.3) motivate the following definitions (see also [11, section 3]):

A(p; r) :=
√
|p|2 + |r|2, N(p; r) :=

(p,−r)
A(p; r)

for all p ∈ R
d and r > 0 and

eεh :=

(∫
Ω

|N(∇uh; ε)−N(∇u; ε)|2 A(∇uh; ε) +A(∇u; ε)
2

)1/2

.(3.4)

Note that eεh does not depend on the particular choices of uh and u and so measures
an error between the classes of discrete and regular minimum points.

Testing (3.2) with ϕ = uh − u yields

e2εh = 〈Gεh, uh − u〉 − 〈σεh − σε, uh − u〉.(3.5)

This identity suggests estimating eεh by bounding appropriately 〈Gεh, uh − u〉 from
above and 〈σεh − σε, uh − u〉 from below. Both bounds are established in section 4
with the help of local computable quantities. The upper bound for 〈Gεh, uh − u〉 is
established similarly to the one for 〈Rεh, uh−u〉 in the unconstrained case. The lower
bound for 〈σεh − σε, uh − u〉 = 〈σεh, uh − u〉 + 〈σε, u − uh〉 exploits that σεh is an
“approximate subgradient” in uh; cf. (2.11).

We next discuss the error part associated with the second term in the right-hand
side of (3.2). To this end, we observe |a(∇uh; ε)−a(∇u; ε)| ≤ |N(∇uh; ε)−N(∇u; ε)|
and introduce the seminorm

|ϕ|εh :=

(∫
Ω

|∇ϕ|2A(∇uh; ε)−1

)1/2

with the computable weight A(∇uh; ε)−1. We thus obtain∣∣∣∣∫
Ω

[
a(∇uh; ε)− a(∇u; ε)] · ∇ϕ∣∣∣∣ ≤ √2eεh|ϕ|εh.(3.6)

This suggests measuring the error of σεh in the dual seminorm of | · |εh, that is,
|Ψ|εh;∗ := sup

{〈Ψ, ϕ〉 | ϕ ∈W 1
2 (Ω), |ϕ|εh ≤ 1

}
.(3.7)

In fact, (3.2) then implies

|σεh − σε|εh;∗ ≤ |Gεh|εh;∗ +
√
2eεh.(3.8)
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As eεh before, |σεh − σε|εh;∗ does not depend on the particular choices of uh and
u. The upper bound for |Gεh|εh;∗ is established in section 4. It does not lead to
additional computable quantities; see (4.19) in the proof of Theorem 4.6. Thus the
upper bound of eεh essentially implies the one of |σεh − σε|εh;∗ and the computable
quantities bounding eεh even estimate the combined error eεh + |σεh − σε|εh;∗ from
above.

Local estimates in the inverse direction will rely on

|Gεh|εh,ω;∗ ≤
√
2eεh(ω) + |σεh − σε|εh,ω;∗(3.9)

for any open set ω in Ω, which is again a consequence of (3.2) and (3.6). Here, | · |εh,ω;∗
and eεh(ω) are the local counterparts of | · |εh;∗ and eεh; that is,

|Ψ|εh,ω;∗ := sup
{〈Ψ, ϕ〉 | ϕ ∈W 1

2 (Ω), suppϕ ⊂ ω, |ϕ|εh ≤ 1
}
,

eεh(ω) :=

(∫
ω

|N(∇uh; ε)−N(∇u; ε)|2 A(∇uh; ε) +A(∇u; ε)
2

)1/2

.

We conclude this section by showing that eεh is closely related to the error in the
minimum value, i.e., to the difference I(uh; ε) − I(u; ε). On the one hand, we have
I(uh; ε)− I(u; ε) ≥ 0, and on the other hand,

I(u; ε)− I(uh; ε) ≥
∫

Ω

a(∇uh; ε) · ∇(u− uh)− κ(u− uh)

≥
∫

Ω

[
a(∇uh; ε)− a(∇u; ε)] · ∇(u− uh) = −e2εh

by the convexity of A(·; r), ∇A(·; r) = a(·; r), the variational inequality (2.2), and
Lemma 3.1. Combining the two inequalities yields

0 ≤ I(uh; ε)− I(u; ε) ≤ e2εh.(3.10)

4. Upper bound. We derive an a posteriori upper bound for the error eεh +
|σεh − σε|εh;∗ introduced in section 3. To this end, we follow the discussion therein:
we first establish appropriate bounds involving computable quantities for

|Gεh|εh;∗, 〈Gεh, uh − u〉, and 〈σεh − σε, uh − u〉(4.1)

and then combine these bounds with (3.5) and (3.8).
The first two terms in (4.1) are estimated with the help of the following lemma,

which involves the computable quantities (ηz)z∈Nh\Cεh defined by

η2
z = hz‖Jεh‖20,2;γz + hdz‖κ− κz‖20,d;ωz

.(4.2)

Here, uh satisfies (2.6), the index set Cεh is defined as in (2.10b), ωz denotes the
support of the hat function φz, hz is the diameter of ωz, κz :=

∫
Ω
κφz/

∫
Ω
φz is the

mean value of κ with respect to the weight φz, γz is the union of all sides in ωz,
‖ · ‖0,2;γz denotes the L2-norm with respect to the (d − 1)-dimensional Hausdorff
measure restricted to γz, and Jεh := J(uh; ε) is defined as follows: for any side S
between simplices T1 and T2,

J(uh; ε)|S :=
[
a(∇uh|T1 ; ε)− a(∇uh|T2 ; ε)

] · n,(4.3a)
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where n is the normal of S pointing from T2 to T1 (note that this definition does not
depend on the choice of T1 and T2); for any boundary side S ⊂ ∂Ω,

J(uh; ε)|S := −a(∇uh|T ; ε) · n,(4.3b)

where T is the simplex containing S, and n is the normal of S pointing outward of T .
Note that hdz‖κ− κz‖20,d;ωz

“scales” in hz like h2
z‖κ− κz‖20,2;ωz

; cf. [11, Remark 5.1].
In what follows, we shall use “�” instead of “≤ C,” where C may depend on d

and the shape-regularity γh of Th defined by

γh := max
T∈Th

hT /ρT ∈ ]1,∞[,

where hT denotes the diameter of the smallest ball containing T and ρT the diameter
of the biggest ball contained in T .

Lemma 4.1. Let Gεh be defined as in (3.1) and ϕ ∈W 1
1 (Ω). Then

〈Gεh, ϕ〉 �
∑

z∈Nh\Cεh
h−d/2z ηz ‖∇ϕ‖0,1;ωz

.

Proof. Simplexwise integration by parts,
∑
z∈Nh

φz = 1 in Ω, and (2.10a) yield

〈Gεh, ϕ〉 = −
∑
z∈Nh

[∫
γz

Jεhϕφz +

∫
ωz

κϕφz −
∫
ωz

σεh,zϕφz

]
.(4.4)

Suppose that z ∈ Cεh. Then Jεh = 0 on γz and σεh,z = κ, and we obtain∫
γz

Jεhϕφz +

∫
ωz

κϕφz −
∫
ωz

σεh,zϕφz = 0.

Consequently, only nodes in Nh \ Cεh contribute to the sum on the right-hand side
in (4.4). Let z ∈ Nh \ Cεh be such a node. Then σεh,z = Σz is a constant, and the
definition (2.9) of Σz implies

∫
ωz
σεh,zϕφz =

(∫
γz
Jεhφz +

∫
ωz
κφz
)
ϕz, with the mean

value ϕz :=
∫
Ω
ϕφz/

∫
Ω
φz. Using in addition

∫
ωz
(ϕ− ϕz)φz = 0, we arrive at∫

γz

Jεhϕφz+

∫
ωz

κϕφz−
∫
ωz

σεh,zϕφz =

∫
γz

Jεh(ϕ−ϕz)φz+
∫
ωz

(κ−κz)(ϕ−ϕz)φz.

The right-hand side can be estimated along standard lines. We apply the “scaled”
trace theorem ‖ψ‖0,1;γz � h−1

z ‖ψ‖0,1;ωz+‖∇ψ‖0,1;ωz and the scaled Sobolev inequality
‖ψ‖0,d;ωz � h−1

z ‖ψ‖0,1;ωz+‖∇ψ‖0,1;ωz with ψ = ϕ−ϕz. We then exploit the invariance
ϕ− ϕz = (ϕ− c)− (ϕ− c)z and the stability property ‖ψz‖0,1;ωz � ‖ψ‖0,1;ωz , where
ψ = ϕ− c with some c ∈ R. The variant infc∈R ‖ϕ− c‖0,1;ωz � hz‖∇ϕ‖0,1;ωz (cf. [16,
(4.2)]) of the Bramble–Hilbert lemma finally implies∣∣∣∣∫

γz

Jεh(ϕ− ϕz)φz +

∫
ωz

(κ− κz)(ϕ− ϕz)φz

∣∣∣∣ � h−d/2z ηz‖∇ϕ‖0,1;ωz .

Remark 4.1 (no interior residuals). If σεh = 0 on Ω, then Gεh = Rεh and
Lemma 4.1 improves upon inequality (5.7) in [11], since, as hz decreases, the data

oscillation indicator h
d/2
z ‖κ− κz‖0,d,ωz

vanishes asymptotically faster than the local

interior residual h
d/2
z ‖κ‖0,d,ωz

. Estimates, where the interior residual is replaced by
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data oscillation, seem to appear first in section 2 of Babuška and Miller [3]; if σεh = 0
in Ω, the proof of Lemma 4.1 exploits

∑
z∈Nh

φz = 1 and the definition of the discrete
solution in a similar way as Carstensen and Verfürth [7, Theorem 7.1] and Morin,
Nochetto, and Siebert [14].

A straightforward consequence of Lemma 4.1 is the following upper bound for
|Gεh|εh;∗, which additionally involves the computable quantities

Λz := inf
ωz

[
A(∇uh; ε)−1

]
, z ∈ Nh \ Cεh.(4.5)

These quantities are related to the maximum eigenvalue

Λ(p; r) =
(
r2 + |p|2)−1/2

(4.6)

of the matrix Da(p; r), p ∈ R
d, r > 0: if ∇uh = p and ε = r on ωz, then Λz = Λ(p; r).

Corollary 4.2. The Galerkin functional Gεh defined in (3.1) satisfies

|Gεh|εh;∗ �

 ∑
z∈Nh\Cεh

Λ−1
z η2

z

1/2

.

Proof. We use ‖∇ϕ‖0,1;ωz
� h

d/2
z Λ−1/2

z

(∫
ωz
|∇ϕ|2A(∇uh; ε)−1

)1/2
in Lemma 4.1

and then Cauchy–Schwarz as well as

#{z ∈ Nh | ωz ⊃ T} = d+ 1(4.7)

for any T ∈ Th.
Next, we derive an upper bound of 〈Gεh, uh − u〉. To this end, the following

inequality, which generalizes [11, Lemma 5.1], will be useful.
Lemma 4.3. Let p1, p2 ∈ R

d, r > 0, and set Pi := (pi,−r) for i = 1, 2. We have

|p1 − p2| r2

|P1|2 ≤ 2

∣∣∣∣ P1

|P1| −
P2

|P2|
∣∣∣∣ √|P1| r√|P1|

+

∣∣∣∣ P1

|P1| −
P2

|P2|
∣∣∣∣2 |P2|.

Proof. We first observe

|p1 − p2| = |P1 − P2| ≤
∣∣∣∣ P1

|P1| −
P2

|P2|
∣∣∣∣ |P1| +

∣∣|P1| − |P2|
∣∣.

Moreover, we estimate

∣∣|P1| − |P2|
∣∣ r2

|P1|2 ≤ r2
∣∣∣∣ |P1| − |P2|
|P1| |P2|

∣∣∣∣ + r

∣∣∣∣ |P1| − |P2|
|P1|

(
r

|P1| −
r

|P2|
)∣∣∣∣

≤ r

∣∣∣∣ r

|P1| −
r

|P2|
∣∣∣∣ +

∣∣∣∣ r

|P1| −
r

|P2|
∣∣∣∣2 |P2|.

We insert the last inequality in the first one multiplied with r2/|P1|2 and establish
the claim by observing |P1| ≥ r and

∣∣r/|P1| − r/|P2|
∣∣ ≤ ∣∣P1/|P1| − P2/|P2|

∣∣.
To give an interpretation of the new quantities in the estimate of Lemma 4.3, we

recall (4.6) and observe that, for p ∈ R
d and r > 0,

λ(p; r) = r2
(
r2 + |p|2)−3/2

and Q(p; r) =
(
r2 + |p|2)r−2,
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where λ(p; r) is the minimum eigenvalue andQ(p; r) = Λ(p; r)/λ(p; r) is the quotient of
the extreme eigenvalues of the matrix Da(p; r). The weight r2/|P1|2 of the estimated
term |p1 − p2| is the inverse of the quotient Q(p1; r) = Λ(p1; r)/λ(p1; r). Moreover,
the weight of the leading order term

∣∣P1/|P1| − P2/|P2|
∣∣√|P1| on the right-hand side

is r/|P1|1/2. Thus the squared quotient of the two weights satisfies(
r2/|P1|2
r/|P1|1/2

)2

= λ(p1; r).

The following upper bound for 〈Gεh, uh − u〉, derived with the help of Lemmas 4.1
and 4.3, involves the computable quantities

Qz := sup
ωz

ε2 + |∇uh|2
ε2

and λz := Q−2
z inf

ωz

√
ε2 + |∇uh|2

ε2
.(4.8)

Proposition 4.4. If uh is a discrete minimum point, u a regular one, Gεh the

functional defined in (3.1), and Mh := maxz∈Nh\Cεh Qzh
−d/2
z ηz, then

〈Gεh, uh − u〉 − 1

2

∫
Ω

|N(∇uh; ε)−N(∇u; ε)|2 A(∇uh; ε)
2

�
∑

z∈Nh\Cεh
λ−1
z η2

z + Mh

∫
Ω

|N(∇uh; ε)−N(∇u; ε)|2 A(∇u; ε)
2

.

Proof. Given Lemmas 4.1 and 4.3, the proof essentially follows from arguments
presented in step 4 of [11]. For the convenience of the reader, we adapt those argu-
ments. Thanks to Lemma 4.3, we have

|∇(uh − u)|
Q(∇uh; ε) ≤ 2ε|N(∇uh; ε)−N(∇u; ε)|+ |N(∇uh; ε)−N(∇u; ε)|2A(∇u; ε)

on ωz for any z ∈ Nh \ Cεh, whence

〈Gεh, uh − u〉 ≤ C
∑

z∈Nh\Cεh
Qz h

−d/2
z ηz

∫
ωz

|N(∇uh; ε)−N(∇u; ε)| ε

+ C
∑

z∈Nh\Cεh
Qz h

−d/2
z ηz

∫
ωz

|N(∇uh; ε)−N(∇u; ε)|2A(∇u; ε)

=: I + II

(4.9)

by means of Lemma 4.1. We first consider sum I. The inequality∫
ωz

|N(∇uh; ε)−N(∇u; ε)| ε

� hd/2z

[
sup
ωz

ε2√|ε|2 + |∇uh|2
]1/2 [∫

ωz

|N(∇uh; ε)−N(∇u; ε)|2A(∇uh; ε)
]1/2

,

the identity Q2
z supωz

ε2/
√
ε2 + |∇uh|2 = λ−1

z , and

∀ s, t ≥ 0, δ > 0, st ≤ δ

2
s2 +

1

2δ
t2(4.10)
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as well as (4.7) yield

I − 1

2

∫
Ω

|N(∇uh; ε)−N(∇u; ε)|2 A(∇uh; ε)
2

�
∑

z∈Nh\Cεh
λ−1
z η2

z .(4.11)

It remains to consider sum II. Using again (4.7), we obtain

II �
(

max
z∈Nh\Cεh

Qz h
−d/2
z ηz

) ∫
Ω

|N(∇uh; ε)−N(∇u; ε)|2 A(∇u; ε)
2

(4.12)

and conclude by inserting (4.11) and (4.12) into (4.9).
We still have to estimate the last term 〈σεh − σε, uh − u〉 of (4.1). To this end,

we have to encounter the fact that σεh is not quite a subgradient in uh of the convex
potential associated with the constraint |uh| ≤ 1. This consistency error will be
controlled by means of the computable quantities Σzdz, z ∈ Fεh, where

Fεh :=
{
z ∈ Nh | z �∈ Cεh and Σz �= 0

}
(4.13)

are the “free boundary nodes,” Σz is defined as in (2.9), and

dz :=

{∫
ωz
(1− uh)φz if Σz > 0,

− ∫
ωz
(uh + 1)φz if Σz < 0.

(4.14)

Since Σz, z ∈ Nh, and Cεh do not depend on the particular choice of uh, the same
holds for Fεh and dz, z ∈ Fεh. In view of (2.8), Σz > 0 implies uh(z) = 1 and Σz < 0
implies uh(z) = −1. The quantity |dz| therefore measures the detachment of uh from
a free boundary node z ∈ Fεh. Furthermore, there holds Σzdz ≥ 0 for all z ∈ Fεh.

Proposition 4.5 (quasi-monotonicity of auxiliary functionals). If the pairs
(uh, σεh) and (u, σε) satisfy (2.6), (2.10), (2.2), and (2.4), respectively, then

〈σεh − σε, uh − u〉 ≥ −
∑
z∈Fεh

Σzdz.

Proof. We may write 〈σεh − σε, uh − u〉 = 〈σεh, uh − u〉 + 〈σε, u − uh〉. Since
uh ∈W 1

1

(
Ω; [−1, 1]), (2.4) and (2.2) imply 〈σε, u−uh〉 ≥ 0, and it remains to consider∫

Ω

σεh(uh − u) =
∑
z∈Nh

∫
Ω

σεh,z(uh − u)φz.

Some terms of the right-hand side are nonnegative. In fact, if z ∈ Cεh, then |u| ≤ 1
in Ω and (2.10a) yield σεh,z(uh − u) ≥ 0. Moreover, if z ∈ Nh \ Cεh and Σz = 0, then
(2.10a) implies σεh,z = 0. We can therefore estimate∫

Ω

σεh(uh − u) ≥
∑
z∈Fεh

∫
Ω

σεh,z(uh − u)φz.(4.15)

The remaining terms are treated by considering two cases. Let z ∈ Fεh with Σz < 0.
Then (2.10a) and u ≥ −1 give∫

Ω

σεh,z(uh − u)φz =

∫
ωz

Σz(uh + 1)φz +

∫
ωz

Σz(−1− u)φz ≥ −Σzdz.
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Since also u ≤ 1, the same inequality holds if we replace Σz < 0 by Σz > 0. Thus we
finish the proof by inserting these inequalities into (4.15).

Finally, we combine the derived estimates to obtain an a posteriori upper bound
for the combined error eεh+|σεh−σε|εh;∗ under an a posteriori condition. The involved
computable quantities are defined in (2.9), (2.10b), (4.2), (4.8), (4.14), and (4.13).

Theorem 4.6 (conditional upper bound). Let uh and u be a discrete and regular
minimum point, and let σεh and σε be defined as in (2.4) and (2.10). There exists
a constant C depending only on the shape-regularity γh of the triangulation Th such
that the following holds: if

max
z∈Nh\Cεh

Qzh
−d/2
z ηz ≤ C,(4.16)

then the error eεh+ |σεh− σε|εh;∗ defined by (3.4) and (3.7) is bounded from above in
terms of computable quantities and a multiplicative constant depending on γh:

eεh + |σεh − σε|εh;∗ �

 ∑
z∈Nh\Cεh

λ−1
z η2

z +
∑
z∈Fεh

Σzdz

1/2

.(4.17)

Proof. Let 1/(2C) be the constant hidden in “�” of (4.12), and suppose that
(4.16) holds with this choice of C. We then obtain

eεh �

 ∑
z∈Nh\Cεh

λ−1
z η2

z +
∑
z∈Fεh

Σzdz

1/2

(4.18)

by using Propositions 4.4 and 4.5 in (3.5). In view of (3.8), Corollary 4.2, and

Λ−1
z ≤ λ−1

z ,(4.19)

adding |σεh − σε|εh;∗ to the left-hand side of (4.18) changes only the constant hidden
in “�.”

Remark 4.2 (a posteriori condition). The upper bound in Theorem 4.6 cannot
be expected to be valid in general, i.e., without any condition as, e.g., (4.16); see [11,
(5.1) and Example 5.1], which shows that (the size of) the discrete gradient defining
λz may be quite different from the exact one.

Moreover, we point out that (4.16) is of “a posteriori” nature: if we knew C
explicitly, then (4.16) could be verified since its left-hand side is computable. In any
case, the latter quantity can be monitored during computations as in [11, section 7.1],
where numerical experiments show that it decreases for exact solutions with moderate
gradients within a reasonable number of unknowns.

Remark 4.3 (uniform in regularization). We stress that the relationship between
error and computable quantities in the upper bound of Theorem 4.6 is independent
of the regularization “parameter” ε.

Remark 4.4 (complete localization). It is worthwhile to mention that the upper
bound in Theorem 4.6 involves only indicators related to the typically proper subset⋃{ωz : z ∈ Nh \ Cεh} of Ω. We refer to this property as “complete localization” to
the discrete non-full-contact set. Remarkably, the complement of the latter subset
contains at least

⋃{T : uh = u = 1 or uh = u = −1 in ωT }, that is, approximately
the intersection of the discrete and exact contact sets. In fact, for the involved nodes,
the sign conditions on κ in (2.10b) are satisfied due to (2.5).
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The upper bounds in [17, 18] exhibit a “partial localization” in that there are
indicators in the discrete contact set with higher order than the ones in the discrete
noncontact set. This improvement in the upper bound for the first error part eεh is
due to the new definition (2.10) of the auxiliary functional.

Remark 4.5 (importance of sign conditions). Suppose that (4.16) and the condi-
tion in (2.7b) hold. Then the upper bound in Theorem 4.6 does not hold in general if
one replaces Cεh by C̃εh :=

{
z ∈ Nh | uh = −1 on ωz or uh = 1 on ωz

}
. This reveals

the example of Chen and Nochetto [8, Remark 4.2], where, in the case of the obstacle
problem for the Laplacian, the discrete solution is different from the exact one and
the only nonzero indicator corresponds to a node in C̃εh \ Cεh.

5. Lower bounds. We derive a posteriori local lower bounds for the error intro-
duced in section 3. More precisely, we estimate the sum of the error eεh(ωz) + |σεh −
σε|εh,ωz ;∗ in a star ωz and associated data oscillation h

d/2
y ‖κ− κy‖0,d;ωy

from below

in terms of

h1/2
z ‖Jεh‖0,2;γz and

√
Σzdz.(5.1)

To this end, we shall use (3.9). The computable quantities (5.1) appear in the upper
bound of section 4. Consequently, the following bounds concern their efficiency up to
data oscillation, which is formally of higher order.

We begin with a lower bound involving the jump residual, i.e., the first term in
(5.1). Apart from (3.9), the main step is an adaptation of Verfürth’s constructive ar-
gument (see, e.g., [19, section 1.2]) to the representation formula of Gεh in Lemma 4.1.
The use of (3.9) entails the computable weight

Λz := sup
ωz

[
A(∇uh; ε)−1

]
,(5.2)

differing from Λz defined in (4.5). In addition, the following index set is useful:

Nh(z) :=
(Nh \ Cεh) ∩ ωz.(5.3)

Theorem 5.1 (lower bound I). Let z ∈ Nh \ Cεh be a node, and let ‖Jεh‖0,2;γz
be defined as in (4.2). There holds

h
1/2
z

Λ
1/2
z

‖Jεh‖0,2;γz � eεh(ωz) + |σεh − σε|εh,ωz ;∗ +
∑

y∈Nh(z)

h
d/2
y

Λ
1/2
z

‖κ− κy‖0,d;ωy
.

Proof. We first prove a more local estimate for the jump residual ‖Jεh‖0,2;S of a
side S with S ⊂ γz. To this end, we recall the representation formula

〈Gεh, ϕ〉 = −
∑

y∈Nh\Cεh

[∫
γy

Jεh(ϕ− ϕy)φy +

∫
ωy

(κ− κy)(ϕ− ϕy)φy

]
(5.4)

established in the proof of Lemma 4.1 and construct an appropriate test function ϕ.
Let ψS :=

∏
x∈Nh∩S φx and ωS := suppψS . Moreover, for any T ∈ Th with T ⊂ ωS ,

let ψT :=
∏
x∈Nh∩T φx, and choose αT,x ∈ R, x ∈ Nh ∩ T , such that∑

x∈Nh∩T
αT,x

∫
T

ψTφxφy =

∫
T

ψSφy(5.5)
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for any y ∈ Nh ∩ T . Finally, note that Jεh|S is a constant, and set

ϕ := Jεh|S
ψS − ∑

T⊂ωS ,x∈Nh∩T
αT,xψTφx

 .

The support of ϕ is ωS . Let Nh(S) := (Nh \ Cεh)∩ ωS and ΛS := supωS
A(∇uh; ε)−1.

We obtain

‖Jεh‖20,2;S �
∑

y∈Nh\Cεh

∫
S

Jεhϕφy = −〈Gεh, ϕ〉 −
∑

y∈Nh\Cεh

∫
ωy

(κ− κy)ϕφy

� Λ
1/2
S |Gεh|εh,ωS ;∗ ‖∇ϕ‖0,2;ωS

+
∑

y∈Nh(S)

‖κ− κy‖0,2;ωS
‖ϕ‖0,2;ωS

by ϕ|S =
(
JεhψS

)|S and
∫
S
1 �

∫
S
ψSφy for y ∈ Nh ∩ S, by

∫
ωy
ϕφy = 0 for any

y ∈ Nh and (5.4), and by (3.7). Hence, if hS is the diameter of the side S,

‖Jεh‖0,2;S � Λ
1/2
S h

−1/2
S |Gεh|εh,ωS ;∗ + h

1/2
S

∑
y∈Nh(S)

‖κ− κy‖0,2;ωS

with the help of ‖∇ϕ‖0,2;ωS
+hS ‖ϕ‖0,2;ωS

� h
−1/2
S ‖ϕ‖0,2;S ≤ h

−1/2
S ‖Jεh‖0,2;S , which

in turn follows from the fact that αT,x in (5.5) does not depend on hS . Employing
(3.9), we finally arrive at

h
1/2
S ‖Jεh‖0,2;S � Λ

1/2
S

[
eεh(ωs) + |σεh − σε|εh,ωS ;∗

]
+ hS

∑
y∈Nh(S)

‖κ− κy‖0,2;ωS
.

In view of (4.7), ΛS ≤ Λz for any z ∈ Nh ∩ S, and hS ≈ hy for all y ∈ Nh ∩ ωS , and
the claimed estimate follows.

Remark 5.1 (gap for jump residual). The jump residual h
1/2
z ‖Jεh‖0,2;γz and the

data oscillation are accompanied by different weights in the bounds of Theorems 4.6

and 5.1—by λ
−1/2
z in the upper bound and by Λ

−1/2
z in the lower bound. This

gap between the two bounds seems to be unavoidable as long as the a posteriori
error analysis does not take the unknown direction of the error into account; see also
section 5.2 of [11], where different numerical experiments indicate that both bounds
constitute possible worst cases.

We next bound the computable quantities
√
Σzdz, z ∈ Fεh, controlling the con-

sistency error of σεh. To this end, we derive separate estimates for the two factors in
the square root. For the estimate of Σz, z ∈ Fεh, Verfürth’s constructive argument
and (3.9) are again important ingredients.

Lemma 5.2. Let z ∈ Fεh and Σz be defined as in (2.9). If dz �= 0, then

Λ−1/2
z h(d+2)/2

z |Σz| � eεh(ωz) + |σεh − σε|εh,ωz ;∗ + Λ−1/2
z hd/2z ‖κ− κz‖0,d;ωz

.

Proof. Suppose that dz < 0 for z ∈ Fεh. Then Σz < 0 thanks to (4.14), and there
are a simplex T ∈ Th containing z and another node y ∈ Nh∩T such that uh(y) > −1.
The latter implies Σy ≥ 0 thanks to (2.8). Moreover, since all nodes x ∈ Nh ∩ T are
in Nh \ Cεh, the definition (2.10) of σεh yields σεh ∈ P1(T ). Denoting the diameter of
T by hT and using an inverse estimate, we thus obtain

|Σz| ≤ σεh(y)− σεh(z) = ∇σεh|T · (y − z) ≤ hT ‖∇σεh‖0,∞;T

= hT ‖∇(σεh − κz)‖0,∞;T � h
−d/2
T ‖σεh − κz‖0,2;T .

(5.6)

The same inequality can be derived for dz > 0 in a similar manner.
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Consequently, it remains to estimate ‖σεh − κz‖0,2;T for T ∈ Th with T ⊂ ωz
appropriately. We proceed similarly to the estimation of the jump residual in the
proof of Theorem 5.1. The function ψT =

∏
x∈Nh∩T φx satisfies∫

T

|wh|2 �
∫
T

|wh|2ψT and ‖∇(whψT )‖0,2;T � h−1
T ‖whψT ‖0,2;T(5.7)

for all wh ∈ P1(T ); see [19, Lemma 3.3]. Setting ϕ := (σεh − κz)ψT , we derive

‖σεh − κz‖20,2;T �
∫
T

(σεh − κz)ϕ = 〈Gεh, ϕ〉+
∫
T

(κ− κz)ϕ

� Λ1/2
z |Gεh|εh,T ;∗ ‖∇ϕ‖0,2;T + ‖κ− κz‖0,2;T ‖ϕ‖0,2;T

with the help of (5.7), (3.1), and
∫
T
a(∇uh) · ∇ϕ = 0 (integrate by parts). Therefore,

Λ−1/2
z hT ‖σεh − κz‖0,2;T � eεh(T ) + |σεh − σε|εh,T ;∗ + Λ−1/2

z hT ‖κ− κz‖0,2;T .

Using this inequality in (5.6), hT ≈hz, and a Hölder inequality finishes the proof.
For the estimation of dz, z ∈ Fεh, we adapt [15, Lemma 6.4] to the operator

and boundary conditions of (2.2). The adaptation’s proof is different from [15], and
its second part resembles the one of Lemma 3.3 in Chen and Nochetto [8], which
measures the deviation of positivity preserving interpolation from a projection.

Lemma 5.3 (discrete growth around critical point). Let wh ∈ Wh and z ∈ Nh.
If wh ≥ 0 in the star ωz and wh(z) = 0, then∫

ωz

wh � Λz(∇wh; ε)−1 h2
z ‖J(wh; ε)‖0,1;γz ,

where Λz(∇wh; ε) := infωz

[
A(∇wh; ε)−1

]
, J(·; ε) is defined as in (4.3), and γz is the

union of all sides in ωz.

Proof. We first replace the domain ωz of integration by a part of a ball; this will
be useful in what follows. Let B be the biggest ball with center z and B∩Ω ⊂ ωz. The
equivalence of norms in P1(T̂ ), where T̂ is the reference simplex, implies ‖wh‖0,1;T �
‖wh‖0,1;T∩B for any T ∈ Th with T ⊂ ωz. Combining this with wh ≥ 0 in ωz yields∫

ωz

wh �
∫
B∩Ω

wh ≤ Λz(∇wh; ε)−1

∫
B∩Ω

wh
A(∇wh; ε) .(5.8)

The function wh can be represented with the help of its gradient ∇wh. In fact, since
wh(z) = 0 and ∇wh is piecewise constant, we have wh(x) = ∇wh|T · (x − z) for all
x ∈ T and any T ∈ Th with T ⊂ ωz. Therefore,∫

B∩Ω

wh
A(∇wh; ε) =

∫
B∩Ω

a(∇wh; ε) · (id−z),(5.9)

where id stands for the identity of Ω. To relate the integral on the right-hand side to
the jumps J(wh; ε), we observe that id−z = 1

2∇| id−z|2 and integrate by parts:

2

∫
B∩Ω

a(∇wh; ε) · (id−z) = −
∫
γz∩B

J(wh; ε)| id−z|2 +
∫
∂B∩Ω

a(∇wh; ε) · n| id−z|2,
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where n denotes the outer normal of B ∩ Ω. Since B is a ball, the function | id−z|2
is constant on ∂B ∩ Ω, and it equals the radius r of B. The second integral of the
right-hand side can thus be rewritten by means of the divergence theorem as∫

∂B∩Ω

a(∇wh; ε) · n| id−z|2 = r2
∫
∂B∩Ω

a(∇wh; ε) · n = r2
∫
γz∩B

J(wh; ε).

Consequently, we obtain

2

∫
B∩Ω

a(∇wh; ε) · (id−z) =
∫
γz∩B

J(wh; ε)
(
r2 − | id−z|2) ≤ h2

z ‖J(wh; ε)‖0,1;γz

by using r ≤ hz and conclude by recalling (5.8) and (5.9).
An immediate consequence of Lemma 5.3 is an estimate for dz, z ∈ Fεh.
Corollary 5.4. Let z ∈ Fεh. For dz as in (4.14), there holds

Λzh
−(d+2)/2
z |dz| � h1/2

z ‖Jεh‖0,2;γz
with Λz and Jεh as in (4.5) and (4.2), respectively.

Proof. Let z ∈ Fεh. It holds that Σz �= 0, which, due to (2.8), implies uh(z) ∈
{±1}. Since −1 ≤ uh ≤ 1 in Ω, we can apply Lemma 5.3 with wh = 1− uh or wh =

uh + 1. The estimate ‖Jεh‖0,1;γz � h
(d−1)/2
z ‖Jεh‖0,2;γz completes the proof.

The combination of Theorem 5.1, Lemma 5.2, and Corollary 5.4 finally yields the
desired estimate for

√
Σzdz, z ∈ Fεh.

Theorem 5.5 (lower bound II). Let z ∈ Fεh. For
√
Σzdz with Σz as in (2.9)

and dz as in (4.14), there holds

Λ1/2
z

Λ
1/2
z

√
Σzdz � eεh(ωz) + |σεh − σε|εh,ωz ;∗ + Λ−1/2

z

∑
y∈Nh(z)

hd/2y ‖κ− κy‖0,d;ωy
,

where Λz, Λz, and Nh(z) are defined as in (4.5), (5.2), and (5.3).
Proof. We can assume dz �= 0 without loss of generality. Then,

2
Λ1/2
z

Λ
1/2
z

√
Σzdz ≤ Λ−1/2

z h(d+2)/2
z |Σz|+ ΛzΛ

−1/2
z h−(d+2)/2

z |dz|

� eεh(ωz) + |σεh − σε|εh,ωz ;∗ + Λ−1/2
z hd/2z ‖κ− κz‖0,d;ωz

+ Λ−1/2
z h1/2

z ‖Jεh‖0,2;γz

(5.10)

with the help of (4.10) with δ = 1, Lemma 5.2, and Corollary 5.4. Applying Theo-
rem 5.1 to the last term on the right-hand side concludes the proof.

Remark 5.2 (moderate gap for Σzdz). The gap concerning
√
Σzdz between the

upper and lower bounds is moderate with respect to the one for the jump residual

h
1/2
z ‖Jεh‖0,2;ωz

. In particular, if ∇uh ≈ p and ε ≈ r, then Λ1/2
z /Λ

1/2
z ≈ 1.

6. Adaptive algorithm and numerical experiments. We derive a simplified
upper bound, and, relying on this simplification, we formulate an adaptive algorithm
for fixed regularization parameter ε. After some remarks on our implementation,
we present our numerical results illustrating the various properties of the indicators
derived in sections 4 and 5.
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6.1. Simplified upper bound. A refined version of (5.10) allows us to elim-
inate the indicators Σzdz from the upper bound in Theorem 4.6 at the expense of
some sharpness and a slightly modified weight λ−1

z . The new version of λz, defined
in (4.8), is given by

λ̃z =

{
min
{
λz,Λ

2
z/Λz

}
if z ∈ Fεh,

λz otherwise,
z ∈ Nh \ Cεh.(6.1)

Note that if the regularization ε is constant in Ω, then λ̃z = λz for all z ∈ Nh \ Cεh.
Theorem 6.1 (simple upper bound). Suppose that the assumptions including

(4.16) of Theorem 4.6 are fulfilled. Then there holds

eεh + |σεh − σε|εh;∗ �

 ∑
z∈Nh\Cεh

λ̃−1
z η2

z

1/2

.

Proof. Proceeding similarly as in the proof of (5.10) but also using the full
flexibility of (4.10), we get

Σzdz � δ
[
eεh(ωz)

2 + |σεh − σε|2εh,ωz ;∗ + Λ−1
z hdz ‖κ− κz‖20,d;ωz

]
+ δ−1ΛzΛ

−2
z hz ‖Jεh‖20,2;γz

(6.2)

for any δ > 0 and all z ∈ Fεh. In order to sum over z ∈ Fεh, we first show that∑
z∈Fεh

|σεh − σε|2εh,ωz ;∗ � |σεh − σε|2εh;∗.(6.3)

To establish this, let w ∈ H̊1(Ω) := {v ∈ W 1
2 (Ω) | v = 0 on ∂Ω} be defined by the

Riesz representation theorem through

∀ϕ ∈ H̊1(Ω),

∫
Ω

∇w · ∇ϕ
A(∇uh; ε) = 〈σεh − σε, ϕ〉.

We then have

|σεh − σε|εh,ωz ;∗ ≤
(∫

ωz

|∇w|2
A(∇uh; ε)

)1/2

, |σεh − σε|εh;∗ = |w|εh,

and therefore (6.3) follows from the following consequence of (4.7):∑
z∈Fεh

∫
ωz

|∇w|2
A(∇uh; ε) �

∫
Ω

|∇w|2
A(∇uh; ε) .

Summing (6.2) over z ∈ Fεh and using (6.3), (4.7), and ΛzΛ
−2
z ≤ λ̃−1

z yield∑
z∈Fεh

Σzdz � δ

(
e2εh + |σεh − σε|2εh;∗ +

∑
z∈Fεh

λ−1
z hdz ‖κ− κz‖20,d;ωz

)
+ δ−1

∑
z∈Fεh

λ̃−1
z hz ‖Jεh‖20,2;γz

(6.4)

for the second sum in the right-hand side of the upper bound (4.17). If (4.16) holds,
the claimed upper bound follows from (4.17),

√
s2 + t2 ≤ s + t for s, t ≥ 0, (6.4),

λ−1
z ≤ λ̃−1

z , and choosing δ = δ(γh) > 0 sufficiently small.
The local lower bound that complements the simplified upper bound in Theo-

rem 6.1 is already given in Theorem 5.1.
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6.2. Adaptive algorithm and implementation. We describe the main steps
of an adaptive algorithm for the convexified and regularized minimization (1.2). To
this end, we rely on the a posteriori bounds in Theorems 5.1 and 6.1 by using the
computable quantities ηz, Λz, and λ̃z defined in (4.2), (5.2), and (6.1), respectively.
Moreover, we replace the subscript “h” by an iteration counter “l.”

Algorithm 6.1. Let a tolerance tol > 0, a marking parameter θ ∈ ]0, 1], and an
initial triangulation T0 be given. Set l := 0, and iterate the following steps:

1. Compute a minimum point of I(·; ε) in Kl over Tl.
2. Compute ηz, λ̃z, and Λz for z ∈ Nl \ Cεl.
3. If

∑
z∈Nl\Cεl λ̃

−1
z η2

z ≤ tol2, then STOP.

4. Choose the smallest N̂l ⊂ Nl \ Cεl such that∑
z∈N̂l

Λ−1
z η2

z ≥ θ2
∑

z∈Nl\Cεl
Λ−1
z η2

z .

5. Refine all triangles in Tl with a node in N̂l to obtain a new triangulation Tl+1

in such a way that the shape-regularities are bounded uniformly in l.
6. Increment l and go to step 1.

The marking parameter θ ∈ ]0, 1[ leads to adaptive refinement, while θ = 1
entails nonadaptive uniform refinement. The stopping test in step 3 is motivated
by Theorem 6.1 and may be extended as indicated in Remark 4.2. The aim of the
iteration in Algorithm 6.1 is to satisfy the stopping test “as soon as possible,” that
is, to reduce

∑
z∈Nl\Cεl λ

−1
z η2

z efficiently. To this end, one might use λ̃−1
z η2

z also as

marking indicators in Dörfler’s fixed fraction strategy [9] in step 4. However, this can
produce overrefinement in regions where the gradient of the discrete solution is big
and, consequently, a slowdown of the convergence speed; see [11, section 7.2]. We

therefore replace λ̃−2
z η2

z by Λ−1
z η2

z = Λ−1
z hz ‖Jεh‖20,2;γz + Λ−1

z hdz ‖κ− κz‖20,d;ωz
. The

higher order of the second part and Theorem 5.1 guarantee that this indicator does
not lead to the aforementioned overrefinement. For the convergence properties of this
strategy or a very similar one, we refer to section 6.3 and [11, sections 7.2–7.3].

We conclude this section with some comments on our two-dimensional imple-
mentation of Algorithm 6.1. Step 1 is performed with the help of the constrained
quasi-Newton method introduced in [6]. In all experiments the tolerance tol > 0 was
so small that the stopping test in step 3 was not satisfied if the number of unknowns
Nl = #Nl was below 50, 000. Following [9] and thus slightly reducing complexity,
we construct an approximation of N̂l in step 4. In all adaptive experiments we used
the marking parameter θ = 0.5. The triangles to be refined in step 5 are bisected by
means of the algorithm of Bänsch [4].

6.3. Uniformity in regularization and singular solutions. We present nu-
merical experiments corroborating that the hidden constants in Theorems 4.6, 5.1,
and 6.1 do not depend on the regularization ε. Moreover, we illustrate that the
performance of adaptive refinement is superior to the one of nonadaptive uniform
refinement in the presence of singularities. We start by introducing the following
example.

Example 6.1 (transition layer). Given ε0 > 0, we consider minimization (1.2)
with constant regularization ε ≡ ε0 in Ω := ]−2, 2[ × ]−1, 1[ and κ(x1, x2) = sgnx1

for (x1, x2) ∈ Ω. The unique exact solution does not depend on x2 and is odd in x1;
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Fig. 6.1. Example 6.1 with ε0 = 2 (left) and ε0 = 1.5 (right): eεl (solid), 0.175 ξl (dotted), and
0.175 ξ

l
(dashed) as functions of Nl in log-log scale.

setting

B(ε0) :=

{√
2ε0 − 1/ε0 if ε0 ≥ 1,

1 if 0 < ε0 ≤ 1,

it is given on ]0, 2[× ]−1, 1[ by

u(x1, x2; ε) =

1 if x1 ≥ B(ε0),

1 + ε0

[√
1− (B(ε0)− x

)2 − 1
]

if 0 < x1 ≤ B(ε0).

All experiments concerning Example 6.1 start from the same triangulation T0.
The triangles of T0 and all its refinements do not cross the line {0}× ]−1, 1[, where κ
and possibly u(·; ε) have a jump; this facilitates the precise computation of indicators
and error. Moreover, T0 and all its refinements do not exhibit symmetries in x1 and
x2 corresponding to those of the exact solution u(·; ε).

Providing numerical support that the hidden constants in Theorems 4.6, 5.1,
and 6.1 do not depend on the regularization ε is complicated by the fact that the
error part |σεh − σε|εh;∗ is not computable. We propose proceeding as follows. We
apply Algorithm 6.1 to Example 6.1 with given ε0, determine one constant C0 > 0
such that the computable part eεl of the error satisfies

C0ξl ≤ eεl ≤ C0ξl(6.5)

with ξ2
l
:=
∑
z∈Nl\Cεl Λ

−1
z η2

z and ξ
2

l :=
∑
z∈Nl\Cεl λ̃

−1
z η2

z for all l with Nl ≥ 5 000,

and then investigate whether (6.5) with the determined value of C0 still holds for
other choices of ε0. The requirement of one common constant for both inequalities in
(6.5) constrains the possible choices significantly and should enforce a sharp choice
in each single inequality. Figure 6.1 (left) shows that C0 = 0.175 is a possible choice
for ε0 = 2. Figure 6.1 (right) depicts the case ε0 = 1.5 and reveals the validity of
(6.5) with the chosen C0. We affirmatively tested also other choices of ε0. Since the
oscillation of κ is of higher order (in particular, it is only nonzero for nodes in the line
{0} × ]−1, 1[), the observed validity of the first inequality in (6.5) corroborates that
the hidden constant in Theorem 5.1 does not depend on ε. Moreover, the observed
validity of the second inequality corroborates that also the hidden constant in (4.18)
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does not depend on ε. This in turn supports the same statement for the hidden
constants in Theorems 4.6 and 6.1.

Next, we illustrate the superior performance of adaptive refinement for singu-
lar solutions. If ε0 = 1 in Example 6.1, then u(·; ε) is singular in the sense that
|∇u(x1, x2; ε)| → ∞ as x1 → 0 in such a way that u(·; ε) �∈ W 1

2 (Ω). If 0 < ε0 < 1,
then u(·; ε) has even a jump of size 2(1 − ε0) across the line {0} × ]−1, 1[, and thus
it barely holds that u(·; ε) ∈ BV(Ω). We measure the performance by investigating
the relationship of the computable part eεl and the number of unknowns Nl as l in-
creases. More precisely, we suppose the relationship eεl = DN−pl or, equivalently,
log eεl = logD− p logNl, with unknown constants D, p > 0, and determine p as slope
of the corresponding regression line. The following table displays the (rounded) values
of the experimental convergence order p obtained for adaptive (θ = 0.5) and uniform
(θ = 1) refinement and regularization parameter ε0 ∈ {0.5, 1, 1.5}; the regression line
was determined by using the data corresponding to l with 5000 ≤ Nl � 50, 000 if
θ = 0.5 or 4000 ≤ Nl � 50, 000 if θ = 1.

ε0 = 0.5 ε0 = 1 ε0 = 1.5
θ = 0.5 0.43 0.45 0.51
θ = 1 0.26 0.36 0.50

These values suggest the following. Adaptive refinement offers a significantly
higher asymptotic convergence speed in the presence of singularities. In the case of
regular solutions, the asymptotic convergence speed is not improved by adaptivity.
However, it typically leads to a smaller constant D; see also [11, section 7.3].

6.4. Nonuniqueness. We study effects of nonuniqueness in the original mini-
mization (1.1) on the convexified and regularized minimization (1.2). In the course of
the discussion, we also observe robustness of Algorithm 6.1 with respect to instabilities
in the computational minimization of step 1.

The following example was proposed to us by Stefan Luckhaus.
Example 6.2 (a time step of mean curvature flow). Let ε0 ≥ 0 and τ > 0, and

consider minimization (1.2) with constant regularization ε ≡ ε0 in Ω := ]−1, 1[2 and
κ(x1, x2) :=

1
τ sgn(x1x2)min

{|x1|, |x2|
}
for (x1, x2) ∈ Ω.

Example 6.2 corresponds to a convexified (and regularized if ε0 > 0) time step with

length τ of the mean curvature flow evolving the region ]−1, 0[2∪ ]0, 1[2; see [2, 10, 13].
The undiscretized flow, which shortens the boundary {(x1, x2) ∈ Ω | x1x2 = 0}, is
not unique; in fact, the evolved region may become connected or not connected. The
same holds for the first time step using (1.1), and thus Example 6.2 with ε0 = 0 has
several solutions.

We apply Algorithm 6.1 to Example 6.2 with ε0 = 0.175 and τ = 0.2 starting from
a symmetric or an “asymmetric” initial triangulation. We shall use the letters “S”
and “A” to distinguish the two initial triangulations and their corresponding runs.
Triangulations S and A are depicted in the first row of Figure 6.2 on the left- and
right-hand sides, respectively.

Note that
∫
Ω
κ = 0 and, consequently, the exact and discrete solutions are unique

iff they touch both obstacles. However, numerical integration of κ may not yield 0,
and the computed solution is therefore pushed toward one of the obstacles. This is
illustrated in Figure 6.3 for run A: on the left-hand side the computed solution touches
the upper obstacle, while on the right-hand side it touches the opposite one. In spite of
this unstable behavior of the computed solution, the indicators of Algorithm 6.1 yield
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Fig. 6.2. Example 6.2 with ε0 = 0.175 and τ = 0.2: Initial triangulations (first row), solutions
corresponding to Nl ≈ 560 (second row), and Nl ≈ 50 000 (third row) of run S (left column) and
run A (right column).

-1
-0. 5

0
0.5

1 -1

-0. 5

0

0.5

1

-1

-0. 8

-0. 6

-0. 4

-0. 2

0

0.2

0.4

0.6

0.8

1

-1
-0. 5

0
0.5

1 -1

-0. 5

0

0.5

1

-1

-0. 8

-0. 6

-0. 4

-0. 2

0

0.2

0.4

0.6

0.8

1

Fig. 6.3. Example 6.2 with ε0 = 0.175 and τ = 0.2: Unstable computational minimization
illustrated by two successive (Nl = 33 (left) and Nl = 37 (right)) solutions of run A.
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Fig. 6.4. Example 6.2 with ε0 = 0.175 and τ = 0.2: Contour plot of positive (left) and negative
(right) levels of the last solution in run S.

a reasonable refinement, and, for about 100 nodes, the computed solution touches
both obstacles, thus being unique and stable.

For about 560 nodes, the computed solution of run S has a saddle point close to
the origin, while the saddle point of the corresponding solution of run A is clearly
below the origin; see the second row of Figure 6.2. (The opposite, a saddle point
above the origin, can be produced by starting from another “asymmetric” initial
triangulation.) However, the last row of Figure 6.2 suggests that this sensibility
with respect to the initial triangulation disappears with further adaptive refinement
according to Algorithm 6.1.

Let us conclude this subsection with an interpretation of the obtained approxi-
mate solutions. To this end, we recall the following statement from [5, section 1.1]:
if u is a minimum point of the convexified minimization (1.2) with ε ≡ 0, then, for
almost all t ∈ [0, 1], the characteristic function of {x ∈ Ω | u(x) ≥ t} is a mini-
mum point of the non-convex minimization (1.1). This fact suggests the following
interpretations: the approximate solutions in the last row of Figure 6.2 indicate the
two minimum points of the limiting nonconvex minimization (1.1); see Figure 6.4,
where positive and negative level lines of the last solution of run S are depicted. The
temporary “asymmetry” in run A is a dominance of one minimum point depending
on the underlying triangulation.

6.5. Nonconstant regularization. We study an example with nonconstant
regularization. Here the meaning of “nonconstant” is twofold: the regularization will
depend on space and on the iteration counter “l” in Algorithm 6.1. We choose the
following example.

Example 6.3 (quarter of the 2-circle). Consider minimization (1.2) with ε ≡ 0

and κ(x) := −|x|+ 5/2 for x ∈ Ω := ]0, 4[
2
. The unique solution is the characteristic

function of the sector {x ∈ Ω | |x| ≤ 2}. In order to approximate ε ≡ 0 “dynamically,”
we use the piecewise constant regularization εl defined by

∀T ∈ Tl, εl|T =
1 +
∣∣|xT | − 2

∣∣
22+l/20

, where xT is the barycenter of T ,

in iteration l of Algorithm 6.1.

We apply Algorithm 6.1 to Example 6.3 starting from an initial triangulation with
41 nodes. In order to measure the quality of the solution ul computed in iteration l,
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Fig. 6.5. Example 6.3: δl as a function of Nl in log-log scale accompanied by a line with slope
0.75 (top left), solution (top right), its level lines −1 + 0.2k, k = 0, . . . , 10 (lower left), and the
triangulation (lower right) for Nl = 3042.

we introduce

δl := max
{∣∣|x| − 2

∣∣ | x ∈ Ω and ul(x) = 0
}
,

which measures the distance between the “interface” Γ := {x ∈ Ω | |x| = 2} of
the sector {x ∈ Ω | |x| ≤ 2} and its approximation Γl := {x ∈ Ω | ul(x) = 0}.
Figure 6.5 (top left) shows δl as a function of Nl = #Nl as l increases; the slope
of the dashed line in the same picture is 0.75 and represents an approximation of
the experimental convergence order. For Nl = 3024, the graph and level lines of ul
as well as the triangulation Tl are also depicted in Figure 6.5. In accordance with
Remark 4.4, we observe a very coarse triangulation close to the corner points (0, 0)
and (4, 4) due to the complete localization to the discrete non-full-contact set. Inside
the discrete noncontact set, the triangulation is still graded. It is relatively coarse
off the interface Γ and, with an exceptional thin stripe, relatively fine close to the
interface Γ. In light of the rigidity of the used linear finite elements, this may be
interpreted as follows: relatively big second derivatives of the exact solution, which
are indicated by big jump residuals, require a relatively high density of the degrees of
freedom. However, this relationship is affected by the size of the gradient of the exact
solution through the weight Λ−1

z , which provides local information on the conditioning.
Note that, in the considered situation, incorporating the weight Λ−1

z into the marking
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indicator intensifies the grading within the discrete noncontact set. This is correct
because, as discussed in section 6.2, the marking indicator Λ−1

z η2
z does not lead to an

overrefinement where the gradient of the solution is big. Finally, note that, in the
discrete noncontact set, the mesh is slightly finer close to the free boundaries than
away from the interface Γ. This is a consequence of the spatial dependence of the
regularization εl; with constant regularization ε̃l ≡ 2−(2+l/20), the triangulation is not
finer there.
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Abstract. In this paper, a one-parameter generalization of Lions’ nonoverlapping domain de-
composition method for linear elliptic PDEs is proposed and studied. The generalized methods are
shown to be descent-direction methods for minimizing an interface bias functional. Iteration conver-
gence of both the continuous and finite element versions of the proposed methods is established. It is
theoretically and numerically demonstrated that for generic choices of the parameter the generalized
methods converge faster than Lions’ original method. Algorithms are given and numerical results
are presented.
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1. Introduction. Domain decompositon methods (DDMs) have been a flour-
ishing area of research in scientific computing in the last two decades; see, e.g.,
the proceedings or monographs [11, 12, 13, 14, 24, 26, 27, 33, 50] and the web site
http://www.ddm.org. The interests and research efforts in this subject have continued
to expand in recent years; see, e.g., [8, 9, 15, 17, 20, 21, 28, 30, 32, 34, 42, 44, 47, 48, 49].
The various DDMs can be loosely classified into two categories based on the decom-
position of subdomains: overlapping and nonoverlapping. The classic Schwarz alter-
nating method [43, 25, 35], which is based on successive exchanges of Dirichlet data,
is a century-old example of overlapping DDMs and is still an active topic of research
[37, 38, 39]. The history of nonoverlapping DDMs is much shorter than that of over-
lapping ones. Early works on nonoverlapping DDMs include [2, 3, 4, 5, 6, 7, 10, 18].
One of the most popular nonoverlapping DDMs is the well-known Lions’ method
[36], which is based on successive exchanges of interface Robin data. The objective
of this paper is to design and analyze a one-parameter generalization of Lions’ non-
overlapping method for solutions of linear elliptic partial differential equations (PDEs)
and establish the acceleration properties of the generalized methods.

Though our generalized method at each iteration step appears to simply involve
a weighted average of Lions’ interface updates and the Robin data of the previous
iteration step, the analysis of those methods will be based on viewing Lions’ method
as a descent-direction method with a fixed step length for minimizing an interface bias
functional. The accelerations are achieved by choosing suitable variable step lengths in
the descent-direction method. In the sense of minimizing an interface bias functional
our methods are akin to the optimization-based DDMs studied in [20, 21, 28, 30] (see
also the earlier works [18, 25] and a relevant reference [45]). However, our methods
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make use of a descent direction which in general is not the gradient direction; this is
different from the work of [20, 21, 28, 30], which used gradient methods or optimality
systems to find the minima of interface bias functionals.

Noteworthy features of the generalized methods include (i) true parallelism in
the sense that each new iterate makes use of all subdomain solutions obtained in
the previous step and thus calls for multiple processors (whereas Lions’ method is an
alternating domain method); (ii) L2(Γ) norm convergence for the interface bias of the
Robin data (this is an improvement over the well-known H−1/2(Γ) norm convergence
result for Lions’ method—see [17, 20]); (iii) an explicit range of acceptable step lengths
that is independent of the underlying elliptic operator (in contrast, the range of step
lengths for the gradient methods typically depends on the spectrum of the elliptic
operator—see [21]).

This paper is organized as follows. In section 2 we describe Lions’ nonoverlapping
method and define its generalizations for a linear elliptic problem. In section 3 we
study the properties of certain operators associated with Robin boundary value prob-
lems, prove that Lions’ method and the generalized methods are descent-direction
algorithms for minimizing an interface bias functional, and demontstrate the con-
vergence of the generalized methods. In section 4 we establish the convergence and
acceleration properties of the finite element versions of the generalized methods. Fi-
nally, in section 5 we propose two algorithms (one with locally optimal step lengths
and the other with a fixed step length) and present the results of numerical experi-
ments.

2. Lions’ DDM and its generalizations. In this section we review Lions’
nonoverlapping DDM and define our generalizations of that method.

We consider the following linear elliptic PDE with a homogeneous boundary con-
dition:

−div [A(x)∇u] = f in Ω, u = 0 on ∂Ω,(2.1)

where Ω is a two- or three-dimensional Lipschitz domain, f is a given function in
L2(Ω), and A is a symmetric-matrix-valued C1(Ω) function that is uniformly positive
definite. For simplicity and clarity of exposition we will describe Lions’ method and
our generalized methods on a partition of Ω into two disjoint subdomains Ω1 and
Ω2. The extensions of these methods to partitions of Ω into multiple subdomains are
straightforward [17].

We denote Γ = Ω1 ∩ Ω2 and Γi = ∂Ωi \ Γ, i = 1, 2. Let ni be the unit outward
normal to ∂Ωi along the interface Γ (see Figure 2.1).

In a nonoverlapping DDM for (2.1) one solves

−div [A(x)∇u] = f in Ωi, u|Γi = 0(2.2)

for i = 1, 2 separately with certain boundary conditions on the interface Γ. The
boundary conditions on Γ are updated iteratively and (2.2) is solved repeatedly until
convergence. Iterative boundary conditions on Γ are often designed based on an
equivalent form of the transmission conditions:

u1 − u2 = 0 on Γ and [A(x)∇u1] · n1 + [A(x)∇u2] · n2 = 0 on Γ.(2.3)

The well-known alternating domain methods [14, 19, 22, 40, 41] can be viewed as
examples of iterations that arise from (2.3).
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Ω1 Ω2Γ

→ n1

n2 ←
Γ1 Γ2

Γ1

Γ1

Γ2

Γ2

Fig. 2.1.

It can be easily checked that (2.3) is equivalent to the following Robin-type trans-
mission conditions:

u1 + λ[A(x)∇u1] · n1 = u2 − λ[A(x)∇u2] · n2 on Γ,

u2 + λ[A(x)∇u2] · n2 = u1 − λ[A(x)∇u1] · n1 on Γ,
(2.4)

where λ > 0 is a constant. An iterative implementation of (2.4) yields the following

Lions’ method: choose initial guesses u
(1)
1 in Ω1 and u

(1)
2 in Ω2; for k = 1, 2, 3, . . . ,

solve  −div [A(x)∇u
(k+1)
1 ] = f in Ω1 , u

(k+1)
1 = 0 on Γ1,

u
(k+1)
1 + λ[A(x)∇u(k+1)

1 ] · n1 = u
(k)
2 − λ[A(x)∇u(k)2 ] · n2 on Γ

(2.5)

and  −div [A(x)∇u
(k+1)
2 ] = f in Ω2 , u

(k+1)
2 = 0 on Γ2 ,

u
(k+1)
2 + λ[A(x)∇u(k+1)

2 ] · n2 = u
(k)
1 − λ[A(x)∇u(k)1 ] · n1 on Γ .

(2.6)

By setting

g
(k)
i = u

(k)
i + λ[A(x)∇u(k)i ] · ni , i = 1, 2 ,(2.7)

Lions’ iterations (2.5)–(2.6) were recast into the following form that is more amenable
to implementations due to the avoidance of normal derivative calculations (see [17]):

choose initial guesses g
(1)
1 on Γ and g

(1)
2 on Γ; for k = 1, 2, 3, . . . , solve −div [A(x)∇u

(k)
i ] = f in Ωi ,

u
(k)
i = 0 on Γi , u

(k)
i + λ[A(x)∇u(k)i ] · ni = g(k)i on Γ, i = 1, 2,

(2.8)

and update

g
(k+1)
1 = 2u

(k)
2 − g(k)2 , g

(k+1)
2 = 2u

(k)
1 − g(k)1 .(2.9)

Lions’ method (2.5)–(2.6) was proposed in [36] with a proof for its convergence.
The equivalent variant (2.8)–(2.9) along with finite element approximations was stud-
ied in [17]. Lions’ method (2.5)–(2.6) and its variant (2.8)–(2.9) were also derived in
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[20] through an optimization approach. An overlapping version of Lions’ method was
studied in [46].

We define a one-parameter generalization of Lions’ method as follows: choose

initial guesses u
(1)
1 in Ω1 and u

(1)
2 in Ω2; for k = 1, 2, 3, . . . , solve

−div [A(x)∇u(k+1)
1 ] = f in Ω1 , u

(k+1)
1 = 0 on Γ1 ,

u
(k+1)
1 + λ[A(x)∇u(k+1)

1 ] · n1

= (1− δk)
(
u

(k)
1 + λ[A(x)∇u(k)1 ] · n1

)
+ δk

(
u

(k)
2 − λ[A(x)∇u(k)2 ] · n2

)
on Γ

(2.10)

and 
−div [A(x)∇u(k+1)

2 ] = f in Ω2 , u
(k+1)
2 = 0 on Γ2 ,

u
(k+1)
2 + λ[A(x)∇u(k+1)

2 ] · n2

= (1− δk)
(
u

(k)
2 + λ[A(x)∇u(k)2 ] · n2

)
+ δk

(
u

(k)
1 − λ[A(x)∇u(k)1 ] · n1

)
on Γ,

(2.11)

where {δk} ⊂ [δmin, δmax] ⊂ (0, 1]. If δk = 1 for all k, then (2.10)–(2.11) reduce

to Lions’ method (2.5)–(2.6). Also, by introducing g
(k)
i as defined by (2.7), we may

recast (2.10)–(2.11) into the following form that avoids the calculations of normal

derivatives: choose initial guesses g
(1)
1 on Γ and g

(1)
2 on Γ; for k = 1, 2, 3, . . . , solve −div [A(x)∇u

(k)
i ] = f in Ωi ,

u
(k)
i = 0 on Γi , u

(k)
i + λ[A(x)∇u(k)i ] · ni = g(k)i on Γ, i = 1, 2,

(2.12)

and update  g
(k+1)
1 = (1− δk)g(k)1 + δk(2u

(k)
2 − g(k)2 ) ,

g
(k+1)
2 = (1− δk)g(k)2 + δk(2u

(k)
1 − g(k)1 ) .

(2.13)

Remark 2.1. An observation of Lions’ method is that it is not a truly parallel
method. In fact, the sequence of iterative solutions

{(u(1)1 , u
(1)
2 ), (u

(2)
1 , u

(2)
2 ), (u

(3)
1 , u

(3)
2 ), . . . }

on the two subdomains can be separated into two independent sequences:

{u(1)1 , u
(2)
2 , u

(3)
1 , u

(4)
2 , . . . } , {u(1)2 , u

(2)
1 , u

(3)
2 , u

(4)
1 , . . . },

each consisting of iterates of solutions alternating on the two subdomains. One needs
only to compute one of the two separate sequences of solutions; thus at each iteration,
only one processor is needed. In contrast, the generalized method when δk ∈ (0, 1)
naturally calls for two processors at each iteration with the single iteration sequence

{(u(1)1 , u
(1)
2 ), (u

(2)
1 , u

(2)
2 ), (u

(3)
1 , u

(3)
2 ), (u

(4)
1 , u

(4)
2 ), . . . }.

To analyze the generalized method (2.12)–(2.13) in a proper mathematical frame-
work, we introduce some notation and recast Lions’ method and the generalized meth-
ods into weak formulations.
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Let Hs(D) denote the standard Sobolev space of order s on a set D with the
norm ‖ ·‖s,D. Vector-valued Sobolev spaces are denoted by Hs(D) with the norm still
denoted by ‖ · ‖s,D. Of course, H0(D) = L2(D) and H0(D) = L2(D). We denote the
L2(D)- and L2(D)-inner products by [·, ·]D, i.e.,

[u, v]D =

∫
D
u v dD ∀u, v ∈ L2(D) and [u,v]D =

∫
D
u · v dD ∀u,v ∈ L2(D).

Also, we use the standard notation for the spaceH1
0 (Ω) = {v ∈ H1(Ω) | v = 0 on ∂Ω}.

The weak formulation for the elliptic boundary value problem (2.1) is given by

a[u, v] = [f, v]Ω ∀ v ∈ H1
0 (Ω),(2.14)

where the bilinear form a[·, ·] is defined by

a[u, v] =

∫
Ω

A(x)∇u · ∇v dx ∀u, v ∈ H1(Ω).

For i = 1, 2 we define the space Xi = {v ∈ H1(Ωi) | v = 0 on Γi} equipped with
the norm ‖ · ‖Xi

= ‖ · ‖1,Ωi
. We also introduce the subdomain bilinear forms

ai[u, v] =

∫
Ωi

A(x)∇u · ∇v dx ∀u, v ∈ Xi, i = 1, 2.

In terms of weak formulations Lions’ method (2.8)–(2.9) can be stated as follows:

choose initial guesses g
(k)
1 ∈ L2(Γ) and g

(k)
2 ∈ L2(Γ); for k = 1, 2, 3, . . . , solve for

u
(k)
i ∈ Xi (i = 1, 2) from

ai[u
(k)
i , vi] + λ

−1[u
(k)
i , vi]Γ = [f, vi]Ωi + λ

−1[g
(k)
i , vi]Γ ∀ vi ∈ Xi , i = 1, 2,(2.15)

and update

g
(k+1)
1 = 2u

(k)
2 − g(k)2 and g

(k+1)
2 = 2u

(k)
1 − g(k)1 .(2.16)

The weak formulation of the generalized method (2.12)–(2.13) is as follows: choose

initial guesses g
(1)
1 ∈ L2(Γ) and g

(1)
2 ∈ L2(Γ); for k = 1, 2, 3, . . . , solve for u

(k)
i ∈ Xi

(i = 1, 2) from

ai[u
(k)
i , vi] + λ

−1[u
(k)
i , vi]Γ = [f, vi]Ωi + λ

−1[g
(k)
i , vi]Γ ∀ vi ∈ Xi , i = 1, 2,(2.17)

and update  g
(k+1)
1 = (1− δk)g(k)1 + δk(2u

(k)
2 − g(k)2 ) ,

g
(k+1)
2 = (1− δk)g(k)2 + δk(2u

(k)
1 − g(k)1 ) .

(2.18)

We will reveal that Lions’ method and the generalized methods are descent-
direction algorithms for minimizing the interface bias functional

1

2

∫
Γ

(
|u1 − u2|2 + λ2

∣∣∣[A(x)∇u1] · n1 + [A(x)∇u2] · n2

∣∣∣2),(2.19)
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where ui ∈ Xi (i = 1, 2) are solutions of the subdomain Robin boundary value problem

ai[ui, vi] + λ
−1[ui, vi]Γ = [f, vi]Ωi

+ λ−1[gi, vi]Γ ∀ vi ∈ Xi , i = 1, 2.(2.20)

Obviously, (2.19) attains the minimum value 0 when u1 = û|Ω1
and u2 = û|Ω2

, where
û ∈ H1

0 (Ω) is the solution of the problem (2.1) or (2.14) on the entire domain Ω.
We will show that the generalized method (2.17)–(2.18) converges to the minimum of
the functional (2.19); i.e., the subdomain solutions defined by (2.17)–(2.18) converges
to the global solution û. In the course of the convergence proofs, the acceleration
properties of the generalized methods will become clear.

3. Convergence of the generalized method. In this section we will first
study some properties of a Robin–Robin map (which maps a Robin-type boundary
value on Γ into another Robin-type boundary value) and then prove the convergence
of iterations (2.17)–(2.18).

3.1. Solution operators for the Robin boundary value problems. It is
well known that Robin-type boundary value problems on subdomains (for a fixed
λ > 0) { −div [A(x)∇ui] = f in Ωi,

ui = 0 on Γi , ui + λ[A(x)∇ui] · ni = gi on Γ,
(3.1)

i = 1, 2, admit a unique solution in the sense of the following weak formulation: seek
a ui ∈ Xi, i = 1, 2, such that

ai[ui, vi] + λ
−1[ui, vi]Γ = [f, vi]Ωi + λ

−1[gi, vi]Γ ∀ vi ∈ Xi .(3.2)

For i = 1, 2 we denote by Sfi : L2(Γ) → Xi the solution operator for the Robin

boundary value problem (3.2); i.e., ui = S
f
i gi for gi ∈ L2(Γ) if and only if ui and gi

satisfy (3.2). We define the operator Sf : L2(Γ) → X1 ×X2 by Sfg = (Sf1 g1, S
f
2 g2)

for all g = (g1, g2) ∈ L2(Γ). If f = 0, we write S0
i and S0 in place of Sfi and Sf ,

respectively.
We also denote by T : L2(Ω) → X1 × X2 the solution operator for (3.2) with

homogeneous Robin boundary condition; i.e., for every f ∈ L2(Ω), (u1, u2) = Tf =
(T1f, T2f) if and only if (u1, u2) ∈ X1 ×X2 is the solution of

ai[ui, vi] + λ
−1[ui, vi]Γ = [f, vi]Ωi ∀ vi ∈ Xi , i = 1, 2.(3.3)

The operator T is obviously linear.
Lemma 3.1. If g, g̃ ∈ L2(Γ) and c1, c2 are constants, then
(a) S0(c1g + c2g̃) = c1S

0g + c2S
0g̃;

(b) Sf = S0 + Tf ;
(c) S0(g − g̃) = Sfg − Sf g̃.
Proof. By definition, the operator S0 is defined as follows: for every g = (g1, g2) ∈

L2(Γ), (u1, u2) = (S0
1g1, S

0
2g2) if and only if

ai[ui, vi] + λ
−1[ui, vi]Γ = λ−1[gi, vi]Γ ∀ vi ∈ Xi.(3.4)

Thus it is obvious that S0
i and S0 are linear operators and (a) holds.

The solution of (3.2) evidently can be split into the sum of the solution for (3.3)
and the solution for (3.4). In other words, Sfg = Tf +S0g for every g ∈ L2(Γ). This
proves (b).

As an easy consequence of (b) and (a), we obtain (c):

Sfg − Sf g̃ = S0g + Tf − S0g̃ − Tf = S0(g − g̃).
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3.2. The Robin–Robin map and its basic properties. We define the Robin–
Robin map Rf : L2(Γ)→ L2(Γ) as follows. For any g = (g1, g2) ∈ L2(Γ),

Rfg = (Rf1g, R
f
2g) ≡

(
2(Sf2 g2)|Γ − g2 , 2(Sf1 g1)|Γ − g1

)
.(3.5)

If f = 0, we write R0 in place of Rf .
We denote by û the unique exact solution of (2.14) in H1

0 (Ω). Following the
proofs of [23, Theorem I.2.5 and Corollary I.2.6] we may justify that [A(x)∇û] · ni|Γ ∈
H−1/2(Γ). We make the regularity assumption

[A(x)∇ûi] · ni|Γ ∈ L2(Γ), i = 1, 2,(3.6)

so that

ai[ûi, vi] = [f, vi]Ωi + [(A(x)∇ûi) · ni, vi]Γ ∀ vi ∈ Xi .(3.7)

We define ûi and ĝi by

ûi = û|Ωi , ĝi = ûi + λ[A(x)∇ûi] · ni , i = 1, 2.(3.8)

Of course, û1 and û2 satisfy the transmission conditions

û1|Γ = û2|Γ and [A(x)∇û1] · n1 = −[A(x)∇û2] · n2 on Γ.(3.9)

Also, (3.7) implies

ai[ûi, vi] + λ
−1[ûi, vi]Γ = [f, vi]Ωi + λ

−1[ĝi, vi]Γ ∀ vi ∈ Xi .(3.10)

It is easily verified that Lions’ iterations (2.15)–(2.16) can be simply written as
fixed point iterations  g(1) given,

g(k+1) = Rfg(k), k = 1, 2, 3, . . . .

It is well known that Lions’ iterations converge to the exact solution û (see [17, 36]).
Thus we expect ĝ = (ĝ1, ĝ2) defined by (3.8) to be a fixed point of Rf , as will be
proved in the following lemma.

Lemma 3.2. g ∈ L2(Γ) satisfies Rfg = g if and only if g = ĝ.
Proof. If g = ĝ, using definition (3.8) and the transmission conditions (3.9), we

have

Rf ĝ = (2û2 − ĝ2 , 2û1 − ĝ1) =
(
û2 − λ[A(x)∇û2] · n2 , û1 − λ[A(x)∇û1] · n1

)
=
(
û1 + λ[A(x)∇û1] · n1 , û2 + λ[A(x)∇û2] · n2

)
= ĝ .

To prove the converse, we assume that g ∈ L2(Γ) satisfies Rfg = g, i.e.,

2u2 − g2 = g1 and 2u1 − g1 = g2 on Γ,(3.11)

where ui = S
f
i gi, i = 1, 2. Subtracting the two equations of (3.11), we immediately

obtain

u1 = u2 on Γ.(3.12)
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Thus the function u ∈ L2(Ω) defined by

u =

{
u1 in Ω1,

u2 in Ω2

satisfies u ∈ H1
0 (Ω). By definition ui = S

f
i gi is determined by (3.2). Let an arbitrary

v ∈ H1
0 (Ω) be given. Setting vi = v|Ωi in (3.2) for i = 1, 2 and adding the two

equations, we obtain

a[u, v] = [f, v]Ω + λ−1[g1 + g2 − u1 − u2, v]Γ .

Substituting (3.11) into the last equation, we are led to

a[u, v] = [f, v]Ω ∀ v ∈ H1
0 (Ω) .

Thus u = û. Then a comparison of (3.2) (now u = û) and (3.10) yields (g1, g2) =
(ĝ1, ĝ2).

We next derive some basic properties of Rf . We easily see that Rf and R0 satisfy
the following relations in terms of the operators Sf and T :

R0g =
(
2(S0g)|Γ − g

)(
0 1
1 0

)
(3.13)

and

Rfg =
(
2(Sfg)|Γ − g

)(
0 1
1 0

)
=
(
2(S0g)|Γ − g + 2(Tf)|Γ

)(
0 1
1 0

)
= R0g + 2(Tf)|Γ

(
0 1
1 0

)
.

(3.14)

Relations (3.13)–(3.14) and Lemma 3.1 trivially yield the following lemma.
Lemma 3.3. If g, g̃ ∈ L2(Γ) and c1, c2 are constants, then
(a) R0(g − g̃) = Rfg −Rf g̃;
(b) R0(g − ĝ) = Rfg − ĝ, where ĝ is defined in (3.8);
(c) R0(c1g + c2g̃) = c1R

0g + c2R
0g̃.

Proposition 3.4. Let g = (g1, g2) ∈ L2(Γ) and ui = S
f
i gi. Then

‖Rfg‖20,Γ = ‖g‖20,Γ − 4λ

2∑
i=1

(
ai[ui, ui]− [f, ui]Ωi

)
.

In particular, if f = 0, then

‖R0g‖20,Γ = ‖g‖20,Γ − 4λ

2∑
i=1

ai[S
0
i gi, S

0
i gi] .

Proof. The proof is adapted from that of [17]. We recall that ui = S
f
i g is defined

by (3.2). Setting vi = ui in (3.2), we obtain∫
Γ

(uiui − giui) = −λ
(
ai[ui, ui]− [f, ui]Ωi

)
, i = 1, 2.
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Thus

‖Rfg‖20,Γ =

∫
Γ

|2u1 − g1|2 +
∫

Γ

|2u2 − g2|2

=

∫
Γ

(g21 + g22) + 4

∫
Γ

(u21 − u1g1) + 4

∫
Γ

(u22 − u2g2)

= ‖g‖20,Γ − 4λ

2∑
i=1

(
ai[ui, ui]− [f, ui]Ωi

)
.

3.3. An interface bias functional and a descent direction. We define the
interface bias functional Ef (g) associated with subdomain Robin-type boundary value
problem (3.2) by

Ef (g) =
1

2

∫
Γ

(
|u1 − u2|2 + |u1 + u2 − g1 − g2|2

)
,(3.15)

where (u1, u2) = S
fg is defined through (3.2). If [A(x)∇ui] · ni|Γ ∈ L2(Γ), i = 1, 2,

then Ef can be rewritten as

Ef (g) =
1

2

∫
Γ

(
|u1 − u2|2 + λ2

∣∣∣[A(x)∇u1] · n1 + [A(x)∇u2] · n2

∣∣∣2);
i.e., Ef indeed measures the interface bias.

The minimum value 0 of Ef is uniquely attained at ĝ which is defined in (3.8).
It is easily verified that the generalized method (2.17)–(2.18) can be simply expressed
by  g(1) given,

g(k+1) = g(k) + δk(R
fg(k) − g(k)), k = 1, 2, . . . .

(3.16)

We will show that Rfg − g provides a descent direction for Ef at any g so that
the generalized method (3.16) is a descent-direction method for solving the following
minimization problem:

min
g∈L2(Γ)

Ef (g) subject to (3.2), i = 1, 2.(3.17)

We first establish the following identities.
Proposition 3.5. Let g = (g1, g2) ∈ L2(Γ). Then

(a) Ef (g) =
1

4

∫
Γ

|g −Rfg|2 =
1

4

∫
Γ

(
|g1 −Rf1g|2 + |g2 −Rf2g|2

)
and

(b) Ef (Rfg) = Ef (g)− 4λ

2∑
i=1

ai[S
f
i (gi)− Sfi (Rfi g), Sfi (gi)− Sfi (Rfi g)] .

Proof. We set ui = S
f
i gi and ũi = S

f
i (R

f
i g), i = 1, 2. From the definition of Rf ,

i.e., (3.5), we have

(Rf1g − g1)− (Rf2g − g2) = 2(u2 − u1) on Γ
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and

(Rf1g − g1) + (Rf2g − g2) = 2(u1 + u2)− 2(g1 + g2) on Γ.

Squaring both sides of the last two equations and adding them together, we deduce

(Rf1g − g1)2 + (Rf2g − g2)2 = 2(u1 − u2)2 + 2|u1 + u2 − g1 − g2|2 on Γ,

which readily yields (a).
To prove (b) we note that identity (a), Lemma 3.3 (a), Proposition 3.4, and

Lemma 3.1 (c) lead us to

Ef (Rfg) = ‖Rfg −Rf (Rfg)‖20,Γ = ‖R0(g −Rfg)‖20,Γ

= ‖g −Rfg‖20,Γ − 4λ

2∑
i=1

∫
Ωi

∣∣∣∇(S0
i (gi −Rfi g)

)∣∣∣2
= ‖g −Rfg‖20,Γ − 4λ

2∑
i=1

ai[S
f
i (gi)− Sfi (Rfi g), Sfi (gi)− Sfi (Rfi g)] .

Proposition 3.6. Let g ∈ L2(Γ). Then Λ(g) ≡ ‖g− 2Rfg+RfRfg)‖20,Γ = 0 if
and only if g = ĝ .

Proof. If g = ĝ, then Lemma 3.2 implies Rf ĝ = ĝ so that

Λ(ĝ) = ‖ĝ − 2Rf ĝ +RfRf ĝ‖20,Γ = 0 .

Conversely, we assume that Λ(g) = 0 and proceed to show that Rfg = g. Obvi-
ously Λ(g) = 0 implies g−Rfg = Rfg−Rf (Rfg). Using this relation and employing
Proposition 3.5 (a) repeatedly, we have

Ef (g) =
1

4
‖g −Rfg‖20,Γ =

1

4
‖Rfg −RfRfg)‖20,Γ = Ef (Rfg)

so that by Proposition 3.5 (b) we deduce

a1[u1 − ũ1, u1 − ũ1] + a2[u2 − ũ2, u2 − ũ2] = 0,

where ui = Sfi gi and ũi = Sfi (R
f
i g), i = 1, 2. Thus, by virtue of the Poincaré

inequality, we obtain

ui − ũi = 0 in Ωi and ui − ũi = 0 on Γ(3.18)

for i = 1, 2. By the definition of Sfi we have, for i = 1, 2,

ai[ui, vi] + λ
−1[ui, vi]Γ = [f, vi]Ωi

+ λ−1[gi, vi]Γ ∀ vi ∈ Xi
and

ai[ũi, vi] + λ
−1[ũi, vi]Γ = [f, vi]Ωi + λ

−1[Rfi g, vi]Γ ∀ vi ∈ Xi .

Subtracting the last two equations and applying (3.18), we obtain gi = R
f
i g, i = 1, 2,

i.e., g = Rfg. Thus by Lemma 3.2 we conclude g = ĝ.
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A review of the proof of Proposition 3.6 reveals the following.
Corollary 3.7. Let g ∈ L2(Γ). The following statements are equivalent:
(i) Λ(g) = 0;
(ii) g = ĝ;
(iii) g = Rfg;
(iv) Ef (g) = 0;
(v) Ef (g) = Ef (Rfg).
As a consequence of Proposition 3.5 and Corollary 3.7, we have the following.
Corollary 3.8. Ef (Rfg) < Ef (g) whenever g ∈ L2(Γ) and g �= ĝ.
The main result of this section is the following.
Theorem 3.9. Assume that g ∈ L2(Γ) and Λ(g) ≡ ‖g−2Rfg+RfRfg)‖20,Γ �= 0.

Then there is a δ0 = δ0(g) ≥ 1/2 such that

Ef (g) > Ef (g + δ(Rfg − g)) ∀ δ ∈ (0, 2δ0) .

Moreover, Ef (g + δ(Rfg − g)) as a function of δ is strictly decreasing on [0, δ0] and
strictly increasing on [δ0, 2δ0].

Proof. Assume that g ∈ L2(Γ) and Λ(g) ≡ ‖g − 2Rfg +RfRfg)‖20,Γ �= 0. Using
Lemma 3.3 (a) repeatedly, we have

Rf (g + δ(Rfg − g)) = Rf (g + δ(Rfg − g))−Rfg +Rfg

= R0(δ(Rfg − g)) +Rfg = δ(Rf (Rfg)−Rfg) +Rfg.
The last equation and Proposition 3.5 imply

φ(δ) ≡ 4Ef (g + δ(Rfg − g)) = ‖g + δ(Rfg − g)− (δ(Rf (Rfg)−Rfg) +Rfg)‖20,Γ
= ‖g −Rfg‖20,Γ + δ2‖g − 2Rfg +Rf (Rfg)‖20,Γ

− 2δ[g −Rfg,g − 2Rfg +Rf (Rfg)]Γ .

Thus φ(δ) attains its minimum at

δ0 = δ0(g) =
[g −Rfg,g − 2Rfg +Rf (Rfg)]Γ
‖g − 2Rfg +Rf (Rfg)‖20,Γ

(3.19)

with the minimum value

φ(δ0) = 4Ef (g + δ0(R
fg − g)) = ‖g −Rfg‖20,Γ −

[g −Rfg,g − 2Rfg +Rf (Rfg)]2Γ
‖g − 2Rfg +Rf (Rfg)‖20,Γ

.

We verify δ0 > 0 as follows:

[g −Rfg,g − 2Rfg +Rf (Rfg)]Γ

= ‖g −Rfg‖20,Γ − [g −Rfg, Rfg −Rf (Rfg)]Γ

≥ ‖g −Rfg‖20,Γ −
1

2
‖g −Rfg‖20,Γ −

1

2
‖Rfg −Rf (Rfg)‖20,Γ

=
1

2
‖g −Rfg‖20,Γ −

1

2
‖Rfg −Rf (Rfg)‖20,Γ = 2[Ef (g)− Ef (Rfg)] > 0,

where in the last step we used Proposition 3.5 (a) and Corollary 3.8.
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The function φ(δ) ≡ Ef (g+ δ(Rfg−g)), a quadratic function of δ, is strictly de-
creasing on (−∞, δ0] and strictly increasing on ∈ [δ0,∞). Straightforward calculations
reveal

φ(2δ0) = ‖g −Rfg‖20,Γ = 4Ef (g) and φ(1) = 4Ef (Rfg).

Thus an application of Corollary 3.8 yields φ(2δ0) > φ(1) so that 2δ0 ≥ 1.

3.4. Convergence of the generalized method. By virtue of Theorem 3.9
the generalized method (3.16), which is equivalent to iterations (2.17)–(2.18), is a
descent-direction method for solving the minimization problem (3.17). We have the
following convergence result for iterations (3.16).

Theorem 3.10. Assume that g(1) ∈ L2(Γ) and {δk}∞k=1 ⊂ [δmin, 1] ⊂ (0, 1]. Let

{g(k)}∞k=2 be defined by (3.16) and (u
(k)
1 , u

(k)
2 ) = Sfg(k), k = 1, 2, 3, . . . . Then

‖u(k)i − ûi‖1,Ωi → 0 as k →∞, i = 1, 2.

Proof. Recall that ĝ = Rf ĝ and Rfg(k) −Rf ĝ = R0(g(k) − ĝ). Thus

g(k+1) − ĝ = (1− δk)(g(k) − ĝ) + δkR
0(g(k) − ĝ) .

It follows that

‖g(k+1) − ĝ‖20,Γ = (1− δk)2‖g(k) − ĝ‖20,Γ + δ2k‖R0(g(k) − ĝ)‖20,Γ
+ 2δk(1− δk)[g(k) − ĝ, R0(g(k) − ĝ)]0,Γ

≤ (1− δk)2‖g(k) − ĝ‖20,Γ + δ2k‖R0(g(k) − ĝ)‖20,Γ
+ δk(1− δk){‖g(k) − ĝ‖20,Γ + ‖R0(g(k) − ĝ)‖20,Γ}

= (1− δk)‖g(k) − ĝ‖20,Γ + δk‖R0(g(k) − ĝ)‖20,Γ .
On the other hand, using Proposition 3.4 and Lemma 3.1 (c) and noting that (û1, û2) =
Sf ĝ, we have

‖R0(g(k) − ĝ)‖20,Γ = ‖g(k) − ĝ‖20,Γ − 4λ

2∑
i=1

ai[u
(k)
i − ûi, u(k)i − ûi],

where (u
(k)
1 , u

(k)
2 ) = Sfg(k). Combining the last two relations, we obtain

‖g(k+1) − ĝ‖20,Γ ≤ ‖g(k) − ĝ‖20,Γ − 4λδk

2∑
i=1

∫
Ωi

|∇(u(k)i − ûi)|2

≤ ‖g(k) − ĝ‖20,Γ − 4λδmin

2∑
i=1

∫
Ωi

|∇(u(k)i − ûi)|2

or, equivalently,

4λδmin

2∑
i=1

ai[u
(k)
i − ûi, u(k)i − ûi] ≤ ‖g(k) − ĝ‖20,Γ − ‖g(k+1) − ĝ‖20,Γ.

Summing in k from 1 to an arbitrary N ≥ 1, we have

4λδmin

N∑
k=1

2∑
i=1

ai[u
(k)
i − ûi, u(k)i − ûi] ≤ ‖g(1)− ĝ‖20,Γ−‖g(N+1)− ĝ‖20,Γ ≤ ‖g(1)− ĝ‖20,Γ .
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This implies that

2∑
i=1

ai[u
(k)
i − ûi, u(k)i − ûi]→ 0 as k →∞.

From the Poincaré inequality, we conclude that

‖u(k)i − ûi‖1,Ωi
→ 0 as k →∞.

Next, we will demonstrate that Ef (g(k)) → 0 as k → ∞. We will need the
following lemma.

Lemma 3.11. Assume that {rk}∞k=1, {bk}∞k=1, and {ak}∞k=1 satisfy limk→∞ bk =
0,

0 ≤ rk ≤ rmax < 1 , |ak+1| ≤ rk|ak|+ |bk| , |ak| ≤M ∀ k,

where rmax and M are constants independent of k. Then limk→∞ ak = 0.
Proof. Let an ε > 0 be given. As limk→∞ bk = 0, we may choose an integer

K1 > 0 such that |bk| < (1 − rmax)ε/2 for all k ≥ K1. Since rmax ∈ [0, 1), we may
choose an integer K2 > 0 such that |rmax|k < ε/(2M) for all k ≥ K2. Hence, for
k > K1 +K2, using the relation

|am+1| ≤ rmax |am|+ |bm|

recursively, we obtain

|ak| ≤ |rmax|K2 |ak−K2
|+ |rmax|K2−1|bk−K2

|+ · · ·+ |rmax| |bk−2|+ |bk−1|

≤ |rmax|K2M + (|rmax|K2−1 + · · ·+ |rmax|+ 1)
1− rmax

2
ε

<
ε

2M
·M +

1

1− rmax

1− rmax

2
ε = ε.

Theorem 3.12. Assume that g(1) ∈ L2(Γ) and {δk}∞k=1 ⊂ [δmin, δmax] ⊂ (0, 1).

Let {g(k)}∞k=2 be defined by (3.16) and (u
(k)
1 , u

(k)
2 ) = Sfg(k), k = 1, 2, 3, . . . . Then

Ef (g(k))→ 0 as k →∞.
Proof. Theorem 3.10 and the trace theorem imply

‖u(k)i − ûi‖20,Γ → 0 as k →∞

so that using a triangle inequality and the fact that û1|Γ = û2|Γ, we have

‖u(k)1 − u(k)2 ‖20,Γ → 0 as k →∞.(3.20)

We also have, for every k ≥ 1,

u
(k+1)
1 + u

(k+1)
2 − g(k+1)

1 − g(k+1)
2

= u
(k+1)
1 + u

(k+1)
2 − (1− δk)(g(k)1 + g

(k)
2 )− δk(2u(k)1 + 2u

(k)
2 − g(k)1 − g(k)2 )

= u
(k+1)
1 − u(k)1 + u

(k+1)
2 − u(k)2 + (1− 2δk)(u

(k)
1 + u

(k)
2 − g(k)1 − g(k)2 )
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so that

‖u(k+1)
1 + u

(k+1)
2 − g(k+1)

1 − g(k+1)
2 ‖20,Γ

≤ ‖u(k+1)
1 − u(k)1 ‖20,Γ + ‖u(k+1)

2 − u(k)2 ‖20,Γ + |1− 2δk| ‖u(k)1 + u
(k)
2 − g(k)1 − g(k)2 ‖20,Γ .

Thus, by setting

rk = |1− 2δk|, ak = ‖u(k)1 + u
(k)
2 − g(k)1 − g(k)2 ‖20,Γ,

and bk = ‖u(k+1)
1 − u(k)1 ‖20,Γ + ‖u(k+1)

2 − u(k)2 ‖20,Γ ,
we have limk→∞ bk = 0,

ak+1 ≤ |1− 2δk| ak + bk , 0 ≤ rk ≤ rmax ∀ k,
where rmax ≡ max{|1 − 2δmin|, |1 − 2δmax|}. The fact that (1 − 2δ)2 < 1 for all
δ ∈ (0, 1) implies rmax < 1. Also, by virtue of Theorem 3.9, Ef (g(k)) is a nonincreasing
nonnegative sequence and is thus bounded. This in turn yields the boundedness of
{ak}. Hence an application of Lemma 3.11 yields

ak = ‖u(k)1 + u
(k)
2 − g(k)1 − g(k)2 ‖20,Γ → 0 as k →∞.(3.21)

Combining (3.20) and (3.21), we conclude Ef (g(k))→ 0.

Remark 3.13. If δk = 1 for all k, it is well known [17] that ‖g(k)i − ĝi‖H− 1
2 (Γ)
→ 0.

Triangle inequalities and the fact that ‖û1 + û2 − ĝ1 − ĝ2‖2−1/2,Γ = 0 yield

‖u(k)1 + u
(k)
2 − g(k)1 − g(k)2 ‖2−1/2,Γ

≤ ‖u(k)1 − û1‖2−1/2,Γ + ‖u(k)2 − û2‖2−1/2,Γ + ‖ĝ1 − g(k)1 ‖2−1/2,Γ + ‖ĝ1 − g(k)1 ‖2−1/2,Γ

so that ‖u(k)1 + u
(k)
2 − g(k)1 − g(k)2 ‖2−1/2,Γ → 0 as k →∞. However, this does not imply

Ef (g(k))→ 0 (the assumptions of Theorem 3.12 exclude the case δk = 1).
Remark 3.14. The acceleration properties of the generalized methods can now

be explained. First, if δk is chosen between 1 and the optimal δ0(g
(k)), then Theorem

3.9 implies that at this step, the interface bias functional Ef descends faster with the
generalized methods than with Lions’ method. Second, the interface bias in Theorem
3.12 is measured by ‖u1 − u2‖20,Γ + ‖u1 + u2 − g1 − g2‖20,Γ, whereas the interface bias

for Lions’ method can only be measured by ‖u1 − u2‖20,Γ + ‖u1 + u2 − g1 − g2‖2−1/2,Γ

(see Remark 3.13); hence when the interface bias is measured in the same norms
(i.e., measured in terms of ‖u1 − u2‖20,Γ + ‖u1 + u2 − g1 − g2‖2−1/2,Γ), we expect the
convergence for the generalized methods to be faster than that for Lions’ method.

4. The finite element version of the generalized methods. The finite
element version of the generalized methods can be analyzed in essentially the same
way as the continuous version. We will state without proofs all results parallel to those
of the continuous case. We will also establish mesh-dependent geometric convergence
for the finite element version of the generalized methods.

We assume that Ω is a two-dimensional polygon or a three-dimensional polyhedron
partitioned into two subdomains Ω1 and Ω2 as shown in Figure 2.1. Let T h(Ω) be a
family of regular triangulations of Ω such that no element of the triangulations crosses
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the interface Γ. Let Xh ⊂ H1
0 (Ω) be a family of finite element spaces, and we set

Xh
i ⊂ Xh|Ωi (i = 1, 2) and

Gh = Gh1 ×Gh2 ≡ Xh
1 |Γ ×Xh

2 |Γ .
We assume Xh and Xh

i satisfy standard approximation properties [16].
The finite element version of the generalized method (2.17)–(2.18) is described as

follows: choose initial guesses gh,11 ∈ Gh1 and gh,12 ∈ Gh2 ; for k = 1, 2, 3, . . . , solve for

uh,ki ∈ Xh
i (i = 1, 2) from

ai[u
h,k
i , v

h
i ] + λ

−1[uh,ki , v
h
i ]Γ = [f, vhi ]Ωi + λ

−1[gh,ki , v
h
i ]Γ ∀ vhi ∈ Xh

i , i = 1, 2,(4.1)

and update

gh,k+1
1 = (1− δk)gh,k1 + δk(2u

h,k
2 − gh,k2 ) ,

gh,k+1
2 = (1− δk)gh,k2 + δk(2u

h,k
1 − gh,k1 ) .

(4.2)

4.1. Solution operators for the discrete Robin boundary value prob-
lems. For given f ∈ L2(Ω) and g = (g1, g2) ∈ L2(Γ), the discrete Robin-type bound-
ary value problems on subdomains are defined as follows: seek a uhi ∈ Xh

i , i = 1, 2,
such that

ai[u
h
i , v

h
i ] + λ

−1[uhi , v
h
i ]Γ = [f, vhi ]Ωi + λ

−1[gi, v
h
i ]Γ ∀ vhi ∈ Xh

i .(4.3)

For i = 1, 2 we denote by Sfi,h : L2(Γ)→ Xh
i the solution operator for the discrete

Robin boundary value problem (4.3); i.e., uhi = Sfi,h gi for all gi ∈ L2(Γ) if and

only if uhi and gi satisfy (4.3). We define the operator Sfh : L2(Γ) → Xh
1 × Xh

2 by

Sfhg = (Sf1,h g1, S
f
2,h g2) for all g ∈ L2(Γ). If f = 0, we write S0

h in place of Sfh .

We also denote by Th : L2(Ω) → Xh
1 × Xh

2 the solution operator for (4.3) with
homogeneous Robin boundary condition; i.e., for every f ∈ L2(Ω), (uh1 , u

h
2 ) = Thf =

(T1,h f, T2,h f) if and only if (uh1 , u
h
2 ) ∈ Xh

1 ×Xh
2 is the solution of

ai[u
h
i , v

h
i ] + λ

−1[uhi , v
h
i ]Γ = [f, vhi ]Ωi ∀ vhi ∈ Xh

i , i = 1, 2.(4.4)

The operator Th is obviously linear.
Lemma 4.1. If g, g̃ ∈ L2(Γ) and c1, c2 are constants, then
(a) S0

h(c1g + c2g̃) = c1S
0
hg + c2S

0
hg̃;

(b) Sfh = S0
h + Thf ;

(c) S0
h(g − g̃) = Sfhg − Sfh g̃.

4.2. The discrete Robin–Robin map and its basic properties. We define
the finite element Robin–Robin map Rfh : Gh → Gh as follows. For any gh =
(gh1 , g

h
2 ) ∈ Gh,

Rfhg
h = (Rf1,hg

h, Rf2,hg
h) ≡ (2uh2 |Γ − gh2 , 2uh1 |Γ − gh1 ),(4.5)

where uhi = Sfi,hg
h
i , i = 1, 2. If f = 0, we write R0

h in place of Rfh.

We denote by ûh ∈ Xh the unique finite element solution of the discrete elliptic
problem, i.e.,

a[ûh, vh] = [f, vh]Ω ∀ vh ∈ Xh .(4.6)
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Then we have

ai[û
h, vhi ] = [f, vhi ]Ωi

∀ vhi ∈ Xh
i ∩H1

0 (Ωi) .

The results of [29] allow us to find a t̂hi ∈ Ghi = Xh
i |Γ such that

ai[û
h, vhi ] = [f, vhi ]Ω + [t̂hi , v

h
i ]Γ ∀ vhi ∈ Xh

i .(4.7)

We define

ûhi = ûh|Ωi
, ĝhi = ûhi + λt̂

h
i , i = 1, 2.(4.8)

For an arbitrary vh ∈ Xh, setting vhi = vh|Ωi
(i = 1, 2) in (4.7) and adding the two

equations, we obtain

a[ûh, vh] = [f, vh]Ω + [t̂h1 + t̂h2 , v
h]Γ ∀ vh ∈ Xh .

A comparison of the last equation with (4.6) yields

[t̂h1 + t̂h2 , v
h]Γ = 0 ∀ vh ∈ Xh

so that

t̂h1 + t̂h2 = 0 .(4.9)

Of course, we have

ûh1 |Γ = ûh2 |Γ .(4.10)

Also, (4.7) and (4.8) imply

ai[û
h
i , v

h
i ] + λ

−1[ûhi , v
h
i ]Γ = [f, vhi ]Ωi

+ λ−1[ĝhi , v
h
i ]Γ ∀ vhi ∈ Xh

i , i = 1, 2 .(4.11)

Lemma 4.2. gh ∈ Gh satisfies Rfhg
h = gh if and only if gh = ĝh.

We easily see that Rfh and R0
h satisfy the following relations:

R0
hg

h =
(
2(S0

hg
h)|Γ − gh

)(
0 1
1 0

)
(4.12)

and

Rfhg
h =

(
2(Sfhg

h)|Γ − gh
)(

0 1
1 0

)
=
(
2(S0

hg
h)|Γ − gh + 2(Thf)|Γ

)(
0 1
1 0

)
= R0

hg
h + 2(Thf)|Γ

(
0 1
1 0

)
.

(4.13)

Relations (4.12)–(4.13) and Lemma 4.1 trivially yield the following.
Lemma 4.3. If gh, g̃h ∈ Gh and c1, c2 are constants, then
(a) R0

h(g
h − g̃h) = Rfhg

h −Rfhg̃h;

(b) R0
h(g

h − ĝh) = Rfhg
h − ĝh;

(c) R0
h(c1g

h + c2g̃
h) = c1R

0
hg

h + c2R
0
hg̃

h.

Proposition 4.4. Let gh = (gh1 , g
h
2 ) ∈ Gh and uhi = Sfi,h g

h
i . Then

‖Rfhgh‖20,Γ = ‖gh‖20,Γ − 4λ

2∑
i=1

(
ai[u

h
i , u

h
i ]− [f, uhi ]Ωi

)
.

In particular, if f = 0, then

‖R0gh‖20,Γ = ‖gh‖20,Γ − 4λ

2∑
i=1

ai[S
0
i,h g

h
i , S

0
i,h g

h
i ] .
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4.3. A discrete interface bias functional and a descent direction. We
define the interface bias functional Efh(g

h) associated with discrete subdomain Robin-
type boundary value problem (4.3) by

Efh(g
h) =

1

2

∫
Γ

(
|uh1 − uh2 |2 + |uh1 + uh2 − gh1 − gh2 |2

)
,(4.14)

where (uh1 , u
h
2 ) = S

f
hg

h.

The minimum value 0 of Efh is uniquely attained at ĝh which is defined in (4.8).
It is easily verified that the generalized method (4.1)–(4.2) can be simply expressed
by  gh,1 given,

gh,k+1 = gh,k + δk(R
f
hg

h,k − gh,k), k = 1, 2, 3, . . . .
(4.15)

We may show that Rfhg
h − gh provides a descent direction for Efh at any gh

so that the generalized method (4.15) is a descent-direction method for solving the
following minimization problem:

min
gh∈Gh

Efh(g
h) subject to (4.3), i = 1, 2.(4.16)

The following identities hold.
Proposition 4.5. Let gh = (gh1 , g

h
2 ) ∈ Gh. Then

(a) Efh(g
h) =

1

4
‖gh −Rfhgh‖20,Γ ≡

1

4

∫
Γ

(
|gh1 −Rf1,h gh|2 + |gh2 −Rf2,h gh|2

)
and

(b) Efh(R
f
hg

h) = Efh(g
h)−4λ

2∑
i=1

ai[S
f
i,h(g

h
i )−Sfi,h(Rfi,h gh), Sfi,h(ghi )−Sfi,h(Rfi,h gh)] .

Proposition 4.6. Let gh ∈ Gh. Then Λh(g
h) ≡ ‖gh−2Rfhgh+RfhRfhgh)‖20,Γ = 0

if and only if gh = ĝh .
Corollary 4.7. Let gh ∈ Gh. The following statements are equivalent:
(i) Λh(g)

h = 0;
(ii) gh = ĝ;

(iii) gh = Rfhg;

(iv) Efhg
h = 0;

(v) Efh(g
h) = Efh(R

f
hg

h).
As a consequence of Proposition 4.5 and Corollary 4.7, we have the following.
Corollary 4.8. Efh(R

f
hg

h) < Efh(g
h) whenever gh ∈ Gh and gh �= ĝh.

The main result of this subsection is the following theorem concerning the optimal
step length in the descent direction.

Theorem 4.9. Assume gh ∈ Gh and Λh(g
h) ≡ ‖gh−2Rfhgh+RfhRfhgh)‖20,Γ �= 0.

Then there is a δh0 = δh0 (g
h) ≥ 1/2 such that

Efh(g
h) > Efh(g

h + δ(Rfhg
h − gh)) ∀ δ ∈ (0, 2δh0 ).

Moreover, Efh(g
h + δ(Rfhg

h − gh)) as a function of δ is strictly decreasing on [0, δh0 ]
and strictly increasing on [δh0 , 2δ

h
0 ].
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4.4. Convergence of the discrete version of the generalized method.
Recall that the discrete version of the generalized method (4.1)–(4.2) can be expressed
by (4.15). By virtue of Theorem 4.9 the generalized method (4.15) is a descent-
direction method for solving the discrete minimization problem (4.16).

We have the following convergence result for iterations (4.15).
Theorem 4.10. Assume that gh,1 ∈ Gh and {δk} ⊂ [δmin, 1] ⊂ (0, 1]. Let

{gh,k}∞k=2 be defined by (4.15) and (uh,k1 , u
h,k
2 ) = Sfhg

h,k, k = 1, 2, 3, . . . . Then

‖uh,ki − ûhi ‖1,Ωi → 0 as k →∞, i = 1, 2.

Theorem 4.11. Assume that {δk} ⊂ [δmin, δmax] ⊂ (0, 1) and gh,1 ∈ Gh.

Let {gh,k}∞k=2 be defined by (4.15) and (uh,k1 , u
h,k
2 ) = Sfhg

h,k, k = 1, 2, 3, . . . . Then

Efh(g
h,k)→ 0 as k →∞.
To conclude this finite element section, we prove the geometric convergence for

algorithm (4.15).
Theorem 4.12. Assume that {δk} ⊂ [δmin, δmax] ⊂ (0, 1] and gh,1 ∈ Gh. Let

{gh,k}∞k=2 be defined by (4.15), k = 1, 2, 3, . . . . Then ‖gh,k− ĝh‖0,Γ → 0 geometrically
as k →∞.

Proof. Mimicking the proof of Theorem 3.10 in the finite element context, we
have

‖gh,k+1 − ĝh‖20,Γ = ‖gh,k − ĝh‖20,Γ − 4λδmin

2∑
i=1

ai[u
h,k
i − ûhi , uh,ki − ûhi ] .(4.17)

Invoking [29, Lemma 11] (see also [1]), we may find a ṽhi ∈ Xh
i such that

ṽhi |Γ = gh,ki − ĝhi and ‖ṽhi ‖1,Ωi
≤ C‖gh,ki − ĝhi ‖1/2,Γ .

Subtracting (4.3) from (4.11), setting vhi = ṽhi , and then using the Poincaré inequality,
trace theorems, and inverse inequalities, we deduce that

‖gh,ki − ĝhi ‖20,Γ = ai[u
h
i − ûhi , ṽhi ] + λ−1[uhi − ûhi , ṽhi ]Γ

≤ C‖uhi − ûhi ‖1,Ωi‖ṽhi ‖1,Ωi ≤ C
(
ai[u

h
i − ûhi , uhi − ûhi ]

)1/2

‖gh,ki − ĝhi ‖1/2,Γ

≤ Ch−1/2
(
ai[u

h
i − ûhi , uhi − ûhi ]

)1/2

‖gh,ki − ĝhi ‖0,Γ, i = 1, 2 .

This leads to

ai[u
h
i − ûhi , uhi − ûhi ] ≥ Ch‖gh,ki − ĝhi ‖20,Γ, i = 1, 2 .(4.18)

We choose a δ̃ ∈ (0, δmin] such that 0 < 1 − 8λCδ̃h < 1, where C is the constant in
(4.18). Combining (4.18) with (4.17), we obtain

‖gh,k+1 − ĝh‖20,Γ ≤ (1− 8λCδminh)‖gh,k − ĝh‖20,Γ ≤ (1− 8λCδ̃h)‖gh,k − ĝh‖20,Γ .
Hence ‖gh,k − ĝh‖0,Γ → 0 geometrically as k →∞.

5. Algorithms and numerical experiments. The generalized method was
put into the concise form (3.16), which can be rewritten as g(1) given,

g(k+1) = (1− δk)g(k) + δkR
fg(k), k = 1, 2, 3, . . . .

(5.1)
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According to Theorem 3.9, at the kth iteration step with a known g(k), the choice
of step length δk = δ0(g

(k)) defined by (3.19) will lead to maximum descent in the
descent direction (Rfg(k) − g(k)). Algorithm I given below will be based on such
choices of locally optimal step lengths. Here we give only the continuous version of
the algorithm. The corresponding discrete version is obvious.

Algorithm I (locally optimal step lengths).

specify (g
(1)
1 , g

(1)
2 ) ∈ L2(Γ);

for k = 1, 2, . . . ,

– solve for (u
(k)
1 , u

(k)
2 ) ∈ X1 ×X2 from

ai[u
(k)
i , vi] + λ

−1[u
(k)
i , vi]Γ = [f, vi]Ωi

+ [g
(k)
i , vi]Γ ∀ vi ∈ Xi , i = 1, 2;

– set (g̃
(k)
1 , g̃

(k)
2 ) = (2u

(k)
2 − g(k)2 , 2u

(k)
1 − g(k)1 ) on Γ;

– solve for (ũ
(k)
1 , ũ

(k)
2 ) ∈ X1 ×X2 from

ai[ũ
(k)
i , vi] + λ

−1[ũ
(k)
i , vi]Γ = [f, vi]Ωi + [g̃

(k)
i , vi]Γ ∀ vi ∈ Xi , i = 1, 2;

– set (˜̃g(k)1 ,
˜̃g(k)2 ) = (2ũ

(k)
2 − g̃(k)2 , 2ũ

(k)
1 − g̃(k)1 ) on Γ;

– calculate

δk =
[g(k) − g̃(k),g(k) − 2g̃(k) + ˜̃g(k)]Γ

‖g(k) − 2g̃(k) + ˜̃g(k)‖20,Γ
;

– set (g
(k+1)
1 , g

(k+1)
2 ) = δk(g̃

(k)
1 , g̃

(k)
2 ) + (1− δk)(g(k)1 , g

(k)
2 ) on Γ;

end for

Remark 5.1. In Algorithm I the ˜̃g(k) step is an additional Lions’ step, and it is
performed purely for the purpose of calculating the optimal step length δk.

In Algorithm II below a fixed step length δ is used. In general, one should choose
a δ ∈ [1/2, 1) since the optimal step lengths are always greater than or equal to 1/2.
In the absence of any further guidance as to a good choice of a constant δ, we suggest
using the golden ratio constant (

√
5 − 1)/2 ≈ 0.618. Again, we describe only the

continuous version of the algorithm.
Algorithm II (fixed step length δ).

specify (g
(1)
1 , g

(1)
2 ) ∈ L2(Γ);

for k = 1, 2, . . . ,

– solve for (u
(k)
1 , u

(k)
2 ) ∈ X1 ×X2 from

ai[u
(k)
i , vi] + λ

−1[u
(k)
i , vi]Γ = [f, vi]Ωi + [g

(k)
i , vi]Γ ∀ vi ∈ Xi , i = 1, 2;

– set (g
(k+1)
1 , g

(k+1)
2 ) = δ(2u

(k)
2 − g(k)2 , 2u

(k)
1 − g(k)1 ) + (1− δ)(g(k)1 , g

(k)
2 ) on

Γ;
end for

Stopping criteria. Based on Corollary 3.7, we may use one or more of the following
as stopping criteria for Algorithms I and II:

‖g(k+1) − g(k)‖20,Γ < tol; Ef (g(k))− Ef (Rfg(k)) < tol;

Ef (g(k)) < tol; ‖Rfg(k) − g(k)‖20,Γ < tol.

Computational results. In Remark 3.14 we explained that we expect the gen-
eralized methods with suitable choices of step lengths {δk} to converge faster than
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Lions’ method. We will demonstrate numerically that this is indeed the case. We
implemented both Algorithms I and II for the boundary value problem

−∆u = f in Ω , u|∂Ω = 0 .

The following three examples were used in our numerical testing.
Example 1. An example with a known exact solution (from [30]):

Ω = (0, 2)× (0, 1), Ω1 = (0, 1)× (0, 1), Ω2 = (1, 2)× (0, 1),
f = ∆[(x− 2)y(sinx) cos(πy/2)], g(1) = (1, 1),
16× 16 grids for each Ωi, i = 1, 2.

Example 2. An example with a known exact solution having multiple humps:

Ω = (0, 2)× (0, 1), Ω1 = (0, 1)× (0, 1), Ω2 = (1, 2)× (0, 1),
f = −∆[(x− 2)y(sin 2πx) cos(3πy/2)], g(1) = (1, 1),
32× 32 grids for each Ωi, i = 1, 2.

Example 3. An example with generic choices of f and initial guesses:

Ω = (0, 2)× (0, 1), Ω1 = (0, 1)× (0, 1), Ω2 = (1, 2)× (0, 1),
f = x2 + y2 + sin(πxy), g(1) = (2, 3),
16× 16 grids for each Ωi, i = 1, 2.

For each example we implemented Algorithms I and II with a number of choices
of fixed step lengths δ. We used Efh(g

h,k) < tol as the stopping criterion. The cal-

culation of Efh(g
(k)) involved integrals on Γ which were approximated by composite

Simpson rules. Also, we choose λ = 1 in all examples. For each example and for
each algorithm (Algorithms I and II with different choices of δ), the computed values

of the interface bias Eh(k) ≡ Efh(gh,k) for iterations 1 through 5 are given in Ta-
bles 5.1–5.3. The optimal step lengths for Examples 1–3, which were calculated in the
implementations of Algorithm I, are given in Table 5.4. To illustrate graphically the
convergence acceleration of the generalized methods compared to Lions’ method, we
plot in Figure 5.1 the curves Eh(k) for Algorithm II with δ = 1 (the Lions’ method)
and Algorithm I (optimal δk).

Dependence on mesh sizes and initial guesses. Our computation results suggest
that the iterative reduction in Ef (g(k)) for Algorithm I (optimal step lengths) is
essentially unaffected by mesh refinements, whereas the reduction in Ef (g(k)) for
Lions’ original method (i.e., δk = 1) markedly slowed down as the mesh was refined;
computational results with different mesh sizes for Examples 1 and 2 are plotted in
Figure 5.2. See [31] for more computational examples. Also, the performance of
Algorithm I is less sensitive to choices of initial guesses than that of Lions’ original
algorithm. See [31] for further illustrations.

Comparison with gradient methods. For comparison we derive below the gradient
method for minimizing the particular interface functional (3.15) subject to the sub-
domain Robin boundary value problems (3.2). We introduce Lagrange multipliers ξi
(i = 1, 2) and form the Lagrangian functional

L(g1, g2, u1, u2, ξ1, ξ2) = 1

2

∫
Γ

|u1 − u2|2 + 1

2

∫
Γ

|u1 + u2 − g1 − g2|2

−
2∑
i=1

(
ai[ui, ξi] + λ

−1[ui, ξi]Γ − [f, ξi]Ωi − λ−1[gi, ξi]Γ

)
.
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Table 5.1
Implementation results for Algorithms I and II with different δ (Example 1).

Eh(1) Eh(2) Eh(3) Eh(4) Eh(5)

Alg. I (opt. δ) 6.669087 0.047283 0.001074 0.000274 0.000085

Alg. II (δ = 1) 6.669087 2.079631 0.838677 0.437171 0.269485

Alg. II (δ = 0.8) 6.669087 0.438941 0.058890 0.011521 0.002526

Alg. II (δ = 0.7) 6.669087 0.098330 0.007416 0.000780 0.000136

Alg. II (δ = 0.618) 6.669087 0.057681 0.001302 0.000321 0.000145

Alg. II (δ = 0.5) 6.669087 0.376576 0.025433 0.002160 0.000397

Alg. II (δ = 0.3) 6.669087 1.934113 0.571690 0.171613 0.052275

Table 5.2
Implementation results for Algorithms I and II with different δ (Example 2).

Eh(1) Eh(2) Eh(3) Eh(4) Eh(5)

Alg. I (opt. δ) 6.825659 1.083740 0.366894 0.139247 0.057358

Alg. II (δ = 1) 6.825088 2.438442 1.115827 0.642416 0.430271

Alg. II (δ = 0.8) 6.825088 1.287785 0.453566 0.194676 0.092025

Alg. II (δ = 0.7) 6.825088 1.092706 0.492522 0.249100 0.132673

Alg. II (δ = 0.618) 6.825088 1.121899 0.584488 0.324944 0.185895

Alg. II (δ = 0.5) 6.825088 1.463038 0.773638 0.475356 0.301023

Alg. II (δ = 0.3) 6.825088 2.847364 1.527228 0.982614 0.697551

Table 5.3
Implementation results for Algorithms I and II with different δ (Example 3).

Eh(1) Eh(2) Eh(3) Eh(4) Eh(5)

Alg. I (opt. δ) 26.827161 0.317631 0.041461 0.011125 0.003360

Alg. II (δ = 1) 26.827161 9.480301 4.384460 2.509528 1.618675

Alg. II (δ = 0.8) 26.827161 2.254784 0.364381 0.077773 0.018560

Alg. II (δ = 0.7) 26.827161 0.647391 0.072631 0.016409 0.006017

Alg. II (δ = 0.618) 26.827161 0.326878 0.041768 0.018543 0.009033

Alg. II (δ = 0.5) 26.827161 1.443123 0.140078 0.035929 0.017449

Alg. II (δ = 0.3) 26.827161 7.586218 2.233397 0.692824 0.233357

Table 5.4
Optimal step lengths in Algorithm I for Examples 1–3.

Iteration k 1 2 3 4 5

δk (Example 1) – 0.643500 0.573260 0.827441 0.961937

δk (Example 2) – 0.629759 0.618903 1.197064 0.667865

δk (Example 3) – 0.673044 1.247752 0.670146 1.282857
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Fig. 5.1. Eh(k) curve for Example 1 (left), Example 2 (center), and Example 3 (right).
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Fig. 5.2. Eh(k) curves for Examples 1–2 by Lions’ method and Algorithm I on three different
meshes. First plot from left: Example 1, Lions’ method; second from left: Example 1, Algorithm I;
third plot from left: Example 2, Lions’ method; fourth from left: Example 2, Algorithm I.

Taking variations of the Lagrangian L with respect to u1 and u2, respectively, we
obtain

a1[ξ1, w1] + λ
−1[ξ1, w1]Γ = [2u1 − g1 − g2, w1]Γ ∀w1 ∈ X1(5.2)

and

a2[ξ2, w2] + λ
−1[ξ2, w2]Γ = [2u2 − g1 − g2, w2]Γ ∀w2 ∈ X2 .(5.3)

By taking variations of the Lagrangian L with respect to g1 and g2, respectively, we
obtain the Frechét derivative of Ef (g1, g2):

〈(Ef )′(g1, g2), (z1, z2)〉 =− [u1 + u2 − g1 − g2, z1]Γ − [u1 + u2 − g1 − g2, z2]Γ
+ λ−1[z1, ξ1]Γ + λ−1[z2, ξ2]Γ ∀ (z1, z2) ∈ L2(Γ) ,

i.e., (Ef )′(g1, g2) = (λ−1ξ1−u1−u2+g1+g2, λ−1ξ2−u1−u2+g1+g2), where ξ1 and
ξ2 are defined by (5.2) and (5.3), respectively. Hence the kth step iteration formulae
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Fig. 5.3. Eh(k) curves for Example 1 (left), Example 2 (center), and Example 3 (right).

for the variable step length gradient method is given by

(g
(k+1)
1 , g

(k+1)
2 ) = (g

(k)
1 , g

(k)
2 )

− δk(λ−1ξ
(k)
1 − u(k)1 − u(k)2 + g

(k)
1 + g

(k)
2 , λ

−1ξ
(k)
2 − u(k)1 − u(k)2 + g

(k)
1 + g

(k)
2 ),

where u
(k)
i , i = 1, 2, are defined by

ai[u
(k)
i , vi] + λ

−1[u
(k)
i , vi]Γ = [f, vi]Ωi

+ λ−1[g
(k)
i , vi]Γ ∀ vi ∈ Xi , i = 1, 2 ,

and ξ
(k)
i , i = 1, 2, are defined by

ai[ξ
(k)
i , wi] + λ

−1[ξ
(k)
i , wi]Γ = [2u

(k)
i − g(k)1 − g(k)2 , wi]Γ ∀wi ∈ Xi .

We implemented the gradient method with a fixed step length δ = 0.5 for Examples
1–3. The results are plotted in Figure 5.3. For comparison, computational results for
Algorithm II with a fixed step length δ = 0.5 are also plotted in Figure 5.3.

Neumann boundary value problems. Algorithms I and II can be easily adapted to
treat the case of a Neumann boundary value problem

−div [A(x)∇u] = f in Ω, [A(x)∇u] · n = d on ∂Ω ,

where f ∈ L2(Ω) and d ∈ L2(∂Ω). The results of sections 3 and 4 also can be
carried over to this case with straightforward modifications, e.g., replacing [f, v] by
[f, v] + [d, v]∂Ω and [f, vi]Ωi by [f, vi]Ωi + [d, vi]Γi .
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Abstract. This paper introduces a fast numerical method for computing American option
pricing problems governed by the Black–Scholes equation. The treatment of the free boundary is
based on some properties of the solution of the Black–Scholes equation. An artificial boundary
condition is also used at the other end of the domain. The finite difference method is used to solve
the resulting problem. Computational results are given for some American call option problems.
The results show that the new treatment is very efficient and gives better accuracy than the normal
finite difference method.
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1. Introduction. In option pricing theory, the Black–Scholes equation is one of
the effective models for option pricing [2]. For European options, the Black–Scholes
equation results in a boundary value problem of a diffusion equation. For American
options, the Black–Scholes equation results in a free boundary value problem. There
are usually two ways to solve the option pricing problem—the analytic and numer-
ical approaches. For European options, the analytic solution is relatively easier to
obtain. For the analytic approach, efforts have been mainly on the American options.
Johnson [16] and MacMillan [18] use analytical approximation for American puts on a
nondividend paying stock. For American options on dividend paying stock, Geske and
Johnson [10] give an analytic solution in a series form. When closed form solutions
cannot be obtained, or when the formulas for the exact solutions are too difficult to
be practically usable, numerical solution is a natural way to solve the problem. The
binomial method is a simple and very effective method for solving American options;
this is introduced by Cox, Ross, and Rubinstein [7], and the convergence of the bi-
nomial method for American options is proved by Amin and Khanna [1]. Brennan
and Schwartz [3], [4] and Schwartz [19] introduced finite difference methods for solv-
ing American options. Jaillet, Lamberton, and Lapeyre [15] show the convergence of
the finite difference method. A comparison of different numerical methods for option
pricing can be found in [5], [11].

In solving the Black–Scholes equation for American options, a natural approach
is to transform the original equation to a standard forward diffusion equation over
an infinite domain. The finite difference method is applied to the equation over a
truncated finite domain, and the original asymptotic infinite boundary conditions are
shifted to the ends of the truncated finite domain. To avoid generating large errors
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in the solution due to this approximation of the boundary conditions, the truncated
domain must be large enough, which results in a large cost. Obviously, a large part
of the finite difference solution is actually useless, and the reason to compute these
is only to guarantee the accuracy of the rest of the solutions. Kangro and Nicolaides
[17] give error estimates of the numerical solutions with far field boundary conditions.
Artificial boundary conditions have been applied to different problems on infinite
domains; see, for examples, [8], [12], [13], [14]. In this paper, we find the accurate
boundary conditions on the far boundary for the American option problem, which
is actually a relation between the function and its partial derivatives. Then this
boundary condition is discretized and combined with the finite difference discretization
for the partial differential equation. With these boundary conditions, we can make the
computational domain small and obtain accurate solutions. For the free boundary,
we give some properties of the solution of the Black–Scholes equations. Using these
properties, we design a simple numerical method to determine the location of the
free boundary. Some computational results are given for the American options with
dividend paying, and the results are compared with approximations using standard
finite difference methods.

The computational results show that these algorithms give more accurate numer-
ical results than the standard finite difference approximation. With a relatively small
truncated domain, the standard finite difference method usually cannot give satisfac-
tory results. Our algorithms give more accurate numerical results, and the option
price can be obtained for all the asset prices.

2. Some properties of the solution of the Black–Scholes equation. As-
sume that S is the asset price, t is the time, and C is the call option value. Let r
denote the risk-free interest rate, let σ denote the volatility of the asset price, and let
D0 denote the continuous dividend yield. Then the call value of the American option
is given by the free boundary value problem of the Black–Scholes equation [20],

∂C

∂t
+
1

2
σ2S2 ∂

2C

∂S2
+ (r −D0)S

∂C

∂S
− rC = 0,

0 < S < Sf (t), 0 ≤ t < T,

(1)

where Sf (t) is the free boundary of early exercise. The final and boundary conditions
are given by

C(S, T ) = h(S), 0 ≤ S ≤ Sf (T ) = S0,(2)

C(Sf (t), t) = h(Sf (t)),
∂C

∂S
(Sf (t), t) = 1, 0 ≤ t ≤ T,(3)

C(S, t)→ 0 as S → 0, 0 ≤ t ≤ T,(4)

where h(S) = max(S − E, 0), with E > 0 and S0 = max(E, rE/D0).
We introduce the change of variable for t:

t = T − 2τ

σ2
.
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Denote

C∗(S, τ) = C(S, t) = C(S, T − 2τ/σ2),
S∗f (τ) = Sf (T − 2τ/σ2),

r∗ =
2r

σ2
,

D∗ =
2D0

σ2
,

τ∗ =
σ2T

2
.

Then the free boundary value problem (1)–(4) is equivalent to the following problem:

LC∗ ≡ −∂C
∗

∂τ
+ S2 ∂

2C∗

∂S2
+ (r∗ −D∗)S ∂C

∗

∂S
− r∗C∗ = 0,(5)

0 < S < S∗f (τ), 0 < τ < τ∗,
C∗(S, 0) = h(S), 0 ≤ S ≤ S∗f (0),(6)

C∗(S∗f (τ), τ) = h(S∗f (τ)),
∂C∗

∂S
(S∗f (τ), τ) = 1, 0 ≤ τ ≤ τ∗,(7)

C∗(S, τ)→ 0 as S → 0.(8)

Let

k′ = r∗ −D∗,

α =
−(k′ − 1)

2
, β =

−(k′ − 1)2
4

− r∗.

Furthermore, we introduce the change of variables

S = Eex,
C∗(S, τ) = Eeαx+βτu(x, τ).

Then the free boundary value problem (5)–(8) is equivalent to the following problem:

∂u

∂τ
=
∂2u

∂x2
, −∞ < x < xf (τ),(9)

u(x, 0) = g(x, 0), −∞ < x ≤ xf (0),(10)

u(xf (τ), τ) = g(xf (τ), τ), αu(xf (τ), τ) +
∂u(xf (τ), τ)

∂x
(11)

= e(1−α)xf (τ)−βτ , 0 ≤ τ ≤ τ∗,
u(x, τ)→ 0 as x→ −∞,(12)

where

g(x, τ) = e−αx−βτ max(ex − 1, 0).
The free boundary xf (τ) = ln(S∗f (τ)/E). It is known that xf (τ) > 0 for τ > 0.

We now consider the problem (5)–(8). Let

W =
∂C∗(S, τ)

∂S
;
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then W satisfies

−∂W
∂τ

+ S2 ∂
2W

∂S2
+ (2 + r∗ −D∗)S ∂W

∂S
−D∗W = 0,(13)

0 < S < S∗f (τ), 0 < τ ≤ τ∗,
W (S, 0) = 0, 0 < S < E, and W (S, 0) = 1, E < S < S∗f (0),(14)

W (S∗f (τ), τ) = 1, 0 < τ ≤ τ∗.(15)

For W (S, τ), we have the following lemma.
Lemma 1.

W (S, τ) =
∂C∗(S, τ)

∂S
→ 0 when S → 0+.

Proof. Since

W (S, τ) =
∂C∗(S, τ)

∂S

=
∂

∂S

(
Eeαx+βτu(x, τ)

)
=

∂

∂x

(
Eeαx+βτu(x, τ)

) dx
dS

= e(α−1)x+βτ

(
∂u(x, τ)

∂x
+ αu(x, τ)

)
,(16)

where u(x, τ) satisfies (9)–(12), let φ(τ) = u(0, τ), φ(0) = 0, and then [6]

u(x, τ) =
−x
2
√
π

∫ τ

0

e−
x2

4(τ−λ)
φ(λ)dλ

(τ − λ)3/2 , x < 0,

|u(x, τ)| ≤ |x|
2
√
π
Φ

∫ τ

0

e−
x2

4(τ−λ)
dλ

(τ − λ)3/2

≤ 4Φ√
π

∫ τ

0

e−
x2

8(τ−λ)
dλ√
τ − λ

=
4Φ√
π
e−

x2

8τ

∫ τ

0

e−
x2

8 (
1

τ−λ− 1
τ ) dλ√

τ − λ
≤ 8Φ√

π

√
τe−

x2

8τ , x ≤ −1, 0 ≤ τ ≤ τ∗,(17)

where

Φ = max
0≤λ≤τ∗

|φ(λ)|.

Similarly,

(18)

∣∣∣∣∂u(x, τ)∂x

∣∣∣∣ ≤ C0Φ
√
τe−

x2

8τ , x ≤ −1, 0 ≤ τ ≤ τ∗,

where C0 is a constant. Combining (16)–(18), we obtain

(19) lim
S→0+

W (S, τ) = lim
S→0+

∂C∗(S, τ)
∂S

= 0.
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Finally, we know that W (S, τ) is the solution of problem (13)–(15) and (19). By
the strong maximum principle of the parabolic equation [9] we have the following
theorem.

Theorem 1. W (S, τ) satisfies the following inequality:

0 < W (S, τ) < 1, 0 < S < S∗f (τ), 0 < τ ≤ τ∗.

Namely,

0 <
∂C∗(S, τ)

∂S
< 1, 0 < S < S∗f (τ), 0 < τ ≤ τ∗,

and

(20) 0 < e(α−1)x+βτ

(
∂u(x, τ)

∂x
+ αu(x, τ)

)
< 1, 0 < x < xf (τ), 0 < τ ≤ τ∗.

For the solution {C∗(S, τ), S∗f (τ)} of the problem (5)–(8), we extend C∗(S, τ) to
the domain

S∗f (τ) < S < +∞, 0 ≤ τ ≤ τ∗,

by

C∗(S, τ) = h(S), S∗f (τ) < S < +∞, 0 ≤ τ ≤ τ∗.

For a given smooth boundary S = Ŝ(τ) and a given τj , 0 < τj < τ∗, satisfying

S∗f (τ) < Ŝ(τ), τj < τ ≤ τ∗,

consider the following auxiliary problem:

LĈ(S, τ) = 0, 0 < S < Ŝ(τ), τj < τ ≤ τ∗,(21)

Ĉ(S, τ)→ 0, S → 0,(22)

Ĉ(Ŝ(τ), τ) = h(Ŝ(τ)), τj < τ ≤ τ∗,(23)

Ĉ(S, τj) = C∗(S, τj), 0 ≤ S ≤ Ŝ(τj).(24)

Problem (21)–(24) has a solution Ĉ(S, τ) on

Ω = {(S, τ) | 0 < S < Ŝ(τ), τj ≤ τ ≤ τ∗}.
Let

ε(S, τ) = C∗(S, τ)− Ĉ(S, τ).
A computation shows that

Lε(S, τ) =

{
0, 0 < S < S∗f (τ), τj < τ ≤ τ∗,

−D∗S + r∗E ≤ 0, S∗f (τ) ≤ S ≤ Ŝ(τ), τj < τ ≤ τ∗,

and

∂ε(S, τ)

∂S
is continuous on S = S∗f (τ), τj < τ ≤ τ∗.
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From the strong maximum principle we get

ε(S, τ) > 0, 0 < S < Ŝ(τ), τj < τ ≤ τ∗.

When S∗f (τ) < S < Ŝ(τ), we have

ε(S, τ) = C∗(S, τ)− Ĉ(S, τ) = h(S)− Ĉ(S, τ) > 0,

namely,

(25) Ĉ(S, τ) < h(S), S∗f (τ) < S < Ŝ(τ), τj < τ ≤ τ∗.

Let

Ĉ(S, τ) = Eeαx+βτ û(x, τ)

with S = Eex. Then the auxiliary problem (21)–(24) is equivalent to the problem

∂û

∂τ
=
∂2û

∂x2
, −∞ < x < x̂f (τ),(26)

û(x, 0) = u(x, 0), −∞ < x ≤ x̂f (τ),(27)

û(x̂f (τ), τ) = g(x̂f (τ), τ),(28)

û(x, τ)→ 0 as x→ −∞,(29)

where x̂f (τ) = ln(Ŝ(τ)/E) ≥ xf (τ), τj < τ ≤ τ∗.
From inequality (25) we obtain the following theorem.
Theorem 2. For the solution û(x, τ) of the auxiliary problem (26)–(29) the

following inequality holds:

û(x, τ) < g(x, τ), xf (τ) < x < x̂f (τ), τj < τ ≤ τ∗.(30)

The inequality (30) is very useful for determining the location of the free boundary
in the numerical schemes.

3. An exact boundary condition on the artificial boundary. We now
return to the problem (9)–(12), which is defined on an unknown unbounded domain
Ω̄:

Ω̄ = {(x, τ) | −∞ < x < xf (τ), 0 < τ ≤ τ∗}.
It is known that the free boundary xf (τ) > 0, 0 < τ ≤ τ∗. Let a < 0 be a real
number. We introduce an artificial boundary Γa:

Γa = {(x, τ) | x = a, 0 < τ ≤ τ∗}.
The artificial boundary Γa divides the domain Ω into two parts, the bounded part Ωi
and the unbounded part Ωe:

Ωi = {(x, τ) | a < x < xf (τ), 0 < τ ≤ τ∗},
Ωe = {(x, τ) | −∞ < x < a, 0 < τ ≤ τ∗}.

If we can find a suitable boundary condition on the artificial boundary Γa, then the
problem (9)–(12) can be reduced on the bounded domain Ωi. On Ωe, the solution of
(9)–(12), u(x, τ), satisfies

∂u

∂τ
=
∂2u

∂x2
, −∞ < x < a, 0 < τ ≤ τ∗,(31)

u(x, 0) = 0, −∞ < x < a.(32)
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The problem (31)–(32) is an incompletely posed problem. If we know the value of
u(x, τ) on the boundary Γa,

u(a, τ) = φ(τ)(33)

with φ(0) = 0, then the solution of (31)–(33) is given by [6]

u(x, τ) =
−(x− a)
2
√
π

∫ τ

0

e
−(x−a)2

4(τ−λ)
φ(λ)dλ

(τ − λ)3/2 .(34)

Introducing the new variable

µ =
x− a

2
√
τ − λ,

we get

u(x, τ) =
2√
π

∫ x−a

2
√

τ

−∞
φ

(
τ − (x− a)2

4µ2

)
e−µ

2

dµ.(35)

Then we have

∂u(x, τ)
∂x =

2√
π
φ(0)e−

(x−a)2

4τ · 1

2
√
τ

+
2√
π

∫ x−a

2
√

τ

−∞
φ′
(
τ − (x− a)2

4µ2

)(
−x− a
2µ2

)
e−µ

2

dµ

= − 2√
π

∫ x−a

2
√

τ

−∞
φ′
(
τ − (x− a)2

4µ2

)(
x− a
2µ2

)
e−µ

2

dµ

=
1√
π

∫ τ

0

e−
(x−a)2

4(τ−λ)
φ′(λ)dλ√
τ − λ , x < a.

Thus we have

∂u

∂x

∣∣∣∣
x=a

=
1√
π

∫ τ

0

∂u(a, λ)

∂λ

dλ√
t− λ.(36)

The relationship in (36) is an exact boundary condition satisfied by u(x, τ), the so-
lution of problem (9)–(12), on the artificial boundary Γa. By the exact boundary
condition (36), the free boundary value problem for an American call option with
dividend paying in an unbounded domain Ω is reduced to a problem in a bounded
domain Ωi:

∂u

∂τ
=
∂2u

∂x2
, a < x < xf (τ), 0 < τ ≤ τ∗,(37)

u(x, 0) = g(x, 0), a < x < xf (0),(38)

u(xf (τ), τ) = g(xf (τ), τ), 0 < τ ≤ τ∗,(39)

e(α−1)xf (τ)+βτ

[
∂u(xf (τ), τ)

∂x
+ αu(xf (τ), τ)

]
= 1, 0 ≤ τ ≤ τ∗,(40)

∂u

∂x

∣∣∣∣
x=a

=
1√
π

∫ τ

0

∂u(a, λ)

∂λ

dλ√
t− λ.(41)
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It is straightforward to check that the problem (9)–(12) is equivalent to the problem
(37)–(41) in the following sense: If {u(x, τ), xf (τ)} is the solution of problem (9)–(12),
then {u(x, τ), xf (τ)} is the solution of problem (37)–(41). If {u∗(x, τ), x∗f (τ)} is the
solution of problem (37)–(41), let

xf (τ) = x∗f (τ),

u(x, τ) =

{
u∗(x, τ), a ≤ x ≤ xf (τ), 0 ≤ τ ≤ τ∗,

− (x−a)
2
√
π

∫ τ
0
u∗(a,λ)e−(x−a)2/4(τ−λ)

(τ−λ)3/2 dλ, x < a, 0 ≤ τ ≤ τ∗,

and then {u(x, τ), xf (τ)} is the solution of problem (9)–(12).

4. Finite difference approximation. In this section, we consider the numer-
ical approximation of the problem (37)–(41). Let δτ and δx denote the step sizes of
the finite difference approximation. Let xn = a+nδx and τm = mδτ , and denote the
approximate solution of u(xn, τm) by u

m
n . Using the Crank–Nicolson finite difference

for (37), we get

umn − um−1
n

δτ
=
1

2

(
um−1
n+1 − 2um−1

n + um−1
n−1

(δx)2
+
umn+1 − 2umn + umn−1

(δx)2

)
,

n = 1, 2, . . . , m = 0, 1, . . . .

Letting ρ = δt/(δx)2, we have

(1 + ρ)um1 −
ρ

2
um2 = b1,(42)

−ρ
2
umn−1 + (1 + ρ)umn −

ρ

2
umn+1 = bn, n = 2, 3, . . . ,(43)

where

b1 =
ρ

2
(um−1

0 + um−1
2 ) + (1− ρ)um−1

1 +
ρ

2
um0 ,

bn =
ρ

2
(um−1
n−1 + um−1

n+1 ) + (1− ρ)um−1
n , n = 2, 3, . . . .

The solution umn can be obtained as follows. Let s1 = 1+ρ and y1 = b1; then we have

s1u
m
1 −

ρ

2
um2 = y1.

Solving for um1 and substituting into (43), we get

s2u
m
2 −

ρ

2
um2 = y2,

where

s2 = 1 + ρ− ρ2

4s1
, y2 = b2 +

ρy1

2s1
.

In general, we have

snu
m
n −

ρ

3
umn+1 = yn,
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where

sn = 1 + ρ− ρ2

4sn−1
, yn = bn +

ρyn−1

2sn−1
.

If the boundary condition

umNe+1 = gNe+1

is given at certain point, then umn , n ≤ Ne, can be obtained by back substitution.
From Theorems 1 and 2 we know that for a given τ the free boundary is the only
point satisfying the partial differential equation and the condition

e(α−1)x+βτ

(
∂u(x, τ)

∂x
+ αu(x, τ)

)
= 1

or, equivalently,

∂C(S, t)

∂S
= 1,

and if the boundary condition u(x, τ) = g(x, τ) is given at x > xf (τ), then u(x, τ) <
g(x, τ) will occur on the left of the boundary. Let Ne be the largest number such that

umNe
≥ gNe ;

then we have

umNe
=

1

sNe

(
bNe

+
ρ

2
gNe+1 +

ρyNe−1

2sNe−1

)
,

umn =
1

sn

(
yn +

ρ

2
umn+1

)
for n = Ne − 1, Ne − 2, . . . , 1.

For the artificial boundary condition, since∫ τm

0

∂u(a, λ)

∂λ

dλ√
τm − λ

=

m∑
j=1

∫ τj

τj−1

∂u(a, λ)

∂λ

dλ√
τm − λ

=

m∑
j=1

∂u(a, ξj)

∂τ

∫ τj

τj−1

dλ√
τm − λ

=

m∑
j=1

2(τj − τj−1)uτ (a, ξj)√
τm − τj +√τm − τj−1

,

equation (41) is approximated by

um1 − um−1

2δx
=

1√
π

m∑
j=1

2(uj0 − uj−1
0 )√

τm − τj +√τm − τj−1
.(44)

Approximating (37) at x = a, we get

um0 − um−1
0

δτ
=
um1 − 2um0 + um−1

(δx)2
.(45)
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From (44) and (45) we obtain the boundary condition

um0 =
θH1 +

√
πH2/4

θ +
√
π(1 + 2θ2)/4

,(46)

where θ =
√
δτ/δx, H2 = um−1

0 + θ2um1 , and

H1 = um−1
0 +

√
πθum1 /4−

m−1∑
j=1

uj0 − uj−1
0√

m− j +√m− j + 1
.

Thus we have the following algorithm.
Algorithm.
At each time step, do the following:
1. Set up the linear system using the Crank–Nicolson finite difference method
for x ≥ a.

2. Combine the artificial boundary condition (46) and (42) to eliminate um0 .
3. Use the elimination for the linear system in the interval [a, b]. Move the right
boundary b until the free boundary is found.

4. Use back substitution to find all solutions in [a, b].
At the end τ∗, use (34) to find all solutions to the left of a.

5. Computational results. To compare the above algorithm with the standard
finite difference approximations, we computed two examples of call options. The
second example was also computed by Broadie and Detemple [5]. The comparisons
are based on the accuracy of the approximate option values and the total computation
cost, i.e., the CPU time. Since the exact option values are unknown, we use the
binomial method with large steps (15000) to find the option values. The results of
the binomial method with large steps are considered very accurate. Thus we take these
values as the exact option values for the purpose of comparison. All the algorithms are
implemented using MATLAB for testing purposes, and the computations are carried
out on an IBM RS/6000 43P Model 260 workstation.

In both examples, ABF stands for the numerical method given in the previous
section, artificial boundary condition with free boundary treatment. FDP stands
for the Crank–Nicolson finite difference approximation with projected SOR iteration
to impose the free boundary condition. FDE stands for the Crank–Nicolson finite
difference approximation with elimination-backsubstitution. In both FDP and FDE
methods, the systems are set up in the interval [xm, xp], where xm = a < 0 and
xp > xf (τ) > 0 for all τ > 0. The asymptotic boundary conditions are applied at
both ends x = xm and x = xp.

Example 1. Consider a six-month American call option with a dividend rate
D0 = 0.03. The exercise price is $100, the risk-free interest rate is r = 0.03, and the
volatility is 40% per annum. The right boundary is set to xp = 0.8. (The largest
value of xf (τ) is about 0.62.) A step size m = 400 with ratio ρ = 1 is taken for all
methods. Table 1 shows the results. When a = −0.2, the corresponding asset price is
about 81.87. Thus the option values corresponding to S ≤ 80 are not shown for FDP
and FDE methods. Similarly, when a = −0.6, the corresponding asset price is about
54.88, and the option values corresponding to S ≤ 50 are not shown. However, the
ABF method can give the option values corresponding to any asset prices.

From the computational results shown in Table 1, it is clear that the accuracy of
the option values are largely affected by the choice of the left boundary x = a. To
obtain an accurate option value for the asset price S = 80, a must be smaller than
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Table 1
American call option value (maturity T= 0.5, M= 400).

Asset True
a price FDP FDE ABF value

-0.2 40 0.0028 0.002792
50 0.0456 0.045594
60 0.3013 0.301387
70 1.1459 1.145799
80 3.0435 3.041536
90 4.3058 4.3058 6.3643 6.328677
100 10.1228 10.1228 11.1267 11.108407
110 16.7980 16.7980 17.2772 17.266726
120 24.3457 24.3458 24.5710 24.565972

CPU 21.2000 8.8300 6.2900
-0.6 40 0.0028 0.002792

50 0.0455 0.045594
60 0.2493 0.2492 0.3011 0.301387
70 1.1365 1.1366 1.1464 1.145799
80 3.0396 3.0398 3.0416 3.041536
90 6.3282 6.3283 6.3287 6.328677
100 11.1066 11.1067 11.1068 11.108407
110 17.2664 17.2665 17.2665 17.266726
120 24.5654 24.5655 24.5655 24.565972

CPU 29.4000 12.2600 8.9100
-1.0 40 0.0025 0.0025 0.0028 0.002792

50 0.0457 0.0457 0.0457 0.045594
60 0.3014 0.3015 0.3015 0.301387
70 1.1459 1.1461 1.1461 1.145799
80 3.0414 3.0415 3.0415 3.041536
90 6.3285 6.3287 6.3287 6.328677
100 11.1066 11.1068 11.1068 11.108407
110 17.2664 17.2665 17.2665 17.266726
120 24.5654 24.5655 24.5655 24.565972

CPU 37.1300 15.7600 11.5000

−0.4, and for S = 70, a must be smaller than −0.5. The ABF method gives much
more accurate solutions. Compared with the FDP and FDE methods, to obtain an
accurate option value for S = 80, a = −0.2 is enough, and for S = 70, a = −0.4 is
enough.

Figure 1 shows the comparison of error and CPU for the FDE and ABF methods.
The error e is measured by

e =

[
1

K

K∑
i=1

(Ci − C̄i)2
]1/2

,

where Ci is the binomial value, C̄i is the value of the FDE method, or of the value
of the ABF method, and K is the total number of option values taken. The figure
shows clearly that the ABF method is much more efficient than the FDE method.

When the maturity time is longer, the error generated due to the rough approx-
imation at the left boundary can be more serious. In example 2, we compare the
different algorithms for option value with longer maturity time.

Example 2. Consider a three-year American call option with a dividend rate
D0 = 0.07. The exercise price is $100, the risk-free interest rate is r = 0.03, and the
volatility is 40% per annum. The right boundary is set to xp = 0.8. (The largest
value of xf (τ) is about 0.7.) A step size m = 400 with ratio ρ = 1 is taken for all
methods. Table 2 shows the results. The corresponding asset price for a = −0.4 is
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Table 2
American call option value (maturity T= 3.0, M= 400).

Asset True
a price FDP FDE ABF value

-0.4 20 0.053 0.053
40 1.129 1.127
60 4.729 4.719
80 6.378 6.378 11.354 11.326
100 17.639 17.639 20.853 20.793
120 30.744 30.744 32.824 32.781

CPU 13.32 4.34 5.22
-0.8 20 0.053 0.053

40 1.127 1.127
60 3.845 3.845 4.720 4.719
80 10.942 10.942 11.329 11.326
100 20.610 20.610 20.801 20.793
120 32.686 32.686 32.784 32.781

CPU 18.64 6.19 6.32
-1.2 20 0.053 0.053

40 0.977 0.977 1.126 1.127
60 4.684 4.684 4.717 4.719
80 11.314 11.314 11.323 11.326
100 20.786 20.786 20.790 20.793
120 32.781 32.781 32.783 32.781

CPU 22.53 7.72 7.36
-1.6 20 0.053 0.053

40 1.124 1.124 1.127 1.127
60 4.720 4.720 4.720 4.719
80 11.327 11.327 11.327 11.326
100 20.796 20.795 20.796 20.793
120 32.783 32.783 32.783 32.781

CPU 27.53 9.29 8.44
-2.0 20 0.052 0.052 0.053 0.053

40 1.128 1.128 1.127 1.127
60 4.720 4.720 4.720 4.719
80 11.328 11.328 11.327 11.326
100 20.796 20.796 20.796 20.793
120 32.781 32.781 32.781 32.781

CPU 31.21 10.70 9.64
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about 67.03, that for a = −0.8 is about 44.93, that for a = −1.2 is about 30.12, and
that for a = −1.6 is about 20.19. Option values corresponding to asset prices smaller
than these values for the FDP and FDE methods are not shown.

For the FDP and FDE methods, the option values are totally wrong for a = −0.4.
When a = −0.8, the option values are still not accurate for asset prices up to S = 90,
although the left boundary is about S = 44.93. To obtain accurate option values, the
left boundary needs to be a = −2.0. The ABF method improved the results greatly.
Even for a = −0.4, the option values are close to the true values.

In comparison of the efficiency of all algorithms, we can see from the table that if
more option values are needed, then a large saving can be resulted by using artificial
boundary conditions. For example, if the option values for S = 20 to S = 120
are needed, then for the FDP and FDE methods, a must be at least −2.0, and
the corresponding CPU time is about 31.21 seconds for the FDP method and 10.7
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seconds for the FDE method. However, the ABF method with a = −0.4 can give more
accurate option values, while the CPU time is only 5.22 seconds. For this example,
the savings in CPU time is nearly 50%. The savings in CPU time will be different for
different cases, but it is clear that the savings are significant.

Figures 2–5 show close comparisons of the option values for the FDE method and
the ABF method, where the exact option values are obtained by the ABF method
with m = 2000 on a large interval, x ≥ −2; the results are very accurate. The four
figures show the comparison results for a = −0.4, a = −0.8, a = −1.2, and a = −1.6.
It is clear from the figures that the results of the FDE method are not acceptable for
a = −0.4 and a = −0.8. When a = −1.2, the error can still be seen for the FDE
method, while the ABF method gives accurate values for all the cases.

Figure 6 shows the comparison of error and CPU for the FDE and ABF methods.
Again, we can see that the ABF method is much more efficient than the FDE method.

6. Conclusion. The artificial boundary conditions give accurate relations of
the solutions at the boundary. By using the artificial boundary conditions in the
finite difference approximation, we obtained the solution in a small truncated domain.
Numerical results show that the solution is very accurate. The treatment for the free
boundary is also very efficient. The computational cost is greatly reduced.

Acknowledgment. The authors wish to thank the referees for many valuable
suggestions.
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Abstract. We investigate necessary and sufficient conditions for the convergence of attractors
of discrete time dynamical systems induced by numerical one-step approximations of ODEs to an
attractor for the approximated ODE. We show that both the existence of uniform attraction rates
(i.e., uniform speed of convergence toward the attractors) and uniform robustness with respect to
perturbations of the numerical attractors are necessary and sufficient for this convergence property.
In addition, we can conclude estimates for the rate of convergence in the Hausdorff metric.
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1. Introduction. The long time behavior of dissipative dynamical systems is
essentially determined by the attractors of these systems, since for large times its
trajectories will typically stay on or near an attractor. Even for moderately complex
finite dimensional systems, however, it is rarely possible to determine attractors by an-
alytic methods. Hence numerical approximations form a natural part of a systematic
analysis. It is therefore important to know about the effects of discretization errors
on attractors in order to give a reasonable interpretation to numerical experiments
and to justify numerical findings.

For dynamical systems induced by ODEs, numerical one-step approximations like
Runge–Kutta or Taylor schemes form an important class of schemes. It follows from a
result of Kloeden and Lorenz in 1986 [18] for attracting sets that if the ODE possesses
an attractor A, then the discrete time dynamical system induced by such a numerical
scheme also has an attractor contained in a neighborhood N of A, where the size of
N shrinks down to A as the time-step of the discretization approaches 0.

A number of examples (see, e.g., [7, Example (2.12)], [9, Example 1.1.1], or [11] for
the case of finite dimensional approximations of infinite dimensional systems) shows
that the limit set for a convergent sequence of numerical attractors for vanishing time-
steps may be strictly smaller than A. This fact, however, imposes a major problem
for the interpretation of numerical results, since it implies that in general one cannot
conclude the existence of a real attractor close to a numerical attractor. Hence it is
important to derive techniques or conditions which allow us to conclude convergence
of numerical attractors to a real attractor.

There are three main approaches for tackling this problem: The first is to impose
suitable conditions on the approximated system which ensure a faithful numerical
approximation and exclude the appearance of numerical artifacts. Typical examples
of this approach are, for instance, results on the numerical approximation of Morse–
Smale systems by Garay [5, 6], on the discretization of gradient systems by Hale and
Raugel [12] or Stuart and Humphries [22, section 7.7], and a result on hyperbolic
attractors by the author [8, Remark 2.10(ii)].
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The second approach is to design algorithms which can be shown to converge
to the right objects under no or very mild conditions on the approximated system.
An example for this approach is the subdivision algorithm for the computation of
attractors originally developed by Dellnitz and Hohmann [3] using a rigorous dis-
cretization as proposed by Junge [14, 15]; see also [9, section 6.3] for a description
and a quantitative convergence analysis of this method based on robust Lyapunov
functions.

The idea of the third approach is the formulation of conditions on the behavior
of the numerical systems under which we can ensure convergence of the respective
sets or the existence of respective nearby sets for the approximated system. A typi-
cal example are the sufficient conditions for the convergence of numerical attracting
sets in the Galerkin approximation to Navier–Stokes equations by Kloeden [16]. For
finite dimensional systems, in [8] a necessary and sufficient condition of this type was
developed based on uniform attraction properties of the numerical attractors, which
were characterized using (uniformly) shrinking families of neighborhoods which are
mapped onto each other by suitable perturbations of the numerical flows.

The present paper follows this third approach. As in [8] we are going to formulate
necessary and sufficient conditions for the convergence of numerical attractors to a real
attractor in terms of uniform attraction properties. The difference from [8] lies in the
type of uniformity properties used for this purpose, because (i) here we formulate the
properties directly in terms of the numerical attractors instead of using auxiliary at-
tracting sets, (ii) we use comparison functions for characterizing attraction properties
instead of using geometrical characterizations by means of shrinking neighborhoods
which are difficult to identify in a numerical simulation, and (iii) most importantly,
instead of using a condition on the rate of attraction (i.e., the speed of convergence
toward the attractor) for perturbed numerical systems, here we “decouple” the rate
and the perturbation and give two different conditions—one based on the attraction
rate for the unperturbed numerical systems and the other based on the robustness
against perturbations.

More precisely, we prove that a sequence of numerical attractors converges to a
real attractor

• if and only if the numerical attractors are attracting with uniformly bounded
attraction rates (cf. Theorem 6.2(iii));
• if and only if the numerical attractors are robust against perturbation with
uniformly bounded robustness gains (cf. Theorem 6.2(ii) and Theorem 6.4).

In addition, in Theorem 6.5 we give estimates for the discretization error based on
the local error of the numerical scheme and the robustness gains of the respective
attractors.

The tools we need in order to obtain these results are developed step by step
in this paper, which is organized as follows. After defining the setup and stating
some preliminary results in section 2, in section 3 we define a suitable robustness
concept for attracting sets with respect to perturbations, describe the concept of
embedding systems into each other, and show how this applies to numerical one-
step approximations. In section 4 we study the relation between the robustness of
attracting sets and their rate of attraction. In section 5 we prove some useful results
on the relation between a continuous time system and its time-h map, and finally, in
section 6 we state the main results on attractors under one-step discretization.

2. Setup and preliminaries. We consider ODEs given by

ẋ = f(x)(2.1)
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and, for some time-step h > 0, discrete time systems of the form

x(t+ h) = Φh(x(t)),(2.2)

where f and Φh are maps from R
d to R

d, d ∈ N.
For simplicity of exposition (cf. Remark 2.1, below) we assume global Lipschitz

properties of the respective systems; i.e., we assume that there exists a constant L > 0
such that the inequalities

‖f(x)− f(y)‖ ≤ L‖x− y‖ for all x, y ∈ R
d(2.3)

and

‖Fh(x)− Fh(y)‖ ≤ L‖x− y‖ for all x, y ∈ R
d(2.4)

hold, where Fh(x) = (Φh(x)− x)/h.
The trajectories of system (2.1) with initial value x0 ∈ R

d for initial time t = 0 are
denoted by ϕ(t, x0) for t ∈ R

+
0 , and the respective trajectories for (2.2) are denoted

by Φh(t, x) for t ∈ hN0 := {hk | k ∈ N0}.
It will often be convenient to combine continuous and discrete time trajectories

in one notation. For this we use the notation Φ(t, x), which either denotes ϕ(t, x)
or Φh(t, x), where the precise meaning will be clear from the context. Whenever we
consider a discrete time system with time-step h > 0, the time t is implicitly assumed
to be in the respective discrete time-scale hN0.

For sets C ⊂ R
d we use the notation

Φ(t, C) =
⋃
x∈C
{Φ(t, x)}.

A special type of a discrete time system is the time-h map of (2.1) which is defined
by the discrete time system

x(t+ h) = ϕ(h, x(t)).(2.5)

The trajectories of (2.5) are denoted by ϕh(t, x). Note that if (2.1) satisfies (2.3) for
some L > 0, then Gronwall’s lemma implies that the time-h map (2.5) satisfies (2.4)

for the Lipschitz constant L̃ = LehL > L.
Another special type of a discrete time system (2.2) is a numerical one-step ap-

proximation Φ̃h of (2.1) which is supposed to satisfy (2.4) and is such that there exist
constants c, q > 0 with

‖Φ̃h(x)− ϕ(h, x)‖ ≤ chq+1 for all x ∈ R
d.(2.6)

Here q is called the order of the scheme. Examples for such approximations are Taylor
and Runge–Kutta schemes; for details we refer, e.g., to the textbooks [4, 13, 21].

Remark 2.1. The global estimates in the inequalities (2.3), (2.4), and (2.6) are in
general quite restrictive. However, since we are interested in the behavior on bounded
subsets of the state space, one can always assume these properties without loss of
generality by applying standard cutoff techniques.

Since we are going to measure distances between different sets, we need the fol-
lowing definitions.
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Definition 2.2. Let C, D ⊂ R
d be nonempty compact sets, x ∈ R

d, and let ‖ · ‖
be the Euclidean norm on R

d. We define the distance from a point to a set by

‖x‖D := min
y∈D
‖x− y‖,

the nonsymmetric Hausdorff distance between two compact sets by

dist(C,D) := max
x∈C

min
y∈D
‖x− y‖,

and the Hausdorff metric for compact sets by

dH(C,D) := max{dist(C,D),dist(D,C)}.

We use these distances for arbitrary bounded sets C, D ⊂ R
d by defining

‖x‖D := ‖x‖clD, dist(C,D) := dist(clC, clD) and dH(C,D) := dH(clC, clD).

For ε > 0 we denote the (open) ε-ball around C by B(ε, C) := {y ∈ R
d | ‖y‖C < ε}.

If C = {x}, we also write B(ε, x).
Note that for all bounded sets C,D,E ⊂ R

d, the equivalences dist(C,D) = 0 ⇔
C ⊆ clD and dH(C,D) = 0⇔ clC = clD and the implication C ⊆ E ⇒ dist(C,D) ≤
dist(E,D) hold.

Our main objects of interest are attracting sets and attractors as given by the
following definition.

Definition 2.3. Let Φ denote the trajectories of a system of type (2.1) or (2.2).
Consider a compact set A ⊂ R

d and an open and bounded set B ⊂ R
d with A ⊂ B.

Then A is called an attracting set with attracted neighborhood B if it is forward
invariant, i.e.,

Φ(t, A) ⊆ A for all t ≥ 0,

and satisfies

lim
t→∞dist(Φ(t, B), A)→ 0.

An attracting set is called an attractor if it is invariant, i.e.,

Φ(t, A) = A for all t ≥ 0.

In order to characterize quantitative properties of attracting sets and attractors,
we make use of comparison functions as introduced by Hahn [10].

Definition 2.4. We define the following classes of comparison functions.

K := {γ : R
+
0 → R

+
0 | γ is continuous, strictly increasing and γ(0) = 0},

L := {σ : R
+
0 → R

+
0 |σ is continuous, strictly decreasing and limr→∞ σ(r) = 0},

KL := {β : R
+
0 × R

+
0 → R

+
0 |β(·, r) ∈ K and β(r, ·) ∈ L for each r ≥ 0}.

Remark 2.5. The functions β ∈ KL are closely related to the usual ε-δ definition
of asymptotic stability. More precisely, for any function a : R

+
0 ×R

+
0 → R

+
0 satisfying

the two properties
(i) for all ε > 0 there exists δ > 0 such that if r ≤ δ, then a(r, t) < ε for all t ≥ 0,
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(ii) for all ε > 0 and for all R > 0 there exists T > 0 such that a(r, t) < ε for all
0 ≤ r ≤ R and for all t ≥ T ,

there exists a function β ∈ KL with a(r, t) ≤ β(r, t) for all r, t ≥ 0.
This fact was already implicitly used in Hahn’s book [10]; in this form it is stated

(but not proved) in Albertini and Sontag [1, Lemma 4.1] and proved (but not explicitly
stated) by Lin, Sontag, and Wang [19, section 3].

Using class KL functions we can define rates of attraction for attracting sets.
Definition 2.6. Let Φ denote the trajectories of a system of type (2.1) or (2.2),

and let A be an attracting set with attracted neighborhood B. Then β ∈ KL is called
rate of attraction of A if the inequality

‖Φ(t, x)‖A ≤ β(‖x‖A, t)

holds for each x ∈ B and each t ≥ 0.
The following lemma shows that each attracting set possesses a rate of attraction.
Lemma 2.7. Let Φ denote the trajectories of a system of type (2.1) or (2.2), and

let A be an attracting set with attracted neighborhood B. Then there exists a rate of
attraction β ∈ KL for A.

Proof. Using the forward invariance and attractivity properties of A and the
(uniform) continuous dependence of a trajectory on the initial value (as induced by
Gronwall’s lemma for (2.1) or by induction for (2.2)), one easily verifies that the
function a : R

+
0 × R

+
0 → R

+
0 defined by a(0, t) = 0 for t ∈ R

+
0 and

a(r, t) := sup
τ≥t

dist (Φ (τ,B(r,A) ∩B) , A)

satisfies the properties (i) and (ii) of Remark 2.5. Hence there exists β ∈ KL with
a ≤ β and consequently

‖Φ(x, t)‖A ≤ sup
τ≥t

dist (Φ (τ,B(‖x‖A, A) ∩B) , A) = a(‖x‖A, t) ≤ β(‖x‖A, t)

for all x ∈ B and all t ≥ 0. This shows the claim.
We end this section by stating some useful properties of attractors which we will

need in what follows.
Lemma 2.8. Let Φ denote the trajectories of a system of type (2.1) or (2.2), and

let A be an attracting set with attracted neighborhood B. Then A contains an attractor
with attracted neighborhood B.

Proof. Verification of the desired properties shows that

Ã :=
⋂
T≥0

cl
⋃
t≥T

Φ(t, B)

is the desired attractor; see [22, Theorem 2.7.4] for details.
Lemma 2.9. Let Φ denote the trajectories of a system of type (2.1) or (2.2). Then

a compact forward invariant attracting set A for Φ with attracted neighborhood B is an
attractor with attracted neighborhood B if and only if it is the minimal compact forward
invariant attracting set (with respect to set inclusion) with attracted neighborhood B.
In particular, for each open and bounded set B ⊂ R

d, there exists at most one attractor
with attracted neighborhood B.

Proof. Let A be an attractor with attracted neighborhood B. Then, in particular,
A is invariant. Now assume that Ã ⊂ A, Ã �= A is a forward invariant attracting set.
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Then there exists a neighborhood N ⊃ Ã with A �⊆ N such that Φ(t, B) ⊂ N for
some t ≥ 0, i.e., in particular, Φ(t, A) �= A, which contradicts the invariance of A.

Let conversely A be a minimal forward invariant attracting set. Then, by Lemma
2.8, A contains an attractor which again is a forward invariant attracting set. Hence
by minimality it coincides with A.

The next lemma shows that the attractor is also the maximal compact invariant
set contained in intB.

Lemma 2.10. Let Φ denote the trajectories of a system of type (2.1) or (2.2),
and let A be an attractor with attracted neighborhood B for Φ. Then each compact
invariant set D ⊂ B for Φ is contained in A.

Proof. Let D ⊂ B be an invariant set for Φ. Then D = Φ(t,D) ⊂ Φ(t, B) for all
t ≥ 0. On the other hand, for each neighborhood N ⊃ A we know that Φ(t, B) ⊂ N
for all t ≥ 0 sufficiently large. Hence D ⊂ N , which implies the assertion.

3. Inflation, robustness, and embedding. The main technique that we will
use in this paper in order to obtain results on convergence of numerical attractors
is the embedding of the numerical approximation into a perturbed continuous time
system, and vice versa. In this section we define suitable perturbed systems, the
corresponding attracting sets, and a useful robustness concept for attracting sets. In
addition, we give a mathematically precise meaning for the embedding property.

The following definition gives the appropriate perturbed systems (see also [17] for
an equivalent definition using differential inclusions).

Definition 3.1. For α ∈ R, α ≥ 0, we define the set of perturbation values

Wα := {w ∈ R
d | ‖w‖ ≤ α}

and the space of measurable functions with values in Wα by

Wα := {w : R→ R
d |w measurable with w(t) ∈Wα for almost all t ∈ R}.

For functions w ∈ Wα and real values a < b, we define ‖w‖[a,b] := ess supt∈[a,b]‖w(t)‖.
For a continuous time system (2.1) we define the α-inflated system by

ẋ = f(x) + w, w ∈Wα,(3.1)

and for a discrete time system we define it by

x(t+ h) = Φh(x(t)) +

∫ t+h

t

w(t)dt, w ∈ Wα.(3.2)

For each initial value x ∈ R
d and each w ∈ Wα we denote the corresponding trajectory

by ϕ(t, x, w) or Φh(t, x, w), respectively. It should be noted that the discrete time
inflation (3.2) of the time-h map (2.5) of a continuous time system (2.1) differs from
the time-h map of the continuous time inflation (3.1) of system (2.1) defined by

x(t+ h) = ϕ(h, x(t), w(t+ ·)),(3.3)

where ϕ(h, x(t), w(t+ ·)) denotes the solution of ẏ(s) = f(y(s))+w(t+s) with y(0) =
x(t).

Throughout this paper, the term inflated time-h map refers to system (3.3), whose
trajectories will be denoted by ϕh(t, x, w).
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As for the unperturbed systems, we use Φ(t, x, w) to denote both discrete and
continuous time trajectories, depending on the context. Furthermore, for α > 0,
x ∈ R

d, and a subset C ⊆ R
d, we use the notation

Φα(t, x) :=
⋃

w∈Wα

{Φ(t, x, w)} and Φα(t, C) :=
⋃
x∈C

Φα(t, x).

Next we define suitable attracting sets for inflated systems and a robustness prop-
erty of attracting sets.

Definition 3.2. Consider an inflated continuous time system (3.1), an inflated
discrete time system (3.2), or an inflated time-h map (3.3) with trajectories denoted by
Φ(t, x, w). Then a compact set Aα with open neighborhood B is called an α-attracting
set with attracted neighborhood B if it is α-forward invariant, i.e.,

Φα(t, A) ⊆ A for all t ≥ 0,

and satisfies

lim
t→∞dist(Φα(t, B), A)→ 0.

Let α0 > 0 and γ ∈ K. Then an attracting set (or attractor) A with attracted
neighborhood B for an unperturbed system (2.1) or (2.2) is called γ-robust for γ and α0

if for each α ∈ (0, α0] there exists an α-attracting set Aα with attracted neighborhood
B for the corresponding inflated system with A ⊆ Aα and

dH(A,Aα) ≤ γ(α).
Here γ ∈ K is called robustness gain.

Remark 3.3. Analogous to Lemma 2.7, one sees that for each α-attracting set
Aα with attracted neighborhood B there exists β ∈ KL such that

‖Φ(t, x, w)‖Aα
≤ β(‖x‖Aα

, t)

for all x ∈ B, t ≥ 0, and w ∈ Wα.
We now define what we mean by an embedded system. For our purpose it is

sufficient to define this concept for discrete time systems.
Definition 3.4. Consider two inflated discrete time systems of type (3.2) with

perturbations from Wα̃0 and Wα0 , respectively. Denote the trajectories of the systems
by Φh and Ψh, respectively, and let α ≥ 0 and C ≥ 1. Then we say that the second
system Ψh is (α, C)-embedded in the first Φh if for each x ∈ R

d and each w ∈ Wα0

there exist w̃ ∈ Wα̃0 with ‖w̃‖[t,t+h] ≤ α+ C‖w‖[t,t+h] and

Φh(t, x, w̃) = Ψh(t, x, w)

for all t ∈ hN0.
Here we call Φh the embedding system and Ψh the embedded system.
Lemma 3.5. Consider three discrete time inflated systems Φh, Ψh, and Θh of type

(2.2), and assume that Ψh is (α1, C1)-embedded in Θh and Θh is (α2, C2)-embedded
in Φh. Then Ψh is (α1 + C1α2, C1C2)-embedded in Φh.

Proof. The proof is straightforward using Definition 3.4.
The following proposition shows how the inflated numerical system

x(t+ h) = Φ̃h(t, x(t)) +

∫ t+h

t

w(s)ds,(3.4)
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with trajectories denoted by Φ̃h(t, x, w), can be embedded into the inflated time-h
map (3.3), and vice versa.

Proposition 3.6. Consider the numerical approximation Φ̃h of system (2.1) for
some h > 0. Let α0 > 0, and consider the constants L and c from (2.3) and (2.6).

Then the α0-inflated numerical system Φ̃h(t, x, w) from (3.4) is (chq, 1 + hL)-
embedded in the chq + (1 + hL)α0-inflated time-h map ϕh from (3.3).

Conversely, the α0-inflated time-h map ϕh from (3.3) is (ehLchq, ehL)-embedded

in the ehLchq + ehLα0-inflated numerical system Φ̃h(t, x, w) from (3.4).
Proof. Consider the auxiliary system defined by

x(t+ h) := ϕ(h, x(t)) +

∫ t+h

t

w(s)ds

for t ∈ hN0, and denote the trajectories with initial value x ∈ R
d at initial time t = 0

by ϕ̃h(t, x, w). It is immediate from Definition 3.4 and inequality (2.6) that ϕ̃h is

(chq, 1)-embedded in Φ̃h and that Φ̃h is (chq, 1)-embedded in ϕ̃h.
We claim that the system ϕ̃h is (0, 1 + Lh)-embedded in ϕh and that ϕh is

(0, eLh)-embedded in ϕ̃h. Then the assertion follows from Lemma 3.5.
In order to prove the embedding relation between ϕh and ϕ̃h, fix some w ∈ Wα0

. It
is sufficient to show the embedding for t = h since then we can continue by induction.
We first construct w̃ such that ϕh(h, x, w̃) = ϕ̃h(h, x, w).

Consider the perturbation

w̃(t) = f(ϕ(t, x)) + w(t)− f
(
ϕ(t, x) +

∫ t

0

w(τ)dτ

)
for t ∈ [0, h]. Then we obtain

d

dt

(
ϕ(t, x) +

∫ t

0

w(τ)dτ

)
= f(ϕ(t, x)) + w(t)

= f

(
ϕ(t, x) +

∫ t

0

w(τ)dτ

)
+ w̃(t)

and

d

dt
ϕ(t, x, w̃) = f(ϕ(t, x, w̃)) + w̃(t),

which by the uniqueness of the solution to this differential equation implies

ϕh(h, x, w̃) = ϕ(h, x, w̃) = ϕ(h, x) +

∫ h

0

w(τ)dτ = ϕ̃h(h, x, w).

From the Lipschitz estimate (2.3) we obtain for almost all τ ∈ [0, h] the inequality

‖w̃(τ)‖ ≤ ‖w(τ)‖+ L
∥∥∥∥∫ τ

0

w(s)ds

∥∥∥∥ ,
which implies

‖w̃‖[0,h] ≤ ‖w‖[0,h] + Lh‖w‖[0,h]
and thus shows the claim.
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Conversely, given again w ∈ Wα0 , we now construct w̃ such that ϕ̃h(h, x, w̃) =
ϕh(h, x, w).

For this purpose, consider w̃ given by

w̃(t) = f(ϕ(t, x, w)) + w(t)− f(ϕ(t, x))
for t ∈ [0, h]. Then arguments similar to those above yield the equality ϕ̃h(h, x, w̃) =
ϕh(h, x, w). By Gronwall’s lemma one easily obtains ‖ϕ(τ, x, w)−ϕ(τ, x)‖ ≤ ‖w‖[0,τ ](eLτ
− 1)/L, which shows that ‖f(ϕ(τ, x, w))− f(ϕ(τ, x))‖ ≤ ‖w‖[0,τ ](eLτ − 1) and thus

‖w̃(τ)‖ ≤ ‖w(τ)‖+ ‖w‖[0,τ ](eLτ − 1)

for almost all τ ∈ [0, h], implying

‖w̃‖[0,h] ≤ ‖w‖[0,h] + ‖w‖[0,h](eLh − 1) = eLh‖w‖[0,h],
i.e., the desired estimate.

In the following two propositions we show the relations between attracting sets
of embedding and embedded systems.

Proposition 3.7. Consider a discrete time system with trajectories Ψh which is
(α, C)-embedded in some other discrete time system with trajectories denoted by Φh
for some α ≥ 0, C ≥ 1. Assume that the embedding system Φh has an attracting set
A which is γ-robust for some γ ∈ K and some α0 ≥ α. Then the embedded system
Ψh has an attracting set Ã with attracted neighborhood B which satisfies

dH(Ã, A) ≤ γ(α).
Proof. By the embedding property we obtain Ψh(t, B) ⊆ Φαh(t, B). Hence the

α-attracting set Aα for the inflated embedding system Φαh is an attracting set for the

embedded system Ψh. Hence Ã = Aα is the desired set.
The next proposition shows that we can even conclude the existence of robust

attracting sets for the embedded system if we are willing to allow a larger distance
between Ã and A.

Proposition 3.8. Consider a discrete time system with trajectories Ψh which is
(α, C)-embedded in some other discrete time system with trajectories denoted by Φh
for some α ≥ 0, C ≥ 1. Assume that the embedding system Φh has an attracting set
A which is γ-robust for some γ ∈ K and some α0 > α. Then for each D > 1 with
Dα ≤ α0 the embedded system Ψh has an attracting set Ã, which is γ(CD · /(D−1))-
robust for α1 = α0(D − 1)/(CD) and satisfies dH(Ã, A) ≤ γ(Dα).

Proof. We set Ã = ADα. The assumption on the (α, C)-embedding implies the
inclusions

Ψα
′
(t, x) ⊆ ΦDα(t, x) for all α′ ∈ [0, (D − 1)α/C]

and

Ψα
′
(t, x) ⊆ ΦCDα

′/(D−1)(t, x) for all α′ ≥ (D − 1)α/C.

Hence setting Ãα′ = ADα for α′ ∈ [0, (D − 1)α/C] and Ãα′ = ACDα′/(D−1) for

α′ ≥ (D − 1)α/C gives attracting sets Ãα′ for Ψα
′
satisfying

dH(Ãα′ , Ã) ≤ dH(Ãα′ , A) ≤ CDα′/(D − 1) for all α′ ≥ 0.

This shows the claim.
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4. Robustness and attraction rates. In this section we investigate the rela-
tion between the robustness gain γ and the attraction rate β. We start by showing
that we can find an upper bound for the robustness gain of an attracting set A which
is essentially determined by its rate of attraction.

Theorem 4.1. There exist maps

µ : KL× R
+ × R

+ → K and σ : KL× R
+ × R

+ → R
+

such that each compact attracting set A ⊂ R
d with attraction rate β ∈ KL and

attracted neighborhood B for a system of type (2.1) or (2.2) is γ-robust for γ =
µ(β, dH(B,A), L) and all α0 > 0 satisfying α0 ≤ σ(β, dH(B,A), L) and B(γ(α0), A) ⊂
B, where L is the Lipschitz constant from (2.3) or (2.4), respectively.

Proof. Set r0 = dH(A,B). For all r ∈ (0, r0] we can define

Tβ(r) = min

{
t ≥ 0

∣∣∣∣β(s, t) ≤ s4 for all s ∈ [r, r0]

}
.

Note that Tβ is finite for all r > 0 (because β(s, t) ≤ β(r0, t)→ 0 as t→∞), monotone
decreasing, and continuous from above; i.e., for rn ↘ r it follows that Tβ(rn)→ Tβ(r)
as a consequence of the continuity of β. This definition implies β(s, Tβ(r) + t) ≤ r/4
for all t ≥ 0 and all s ∈ [0, r]. We set

α0 = σ(β, r0, L) := e
−LTβ(r0) min{r0, β(r0, 0)}/4.

Now for all α ∈ (0, α0] consider the sets

Dα := clB(r(α), A),

where r(α) is chosen minimal such that eLTβ(r(α))α ≤ r(α)/4. The function r(α)
is well defined because of the continuity from above of Tβ . Observe that r depends
only on β, r0, and L and that it is monotone increasing with r(α) → 0 as α → 0.
By Gronwall’s lemma for continuous time systems or by induction for discrete time
systems we obtain for t ≤ Tβ(‖x‖A)

‖Φ(t, x, w)‖A ≤ β(‖x‖A, t) + eLtα(4.1)

for all w ∈ Wα, which implies that for each point x ∈ Dα we obtain

Φ(Tβ(r(α)), x, w) ∈ Dα(4.2)

and

‖Φ(t, x, w)‖A ≤ β(r(α), 0) + r(α)/4 for all t ∈ [0, Tβ(r(α))].(4.3)

Furthermore, for any w ∈ Wα and any x ∈ B inequality (4.1) implies that the
trajectory satisfies

‖Φ(i Tβ(r(α)), x, w)‖A ≤ max{r0/2i, r(α)} for all i ∈ N(4.4)

and hence hits Dα in some uniformly bounded finite time. Now we set

Aα :=
⋃

t∈[0,Tβ(r(α))]

cl Φα(t,Dα).
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These sets are α-forward invariant by construction and by (4.2) and α-attracting by
(4.4). Furthermore, they satisfy A ⊆ Aα for α ∈ (0, α0], B(r(α), A) ⊆ Aα, and
because of (4.3) one obtains dH(Aα, A) ≤ γ(α) with

γ(α) = µ(β, r0, L)(α) := β(r(α), 0) + r(α)/4.

This shows the desired robustness property.
In general, this construction of γ might not yield the best possible robustness

gain for a given system and attracting set. However, the importance of this theorem
is the uniformity that can be deduced from it: knowing the attraction rate, the
distance between B and A, and the Lipschitz constant of the system allows us to
give an upper bound for the robustness gain, no matter what the geometric structure
of A or the behavior of Φ around or on A look like. In particular, when uniform
attraction holds for a family of systems with uniform Lipschitz properties and uniform
distance between the attracting sets and their attracted neighborhoods, then uniform
robustness can also be deduced.

Let us illustrate one special case in which the proof of Theorem 4.1 yields an
explicit expression for µ.

Example 4.2. Assume that A attracts exponentially; i.e., there exist constants
ρ > 0 and λ > 0 such that β(r, t) = ρe−λtr. In this case we obtain Tβ(r) = ln(4ρ)/λ,
and thus r(α) = c1α for c1 = 4(4ρ)L/λ, and consequently µ(β, dH(B,A), L)(α) = c2α
for c2 = c1(ρ + 1/4). Hence exponential attraction yields γ-robustness with linear
robustness gain.

Another interesting consequence of Theorem 4.1 is the following corollary.
Corollary 4.3. Consider an attracting set A for a system of type (2.1) or (2.2).

Then there exist α0 > 0 and γ ∈ K such that A is γ-robust for γ and α0.
Proof. By Lemma 2.7 there exists an attraction rate β ∈ KL for A. Hence

Theorem 4.1 immediately gives the assertion.
Knowing that any attracting set admits a robustness gain, we can easily find an

upper bound for a robustness gain for nested attracting sets.
Lemma 4.4. Let A be an attracting set with attracted neighborhood B for a

system of type (2.1) or (2.2), and let Â ⊃ A be an attracting set which is contained
in B and is γ̂-robust for the α0-inflated system for some γ̂ ∈ K and some α0 > 0.
Let ρ := dist(Â, A). Then A is γ-robust for this α0 and some γ ∈ K satisfying
γ(r) ≤ γ̂(r) + ρ.

Proof. By Corollary 4.3 there exist α̃0 > 0 and γ̃ ∈ K such that A is γ̃-robust
for the α̃0-inflated system. Without loss of generality, we may assume α̃0 ≤ α0 and
γ̃(α̃0) ≥ γ̂(α̃0) + ρ. Now for each α ∈ (0, α0] there exists an α-attracting set Âα ⊇ Â
with dist(Âα, Â) ≤ γ̂(α). Since this implies

dist(Âα, A) ≤ dist(Âα, Â) + dist(Â, A) ≤ γ̂(α) + ρ,

we can conclude that A is γ-robust with γ defined by

γ(α) :=

{
min{γ̃(α), γ̂(α) + ρ}, α ∈ [0, α̃0],
γ̂(α) + ρ, α ∈ [α̃0, α0].

This γ is easily verified to be of class K; thus the assertion follows.
We end this section by proving a “uniform attraction” property of the α-attracting

sets appearing in the definition of the γ-robustness property.
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Proposition 4.5. Consider an attracting set A with attracted neighborhood B
for a system of type (2.1) or (2.2) which is γ-robust for some γ ∈ K and some α0 > 0.
Then for each ε > 0 there exists a function β ∈ KL such that the inequality

‖Φ(t, x, w)‖A ≤ β(‖x‖A, t) + (1 + ε)γ(α)(4.5)

holds for all t ≥ 0, all x ∈ B, all α ∈ [0, α0], all w ∈ Wα, and the trajectories of the
corresponding inflated system.

Proof. It is easily seen that there exists a monotone decreasing sequence αn → 0
such that α0 is the inflation parameter from the assumption and γ(α) < (1+ε)γ(αn+1)
for all α ∈ [αn+1, αn]. We set dn = (1 + ε)γ(αn+1) and r0 = dH(B,A). Now for each
r ∈ (0, r0] we define the functions

σn(r, t) := sup
τ≥t

dist(Φαn(τ,B(r,A) ∩B), A)

and

µn(r, t) := max{σn(r, t)− dn, 0}.

It is immediate that for all r, t > 0 the sequences σn(r, t) and µn(r, t) + dn are mono-
tone decreasing in n and monotone increasing in r. From Remark 3.3 we obtain the
existence of functions βn ∈ KL such that

dist(Φαn(t, x), Aαn
) ≤ βn(‖x‖Aαn

, t).(4.6)

This implies

lim sup
t→∞

dist(Φαn(τ,B(r0, A) ∩B), A) ≤ γ(αn) < dn,

and thus for each n ∈ N there exists T > 0 such that

µk(r, t) = 0 for all k = 1, . . . , n, all r ∈ (0, r0], and all t ≥ T.(4.7)

Furthermore, since A ⊆ Aα for all α ∈ (0, α0], from (4.6) for each n ∈ N and all r > 0
sufficiently small (depending on n) we obtain

σn(r, 0) ≤ βn(r, 0) + γ(αn) ≤ dn.

Hence for each n ∈ N there exists R > 0 such that

µk(r, t) = 0 for all k = 1, . . . , n, all r ∈ [0, R], and all t ≥ 0.(4.8)

Now consider the function a(r, t) := supn∈N0
µn(r, t). From the definition of the µn

we obtain

‖Φ(t, x, w)‖A ≤ µn(‖x‖A, t) + dn ≤ a(‖x‖A, t) + dn ≤ a(‖x‖A, t) + (1 + ε)γ(α)

for all t ≥ 0, all α ∈ [αn+1, αn], and all w ∈ Wα. Furthermore, a(r, t) is monotone
increasing in r and monotone decreasing in t. If we fix n ∈ N and choose T > 0 such
that (4.7) holds, then (4.7) and the monotonicity of µn(r, t) + dn in n imply

a(r, t) ≤ sup
k∈N0

µk(r, t) ≤ sup
k≥n

µk(r, t) ≤ sup
k≥n

µk(r, t) + dk ≤ µn(r, t) + dn ≤ dn
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for all t ≥ T . Similarly, from (4.8) one sees that for each n ∈ N and each t ≥ 0 there
exists R ≥ 0 such that a(r, t) ≤ dn for all r ≤ R. Thus, since dn → 0 as n → ∞, we
obtain a(r, t)→ 0 if either r → 0 or t→∞. Hence by Remark 2.5 a can be bounded
from above by some function β ∈ KL, which shows the claim.

Remark 4.6. Inequality (4.5) describes a property which in nonlinear control
theory is known as input-to-state stability (ISS); see, e.g., the survey [20]. For a
detailed comparative study of various robustness concepts for attracting sets including
their characterization via Lyapunov functions, we refer to [9].

5. Discrete and continuous time systems. By its very nature, a numerical
one-step approximation with time-step h > 0 gives only an approximation to the
time-h map ϕh (2.5) of the continuous time system ϕ (2.1). It is therefore necessary
to obtain information on the dynamical behavior of ϕ from its time-h map ϕh. In
this section we give two results for this purpose.

Proposition 5.1. Consider a sequence of time-steps hn → 0 and a sequence of
γn-robust attracting sets An for γn ∈ K and αn > 0, each with the same attracted
neighborhood B for the inflated time-hn maps (3.3), where αn → α0 > 0 as n → ∞.
Assume there exist γ ∈ K such that lim supn→∞ γn(α) ≤ γ(α) and a compact set
A ⊂ B such that limn→∞ dH(An, A) = 0.

Then A is a γ-robust attracting set for the continuous time system (2.1) for γ and
each α̃0 ∈ (0, α0).

Proof. We first show that A is an attracting set for ϕ. For this, fix ε > 0 and
consider n ∈ N such that dH(An, A) < ε/3 and hnM < ε/3, where M is a bound
on ‖f(x)‖ for x in a sufficiently large neighborhood of B. Then it is easily seen
that there exists T > 0 such that ϕ(ihn, B) ⊂ B(ε/3, An) for all i ∈ N with ihn ≥ T .
Consequently, we obtain ϕ(t, B) ⊂ B(ε,A) for all t ≥ T , and since ε > 0 was arbitrary,
this shows the desired convergence dist(ϕ(t, B), A)→ 0 as t→∞.

It remains to show the γ-robustness. To this end, fix some α ∈ (0, α0) and
consider the set

Aα =
⋂
n≥0

cl
⋃
k≥n

Aαn,

where the Aαn denote the α-attracting sets for the inflated time-hn maps (3.3). Using
the fact that

dH

cl
⋃
k≥n

Aαn, A
α

→ 0 as k →∞

(cf. [2, Proposition 1.1.5]), with the same argument as above one sees that this set is
α-attracting for the inflated system. Since for each ε > 0 we find N ∈ N such that
for all n ≥ N the inequalities

dH(An, A) < ε/2 and dH(A
α
n, An) ≤ γn(α) ≤ γ(α) + ε/2

hold, we can conclude that dH(A
α
n, A) ≤ γ(α) + ε for all n ≥ N and thus

dH(A
α
n, A) ≤ γ(α) + ε,

which shows the desired distance since ε > 0 was arbitrary.
While in general an attracting set for the time-h map is not an attracting set

for the continuous time system, this property is always true for attractors, as the
following lemma shows.
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Lemma 5.2. Let h > 0 and Ah be an attractor with attracted neighborhood B
for the time-h map ϕh (2.5) of the continuous time system (2.1). Then Ah is also an
attractor with attracted neighborhood B for the continuous time system (2.1).

Proof. We first show forward invariance of Ah for ϕ, i.e., ϕ(t, Ah) ⊆ Ah for each
t ≥ 0. By invariance of Ah for ϕh, for each t ≥ 0 we know that ϕh(h, ϕ(t, Ah)) =
ϕ(t, ϕh(h,Ah)) = ϕ(t, Ah); hence ϕ(t, Ah) is a compact invariant set for ϕh, and by
Lemma 2.10 it is contained in Ah.

Now we show that Ah is an attracting set for the continuous time system ϕ.
Forward invariance of Ah and continuous dependence on the initial value imply that
for each δ > 0 there exists ε > 0 such that

dH(D,Ah) < ε ⇒ dH(ϕ(t,D), Ah) < δ

for all t ∈ [0, h] and arbitrary bounded sets D ⊂ R
d. Since attractivity of Ah for ϕh

implies limi→∞, i∈N dist(ϕ(ih,B), A) = 0, we can conclude limt→∞ dist(ϕ(t, B), Ah) =
0; i.e., Ah is also an attracting set for ϕ with attracted neighborhood B.

It remains to show that Ah is an attractor for ϕ. By Lemma 2.8 there exists an
attractor A ⊆ Ah for ϕ. This, in turn, is also an attractor set for ϕh; hence by Lemma
2.9 it must coincide with Ah. Thus Ah is an attractor for ϕ.

6. Numerical discretization. In this section we combine the results from the
previous sections in order to derive criteria under which one can conclude the exis-
tence of attracting sets and attractors from numerical approximations. We start with
sufficient conditions for the existence of attracting sets.

Proposition 6.1. Consider the continuous time system (2.1) and a numerical

one-step approximation Φ̃h for h > 0 satisfying (2.6) for c q > 0. Let L denote a
Lipschitz constant for both systems from (2.3) and (2.4), respectively.

(a) Let A be a γ-robust attracting set for (2.1) for γ ∈ K and α0 ≥ ehLchq. Then
there exists an attracting set Ah for the discrete time system induced by the numerical
approximation Φ̃h satisfying

dH(Ah, A) ≤ γ(ehLchq).

(b) Let Ah be a γ-robust attracting set for Φ̃h, for γ ∈ K, and α0 ≥ chq. Then

there exists an attracting set Ãh for the time-h map (2.5) of the continuous time
system satisfying

dH(Ãh, Ah) ≤ γ(chq).

Proof. This follows directly from Propositions 3.6 and 3.7.
Theorem 6.2. Consider the continuous time system (2.1) and a family of numer-

ical one-step approximations Φ̃hn satisfying (2.6) for a sequence of time-steps hn → 0
as n → ∞. Let An be attractors for the discrete time systems induced by these nu-
merical approximations, each with the same attracted neighborhood B, and assume
that there exists a compact set A ⊂ B with dH(An, A)→ as n→∞.

Then the following properties are equivalent:
(i) A is an attractor for (2.1) with attracted neighborhood B.
(ii) There exist N ∈ N, γ ∈ K, α0 > 0, and sequences Cn → 1 and ρn → 0 such

that for each n ≥ N the attractor An is γn-robust for the numerical system
Φ̃hn

for α0 and γn(r) ≤ γ(Cn r) + ρn.
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(iii) There exist N ∈ N, β ∈ KL, and a sequence εn → 0 such that for each n ≥ N
the attractor An for the numerical system Φ̃hn has attraction rate βn ∈ KL
satisfying βn(r, t) ≤ β(r + εn, t) + εn.

In addition, if (ii) holds for γ ∈ K and α0 > 0, then A is γ-robust for this γ and each
α̃0 ∈ (0, α0), and if (iii) holds for β ∈ KL, then A is attracting with this rate β for
this continuous time system (2.1).

Proof. (i)⇒(ii): Since A is an attracting set by Corollary 4.3, it is also γ-robust for
some suitable γ ∈ K and α̃0 > 0. Since by Proposition 3.6 the α0-inflated numerical
system (3.4) for α0 = α̃0/2 and n sufficiently large is embedded in the α̃0-inflated time-
hn map (3.3), Proposition 3.8 applied with α = chqn, C = 1 + hnL, and D = 1/

√
chqn

implies the existence of γ̃n-robust attracting sets Ãn with dH(A, Ãn) ≤ γ(
√
chqn) and

γ̃n(r) ≤ γ
(

1 + hnL

1−√chqn
r

)
.

Since the attractors An converge to A and—by minimality—are contained in the
attracting sets Ãn, we can conclude that ρn = dist(An, Ãn)→ 0 as n→∞; hence by
Lemma 4.4 the An are γn-robust with γn(r) ≤ γ̃n(r) + ρn and α0, which shows the
claim.

(i) ⇒ (iii): Since A is an attracting set, by Corollary 4.3 and Proposition 4.5,
it satisfies inequality (4.5) for suitable β, γ, and ε. Thus by Proposition 3.6 for all
sufficiently large n ∈ N, all x ∈ B, and all i ∈ N, we find some w ∈ WehnLchq

n
such

that

ϕ(ihn, x, w) = Φ̃hn
(ihn, x).

This yields

‖Φ̃hn(ihn, x)‖An ≤ ‖Φ̃hn(ihn, x)‖A + dH(An, A)

= ‖ϕ(ihn, x, w)‖A + dH(An, A)

≤ β(‖x‖A, ihn) + dH(An, A) + (1 + ε)γ(ehnLchqn)

≤ β(‖x‖An + dH(An, A), ihn) + dH(An, A) + (1 + ε)γ(ehnLchqn),

which shows the assertion for εn = dH(An, A) + (1 + ε)γ(ehnLchqn).
(ii) ⇒ (i): Similar to the arguments in case “(i) ⇒ (ii),” we obtain that for

sufficiently large n ∈ N there exist γn(Dn ·)-robust attracting sets Ãn for the inflated
time-hn map (3.3) of the αn-inflated system for suitable constants Cn → 1 and αn →
α0, such that dH(Ãn, A) → 0. Hence by Proposition 5.1 we obtain that A is a γ-
robust attracting set for each α̃0 ∈ (0, α0) for (2.1). It remains to show that A is
an attractor. If this is not the case, then by Lemmas 2.8 and 2.9 there exists an
attractor Ã for ϕ with Ã ⊂ A, Ã �= A, and attracted neighborhood B. Denote
η := dH(Ã, A) > 0. Again following the arguments from the case “(i) ⇒ (ii),”
this implies that for all sufficiently large n ∈ N the attractors An for the numerical
systems Φ̃hn must satisfy dist(An, Ã) < η/2. This implies dH(An, A) ≥ η/2 and hence
contradicts the convergence dH(An, A)→ 0 for n→∞.

(iii)⇒ (i): Fixing some T > 0 and some ε > 0, by Gronwall’s lemma for all n > 0
sufficiently large and all x ∈ B we obtain the inequality

‖Φ̃h(inhn, x)− ϕ(T, x)‖ ≤ ε,
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where in ∈ N can be chosen such that |T − inhn| < ε. Hence from the convergence of
An to A and from the properties of βn and β we obtain

‖ϕ(T, x)‖A ≤ β(‖x‖A + ε, T + ε) + ε,

and since ε > 0 was arbitrary by continuity of β, this implies

‖ϕ(T, x)‖A ≤ β(‖x‖A, T ),

which implies that A is an attracting set since T > 0 was arbitrary. The fact that A
is an attractor follows similarly to the case “(ii) ⇒ (i),” above.

In other words, Theorem 6.2 states that a sequence of “numerical” attractors
converges to a “real” attractor if and only if the elements of this sequence are either
uniform robust or attracting with a uniform rate.

Remark 6.3. Note that we have used the minimality of attractors only in the
proof of the implication “(i) ⇒ (ii).” Hence the equivalence “(i) ⇔ (iii)” and the
implication “(ii) ⇒ (i)” remain true for general attracting sets.

In the next theorem we shift our attention to a sequence of uniformly robust
numerical attractors (in the sense of Theorem 6.2 (ii)) without the a priori assumption
about convergence of these sets. It turns out that this sequence of numerical attractors
converges to a set if and only if this set is an attractor.

Theorem 6.4. Consider the continuous time system (2.1) and a family of numer-

ical one-step approximation Φ̃hn
satisfying (2.6) for a sequence of time-steps hn → 0

as n→∞. Let An be attractors for the discrete time systems induced by these numeri-
cal approximations, each with the same attracted neighborhood B, assume that they are
γn-robust for the numerical system Φ̃hn , for some α0 > 0 and γn(r) ≤ γ(Cn r) + ρn
for some suitable γ ∈ K and sequences Cn → 1 and ρn → 0, and let A ⊂ B be a
compact set.

Then the following statements are equivalent.
(i) A is an attractor for (2.1) with attracted neighborhood B.
(ii) dH(An, A)→ 0 as n→∞.

In this case, A is γ-robust for (2.1) for γ and each α̃0 ∈ (0, α0).
Proof. (i) ⇒ (ii): Since by Lemma 2.7 and Theorem 4.1 the attractor A is γ-

robust for some suitable γ ∈ K, by Proposition 6.1(a) and Lemma 2.8 we can conclude
dist(An, A) → 0 as n → ∞. For the converse “dist” estimate, by the assumption on
the γn-robustness of the An, for each ε > 0 and all n ∈ N sufficiently large there
exist attracting sets Ãn for the time-hn map of the continuous time system with
dist(Ãn, An) ≤ ε. By Lemma 2.8 each of these sets contains an attractor for the time-
hn map (2.5) and attracted neighborhood B, which by Lemma 5.2 coincides with A.
This implies dist(A,An) ≤ ε, and since ε > 0 was arbitrary we obtain dist(A,An)→ 0
as n→∞. This shows the desired convergence.

(ii) ⇒ (i): This follows from the implication “(ii) ⇒ (i)” in Theorem 6.2.
In other words, Theorem 6.4 states that a sequence of uniformly robust “numer-

ical” attractors converges to some set A if and only if it is a “real” attractor.
Finally, we are going to investigate the rates of convergence of An to A under the

assumptions of Theorem 6.4.
Theorem 6.5. Consider the continuous time system (2.1) and a family of numer-

ical one-step approximation Φ̃hn satisfying (2.6) for a sequence of time-steps hn → 0
as n→∞ and constants c, q > 0. Let An be attractors for the discrete time systems
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induced by these numerical approximations, each with the same attracted neighborhood
B, and assume that they are γn-robust for the numerical system Φ̃hn for some α0 > 0
and γn(r) ≤ γ(Cn r)+ρn for some suitable γ ∈ K and sequences Cn → 1 and ρn → 0.
Let A ⊂ B be a compact set, and assume that one of the following two conditions is
satisfied:

(i) A is an attractor for (2.1) with attracted neighborhood B.
(ii) dH(An, A)→ 0 as n→∞.

Then for all sufficiently large n ∈ N we obtain the estimates

dist(A,An) ≤ γ(Cn eLhnchqn) + ρn and dist(An, A) ≤ γ(chqn)

for the rate of convergence of An to A.
Proof. Under the assumptions, Theorem 6.4 implies that A is γ-robust for (2.1).

Hence by Proposition 6.1 we obtain the existence of attracting sets for the numerical
systems and the time-hn maps, respectively, with the desired distances. By Lemmas
2.8, 2.9, and 5.2, the attractors An and A are contained in these attracting sets, and
hence the “dist” estimates remain valid.
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Abstract. This paper provides a new strict mathematical analysis for the velocity-pressure-
vorticity least-squares methods (i.e., the standard linear element method and the Bochev–Gunzburger
method) for the 3D Stokes problem with homogeneous velocity boundary condition. The analysis
shows that, in general, the divergence of the vorticity does not affect the coerciveness and the
accuracy. This admits the use of the edge element for the vorticity to reduce the number of whole
unknowns. Moreover, the analysis also shows that, in the standard linear element method, the L2
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1. Introduction. As far as the Stokes problem is concerned, it is well known
that the primal form in terms of velocity-pressure requires the approximating spaces
to satisfy the Babus̆ka–Brezzi condition in order to obtain stability and convergence.
Generally, this condition excludes the use of simple equal low-order elements (e.g., the
continuous linear elements). Besides, an indefinite system is often a source of trouble
in practical implementation; see [13], [14] for more details.

In addition, when some important variable (e.g., the vorticity) in the Stokes
problem is needed, it seems impossible to obtain accurate approximate solutions in
the mixed method in terms of vector potential-vorticity, with the use of the continuous
linear elements; see, e.g., [13].

During the past decade, the least-squares mixed finite element method has been
demonstrated to be very effective as an alternative approach to numerically solve the
Stokes problem (see [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]), which offers
many advantages such as that any combination of simple low-order approximating
spaces (e.g., the linear elements) can be employed for all variables and that the weak
problem is generally coercive; cf. [2].

Undoubtedly, the least-squares scheme in terms of velocity-pressure-vorticity for
the Stokes problem is such a method (cf. [1], [3], [6], [9], [10]). Due to solving only
seven unknowns (the three dimensional (3D) case), this scheme is the simplest and
the most widely used one in all schemes of least-squares type for the Stokes problem.
To our best knowledge, however, a strict mathematical analysis for this scheme has
been missing for many years. (In the earlier works [9], [35], the mathematical analysis
and conclusions are not correct due to the fact that the H1 coerciveness does not hold
for all variables.)

On the other hand, as is pointed out by several authors (see [1], [2], [3], [4], [5]), in
three dimensions the divergence of the vorticity is indispensable to both coerciveness
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and accuracy, although it is not so in two dimensions. This viewpoint is drawn from
the Agmon–Doulis–Nirenberg (ADN) theory (cf. [4], [5]). However, up until now, it in
fact has not been very clear whether both coerciveness and accuracy are affected if the
divergence of the vorticity is not introduced. Clearly, if the divergence of the vorticity
can be dropped, then the tangential continuous element (i.e., the edge element or the
Nédélec element [23], [24]) can be used for this variable, and as a consequence, the
number of unknowns will be greatly reduced, without loss of accuracy.

Therefore, it is of interest and importance to investigate the coerciveness and the
accuracy for the velocity-pressure-vorticity least-squares method when employing the
continuous elements and not including the divergence of the vorticity.

In this paper, we show that the weak problem of this scheme is indeed coercive
for both pressure and vorticity over the L2 space and for velocity over the H1 space
and that the accuracy is not affected generally, even if the divergence of the vorticity
is not introduced into the weak problem.

In particular, without including the divergence of the vorticity in the Bochev–
Gunzburger method (cf. [4], [2], [3]), we show that the error bounds for all variables
are still optimal. This corrects the traditional viewpoint.

Moreover, for the least-squares scheme (without the divergence of the vorticity)
with the use of the continuous linear elements for all variables, in general, we show
that the L2 error bound for the velocity is O(h3/2). The numerical results given in
the last section support these theoretical results on error bounds.

We remark that all these L2 error estimates are derived from the classical Aubin–
Nitsche duality argument (cf. [15], [16], [18]), which usually prerequisitely requires
that the domain occupied by the flow be suitably smooth to ensure the existence of
the solution and some regularities.

In addition, owing to that the auxiliary variational problem, introduced in the
duality argument, cannot be coercive over the whole space for both pressure and
vorticity and that it is no longer a least-squares first-order system, the existence of
the solution cannot be directly deduced from either the Lax–Milgram lemma (cf. [15],
[18]) or the ADN theory (cf. [4], [5]). In fact, it turns out that the existence of the
solution and the corresponding regularities, which are derived from a constructive
approach in this paper, are not trivial.

Let us mention the recent work [34]. A completely different approach is taken in
[34] to obtain the same error bounds in the energy norm, but no error estimates are
given for the velocity in the L2 norm.

This paper is outlined as follows: In section 2, we recall some Hilbert spaces and
inequalities and the regularities to classical problems. In section 3, for the velocity-
pressure-vorticity least-squares method, dropping the divergence of the vorticity, we
obtain both coerciveness and basic error bounds. In section 4, using the Aubin–
Nitsche duality argument, we derive an improved error bound O(h3/2) for the velocity
in the standard linear element method. In section 5, we show that the error bounds in
the Bochev–Gunzburger method are still optimal, even without introducing the diver-
gence of vorticity. In section 6, numerical examples are given to verify the theoretical
results in sections 3 and 4.

2. Inequalities and regularities. Let Ω ⊂ �3 be an open bounded domain,
with boundary Γ = ∂Ω and n the unit normal vector to Γ. Elementary differential
operators are recalled as follows:

∂rv =
∂|r|v

∂xr11 ∂xr22 ∂xr33
, |r| = r1 + r2 + r3,
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� v = (∂v/∂x1, ∂v/∂x2, ∂v/∂x3), curlv = �× v, div v = � · v.
We introduce the Hilbert spaces

L2(Ω) = {v; ∫
Ω
v2 <∞},

L2
0(Ω) = {q ∈ L2(Ω);

∫
Ω
q = 0},

Hm(Ω) = {∂rv ∈ L2(Ω), 0 ≤ |r| ≤ m} (m ≥ 1),

H1
0 (Ω) = {v ∈ L2(Ω);� v ∈ (L2(Ω))3, v|Γ = 0},

H(curl; Ω) = {v ∈ (L2(Ω))3; curlv ∈ (L2(Ω))3},
H0(curl; Ω) = {v ∈ H(curl; Ω);v × n|Γ = 0},
H(div; Ω) = {v ∈ (L2(Ω))3; div v ∈ L2(Ω)},
H0(div; Ω) = {v ∈ H(div; Ω);v · n|Γ = 0},

where all the above spaces are equipped with natural norms (cf. [16], [13], [27], [26]).
The following norms will be encountered in this paper:

||v||20,div = ||v||20 + ||div v||20, ||v||20,curl = ||v||20 + ||curlv||20.
In addition, H−1 is the dual space of H1

0 (Ω).
Two of Green’s formulae of integration by parts are as follows (cf. [13]):

(v,�φ) + (div v, φ) =

∫
Γ

v · nφ ∀v ∈ H(div; Ω),∀φ ∈ H1(Ω),

(curlv,φ)− (v, curlφ) =

∫
Γ

v × nφ ∀v ∈ H(curl; Ω),∀φ ∈ (H1(Ω))3.

Proposition 2.1 (see [13, 20, 21, 30]). Assume that Ω ⊂ �3 is a simply connected
and bounded domain with a Lipschitz continuous boundary Γ. Then

||v||0 ≤ C {||curlv||0 + ||div v||0} ∀v ∈ H0(div; Ω) ∩H(curl; Ω).(2.1)

Proposition 2.2 (see [13, 31]). Assume that Ω ⊂ �3 is a simply connected
bounded domain with C1,1 boundary Γ or is a bounded and convex polyhedron. Then

|v|1 ≤ C {||curlv||0 + ||div v||0} ∀v ∈ H0(div; Ω) ∩ (H1(Ω))3.(2.2)

Proposition 2.3 (see [13, 17, 22]). Assume that Ω ⊂ �3 is a simply connected
and bounded domain with a Lipschitz continuous boundary Γ. Given χ ∈ (H−1(Ω))3

and g ∈ L2
0(Ω), there exists a unique solution (u, p) ∈ (H1

0 (Ω))3 × (H1(Ω) ∩ L2
0(Ω))

to the Stokes problem

−∆u+� p = χ, divu = g, u|Γ = 0,(2.3)

the solution of which satisfies

||u||1 + ||p||0 ≤ C (||χ||−1 + ||g||0).(2.4)

Moreover, if g ≡ 0, then p ∈ L2
0(Ω) satisfies

(p,div v) = (curlu, curlv)− (χ,v) ∀v ∈ (H1
0 (Ω))3.(2.5)

If additionally Γ ∈ Cr+2, χ ∈ (Hr(Ω))3, and g ∈ Hr+1(Ω) with r = 0, 1, we have

||u||r+2 + ||p||r+1 ≤ C (||χ||r + ||g||r+1).(2.6)
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3. Coerciveness without the divergence of the vorticity. We consider the
Stokes problem in 3D space,

−∆u+� p = f , divu = 0, in Ω, u = 0, on Γ,(3.1)

where u ∈ (H1
0 (Ω))3 and p ∈ L2

0(Ω) are velocity and pressure, respectively, f ∈
(L2(Ω))3 is the given function, and Ω ⊂ �3 is the domain occupied by the flow, with
boundary Γ = ∂Ω and the unit normal vector n to Γ.

Let the vorticity

ω = curlu(3.2)

be a new unknown; in the light of curl curlu = −∆u + � divu and divu = 0, we
can write (3.1) in the first-order system as follows:

curlω +� p = f , ω = curlu, divu = 0, in Ω,(3.3)

where

u|Γ = 0,

∫
Ω

p = 0.(3.4)

Remark 3.1. Clearly, there naturally hold (cf. [11], [33])

ω · n|Γ = 0, divω = 0,(3.5)

which are redundant equations for the first-order system (3.3) and (3.4). This can be
seen from Theorem 3.1.

Let

J (u, p,ω) = ||curlω +� p||20 + ||ω − curlu||20 + ||divu||20,(3.6)

J +(u, p,ω) = J (u, p,ω) + ||divω||20.(3.7)

Theorem 3.1. Under the same conditions as in Proposition 2.2, there holds

J (u, p,ω) ≥ C {||u||21 + ||p||20 + ||ω||20}(3.8)

for all (u, p,ω) ∈ (H1
0 (Ω))3 × (H1(Ω) ∩ L2

0(Ω))×H(curl; Ω).
Proof. Let α > 0 be a constant to be determined; in the light of (ω, curlu) =

(curlω,u), we have

||ω − curlu||20 =
1

2

{||ω − curlu+ α curlu||20 + ||ω − curlu− αω||20
}

+α
(
1− α

2

) {||curlu||20 + ||ω||20
}− 2α (curlω,u).

(3.9)

In the light of (� p,u) = −(divu, p), we have

||curlω +� p||20 = ||curlω +� p− αu||20
+2α (curlω,u)− 2α (divu, p)− α2 ||u||20,

(3.10)

where for some constant ε1 > 0 we have

−2α (divu, p) ≥ −ε1 ||p||20 −
C1 α

2

ε1
||divu||20.(3.11)
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Owing to the inf-sup condition [13]

sup
v∈(H1

0 (Ω))3

(div v, q)

||v||1 ≥ C ||q||0 ∀q ∈ L2
0(Ω),(3.12)

we can find v∗ ∈ (H1
0 (Ω))3 such that

(div v∗, p) = ||p||20, ||v∗||1 ≤ C ||p||0.(3.13)

Let γ > 0 be a constant to be determined; in the light of (curlω,v∗) = (ω, curlv∗)
and (div v∗, p) = ||p||20, we have

||curlω +� p||20 = ||curlω +� p+ γ v∗||20
−2 γ (ω, curlv∗) + 2 γ ||p||20 − γ2 ||v∗||20,

(3.14)

where for some constant ε2 > 0, in the light of ||v∗||1 ≤ C ||p||0, we have

−2 γ (ω, curlv∗) ≥ −ε2 ||ω||20 −
C2 γ

2

ε2
||p||20.(3.15)

In the light of ||v∗||20 ≤ C ||v∗||21 ≤ C3 ||p||30, we then get

||curlω +� p||20 ≥ γ

[
2− γ

(
C3 +

C2

ε2

)]
||p||20 − ε2 ||ω||20.(3.16)

From (3.10), (3.11), and (3.16), we have

2 ||curlω +� p||20 ≥
{
γ

[
2− γ

(
C3 +

C2

ε2

)]
− ε1

}
||p||20

−ε2 ||ω||20 − α2 ||u||20

+2α (curlω,u)− C1 α
2

ε1
||divu||20,

(3.17)

where, in the light of ||u||0 ≤ C {||curlu||0 + ||divu||0}, we have

−α2 ||u||20 ≥ −C4 α
2 ||curlu||20 − C4 α

2 ||divu||20.(3.18)

Summing (3.9) and (3.17) and in the light of (3.18), we have

||ω − curlu||20 + 2 ||curlω +� p||20
≥ α

[
1− α

(
1

2
+ C4

)]
||curlu||20 +

[
α
(
1− α

2

)
− ε2

]
||ω||20

+

{
γ

[
2− γ

(
C3 +

C2

ε2

)]
− ε1

}
||p||20

− α2

(
C1

ε1
+ C4

)
||divu||20.

(3.19)
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Therefore, let β > 0 be a constant to be determined, and we have

||ω − curlu||20 + 2 ||curlω +� p||20 + β ||divu||20
≥ α

[
1− α

(
1

2
+ C4

)]
||curlu||20 +

[
α
(
1− α

2

)
− ε2

]
||ω||20

+

{
γ

[
2− γ

(
C3 +

C2

ε2

)]
− ε1

}
||p||20

+

[
β − α2

(
C1

ε1
+ C4

)]
||divu||20.

(3.20)

Taking

0 < α <
2

1 + 2C4
, 0 < ε2 < α

(
1− α

2

)
,(3.21)

0 < γ <
2 ε2

ε2 C3 + C2
, 0 < ε1 < γ

[
2− γ

(
C3 +

C2

ε2

)]
,(3.22)

β > α2

(
C1

ε1
+ C4

)
,(3.23)

we have

||ω − curlu||20 + 2 ||curlω +� p||20 + β ||divu||20
≥ C {||curlu||20 + ||divu||20 + ||p||20 + ||ω||20}.

(3.24)

Finally, we have

J (u, p,ω) ≥ 1

max(2, β)

{||ω − curlu||20 + 2 ||curlω +� p||20 + β ||divu||20
}

≥ C {||curlu||20 + ||divu||20 + ||p||20 + ||ω||20}.(3.25)

We further have

J (u, p,ω) ≥ C {||u||21 + ||p||20 + ||ω||20}(3.26)

because of ||u||1 ≤ C {||curlu||0 + ||divu||0}.
Corollary 3.1. Under the same hypotheses as in Theorem 3.1, we have

J +(u, p,ω) ≥ C {||u||21 + ||p||20 + ||ω||2div}(3.27)

for all (u, p,ω) ∈ (H1
0 (Ω))3 × (H1(Ω) ∩ L2

0(Ω))× (H(curl; Ω) ∩H(div; Ω)).
Now, we describe the finite element method.
Let Ch be the regular triangulation of Ω into tetrahedra (cf. [15]). Define

Vh = {v ∈ H1(Ω); v|K ∈ P1(K) ∀K ∈ Ch},(3.28)

where P1(K) is the space of linear polynomials. Let ṽ ∈ Vh be the standard interpolant
to v ∈ H2(Ω), and from the standard interpolation theory in [15], we have

||v − ṽ||0 + h ||v − ṽ||1 ≤ C h2 ||v||2.(3.29)

Define

Uh = (Vh ∩H1
0 (Ω))3, Qh = Vh ∩ L2

0(Ω), Wh = (Vh)
3.(3.30)
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The finite element method is to find (uh, ph,ωh) ∈ Uh ×Qh ×Wh such that

(curlωh +� ph, curl z +� q)

+ (ωh − curluh,z − curlv) + (divuh,div v)

= (f , curl z +� q) ∀(v, q, z) ∈ Uh ×Qh ×Wh.

(3.31)

Theorem 3.2. Under the same conditions as in Theorem 3.1, let (u, p,ω) and
(uh, ph,ωh) be the solutions of (3.3) and (3.31), respectively. If (u, p,ω) ∈ (H2(Ω))3×
H2(Ω)× (H2(Ω))3, then

||u− uh||1 + ||p− ph||0 + ||ω − ωh||0 ≤ C h {||u||2 + ||p||2 + ||ω||2}.(3.32)

Proof. Let A((u, p,ω); (v, q, z)) be the bilinear form on (H1
0 (Ω))3 × (H1(Ω) ∩

L2
0(Ω))×H(curl; Ω), defined by

A((u, p,ω); (v, q, z)) = (curlω +� p, curl z +� q)

+(ω − curlu,z − curlv) + (divu,div v).
(3.33)

We have the error orthogonality

A((u− uh, p− ph,ω − ωh); (v, q, z)) = 0 ∀(v, q, z) ∈ Uh ×Qh ×Wh,(3.34)

where (u, p,ω) and (uh, ph,ωh) are the solutions of (3.3) and (3.31), respectively.
Moreover, let (ũ, p̃, ω̃) ∈ Uh×Qh×Wh be the standard interpolants to (u, p,ω) ∈

(H1
0 (Ω)∩H2(Ω))3× (H2(Ω)∩L2

0(Ω))× (H2(Ω))3, respectively, and the interpolation
error estimations similar to (3.29) hold.

In the light of (3.34) and the Schwarz inequality, we have

A((u− uh, p− ph,ω − ωh); (u− uh, p− ph,ω − ωh))
= A((u− uh, p− ph,ω − ωh); (u− ũ, p− p̃,ω − ω̃))

≤ A((u− uh, p− ph,ω − ωh); (u− uh, p− ph,ω − ωh))1/2

×A((u− ũ, p− p̃,ω − ω̃); (u− ũ, p− p̃,ω − ω̃))1/2.

We then have

A((u− uh, p− ph,ω − ωh); (u− uh, p− ph,ω − ωh))1/2

≤ A((u− ũ, p− p̃,ω − ω̃); (u− ũ, p− p̃,ω − ω̃))1/2.
(3.35)

Therefore, we get

||u− uh||1 + ||p− ph||0 + ||ω − ωh||0
≤ CA((u− uh, p− ph,ω − ωh); (u− uh, p− ph,ω − ωh))1/2

≤ CA((u− ũ, p− p̃,ω − ω̃); (u− ũ, p− p̃,ω − ω̃))1/2

≤ C {||ω − ω̃||0,curl + ||p− p̃||1 + ||u− ũ||1}
≤ C h {||u||2 + ||p||2 + ||ω||2}.

(3.36)

Remark 3.2. It is obvious that one can use tangential continuous elements such
as Nédélec edge elements (see [23], [24]) to approximate the vorticity, and the error
bound becomes

||u− uh||1 + ||p− ph||0 + ||ω − ωh||0 ≤ C h {||u||2 + ||p||2 + ||f ||1}(3.37)
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since, in this case, from [19], [25] we have ||ω̃ − ω||0,curl ≤ C h {||ω||1 + ||curlω||1};
here ω̃ is the interpolant in the Nédélec space.

Remark 3.3. Theorem 3.1 holds for the Navier–Stokes equations as follows:

−ν∆u+ a ·�u+ σu+� p = f , divu = 0, in Ω, u|Γ = 0,(3.38)

where a is the convection term satisfying diva = 0, and ν > 0 is the viscosity and
σ ≥ 0 is a constant. Specifically, applying the same argument as in Theorem 3.1, we
have

||ω − curlu||20 + ||ν curlω + a ·�u+ σu+� p||20 + ||divu||20
≥ C

{
ν2 ||curlu||20 + ν2 ||ω||20

+
ν2

ν2 + σ2 + ||a||2∞
||p||20 +

ν2 + σ2 + ||a||2∞
ν2 ||divu||20 + ν σ ||u||20

}
,

(3.39)

where C > 0 is independent of a, σ, ν.
Remark 3.4. The linear elasticity problem is as follows:

−µ∆u− (λ+ µ)� divu = f , in Ω, u = 0, on Γ,(3.40)

where λ and µ are Lamé coefficients. Introducing

ω = curlu, p = (λ+ 2µ) divu,(3.41)

we can rewrite (3.40) in the form

µ curlω −� p = f , divu− 1

λ+ 2µ
p = 0, ω = curlu.(3.42)

Then, we can obtain

||ω − curlu||20 + ||µ curlω −� p||20 +

∣∣∣∣∣∣∣∣divu− 1

λ+ 2µ
p

∣∣∣∣∣∣∣∣2
0

≥ C {µ2 ||curlu||20 + µ2 ||ω||20 + ||p||20 + ||divu||20},
(3.43)

where C > 0 is independent of λ and µ.
Remark 3.5. So far, we have shown that the divergence of the vorticity is not

essential and does not affect the coerciveness. This corrects the traditional viewpoint
(cf. [1], [2], [3], [4], [5]).

4. On the L2 error bound for velocity. In this section, with the classical
Aubin–Nitsche duality argument, we show that the L2 error bound for the velocity is
in fact O(h3/2).

Let us consider the auxiliary variational problem: to find (u∗, p∗,ω∗) ∈
(H1

0 (Ω))3 × (H1(Ω) ∩ L2
0(Ω))×H(curl; Ω) such that

A((u∗, p∗,ω∗); (v, q, z)) = (χ,v)(4.1)

for all (v, q, z) ∈ (H1
0 (Ω))3 × (H1(Ω) ∩ L2

0(Ω))×H(curl; Ω), where χ ∈ (H1(Ω))3.
Theorem 4.1. Under the same conditions as in Proposition 2.3, problem (4.1)

has a unique solution (u∗, p∗,ω∗), which satisfies

||u∗||2 ≤ C ||χ||0, ||p∗||2 + ||ω∗||2 ≤ C ||χ||1.(4.2)
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Proof. The proof is divided into four steps, where the last step is used for verifi-
cation.

Step 1. We consider the following problem: to find v0 ∈ (H1
0 (Ω))3 and q0 ∈

H1(Ω) ∩ L2
0(Ω) such that

−∆v0 +� q0 = χ, divv0 = 0, v0|Γ = 0,(4.3)

the solution of which satisfies

||v0||2 + ||q0||1 ≤ C ||χ||0, ||v0||3 + ||q0||2 ≤ C ||χ||1.(4.4)

Moreover, q0 ∈ L2
0(Ω) satisfies

(q0,div v) = (curl curlv0 − χ,v) ∀v ∈ (H1
0 (Ω))3.(4.5)

Step 2. We consider the following problem: to find u0 ∈ (H1
0 (Ω))3 and p0 ∈

H1(Ω) ∩ L2
0(Ω) such that

−∆u0 +� p0 = v0, divu0 = −q0, u0|Γ = 0,(4.6)

the solution of which satisfies

||u0||2 + ||p0||1 ≤ C ||χ||0, ||u0||3 + ||p0||2 ≤ C ||χ||1.(4.7)

Step 3. Define

u∗ = u0 + v0, p∗ = p0 + q0, ω∗ = curlu0.(4.8)

We have

||u∗||2 + ||p∗||1 + ||ω∗||1 ≤ C ||χ||0,(4.9)

||u∗||3 + ||p∗||2 + ||ω∗||2 ≤ C ||χ||1.(4.10)

Step 4. Note that

curlω∗ +� p∗ = v0,(4.11)

ω∗ − curlu∗ = −curlv0, divu∗ = −q0.(4.12)

We can easily verify that (u∗, p∗,ω∗) satisfies (4.1).
Corollary 4.1. Let u and uh be the exact and the approximate solutions. Under

the same hypotheses as in Theorem 4.1, if (u, p,ω) ∈ (H2(Ω))3 ×H2(Ω)× (H2(Ω))3,
we have

||u− uh||0 ≤ C h3/2 {||u||2 + ||p||2 + ||ω||2}.(4.13)

Proof. In (4.1), take χ = u− uh.
Let (u, p,ω), (u∗, p∗,ω∗) be the solutions to (3.3) and (4.1), respectively, and

(ũ, p̃, ω̃), (ũ∗, p̃∗, ω̃∗) are their corresponding interpolants in Uh ×Qh ×Wh.
From the standard Aubin–Nitsche duality argument, we have

||u− uh||20 ≤ A((u− ũ, p− p̃,ω − ω̃); (u− ũ, p− p̃,ω − ω̃))1/2

×A((u∗ − ũ∗, p∗ − p̃∗,ω∗ − ω̃∗); (u∗ − ũ∗, p∗ − p̃∗,ω∗ − ω̃∗))1/2.(4.14)
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In the light of the standard interpolation properties and (4.2) and (3.32), we conclude
that (4.13) holds.

Remark 4.1. Similarly, we can obtain

||u− uh||−1 ≤ C h2 {||u||2 + ||p||2 + ||ω||2}.(4.15)

Remark 4.2. In addition, we may investigate the L2 error bounds for both pres-
sure and vorticity, but, in general, there do not yield improved error estimates, even
if the divergence and the homogeneous normal boundary condition of the vorticity
are added. Nonetheless, for a pathological domain (cf. [28]) for which there holds
H0(curl; Ω) ∩ (H1(Ω))3 ≡ (H1

0 (Ω))3 (this does not hold generally; cf. [29]), we can
show that the L2 error bounds for both velocity and pressure are O(h2) in the stan-
dard linear element method without the divergence of the vorticity. If introducing
both the divergence and the homogeneous normal boundary condition of the vorticity,
we can further show that the L2 error bound for this variable is also O(h2); see [32]
for details.

5. On the Bochev–Gunzburger method. In this section, following an argu-
ment similar to that of the previous section, we show that the error bounds for all
variables are still optimal in the Bochev–Gunzburger method, even without including
the divergence of the vorticity in the weak problem.

Let us first recall the Bochev–Gunzburger method: to find (uh, ph,ωh) ∈ Vh ×
Qh ×Wh such that

Ah((uh, ph,ωh); (v, q, z)) = (f , curl z +� q) ∀(v, q, z) ∈ Vh ×Qh ×Wh,(5.1)

where Qh,Wh are still defined as in (3.30), but

Vh = {v ∈ (H1
0 (Ω))3;v|K ∈ (P2(K))3,K ∈ Ch}(5.2)

with P2(K) the space of quadratic polynomials, and

Ah((u, p,ω); (v, q, z)) = (curlω +� p, curl z +� q)

+h−2 (ω − curlu,z − curlv) + h−2 (divu,div v).
(5.3)

Remark 5.1. The original Bochev–Gunzburger method includes the divergence
of the vorticity. As is proved in section 3, the introduction of the divergence of the
vorticity is unnecessary for the coerciveness. In what follows, we will show that it
does not affect the accuracy, either.

Theorem 5.1. Let (u, p,ω) and (uh, ph,ωh) be the exact solution to (3.3) and
the finite element solution to (5.1), respectively. Under the same conditions as in
Theorem 3.1, if (u, p,ω) ∈ (H3(Ω))3 ×H2(Ω)× (H2(Ω))3, then

||u− uh||1 + ||p− ph||0 + ||ω − ωh||0 ≤ C h {||u||3 + ||p||2 + ||ω||2},(5.4)

||ω − ωh − curl (u− uh)||0 + ||div (u− uh)||0 ≤ C h2 {||u||3 + ||p||2 + ||ω||2}.(5.5)

Proof. It is obvious that

Ah((v, q, z); (v, q, z))
≥ C {J (v, q, z) + h−2 (||z − curlv||20 + ||div v||20)}
≥ C {||v||21 + ||z||20 + ||q||20 + h−2 (||z − curlv||20 + ||div v||20)},

(5.6)
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where we have used Theorem 3.1. Applying the standard interpolation estimation,
from (5.6) we can easily obtain (5.4) and (5.5).

Now we turn to the L2 error bound for the vorticity.
Let us consider the auxiliary variational problem: to find (u∗, p∗,ω∗) ∈

(H1
0 (Ω))3 × (H1(Ω) ∩ L2

0(Ω))×H(curl; Ω) such that

Ah((u∗, p∗,ω∗); (v, q, z)) = (χ,z)(5.7)

holds for all (v, q, z) ∈ (H1
0 (Ω))3×(H1(Ω)∩L2

0(Ω))×H(curl; Ω), with χ ∈ H(curl; Ω).
Theorem 5.2. Under the same conditions as in Proposition 2.3, problem (5.7)

has a unique solution (u∗, p∗,ω∗), which satisfies

||u∗||1 + ||ω∗||0 + ||p∗||0 ≤ C ||χ||0.(5.8)

Moreover, there exists (u0, p0,ω0) ∈ (H1
0 (Ω))3 × (H1(Ω) ∩ L2

0(Ω))×H(curl; Ω) such
that

||u0||3 + ||ω0||2 + ||p0||2 ≤ C ||χ||0,(5.9)

curl (ω∗ − ω0) +� (p∗ − p0) = 0,(5.10)

||ω∗ − ω0 − curl (u∗ − u0)||0 ≤ C h2 ||χ||0,(5.11)

||div (u∗ − u0)||0 ≤ C h2 ||χ||0.(5.12)

Proof. The proof is divided into five steps, where the last step is used for verifi-
cation.

Step 1. We consider the following problem: to find v0 ∈ (H1
0 (Ω))3 and q0 ∈

H1(Ω) ∩ L2
0(Ω) such that

−∆v0 +� q0 = curlχ, div v0 = 0, v0|Γ = 0,(5.13)

the solution of which satisfies

||v0||1 + ||q0||0 ≤ C ||χ||0, ||v0||2 + ||q0||1 ≤ C ||curlχ||0.(5.14)

Moreover, q0 ∈ L2
0(Ω) satisfies

(q0,div v) = (curlv0 − χ, curlv) ∀v ∈ (H1
0 (Ω))3.(5.15)

Step 2. We consider the following problem: to find u0 ∈ (H1
0 (Ω))3 and p0 ∈

H1(Ω) ∩ L2
0(Ω) such that

−∆u0 +� p0 = v0, divu0 = 0, u0|γ = 0,(5.16)

the solution of which satisfies

||u0||3 + ||p0||2 ≤ C ||χ||0.(5.17)

Step 3. We consider the following problem: to find u+ ∈ (H1
0 (Ω))3 and p+ ∈

H1(Ω) ∩ L2
0(Ω) such that

−∆u+ +� p+ = −h2 curlχ+ h2 curl curlv0, divu+ = h2 q0, u+|Γ = 0,(5.18)

the solution of which satisfies

||u+||1 + ||p+||0 ≤ C h2 ||χ||0, ||u+||2 + ||p+||1 ≤ C h2 ||curlχ||0.(5.19)
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Step 4. Define

u∗ = u0 + u+, p∗ = p0 + p+ − h2 q0, ω∗ = curlu∗ + h2 (χ− curlv0),(5.20)

ω0 = curlu0.(5.21)

We have

curl (ω∗ − ω0) +� (p∗ − p0) = 0,(5.22)

||ω∗ − ω0 − curl (u∗ − u0)||0 ≤ C h2 ||χ||0,(5.23)

||div (u∗ − u0)||0 ≤ C h2 ||χ||0.(5.24)

Step 5. Note that

curlω∗ +� p∗ = v0,(5.25)

ω∗ − curlu∗ = h2 (χ− curlv0), divu∗ = h2 q0.(5.26)

We can easily verify that (u∗, p∗,ω∗) satisfies (5.7).
Theorem 5.3. Let ω and ωh be the exact and the approximate solutions. Un-

der the same hypotheses as in Theorem 5.2 and if (u, p,ω) ∈ (H3(Ω))3 × H2(Ω) ×
(H2(Ω))3, then there holds

||ω − ωh||0 + ||u− uh||1 ≤ C h2 {||u||3 + ||p||2 + ||ω||2}.(5.27)

Proof. In (5.7), take χ = ω − ωh.
Let (ũ, p̃, ω̃) and (ũ0, p̃0, ω̃0) be the interpolants in Vh×Qh×Wh to (u, p,ω) and

(u0, p0,ω0), respectively.
By the duality argument, we have

||ω − ωh||20
≤ Ah((u− ũ, p− p̃,ω − ω̃); (u− ũ, p− p̃,ω − ω̃))1/2

×Ah((u∗ − ũ0, p
∗ − p̃0,ω

∗ − ω̃0); (u
∗ − ũ0, p

∗ − p̃0,ω
∗ − ω̃0))

1/2,

(5.28)

where

Ah((u− ũ, p− p̃,ω − ω̃); (u− ũ, p− p̃,ω − ω̃))1/2

≤ C h {||u||3 + ||p||2 + ||ω||2},(5.29)

Ah((u∗ − ũ0, p
∗ − p̃0,ω

∗ − ω̃0); (u
∗ − ũ0, p

∗ − p̃0,ω
∗ − ω̃0))

1/2

≤ CAh((u0 − ũ0, p0 − p̃0,ω0 − ω̃0); (u0 − ũ0, p0 − p̃0,ω0 − ω̃0))
1/2

+ C h−1 (||ω∗ − ω0 − curl (u∗ − u0)||0 + ||div (u∗ − u0)||0)
≤ C h {||u0||3 + ||p0||2 + ||ω0||2 + ||ω − ωh||0}
≤ C h ||ω − ωh||0.

(5.30)

Hence we get

||ω − ωh||0 ≤ C h2 {||u||3 + ||p||2 + ||ω||2}.(5.31)

From (5.5) and (5.27), we then immediately know that

||u− uh||1 ≤C {||ω − ωh − curl (u− uh)||0 + ||div (u− uh)||0 + ||ω − ωh||0}
≤C h2 {||u||3 + ||p||2 + ||ω||2},

(5.32)
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where we have used the inequality ||v||1 ≤ C {||curlv||0 + ||div v||0} on
(H1

0 (Ω))3.

Remark 5.2. Regarding the pressure, following a similar argument, we can estab-
lish the L2 error bound O(h2) for this variable.

Remark 5.3. When Ω is convex polyhedron, both methods (3.31) and (5.1) are
coercive. When additionally the exact solution (u, p,ω) is in (H3(Ω))3 × H2(Ω) ×
(H2(Ω))3, we obtain basic error bounds (3.32), (5.4), and (5.5).

If the solution of the Stokes problem (2.3) is in the same spaces as above (the
right-hand side functions χ and g may be required to be in (H1(Ω))3 and H2(Ω),
respectively), then with the help of the Aubin–Nitsche duality argument we obtain
the L2 error bound (4.13) for the linear element method (3.31) and recover the optimal
error bounds for the Bochev–Gunzburger method (5.1).

To our best knowledge, from [13, p. 88] we know that if the boundary Γ is in
C3 (the right-hand side functions need corresponding regularities), then it holds that
(u, p,ω) is in (H3(Ω))3 ×H2(Ω)× (H2(Ω))3.

6. Numerical examples. In this section we report the results of numerical
examples to illustrate the theoretical error bounds for the least-squares linear element
method (3.31).

We take the domain as Ω = [0, 1]3 and consider a 3D Stokes problem

−∆u+� p = f , divu = 0, u|Γ = 0,(6.1)

the exact solution of which is known: let

Φ =


x(1− x)y2(1− y)2z2(1− z)2

x2(1− x)2y(1− y)z2(1− z)2

x2(1− x)2y2(1− y)2z(1− z)


and

p = −2xyz + x2 + y2 + z2 + xy + xz + yz − x− y − z.

We take

u = curlΦ, ω = curlu, f = curlω +� p,

and we can easily verify that such a (u, p,ω,f) satisfies (6.1).

We partition Ω into a set of h−3 cubic subdomains with side-length h and use
piecewise trilinear elements (P1(K))3 to approximate all variables. We also set
ph(0, 0, 0) = 0, instead of

∫
Ω
ph = 0, to ensure the uniqueness.

In our computer codes, we use the double precision conjugate gradient method
(CGM) to solve the associated linear system with an initial guess (0, 0, 0, 0, 0, 0, 0),
and the stopping criterion is the l2 norm of the residual vector less than 10−11. Com-
putational results are collected in Tables 1– 7. The rates of convergence in Tables 5, 6,
and 7 are computed the following intuitive way: for any two consecutive sets of data
with respect to the mesh sizes h1 and h2, the rate of conv:=ln(‖e1‖/‖e2‖)/ ln(h1/h2).

We find that the numerical results in Tables 5– 7 support the conclusions obtained
in this paper.
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Table 1
The dimension of the matrix from the least-squares method.

h Number of unknowns Number of nontrivial entries

1/4 430 12100

1/6 1452 51654

1/8 3458 137696

1/10 6784 288514

1/12 11766 522396

1/14 18740 857630

1/16 28042 1312504

1/18 40008 1905306

Table 2
Relative errors for velocity uh = (u1,h, u2,h, u3,h)

T .

u1,h u1,h u2,h u2,h u3,h u3,h

h L2-Rel H1-Rel L2-Rel H1-Rel L2-Rel H1-Rel

1/4 4.300E-1 7.146E-1 3.528E-1 7.030E-1 3.964E-1 7.072E-1

1/6 2.089E-1 4.778E-1 1.555E-1 4.737E-1 1.854E-1 4.744E-1

1/8 1.232E-1 3.579E-1 8.772E-2 3.567E-1 1.072E-1 3.562E-1

1/10 8.147E-2 2.861E-1 5.746E-2 2.861E-1 7.011E-2 2.851E-1

1/12 5.812E-2 2.383E-1 4.168E-2 2.389E-1 4.970E-2 2.377E-1

1/14 4.378E-2 2.043E-1 3.249E-2 2.052E-1 3.729E-2 2.038E-1

1/16 3.431E-2 1.788E-1 2.667E-2 1.798E-1 2.921E-2 1.784E-1

1/18 2.774E-2 1.589E-1 2.271E-2 1.599E-1 2.369E-2 1.587E-1

Table 3
Relative errors for vorticity ωh = (ω1,h, ω2,h, ω3,h)

T .

ω1,h ω1,h ω2,h ω2,h ω3,h ω3,h

h L2-Rel H1-Rel L2-Rel H1-Rel L2-Rel H1-Rel

1/4 1.533E-1 4.190E-1 1.333E-1 4.116E-1 1.963E-1 4.538E-1

1/6 7.369E-2 2.833E-1 6.700E-2 2.777E-1 9.370E-2 2.982E-1

1/8 4.780E-2 2.150E-1 4.094E-2 2.099E-1 5.999E-2 2.235E-1

1/10 3.658E-2 1.741E-1 2.855E-2 1.696E-1 4.535E-2 1.804E-1

1/12 3.053E-2 1.470E-1 2.198E-2 1.430E-1 3.732E-2 1.523E-1

1/14 2.670E-2 1.277E-1 1.821E-2 1.242E-1 3.213E-2 1.323E-1

1/16 2.398E-2 1.132E-1 1.592E-2 1.103E-1 2.837E-2 1.173E-1

1/18 2.189E-2 1.020E-1 1.444E-2 9.957E-2 2.546E-2 1.056E-1
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Table 4
Relative errors for pressure ph.

ph ph

h L2-Rel H1-Rel

1/4 2.004E-1 4.968E-1

1/6 9.470E-2 3.296E-1

1/8 5.498E-2 2.467E-1

1/10 3.599E-2 1.973E-1

1/12 2.547E-2 1.644E-1

1/14 1.902E-2 1.410E-1

1/16 1.473E-2 1.234E-1

1/18 1.170E-2 1.098E-1

Table 5
Rates of convergence for velocity uh = (u1,h, u2,h, u3,h)

T .

u1,h u1,h u2,h u2,h u3,h u3,h

h L2-rate H1-rate L2-rate H1-rate L2-rate H1-rate

1/4 – – – – – -

1/6 1.780 0.993 2.021 0.974 1.874 0.985

1/8 1.836 1.003 1.990 0.986 1.904 0.996

1/10 1.853 1.004 1.896 0.988 1.903 0.998

1/12 1.852 1.003 1.761 0.989 1.887 0.997

1/14 1.838 0.999 1.616 0.986 1.864 0.998

1/16 1.825 0.998 1.478 0.990 1.829 0.997

1/18 1.805 1.002 1.365 0.996 1.778 0.993

Table 6
Rates of convergence for vorticity ωh = (ω1,h, ω2,h, ω3,h)

T .

ω1,h ω1,h ω2,h ω2,h ω3,h ω3,h

h L2-rate H1-rate L2-rate H1-rate L2-rate H1-rate

1/4 – – – – – –

1/6 1.839 0.965 1.697 0.971 1.824 1.036

1/8 1.505 0.959 1.712 0.973 1.550 1.002

1/10 1.199 0.946 1.615 0.955 1.254 0.960

1/12 0.992 0.928 1.434 0.936 1.069 0.929

1/14 0.870 0.913 1.221 0.914 0.971 0.913

1/16 0.805 0.903 1.006 0.889 0.932 0.901

1/18 0.774 0.885 0.828 0.869 0.919 0.892
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Table 7
Rates of convergence for pressure ph.

ph ph

h L2-rate H1-rate

1/4 – –

1/6 1.849 1.012

1/8 1.890 1.007

1/10 1.899 1.001

1/12 1.896 1.001

1/14 1.894 0.996

1/16 1.914 0.998

1/18 1.955 0.991
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Abstract. First order errors downstream of shocks have been detected in computations with
higher order shock-capturing schemes in one and two dimensions. We use matched asymptotic
expansions to analyze the phenomenon for one dimensional time dependent hyperbolic systems and
show how to design the artificial viscosity term in order to avoid the first order error. Numerical
computations verify that second order accurate solutions are obtained.
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1. Introduction. In many cases, solutions of conservation laws obtained by
formally higher order methods are only first order accurate downstream of shocks;
see, e.g., [2], [5], and [4]. Basically, errors from the shock region follow outgoing
characteristics and pollute the solution downstream. Examples in one space dimension
in which this effect can be seen are steady-state calculations for systems with a source
term and time dependent calculations for systems with nonconstant solution. The
effect cannot be seen in one dimensional Riemann problems, because the exact global
conservation determines the postshock states.

This degeneration in accuracy is troublesome, even though the first order term
for reasonable mesh-sizes seems to be small in many cases. In some applications, e.g.,
aeroacoustics, where waves with small amplitude need to be computed accurately,
it is particularly important to achieve very high accuracy. It is also important to
understand the phenomenon more deeply in order to be able to design new methods
which do not suffer from this deficiency.

The aim of this paper is to show that the first order error can be understood by
matched asymptotic analysis of the modified equation and that the analysis can be
used to construct methods that yield second order accurate solutions.

We consider the case of systems with time dependent solutions. We assume that
the numerical solution can be modeled by a slightly viscous equation, a so-called
modified equation. In the shock layer, the coefficient of the viscous term is O(h),
where h is the grid size. We analyze the solution of the modified equation using
matched asymptotic expansions. It is assumed that an inner solution is valid in the
shock region, and an outer solution is valid elsewhere. The two solutions are matched
in a so-called matching zone. From the analysis, we see that generally the outer
solution contains a term of O(h) downstream of the shock. We also see that if the
inner solution satisfied a certain condition, the O(h) term would be eliminated. Based
on this observation, we design a matrix valued viscosity coefficient, which gives the
inner solution the right shape to eliminate the O(h) downstream term. We construct a
numerical scheme, using this matrix valued viscosity coefficient, and show in numerical
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experiments that the first order downstream error really is eliminated. However, we
do not claim to have constructed an efficient and robust numerical method which can
be used in realistic computations.

Similar analysis and construction of a matrix valued viscosity coefficient is done
in [8] for the case of a steady-state solution of a system with a source term. In [3],
matched asymptotic expansions for a problem that is very similar to the problem
studied in this paper are analyzed for other purposes. The phenomenon has also been
studied by other methods in [5] and [2]. In [5], analytic examples are constructed
where the numerical solution is only first order accurate downstream of a shock,
although the numerical scheme is formally second order. It is also shown that a
converging numerical method will yield solutions having the formal order of accuracy
in domains where no characteristics have passed through a shock. In [2], the first order
downstream error is numerically detected in solutions of a shock-sound interaction
problem solved by a fourth order ENO method. A scalar, linear equation is used to
model the problem. It can be seen that the solution of the model problem computed
with the fourth order ENO method behaves qualitatively differently depending on
whether the discontinuity is located on a cell interface or in the interior of a cell. In the
first case, the solution is fourth order in all of the domain, but in the second case the
solution is only first order downstream of the discontinuity. Based on this observation,
the numerical method is modified such that the shock position will always be on a
cell interface, and fourth order accuracy of the solution of the shock-sound interaction
problem is obtained both upstream and downstream. Also in [1], shock wave solutions
are analyzed, and it is concluded that the structure in the shock region is of crucial
importance for the solution outside the shock region. However, the analysis in [1]
concerns another numerical phenomenon and considers methods where the shock is
so narrow that it is not well modeled by the solution of a slightly viscous equation.

This paper is organized as follows. In section 2, we use asymptotic analysis to ex-
plain the first order downstream error and derive a matrix valued viscosity coefficient
that eliminates it. In section 3, we implement a numerical method using the matrix
valued viscosity coefficient and show in computations that the first order downstream
error is eliminated.

2. Analysis.

2.1. The inviscid problem. Consider the inviscid problem

ut + f(u)x = 0, 0 ≤ x ≤ xend,(1)

u(x, 0) = g(x),(2)

where u(x, t),g(x) ∈ Rn, f : Rn → Rn, and g is a piecewise smooth function. We
denote the Jacobian of the flux function f ′(u) by J(u). We assume that the eigenvalues
of J(u), denoted λi(u), i = 1, 2, . . . , n, are real and ordered in increasing order and
that the eigenvectors span Rn.

The initial and boundary conditions are chosen such that a shock forms at some
inner point s(t). At the shock, the solution satisfies the Rankine–Hugoniot condition

ṡ[u] = [f(u)].

Here [u] = u+ − u−, where u± = limδ→0+ u(s(t) ± δ, t). Corresponding notation for
other quantities will be used frequently.
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We assume that the shock is a classical Lax 1-shock, i.e.,

ṡ < λ−1 ,

λ+
1 < ṡ < λ

+
2 ,

and that the matrix

D =
(
S+
II [u]

)
(3)

is nonsingular. Here the columns of S+
II are the eigenvectors of J

+ corresponding to
the eigenvalues λ+

2 , λ
+
3 , . . . , λ

+
n .

To complete the problem we also need boundary conditions. At each boundary we
need as many boundary conditions as there are ingoing characteristics. We consider
pointwise boundary conditions, i.e., boundary conditions where the quantities involved
are prescribed pointwise at the boundary to some function of time. One example of
such boundary conditions is when the ingoing characteristic variables are prescribed
as a function of time. We call these boundary conditions mathematical boundary
conditions to distinguish them from numerical boundary conditions. For more details
concerning mathematical boundary conditions for hyperbolic equations, we refer to [9].

Remark. For 1-shocks and n-shocks there is just one downstream side. Hence, the
first order error appears on only one side of the shock. For other Lax shocks, both
sides of the shock are downstream sides, and first order errors appear on both sides.
The phenomenon can be analyzed by the same method in both cases, but the analysis
becomes less involved when only one side must be considered. Hence, here we analyze
a 1-shock.

2.2. The slightly viscous model. We intend to study the behavior of numer-
ical solutions of (1); i.e., we want to study the behavior of discrete functions that are
the solutions of difference equations. A useful technique for studying the behavior
of solutions to difference equations is to model the difference equation by a differen-
tial equation. Such a differential equation is often called a modified equation; see,
e.g., [11], [6]. Many numerical solutions of (1) can be viewed as higher order accurate
solutions of the modified equation

uεt + f(uε)x = (Γu
ε
x)x, 0 ≤ x ≤ xend.

In the shock region, the modified equation can be shown to be valid only for weak
shocks; see, e.g., [7]. However, our computations indicate that it applies also for strong
shocks. In the neighborhood of a shock layer we must have Γ = O(h), where h is the
grid size, in order to avoid oscillations in the solution. Outside the shock region, Γ
can be smaller. In this paper we consider methods which can be modeled by

uεt + f(uε)x = ε(φu
ε
x)x + c2ε

2uεxx,(4)

where ε = c1h and c1 and c2 a scalar constants. Here φ is a smooth function of
(x− s(t))/ε satisfying

φ

(
x− s(t)
ε

)
=

{
1 for |x−s(t)ε | ≤ K0,

0 for |x−s(t)ε | ≥ K1,

where K0 < K1 are constants with K0 sufficiently large.
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We must also model the initial data. In computations, the shape of the shock
profile will depend on the method. If the initial data does not have exactly the right
shape, the profile will after a short time adjust and obtain the right shape. In this
process, small diffusion waves appear and flow out of the shock region, following the
outgoing characteristics; see [12] and the references therein. We are not interested
in studying this initial effect, and consequently we assume that the initial profile is
exactly the right profile for the method that is modeled. We specify the initial profile
in (12) and (13).

We consider the same mathematical boundary conditions for uε as for u. When
(1) is solved numerically, the mathematical boundary conditions must be augmented
by numerical boundary conditions. Correspondingly, additional boundary conditions
that model the numerical boundary conditions are needed for uε. Numerical boundary
conditions can introduce boundary layers in the solution. We consider numerical
boundary conditions where such effects are O(h2) or smaller, e.g., extrapolation of
outgoing characteristic variables.

We define the position of the viscous shock layer as the smallest x-value such that
uε(1)(x, t) = (u−(1) + u+(1))/2, and denote this point by xε; i.e., the viscous shock
position is defined as the point where the first component of the viscous solution uε

is halfway between the right and left states in the corresponding inviscid shock.

2.3. Asymptotic expansions. We assume the following: The solution of (4)
can be described by an inner solution, valid in the shock layer, and an outer solution,
valid elsewhere. These solutions can be expanded in powers of ε and matched in a
region of overlap. Also, the position of the shock layer can be expanded in ε. To
leading order, the outer solution is equal to the solution of the corresponding inviscid
problem.

We will now show that the outer solution downstream of the shock contains an
O(h) term; i.e., downstream, the solution of (4) is just a first order approximation
of the solution of the corresponding inviscid problem (1). There is no O(h) term
upstream.

The inner solution is expressed using the variables (x̃, t̃), where

x̃ =
x− s(t)
ε

,

t̃ = t.

Thus we have expansions of the form

Outer: uε ∼ u(x, t) + εu1(x, t) + ε
2u2(x, t) + · · · ,(5)

Inner: uε ∼ U0(x̃, t̃) + εU1(x̃, t̃) + ε
2U2(x̃, t̃) + · · · ,

Position: xε ∼ s(t) + εx1(t) + ε
2x2(t) + · · · .(6)

In [3], analysis of the asymptotic expansions for a very similar problem is pre-
sented, and also the existence of an asymptotic expansion is treated. For a detailed
presentation of matched asymptotic expansions, we refer to [10].

We will match the inner and the outer solutions at an upstream and a downstream
matching point, x−m(t) and x

+
m(t). The matching points must satisfy limε→0 |x±m−s| =

0. We will also need e∓x̃
±
m = o(1). Choosing x±m = s∓ε log(ε), we have e∓x̃±

m = O(ε),
and both requirements are satisfied.

The viscous problem (4) models a method which is a second order accurate ap-
proximation of (1) away from the shock region. We claim that the solution will be
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second order accurate upstream of the shock, but in general only first order down-
stream. Hence we must show that u1 = 0 upstream and u1 �= 0 downstream. To
do this we need equations, initial data, and boundary conditions for u1. Via the
boundary conditions in the shock region, the outer solution will be coupled to the
inner solution. Specifically, to derive boundary conditions for u1 we need information
about U0. Hence, we derive equations and boundary conditions also for U0.

To obtain equations for the terms in the outer and inner expansions we substitute
the expansions into (4), Taylor expand, and collect terms multiplying the same power
of ε. The equation for U0 is

(φU0x̃)x̃ + ṡU0x̃ − f(U0)x̃ = 0, −∞ < x̃ <∞,(7)

where we have used that the relations between derivatives in x and t and derivatives
in x̃ and t̃ are

∂

∂x
=
1

ε

∂

∂x̃
,

∂

∂t
= − ṡ

ε

∂

∂x̃
+
∂

∂t̃
.

The inner and outer expansions of uε are assumed to be valid in a region of overlap
containing the matching points x±m. Hence, in the matching points, we must have
limε→0 |U0 − u| = 0, i.e.,

lim
ε→0
|U0(∓ log(ε), t̃)− u(s∓ ε log(ε), t)| = 0,

where we have used that x±m = s ∓ ε log(ε). Evaluating the limit, we arrive at the
matching conditions

U0(±∞, t̃) = u±(t),(8)

where U0(±∞, t̃) = limx̃→±∞U0(x̃, t̃). Note that (7) and (8) determine the shape of
U0 but not the exact position of the shock layer.

We define Û(x̃, t̃) by

Ûx̃x̃ + ṡÛx̃ − f(Û)x̃ = 0, −∞ < x̃ <∞,(9)

Û(x̃, t̃) = u(s± 0, t̃) as x̃→ ±∞,(10)

Û(1)(0, t̃) = (u−(1) + u+(1))/2.(11)

We see that Û differs from U0 in two ways. First, Û is independent of φ, which
makes the equation for Û much easier to analyze. Second, the position of Û is fixed
at x̃ = 0. We note that both problems are independent of ε.

Let us first compare the shape of solutions of (7) and (8) with the shape of
solutions of (9) and (10), disregarding the difference in shock position. It is easy

to show that Û approaches its limit values exponentially fast as x̃ → ±∞. If one
constructs the equations for the difference Û−U0 and uses the exponential behavior
of Û, one can conclude that U0 also approaches its limit values exponentially fast
and that |Û−U0|∞ < e−K , where K is a large constant.

Since the position of the shock layer has the expansion (6), we have, except for
exponentially small terms, to leading order

U0(x̃, t̃) = Û(x̃− x1(t̃), t̃).
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Below we will derive an ordinary differential equation for x1(t̃). The initial value of
x1(t̃) is determined by the initial condition gε, which we now specify:

Outer region: gε(x) = g(x),(12)

Inner region: gε(x̃) = Û(x̃, 0).(13)

This is sufficient for our purposes. However, if one considers more terms in the inner
expansion, one would have to add the corresponding terms to (13). Note that (13)
means that x1(0) = 0.

The equation for u1 is

u1t + (f
′(u)u1)x = 0, x ∈ outer region,(14)

where we have used that φ = 0 in the outer region. We also need initial data and
boundary conditions for u1. The initial conditions for uε, (12), gives u1(x, 0) =
0. Since uε and u satisfy the same mathematical boundary conditions and since
boundary layer effects, due to numerical boundary conditions, are assumed to be
O(h2) or smaller, we conclude that all boundary conditions for u1 at x = 0 and
x = xend are homogeneous. At the upstream side of the shock, no further boundary
conditions are needed since all characteristics of (14) are going into the shock. Since u1

in the upstream region is the solution of a homogeneous equation with homogeneous
initial data and homogeneous boundary conditions, we have u1 ≡ 0 in the upstream
region. To determine u1 in the downstream region, we also need boundary conditions
at x = s+. We derive such boundary conditions in the next section.

2.4. Downstream boundary condition for the first order outer term.
Integration of the viscous equation (4) over the shock layer, from matching point x−m
to matching point x+

m, gives∫ x+
m

x−
m

uεt dx+ [f(u
ε)]

x+
m

x−
m
= O(ε2),(15)

where we have used that φ vanishes in the matching regions. Using the outer expansion
of uε, we obtain

[f(uε)]
x+
m

x−
m
= [f(u)]

x+
m

x−
m
+ ε[J(u)u1]

x+
m

x−
m
+O(ε2).(16)

By integrating the inviscid (1) over the same interval, we obtain

[f(u)]
x+
m

x−
m
= ṡ[u]−

∫ s−

x−
m

ut dx−
∫ x+

m

s+
ut dx.(17)

Note that u is discontinuous at x = s(t) and the Rankine–Hugoniot condition applies
across the discontinuity. After taking into account that u1 ≡ 0 to the left of the shock
layer and introducing (16) and (17) into (15), we arrive at

ṡ[u] + εJ(u(x+
m, t))u1(x

+
m, t) + I1 = O(ε2),(18)

where we have introduced the notation

I1 =

∫ s−

x−
m

(uεt − ut) dx+

∫ x+
m

s+
(uεt − ut) dx.



ELIMINATION OF ERRORS IN SHOCK CALCULATIONS 2137

After Taylor expansion of u and u1 around x = s
+, (18) can be rewritten as

ṡ[u] + εJ(u(s+, t))u1(s
+, t) + I1 = o(ε).(19)

In the coordinate system (x̃, t̃) we have

I1 = −ṡA+ εI2,
where

A =

∫ 0−

x̃−
m

(uε − u)x̃ dx̃+

∫ x̃+
m

0+

(uε − u)x̃ dx̃,

I2 =

∫ 0−

x̃−
m

(uε − u)t̃ dx̃+

∫ x̃+
m

0+

(uε − u)t̃ dx̃.

Evaluating the integral yields

A = [u] + [uε − u]
x̃+
m

x̃−
m
.

By using the outer expansion of uε, taking into account that u1 is zero upstream and
Taylor expanding u1 around x = s

+, we obtain

A = [u] + εu+
1 + o(ε).

Next, consider I2. Using the inner expansion of u
ε, the Taylor expansion of u around

x = s± 0, and U0(x̃, t̃) = Û(x̃− x1, t̃), we obtain

I2 =

∫ 0

x̃−
m

(Û(x̃− x1, t̃)− u−)t̃ dx̃+
∫ x̃+

m

0

(Û(x̃− x1, t̃)− u+)t̃ dx̃+ o(1).

We rewrite I2 in two steps. First we make the substitution x̂ = x̃ − x1. Next, we
use the fact that Û approaches the limit values exponentially fast, and the matching
points are chosen such that e∓x̃

±
m = O(ε). Hence we can extend the integration

interval to infinity, still keeping the remainder term o(1). We obtain

I2 = I3t̃ − (x1[u])t̃ + o(1),

where

I3(t̃) =

∫ 0

−∞
(Û(x̃, t̃)− u−) dx̃+

∫ ∞
0

(Û(x̃, t̃)− u+) dx̃.

Since I2, I3, x1, and [u] are functions of t̃ only, and since t̃ = t, this can be written as

I2(t) =
∂

∂t
(I3(t)− x1(t)[u](t)) + o(1).

Hence we have

I1 = −ṡ[u] + ε(−ṡu+
1 + I3t − (x1[u])t) + o(ε).

Substituting this into (19) and rearranging, we obtain

(J+ − ṡI)u+
1 − (x1[u])t + I3t = o(1).
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Hence the equations for u+
1 and x1(t) are

(J+ − ṡI)u+
1 (t)− (x1(t)[u])t = −I3t,(20)

x1(0) = 0.(21)

The two equations (20) and (21) constitute the boundary conditions for u1 at x = s
+.

To make (20) and (21) easier to understand, we rewrite them using the characteristic
variables of u1. Let wI be the characteristic variable of u1 going into the shock, and
wII be the characteristic variables going out of the shock. We then have

u+
1 = (S

+
I S

+
II)

(
w+
I

w+
II

)
,

where S+
I is the eigenvector of J

+ corresponding to the eigenvalue λ+
1 and the columns

of S+
II are the eigenvectors of J

+ corresponding to the eigenvalues λ+
2 , λ

+
3 , . . . , λ

+
n .

Expressed in the characteristic variables, the boundary condition is(
w+
II

ẋ1

)
=

(
Λ+
II − ṡI 0
0 −1

)−1

D−1
(−I3t + x1[u]t − S+

I (λ
+
1 − ṡ)w+

I

)
,(22)

x1(0) = 0,(23)

where Λ+
II = diag(λ

+
2 , λ

+
3 , . . . , λ

+
n ) and D is defined by (3).

By solving (22) and (23) for x1(t) and then substituting the solution into (22)
again, we can express w+

II in w
+
I and known functions of time. The energy method

(see [9]) shows that the equation, boundary conditions, and initial data for w con-
stitute a well-posed problem. Well-posedness implies that for any I3t there exists a
unique solution. The boundary condition for w at x = s+ is homogeneous if I3t ≡ 0,
and nonhomogeneous otherwise. Since w is a transformation of u1, the same applies
for u1.

It is now clear that I3t is crucial for the order of accuracy of u
ε. In the special

case I3t ≡ 0 we have u1 ≡ 0 in the downstream region, since u1 is the solution
of a homogeneous equation with homogeneous initial data and boundary conditions.
From (5) it then follows that uε is a second order accurate approximation of u.
However, in the general case, we have u1(x, t) �= 0 for x > s, and uε will be a first
order accurate approximation of u.

2.5. A matrix valued viscosity coefficient eliminating the O(h) error.
We will now investigate whether it is possible to design the viscosity term such that
the first order downstream error is eliminated and second order accurate solutions are
obtained. We consider a method which has the modified equation

uεt + f(uε)x = ε(φ(x)E(u
ε)uεx)x + c2ε

2uεxx,(24)

where E(uε) is a matrix valued function. The solutions given by such a method can
be analyzed in the same way as in the previous sections. The only point which will
change in the analysis is the equation for Û. The new equation for Û is

(E(Û)Ûx̃)x̃ + ṡÛx̃ − f(Û)x̃ = 0,(25)

together with the conditions (10) and (11). The boundary condition for u1 at x = s
+

is still given by (22) and (23). If E(Û) can be chosen such that I3t ≡ 0, we will have
u1(x, t) ≡ 0 also in the downstream region.
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We note that if Û = Û∗ with

Û∗ = u− + γ(x̃)[u],(26)

where γ is a scalar smooth function, we obtain

I3 = cγ [u],

where

cγ =

∫ 0

−∞
γ(x̃) dx̃+

∫ ∞
0

(γ(x̃)− 1) dx̃.

If γ is antisymmetric around (0, 0.5) with

γ(−∞) = 0, γ′(−∞) = 0, γ(∞) = 1, γ′(∞) = 0,
then cγ = 0 and the boundary conditions (10) and (11) are satisfied.

It now remains to investigate whether it is possible to choose the matrix val-
ued function E(Û) such that Û∗ satisfies (25). Integrating (25) from −∞ to x̃ and

substituting Û∗ gives

γ′(x̃)E(Û∗)[u] = q(Û∗),(27)

where

q(U) = f(U)− f(u−)− ṡ(U− u−).

Note that E(Û) is a function of Û only, with no explicit x̃ dependence. Hence, in

order to solve (27) for E(Û), we must be able to express γ′ as a function of Û. This
is the case if we can express γ′ in terms of γ, and if γ is monotone. Now solving (27)
for E(Û∗) gives

E(Û∗) =
1

γ′
q(Û∗)qT (Û∗)

qT (Û∗)[u]
.(28)

To ensure that E(uε) is bounded as x̃→ ±∞ we must also require

lim
x̃→−∞

γ

γ′
=M−, lim

x̃→∞
γ − 1
γ′

=M+,

where |M±| <∞.
Note that in order to evaluate E(Û) the quantities ṡ, u−, and u+ must be known

or estimated.
Remark. Prescribing the viscous profile as above means that the solution follows a

straight line in phase space between the upstream and the downstream states. Many
other shapes of the solution, and hence, paths in phase space, would also be possible.
The properties of E(uε) will depend on which path is chosen. In order to obtain a
stable method, it is necessary that the total viscosity coefficient of the method be
positive definite. Since the term c2ε

2uεxx is also present, it is sufficient that E(u
ε) be

positive semidefinite. We have found that the choice (28) is not positive semidefinite
for all problems. In order to design a robust numerical method, we must further
investigate what paths in phase space to use. Probably, this will differ depending on
the equation that is to be solved. However, we are interested only in showing that it
is possible to obtain second order accuracy also downstream, and for this purpose it
is good enough to use E(uε) defined by (28).
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3. Numerical experiments. In this section we test how the matrix valued
viscosity coefficient derived in the previous section behaves in computations, and
compare the results to corresponding computations with a scalar viscosity coefficient.

3.1. The test problems. We consider two test problems. In both problems,
the equations, domain, initial data, and boundary condition at x = xend are the same,
while the boundary condition at x = 0 differs.

We consider the Euler equations with Riemann initial data connected by a 1-
shock. That is, we consider (1) and (2) with

u =

 ρ
ρu
E

 , f(u) =

 ρu
ρu2 + p
u(E + p)

 , xend = 6,

u(x, 0) =

{
uL for x ≤ s0,
uR for x > s0,

(29)

where E and p are connected by the equation of state for a polytropic gas

E =
p

γ − 1 +
1

2
ρu2, γ = 1.4.

Since uL and uR are connected by a 1-shock, they are fully determined if ρL, uL, and
pL—the initial density, velocity, and pressure at x ≤ s0—and pR, the initial pressure
at x > s0, are specified. We have used ρL = 3, uL = 1.2, pL = 2, and pR = 5. This
gives a 1-shock with speed ≈ −0.26. We have not specified the initial shock position
s0 explicitly. In the computations, which will be further described below, we started
the computation at t = −1, with the profile (31) and the shock located at x = 1.75.
We computed for one time unit using u(0, t) = uL. In this way we obtained a good
initial profile. We do this to avoid pollution of the numerical solution by disturbances
due to nonperfect initial data. We have also used a rather large xend in order to avoid
reflection of such disturbances at the boundary x = xend.

At x = xend we have the boundary condition

R1(xend, t) = R1(xend, 0),

where R1 = u− 2c/(γ− 1) is the Riemann invariant connected to λ1, and c =
√
γp/ρ

is the local speed of sound.
At x = 0 the boundary condition is specified by

p(0, t) = pL(1 + αd(t)),

ρ(0, t) = ρL

(
p(0, t)

pL

)1/γ

,

u(0, t) = uL +
2

γ − 1(c(0, t)− cL)

(see [2]); i.e., a disturbance with amplitude α is introduced into the Riemann invariant
R1, while the two other Riemann invariants are held constant. If α is small, this
models an acoustic disturbance. We have considered the following two test problems:

Test problem 1: α = −0.2, d(t) = (1− e−5t) sin 2t;

Test problem 2: α = −0.1, d(t) = e−10(t−0.7)2 .

In the test problems, α is rather large, in order to make the first order effect more
visible.



ELIMINATION OF ERRORS IN SHOCK CALCULATIONS 2141

−100 −50 0 50 100
0

0.2

0.4

0.6

0.8

1

φ

(x−s(t))/h

Fig. 1. The function φ, with s1 = 60 and s2 = 4.

3.2. The standard method. A common way to solve (1) is to discretize in
space using central differences and add artificial viscosity. To avoid oscillations in the
solution, the viscosity must be O(h) in the shock layer. Outside the shock region, the
viscosity can be smaller. We obtain a formally second order method, whose solutions
can be modeled by (4), using the semidiscrete scheme

(uj)t +D0f(uj) = κ1hD+φjD−uj + ζh2D+D−uj .(30)

For test problem 1, we used κ2 = 1 and ζ = 20, and for test problem 2, we used
κ1 = 0.5 and ζ = 40. We discretized in space by introducing xj = jh, h = 1/N ,
j = 0, 1, . . . , N , where uj(t) is a grid function with uj(t) ≈ uε(xj , t). The system
of ODEs (30) was solved with the classical fourth order Runge–Kutta method. The
time step was chosen as k = 0.5h, i.e., CFL-number 0.5.

The switch φ was

φ(x) =

{
0.5 tanh((x− s(t) + s1h)/s2h) + 0.5, x ≤ s(t),
0.5 tanh((x− s(t)− s1h)/s2h) + 0.5, x > s(t),

with s1 = 60 and s2 = 4; see Figure 1. Generally, there will be approximately 2s1
points where φ > 0.5, and hence we have used a very wide switch. The parameter s2
determines how steep the gradient of φ is in the transition area. The shock position
s(t) was numerically determined.

At x = 6 we used the mathematical boundary condition

R1(6, t) = R1(6, 0)

and the numerical boundary conditions

Ri(6, t) = 2Ri(6− h, t)−Ri(6− 2h, t), i = 2, 3,

where the Riemann invariants R2 and R3 are

R2 =
p

ργ
, R3 = u+

2c

γ − 1 .

The initial data was obtained in the following way. We started the computations at
t = −1 with the profile (31) and the shock located at x = 1.75. We computed for one
time unit using u(0, t) = uL.

We will refer to this method as the standard method.
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3.3. The matrix viscosity method. We will now introduce a method which
can be modeled by (24), and we will refer to it as the matrix viscosity method. The
matrix viscosity method is the same as the standard method, except that (30) is
replaced by

(uj)t +D0f(uj) = κ2hD+φjEjD−uj + ζh2D+D−uj .

Here Ej ≈ E(uε(xj , t)). Our implementation is described below. When solving test
problem 1, we used κ2 = 15, ζ = 20, and CFL-number 0.05. For test problem 2, we
used κ2 = 7, ζ = 40, and CFL-number 0.1.

To implement Ej in a robust and accurate way is difficult. The expression (28)
is not suited for computations. The solution changes rapidly in the shock layer from
being close to u− to being close to u+. The quantities ṡ, u−, and u+ must be
numerically determined; hence it is difficult to compute q with high accuracy. Also,
both q and γ′ tend rapidly to zero as x̃→ ±∞. However, for large x̃ we can linearize
the expression for q and find

q =

{
γ(J− − ṡI)[u] as x̃→ −∞,
(γ − 1)(J+ − ṡI)[u] as x̃→∞.

By the assumptions on γ we find

E =

{
E− as x̃→ −∞,
E+ as x̃→∞,

where

E± =M±
(J± − ṡI)[u][u]T (J± − ṡI)T

[u]T (J± − ṡI)T [u] .

We have used

γ(x̃) =
1

2
(tanh(x̃) + 1),

and hence we have M− = 1/2 and M+ = −1/2.
In the computations we have used

Ej = (1− γ(x̃j))E− + γ(x̃j)E+.

The quantities ṡ, u−, and u+ were numerically determined. First, we approximated
u± by simply taking the value of the numerical solution 20 points upstream and
downstream, respectively, of the approximated shock position. The shock speed ṡ
was approximated by

ṡapprox =

3∑
k=1

[f (k)(u)]
/ 3∑
k=1

[u(k)].

By adding the jumps in the different components of f(u) and dividing by the sum
of the jumps in the different components of u, we avoid introducing large errors in
ṡapprox due to rounding effects. This method for approximating u± and ṡ was used
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when test problem 1 was solved, and we obtain second order accuracy both upstream
and downstream. The results are further presented in section 3.4.

The approximation of u± mentioned above has an error which is small, but inde-
pendent of h. Hence, there will be a small O(1) error in our approximation of E(uε),
which will cause a small O(h) error in the solution. This first order effect became evi-
dent as we tried to solve test problem 2. In order to eliminate it, we needed to use an
estimate of u± with an error which is O(h). We obtain this if we make use of the fact
that the solution in the shock region follows a straight line in phase space between u−

and u+, and that the function γ determines how fast the solution is approaching the
limit values. We pick the value of the solution 2κ2 points upstream and downstream
of the approximate shock position. Since γ is known, we know how far from the end
states these values are and correct for this. The shock speed ṡ is still computed as
above. Test problem 2 was solved using this improved approximation of u±, and we
obtained second order accuracy both upstream and downstream.

The implementation of E(uε) described above requires a fixed number of compu-
tations, independent of h.

As initial profile at t = −1, we used

uj = uL + γ(x̃j)(uR − uL);(31)

i.e., in the shock region the profile satisfies (26). The initial profile (31) is used to avoid
diffusion waves in the solution (see section 2.2). Ideally, using this initial profile, no
such waves should appear. However, in our numerical computations we see diffusion
waves, but they are very small.

In computations not reported here, we have also tried to use

u(x,−1) =
{
uL for x ≤ 1.75,
uR for x > 1.75.

(32)

As expected, the profile rapidly adjusts, and diffusion waves appear and move out of
the shock region following outgoing characteristics. Also as expected, for the matrix
method, the diffusion waves are much larger with (32) as initial data than if (31) is
used. However, the order of accuracy of the solution behind the diffusion waves is the
same.

3.4. Results. We have numerically investigated the rate of convergence of the
standard method and of the matrix viscosity method by solving the two test problems
described in section 3.1 with successively refined space step.

First, consider test problem 1. In Figure 2 we see the solution at t = 1.25. We
have solved test problem 1 with successively halved space step h with both methods.
We started with h = 0.02. In all, we computed six solutions with the matrix viscosity
method and eight solutions with the standard method.

The computational order of accuracy, rh, was estimated in the standard way,

rh = log

( ||ρu4h − ρu2h||
||ρu2h − ρuh||

)/
log 2,

where ρuh denotes the discrete approximation of ρu with space step h, and the norm
used was the discrete L2-norm on the interval (0, 0.7) in the upstream region and
(1.4, 2.2) in the downstream region. In Table 1 we see that the standard method
is second order accurate upstream, but only first order accurate downstream of the
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Fig. 2. The solution of test problem 1 at t = 1.25. The solution is computed numerically using
the standard method with h = 1.5625 · 10−4.

Table 1
Estimated order of accuracy (rh) and absolute error (||eh||) for the ρu-component of the solution

of test problem 1, computed by the standard method.

Upstream Downstream
h rh ||eh|| rh ||eh||
1 · 10−2 1.5 · 10−3 3.1 · 10−2

5 · 10−3 3.92 1.0 · 10−4 2.17 6.9 · 10−3

2.5 · 10−3 2.38 1.9 · 10−5 2.15 1.6 · 10−3

1.25 · 10−3 2.00 4.6 · 10−6 1.46 5.7 · 10−4

6.25 · 10−4 2.00 1.2 · 10−6 1.20 2.5 · 10−4

3.125 · 10−4 2.00 2.9 · 10−7 1.08 1.2 · 10−4

1.5625 · 10−4 2.00 7.2 · 10−8 1.03 5.7 · 10−5

Table 2
Estimated order of accuracy (rh) and absolute error (||eh||) for the ρu-component of the solution

of test problem 1, computed by the matrix viscosity method.

Upstream Downstream
h rh ||eh|| rh ||eh||

1 · 10−2 6.3 · 10−3 1.8 · 10−2

5 · 10−3 4.71 2.4 · 10−4 1.93 4.8 · 10−3

2.5 · 10−3 3.68 1.9 · 10−5 1.96 1.2 · 10−3

1.25 · 10−3 2.01 4.6 · 10−6 2.00 3.1 · 10−4

6.25 · 10−4 2.00 1.2 · 10−6 1.99 7.7 · 10−5

shock. The matrix viscosity method is second order accurate, both upstream and
downstream of the shock; see Table 2.

In Figure 3 we see an overview of how the ρ-component of the solution converges,
and in Figure 4 we see a close-up. Note that the aim when designing the matrix
viscosity method was to avoid the first order error outside the shock region. Hence,
the matrix viscosity method performs better than the standard method for fine grids,
where the first order downstream error destroys the convergence rate of the standard
method. For coarse grids, however, the matrix viscosity method is not better.

If the order of accuracy is r, then the error in the ρu-component of the solution
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Fig. 3. Overview of the convergence of test problem 1. In the plots we see the ρ-component
of the solution. In both cases, the most viscous solution is computed using h = 0.02. Additional
solutions are computed using successively halved space step. For the standard method we see eight
different solutions, and for the matrix viscosity method six solutions.
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Fig. 4. Close-up of the convergence of the ρ-component for test problem 1. Solid lines: the
matrix viscosity method; dashed lines: the standard method. For both methods, the two coarsest
solutions are not seen in the close-up. As h is successively halved, the solutions from the matrix
viscosity method increase and the solutions from the standard method decrease.

can be estimated:

||eh|| = 1

2r − 1 ||u2h − uh||.

Hence, ||eh|| is computed with r = 2 in the upstream region for the standard method,
and both upstream and downstream for the matrix method. For the standard method
downstream of the shock, we have used r = 1. Again we use the discrete L2-norm, on
the same interval as above.

Corresponding computations for the ρ- and E-components of the solution give
qualitatively the same result.

By plotting the shock profile in phase space (see Figure 5), we see that the shock
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Fig. 5. Numerical phase diagram of the shock profile computed by the matrix viscosity method
(o) and the standard method (+). Both solutions are computed using h = 6.25 · 10−4. The shock
profile computed by the matrix viscosity method follows a straight line in phase space quite closely.
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Fig. 6. The solution of test problem 2 at t = 1.9. The solution is computed numerically using
the standard method with h = 1.5625 · 10−4.

profile obtained by the matrix viscosity method approximately follows a straight line
between the shock states. The shock profile of the standard method clearly has
another shape.

Next, consider test problem 2. In Figure 6, we see the solution of test problem 2
at t = 1.9. Test problem 2 was also solved with successively halved space step h with
both methods, starting with h = 0.02. Again, in all we computed eight solutions
with the standard method and six solutions with the matrix viscosity method. In
Table 3, we see the estimated order of accuracy for the standard method. Again,
we have used the interval (0, 0.7) in the upstream region. In the downstream region
the discrete L2-norm was computed on the interval (1.1, 3). Upstream, the solution
is second order. Downstream the convergence is slower, and the order of accuracy is
slowly approaching one. In Table 4 we see that the matrix viscosity method is second
order accurate both upstream and downstream. In Figure 7 we see an overview of
how the ρ-component converges, and in Figure 8 we see a close-up. In phase space,
the shock profiles of the solutions of test problem 2 are qualitatively the same as in
Figure 5.
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Table 3
Estimated order of accuracy (rh) and absolute error (||eh||) for the ρu-component of the solution

of test problem 2, computed by the standard method.

Upstream Downstream
h rh ||eh|| rh ||eh||
1 · 10−2 6.2 · 10−4 5.0 · 10−2

5 · 10−3 7.93 2.6 · 10−6 1.95 1.3 · 10−2

2.5 · 10−3 2.58 4.3 · 10−7 1.96 3.3 · 10−3

1.25 · 10−3 2.33 8.5 · 10−8 1.91 8.8 · 10−4

6.25 · 10−4 2.01 2.1 · 10−8 1.88 2.4 · 10−4

3.125 · 10−4 2.00 5.3 · 10−9 1.69 7.4 · 10−5

1.5625 · 10−4 2.00 1.3 · 10−9 1.39 2.8 · 10−5

Table 4
Estimated order of accuracy (rh) and absolute error (||eh||) for the ρu-component of the solution

of test problem 2, computed by the matrix viscosity method.

Upstream Downstream
h rh ||eh|| rh ||eh||

1 · 10−2 1.5 · 10−3 2.1 · 10−2

5 · 10−3 4.24 7.9 · 10−5 2.06 4.9 · 10−3

2.5 · 10−3 8.01 3.1 · 10−7 2.33 9.8 · 10−4

1.25 · 10−3 1.86 8.5 · 10−8 2.23 2.1 · 10−4

6.25 · 10−4 2.01 2.1 · 10−8 2.00 5.2 · 10−5
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Fig. 7. Overview of the convergence of test problem 2. We see the ρ-component of the solution.
In both cases, the most viscous solution is computed using h = 0.02. Additional solutions are com-
puted using successively halved space step. For the standard method we see eight different solutions,
and for the matrix viscosity method six solutions.
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Fig. 8. Close-up of the convergence of the ρ-component for test problem 2. Solid lines: the
matrix viscosity method; dashed lines: the standard method. For both methods, the two coarsest
solutions are not seen in the close-up. As h is successively halved, the solutions from both methods
decrease.
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[5] B. Engquist and B. Sjögreen, The convergence rate of finite difference schemes in the pres-
ence of shocks, SIAM J. Numer. Anal., 35 (1998), pp. 2464–2485.

[6] J. Goodman and A. Majda, The validity of the modified equation for nonlinear shock waves,
J. Comput. Phys., 58 (1985), pp. 336–348.
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Abstract. We consider piecewise linear finite element approximations uh to u the solution
of an elliptic boundary value problem. New estimates for the differences |e(x1) − e(x2)| (where
e(x) = u(x) − uh(x) is the error and x1 and x2 are any two points in the domain) are obtained
in terms of weighted L∞ norms. As a consequence, so-called asymptotic expansion inequalities are
derived that have been applied to obtain asymptotically exact a posteriori estimators for the gradient
on each element.
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1. Introduction and statement of results. The aim of this paper is to pro-
vide both local and global estimates for differences in the error at any two points in
a domain when the finite element method is used with continuous piecewise linear
functions to approximate solutions of second order elliptic boundary value problems.
The results of this paper rely on, and can be viewed as extensions of, the results given
in Schatz [6] and [7], which play an essential role in their derivation. An important
feature of all of these pointwise estimates for the error is that they are bounded in
terms of weighted L∞ norms that sharply localize the dependence of the error on the
solution. Using this feature, the results of [6] were applied in Hoffmann et al. [4] to
obtain local asymptotically exact a posteriori estimators for quadratic or higher order
finite elements. The results of this paper have been applied in [9] to obtain local
asymptotically exact a posteriori estimators in the case of linear finite elements.

An outline of this paper is as follows: In section 1.1 we consider a global Neu-
mann problem. The main result for this case is stated in Theorem 1. An important
corollary is then given, namely, Corollary 1, which contains a so-called asymptotic
error expansion inequality. It is this result that is used in [9]. Section 1.2 is concerned
with local estimates. The main result is given in Theorem 2, and the corresponding
local asymptotic error expansion inequality is given in Corollary 2. Section 2 contains
some preliminaries needed for the proofs of Theorems 1 and 2. Section 3 contains a
proof of Theorem 1 and section 4 a proof of Theorem 2.

1.1. A global Neumann problem. Let Ω be a bounded domain in R
N , N ≥ 2,

with smooth boundary ∂Ω, and consider the Neumann problem with a homogeneous
conormal boundary condition,

Lu = −
N∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+

N∑
i=1

bi(x)
∂u

∂xi
+ c(x)u = f(x) in Ω,(1.1)
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∂u

∂nL
=

N∑
i,j=1

(
aij

∂u

∂xj

)
ni = 0 on ∂Ω.(1.2)

We shall assume that the coefficients are smooth and that L is uniformly elliptic in
Ω; i.e., there exists a constant cell > 0 such that

cell|ζ|2 ≤
N∑

i,j=1

aijζiζj for all ζ ∈ R
N .(1.3)

Let u ∈W 1
2 (Ω) be a weak solution of (1.1), (1.2) satisfying

A(v, v) =

∫
Ω

(
N∑

i,j=1

aij(x)
∂u

∂xi

∂v

∂xj
+

N∑
i=1

bi(x)
∂u

∂xi
v + c(x)uvdx

)
(1.4)

=

∫
Ω

fvdx = (f, v) for all v ∈W 1
2 (Ω).

Here for simplicity it will be assumed that A(·, ·) is coercive; i.e., for some cco > 0

cco‖u‖2W 1
2 (Ω) ≤ A(u, u).(1.5)

Now consider the approximation of u using the finite element method. For 0 < h
< 1, let Sh be a family of subspaces of W 1

∞(Ω), each Sh consisting of continuous
piecewise linear functions defined on a quasi-uniform triangulation by simplexes of
roughly size h that fit ∂Ω exactly. Thus curved faces are allowed at the boundary.
By a quasi-uniform triangulation of roughly size h we mean that there exist constants
0 < c∗ < c∗ such that each simplex τ contains a ball of radius c∗h and is contained
in a ball of radius c∗h, where c∗ and c∗ are independent of τ and h. Now let uh ∈ Sh
be the finite element approximation of u defined by

A(uh, ϕ) = (f, ϕ) for all ϕ ∈ Sh(1.6)

so that

A(u− uh, ϕ) = 0 for all ϕ ∈ Sh.(1.7)

We are interested in estimating the differences e(x2)− e(x1), where x1 and x2 are
arbitrary points in Ω, and e(x) = u(x)− uh(x). Our estimates will be given in terms
of weighted L∞ norms that we will now describe. Set ρ = |x2 − x1|, x = x1+x2

2 , and
for any real s

σsx(y) =

(
max(h, ρ)

|x− y|+max(h, ρ)

)s
.(1.8)

For p = 1 or ∞, define the weighted norms

‖u‖W 1
p (Ω),x,s = ‖σsx(y)u(y)‖Lp(Ω) + ‖σsx(y)∇u(y)‖Lp(Ω).(1.9)

Our first result is as follows.
Theorem 1. Let u and uh satisfy (1.7). There exist positive constants C and k

such that if x1 and x2 are any two points in Ω, then the following hold:
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(i) If ρ ≤ kh and 0 ≤ s ≤ 1,

|e(x2)− e(x1)| ≤ Cρ
(
ln

1

h

)s(
min
χ∈Sh

‖u− χ‖W 1∞(Ω),x,s

)
.(1.10)

Here, s = 1 if s = 1, and s = 0 otherwise.
(ii) If ρ ≥ kh and 0 ≤ s < 1,

|e(x2)− e(x1)| ≤ Ch
(
ln
ρ

h

)(
inf
χ∈Sh

‖u− χ‖W 1∞(Ω),x,s

)
.(1.11)

In (1.10) and (1.11), C depends on cell, cc0 , s, Ω, and the maximum norm of the
coefficients of L and sufficiently many of their derivatives. It is independent of u, uh,
h, x1, and x2 (and hence also of ρ).

Remark 1.1. The case s = 1 has been excluded from the estimate (1.11). An
estimate for this case easily follows from the proof given in section 3 but involves an
additional logarithmic factor. We have not included this estimate since it is not the
sharpest possible. However, the proof of a sharper result would require a much longer
paper: essentially, we would not use the results of [6] but redo them with appropriate
modifications.

An immediate consequence of Theorem 1 are so-called asymptotic error expansion
inequalities.

Corollary 1. Suppose that Theorem 1 holds, and in addition, let ε > 0 be
arbitrary but fixed. Then the following hold:

(i) If ρ ≤ kh,

|e(x2)− e(x1)| ≤ Cερh

( ∑
|α|=2

|Dαu(x)|+ h1−ε‖u‖W 3∞(Ω)

)
.(1.12)

(ii) If ρ ≥ kh,

|e(x2)− e(x1)| ≤ Cεh
2
(
ln
ρ

h

)( ∑
|α|=2

|Dαu(x)|+ ρ1−ε‖u‖W 3∞(Ω)

)
.(1.13)

Corollary 1 has been applied to the problem of a posteriori estimates in [9].
The inequalities (1.12) and (1.13) follow from (1.10) and (1.11), respectively, by using
standard approximation properties of piecewise linear functions and Taylor’s theorem.

Remark 1.2. In the case of quadratic or higher elements, r = 3, 4, . . . , we have
from [6] that

|e(x)| ≤ Cεh
r

( ∑
|α|=r

|Dαu(x)|+ h1−ε‖u‖W r+1∞ (Ω)

)
.

However, Demlow [2] has shown that such an estimate is impossible in the piecewise
linear case, r = 2 (even allowing for logarithmic factors). In [9], Corollary 1 above is
a substitute estimate, strong enough to give the desired result.

1.2. Local estimates. We shall next describe some results that are local ana-
logues of the estimates (1.12) and (1.13). Toward this end, for d > 0, let B2d(x0)
denote the ball of radius 2d centered at x0. Furthermore, let Sh(B2d(x0)), 0 < h < 1,



2152 ALFRED H. SCHATZ AND LARS B. WAHLBIN

be a family of continuous piecewise linear elements defined on quasi-uniform triangu-
lations of roughly size h that cover B2d(x0). It will be assumed that kh < d for some
fixed k sufficiently large. We wish to estimate the error |e(x2) − e(x1)| for any two
points x1, x2 ∈ Bd(x0). Here uh ∈ Sh(B2d(x0)), and e(x) = u(x)− uh(x) satisfies the
local equations

A(e, ϕ) =

∫
B2d(x0)

(
N∑

i,j=1

aij(x)
∂e

∂xi

∂ϕ

∂xj
(1.14)

+

N∑
i=1

bi(x)
∂e

∂xi
ϕ+ c(x)eϕ

)
dx = 0

for all ϕ ∈
◦
Sh(B2d(x0)),

where
◦
Sh(B2d(x0)) denotes the subspace of Sh(B2d(x0)) of functions whose support

is contained in B2d(x0). Our main local result is as follows.
Theorem 2. Let u and uh satisfy (1.14), let 1 ≤ p ≤ ∞, and let t be a nonneg-

ative integer. There exist positive constants C and k such that if x1 and x2 are any
two points in Bd(x0), ρ = |x2 − x1|, x = x1+x2

2 , d ≥ max(ρ, kh), then the following
hold:

(i) If ρ ≤ kh and 0 ≤ s ≤ 1,

|e(x2)− e(x1)| ≤ Cρ
((

ln
1

h

)s
min
χ∈Sh

‖u− χ‖W 1∞(B2d(x0)),x,s(1.15)

+ d−t−1−N/ρ‖e‖W−t
p (B2d(x0))

)
,

where s = 1 if s = 1, and s = 0 otherwise.
(ii) If ρ ≥ kh and 0 ≤ s < 1,

|e(x2)− e(x1)| ≤Ch ln
(ρ
h

)(
min
χ∈Sh

‖u− χ‖W 1∞(B2d(x0)),x,s

)
(1.16)

+ Cρd−t−1−N/p‖e‖W−t
p (B2d(x0))

.

In (1.15) and (1.16), C depends on cell, cco, s, t, p, and the maximum norms of
the coefficients and sufficiently many derivatives. It is independent of u, uh, h, x1, x2

(hence also of ρ), and d. Furthermore, for any open set G and 1
p + 1

q = 1,

‖u‖W−t
p (G) = sup

∫
G

uηdx.(1.17)

As a consequence of Theorem 2 we have the following local “asymptotic expansion
inequalities.”

Corollary 2. Suppose that Theorem 2 holds, and in addition, let ε > 0 be
arbitrary but fixed. Then, for all x1 and x2 in Bd(x0), the following hold:

(i) If ρ ≤ kh,

|e(x2)− e(x1)| ≤ Cερh

( ∑
|α|=2

|Dαu(x)|+ h1−ε‖u‖W 3∞(B2d(x0))

)
(1.18)

+ Cd−t−1N/p‖e‖W−t
p (B2d(x0))

.
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(ii) If ρ ≥ kh,

|e(x2)− e(x1)|(1.19)

≤ Cεh
2 ln

(ρ
h

)[( ∑
|α|=2

|Dαu(x)|+ ρ1−ε‖u‖W 3∞(B2d(x0))

)]
+ Cρd−t−1−N/p‖e‖W−t

p (B2d(x0))
.

2. Preliminaries. Here we shall collect some known results that will be essential
in our proofs of Theorems 1 and 2. Lemma 2.1 is concerned with a special case of
estimates derived in [6] for the gradient at a point for the global Neumann problem.
Lemma 2.2 deals with analogous local estimates given in [7]. Lemma 2.3 is concerned
with some pointwise estimates given in Krasovskii [5] for the Green’s function for the
problem (1.1), (1.2).

Lemma 2.1. Let Ω be a bounded domain in R
N with a smooth boundary ∂Ω,

and let Sh(Ω) be the continuous piecewise linear functions defined on a globally quasi-
uniform mesh of roughly size h, 0 < h < 1, that fits the boundary exactly. Let
u ∈ W 1

∞(Ω) and uh ∈ Sh(Ω) satisfy (1.7), and suppose 0 ≤ s ≤ 1. Then there exists
a constant C such that if x ∈ Ω is arbitrary,

|e(x)|+ |∇e(x)| ≤ C
(
ln

1

h

)s(
min
χ∈Sh

‖u− χ‖W 1∞(Ω),x,s

)
.(2.1)

Here s = 1 if s = 1, and s = 0 otherwise. C depends on cell, cco, s, Ω, and the
maximum norm of the coefficients of L and sufficiently many of their derivatives. It
is independent of u, uh, h, and x.

Remark 2.1. At its points of discontinuity, ∇uh(x) is to be interpreted as the
limit from inside any simplex for which x is a boundary point.

We shall need a local analogue of Lemma 2.1. In Lemma 2.2 we shall use the
notation of section 1.2.

Lemma 2.2. Let u ∈ W 1
∞(B2d(x0)) and uh ∈ Sh(B2d(x0)) satisfy (1.14). There

exists a constant c such that if x ∈ Bd(x0) is arbitrary, then if 0 ≤ s ≤ 1,

|e(x)|+ |∇e(x)| ≤ C
((

ln
1

h

)s
min

χ∈Sh(B2d(x0))
‖u− χ‖W 1∞(B2d(x0)),x,s(2.2)

+ d−t−1−N/p‖e‖W−t
p (B2d(x0))

)
.

Here s = 1 if s = 1, and s = 0 otherwise. C depends on cell, cco, s, and the
maximum norm of the coefficients of L and sufficiently many of their derivatives. It
is independent of u, uh, h, d, and x.

Let Gx(y) denote the Green’s function for the problem (1.1), (1.2) with singularity
at x.

Lemma 2.3. There exists a constant C such that if x, y ∈ Ω,

|Dα
xD

β
yG

x(y)| ≤ C|x− y|2−N−|α+β| for |α+ β| > 0.(2.3)

Here C depends on cco, cell, and various norms of the coefficients of L.
3. A proof of Theorem 1, global estimates. For simplicity of proof, we will

assume that Ω is convex. We start by proving (1.10).
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In this case ρ ≤ kh, and by the fundamental theorem of calculus, there exists a
point x̂ on the line joining x1 and x2 such that, in view of (2.1),

|e(x2)− e(x1)| ≤ ρ|∇e(x̂)| ≤ cρ
(
ln

1

h

)s
min
χ∈Sh

‖u− χ‖
W 1∞(Ω),x̂,s

.(3.1)

We next note that since the function λ → λ
A+λ , A > 0, is an increasing function for

λ > 0, we have the following string of elementary inequalities:

σx̂(y) =
max(ρ, h)

|x̂− y|+max(ρ, h)
≤ 2max(ρ, h)

|x− y| − |x̂− x|+ 2max(ρ, h)
(3.2)

≤ 2max(ρ, h)

|x− y|+max(ρ, h)
= 2σx(y).

In the next to last step we have used that |x̂ − x| ≤ ρ. It follows from (3.2) and the
definition (1.9) that

‖v‖W 1∞(Ω),x̂,s ≤ 2‖v‖W 1∞(Ω),x,s for all v ∈W 1
∞.

Using this in (3.1), the inequality (1.10) follows (the case ρ ≤ kh).
We now turn to a proof of (1.11) (the case ρ ≥ kh). We can then write

e(x2)− e(x1) = A(e(y), Gx2 −Gx1),(3.3)

where Gx(y) is the Green’s function for the adjoint problem with singularity at x,

L∗Gx(y) = δx(y) in Ω,
∂Gx

∂nL∗
= 0 on ∂Ω.(3.4)

Hence for any ψ ∈ Sh(Ω)

|e(x2)− e(x1)| ≤ |A(e,Gx2 −Gx1 − ψ)|(3.5)

≤ C
(
‖e‖W 1∞(Ω),x,s‖Gx2 −Gx1 − ψ‖W 1

1 (Ω),x,−s
)
.

The remainder of this section will be devoted to showing that, for 0 ≤ s < 1 and
ρ ≥ kh,

‖e‖W 1∞(Ω),x,s ≤ C inf
χ∈Sh

‖u− χ‖W 1∞(Ω),x,s(3.6)

and that there exists a ψ ∈ Sh so that

‖Gx2 −Gx1 − ψ‖W 1
1 (Ω),x,−s ≤ Ch

(
ln
ρ

h

)
,(3.7)

where C is as in Theorem 1. Granting the last two inequalities for a moment, the
proof of (1.11) follows from (3.5), (3.6), and (3.7), which would complete the proof of
Theorem 1.

We now turn to the proof of (3.6). In view of (2.1), we have for any z ∈ Ω

|e(z)|+ |∇e(z)| ≤ C inf
χ∈Sh

(
‖σsz(y)(u− χ)(y)‖L∞(Ω) + ‖σsz(y)(∇(u− χ))(y)‖L∞(Ω)

)
.
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Now multiplying both sides by σsx(z), we obtain

σsx(z)|e(z)|+ σsx(z)|∇e(z)|(3.8)

≤ C inf
χ∈Sh

(
‖σsx(z)σsz(y)(u− χ)(y)‖L∞(Ω)

+ ‖σsx(z)σsz(y)(∇(u− χ))(y)‖L∞(Ω)

)
.

For the product of weights in the right-hand side, we have

σx(z)σz(y) ≡
( ρ

|x− z|+ ρ

)( ρ

|z − y|+ ρ

)
≤
( ρ

|x− z|+ ρ

)( |x− z|+ ρ

|z − y|+ |x− z|+ ρ

)
=

ρ

|x− z|+ |z − y|+ ρ
≤ ρ

|x− y|+ ρ
≡ σx(y).

Using this in the right-hand side of (3.8), which then becomes independent of z, and
taking the maximum norm of the left-hand side in z, we arrive at (3.6).

It remains to prove (3.7). For d > 0 and x ∈ Ω, let

Md(x) = Bd(x) ∩ Ω = {y ∈ Ω : |y − x| < d}.
Next, for i = 1, 2, define ψi ∈ Sh by

ψi(y) = (Gxi(y))Int,(3.9)

where the interpolation operator is of any standard type involving local averaging;
see, e.g., Clément [1], Hilbert [3], or Scott and Zhang [10]. Set

ψ = ψ1 − ψ2.

Using the triangle inequality (recall that ρ = |x1− x2| and x = (x1 + x2)/2), we have

‖Gx2 −Gx1 − ψ‖W 1
1 (Ω),x,−s(3.10)

≤ 4s
2∑

i=1

‖Gxi − ψi‖W 1
1 (M4ρ(xi)) + ‖Gx2 −Gx1 − ψ‖W 1

1 (Ω/M3ρ(x)),x,−s

= I1 + I2.

We begin by estimating each term in I1. Now

‖Gxi − ψi‖W 1
1 (M4ρ(xi))(3.11)

≤ ‖Gxi − ψi‖W 1
1 (M2kh(xi)) + ‖Gxi − ψi‖W 1

1 (M4ρ(xi)/M2kh(xi)).

Using stability properties of the ψi for the first term on the right, we have

‖Gxi − ψi‖W 1
1 (M2kh(xi)) ≤ C‖Gxi‖W 1

1 (M3kh(xi))(3.12)

≤ C

∫
0≤r≤3kh

rN−1

rN−1
dr ≤ Ch.

Here we have set r = |x − xi| and used the bounds (2.3) for the Green’s function.
Now using approximation properties of the ψi, and (3.12) in (3.11),

‖Gxi − ψi‖W 1
1 (M4ρ(xi)/M2kh(xi))(3.13)

≤ Ch‖Gxi‖W 2
1 (M5ρ(xi)/Mkh(xi))

≤ Ch

∫
kh≤r≤5ρ

rN−1

rN
dr ≤ Ch ln

(ρ
h

)
.
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Combining (3.13), (3.12), and (3.11), we arrive at

I1 ≤ Ch
(
ln
ρ

h

)
.(3.14)

It remains to estimate I2. For this purpose, let

dj = 2−j , j = 0, 1, 2, . . . ,

and introduce the “annuli”

Ωj = {y ∈ Ω : dj+1 < |y − x| < dj} for j = 0, 1, 2, . . . ,

Ω′j = Ωj−1 ∪ Ωj ∪ Ωj+1 for j = 1, 2, . . . ,

Ω′0 = Ω0 ∪ Ω1.

Also set

J =
[
ln2

( 1

3ρ

)]
+ 1.

Using the triangle inequality and assuming for convenience that Ω ⊂M1(x),

I2 ≤
J∑
j=0

(dj
ρ

)s
‖Gx2 −Gx1 − ψ‖W 1

1 (Ωj)(3.15)

≤ C

J∑
j=0

dN+s
j

ρs
‖Gx2 −Gx1 − ψ‖W 1∞(Ωj)

≤ Ch

J∑
j=0

dN+s
j

ρs
|Gx2 −Gx1 |W 2∞(Ω′

j)
,

where we have used the standard approximation properties of ψ. Next, by the funda-
mental theorem of calculus and (2.3), we have for any multi-index β with |β| = 2

|Dβ
y (G

x2(y)−Gx1(y))| ≤
∑
|α|=1

∫
Γ

|Dα
xD

β
yG

x|dx ≤ Cρd−N−1
j ,(3.16)

where Γ is the line joining x1 and x2. Using (3.16) in (3.15), we arrive at

I2 ≤ Ch

J∑
j=0

dN+s
j ρd−N−1

j

ρs
= Ch

J∑
j=0

( ρ
dj

)1−s
,

or

I2 ≤ C(s)h for 0 ≤ s < 1.(3.17)

Combining (3.16) and (3.14) into (3.10) leads to (1.11), which completes the proof of
Theorem 1.

Remark 3.1. If s = 1, then I2 ≤ Ch ln 1
ρ . Hence the estimate (1.11) may be

extended to the case s = 1 but with an additional ln 1
ρ factor; cf. Remark 1.1.
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4. A proof of Theorem 2, interior estimates. The proof of interior esti-
mates involves some additional technical difficulties when compared with the proof
of Theorem 1. These difficulties can be overcome by well-established techniques de-
veloped in [8]. There are some parts where the proof relies on techniques used in the
proof of Theorem 1. In order to avoid tedious and repetitive details, we shall restrict
ourselves to giving an outline of the proof, except at essentially new points.

Proof. We begin with a proof of (1.15). Proceeding as in the proof of (1.10), we
have

|e(x2)− e(x1)| ≤ ρ|∇e(x̂)|,
where x̂ is a point on the line joining x1 and x2. Applying (2.2), we obtain for
0 ≤ s ≤ 1

|e(x2)− e(x1)|≤Cρ
[(

ln
1

h

)s(
min
χ∈Sh

‖u−χ‖
W 1∞(Bd(x̂)),x̂,s

)
+d−1−t−N/p‖e‖

W−t
p (Bd(x̂))

]
≤ Cρ

[(
ln

1

h

)s(
min
χ∈Sh

‖u− χ‖W 1∞(B2d(x0)),x,s

)
+ d−1−t−N/p‖e‖W−t

p (B2d(x0))

]
.

In the last step we used that |x̂− x| ≤ p/2. This is (1.15).
The proof of (1.16) will be separated into two steps, following the general pro-

cedure established in [8], with a slight modification given in [7]. In the first step the
case d = 1 will be treated, and, in the second step, the result for any d < 1 will be
reduced to the first case via a standard scaling argument.

Step 1. Let d̂ > 0 be any number independent of u and h. Assume we could show,
for x1, x2 ∈ Bd̂(x̂0), any x̂0 ∈ B1(x0), that

|e(x2)− e(x1)| ≤ Ch ln(ρ/h) min
χ∈Sh

‖u− χ‖W 1∞(B1(x̂0)),x,s + Cρ‖e‖W−t
p (B1(x̂0))

.(4.1)

Then clearly (1.16) for d = 1 would follow by a covering argument (and inserting points

between x1 and x2 if p = |x2 − x1| > d̂, i.e., when the weight is of no consequence).
For notational simplicity, we shall now let x̂0 = 0 and write Bd for Bd(0).
It would be convenient if A(·, ·) were coercive on B1, i.e., if

cco‖u‖2W 1
2 (B1)

≤ A(u, u) for all u ∈W 1
2 (B1).

This is not assumed. However, this difficulty may be overcome by modifying the form
in the following manner. For µ > 0 and d̂ > 0, set

Aµ(u, v) = A(u, v) + µ

∫
B1

ŵ(x)u(x)v(x)dx,

where ŵ ∈ C∞, ŵ ≥ 0, ŵ = 0 for |x| < 2d̂, ŵ = 1 for |x| ≥ 3d̂. Let Q =∑N
i=1 ‖bi‖L∞(B1)| + ‖c‖L∞(B1). From Lemma 2.1 of [7] we know that there do ex-

ist d̂ and µ depending only on Q and cell, such that

cell
4
‖u‖2W 1

2 (B1)
≤ Aµ(u, u) for u ∈W 1

2 (B1).(4.2)

Note that, by construction,

Aµ(u, v) = A(u, v) for all v ∈
◦
W 1

2(B2d̂).(4.3)
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We now begin the proof of (1.16) by slightly modifying the proof of Theorem 1.
Let Gx(y) be the Green’s function for the Neumann problem

L∗Gx(y) = δx(y) in B1,
∂Gx(y)

∂nL∗
= 0 on ∂B1,

where L∗ is the adjoint of Lλ = L+ µŵI. Let w(y) ∈ C∞0 be a cut-off function,

w(y) =

{
1 for |y| ≤ d̂,

0 for |y| ≥ 3d̂/2.

Then, for x1, x2 ∈ Bd̂,

e(x2)− e(x1) = Aµ(we,G
x2 −Gx1).(4.4)

A straightforward but tedious calculation yields

Aµ(we,G
x2 −Gx1) = Aµ(e, w(G

x2 −Gx1)) +R,(4.5)

where, for any 1 ≤ p ≤ ∞ and integer t ≥ 0,

|R| ≤ C‖e‖W−t
p (B1)

(
2∑

|α|=1

1∑
|β|=0

‖(Dαw)Dβ(Gx1 −Gx2)‖W t
q (B1\Bd̂

)

)
.(4.6)

Here we have used the fact thatDαw vanishes on Bd̂ for |α| ≥ 1. EstimatingDβ
y (G

x2−
Gx1) as in (3.16), we arrive at

|R| ≤ Cρ‖e‖W−t
p (B1)

.(4.7)

According to (4.5), it remains to estimate I= Aµ(e, w(G
x2−Gx1)) = A(e, w(Gx2−

Gx1)), by (4.3). Hence, for any ψ ∈
◦
Sh(B2d̂),

I = A(e, w(Gx2 −Gx1)− ψ).

Analogously to (3.9), let ψi = (wGxi)Int, i = 1, 2, be a suitable (locally averaged)

interpolant of wGxi , and set ψ = ψ2 − ψ1. For h small enough, ψ ∈
◦
Sh(B2d̂) since w

is supported in B3d̂/2. Thus

|I| ≤ C‖e‖W 1∞(B
2d̂

),x,s‖w(Gx2 −Gx1)− ψ‖W 1
1 (B

2d̂
),x,−s.(4.8)

The last term on the right of (4.8) can be estimated by following the same procedure
used in estimating the terms in (3.10) to obtain

‖w(Gx2 −Gx1)− ψ‖W 1
1 (B

2d̂
),x,−s ≤ Ch ln

(ρ
h

)
for 0 ≤ s < 1.(4.9)

Combining (4.9) with (4.8) and using Lemma 2.2 with d = 2d̂,

|I| ≤ Ch ln(ρ/h)
(
min
χ∈Sh

‖u− χ‖W 1
1 (B1),x,s + ‖e‖W−1

p (B1)

)
.
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In view of (4.4), (4.5), and (4.7), this gives

|e(x2)− e(x1)| ≤ Ch ln
(ρ
h

)
min
χ∈Sh

‖u− χ‖W 1∞(B1),x,s

+ Cρ
(h
ρ
ln
(ρ
h

)
+ 1
)
‖e‖W−t

p (B1)
.

Since ρ ≥ kh, where we may assume without loss of generality that k ≥ 2, we have
|h/ρ ln(ρ/h)| ≤ 1/e. Hence this gives (4.1) and, as already noted, proves (1.16) for
d = 1.

Step 2. We now turn to a proof of (1.16) in the case d < 1. As remarked before,
this will be reduced to the case d = 1 by a standard scaling argument (see [7], [8]).

For simplicity we shall take x0 to be the origin. Then the transformation z = x
d

maps B2d(x0) to B2(x0). Set û(z) = u(dz), ûh(z) = uh(dz), and ê(z) = û(z)− ûh(z).
By a change in variables we have

A(e, χ) ≡ dN−2Â(ê, χ̂) = 0 for all χ ∈
◦
Sh(B2d)

or

Â(ê, χ̂) = 0 for all χ̂ ∈
◦
Sh/d(B2),(4.10)

where

Â(ê, χ̂) =

∫
B2

(
N∑

i,j=1

aij(dz)
∂ê

∂zi

∂χ̂

∂zj
+

N∑
i=1

dbi(dz)
∂ê

∂zi
χ̂+ d2c(dz)êχ̂

)
dz.

Thus the mesh size for (4.10) for ê is h/d. Notice that the size of cell and the co-

efficients and derivatives of Â are no larger than those for A. Hence Theorem 2 in
the case that ρ ≥ kh and d = 1 may be applied with appropriate bounds for cell,∑N

i=1 d‖bi(dz)‖L∞(B2), and d2‖c(dz)‖L∞(B2) (and sufficiently many of their deriva-
tives) that can be chosen independent of d ≤ 1. We obtain

|e(z2)− e(z1)| ≤ C
(h
d
ln
ρ/d

h/d

)[
min

χ∈Sh/d
‖σsx(∇z(u− χ))‖L∞(B2)(4.11)

+ ‖σsx(u− χ)‖L∞(B2))
]

+ C
(ρ
d

)
‖e‖W−t

p (B2)
,

where in (4.11)

σsx =
( ρ/d

|z|+ ρ/d

)
.

The inequality (1.16) now follows from (4.11) by scaling B2 back to the ball B2d,
via z = x

d , and taking into account how each norm transforms. This completes the
outline of the proof.

Acknowledgment. The authors thank a referee for detailed comments which
helped improve the presentation.
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ERROR ANALYSIS OF A SEMIDISCRETE NUMERICAL SCHEME
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Abstract. We analyze a semidiscrete numerical scheme for approximating the evolution of
axially symmetric surfaces by surface diffusion. The fourth order equation is split into two coupled
second order problems, which are approximated by linear finite elements. We prove error bounds for
the resulting scheme and present numerical test calculations that confirm our analysis.

Key words. surface diffusion, finite elements, error estimates, fourth order parabolic equation
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1. Introduction. In recent years motion by mean curvature has been exten-
sively studied from the computational point of view. However, the related curvature
flow of motion by the surface Laplacian has received far less attention in the numerical
analysis literature. The geometrical problem is to find a time-dependent surface Γ(t)
evolving according to the law of motion

V = ∆Γ(t)κ on Γ(t),(1.1)

where V and κ denote, respectively, the normal velocity and the mean curvature of
the surface. Our sign convention is that κ with respect to the outer normal is positive
for spheres. The Laplace–Beltrami or surface Laplacian operator for Γ is denoted by
∆Γ. This evolution has interesting geometrical properties: if Γ(t) is a closed surface
bounding a domain Ω(t), then the volume of Ω(t) is preserved and the surface area of
Γ(t) decreases. It is known that for closed curves in the plane or closed surfaces in R

3

balls are asymptotically stable subject to small perturbations; see [9], [10]. However,
it is also known that topological changes such as pinch-off are possible [11], [13].

Equation (1.1) is referred to as a surface diffusion equation because it models the
diffusion of mass within the bounding surface of a solid body. At the atomistic level
atoms on the surface move along the surface due to a driving force consisting of a
chemical potential difference. For a surface with constant surface energy density the
appropriate chemical potential in this setting is the mean curvature κ. This leads to
the flux law

ρV = −divΓj,

where ρ is the mass density and j is the mass flux in the surface, with the constitutive
flux law [12], [14]

j = −D∇Γκ.
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Here, D is the diffusion constant. From these equations we obtain the law (1.1)
after an appropriate nondimensionalization. The notion of surface diffusion is due to
Mullins [14] and for a review we refer to [2].

In applications one is interested in the stability of so-called whiskers, which are
axially symmetric cylindrical bodies of small diameter with respect to their length;
see [15], [3], [1], and [16]. We shall be concerned with an axially symmetric cylindrical
body, whose boundary

Γ(t) = {x ∈ R
3 |x = (x, r(x, t) cosφ, r(x, t) sinφ), x ∈ [0, L], φ ∈ [0, 2π]}

evolves by surface diffusion. We assume that the radius r is a smooth positive func-
tion, which is periodic in x, so that r(0, t) = r(L, t). In these coordinates the mean
curvature of Γ(t) is

κ =
1

r
√
1 + r2x

− rxx√
1 + r2x

3 =
1

r
√
1 + r2x

−
(

rx√
1 + r2x

)
x

,(1.2)

while the normal velocity and surface Laplacian of the mean curvature of the surface,
respectively, are given by

V =
rt√
1 + r2x

, ∆Γκ =
1

r
√
1 + r2x

(
rκx√
1 + r2x

)
x

.

It follows from these two equations that r satisfies the quasi-linear fourth order para-
bolic problem

rt =
1

r

(
rκx√
1 + r2x

)
x

in I × (0, T ],(1.3)

r(0, t) = r(L, t) in (0, T ],(1.4)

κ(0, t) = κ(L, t) in (0, T ],(1.5)

r(·, 0) = r0 in I,(1.6)

where I = (0, L) and κ is given by (1.2). The initial function r0 is assumed to be
periodic and positive.

Our concern in this paper is the analysis of a finite element discretization based
on the above natural splitting of the fourth order problem into two coupled second
order equations for the radial variable r and the mean curvature κ. We note that
[4] proposed a similar second order splitting scheme and used R = r2 and κ as the
variables. Our principal result is an error estimate for the spatial discretization, which
is actually attained in numerical experiments.

The paper is organized as follows: in section 2 we introduce the numerical scheme,
prove the local existence and uniqueness of the discrete solution, and formulate our
main error estimate. This result is proved in section 3, while section 4 contains
numerical tests.

2. The discrete problem. As already mentioned in the introduction, our dis-
cretization of (1.3) is based on the idea of splitting the elliptic part, which is of fourth
order, into two second order operators. This is similar in spirit to the second order
splitting techniques proposed for the numerical approximation of the Cahn–Hilliard
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equation in [8]. To begin, we deduce from (1.2)

rκ =
1√
1 + r2x

− r
(

rx√
1 + r2x

)
x

=
√
1 + r2x −

(
rrx√
1 + r2x

)
x

.(2.1)

Thus (1.3) and (2.1) allow the variational formulation∫
I

rrtηdx = −
∫
I

rκxηx√
1 + r2x

dx ∀η ∈ H1
per (I),(2.2) ∫

I

rκζdx =

∫
I

√
1 + r2x ζdx+

∫
I

rrxζx√
1 + r2x

dx ∀ζ ∈ H1
per (I),(2.3)

where H1
per (I) = {η ∈ H1(I) | η(0) = η(L)}. We employ (2.2), (2.3) in order to

define a semidiscrete scheme using linear finite elements to approximate r and κ. Let
0 = x0 < x1 < · · · < xN = L, hj := xj−xj−1, and h := max1≤j≤N hj . We shall make
an inverse assumption of the form

h ≤ ρhj ∀j = 1, . . . , N,(2.4)

where ρ > 0 is independent of h. The space of linear finite elements is defined by

Xh := {φh ∈ C0(Ī) |φh|[xj−1,xj ] ∈ P 1, 1 ≤ j ≤ N,φh(0) = φh(L)}.
Our discrete problem now reads as follows: find rh, κh : [0, T ]→ Xh such that∫

I

rhrh,tηhdx = −
∫
I

rhκh,xηh,x√
1 + r2h,x

dx ∀ηh ∈ Xh, t ∈ (0, T ],(2.5)

∫
I

rhκhζhdx =

∫
I

√
1 + r2h,x ζhdx+

∫
I

rhrh,xζh,x√
1 + r2h,x

dx ∀ζh ∈ Xh, t ∈ [0, T ],(2.6)

rh(0) = Ihr0,(2.7)

where Ih denotes the Lagrange interpolation operator.
Lemma 2.1. There exists Th > 0 such that (2.5)–(2.7) has a unique solution

(rh, κh) ∈ C1([0, Th];Xh ×Xh) satisfying
1
2 min[0,L] r0 ≤ rh ≤ 2max[0,L] r0 in [0, L]×

[0, Th].
Proof. Choose a smooth globally Lipschitz-continuous function β : R → R with

the properties β(s) = s for 1
2 min[0,L] r0 ≤ s ≤ 2max[0,L] r0,

1
4 min[0,L] r0 ≤ β(s) ≤

4max[0,L] r0 for all s ∈ R. We first consider the following modified problem: find
rh, κh : [0, T ]→ Xh such that∫

I

β(rh)rh,tηhdx = −
∫
I

rhκh,xηh,x√
1 + r2h,x

dx ∀ηh ∈ Xh, t ∈ [0, T ],(2.8)

∫
I

β(rh)κhζhdx =

∫
I

√
1 + r2h,x ζhdx+

∫
I

rhrh,xζh,x√
1 + r2h,x

dx ∀ζh ∈ Xh, t ∈ [0, T ],(2.9)

rh(0) = Ihr0.(2.10)

Denoting by ψ1, . . . , ψN the usual nodal basis of Xh, we can represent (rh, κh) as

rh(·, t) =
N∑
j=1

rj(t)ψj , κh(·, t) =
N∑
j=1

κj(t)ψj(2.11)
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and write r(t) = (r1(t), . . . , rN (t))
T , κ(t) = (κ1(t), . . . , κN (t))

T . In view of the prop-
erties of β we may rewrite (2.9) in the form κ(t) = G(r(t)) with a Lipschitz-continuous
mapping G : R

N → R
N . Inserting this into (2.8) and using again the properties of β,

we may write this relation as

r′(t) = F (r(t)), r(0) = (r0(x1), . . . , r0(xN ))
T ,

with a Lipschitz-continuous F : R
N → R

N . The existence and uniqueness of r on
some interval [0, Th] follows directly from the theory of ODEs. The corresponding
functions rh and κh given by (2.11) will then solve (2.8)–(2.10). Since rh(0) = Ihr0
and by making Th smaller if necessary, we may assume that 1

2 min[0,L] r0 ≤ rh ≤
2max[0,L] r0 in [0, L] × [0, Th] so that, in view of the properties of β, (rh, κh) also
solves (2.5)–(2.7).

Using ηh = κh in (2.5) and ζh = rh,t in (2.6) and taking the difference of the
resulting equations, we obtain

0 =

∫
I

√
1 + r2h,x rh,tdx+

∫
I

rhrh,xrh,tx√
1 + r2h,x

dx+

∫
I

rhκ
2
h,x√

1 + r2h,x

dx

=
d

dt

∫
I

rh

√
1 + r2h,xdx+

∫
I

rhκ
2
h,x√

1 + r2h,x

dx.

Thus

sup
0≤t≤Th

∫
I

rh

√
1 + r2h,xdx+

∫ Th

0

∫
I

rhκ
2
h,x√

1 + r2h,x

dxdt ≤ C(r0).(2.12)

Before we formulate an error estimate for the scheme (2.5)–(2.7), we state a local
existence and uniqueness result for the continuous problem.

Theorem 2.2. Suppose that r0 ∈ H4
per (I) is strictly positive. Then there ex-

ists T0 > 0 such that (1.3)–(1.6) has a unique solution (r, κ), which satisfies r ∈
L∞
(
0, T0;H

4
per (I)

)
, rt ∈ L2

(
0, T0;H

2
per (I)

)
, and r(x, t) > 0 for all (x, t) ∈ I× [0, T0].

Proof. A similar result was proved in [11] for a formulation of (1.1) in terms of
the distance function to a fixed reference curve. Since the resulting equation has the
same structure as (1.3)–(1.6), the methods employed in [11] can be applied to our
situation.

We denote by [0, Tmax), Tmax ∈ (0,∞] the maximal time interval on which the
solution from Theorem 2.2 exists and fix T < Tmax. Then there exist constants
0 < c0 ≤ C0 and M ≥ 0 (depending on T ) such that

c0 ≤ r ≤ C0, |rx| ≤ C0 on [0, L]× [0, T ],(2.13)

sup
t∈(0,T )

‖r(., t)‖2H4(I) +

∫ T

0

‖rt‖2H2(I)dt ≤ M2.(2.14)

Combining these bounds with (1.2), (1.3), and the inequality ‖f‖L∞(I) ≤ C‖f‖H1(I),
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we note for later use

‖κ(., t)‖H1,∞(I)+‖κ(., t)‖H2(I)+‖rt(., t)‖L2(I) ≤ C uniformly in t ∈ [0, T ],(2.15)

where C depends on L, c0, C0, and M .
Our main result is the following error estimate, the proof of which will be given

in the next section.
Theorem 2.3. There exists an h0 > 0 such that for all 0 < h ≤ h0 the discrete

solution (rh, κh) exists on [0, T ] and

sup
0≤t≤T

‖(r − rh)(t)‖2H1(I) +

∫ T

0

‖κ− κh‖2H1(I)dt ≤ Ch2.(2.16)

The constant C depends on L, T, c0, C0,M , and ρ.

3. Proof of Theorem 2.3. Let us define

T̂h := sup

{
t ∈ [0, T ] | (rh, κh) solves (2.5)–(2.7) on [0, t] and

1

2
c0 ≤ rh ≤ 2C0, |rh,x| ≤ 2C0 on [0, t]

}
.

By choosing Th smaller if necessary (in order to satisfy the bound on rh,x), we may

deduce from Lemma 2.1 that T̂h > 0. Our aim is to show that T̂h = T for small h.
This will be achieved by proving the bounds (2.16) on [0, T̂h], which will enable us to
continue the discrete solution. By the definition of T̂h we have

1

2
c0 ≤ rh ≤ 2C0, |rh,x| ≤ 2C0 on [0, L]× [0, T̂h).(3.1)

In what follows, we shall denote by C a constant which may depend on L, T, c0, C0,M ,
and ρ. Additional dependencies of C will be stated explicitly. We start with a useful
auxiliary lemma.

Lemma 3.1. Let v ∈ H1
per (I), t ∈ [0, T̂h). Then we have for ε > 0∣∣∣∣ ∫

I

rh
r
v r rtdx−

∫
I

v rhrh,tdx

∣∣∣∣ ≤ ε‖κx − κh,x‖2L2(I) + Cε‖v‖2H1(I)

+ Ch2 + C‖r − rh‖2H1(I).

Proof. Fix t ∈ [0, T̂h) and denote by Qh : L2(I) → Xh the following weighted
projection: for a given u ∈ L2(I) let Qhu ∈ Xh be defined by∫

I

rhu ζhdx =

∫
I

rhQhu ζhdx ∀ζh ∈ Xh.(3.2)

We claim that

‖u−Qhu‖L2(I) + h‖ux − (Qhu)x‖L2(I) ≤ Ch‖ux‖L2(I) ∀u ∈ H1
per (I).(3.3)

To see this, we first note that (3.1), (3.2), and an interpolation inequality imply

c0
2

∫
I

|u−Qhu|2 ≤
∫
I

rh(u−Qhu)(u−Qhu) =
∫
I

rh(u−Qhu)(u− Ihu)
≤ 2C0‖u−Qhu‖L2(I) h‖ux‖L2(I),
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which yields the first part of (3.3). In view of (2.4) we have that ‖vh,x‖L2(I) ≤
Ch−1‖vh‖L2(I) for vh ∈ Xh, and therefore

‖ux − (Qhu)x‖L2(I) ≤ ‖ux − (Ihu)x‖L2(I) + ‖(Ihu)x − (Qhu)x‖L2(I)

≤ 2‖ux‖L2(I) + Ch−1‖Ihu−Qhu‖L2(I)

≤ 2‖ux‖L2(I) + Ch−1
(‖u− Ihu‖L2(I) + ‖u−Qhu‖L2(I)

)
≤ C‖ux‖L2(I),

where we used the bound on ‖u−Qu‖L2(I). This proves (3.3).
Next we infer from (3.2) and (2.5) that∫

I

v rhrh,tdx =

∫
I

Qhv rhrh,tdx = −
∫
I

rhκh,x(Qhv)x√
1 + r2h,x

dx ∀v ∈ H1
per (I).

If we combine this relation with (2.2), we may continue with∫
I

rh
r
v r rtdx−

∫
I

v rhrh,tdx

= −
∫
I

rκx(
rh
r v)x√

1 + r2x
dx+

∫
I

rhκh,x(Qhv)x√
1 + r2h,x

dx

= −
∫
I

rκxv√
1 + r2x

rh,xr − rxrh
r2

dx+

∫
I

r − rh√
1 + r2x

κxvx dx

+

∫
I

 rh√
1 + r2h,x

− r√
1 + r2x

κh,x(Qhv)xdx

+

∫
I

r√
1 + r2x

(κh,x − κx)(Qhv)xdx+
∫
I

r κx√
1 + r2x

(Qhv − v)x dx

≡
5∑
i=1

Si.

In view of (2.13), (2.15), and (3.1), we then have

|S1| ≤ C

∫
I

|v|(|r − rh|+ |rx − rh,x|)dx ≤ ‖v‖2L2(I) + C‖r − rh‖2H1(I),

|S2| ≤ ‖vx‖2L2(I) + C‖r − rh‖2L2(I).

Next, (2.15) and (3.3) imply

|S3| ≤
∫
I

∣∣∣∣∣∣ rh√
1 + r2h,x

− r√
1 + r2x

∣∣∣∣∣∣ (|κx|+ |κh,x − κx|)|(Qhv)x| dx
≤ C

∫
I

(|r − rh|+ |rx − rh,x|)|(Qhv)x| dx+ C

∫
I

|κx − κh,x| |(Qhv)x| dx

≤ ε‖κx − κh,x‖2L2(I) + Cε‖vx‖2L2(I) + C‖r − rh‖2H1(I),

and similarly,

|S4| ≤ ε‖κx − κh,x‖2L2(I) + Cε‖vx‖2L2(I).
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Finally, integration by parts, (1.3), (2.15), and (3.3) yield

|S5| =
∣∣∣∣∣−
∫
I

(
r κx√
1 + r2x

)
x

(Qhv − v) dx
∣∣∣∣∣

≤ Ch‖vx‖L2(I)‖rt‖L2(I) ≤ Ch2 + C‖vx‖2L2(I).

Collecting the above estimates concludes the proof of the lemma.
As a first application of the above result we derive a differential inequality for the

L2-error.
Lemma 3.2.

1

2

d

dt
‖r − rh‖2L2(I) ≤ ε‖κx − κh,x‖2L2(I) + Cε‖r − rh‖2H1(I) + Ch2.

Proof. Clearly,

1

2

d

dt
‖r − rh‖2L2(I) =

∫
I

(r − rh)(rt − rh,t)dx(3.4)

=

∫
I

1

r
(r − rh)rrtdx−

∫
I

1

rh
(r − rh)rhrh,tdx.

If we apply Lemma 3.1 to the function

v :=
1

rh
(r − rh)(·, t) for t ∈ (0, T̂h),

the result follows.
The main part of the proof of Theorem 2.3 consists in controlling the H1-

seminorms of r− rh and κ− κh. The idea is to mimic the argument which led to the
a priori estimate (2.12) in such a way that it can be applied to the difference between
exact and discrete solution. This suggests using ηh = Ihκ − κh, ζh = Ihrt − rh,t in
the error relations satisfied by r − rh, κ − κh. In order to derive these relations we
use η = ηh ∈ Xh in (2.2) and ζ = ζh ∈ Xh in (2.3) and take the difference with (2.5),
(2.6), respectively. This leads to

∫
I

(
r rt − rhrh,t

)
ηhdx = −

∫
I

 rκx√
1 + r2x

− rhκh,x√
1 + r2h,x

 ηh,xdx ∀ηh ∈ Xh,(3.5)

∫
I

(r κ− rhκh)ζhdx =
∫
I

(√
1 + r2x −

√
1 + r2h,x

)
ζhdx(3.6)

+

∫
I

 rrx√
1 + r2x

− rhrh,x√
1 + r2h,x

 ζh,xdx ∀ζh ∈ Xh.

Lemma 3.3. We have for all ε > 0

d

dt

∫
I

rh

(√
1 + r2h,x −

rh,xrx + 1√
1 + r2x

)
dx+

∫
I

rh√
1 + r2h,x

(κx − κh,x)2dx(3.7)

≤ Cε‖κ− κh‖2H1(I) + Cε(1 + ‖rt‖H2(I))‖r − rh‖2H1(I) + Cεh
2(1 + ‖rt‖2H2(I)).
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Proof. Using ζh = Ihrt − rh,t in (3.6), we obtain∫
I

(rκ− rhκh)(Ihrt − rh,t)dx =
∫
I

(√
1 + r2x −

√
1 + r2h,x

)
(Ihrt − rh,t)dx(3.8)

+

∫
I

rh

 rx√
1 + r2x

− rh,x√
1 + r2h,x

 (rtx − rh,tx)dx

+

∫
I

(r − rh) rx√
1 + r2x

(rtx − rh,tx)dx

+

∫
I

 rrx√
1 + r2x

− rhrh,x√
1 + r2h,x

((Ihrt)x − rtx)dx.
Note first that the second integral can be written as∫

I

rh

 rx√
1 + r2x

− rh,x√
1 + r2h,x

 (rtx − rh,tx)dx

=

∫
I

rh
∂

∂t

(√
1 + r2h,x −

rh,xrx + 1√
1 + r2x

)
dx

+

∫
I

rhrt,x

 rh,x√
1 + r2x

− rh,x√
1 + r2h,x

+
rx√
1 + r2x

− 1 + rxrh,x
1 + r2x

rx√
1 + r2x

 dx

=
d

dt

∫
I

rh

(√
1 + r2h,x −

rh,xrx + 1√
1 + r2x

)
dx−

∫
I

rh,t

(√
1 + r2h,x −

rh,xrx + 1√
1 + r2x

)
dx

+

∫
I

rhrt,x

 rh,x√
1 + r2x

− rh,x√
1 + r2h,x

+
rx√
1 + r2x

− 1 + rxrh,x
1 + r2x

rx√
1 + r2x

 dx.

Integration by parts together with (1.2) implies for the third term in (3.8)∫
I

(r − rh) rx√
1 + r2x

(rtx − rh,tx)dx

= −
∫
I

(rx − rh,x) rx√
1 + r2x

(rt − rh,t)dx−
∫
I

(r − rh)
(

rx√
1 + r2x

)
x

(rt − rh,t)dx

= −
∫
I

rt(rx − rh,x) rx√
1 + r2x

dx+

∫
I

rh,t
√
1 + r2x dx−

∫
I

rh,t
rh,xrx + 1√

1 + r2x
dx

−
∫
I

(r − rh) 1

r
√
1 + r2x

(rt − rh,t)dx+
∫
I

(r − rh)κ(rt − rh,t)dx.

Inserting the above equations into (3.8), we derive∫
I

(rκ− rhκh)(Ihrt − rh,t)dx = d

dt

∫
I

rh

(√
1 + r2h,x −

rh,xrx + 1√
1 + r2x

)
dx(3.9)

+

∫
I

(√
1 + r2x −

√
1 + r2h,x

)
Ihrtdx−

∫
I

rt(rx − rh,x) rx√
1 + r2x

dx
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+

∫
I

rhrtx

 rh,x√
1 + r2x

− rh,x√
1 + r2h,x

+
rx√
1 + r2x

− 1 + rxrh,x
1 + r2x

rx√
1 + r2x

 dx

−
∫
I

(r − rh) 1

r
√
1 + r2x

(rt − rh,t)dx+
∫
I

(r − rh)κ(rt − rh,t)dx

+

∫
I

 rrx√
1 + r2x

− rhrh,x√
1 + r2h,x

((Ihrt)x − rtx)dx.
Let us next insert ηh = Ihκ− κh into (3.5):∫

I

(rrt − rhrh,t)(Ihκ− κh)dx(3.10)

= −
∫
I

 rκx√
1 + r2x

− rhκh,x√
1 + r2h,x

((Ihκ)x − κh,x)dx
=

∫
I

 rκx√
1 + r2x

− rhκh,x√
1 + r2h,x

(κx−(Ihκ)x)dx
−
∫
I

rh√
1 + r2h,x

(κx−κh,x)2dx

−
∫
I

 r√
1 + r2x

− rh√
1 + r2h,x

κx(κx − κh,x)dx.

Combining (3.9) and (3.10), we obtain

d

dt

∫
I

rh

(√
1 + r2h,x−

rh,xrx + 1√
1 + r2x

)
dx+

∫
I

rh√
1 + r2h,x

(κx−κh,x)2dx =
8∑
i=1

S̃i,(3.11)

where

S̃1 =

∫
I

(rκ− rhκh)(Ihrt − rh,t)dx−
∫
I

(rrt − rhrh,t)(Ihκ− κh)dx

−
∫
I

(r − rh)κ(rt − rh,t)dx,

S̃2 = −
∫
I

rt

(√
1 + r2x −

√
1 + r2h,x − (rx − rh,x)

rx√
1 + r2x

)
dx,

S̃3 = −
∫
I

rhrtx

 rh,x√
1 + r2x

− rh,x√
1 + r2h,x

+
rx√
1 + r2x

− 1 + rxrh,x
1 + r2x

rx√
1 + r2x

 dx,

S̃4 =

∫
I

(r − rh) 1

r
√
1 + r2x

(rt − rh,t)dx,

S̃5 =

∫
I

(√
1 + r2x −

√
1 + r2h,x

)
(rt − Ihrt)dx,
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S̃6 = −
∫
I

 rrx√
1 + r2x

− rhrh,x√
1 + r2h,x

((Ihrt)x − rtx)dx,
S̃7 =

∫
I

 rκx√
1 + r2x

− rhκh,x√
1 + r2h,x

(κx − (Ihκ)x)dx,
S̃8 = −

∫
I

 r√
1 + r2x

− rh√
1 + r2h,x

κx(κx − κh,x)dx.

The terms S̃1, . . . , S̃8 have been organized in such a way that each of them is quadratic
in an appropriate difference. To see this, let us examine them in more detail. First,

S̃1=

∫
I

(rκ− rhκh)(rt− rh,t)dx−
∫
I

(rrt − rhrh,t)(κ− κh)dx−
∫
I

(r − rh)κ(rt − rh,t)dx

+

∫
I

(rκ− rhκh)(Ihrt − rt)dx−
∫
I

(rrt − rhrh,t)(Ihκ− κ)dx

= −
∫
I

rt(κ− κh)(r −rh)dx+
∫
I

(rκ− rhκh)(Ihrt − rt)dx−
∫
I

(rrt − rhrh,t)(Ihκ−κ)dx
≡ A1 +A2 +A3.

Using an interpolation estimate, (2.15), and the continuous embedding H1(I) ↪→
L∞(I), we obtain

|A1 +A2| ≤ C‖rt‖L2(I)‖κ− κh‖L2(I)‖r − rh‖L∞(I) + Ch‖rtx‖L2(I)‖rκ− rhκh‖L2(I)

≤ ε‖κ− κh‖2L2(I) + Cε‖r − rh‖2H1(I) + Cεh
2‖rtx‖2L2(I),

while

A3 =

∫
I

(Ihκ− κ)rhrh,tdx−
∫
I

rh
r
(Ihκ− κ)rrtdx+

∫
I

(Ihκ− κ)
(rh
r
− 1
)
rrtdx.

We infer from Lemma 3.1 with v = κ − Ihκ and well-known interpolation estimates
that

|A3| ≤ ε‖κx − κh,x‖2L2(I) + Cε‖κ− Ihκ‖2H1(I) + Ch2 + C‖r − rh‖2H1(I)

+C‖rt‖L2(I)‖r − rh‖L∞(I)‖κ− Ihκ‖L2(I)

≤ ε‖κx − κh,x‖2L2(I) + Cεh
2‖κ‖2H2(I) + C‖r − rh‖2H1(I).

Recalling (2.15), we conclude

|S̃1| ≤ ε‖κ− κh‖2H1(I) + Cε‖r − rh‖2H1(I) + Cε(1 + ‖rtx‖2L2(I))h
2.

Next, observing that∣∣∣∣∣√1 + q2 −
√
1 + p2 − (q − p) q√

1 + q2

∣∣∣∣∣ ≤ C(q − p)2 ∀q, p ∈ R,(3.12)

we obtain

|S̃2| ≤ C‖rt‖L∞(I)‖rx − rh,x‖2L2(I) ≤ C‖rt‖H1(I)‖rx − rh,x‖2L2(I).
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Let us now examine S̃3. A short calculation shows

p√
1 + q2

− p√
1 + p2

+
q√
1 + q2

− 1 + pq

1 + q2
q√
1 + q2

=
p(1 + q2)

(√
1 + p2 −

√
1 + q2

)− q2√1 + p2(p− q)√
1 + q2

3√
1 + p2

=
p√

1 + q2
√
1 + p2

(√
1 + p2 −

√
1 + q2 − (p− q) p√

1 + p2

)
+

p− q√
1 + q2

3
(1 + p2)

(
p2(1 + q2)− q2(1 + p2)

)
,

which implies in view of (3.12)∣∣∣∣∣ p√
1 + q2

− p√
1 + p2

+
q√
1 + q2

− 1 + pq

1 + q2
q√
1 + q2

∣∣∣∣∣ ≤ C(p− q)2

for all p, q ∈ R. Therefore,

|S̃3| ≤ C‖rtx‖L∞(I)‖rx − rh,x‖2L2(I) ≤ C‖rtx‖H1(I)‖rx − rh,x‖2L2(I).

If we write

S̃4 =

∫
I

(r − rh) 1

r
√
1 + r2x

(rt − rh,t)dx =
∫
I

rh
r
vrrtdx−

∫
I

vrhrh,tdx

with v = r−rh
rhr
√

1+r2x
and apply Lemma 3.1, we deduce

|S̃4| ≤ ε‖κx − κh,x‖2L2(I) + Cε

∥∥∥∥∥ r − rh
rhr
√
1 + r2x

∥∥∥∥∥
2

H1(I)

+ Ch2 + C‖r − rh‖2H1(I)

≤ ε‖κx − κh,x‖2L2(I) + Cε‖r − rh‖2H1(I) + Ch2.

In view of interpolation estimates, Young’s inequality, and (2.15),

|S̃5| ≤ Ch‖rtx‖L2(I)‖rx − rh,x‖L2(I) ≤ Ch2‖rtx‖2L2(I) + C‖rx − rh,x‖2L2(I),

|S̃6| ≤ Ch‖rtxx‖L2(I)‖r − rh‖H1(I) ≤ Ch2‖rtxx‖2L2(I) + C‖r − rh‖2H1(I),

|S̃7| ≤ Ch‖κxx‖L2(I)

(‖κx − κh,x‖L2(I) + ‖r − rh‖H1(I)

)
≤ ε‖κx − κh,x‖2L2(I) + Cεh

2 + C‖r − rh‖2H1(I).

Finally,

|S̃8| ≤ ε‖κx − κh,x‖2L2(I) + Cε‖r − rh‖2H1(I).

If we insert the above estimates for S̃1, . . . , S̃8 into (3.11), the result is

d

dt

∫
I

rh

(√
1 + r2h,x −

rh,xrx + 1√
1 + r2x

)
dx+

∫
I

rh√
1 + r2h,x

(κx − κh,x)2dx

≤ Cε‖κ− κh‖2H1(I) + Cε(1 + ‖rt‖H2(I))‖r − rh‖2H1(I) + Cε(1 + ‖rt‖2H2(I))h
2,

which completes the proof of the lemma.
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Remark 3.4. (a) In order to interpret the integral∫
I

rh

(√
1 + r2h,x −

rh,xrx + 1√
1 + r2x

)
dx(3.13)

occurring in (3.7), we note that

ν =
1√
1 + r2x

(−rx, cosφ, sinφ), νh =
1√

1 + r2h,x

(−rh,x, cosφ, sinφ)
are the unit outward normals to

Γ(t) = {x ∈ R
3 |x = (x, r(x, t) cosφ, r(x, t) sinφ), x ∈ [0, L], φ ∈ [0, 2π]},

Γh(t) = {x ∈ R
3 |x = (x, rh(x, t) cosφ, rh(x, t) sinφ), x ∈ [0, L], φ ∈ [0, 2π]},

respectively. Observing that dS = rh
√
1 + r2h,x dxdφ is the surface element on Γh, a

short calculation shows that∫
I

rh

(√
1 + r2h,x −

rh,xrx + 1√
1 + r2x

)
dx =

1

2π

∫
Γh

|ν − νh|2dS.

A similar relation was used in [5], [6] in an error analysis for the mean curvature flow
of graphs.

(b) Under the conditions (2.13) and (3.1), the expression (3.13) is equivalent to
‖rx − rh,x‖2H1(I). To see this, note that√

1 + r2h,x −
rh,xrx + 1√

1 + r2x

=

(√
1 + r2h,x

√
1 + r2x − (rh,xrx + 1)

)(√
1 + r2h,x

√
1 + r2x + (rh,xrx + 1)

)
√
1 + r2x

(√
1 + r2h,x

√
1 + r2x + (rh,xrx + 1)

)
=

(rx − rh,x)2√
1 + r2x

(√
1 + r2h,x

√
1 + r2x + (rh,xrx + 1)

) ,
which implies

c0

4(1 + C2
0 )
√
1 + 4C2

0

‖rx − rh,x‖2H1(I) ≤
∫
I

rh

(√
1 + r2h,x −

rh,xrx + 1√
1 + r2x

)
dx(3.14)

≤ C0‖rx − rh,x‖2H1(I),

since

1 ≤
√
1 + r2x

(√
1 + r2h,x

√
1 + r2x + (rh,xrx + 1)

)
≤
√
1 + r2x

(√
1 + r2h,x

√
1 + r2x +

√
1 + r2h,x

√
1 + r2x

) ≤ 2(1 + C2
0 )
√
1 + 4C2

0 .

It remains to derive an estimate for ‖κ− κh‖L2(I).
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Lemma 3.5.

‖κ− κh‖L2(I) ≤ C
(‖r − rh‖H1(I) + ‖κx − κh,x‖L2(I) + h

)
.

Proof. Clearly,∫
I

rh(κ− κh)2dx

= −
∫
I

(r − rh)κ(κ− κh)dx+
∫
I

(rκ− rhκh)(κ− Ihκ)dx+
∫
I

(rκ− rhκh)(Ihκ− κh)dx.

Using (3.6) in order to rewrite the third integral, we deduce∫
I

rh(κ− κh)2dx = −
∫
I

(r − rh)κ(κ− κh)dx+
∫
I

(rκ− rhκh)(κ− Ihκ)dx

+

∫
I

(Ihκ−κh)(
√
1+ r2x−

√
1 + r2h,x)dx+

∫
I

 rrx√
1+ r2x

− rhrh,x√
1 + r2h,x

(Ihκ−κh)xdx
≤ C‖r − rh‖L2(I)‖κ− κh‖L2(I) + C

(‖r − rh‖L2(I) + ‖κ− κh‖L2(I)

)‖κ− Ihκ‖L2(I)

+C‖Ihκ− κh‖L2(I)‖rx − rh,x‖L2(I) + C‖(Ihκ)x − κh,x‖L2(I)‖r − rh‖H1(I)

≤ ε‖κ− κh‖2L2(I) + Cε‖r − rh‖2H1(I) + Cεh
2 + C‖κx − κh,x‖2L2(I).

Here we have again used (2.15). Choosing ε = c0
4 and recalling (3.1), we complete the

proof of the lemma.
We are now in position to complete the proof of Theorem 2.3. Combining Lemmas

3.2, 3.3, and 3.5 and (3.1), we obtain with λ = c0
2
√

1+4C2
0

1

2

d

dt
‖r − rh‖2L2(I) +

d

dt

∫
I

rh

(√
1 + r2h,x −

rh,xrx + 1√
1 + r2x

)
dx+ λ‖κx − κh,x‖2L2(I)

≤ Cε‖κx − κh,x‖2L2(I) + Cε(1 + ‖rt‖H2(I))‖r − rh‖2H1(I) + Cε(1 + ‖rt‖2H2(I))h
2.

Choosing ε sufficiently small and recalling (3.14), the function

φ(t) :=
1

2
‖(r − rh)(t)‖2L2(I) +

∫
I

rh

(√
1 + r2h,x −

rh,xrx + 1√
1 + r2x

)
(t)dx

satisfies

φ′(t) +
λ

2
‖κx − κh,x‖2L2(I) ≤ C(1 + ‖rt‖2H2(I))h

2 + C(1 + ‖rt‖H2(I))φ(t),(3.15)

0 ≤ t ≤ T̂h.

Now, (2.7) and (3.14) yield φ(0) ≤ Ch2, so that Gronwall’s lemma implies

φ(t) ≤ C h2

(
1 +

∫ T

0

‖rt‖2H2(I)dt

)
exp

(∫ T

0

C(1 + ‖rt‖H2(I))dt

)
, 0 ≤ t ≤ T̂h.

Therefore,

sup
0<t<T̂h

‖(r − rh)(t)‖H1(I) ≤ Ch,(3.16)
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and, using (3.15) together with Lemma 3.5,∫ T̂h

0

‖κ− κh‖2H1(I)dt ≤ Ch2.(3.17)

We can now prove that T̂h = T . If not, we would have T̂h < T ; the smoothness of r,
(3.16), and an inverse estimate then would imply that

‖(r − rh)(t)‖H1,∞(I) ≤ C
√
h, 0 ≤ t ≤ T̂h,

which combined with (2.13) would give

3

4
c0 ≤ rh ≤ 3

2
C0, |rh,x| ≤ 3

2
C0 in I × [0, T̂h]

provided that h ≤ h0 and h0 is sufficiently small. However, then we could extend the
discrete solution to an interval [0, T̂h + δ] for some δ > 0 with

1

2
c0 ≤ rh ≤ 2C0, |rh,x| ≤ 2C0 in I × [0, T̂h + δ],

which contradicts the definition of T̂h. Thus T̂h = T for h ≤ h0 and (3.16), (3.17)
imply our result.

4. Numerical results. We use the notation

rj(t) = rh(xj , t), κj(t) = κh(xj , t), j = 0, . . . , N,

qj(t) =

√
h2
j +

(
rj(t)− rj−1(t)

)2
, j = 1, . . . , N.

The spatially discrete problem (2.5), (2.6) then is translated into the following system
of ODEs. By a dot we denote the time derivative. For numerical tests we shall use
an additional right-hand side f which we include in the equations here.

hj
6
(rj−1 + rj)ṙj−1 +

(
hj
6
rj−1 +

1

2
(hj + hj+1)rj +

hj+1

6
rj+1

)
ṙj

+
hj+1

6
(rj+rj+1)ṙj+1− rj−1 + rj

qj
κj−1+

(
rj−1+rj

qj
+
rj+rj+1

qj+1

)
κj

−rj + rj+1

qj+1
κj+1 =

1

2

(
qj(rj−1 + rj)fj− 1

2
+ qj+1(rj + rj+1)fj+ 1

2

)
,

hj
6
(rj−1 + rj)κj−1 +

(
hj
6
rj−1 +

1

2
(hj + hj+1)rj+

hj+1

6
rj+1

)
κj

+
hj+1

6
(rj+rj+1)κj+1+

rj−1+rj
qj

rj−1 −
(
rj−1+rj

qj
+
rj+rj+1

qj+1

)
rj

+
rj + rj+1

qj+1
rj+1 = qj + qj+1

(4.1)
for j = 1, . . . , N, t ∈ (0, T ], with periodic boundary conditions and initial condition
rj(0) = r0(xj), j = 0, . . . , N . For the right-hand side term involving f we have used
a simple integration formula and the notation fj± 1

2
= f((xj + xj±1)/2).
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The time discretization is done via a semi-implicit scheme which also linearizes
the problem. Furthermore we use mass lumping at suitable positions. Let τ > 0
be the time step size and M = [T/τ ]. For a generic function w we denote by wm

(0 ≤ m ≤ M) the evaluation on the mth time level: wm = w(·,mτ). The fully
discrete scheme then reads as follows.

Algorithm 4.1. Let r0j = r0(xj), j = 0, . . . , N . For m = 1, . . . ,M solve

1

τ
(hj + hj+1)r

m−1
j (rmj − rm−1

j )

−r
m−1
j−1 + rm−1

j

qm−1
j

κmj−1 +

(
rm−1
j−1 + rm−1

j

qm−1
j

+
rm−1
j + rm−1

j+1

qm−1
j+1

)
κmj −

rm−1
j + rm−1

j+1

qm−1
j+1

κmj+1

=
1

2

(
qm−1
j (rm−1

j−1 + rm−1
j )fmj− 1

2
+ qm−1

j+1 (r
m−1
j + rm−1

j+1 )f
m
j+ 1

2

)
,

(hj + hj+1)r
m−1
j κmj

+
rm−1
j−1 + rm−1

j

qm−1
j

rmj−1 −
(
rm−1
j−1 + rm−1

j

qm−1
j

+
rm−1
j + rm−1

j+1

qm−1
j+1

)
rmj +

rm−1
j + rm−1

j+1

qm−1
j+1

rmj+1

= qm−1
j + qm−1

j+1

for j = 1, . . . , N, m = 1, . . . ,M .

In every time step a linear system for rm = (rm1 , . . . , r
m
N ) and κ

m = (κm1 , . . . , κ
m
N )

of the form

1

τ
Mm−1rm + Sm−1κm = cm−1,(4.2)

Mm−1κm − Sm−1rm = dm−1(4.3)

has to be solved. HereMm−1 is a suitable mass matrix, Sm−1 is a stiffness matrix, and
cm−1, dm−1 are right-hand sides depending on the quantities of the (m−1)st time step
with built-in periodic boundary conditions. Note that the time discretization is semi-
implicit with respect to the position r but is fully implicit with respect to curvature
κ. The linear system (4.2), (4.3) was solved by inserting the second equation into the
first one, which leads to the following linear system for rm:(

1

τ
Mm−1 + Sm−1(Mm−1)−1Sm−1

)
rm = cm−1 − Sm−1(Mm−1)−1dm−1.(4.4)

Note that the matrix Mm−1 is a diagonal matrix. The system (4.4) was solved by a
conjugate gradient method.

For all computations we have used uniform spatial grids hj = h with h as indi-
cated.

We test the scheme with a known continuous solution. We choose

r(x, t) = (1 + 0.25 sinπ(x− 1))(1 + 0.125 cos t)

on the interval I = [0, 2] for T = 1 and calculate the corresponding right-hand side
f from (1.3) and (1.2). Now we are able to compute the error between continuous
solution r, κ and discrete solution rmh , κ

m
h and calculate the experimental order of

convergence from the errors for two grids. As time step size we have chosen τ = 0.1h2.
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Table 4.1
Absolute errors in various norms and experimental orders of convergence (in brackets) for the

test problem for the choice τ = 0.1h2.

N h ‖r − rh‖L∞(H1) ‖κ− κh‖L2(H1)

20 0.1 0.3010 2.2669
40 0.05 0.1544 (0.96) 1.1693 (0.96)
80 0.025 0.07784 (0.99) 0.5892 (0.99)
160 0.0125 0.03903 (1.00) 0.2952 (1.00)
320 0.00625 0.01953 (1.00) 0.1477 (1.00)

Table 4.2
Absolute errors in various norms and experimental orders of convergence (in brackets) for the

test problem for the choice τ = 0.1h.

N h ‖r − rh‖L∞(H1) ‖κ− κh‖L2(H1)

20 0.1 0.2575 2.2597
40 0.05 0.1399 (0.88) 1.1672 (0.95)
80 0.025 0.07363 (0.93) 0.5886 (0.99)
160 0.0125 0.03790 (0.96) 0.2950 (1.00)
320 0.00625 0.01922 (0.98) 0.1476 (1.00)

The results are shown in Table 4.1. We measured the errors

‖r − rh‖L∞((0,T ),H1(I)) and ‖κ− κh‖L2((0,T ),H1(I)).

The results confirm the error estimates in Theorem 2.3 precisely. A quite astonishing
result is that these convergence results experimentally also hold in the case of linear
coupling of time step size and spatial grid size (see Table 4.2), in particular, that
no stability problems arise even though the scheme is only semi-implicit. This is in
some sense similar to the case of mean curvature flow, for which in [7] stability of a
semi-implicit scheme was proved without any time step restriction.

In [3] it was shown that solutions of axially symmetric surface diffusion may
exhibit the following dynamical behavior: After an initial rapid decay, some pertur-
bations slowly grow in amplitude and finally lead to pinch-off. We recomputed an
example from [3], for which the initial surface is given by

r0(x) = 1 + 0.05

(
sin

(
m+ 1

2
x

)
+ sin

(
m

2
x

))
, x ∈ (0, nπ).(4.5)

Figure 4.1 shows the rapid decay of perturbations form = 10. For better visibility
we scaled the graphics vertically by 100.

For m = 14 we show the long time behavior of the solution r = r(x, t). In order to
make the dynamical behavior more transparent we plot the solution in Figure 4.2 for
t ∈ [0, 10] and in Figure 4.3 for t ∈ [20, 27.861]. We have used 400 nodes and a time
step size τ = 0.1h2. Note that our error analysis is only valid as long as r is bounded
away from zero. For calculations near the pinch-off singularity we adapted the time
step according to τ = 0.1h2 min[0,4π] r

3
h, a criterion which was found experimentally.

Finally, we computed the solution of axisymmetric surface diffusion for the initial
surface given by

r0(x) = 1− 0.95 |x| sin π
x
, x ∈ (−1, 1).(4.6)

Here we have used 500 spatial nodes and a time discretization as in the previous
example. The results are shown in Figure 4.4.
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Fig. 4.1. Evolution of the initial surface given by (4.5) with m = 10, n = 8 for t = 0.0, 0.01,
0.1, vertically scaled by 100.

0.97

1.03

0.99

1.01

0.99

1.01

0.98

1.02

Fig. 4.2. Evolution of the axially symmetric initial surface given by (4.5) with m = 14, n = 4
under surface diffusion. The horizontal axis runs from 0 to 4π, and the vertical axis is scaled by
100. Time steps t = 0.00, 0.0014, 0.10, and 10.0.
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Fig. 4.3. Evolution of the axially symmetric initial surface given by (4.5) with m = 14, n = 4
under surface diffusion. The horizontal axis runs from 0 to 4π, and the vertical axis is scaled by 10.
Time steps t = 20.0, 25.0, 27.0, 27.75, 27.86, and 27.861.
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Fig. 4.4. Evolution of the axially symmetric initial surface given by (4.6) under surface diffu-
sion. Time steps t = 0.00, 6.26 · 10−7, 7.59 · 10−6, 6.97 · 10−4, 6.45 · 10−3, and 9.82 · 10−2.
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PERFORMING INTERPOLATION AND ANTERPOLATION
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Abstract. The fast multipole methods are used for solving a scalar acoustic or vector electro-
magnetic wave equation by integral equation methods with a large number of unknowns. In this
paper a new method is presented for performing interpolation and anterpolation in both spheri-
cal coordinates θ and φ by FFT in the three-dimensional (3-D) multilevel fast multipole algorithm
(MLFMA). The key idea is to approximate functions on the unit sphere by truncated Fourier series
in two variables rather than by the usual spherical harmonics.

The proposed method is exact in interpolating and anterpolating and has the high numerical
efficiency of FFT. The method is numerically compared to the method of performing interpolation
and anterpolation using Lagrangian interpolation, which presently is probably the fastest method for
those operations, and the results suggest that the proposed new method is equally or more efficient,
depending on the desired accuracy.

Key words. fast multipole method, 3-D multilevel fast multipole algorithm, interpolation,
anterpolation, fast Fourier transform

AMS subject classifications. 65T40, 78A40
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1. Introduction. The fast multipole methods, with two levels [1] or multiple
levels [2], [3], are usually applied to solving a scalar acoustic or vector electromag-
netic wave equation as an integral equation with a large number of unknowns. They
are designed to speed up the matrix-vector multiply in a numerical solution using
an iterative method. The multilevel fast multipole algorithm (MLFMA) leads to a
computational cost of order N logN , with N being the number of unknowns [4], [3],
compared with the usual cost of order N2 for the direct matrix-vector multiply. In
this paper, we consider MLFMA for the scalar wave equation. Our results can easily
be extended to the vector case in the usual way; see, e.g., [5], [3].

The key issue in MLFMA is to control the computational accuracy and cost of the
scattered fields, both globally and locally, by a tree-like data structure. The global
field representations are iteratively constructed by shifts and interpolations, and the
local ones iteratively by translations, shifts, and anterpolations. We assume that the
reader is familiar with the data structure of the MLFMA; see, e.g., [2], [5], [6], [7], [3].
Here we only outline the procedure for the needs of the present paper.

We consider a scatterer in 3-space; either its surface is triangulated for the sur-
face integral method, or its volume is subdivided into a three-dimensional (3-D) grid
for a volume integral method. In both cases, the unknown scalar source density is
presented in terms of appropriate local basis functions. The scatterer is enclosed in a
large cube, which is partitioned into eight subcubes. Every subcube is then, succes-
sively, subdivided until the finest level is reached, with the side length of a cube equal
to about half of the wave length. The levels are indexed M = 0, 1, . . . ,Mmax. On the
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finest level M = Mmax, those cubes containing basis functions are indexed, and subse-
quently, on each level the nonempty parental cubes are indexed. The data structure is
constructed in uptree, or aggregation, steps and in downtree, or disaggregation, steps.

In the aggregation steps, for every level M = 1, 2, . . . ,Mmax − 1 and for each
nonempty cube Q on that level, the far field, due to sources in Q, is formed from the
far fields of the subcubes of Q on the level M + 1.

The far fields, which are smooth functions on the unit sphere, are in this paper
presented by truncated Fourier series, i.e., by trigonometric polynomials, in the spher-
ical coordinates θ and φ, rather than in terms of the spherical harmonics. For the
trigonometric polynomial presentation, we extend the functions on the unit sphere in
the θ coordinate from 0 ≤ θ ≤ π to −π ≤ θ ≤ π. This extension makes them smooth
2π-periodic functions in both θ and φ, and consequently, a numerically very efficient
approximation of these functions by trigonometric polynomials can be performed us-
ing the fast Fourier transform (FFT). The redundancy due to the extension into
−π ≤ θ ≤ 0 can be completely removed in the data storage and in the computations
with FFT.

In forming the level M far fields from the level M + 1 fields, shifting and interpo-
lation are used. The interpolation can be carried out for trigonometric polynomials
accurately with FFT without any approximation error, which makes this operation
numerically very efficient and straightforward for trigonometric polynomials.

In the disaggregation steps local presentations for the scattered fields F are formed
in terms of plane waves by the integral

F (x) =

∫
|z|=1

v(z)eikx·zdz, x ∈ R
3,(1.1)

where the integral is a surface integral over the unit sphere {z ∈ R
3 : |z| = 1}, R

3

is the 3-space, and the function v in (1.1) is called the amplitude field of F. In a
disaggregation step from the level M − 1 to M , the local field for each level M cube
Q, due to sources outside of Q and its immediate neighbor cubes on level M , is formed
in terms of plane waves. This is done by translating the far fields of cubes on the
level M to a local field in Q and shifting and anterpolating the level M + 1 local field,
corresponding to the parental cube of Q, into Q.

In this paper, we also present the amplitude fields in (1.1) in terms of trigonomet-
ric polynomials. Our choice makes it possible to carry out the anterpolation accurately
and effectively by FFT.

In the disaggregation step from the level Mmax−1 to the level Mmax, we eventually
need to compute the scattered fields from the local amplitude fields v as in (1.1). After
having estimated the amplitude field v and the function eikx·z in (1.1) by trigonometric
polynomials, the resulting field integral can be computed efficiently in a closed form
without any extra integration error.

In the last section of this paper, our method using trigonometric polynomials and
FFT in the interpolation and anterpolation in three dimensions is compared to the
Lagrangian interpolation method of performing those operations [2], [6], [3], which
presently is probably the fastest method in this area. The comparison shows that, for
a lower accuracy demand, both methods numerically are about equally efficient, but
for a higher accuracy, the method of this paper is more efficient.

Furthermore, with no approximation errors in interpolation and anterpolation, the
present method also makes accuracy control in MLFMA easier than in using other



2182 JUKKA SARVAS

methods. Though the method of this paper was intended to be used primarily with
the time-harmonic MLFMA, it is also well suited for the time-dependent MLFMA [8].

To finish the introduction, we fix some notation. We denote by R and C the real
and complex numbers, respectively. The imaginary unit is i =

√−1. The complex
conjugate of z ∈ C is denoted by z. For a real number t, floor(t) is the largest integer
≤ t, and ceil(t) is the smallest integer ≥ t. For a sequence a = (a1, . . . , an) of numbers,
we denote by length(a) the length n of the sequence. The element-by-element product
c = {cn} = {anbn} of two sequences a = {an} and b = {bn}, of the same length, is
denoted by c = ab. For a number an in a sequence a = {an} we also use the notation
an = a(n).

2. Discrete Fourier transform. We use a centralized discrete Fourier trans-
form (DFT). For a sequence u = {un} of length N , we define the centralized DFT
v = FNu of u, with the period N , by the formula

vn = v(n) = (FNu)(n) =

N2∑
m=−N1

u(m)e−i
2π
N nm,(2.1)

−N1 ≤ n ≤ N2, where N1 = floor(N/2) and N2 = N −N1 − 1. We also write F for
FN .

In the context of DFT, we always consider the sequences u and v in (2.1) to be
extended to be N -periodic for all n, i.e., u(n + N) = u(n) for all integers n.

The inverse transform (IDFT) F−1
N is defined by

u(m) = (F−1
N v)(m) =

1

N

N2∑
n=−N1

v(n)ei
2π
N mn for all m.(2.2)

For a (P,Q)-matrix u = {umn; −P1 ≤ m ≤ P2, −Q1 ≤ n ≤ Q2}, with P1 =
floor(P/2), P2 = P − P1 − 1, and Q1 = floor(Q/2), Q2 = Q − Q1 − 1, we denote
the nth column by u(:, n), and the mth row by u(m, :), respectively. We also write
u(m,n) for umn. Again, we tacitly assume that each column u(:, n) is extended to be
a P -periodic sequence, and likewise, each row is extended to be a Q-periodic sequence.

We define our two-dimensional (2-D) discrete centralized Fourier transform FP,Q,
with the periods P and Q, for a (P,Q)-matrix u by

(FP,Qu)(m,n) =

P2∑
p=−P1

Q2∑
q=−Q1

u(p, q)e−i(
2π
P mp+ 2π

Q nq)(2.3)

for all m,n. We also denote FP,Q by F . The inverse transform F−1
P,Q is defined by

(F−1
P,Qv)(p, q) =

1

PQ

P2∑
m=−P1

Q2∑
n=−Q1

v(m,n)ei(
2π
P pm+ 2π

Q qn)(2.4)

for all p, q. The 2-D DFT and its inverse transform can also be given, and usually
are computed, in the terms of one-dimensional (1-D) DFT’s as follows:

(FP,Qu)(m,n) = (FQv(m, :))(n), where v(p, q) = (FPu(:, q))(p),(2.5)

for all m, n, p, and q, or the order is reversed: first take FQ rowwise and then FP
columnwise. A similar equation holds for F−1

P,Q in terms of F−1
P and F−1

Q .
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The DFT is closely related to truncated Fourier series, i.e., trigonometric polyno-
mials. Consider a trigonometric polynomial

U(t) =

N ′∑
n=−N

ane
int, t ∈ R,(2.6)

with N ′ = N − 1 or N , depending on whether the length of the coefficient sequence
{an} is, respectively, even or odd, and we say that the kind of U , denoted by Kind(U),
is then even or odd, respectively. The integer N is the degree of U , denoted by
Degree(U), and it also is the half bandwidth of U .

As is well known, the coefficient sequence a = {an} is related to U by equations

a =
1

M
FM (u) and u = MF−1

M (a),(2.7)

where u(n) = U(n 2π
M ), −N ≤ n ≤ N ′, M = N + N ′ + 1 is the period of FM , and u

is the sample sequence of U , denoted by u = Sample(U). The equations (2.7) show
that we can identify a trigonometric polynomial U either with the sample sequence u
or with its coefficient sequence a, which we denote by a = Coef (U).

It is also well known that a smooth 2π-periodic function V (t) = V (t + 2π), tεR,
can be approximated by an interpolating trigonometric polynomial (2.6) so that

u(n) = U(tn) = V (tn), tn = n
2π

M
, −N ≤ n ≤ N ′,

and the approximation U 
 V improves as the sampling rate N = Degree(U) in-
creases.

We also consider trigonometric polynomials, i.e., truncated Fourier series, in two
variables, but only of the following form:

U(θ, φ) =
M∑

m=−M

N−1∑
n=−N

a(m,n)ei(mθ+nφ),(2.8)

where M,N > 0 are integers. The coefficient matrix a is a (2M + 1, 2N)-matrix, and

a =
1

(2M + 1)2N
F2M+1,2N (u) with(2.9)

u(m,n) = U

(
m

2π

2M + 1
, n

π

N

)
(2.10)

for −M ≤ m ≤ M , −N ≤ n ≤ N − 1. We denote that u = Sample(U) and
(M,N) = Degree(U), and also call (M,N) the sampling rate for U . As in the case
of one variable, we can approximate a smooth function V (θ, φ), 2π-periodic both in
θ and φ, by the trigonometric polynomial U(θ, φ) in (2.8), by choosing

a =
1

(2M + 1)2N
Fv with v(m,n) = V

(
m

2π

2M + 1
, n

π

N

)
for all −M ≤ m ≤M and −N ≤ n ≤ N − 1.
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3. Smooth functions on a sphere. We want to approximate far fields and
amplitude fields on a unit sphere by trigonometric polynomials using DFT. For that
purpose we must extend them to be 2π-periodic in both the spherical coordinates θ
and φ.

Let S = {xεR3 : |x| = 1} be the unit sphere in R
3, and let W : S −→ C be

a complex valued function on S, i.e., W (x) ∈ C for x = (x1, x2, x3) ∈ S. If we
write x = (x1, x2, x3) in the spherical coordinates (θ, φ), we can identify W with the
function V (θ, φ), for 0 ≤ θ ≤ π, −π ≤ φ ≤ π, given by

V (θ, φ) = W (sin θ cosφ, sin θ sinφ, cos θ)(3.1)

for 0 ≤ θ ≤ π, −π ≤ φ ≤ π. By (3.1) we now can extend V (θ, φ) for all θ, φ ∈ R. This
makes the extension V (θ, φ) be 2π-periodic both in θ and φ and satisfy the equation

V (−θ, φ) = V (θ, φ + π) for all θ, φ ∈ R.(3.2)

In general, we here call a function V (θ, φ), θ, φ ∈ R, spherical if it is 2π-periodic
in θ and φ and satisfies (3.2).

We approximate a smooth spherical function V with a trigonometric polynomial
of the form

U(θ, φ) =

M∑
m=−M

N−1∑
n=−N

a(m,n)ei(mθ+nφ),(3.3)

where

a =
1

(2M + 1)2N
F2M+1,2N (v),(3.4)

v(m,n) = V

(
m

2π

2M + 1
, n

π

N

)
(3.5)

for −M ≤ m ≤M , −N ≤ n ≤ N − 1. Because in (3.4) the first period 2M + 1 is odd
and the second period 2N is even, it is easily seen that (3.5) and the sphericality of
V imply that

a(−m,n) = (−1)na(m,n) for all m,n,(3.6)

a condition which also makes U(θ, φ) a spherical function. This implies that u =
Sample(U) = v satisfies the condition

u(−m,n) = u(m,n + N) for all m,n.(3.7)

We here call a (2M + 1, 2N)-matrix u spherical if it satisfies (3.7), and trans-
spherical if it satisfies (3.6).

In the later interpolation and anterpolation operations we will frequently apply
DFT on spherical matrices and IDFT on transspherical ones. The conditions (3.6)
and (3.7) can be effectively utilized and the resulting computation reduced by half by
using the following lemma, which is easily proved.

Lemma 3.1. Consider a (2M + 1, 2N)-matrix u. If u is spherical and v1 and v2

are obtained from u by taking DFT columnwise and rowwise, i.e.,

v1(m,n) = (F2M+1u(:, n))(m) and(3.8)

v2(m,n) = (F2Nu(m, :))(n)(3.9)
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for all m, n, then v1 is spherical and v2 is transspherical. Conversely, if u is trans-
spherical and v1 and v2 are as in (3.8) and (3.9), then v1 is transspherical and v2 is
spherical. Furthermore, the lemma also holds if F is replaced by F−1.

The above lemma with the (2.5) yields the following corollary.
Corollary 3.2. If u is a spherical (2M +1, 2N)-matrix, then v = F2M+1,2N (u)

is transspherical. If v is a transspherical (2M +1, 2N)-matrix, then u = F−1
2M+1,2N (v)

is spherical.
We usually use FFT when computing the DFT and IDFT. The above lemma and

its corollary can be used to reduce this computing of spherical and transspherical
matrices, as follows. For a given spherical (2M + 1, 2N)-matrix u, compute w =
F2M+1,2Nu as follows. Let

v(m,n) = (Fu(:, n))(m) for −M ≤ m ≤M,−N ≤ n ≤ −1,

v(m,n) = v(−m,n−N) for −M ≤ m ≤M, 0 ≤ n ≤ N − 1,

w(m,n) = (Fv(m, :))(n) for −M ≤ m ≤ 0,−N ≤ n ≤ N − 1,

w(m,n) = (−1)nw(−m,n) for 1 ≤ m ≤M,−N ≤ n ≤ N − 1.

Similarly, we can, with a reduced workload, compute F−1
(2M+1,2N)v for a transspherical

matrix v.
Note also that only one half of a spherical, or a transspherical, matrix must be

stored, and also that the DFT and IDFT can be performed using that half storage
space. These reductions in computing the DFT and IDFT can be used in the in-
terpolation and anterpolation operations, because transsphericality is preserved in
zero-padding and truncation of coefficient sequences in DFT.

In addition to the possibility of performing interpolation and anterpolation by
FFT, the use of trigonometric polynomials in MLFMA has the advantage that, after
estimating functions by trigonometric polynomials, the field integrals can be computed
efficiently in a closed form without any further integration error. The needed integral
formula is given in the following lemma.

Lemma 3.3. Let U and V be trigonometric polynomials in two variables and of
degree (M,N). If U and V also are spherical functions, then∫ π

−π

∫ π

−π
U(θ, φ)V (θ, φ)dθdφ

=
4π2

(2M + 1)N

[
N−1∑
n=0

u(0, n)v(0, n) +

M∑
m=1

N−1∑
n=−N

u(m,n)v(m,n)

]
,

where u = Sample(U) and v = Sample(V ).
Proof. Let a = Coef (U) and b = Coef (V ). Start by using the orthogonality of

terms ei(mθ+nφ) in integrating over −π ≤ θ, φ ≤ π, and then use (2.9), the Parseval’s
identity for 2-D DFT, and the sphericality property of u and v to get∫ π

−π

∫ π

−π
U(θ, φ)V (θ, φ)dθdφ

=

∫ π

−π

∫ π

−π

[
M∑

m=−M

N−1∑
n=−N

a(m,n)ei(mφ+nφ)

][
M∑

m=−M

N−1∑
n=−N

b(m,n)e−i(mφ+nφ)

]
dθdφ
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= 4π2
M∑

m=−M

N−1∑
n=−N

a(m,n)b(m,n) =
4π2

(2M + 1)2N

M∑
m=−M

N−1∑
n=−N

u(m,n)v(m,n)

=
4π2

(2M + 1)N

[
N−1∑
n=0

u(0, n)v(0, n) +

M∑
m=1

N−1∑
n=−N

u(m,n)v(m,n)

]
,

where in the last step we have used the equation u(−m,n)v(−m,n) = u(m,n +
N)v(m,n + N) = u(m,n − N)v(m,n−N) for all m,n, due to the sphericality of u
and v and the periodicity in n with the period 2N . This completes the proof.

4. Interpolation and anterpolation. Interpolation and anterpolation are here
applied to trigonometric polynomials of one and two variables. These operations are
essentially zero-padding and truncation, applied to coefficient sequences or matrices.

We say that a sequence c is obtained from a sequence b by zero-padding by M ,
and denote c = Pad(b,M), if c is obtained from b by adding M zeros at both ends of
b.

If U and V are trigonometric polynomials of one variable and

Coef (V ) = Pad(Coef (U),M),

we say that v = Sample(V ) is obtained from u = Sample(U) by interpolating u from
the sampling rate N = Degree(U) to the sampling rate N + M , and we denote that
by

v = Interp(u,N + M).(4.1)

Due to (2.7), the interpolation can be computed by FFT using the equation

Interp(u,N + M) = (L + 2M)F−1
L+2M (Pad(a,M)),(4.2)

where a = L−1FL(u), L = Length(u), and N = floor(L/2).
For a trigonometric polynomial U of two variables the interpolation of u =

Sample(U) from the sampling rate (N1, N2) = Degree(U) to the sampling rate (N1 +
M1, N2 + M2) is defined in an analogous way, and the resulting matrix is denoted
by Interp(u,N1 + M1, N2 + M2). It is computed by FFT by applying (4.2) to the
coefficient matrix

a = (2N1 + 1)−1(2N2 + 1)−1F2N1+1,2N2(u)

column- and rowwise. If u is spherical, the computational cost is lowered in the way
discussed at the end of the last section.

We say that a sequence c is obtained from a sequence b = (b−N , . . . , bN ′) by
truncating b by M elements from each end if c = (b−N+M , . . . , bN ′−M ), and we denote
c = Trunc(b,M).

If U and V are trigonometric polynomials of one variable and

Coef (V ) = Trunc(Coef (U),M),

we say that V and v = Sample(V ) are obtained from U and u = Sample(U), re-
spectively, by anterpolating U and u from the degree N = Degree(U) to the degree
N −M , and we denote

V = Anterp(U,N −M) and v = Anterp(u,N −M).
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The sample sequence v = Anterp(u,N − M) can be computed by FFT using the
equation

Anterp(u,N −M) = (L− 2M)F−1
L−2M (Trunc(a,M)),(4.3)

where a = L−1FL(u), L = Length(u), and N = floor(L/2).
The anterpolation can be, in an obvious way, extended to functions U given by a

Fourier series, i.e., Degree(U) =∞.
The anterpolation of a trigonometric polynomial of two variables is defined in an

analogous way and is computed by (4.3) column- and rowwise. For a spherical u, the
resulting reductions of computational cost can be utilized.

In MLFMA the following theorem is fundamental for implementing the anter-
polation in an optimal manner. The theorem is essentially due to the fact that if in
DFT we undersample a trigonometric polynomial appropriately, the resulting aliasing
corrupts only coefficients of higher order, leaving the lower ones unchanged.

Theorem 4.1 (anterpolation of a product). Let U and V be trigonometric poly-
nomials of one variable and of the odd kind. Let

Degree(U) = N and Degree(V ) ≥ N + M

for an integer M ≥ 0. Then

Anterp(UV,M) = Anterp(W,M),(4.4)

where W is a trigonometric polynomial of degree N + M , of the odd kind, and given
by its sample sequence Sample(W ) = w so that

w(n) = u1(n)v1(n) for −N −M ≤ n ≤ N + M, where

u1 = Interp(Sample(U), N + M), v1 = Sample(Anterp(V,N + M)).

The theorem also holds for V with Degree(V ) = ∞; i.e., V is a function given by a
Fourier series.

Proof. Let a = Coef (U), b = Coef (V ), and c = Coef (UV ). If −M ≤ m ≤ M ,
then

c(m) =
N∑

n=−N
a(n)b(m− n) =

N+M∑
n=−N−M

ã(n)b̃(m− n) = (ã ∗ b̃)(m),(4.5)

where the sequences ã and b̃ are the P -periodic extensions of the sequences Pad(a,M)
and {b(n); −N−M ≤ n ≤ N+M}, and the sequence ã∗b̃ is the P -periodic convolution
of ã and b̃ with P = 2(N +M) + 1. By the convolution theorem for the inverse DFT
and by the coefficient rule (2.7), we get

ã ∗ b̃ = FP
(F−1

P (ã ∗ b̃)) = FP
(
P (F−1

P ã)(F−1
P b̃)

)
=

1

P
FP (u1v1) =

1

P
FP (w) = Coef (W ).

This with (4.5) implies (4.4) and proves the theorem.
For anterpolation with respect to the φ variable, we also need the following lemma.
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Lemma 4.2. Let U1, U2, and U3 be trigonometric polynomials of one variable
with

Degree(U1) = N ≥ Degree(U3) = M.

Assume that U2U3 can be approximated with sufficient accuracy by a trigonometric
polynomial V , i.e., U2U3 
 V , with Degree(V ) = N , and U1, V , and U3 are all of the
even kind. Then ∫ π

−π
U1(t)U2(t)U3(t)dt 


∫ π

−π
W (t)U3(t)dt,

where W = Anterp(S,M) and S is the trigonometric polynomial with Sample(S)(n)
= U1(tn)U2(tn), tn = nπ/N for −N ≤ n ≤ N − 1.

Proof. Let a = Coef (U3), b = Coef (S), and tn = nπ/N for −N ≤ n ≤ N − 1.
Reasoning as in Lemma 3.3 with the trigonometric polynomials U and V of one
variable, we get∫ π

−π
U1(t)U2(t)U3(t)dt 


∫ π

−π
U1(t)V (t)dt

=
2π

2N

N−1∑
n=−N

U1(tn)V (tn) 
 π

N

N−1∑
n=−N

S(tn)U3(tn) = 2π

N−1∑
n=−N

b(n)a(n)

= 2π

M−1∑
m=−M

b(n)a(n) =

∫ π

−π
W (t)U3(t)dt,

which completes the proof of the lemma.

5. Translation from a far field to a local field. We begin with a short review
of the derivation of the fundamental translation formula from a far field to a local
field; see, e.g., [1], [3]. This formula is the key step in the two-level and multilevel
(nonstatic) fast multipole methods.

We start with the well-known expansion for the 3-D Helmholtz kernel eik|x|/(4π|x|)
in terms of incoming multipoles (e.g., see [3, p. 80]),

eik|p+x|

4π|p + x| =
∞∑
n=0

anjn(k|x|)Pn
(
p

|p| ·
x

|x|
)
,(5.1)

where

an =
ik

4π
(−1)n(2n + 1)h(1)

n (k|p|),

h
(1)
n is a spherical Hankel function of the first kind, jn is a spherical Bessel function,

and Pn is the Legendre polynomial of order n. The series converges absolutely and
uniformly for |x| ≤ r with any fixed r < |p|. If we truncate the series at n = L and
use the identity (e.g., see [9, p. 31])∫

|z|=1

eikz·xPn

(
p

|p| · z
)
dz = 4πinjn(k|x|)Pn

(
p

|p| ·
x

|x|
)
,
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we get

L∑
n=0

anjn(k|x|)Pn
(
p

|p| ·
x

|x|
)

=

∫
|z|=1

1

4π
TL

(
k|p|, p|p| · z

)
eikx·zdz,(5.2)

where the surface integral is over the unit sphere and

TL

(
k|p|, p|p| · z

)
=

k

4π

L∑
n=0

(2n + 1)in+1h(1)
n (k|p|)Pn

(
p

|p| · z
)
,(5.3)

where and TL is the Rokhlin translation function (see [1]).
Now, consider a source distribution ρ(y), y ∈ R

3, with ρ(y) = 0 outside of a
bounded domain D ⊂ R

3. Let

F (x) =
1

4π

∫
D

eik|x−y|

|x− y| ρ(y)dy, x ∈ R
3,(5.4)

be the scalar field due to this source, where k is the wave number. Suppose D ⊂ {z ∈
R

3; |z| < R} and p ∈ R
3 with R < |p|.

The expansion (5.1), when applied to x − y instead of x, allows us to expand
F (p + x) locally at the point p for all x, |x| < r, with any r < |p| −R:

F (p + x) =

∫
D

[ ∞∑
n=0

anjn(k|x− y|)Pn
(
p

|p| ·
(x− y)

|x− y|
)]

ρ(y)dy.(5.5)

If we truncate the series in (5.5) at n = L, F (p + x) will be approximated, the more
accurately the larger L is, by the integral

F (p + x) 

∫
D

[
L∑
n=0

anjn(k|x− y|)Pn
(
p

|p| ·
(x− y)

|x− y|
)]

ρ(y)dy(5.6)

=

∫
|z|=1

[
1

4π

∫
D

e−iky·zρ(y)dy

]
TL

(
k|p|, p|p| · z

)
eikx·zdz,

where we have applied (5.2) to x−y instead of x and changed the order of integration.
The obtained result is the wanted translation formula,

F (p + x) 

∫
|z|=1

U∞(z)TL

(
k|p|, p|p| · z

)
eikx·zdz,(5.7)

where

U∞(z) =
1

4π

∫
D

e−iky·zρ(y)dy, |z| = 1,(5.8)

is the far field due to the source distribution ρ.
Usually for the interpolation and anterpolation in MLFMA, the integral in (5.7)

is thought to be evaluated by expanding U∞(z)eikx·z in spherical harmonics. It can
be shown that an L, the degree of TL, which makes (5.7) accurate is also a sufficient
number of terms needed in the truncated series expansion of U∞(z)eikx·z to make it
accurately estimate U∞(z)eikx·z for all x with |x| ≤ r. In practice, this estimation is
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done by simply representing U∞(z) and eikx·z by their sample matrices. Because the
spherical harmonics are orthogonal with respect to the scalar product induced by the
integral over the unit sphere, the usual strategy for interpolation and anterpolation
follows.

Because we have expanded U∞ and eikx·z in trigonometric polynomials, we need
to change the integration in (5.7) over the parameter square −π ≤ θ ≤ π,−π ≤ φ ≤ π
for the spherical coordinates θ and φ, because the terms ei(mθ+nφ) are orthogonal
functions only with respect to scalar product induced by the integral over that square.

For making the needed change in the integral in (5.7), note that all functions
involved are smooth on the unit sphere, and in the spherical coordinates they can be
extended to be 2π-periodic in both θ and φ for all θ, φ ∈ R. We obtain∫

|z|=1

U∞(z)TL(z)eikx·zdz =

∫ π

−π

[∫ π

0

U∞(θ, φ)TL(θ, φ)eikx·z(θ,φ) sin θ dθ

]
dφ(5.9)

=
1

2

∫ π

−π

∫ π

−π
U∞(θ, φ)TL(θ, φ)eikx·z(θ,φ)| sin θ|dθdφ,

where z(θ, φ) = (sin θ cosφ, sin θ sinφ, cos θ), U∞(θ, φ) = U∞(z(θ, φ)), and TL(θ, φ) =
TL(z(θ, φ)). Above, we have also used the fact that for a spherical function v(θ, φ) we
get ∫ π

−π

[∫ 0

−π
v(θ, φ)| sin θ|dθ

]
dφ =

∫ π

−π

[∫ π

0

v(θ, φ + π)| sin θ|dθ
]
dφ

=

∫ π

−π

[∫ π

0

v(θ, φ)| sin θ|dθ
]
dφ,

because v(−θ, φ) = v(θ, φ + π) and v(θ, φ) is 2π-periodic in φ.
Note that in the right-hand side of (5.9) in the integral there is | sin θ|, which is not

a smooth function at θ = 0. This prevents us from approximating it in a numerically
efficient way by sampling and using a trigonometric polynomial. In fact, this problem
arises only in the variable θ and in the anterpolation in the disaggregation steps.
However, the Fourier series of | sin θ| is well known, and it can be directly used with
the anterpolation Theorem 4.1 for implementing an efficient anterpolation strategy in
the variable θ.

6. Aggregation and disaggregation steps in MLFMA. In this section, we
consider the tree-like data structure of MLFMA in three dimensions by using FFT in
the interpolation and anterpolation operations. The data structure is constructed in
aggregation and disaggregation iteration steps.

In the aggregation iteration steps we construct the far field representations for
each level. At every level M we choose an appropriate sampling rate (N,N ′) so that
the far field is represented by a (2N + 1, 2N ′)-sample matrix with a desired accuracy.
Because the matrix is spherical, only a (2N + 1, N ′ + 1)-matrix must be stored.

Also we choose the order L for the translation function TL for the level M . The
order L can be chosen, for instance, as suggested in [3]. The sampling rate (N,N ′)
could be taken so that N = N ′ = L + 1, as is the usual choice with the spherical
harmonics, or N and N ′ could, possibly, be chosen more economically. The optimal,
accuracy-dependent values for N and N ′ can be numerically searched and pretabu-
lated; see the numerical example in the next section.
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After these choices, the aggregation step from level M + 1 to level M will be
performed. Let Q be a cube on level M , and let (N1, N

′
1) and (N2, N

′
2) be the

sampling rates for levels M + 1 and M , respectively. Let Q1, . . . , Qr be the level
M + 1 nonempty subcubes of Q, qj the vector from the center of Q to that of Qj ,
and Uj the trigonometric polynomial approximating the far field due to sources in
Qj and represented by the (2N1 + 1, 2N ′1)-matrix uj = Sample(Uj). The far field
corresponding to Q is approximated by

U(z) =
r∑
j=1

e−ikqj ·zUj(z), |z| = 1,

and that is approximated by a trigonometric polynomial U∞ with a sample matrix
u∞ = Sample(U∞). The matrix u∞ is formed by interpolating and shifting as follows,

u∞(m,n) =

r∑
j=1

vj(m,n)wj(m,n),(6.1)

where wj = Interp(Sample(Uj), N2, N
′
2), and vj is the sample matrix

vj(m,n) = e−ikqj ·z(θm,φn),

where θm = m 2π
(2N2+1) , −N2 ≤ m ≤ N2, and φn = n π

N ′
2
, −N ′2 ≤ n ≤ N ′2 − 1. The

matrix u∞ is saved, and the aggregation iteration step is completed.
For the disaggregation step from level M −1 to M , we consider a cube Q on level

M . Let M < Mmax. Our aim is to form the amplitude field V of the incoming field
due to sources outside both Q and its immediate level M neighbor cubes.

The field V is divided into two parts: V = V1 + V2.
The interaction list of Q is defined to be the list of those level M subcubes that

are neither Q itself nor its immediate neighbors but are contained in the immediate
level M − 1 neighbor cubes of the parental cube P of Q. The field V1 is due to the
sources in the subcubes of the interaction list of Q. The field V2 is due to sources
outside P and its immediate M − 1 level neighbor cubes.

First consider V1. Let Qj be a cube in the interaction list of Q. The field F due
to sources in Qj is represented as a far field U∞, with origin at the center cj of Qj .
Let U∞ have been stored as a sample matrix u∞ sampled with the level M sampling
rate (N1, N

′
1). We need to translate F to be an incoming field in Q and to form its

amplitude field. Let TL(z) = TL(k|p|, p|p| · z) be the translation function from Qj to

Q with p being the vector from the center cj of Qj to that of Q. For convenience, we
may assume that cj = 0. Due to (5.7) and (5.9),

F (p + x) 
 1

2

∫ π

−π

(∫ π

−π
U∞(θ, φ)TL(θ, φ)eikx·z(θ,φ)dφ

)
| sin θ|dθ.(6.2)

We first treat the integration with respect to φ. Due to the proper choice of L, the
function U∞(θ, φ)eikx·z(θ,φ), with p + x in Q, can be approximated by a spherical
harmonics expansion of degree L which is also a trigonometric polynomial of degree
(L,L + 1), and the function e−ikx·z(θ,φ) can be approximated by a trigonometric
polynomial of degree (N1, N

′
1). By applying Lemma 4.2 to the φ-integration with

TL = U1, U∞ = U2, and e−ikx·z 
 U3, we get, after changing the order of integration,

F (p + x) 
 1

2

∫ π

−π

(∫ π

−π
W (θ, φ)| sin θ|eikx·z(θ,φ)dθ

)
dφ,(6.3)
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where W (θ, φ) is the trigonometric polynomial formed from the sample matrix s(n) =
U∞(θ, φn)TL(θ, φn), φn = nπ/(L + 1), −L − 1 ≤ n ≤ L, by anterpolating s in the
φ-variable from degree L+ 1 to N ′1, as Lemma 4.2 states. Accordingly, Degree(W ) =
(N1 + L,N ′1), because Degree(U∞TL) = (N1 + L,N ′1 + L + 1).

In practice, we form w = Sample(W ) as follows. Start with sample matrices
u∞ and Sample(TL) and interpolate both of them to sampling rate (N1 + L,L + 1).
Thereafter, multiply them with each other, element by element, to get a matrix s,
and anterpolate that in the φ-variable, i.e., rowwise, to degree (N1 +L,N ′1), to get w.

Next we treat the integration with respect to θ in (6.3). Because eikx·z(θ,φn) can
be approximated in θ by a trigonometric polynomial of degree N1, we can anterpolate
1
2W (θ, φn)| sin θ| down to degree N1 without changing the value of the integral within
the desired accuracy. This anterpolation in θ is carried out in four steps as Theorem
4.1 describes. First, interpolate 1

2Sample(W ) = 1
2w in θ, i.e., columnwise, from

sampling rate (N1 + L,N1) to (2N1 + L,N1) and get the sample matrix u1. Then
anterpolate | sin θ| down to degree 2N1 + L as follows: truncate the series expansion

| sin θ| =
∞∑

m=−∞
ame

imθ, am =

{
2
π

1
1−m2 if m is even,

0 if m is odd,
(6.4)

by summing m only from −2N1 − L to 2N1 + L; get a trigonometric polynomial S
of order 2N1 + L; and let u2 = Sample(S). Next multiply the columns of u1 by u2,
element by element, and get u3, i.e., u3(m,n) = u1(m,n)u2(m), for −2N1−L ≤ m ≤
2N1+L and −N ′1 ≤ n ≤ N ′1−1. Thereafter, anterpolate u3 in θ, i.e., columnwise, from
degree (2N1 +L,N ′1) to (N1, N

′
1), and get the sample matrix vQj

. The trigonometric
polynomial VQj , with Sample(VQj ) = vQj , is the wanted amplitude field, i.e.,

F (p + x) 

∫ π

−π

∫ π

−π
VQj

(θ, φ)eikx·z(θ,φ)dθdφ(6.5)

for p + x in Q. Finally, sum up vQj
over the subcubes Qj in the interaction list of

Q, and get v1 so that the trigonometric polynomial V1, with Sample(V1) = v1, is the
wanted joint amplitude field.

Note that, in practice, there is a more economical order of operations for forming
the needed v1. Namely, form the above sample matrices s of the products U∞TL for
each Qj and sum them up; anterpolate the sum matrix u1 rowwise and, thereafter,
columnwise interpolate it to get u3; and multiply it by u2 and anterpolate the product
as explained above. Also in practice, we can take the θ-direction sizes of the matrices
s, u3 and the length of vector u2 to be smaller than the above theoretical upper
bounds are, as the example in the next section shows. This seems to be due to the
fact that, in practice, the anterpolated | sin θ| increases the degree of U∞TL| sin θ|
less than Theorem 4.1 suggests.

Next we treat the amplitude field V2 due to sources outside P and its immediate
level M − 1 neighbor cubes. In the previous iteration step this amplitude field is
already formed with origin at the center c′ of P and stored as a sample matrix, say
w, sampled with the level M − 1 sampling rate (N2, N

′
2). We shift the origin from c′

to the center c of Q, and obtain an incoming field in Q of the form

F (x) =

∫ π

−π

∫ π

−π
W (θ, φ)eik(p+x)·z(θ,φ)dθ dφ(6.6)

=

∫ π

−π

∫ π

−π
W (θ, φ)eikp·z(θ,φ)eikx·z(θ,φ)dθ dφ
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for c + x in Q with p = c − c′ and W being the trigonometric polynomial with
Sample(W ) = w. Next apply an obvious two variable version of Lemma 4.2. Because
e−ik(p+x)·z and e−ikx·z, with c+x in Q, can be approximated with trigonometric poly-
nomials of degrees (N2, N

′
2) and (N1, N

′
1), respectively, we can reason that, without

changing the value of the integral (6.6) within the desired accuracy, Weikp·z in the
right-hand side of (6.6) can be replaced by a trigonometric polynomial V2, which is
obtained by anterpolating S from degree (N2, N

′
2) to (N1, N

′
1) with

Sample(S)(m,n) = s(m,n) = w(m,n)eikp·z(θm,φn),(6.7)

θm = m2π/(2N2 + 1), −N2 ≤ m ≤ N2, φn = nπ/N ′2, −N ′2 ≤ n ≤ N ′2 − 1. This V2

is the wanted amplitude field. Thus, in practice, we only form the sample matrix
s in (6.7), anterpolate that from degree (N2, N

′
2) to (N1, N

′
1), and get the wanted

v2 = Sample(V2).
Finally, let V = V1 +V2, and store v = v1 + v2 = Sample(V ). The disaggregation

iteration step from level M − 1 to level M is completed.
After having completed the last disaggregation step from level Mmax−1 to Mmax,

we want to compute the final incoming field F for any level Mmax cube Q due to
sources outside Q and its immediate level Mmax neighbors. This field we get from the
amplitude field V , corresponding to Q, by Lemma 3.3,

F (c + x) 

∫ π

−π

∫ π

−π
V (θ, φ)eikx·z(θ,φ)dθdφ(6.8)


 4π2

(2N + 1)N ′

N ′−1∑
n=0

v(0, n)eikx·z(0,φn) +

N∑
m=1

N ′−1∑
n=−N ′

v(m,n)eikx·z(θm,φn)

 ,
where c is the center of Q, v = Sample(V ), and θm = m2π/(2N + 1), −N ≤ m ≤
N, φn = nπ/N ′, −N ′ ≤ n ≤ N ′ − 1, because e−ikx·z(θ,φ) can be approximated by a
trigonometric polynomial of degree (N,N ′), which is the level Mmax sampling rate.

7. A numerical example and comparisons. We present a numerical example
where the method of this paper for interpolation, anterpolation, and integrating the
fields, here called the DFT method, is tested and compared with the usual method
of using polynomial interpolation, spherical harmonics, and Gaussian integration for
the same operations, here called the filter method ; see [6], [3].

In the example we simulate the main operations of the aggregation and disaggre-
gation steps by setting a distributed source into a cube Q corresponding to a division
cube on the level M = Mmax −m for m = 1, 2, . . . , 5. We interpolate and shift the
associated far fields from the level M +1 subcubes of Q into Q, translate the resulting
field into a local field in a nonimmediate neighbor P of Q, anterpolate that local field
into a level M + 1 subcube of P , and compare the obtained field to its exact value.
This procedure is carried out with both the DFT and filter methods, using in the
latter case both 4 × 4 and 6 × 6 Lagrangian interpolation stencils. Finally, we com-
pare the computational costs of the three simulations at given accuracy levels. Our
numerical example illustrates the numerical efficiencies of the compared methods in
MLFMA with six or fewer levels.

We normalize the wave number k = 1. We consider a cube Q on the level
M = Mmax −m,m = 1, 2, . . . , 5, with the center at the origin, with vertices

Rr1,r2,r3 = 2mπ(r1, r2, r3), rj = ±1

2
, j = 1, 2, 3,(7.1)
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and with the side length sm = 2mπ, and its nonimmediate neighbor cube P on the
same level M with vertices 2sm(1, 0, 0) + Rr1,r2,r3 , rj = ± 1

2 , j = 1, 2, 3. Accordingly,
sm = 2mλ/2 with the wave length λ = 2π for k = 1.

The source is chosen to be the constant planar source density ρ = 4π on the
diagonal square A,

A =
{

(x1, x2, x3)εR3; −sm
2
≤ x1, x2 ≤ sm

2
, x3 = x1

}
.(7.2)

The cube Q is divided into eight level M + 1 subcubes, and those four subcubes
containing the source are enumerated Q1, . . . , Q4. The far field Uj due to the source
distribution in Qj is computed by (5.8) using a 5× 5 Gaussian integration grid over
the subsquares of A. In fact, this numerical integral is the actual far field Uj in our
example. It is accurately sampled with N1 + 1 points in the θ-direction and 2N1

points in the φ-direction, both uniformly spaced, for the DFT method, and with
L + 1 Gaussian points in the θ-direction and 2(L + 1) uniformly spaced points in
the φ-direction for the filter method. The far field U∞ due to the source ρ in Q is
computed by the formula

U∞ =

4∑
j=1

e−ikqj ·zUj ,(7.3)

where qj is the vector from the center of Q to that of Qj . The far fields Uj , by
using the sample matrices uj , are approximated by trigonometric polynomials in the
DFT method, and by spherical harmonics in the filter method. The far field U∞ is
approximated by a sample matrix u∞, by sampling U∞ in a denser level M grid so
that the shift function e−ikqj ·z is directly sampled in that denser grid and each uj is
interpolated into that grid.

For the DFT method our example proceeds as follows. On each level M , we
choose the degree L ≥ N1 for the translation function TL and take the denser grid
to be an (N2 + 1) × 2(L + 1) grid with N2 ≥ L. Thereafter, TL is sampled in that
grid. Additionally, u∞ is formed in that grid by DFT interpolation and shifting. The
element-by-element product of the two sample matrices is formed, and its columns
are multiplied by the sample vector of 1

2Anterp(| sin θ|, N2). The obtained local field
in the cube P is shifted and DFT anterpolated down to degree (N1, N1) into a level
M + 1 subcube P1 of P with center c + q, where c = 2sm(1, 0, 0) is the center of P
and q = sm/4(−1, 1, 1). Finally, the local field in P1 is integrated using (6.8), the
obtained field is compared to the exact field, and an average relative error EDFT in
P1 is computed.

For illustrating the efficiency of the DFT method, for each accuracy level 10−p, p =
1, 2, 3, we choose the smallest L,N1, and N2 so that EDFT ≤ 10−p. We also estimate
the computational cost of the entire procedure in the example with the DFT method
for each MLFMA level M and accuracy level p. The cost is estimated by counting the
number of scalar multiplications and using the cost n log2 n for the FFT of a vector
with length n. The results are presented in Table 7.1.

The filter method is treated in our example as follows. For each level M = Mmax−
m, m = 1, 2, . . . , 5, an optimal degree LM for the translation function TL is chosen in a
way explained later. On the level M the sample matrix u∞ is formed in the grid (LM+
1)×2LM from the level M+1 sample matrices uj by the polynomial interpolation and
shifting using both the 4-points and 6-points Lagrangian interpolation in the φ- and θ-
directions. The function TL with L = LM is sampled in the same grid and multiplied,
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Table 7.1
Comparison of the computational costs of the DFT method and the filter method with stencil

sizes 4× 4 and 6× 6; here p = 1, 2, 3 refers to accuracy level 10−p.

DFT 4× 4 stencil 6× 6 stencil

M p L N1 N2 cost/103 L cost/103 L cost/103

Mmax − 1 1 8 5 8 7.1 11 12.1 8 10.0
2 9 5 11 9.8 14 28.6
3 13 7 19 24.6

Mmax − 2 1 15 7 14 22.1 23 44.9 16 33.5
2 18 9 21 40.5 27 92.6
3 20 10 28 58.7

Mmax − 3 1 27 12 27 82.1 31 89.2 28 96.3
2 34 15 35 138 42 215
3 37 17 49 206

Mmax − 4 1 46 20 46 261 61 288 60 386
2 60 24 60 444 79 684
3 65 27 76 607

Mmax − 5 1 105 37 104 1394 110 932 120 1522
2 121 44 119 1917 137 2063
3 130 48 135 2351

element by element, by u∞. The local field in P is shifted and anterpolated into
the subcube P1 of P ; the anterpolation is carried out as an adjoint operation of the
polynomial interpolation from the (LM+1 + 1)× 2LM+1 grid to the (LM + 1)× 2LM
grid. Finally, the resulting local field in P1 is computed, and the relative errors E4×4

and E6×6 in P1 are computed for both stencil sizes.

For illustrating the efficiency of the filter method, for each accuracy level 10−p,
p = 1, 2, 3, and for each n × n stencil, n = 4, 6, we choose the smallest degrees LM
for M = Mmax −m,m = 1, 2, . . . , 5, so that the relative error En×n ≤ 10−p on each
level M . It turns out that this is possible for the 4 × 4 stencil only for p = 1, and
for the 6 × 6 stencil only for p = 1, 2; higher accuracy levels for these stencil sizes
cannot be reached. Finally, the computational cost for the entire procedure with the
filter method is estimated. The cost on the level M for the interpolation, as well as
for anterpolation, is about 2n(LM+1 + LM )(LM + 1) for an n × n stencil when the
interpolation is performed first columnwise and then rowwise. The results for both
stencil sizes are presented in Table 7.1.

Table 7.1 shows that the computational cost is lowest for the DFT method but
roughly of the same order for all three methods. Higher accuracy is reached in the
DFT method by only increasing the sample rate, while in the filter method increasing
the stencil size is also needed.

The lower cost with the DFT method is due to the fact that the same accuracy
level is reached in the DFT method with smaller sampling rates than in the filter
method. This mainly follows from the fact that in the filter method for interpolation
and anterpolation an oversampling by a factor of 2 is needed [10]; also the filter
method, because of the Lagrangian interpolation, is more sensitive to sampling noise
than the DFT method.

There is also another point of view on smaller sampling rates. Usually in MLFMA
more than half of the computational cost arises from translating outgoing fields into
local fields in the disaggregation steps. The cost of this operation for a cube Q depends
on the size of the sample matrices for u∞TL and on the length of the interaction list
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of Q, which may vary from about 20 to 189. In Table 7.1 these matrix sizes are
(N2 + 1)× 2(L+ 1) for the DFT method, and (L+ 1)× 2(L+ 1), with a different L,
for the filter method. We see that those sizes are about 2 times larger for the filter
methods, and accordingly our example suggests that the DFT method is, altogether,
about 1.5 to 2 times more efficient than the filter method, at least for MLFMA with
six or fewer levels.

8. Conclusions. A new method is presented for using FFT in interpolation and
anterpolation in a 3-D MLFMA. The associated far fields and the amplitude fields of
the plane wave expansions of the local fields on the 3-D unit sphere are extended to be
2π-periodic in both the spherical coordinates θ and φ. This enables as effective a field
presentation in terms of trigonometric polynomials as the usual presentation in the
terms of spherical harmonics. Furthermore, with the trigonometric polynomials and
DFT, an effective and exact procedure for interpolation and anterpolation, together
with field computing, can be facilitated, whereas these operations can be performed
only approximately when using spherical harmonics and polynomial interpolation. In
a numerical example, the proposed new method is compared to the usual method
employing spherical harmonics and polynomial interpolation in 3-D MLFMA. The
comparison shows that the proposed new method is about from 1.5 to 2 times more
efficient, at least for MLFMA with six or fewer levels.
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Abstract. A fully variational approach is developed for solving nonlinear elliptic equations
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1. Introduction. We develop a theoretical foundation for a method for solving
nonlinear elliptic equations that combines first-order system least squares (FOSLS)
with Newton’s method, algebraic multigrid (AMG), and nested iteration (NI). The
algorithm achieves accuracy comparable to the finest-level discretization at a cost pro-
portional to the number of finest-level degrees of freedom. In a companion paper [17],
we apply this theory to the elliptic grid generation (EGG) equations and numerically
validate the theory established below.

Our development assumes that the target problem is a first-order system whose as-
sociated least-squares functional applied to functions inH1+δ, δ ∈ (0, 1), has quadratic
part that is equivalent to the product H1 norm. Higher-order differential systems can
be recast in the standard way as a first-order system, but care must be taken to en-
sure such product ellipticity when it is feasible (cf. [15, 14]). Our particular interest
is in quasilinear first-order systems where the nonlinearity is a product of variables,
of which at most one is a derivative term. For example, if u and v are the variables
in a two-dimensional problem, then we admit terms like u, v, u2ux, and uvvy, but
not uu2

x. (Admitting product derivative terms while retaining H
1+δ spaces for the

variables would prevent the use of L2 norms for the equations and inhibit analysis of
the linearized equations.)

Our algorithm applies to the first-order system in three separate stages. The
outermost stage is NI, which starts on the coarsest level where the discrete nonlinear
problem is solved by any appropriate method. The result is then interpolated to the
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next finer level, where it is used as an initial guess for one Newton linearization (the
middle stage) of the nonlinear problem. A functional is created on that level using
a least-squares principle, and the resulting matrix equation is solved using one, two,
or three V-cycles of AMG (the innermost stage). The result is then interpolated up
to the next finer level, with the steps repeated until the finest level is processed. Our
theoretical results confirm that this direct NI-Newton-FOSLS-AMG scheme converges
in one overall step to an approximation on the finest level that is accurate to the level
of discretization error. Numerical experiments for the EGG equations, described in a
companion paper [17], confirm this result.

One advantage that the FOSLS system has over standard minimization tech-
niques is that the minimum value of the functional is zero at the exact solution of
the differential equation. This property has implications for adaptive refinement that
are to be explored in future work. Another advantage is that FOSLS used with finite
element discretization and Newton linearization of the elliptic equations results in
self-adjoint positive-definite matrix problems that themselves correspond to a well-
posed elliptic system, so the discrete problems can be efficiently solved by multigrid.
We demonstrate this attribute qualitatively in the theory here and numerically in the
companion paper.

The idea of using Newton iterations coupled with a multilevel scheme is not
new. In [20], for example, a multilevel nested iteration Newton scheme was applied
to differential eigenproblems. An abstract theory and numerical results confirmed
the need for only one Newton step on the finest level. In [5], optimal parameters
were calculated for the damped approximate Newton’s method to ensure quadratic
convergence of a particular finite element approximation of nonlinear elliptic partial
differential equations. This was later combined with multilevel techniques [6] to obtain
a convergence result that asymptotically required just one Newton linearization per
level. This last result is similar to ours but does not include the derivative terms in
the nonlinearity that are present in our target application, EGG. The NI approach is
also used in recent work on cascadic multigrid [22], although again their form of the
nonlinearity does not include the more complicated case needed here.

The “mesh-independence” theory developed for Newton’s method in [21, 4, 3, 2]
addresses the same property of NI that we exploit here. Unfortunately, this theory
cannot easily be applied to our setting because it requires more smoothness of the
infinite-dimensional iterates than ours appear to possess. We are also unable to apply
the mesh-independence-based theory developed in [18, 19] because the nonlinearity
for the Navier–Stokes equations treated there appears only in the lower-order terms.

This paper is organized as follows. Section 2 introduces the equations and func-
tion spaces. In section 3, we describe the NI-Newton-FOSLS method for solving the
nonlinear equations. Section 4 contains theory on convergence of the Newton iter-
ates in H1 and on accuracy estimates for the NI-Newton-FOSLS-AMG scheme. We
conclude with some remarks in the final section.

2. Setup. We use standard notation for the associated spaces. Restricting our-
selves to two dimensions, consider a generic open domain, Ω ∈ R2, with Lipschitz
boundary Γ. Suppose m ≥ 0 and n ≥ 1 are given integers. Let (·, ·)0,Ω denote the
inner product on L2(Ω)n, ‖·‖0,Ω its induced norm, and Hm(Ω)n the standard Sobolev
space with norm ‖ · ‖m,Ω and seminorms | · |i,Ω (0 ≤ i ≤ m). (We suppress superscript
n, because dependence of the vector norms on dimension is clear by context.) For
δ ∈ (0, 1), let Hm+δ(Ω) (cf. [11]) denote the Sobolev space associated with the norm
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defined by

‖u‖2m+δ,Ω ≡ ‖u‖2m,Ω +
∑
|α|=m

∫
Ω

∫
Ω

|∂αu(x)− ∂αu(y)|2
|x− y|2(1+δ) dxdy.

(This definition allows the use of the “real interpolation” method [1, 11].) Also, let

H
1
2 (Γ) denote the trace Sobolev space associated with the norm

‖u‖ 1
2 ,Γ
≡ inf{‖v‖1,Ω : v ∈ H1(Ω), trace v = u on Γ}.

Finally, let Cm(Ω) denote the space of functions with continuous derivatives in Ω of
up to order m ≥ 0, and define the C0(Ω) norm of f ∈ C0(Ω) by

‖f‖∞,Ω ≡ sup
x∈Ω
|f(x)|.

From Sobolev’s lemma [1], there exists a constant C, depending only on Ω and δ, such
that

‖f‖∞,Ω ≤ C‖f‖1+δ,Ω ∀ f ∈ H1+δ(Ω).

The method we develop applies to elliptic quasi-linear partial differential equa-
tions, where the highest-order derivative terms appear linearly, with the exception
that their coefficients may include lower-order terms. In fact, we assume that the
equations have been formulated as a p× q first-order system with appropriate bound-
ary conditions. It is straightforward to rewrite higher-order equations in first-order
form, although care must be taken to ensure that the resulting system is elliptic in the
H1 product norm (assuming that this is even feasible; cf. [15, 14]). This process is
exemplified by the reformulation of the EGG equations in the companion paper [17].

Let the first-order system be represented abstractly by the p-vector equation

p(J) = 0 in Ω,(2.1)

with boundary conditions

BJ = g on Γ,(2.2)

where J is the q-vector of unknowns. (Here p and q are positive integers, generally
with p ≥ q.) To ensure that we can apply least squares to this system, we must have
p(J) ∈ L2(Ω)p. We want to allow product terms involving a combination of elements
of J, one of which may involve a partial derivative. Therefore, we cannot allow J to
roam freely in H1(Ω)q, because such products would not necessarily be in L2(Ω) and
we would thus be prevented from using L2(Ω) norms for the functional. However,
from Sobolev’s lemma, the C0(Ω) norm is bounded by the H1+δ(Ω) norm in R2 when
δ ∈ (0, 1). Thus, everything in H1+δ(Ω) is continuous, and our product terms are in
L2(Ω). We therefore choose the space for J to be H1+δ(Ω)q, ensuring p(J) ∈ L2(Ω)p.
This obviously places restrictions on the allowable boundary functions g. In fact, we
assume that the solution J∗ of (2.1)–(2.2) is in H2+δ(Ω)q, which places even further
restrictions on g. In addition, the coercivity requirement on the first Fréchet derivative
of our system influences the allowable spaces for both the boundary and boundary
conditions, which in turn influences the solution space for J∗. This issue is addressed
implicitly in the abstract theory of section 4 and in detail for the EGG application in
the companion paper [17].
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In other FOSLS applications [13, 15, 7, 8, 14], both H−1 and L2 norms are used

for the domain, and H
1
2 norms for the boundary. With appropriate smoothness

[15], FOSLS functionals for general second-order elliptic partial differential equations

exhibit H1 equivalence for the functionals based on L2 norms for the domain and H
1
2

norms for the boundary. In practice, while L2 norms are used for the domain, it is
common either to use L2 norms scaled by 1

h for the boundary norms or to impose the
boundary conditions. We focus here for simplicity on imposing boundary conditions,
although some of our numerical results in [17] take the scaled L2 norm approach for
illustration.

It is more convenient in the analysis to consider homogeneous boundary condi-
tions. To this end, we extend g smoothly into Ω: assume that we are given a q-vector
function E, defined on Ω, that satisfies

BE = g on Γ.

Now, writing J = D+E and P(D) = p(D+E), our target problem becomes

P(D) = 0 in Ω,(2.3)

with homogeneous boundary conditions

BD = 0 on Γ.(2.4)

Generally, E needs to be as smooth as we require J∗ = D∗ + E to be, but this
requirement is implicit in the following assumptions that we make on (2.3)–(2.4).

We start by defining the space on which this system is posed. For any ν > 0,
define

Hν = {D ∈ Hν(Ω)q : BD = 0 on Γ}.(2.5)

We assume that our solution D∗ resides in H2+δ, and we look for it in H1+δ. Note
that D ∈ H1+δ implies P(D) ∈ L2(Ω)p.

3. Method. There are several decisions to be made about how (2.3) is solved.
Our basic choice is to use Newton’s method and FOSLS to obtain a quadratic min-
imization problem, finite elements for the discretization, and then AMG with NI to
solve the resulting matrix equations. Within this basic framework, we need to choose
how Newton’s method and FOSLS are related. A FOSLS-Newton method would
involve forming the least-squares functional, setting its gradient to zero, and then
solving this nonlinear problem with Newton’s method. A Newton-FOSLS method
would involve linearizing the equations first, and then forming the least-squares func-
tional and setting its gradient to zero. The gradient equations that result from these
two approaches differ only by a term coming from the second Fréchet derivative of the
system operator that, near the solution, is dominated by the other operator terms.
Because nested iteration guarantees proximity to the solution on each level, the per-
formance of these two approaches tends to be much the same. We therefore focus on
the Newton-FOSLS approach because of its theoretical and numerical simplicity.

Our method involves first applying Newton’s method to nonlinear system (2.3) on
the coarsest finite element level. We then form an L2 functional from the linearized
equations and minimize a coarsest-level discretization of it by AMG (or perhaps a
direct matrix solver). The resulting approximate Newton iterate computed at the
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D0
N→ D1

N→ D2
N→ D3

N→ D4 · · · Dn
N→ Dn+1

N→ · · · D∗

Fig. 3.1. The Newton-FOSLS infinite-dimensional algorithm.

coarsest-level scale is then used on the next finer level as an initial guess for an anal-
ogous discrete Newton step there: system (2.3) is linearized about this initial guess,
an L2 minimization principle is applied, and then AMG is used to approximate the
minimizer on this finer scale. This process continues, with the iterates approximated
on successively finer levels, until a desired accuracy is reached.

Applying Newton’s method to system (2.3) gives us the following linearized prob-
lem: given Dn ∈ H1+δ, find Dn+1 ∈ H1+δ such that

P′(Dn)[Dn+1 −Dn] = −P(Dn),(3.1)

where P′(Dn)[Dn+1−Dn] denotes the first Fréchet derivative of P(Dn) with respect
to Dn in direction Dn+1 −Dn.

To solve (3.1) for Dn+1, consider the least-squares functional

G0(Dn+1) ≡ ‖P′(Dn)[Dn+1 −Dn] +P(Dn)‖20,Ω
= (P′(Dn)[Dn+1 −Dn] +P(Dn), P′(Dn)[Dn+1 −Dn] +P(Dn)) .

Note that G0 depends on Dn and E. To minimize G0, we set to zero its first Fréchet
derivative, taken with respect to Dn+1 (cancelling the factor 2 for convenience): given
Dn ∈ H1+δ, find Dn+1 ∈ H1+δ such that

(P′(Dn)[K], P′(Dn)[Dn+1 −Dn] +P(Dn)) = 0 ∀ K ∈ H1+δ.(3.2)

We illustrate this infinite-dimensional Newton process in Figure 3.1, where
N→ indi-

cates one Newton step.
In practice, we need to discretize (3.2) on some given finite element space Hh.

However, we then need an approximation for Dn. The main point to keep in mind in
this approximation is that early iterates are relatively crude approximations to D∗,
and thus they can be approximated on relatively coarse grids. In general, if final
iterate Dn+1 is approximated by a best approximation Un+1 in H

hn , then Dn need

only be approximated on a grid with mesh size O(hn 1
2 ). This is a natural consequence

of quadratic convergence, and this premise is served well by a coarse grid of mesh size
2h. This view gives rise to our nested iteration approach that supplies the initial
guess for one Newton iterate on grid h by first iterating on grid 2h. In particular,
consider a nested sequence of m + 1 finite-dimensional subspaces of H1+δ denoted
by Hh0 ⊂ Hh1 ⊂ · · · ⊂ Hhm ⊂ H1+δ, where hn = 2−nh0, 0 ≤ n ≤ m. Note that
piecewise bilinears on rectangles are in H1+δ(Ω) for δ ∈ [0, 1

2 ) (see [16]). Let U0

denote the initial guess in Hh0 . For n = 0, 1, . . . ,m in turn, define the grid Hhn

problem as follows: given Un ∈ Hhn , find Un+1 ∈ Hhn ⊂ Hhn+1 such that(
P′(Un)[K

hn ], P′(Un)[Un+1 −Un] +P(Un)
)
= 0 ∀ Khn ∈ Hhn .(3.3)

3.1. NI-Newton-FOSLS. The discretization in (3.3) amounts to approximat-
ing the finest-level solutionU∗m by a nested iteration on subspacesH

hn , n = 0, 1, . . . ,m.
This NI approach involves first solving problem (3.3) on the coarsest subspace, Hh0 .
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U0
Nh0→ U1

Nh1→ U2
Nh2→ U3

Nh3→ U4 · · ·
N

↘
N

↘
N

↘
N

↘ . . .

D̃1 D̃2 D̃3 D̃4 · · ·

Fig. 3.2. The NI-Newton-FOSLS algorithm.

In practice, we can use any sensible solution process here because this space is pre-
sumably of very low dimension. We can simply iterate with a (possibly damped)
discrete Newton iteration until the error in the approximation is below discretization
error. However, because our theory assumes that we are sufficiently close to D∗, we
have assumed, for convenience, that this coarsest approximation is computed by only
one discrete Newton iteration applied to a sufficiently close approximation U0 ∈ Hh0 .
Now, the resulting iterate U1 is interpolated to the next finer level, where it is used
as an initial guess for one discrete Newton step. The resulting approximation U2

on subspace Hh1 is then used as an initial guess for the next finer level. In general,
the initial guess for Newton on level hn comes from the final Newton step on level
hn−1: Un. The process is repeated until the finest subspace is reached, where one
final Newton step is then applied. Note that Un+1 can be interpreted as a discrete

approximation to the result D̃n+1 of one infinite-dimensional Newton step applied to

Un. This NI procedure is illustrated in Figure 3.2, where
Nhn→ indicates one Newton

step on Hhn and
N

↘ indicates one infinite-dimensional Newton step applied to discrete
initial guess Un.

One of our main objectives in this paper is to prove that this nested iteration
process, involving only one discrete Newton step on each level, produces a result on
the finest level that is within discretization error of the infinite-dimensional solution.

3.2. AMG. Our theory assumes a standard V-cycle multigrid algorithm because
of its superior theoretical basis. However, because of its enhanced robustness, we use
AMG in practice as the matrix solver for approximating Un+1. See [12] for basic
descriptions of multigrid and AMG.

AMG starts on the coarsest level with initial guess V0 = U0. We apply ν0 cycles
of AMG to the matrix problem arising from (3.3) with n = 0. The result, V1, becomes
the initial guess for level h1, where the process continues. In general, the initial guess
for AMG on level hn comes from the final AMG approximation on level hn−1: Vn. In

Figure 3.3, we illustrate the NI-Newton-FOSLS-AMG algorithm, with
Mhn→ denoting

one approximate multigrid-Newton step on Hhn , and
Nhn↘ denoting the exact discrete

Newton step with initial guess Vn (with result Ũn+1).

V0
Mh0→ V1

Mh1→ V2
Mh2→ V3

Mh3→ V4 · · ·
Nh0↘

Nh1↘
Nh2↘

Nh3↘ . . .

Ũ1 Ũ2 Ũ3 Ũ4 · · ·

Fig. 3.3. The NI-Newton-FOSLS-AMG algorithm.
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4. Abstract theory. Bounds on various quantities used in the theory developed
here involve many different constants. To avoid proliferation, we use uppercase C to
denote a generic constant that, unless otherwise specified, can change meaning with
each occurrence. When it is important to track the origin of these constants, we
instead use lowercase c with unique subscripts. In every occurrence, these constants
are independent of h and n, but they may depend on the value of the H1+δ(Ω)q norm
of the approximation. (Here and in what follows, δ ∈ (0, 1) is a fixed constant.) To
make sure that these values are properly bounded, we start with an initial guess in
a small H1+δ(Ω)q ball about D∗. We show that the approximations remain in this
ball and, in fact, attain order h accuracy in the H1(Ω)q norm. This also controls the
values of the H1+δ(Ω)q norm (see Lemma 4.5 below).

Assume that there exists a solution D∗ of (2.3) in H2+δ. (Recall that Hν is
defined in (2.5) for any ν > 0.) Denote the open H1+δ(Ω)q ball centered at D∗ of
radius r > 0 by Br ≡ {D ∈ H1+δ : ‖D∗ − D‖1+δ,Ω < r}. Several of our norm
assumptions and estimates involve both integer and fractional norms. So that our
statements apply to both cases, we let ε = 0 or δ. Assume now that P[D] ∈ Hε(Ω)p

for every D ∈ Br: there exists a constant C, depending only on D∗, E, r, Ω, and δ,
such that

‖P(D)‖ε,Ω ≤ C ∀ D ∈ Br.
Further assume uniform coercivity and continuity of P′(D)[ · ] as a mapping from
H1+ε(Ω) to H

ε(Ω)p: for every D ∈ Br, there exist constants cc and cb, depending
only on D∗,E, r,Ω, and δ, such that

1

cc
‖K‖1+ε,Ω ≤ ‖P′(D)[K]‖ε,Ω ≤ cb‖K‖1+ε,Ω ∀ K ∈ H1+ε(Ω).(4.1)

Note that coercivity implies that P′(D)[ · ] is one-to-one onH1+ε(Ω) for everyD ∈ Br,
including, of course, D = D∗. We also assume boundedness of the second Fréchet
derivative of P(D) for all D ∈ Br: for every D ∈ Br there exists a constant c2,
depending only on D∗, E, r, Ω, and δ, such that

‖P′′(D)[K,K]‖ε,Ω ≤ c2‖K‖1+δ,Ω‖K‖1+ε,Ω ∀ K ∈ H1+ε(Ω).(4.2)

Here, P′′(D)[K,K] denotes the second Fréchet derivative of P(Dn) with respect to
Dn in directions K and K.

Let Ph and Qh denote the respective H1+δ and H1 projections of H1+δ onto H
h.

Note that

‖PhD‖1+δ,Ω ≤ ‖D‖1+δ,Ω ∀ D ∈ H1+δ

and

‖QhD‖1,Ω ≤ ‖D‖1,Ω ∀ D ∈ H1+δ.(4.3)

Assume that our finite element spaces satisfy the usual approximation properties (cf.
[9]):

‖D∗ − PhD∗‖γ,Ω ≤ cdh
2+δ−γ‖D∗‖2+δ,Ω ∀ γ ∈ [0, 1 + δ](4.4)

and

‖D∗ − QhD∗‖1,Ω ≤ cdh
1+δ‖D∗‖2+δ,Ω.(4.5)
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Assume that they also satisfy the inverse estimate (cf. [9, 11]):

‖U‖β,Ω ≤ ci
hβ−γ

‖U‖γ,Ω ∀ U ∈ Hh, β ∈ [0, 1 + δ], γ ∈ [0, β].(4.6)

Assume finally that h0 is so small that Br ∩Hh0 �= φ and that initial guess U0 is in
Br ∩Hh0 .

The following theory shows that Un is in an H1(Ω) ball about D∗ of radius
(1+ η)cdhn, where η is any predetermined positive constant and cd is the constant in
(4.4) and (4.5). For simplicity, we choose η = 1 and thus define

Sn = {U ∈ Hhn : ‖D∗ −U‖1,Ω ≤ 2cdhn}(4.7)

and

S = ∪mn=0Sn.

Lemma 4.5 shows that S is bounded in H1+δ(Ω)q and, hence, compact in H1(Ω)q.
We first state our three central theorems. Their proofs follow from a series of

results developed in the next subsection.
For all three theorems, we assume that r > 0 is sufficiently small. For Theo-

rem 4.2, with r fixed, we assume further that h0 > 0 is sufficiently small, especially
so that S0 ⊂ Br. For Theorem 4.1, with r fixed, we assume that h0 > 0 is pos-
sibly smaller still. We do this so that, in addition to S0 ⊂ Br, we are sure that
the exact discrete iterate Un+1 is even closer to D

∗ than to 2cdhn, which in turn
allows us to deduce that the multigrid approximation Vn+1 is within 2cdhn of D

∗.
Finally, Theorem 4.3 also assumes that, on each level, the discrete Newton problem
is approximately solved with a sufficient but fixed number ν0 of multigrid V-cycles.

Theorem 4.1 (Newton). With Dn ∈ Br given, let Dn+1 be the exact infinite-
dimensional Newton step defined by (3.2). Then Dn+1 ∈ Br and there exists a constant
cq, depending only on D

∗, E, Ω, and δ, such that

‖D∗ −Dn+1‖1+ε,Ω ≤ cq‖D∗ −Dn‖1+ε,Ω‖D∗ −Dn‖1+δ,Ω, ε = 0, δ.(4.8)

Theorem 4.2 (discrete Newton). Assume that U0 ∈ S0. Then Un+1 ∈ Sn+1:
the Newton approximation on level hn based on initial guess Un satisfies the error
bound

‖D∗ −Un+1‖1,Ω ≤ 2cdhn+1 = cdhn.(4.9)

Theorem 4.3 (inexact discrete Newton). Assume that V0 ∈ S0. Then Vn+1 ∈
Sn+1: the multigrid approximation on level hn based on initial guess Vn satisfies the
error bound

‖D∗ −Vn+1‖1,Ω ≤ 2cdhn.(4.10)

4.1. Preliminaries. Although we pose problem (2.3) on H1+δ ⊂ H1+δ(Ω)q, we
prove convergence in the weaker H1(Ω)q norm. Since H1+δ is not complete in the
H1(Ω)q norm, we cannot appeal to standard Newton convergence theory. Fortunately,
the result we need (Theorem 4.1) is weaker.

Lemma 4.4. Let D ∈ Br and D̃ = θD+ (1− θ)D∗, with θ ∈ [0, 1]. Then

‖D̃‖1+δ,Ω ≤ r + ‖D∗‖1+δ,Ω.
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Proof. The result follows directly from the triangle inequality and is thus omit-
ted.

Lemma 4.5. Suppose that Un ∈ Sn. Then

‖D∗ −Un‖1+δ,Ω ≤ cδh
1−δ
n ,(4.11)

where cδ = 2cicd + (1 + ci)cdh
δ
0‖D∗‖2+δ,Ω. Thus, S = ∪mn=0Sn ⊂ Br, provided that h0

is so small that cδh
1−δ
0 ≤ r.

Proof. The bound follows the triangle inequality, (4.6), the triangle inequality
again, (4.4), the definition of Sn in (4.7), and (4.4) again:

‖D∗ −Un‖1+δ,Ω ≤ ‖D∗ − PhnD∗‖1+δ,Ω + ‖PhnD∗ −Un‖1+δ,Ω
≤ cdhn‖D∗‖2+δ,Ω + ci

hn
δ
‖PhnD∗ −Un‖1,Ω

≤ cdhn‖D∗‖2+δ,Ω + ci

hn
δ

[‖D∗ − PhnD∗‖1,Ω + ‖D∗ −Un‖1,Ω
]

≤ cdhn‖D∗‖2+δ,Ω + ci

hn
δ

[
cdhn

1+δ‖D∗‖2+δ,Ω + 2cdhn
]

≤ cδhn
1−δ.

This lemma confirms max norm O(h1−δ) convergence.
Lemma 4.6. Suppose that Vn ∈ Sn for sufficiently small r. Let Ũn+1 denote one

exact discrete Newton step with initial guess Vn, and let Vn+1 denote its multigrid
approximation. Then

‖Ũn+1 −Vn+1‖1,Ω ≤ ρν0‖Ũn+1 −Vn‖1,Ω.(4.12)

Here, ρ ∈ [0, 1) is a bound on the multigrid convergence factor for any level n and
any initial guess V ∈ Sn; it depends only on D

∗,E, r,Ω, δ, cd, and ci.
Proof. Convergence estimate (4.12) follows from standard multigrid theory (cf.

[10]) using the H1(Ω)q equivalence result in (4.1) with D = Vn.
We have now established the tools that allow us to prove our central theorems.

4.2. Proofs of Theorems 4.1, 4.2, and 4.3.
Proof of Theorem 4.1. Consider a Taylor expansion for P(D∗) about Dn:

0 = P(D∗) = P(Dn) +P′(Dn)[D
∗ −Dn] +

1

2
P′′(D̃)[D∗ −Dn,D

∗ −Dn],

where D̃ = θDn + (1 − θ)D∗ for some θ ∈ [0, 1] is bounded in the H1+δ(Ω)q norm
(Lemma 4.4). Then the lower bound in (4.1), combining the above expansion with
(3.1), and using (4.2) proves (4.8):

‖D∗ −Dn+1‖1+ε,Ω ≤ cc‖P′(Dn)[D
∗ −Dn+1]‖ε,Ω

=
cc
2
‖P′′(D̃)[D∗ −Dn,D

∗ −Dn]‖ε,Ω
≤ ccc2

2
‖D∗ −Dn‖1+δ,Ω‖D∗ −Dn‖1+ε,Ω.(4.13)

To show that Dn+1 ∈ Br, consider (4.13) with ε = δ. For Dn ∈ Br, this reduces
to

‖D∗ −Dn+1‖1+δ,Ω ≤ ccc2
2

r2,
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and we just require

r ≤ 2

ccc2
.(4.14)

Proof of Theorem 4.2. First assume that r is so small that (4.14) is satisfied.
Assume also that h0 is so small that

cδh
1−δ
0 = 2cicdh

1−δ
0 + (1 + ci)cd‖D∗‖2+δ,Ωh0 ≤ r.

Hence, by Lemma 4.5 and because we assume that U0 ∈ S0, we must have U0 ∈ Br.
Suppose now that we could show that Un ∈ Sn implies that Un+1 ∈ Sn+1 for all
n ≥ 0. Then, since U0 ∈ S0, we would know that U1 ∈ S1, which in turn would imply
that U2 ∈ S2. Continuing in this way would show that (4.9) holds for all n ≥ 0.

To this end, assume that (4.9) holds for n replaced by n− 1, with Un ∈ Sn:

‖D∗ −Un‖1,Ω ≤ 2cdhn.(4.15)

From Lemma 4.5, we see that

‖D∗ −Un‖1+δ,Ω ≤ cδh
1−δ
n .(4.16)

We bound the left-hand side of (4.9) by first using the triangle inequality:

‖D∗ −Un+1‖1,Ω ≤ ‖D∗ − D̃n+1‖1,Ω + ‖D̃n+1 −Un+1‖1,Ω,(4.17)

where D̃n+1 is the result of infinite-dimensional Newton step (3.2) based on initial
guess Un.

Consider the first term on the right-hand side of (4.17). By Theorem 4.1 with
ε = 0, (4.11), and (4.15), we have that

‖D∗ − D̃n+1‖1,Ω ≤ cq‖D∗ −Un‖1,Ω‖D∗ −Un‖1+δ,Ω
≤ 2cdcqcδh2−δ

n .(4.18)

For the second term on the right-hand side of (4.17), we now show that

‖D̃n+1 −Un+1‖1,Ω ≤ cbcc(4cdcqcδh
1−δ
0 + cdh

δ
0‖D∗‖2+δ,Ω)hn.(4.19)

To this end, let f ≡ P′(Un)[Un]−P(Un). Then discrete Newton step (3.3) becomes
the following: given Un ∈ Hhn , find Un+1 ∈ Hhn such that(

P′(Un)[K
hn ], P′(Un)[Un+1]

)
=
(
P′(Un)[K

hn ], f
) ∀ Khn ∈ Hhn .(4.20)

Note that D̃n+1 ∈ H1+δ, which is generally not in H
hn , is defined by

(P′(Un)[K], P
′(Un)[D̃n+1]) = (P

′(Un)[K] , f) ∀ K ∈ H1+δ.(4.21)

Combining (4.20) and (4.21) for K = Khn ∈ Hhn , we have that

(P′(Un)[K
hn ], P′(Un)[D̃n+1 −Un+1]) = 0,

from which it follows that

(P′(Un)[K], P
′(Un)[D̃n+1 −Un+1])

= (P′(Un)[K−Khn ], P′(Un)[D̃n+1 −Un+1]).
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Letting K = D̃n+1 −Un+1 and K
hn = Qhn(D̃n+1 −Un+1) = QhnD̃n+1 −Un+1, so

that K−Khn = D̃n+1 − QhnD̃n+1, then yields

(P′(Un)[D̃n+1 −Un+1], P
′(Un)[D̃n+1 −Un+1])

= (P′(Un)[D̃n+1 − QhnD̃n+1], P
′(Un)[D̃n+1 −Un+1]).(4.22)

Applying the Cauchy–Schwarz inequality to the right-hand side of (4.22), then can-

celling the term ‖P′(Un)[D̃n+1 −Un+1]‖0,Ω that results on both sides, yields

‖P′(Un)[D̃n+1 −Un+1]‖0,Ω ≤ ‖P′(Un)[D̃n+1 − QhnD̃n+1]‖0,Ω.
However, (4.1) confirms that P′(Un)[M] is coercive and bounded in the H

1(Ω)q norm
for M ∈ H1+δ, and so the above bound becomes

‖D̃n+1 −Un+1‖1,Ω ≤ cbcc‖D̃n+1 − QhnD̃n+1‖1,Ω.(4.23)

We now bound the right-hand side of (4.23) using the triangle inequality, (4.3), (4.5),
(4.18), and relation hn ≤ h0:

‖D̃n+1 − QhnD̃n+1‖1,Ω ≤ ‖D̃n+1 −D∗‖1,Ω + ‖D∗ − QhnD∗‖1,Ω
+ ‖Qhn(D∗ − D̃n+1)‖1,Ω

≤ 2‖D̃n+1 −D∗‖1,Ω + cdh
1+δ
n ‖D∗‖2+δ,Ω

≤ (4cdcqcδh1−δ
0 + cdh

δ
0‖D∗‖2+δ,Ω)hn.(4.24)

Bound (4.19) now follows from bounds (4.23) and (4.24).
Combining (4.17), (4.18), (4.19), and relation hn ≤ h0 yields

‖D∗ −Un+1‖1,Ω ≤ (2(1 + 2cbcc)cqcδh1−δ
0 + cbcc‖D∗‖2+δ,Ωhδ0)(cdhn).

Theorem 4.2 now follows by choosing h0 perhaps smaller still so that

2(1 + 2cbcc)cqcδh
1−δ
0 + cbcc‖D∗‖2+δ,Ωhδ0 ≤ 1.

Proof of Theorem 4.3. As in Theorem 4.2, we need h0 sufficiently small, but even
smaller yet to account for the fact that we do not solve the Newton steps exactly: we
need h0 so small that the error in approximating Ũn+1 (the exact discrete Newton
step) by Vn+1 keeps these iterates in Sn+1.

From Theorem 4.2, we have that if Un ∈ Sn, then Un+1 ∈ Sn+1. This result can
be tightened by choosing a smaller value for h0: choosing h0 such that, say,

2(1 + 2cbcc)cqcδh
1−δ
0 + cbcc‖D∗‖2+δ,Ωhδ0 ≤

2

3
,

means that Un ∈ Sn implies that

‖D∗ −Un+1‖1,Ω ≤ 4
3
cdhn+1 =

2

3
cdhn.(4.25)

As for Theorem 4.2, to prove that (4.10) holds for n, we may assume that it holds
for n replaced by n− 1:

‖D∗ −Vn‖1,Ω ≤ 2cdhn.(4.26)
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Letting Ũn+1 as before denote one exact discrete Newton step with initial guess Vn,
then

‖D∗ −Vn+1‖1,Ω ≤ ‖D∗ − Ũn+1‖1,Ω + ‖Ũn+1 −Vn+1‖1,Ω.(4.27)

For sufficiently small h0, we know that Vn is in Sn ⊂ Br, and, with the reduced value
of h0, the first term on the right-hand side is bounded according to (4.25):

‖D∗ − Ũn+1‖1,Ω ≤ 2
3
cdhn.(4.28)

For the second term, we use (4.12), the triangle inequality, (4.28), and (4.26):

‖Un+1 −Vn+1‖1,Ω ≤ ρν0‖Ũn+1 −Vn‖1,Ω
≤ ρν0

[
‖Ũn+1 −D∗‖1,Ω + ‖D∗ −Vn‖1,Ω

]
≤ ρν0

[
2

3
cdhn + 2cdhn

]
=
8

3
cdρ

ν0hn

≤ 1
3
cdhn,(4.29)

where ν0 is chosen so large that ρ
ν0 ≤ 1

8 . Combining bounds (4.27), (4.28), and (4.29)
then yields

‖D∗ −Vn+1‖1,Ω ≤ cdhn,

which proves Theorem 4.3.

5. Conclusion. The general theory developed here applies to virtually any set of
quasi-linear partial differential equations that can be reformulated as a first-order sys-
tem, provided it is amenable to an H1-elliptic least-squares principle. The approach
uses nested iteration based on one Newton step per level, implemented using a fixed
number of multigrid V-cycles. The theory shows that, for a sufficiently fine coarsest
grid, the method produces a final approximation to the solution of the first-order sys-
tem that is H1 accurate to the level of discretization error. Use of this general theory
is illustrated in the companion paper [17] by applying it to a first-order system for the
elliptic grid generation equations. The companion paper also reports on numerical
experiments that support the theory.
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Abstract. A new fully variational approach is studied for elliptic grid generation (EGG). It is
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S. F. McCormick, SIAM J. Numer. Anal., 41 (2003), pp. 2197–2209] that involves using Newton’s
method to linearize an appropriate equivalent first-order system, first-order system least squares
(FOSLS) to formulate and discretize the Newton step, and algebraic multigrid (AMG) to solve the
resulting matrix equation. The approach is coupled with nested iteration to provide an accurate initial
guess for finer levels using coarse-level computation. The present paper verifies the assumptions of
the companion work and confirms the overall efficiency of the scheme with numerical experiments.
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1. Introduction. A companion paper [10] develops an algorithm using Newton’s
method, first-order system least squares (FOSLS), and algebraic multigrid (AMG)
for efficient solution of general nonlinear elliptic equations. The equations are first
converted to an appropriate first-order system, and an approximate solution to the
coarsest-grid problem is then computed (by any suitable method such as Newton
iteration coupled perhaps with direct solvers, damping, or continuation). The ap-
proximation is then interpolated to the next finer level, where it is used as an initial
guess for one Newton linearization of the nonlinear problem, with a few AMG cycles
applied to the resulting matrix equation. This algorithm repeats itself until the finest
grid is processed, again by one Newton/AMG step. At each Newton step, FOSLS
is applied to the linearized system, and the resulting matrix equation is solved using
just a few V-cycles of AMG.

In the present paper, we apply this algorithm to elliptic grid generation (EGG)
equations. Grid generation is usually based on a map between a relatively simple
computational region and a possibly complicated physical region. It can be used
numerically to create a mesh for a discretization method to solve a given system of
equations posed on the physical domain. Alternatively, it can be used to transform
equations posed on the physical region into ones posed on the computational region,
where the transformed equations are then solved. If the Jacobian of the transformation
is positive throughout the computational region, the equation type is unchanged [12].
Actually, the relative minimum value of the Jacobian is important in practice because
relatively small values signal small angles between the grid lines and large errors in
approximating the equations [20].
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Our interest is in EGG using the Winslow generator [12], which allows us to
specify the boundary maps completely. Moreover, by choosing the two-dimensional
computational region to be convex, we can ensure that the Jacobian of the map is
positive, which in turn ensures that the map is one-to-one and onto and therefore does
not fold [8]. The Winslow generator tends to create smooth grids, with good aspect
ratios. The map also tends to control variations in gridline spacing and nonorthogo-
nality of the gridline intersections in the physical space. See Thompson, Warsi, and
Mastin [20] and Knupp and Steinberg [12] for background on grid generation in gen-
eral and EGG in particular. Several discretization methods for the EGG equations
together with their associated errors are discussed in [20]. In [12], the EGG equations
are derived, and several existing methods are described for solving them.

A brief description of the first-order EGG system is given in section 2. The
assumptions needed to apply the theory in [10] are verified in section 3. Section 4
discusses scaling of the functional terms used for the computations as well as numerical
results for two representative problems. The last section includes some final remarks.

2. Equations. We use standard notation for the associated spaces. Restricting
ourselves to two dimensions, we consider a generic open domain Ω ∈ R2, with Lipschitz
boundary Γ ∈ C3,1. (The superscript 1 indicates Lipschitz continuity of the functions
and their derivatives.) Suppose that m ≥ 0 and n ≥ 1 are given integers. Let (·, ·)0,Ω
denote the inner product on L2(Ω)n, ‖ · ‖0,Ω its induced norm, and Hm(Ω)n the
standard Sobolev space with norm ‖ · ‖m,Ω and seminorms | · |i,Ω (0 ≤ i ≤ m). (The
superscript n is omitted when dependence is clear by context.) For δ ∈ (0, 1), let
Hm+δ(Ω) (cf. [6]) denote the Sobolev space associated with the norm defined by

‖u‖2m+δ,Ω ≡ ‖u‖2m,Ω +
∑
|α|=m

∫
Ω

∫
Ω

|∂αu(x)− ∂αu(y)|2
|x− y|2(1+δ)

dxdy.

(This definition allows the use of the “real interpolation” method [1, 6].) Also, let

H
1
2 (Γ) denote the trace Sobolev space associated with the norm

‖u‖ 1
2 ,Γ
≡ inf{‖v‖1,Ω : v ∈ H1(Ω), trace v = u on Γ}.

We start by mapping a known convex computational region, Ω ∈ R2 with bound-
ary Γ ∈ C3,1, to a given physical region, Ωx ∈ R2 with boundary Γx ∈ C3,1. We
define map ξ : Ω̄x → Ω̄ and its inverse x : Ω̄ → Ω̄x. The coordinates in Ωx are
denoted by the vector of unknowns x = (x y)t, and those in Ω by ξ = (ξ η)t.

For the EGG smoothness or Winslow generator, we choose ξ to be harmonic:

∆ξ = 0
ξ = v(x)

in Ωx,
on Γx,

(2.1)

where v ∈ H
7
2 (Γx) is a given homeomorphism (continuous and one-to-one) from

the boundary of the physical region onto the boundary of the computational region.
(H

7
2 (Γx) is consistent with our boundary smoothness assumption, Γ ∈ C3,1.) With

Ωx bounded, the weak form of Laplace system (2.1) has one and only one solution ξ∗ in
H4(Ωx)

2 (see [11]) and, by Weyl’s lemma [22], ξ∗ ∈ C∞loc(Ωx) ≡ {ξ ∈ C∞(K) ∀ K ⊂
Ωx}.

Map ξ∗ is posed on Ωx, and thus computing an approximation to it would nom-
inally involve specifying a grid on the physical region. But specifying such a grid is
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the aim of EGG in the first place, and so this formulation is not useful. We there-
fore choose instead to solve the inverse of problem (2.1), which takes a regular grid
in Ω and maps it onto a grid in Ωx, thus achieving our objective. To this end, we
assume Ωx and Ω to be simply connected and bounded, and Ω̄ to be convex, so that
Γ and Γx are simple closed curves. Map ξ∗ is continuous and harmonic, and v is a
homeomorphism of Γx onto Γ, so Rado’s theorem (cf. [16]) implies the existence of a
unique inverse map x∗ from Ω onto Ωx. An outline of the proof is provided in [14].
It then follows that domain map ξ∗ is a diffeomorphism [8, 12], and the associated
Jacobian J∗x ≡ ξ∗xν

∗
y − ξ∗yν

∗
x is continuous and uniformly positive and bounded on Ωx.

(J0 ≤ |J∗x(x, y)| ≤ J1 for some constants J0, J1 ∈ R+ and all (x, y) ∈ Ωx.) The choice
of the space for x∗ follows from the assumptions for ξ∗, Γx, and v and is discussed
further in section 3.

The inverse map satisfies the following equations (positive Jacobian throughout
Ωx ensures that the solution of (2.1) is an invertible map):

(x2
η + y2

η)xξξ − (xξxη + yξyη)(xξη + xηξ) + (x2
ξ + y2

ξ )xηη = 0 in Ω,

(x2
η + y2

η)yξξ − (xξxη + yξyη)(yξη + yηξ) + (x2
ξ + y2

ξ )yηη = 0 in Ω,

x = w1(ξ, η) on Γ,
y = w2(ξ, η) on Γ,

(2.2)

where function w = (w1(ξ,η)
w2(ξ,η)

) is the inverse of function v = (v1(x,y)
v2(x,y)

) (i.e., x =

w(v(x))). See [12] for more detail. The inverse map x∗ exists and solves (2.2).
We assume that the Fréchet derivative of the operator in (2.2) at x∗ is one-to-one
on H2+δ

0 (Ω)2 (subscript 0 denoting homogeneous Dirichlet conditions on Γ). This is
easily verified when x∗ deviates from a constant map by a sufficiently small amount.

To apply our method, we begin by converting (2.2) to a first-order system. We
could write these equations in a simple way using the standard notation of a 2 × 2
matrix for the Jacobian matrix, but this is not convenient for the linearized equations
treated in section 3. Our notation is therefore based primarily on writing the Jacobian
matrix as a 4× 1 vector:

J =


xξ
xη
yξ
yη

 =


J11

J21

J12

J22

 .

On the other hand, at times it is useful to refer to the matrix form of the unknowns.
We therefore define the block-structured matrix J and its classical adjoint Ĵ as follows:

J =


J11 J21 0 0
J12 J22 0 0
0 0 J11 J21

0 0 J12 J22

 and Ĵ =


J22 −J21 0 0
−J12 J11 0 0
0 0 J22 −J21

0 0 −J12 J11

 .

Note that the Jacobian of the inverse transformation is given by

J ≡ xξyη − xηyξ = J11J22 − J21J12 =
√
detJ.

Also, J = 1
Jx

and ‖J‖∞,Ω = ‖ 1
Jx
‖∞,Ωx =

1
‖Jx‖∞,Ωx

> 0.
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In keeping with the vector notation, denote grad, div, and curl, respectively, by

∇ =


∂ξ 0
∂η 0
0 ∂ξ
0 ∂η

 , ∇· =
(
∂ξ ∂η 0 0
0 0 ∂ξ ∂η

)
, ∇× =

(−∂η ∂ξ 0 0
0 0 −∂η ∂ξ

)
.

The same calculus notation is used in both Ωx and Ω (e.g., ∇, ∇·, and ∇×). Differ-
entiation in Ωx is with respect to x and y, and differentiation in Ω is with respect to
ξ and η. Let the boundary unit normal vector be denoted by

n =


n1 0
n2 0
0 n1

0 n2

 .(2.3)

As in previous applications of the FOSLS methodology (cf. [7]), the natural first-
order system is often augmented with a curl equation to ensure that the system is
elliptic in the H1 product norm. The augmented system also allows for the possibility
of solving for the unknowns in two separate stages: we can solve for J alone in the
first stage, then fix J and solve for x alone in the second stage, as the following
development shows. The curl-augmented system we consider here is

J−∇x = 0 in Ω,

(ĴĴ
t∇) · J = 0 in Ω,
∇× J = 0 in Ω,

x = w on Γ,
n× J = n×∇w on Γ.

(2.4)

To be very clear about our notation, note that derivatives apply only to terms on their

right. Thus, for (ĴĴ
t∇)· in the second equation of (2.4), the matrix multiplication is

applied first, keeping the order of each entry in the resulting matrix consistent with
the multiplication. To perform the dot product, the matrix is transposed without
altering the order of the terms in each component. For example, if we write

ĴĴ
t
=


α −β 0 0
−β γ 0 0
0 0 α −β
0 0 −β γ

 ,

then

(ĴĴ
t∇) · J =

(
α∂J11

∂ξ − β ∂J11

∂η − β ∂J21

∂ξ + γ ∂J21

∂η

α∂J12

∂ξ − β ∂J12

∂η − β ∂J22

∂ξ + γ ∂J22

∂η

)
.

We consider a two-stage algorithm, but focus only on the following first stage:

(ĴĴ
t∇) · J = 0 in Ω,
∇× J = 0 in Ω,
n× J = n×∇w on Γ.

(2.5)
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Note that x can be recovered from the solution of (2.5) by a second stage that mini-
mizes ‖∇x−J‖20,Ω+‖x−w‖21

2 ,Γ
over x with the computed J held fixed. The homoge-

neous part of the first term in this functional is precisely the H1(Ω)4 seminorm of x,
so minimizing this functional leads to a simple system of decoupled Poisson equations.
The remainder of our analysis therefore focuses on (2.5).

To obtain homogeneous boundary conditions, we rewrite the equations in terms
of the perturbation D of a smooth extension of w into Ω. To this end, suppose that
some function w ∈ H4(Ω)2 is given so that its trace agrees with w on Γ. Defining
E ≡ ∇w ∈ H3(Ω)4, we thus have

n×E = n×∇w on Γ.(2.6)

(In practice, we do not really need an extension of w, but rather just an extension of
its gradient: any E ∈ H3(Ω)4 that satisfies (2.6) will do. However, if this extension is
not necessarily a gradient, then E must be included in the curl term in (2.7) below.)

In the notation of the companion paper [10], we have

P(D) ≡
(
((Ê+ D̂)(Ê+ D̂)t∇) · (E+D)

∇×D
)
= 0,(2.7)

with boundary conditions

n×D = 0.(2.8)

System (2.7)–(2.8) corresponds to the inverse Laplace problem with Dirichlet bound-
ary conditions. Existence of a solutionD∗ that yields a positive Jacobian is guaranteed
by Rado’s theorem. We show in section 3 that D∗ ∈ H3(Ω)4. One implication of this

smoothness property is that (Ê + D̂
∗
)(Ê + D̂

∗
)t is a uniformly positive definite and

bounded matrix on Ω.
From the companion paper [10], we define

H1+δ ≡ {D ∈ H1+δ(Ω)4 : n×D = 0 on Γ}.
Restricting D to H1+δ(Ω)4 ensures that ((Ê+ D̂)(Ê+ D̂)t∇) · (E+D) ∈ L2(Ω)2, as
the results of the next section show.

The first Fréchet derivative of (2.7) in direction K is

P′(D)[K] =
(
((D̂+ Ê)(D̂+ Ê)t∇) ·K+B ·K

∇×K
)

,(2.9)

where

B ·K ≡ (K̂(D̂+ Ê)t∇) · (D+E) + ((D̂+ Ê)K̂
t∇) · (D+E),

and the second Fréchet derivative in directions K and M is

P′′(D)[K,M] =

(
(M̂(D̂+ Ê)t∇) ·K+ ((D̂+ Ê)M̂

t∇) ·K
0

)

+

(
(K̂(D̂+ Ê)t∇) ·M+ ((D̂+ Ê)K̂

t∇) ·M
0

)
(2.10)

+

(
(K̂M̂

t∇) · (D+E) + (M̂K̂
t∇) · (D+E)

0

)
.
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3. The assumptions and their verification. Consider the assumptions made
in our companion paper [10]. The first is existence of a solution in H2+δ. From [16],
we know that a unique inverse map exists and that it provides a solution D∗ to (2.7).
Recall that ξ∗ ∈ H4(Ωx)

2. In Lemma 3.4 below, we show that D∗ ∈ H3. This
establishes our first assumption for the EGG equations for any δ ∈ (0, 1).

The remaining assumptions we need to establish are, for ε = 0 or δ, that P[D] ∈
Hε(Ω)4 for every D ∈ Br (Lemma 3.5), that ‖P′(D)[ · ]‖ε,Ω is H1+ε(Ω)4 equivalent
(Lemma 3.6), and that the second Fréchet derivative of P(D) is bounded for all
D ∈ Br (Lemma 3.7). (The discretization assumptions are standard.) But first we
need three results that follow directly from a corollary to the Sobolev imbedding
theorem [11], which (tailored to our needs) states that the product of a function in
Hm1(Ω) and a function inHm2(Ω) is inHm(Ω), provided that eitherm1+m2−m ≥ 1,
m1 > m, and m2 > m or m1 +m2 −m > 1, m1 ≥ m, and m2 ≥ m.

Assume that r > 0 is so small that matrix (Ê + D̂)(Ê + D̂)t is positive definite
and bounded uniformly on Ω and over D ∈ Br ≡ {D ∈ H1+δ : ‖D∗ −D‖1+δ,Ω < r}.
This assumption is possible because it is true at D = D∗ and because the matrix
is continuous as a function defined on Br. Assume that a, b, c ∈ H1+δ(Ω). For
convenience, we let ∂ denote either ∂x or ∂y. In the proof of Lemma 3.4, we also use
∂2 to denote any of the four second partial derivatives, and ∂3 for any combination
of third partial derivatives. Note that (∂a)2 could mean axay, for example.

Lemma 3.1. There exists a constant C, depending only on Ω and δ, such that

‖ab∂c‖ε,Ω ≤ C‖a‖1+δ,Ω‖b‖1+δ,Ω‖c‖1+ε,Ω.

Proof. Using the corollary to the Sobolev imbedding theorem [11] with m1 =
1 + δ, m2 = ε, and m = ε twice yields

‖ab∂c‖ε,Ω ≤ C‖a‖1+δ,Ω‖b∂c‖ε,Ω
≤ C‖a‖1+δ,Ω‖b‖1+δ,Ω‖∂c‖ε,Ω
≤ C‖a‖1+δ,Ω‖b‖1+δ,Ω‖c‖1+ε,Ω.

Lemma 3.2. There exists a constant C, depending only on Ω and δ, such that

‖ab∂c‖ε,Ω ≤ C‖a‖1+δ,Ω‖b‖1+ε,Ω‖c‖1+δ,Ω.

Proof. Using the corollary to the Sobolev imbedding theorem [11] first with
m1 = 1 + δ, m2 = ε, and m = ε, then with m1 = 1 + ε, m2 = δ, and m = ε yields

‖ab∂c‖ε,Ω ≤ C‖a‖1+δ,Ω‖b∂c‖ε,Ω
≤ C‖a‖1+δ,Ω‖b‖1+ε,Ω‖∂c‖δ,Ω
≤ C‖a‖1+δ,Ω‖b‖1+ε,Ω‖c‖1+δ,Ω.

Lemma 3.3. Assume that a, b ∈ H2+δ(Ω) and k ∈ H1+δ(Ω). Then there exists a
constant C, depending only on Ω and δ, such that

‖ak∂b‖1,Ω ≤ C‖a‖1+δ,Ω‖b‖2+δ,Ω‖k‖1,Ω.
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Proof.

‖ak∂b‖1,Ω ≤ C‖a‖1+δ,Ω‖k∂b‖1,Ω
≤ C‖a‖1+δ,Ω‖∂b‖1+δ,Ω‖k‖1,Ω
≤ C‖a‖1+δ,Ω‖b‖2+δ,Ω‖k‖1,Ω,

where we have used the corollary to the Sobolev imbedding theorem from [11] with
m1 = 1 + δ, m2 = 1, and m = 1 twice.

Lemma 3.4. The solution D∗ of (2.7) is in H3(Ω)4.
Proof. We have

J∗ ≡ E+D∗ =


J∗11
J∗21
J∗12
J∗22

 =


x∗ξ
x∗η
y∗ξ
y∗η

 =
1

J∗x


η∗y
−ξ∗y
−η∗x
ξ∗x

 ,

where E ∈ H3(Ωx)
4 and ξ∗ ∈ H4(Ωx)

2. We now show that J∗ ∈ H3(Ω)4, from which
follows the result that D∗ ∈ H3(Ω)4.

Since ξ∗ ∈ H4(Ωx)
2, then ξ∗x, ξ

∗
y , η
∗
x, η
∗
y ∈ H3(Ωx). From the corollary to the

Sobolev imbedding theorem (with m1 = 3, m2 = 3, and m = 3), we must have
J∗x = ξ∗xη

∗
y − ξ∗yη

∗
x ∈ H3(Ωx). Recall from section 2 that J∗ is continuous and

uniformly positive and bounded: J0 ≤ |J∗x(x, y)| ≤ J1 for some constants J0, J1 ∈ R+

and all (x, y) ∈ Ωx.
Dropping the superscript ∗ for convenience, consider J11. (The other entries are

treated similarly.) Using the corollary to the Sobolev imbedding theorem [11] with
m1 = 3, m2 = 3, and m = 3, we get

‖J11‖3,Ω =

∥∥∥∥ 1Jx
ηy

∥∥∥∥
3,Ωx

≤ C

∥∥∥∥ 1Jx

∥∥∥∥
3,Ωx

‖ηy‖3,Ωx
.

Therefore, we need only show that 1
Jx
∈ H3. But∥∥∥∥ 1Jx

∥∥∥∥2

3,Ωx

=
∑
i≤3

∥∥∥∥∂i 1Jx

∥∥∥∥2

0,Ωx

.

We consider each order separately. By Theorem 3.2 in [21], for any a ∈ C0(Ωx) and
b ∈ L2(Ωx), we have

‖ab‖0,Ωx ≤ ‖a‖∞,Ωx‖b‖0,Ωx .(3.1)

For the zeroth-order term, using (3.1) yields∥∥∥∥ 1Jx

∥∥∥∥
0,Ωx

≤
∥∥∥∥ 1Jx

∥∥∥∥
∞,Ωx

‖1‖0,Ωx ≤
1

J0
‖1‖0,Ωx .

For the first-order term, we use (3.1) to get∥∥∥∥∂ 1

Jx

∥∥∥∥
0,Ωx

=

∥∥∥∥−1J2
x

∂Jx

∥∥∥∥
0,Ωx

≤ 1

J2
0

‖∂Jx‖0,Ωx
≤ 1

J2
0

‖Jx‖1,Ωx
.
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For the second-order term, we use the triangle inequality, (3.1), and the corollary
to the Sobolev imbedding theorem with m1 = m2 = 1 and m = 0 to get∥∥∥∥∂2 1

Jx

∥∥∥∥
0,Ωx

=

∥∥∥∥ 2J3
x

(∂Jx)
2 +
−1
J2
x

∂2Jx

∥∥∥∥
0,Ωx

≤
∥∥∥∥ 2J3

x

(∂Jx)
2

∥∥∥∥
0,Ωx

+

∥∥∥∥ 1J2
x

∂2Jx

∥∥∥∥
0,Ωx

≤ 2

J3
0

∥∥(∂Jx)
2
∥∥

0,Ωx
+

1

J2
0

∥∥∂2Jx

∥∥
0,Ωx

≤ C

(
2

J3
0

‖∂Jx‖21,Ωx
+

1

J2
0

‖Jx‖2,Ωx

)
≤ C

(
2

J3
0

‖Jx‖22,Ωx
+

1

J2
0

‖Jx‖2,Ωx

)
.

For the third-order term, we use the triangle inequality, (3.1), and the Corollary
to the Sobolev imbedding theorem once with m1 = 1, m2 =

3
4 , and m = 0, once with

m1 = m2 = 1 and m = 0, and once with m1 = m2 = 1 and m = 3
4 to get∥∥∥∥∂3 1

Jx

∥∥∥∥
0,Ωx

=

∥∥∥∥−6J4
x

(∂Jx)
3 +

6

J3
x

∂Jx∂
2Jx +

−1
J2
x

∂3Jx

∥∥∥∥
0,Ωx

≤
∥∥∥∥ 6J4

x

(∂Jx)
3

∥∥∥∥
0,Ωx

+

∥∥∥∥ 6J3
x

∂Jx∂
2Jx

∥∥∥∥
0,Ωx

+

∥∥∥∥ 1J2
x

∂3Jx

∥∥∥∥
0,Ωx

≤ 6

J4
0

∥∥(∂Jx)
3
∥∥

0,Ωx
+

6

J3
0

∥∥∂Jx∂
2Jx

∥∥
0,Ωx

+
1

J2
0

∥∥∂3Jx

∥∥
0,Ωx

≤ C

(
6

J4
0

‖∂Jx‖31,Ωx
+

6

J3
0

‖∂Jx‖1,Ωx

∥∥∂2Jx

∥∥
1,Ωx

+
1

J2
0

‖Jx‖3,Ωx

)
≤ C

(
6

J4
0

‖Jx‖32,Ωx
+

6

J3
0

‖Jx‖2,Ωx
‖Jx‖3,Ωx

+
1

J2
0

‖Jx‖3,Ωx

)
.

The result follows from these bounds.
Lemma 3.5. P[D] ∈ Hε(Ω)p for every D ∈ Br: there exists a constant C,

depending only on D∗, E, r, Ω, and δ, such that

‖P(D)‖ε,Ω ≤ C ∀ D ∈ Br.(3.2)

Proof. The products in (2.7) are of the form treated in Lemma 3.1. In fact, there
exists a constant C, depending only on Ω and δ, such that

‖P(D)‖ε,Ω ≤ C(‖D+E‖21+δ,Ω‖D+E‖1+ε,Ω + ‖D‖1+ε,Ω),(3.3)

and so (3.2) follows because D ∈ Br.
Next we establish uniform coercivity and continuity of P′ in a neighborhood of

D∗. This result needs the assumption that P′(D∗)[ · ] is one-to-one on H1+δ, which
is a consequence of an analogous assumption on the original EGG equations.

Lemma 3.6 (ellipticity property). ‖P′(D)[ · ]‖ε,Ω is H1+ε(Ω)4 equivalent: there
exist constants cc and cb, depending only on D∗,E, r,Ω, and δ, such that

1

cc
‖K‖1+ε,Ω ≤ ‖P′(D)[K]‖ε,Ω ≤ cb‖K‖1+ε,Ω ∀ K ∈ H1+ε.(3.4)
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Proof. The products in (2.9) are of the form treated in Lemmas 3.1 and 3.2. In
fact, there exists a constant C, depending only on Ω and δ, such that

‖P′(D)[K]‖ε,Ω ≤ C(‖D+E‖21+δ,Ω‖K‖1+ε,Ω + ‖K‖1+ε,Ω).(3.5)

Proof of the lower bound follows from Theorem 10.5 of [2], as we now show.
We first need to prove Hm+1 boundedness and coercivity for P′(D∗)[K]: there exist
constants c1 and c3, depending only on D

∗,E,m, and Ω, such that

1

c1
‖K‖m+1,Ω ≤ ‖P′(D∗)[K]‖m,Ω ≤ c3‖K‖m+1,Ω ∀ K ∈ Hm+1,(3.6)

for any m ∈ [0, 1]. The upper bound is simply an application of the corollary to
the Sobolev imbedding theorem similar to Lemmas 3.1 and 3.2. Consider the lower
bound. It would be a simple matter to just assume D∗ ∈ H3+δ and then, because the
coefficients would be sufficiently smooth, apply the theory of [2] (herafter referred to
as ADN2 theory) for both m = 0 and m = 1. Instead, we just have D∗ ∈ H2+δ, so
while the higher-order coefficients are in C1, the lower-order coefficients are only in
C0. This means that we need more care.

First consider m = 0. What follows for this case is a straightforward application
of ADN2 theory to the entire system because all of the coefficients are sufficiently
smooth. Recall that Ω is a bounded open subset of R2 with C3,1 boundary Γ. We
write the system as

LK = f in Ω,
BK = g on Γ,

(3.7)

where L ≡ P′(D∗) and B = n×. (Recall that n is the outward unit normal on Γ
(2.3).) For convenience, we write the coefficients using J∗ = D∗ + E and drop the ∗

from the components. Note that L = L1 + L2 and lij = l′ij + l′′ij , where

L1 = (l′ij(ξ, ∂)) =


α∂ξ − β∂η −β∂ξ + γ∂η 0 0

0 0 α∂ξ − β∂η −β∂ξ + γ∂η
−∂η ∂ξ 0 0
0 0 −∂η ∂ξ

 ,

L2 = (l′′ij(ξ, ∂))

=


2J11J21,η − J21(J11,η + J21,ξ) 2J11J22,η − J21(J12,η + J22,ξ) 0 0
2J21J11,ξ − J11(J11,η + J21,ξ) 2J21J12,ξ − J11(J12,η + J22,ξ) 0 0
2J12J21,η − J22(J11,η + J21,ξ) 2J12J22,η − J22(J12,η + J22,ξ) 0 0
2J22J11,ξ − J12(J11,η + J21,ξ) 2J22J12,ξ − J12(J12,η + J22,ξ) 0 0


t

,

α = J2
21 + J2

22, β = J11J21 + J12J22, γ = J2
11 + J2

12.

Note that

B = (bij(ξ, ∂)) =

(−n2 n1 0 0
0 0 −n2 n1

)
.(3.8)

In ADN2 theory, three types of integer weights are used to determine the leading
order terms for boundary value problem (3.7). Weight si ≤ 0 refers to the ith equation,
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weight tj ≥ 0 to the jth dependent variable, and weight rk to the kth boundary
condition. These weights are chosen as small as possible but so that

deg lij(ξ, ∂) ≤ si + tj , deg bkj(ξ, ∂) ≤ rk + tj , i, j = 1, 2, 3, 4, k = 1, 2,

where deg refers to the order of the derivatives. Our weights are

si = 0, tj = 1, rk = −1, i, j = 1, 2, 3, 4, k = 1, 2.

The leading order part of L consists of the elements lij for which deg lij(ξ, ∂) =
si + tj = 1. Therefore, L1 is the leading order (in this case, first-order) part. The
leading order part of B consists of elements bkj for which deg bkj(ξ, ∂) = rk + tj = 0.
Therefore, the leading order (in this case, zeroth-order) part of B is B itself.

We must show that L1 satisfies two ADN2 conditions: the supplementary con-
dition on its determinant and uniform ellipticity. (L1 will then automatically be
elliptic.) ADN2 also requires that the system of equations and boundary conditions
be well posed. This means that L1 and B, when combined, must satisfy the comple-
menting boundary condition. Let L denote the determinant of L1:

L(ξ, ∂) = det(l′ij) = −(α∂2
ξ − 2β∂ξ∂η + γ∂2

η)
2.

Since J > 0 (see section 2), then

β2 − αγ = (xξxη + yξyη)
2 − (x2

η + y2
η)(x

2
ξ + y2

ξ )

= −(xξyη − yξxη)
2 = −J2 < 0.

(3.9)

Let d = (d e)t and p = (p q)t be any two linearly independent vectors. To aid
clarity of the following discussion, we first define some quantities:

A = αdp− β(pe+ dq) + γeq,

B = √DC −A2 = J |pe− dq|,
C = αd2 − 2βde+ γe2,
D = αp2 − 2βpq + γq2.

Note that B > 0 since J > 0 and linear independence of p and d implies |pe−dq| > 0.
The supplementary condition on L requires the equation

L (ξ,d+ τp) = −{C + 2τA+ τ2D}2 = 0(3.10)

to have exactly two roots in τ with positive imaginary part. Polynomial (3.10) has
two double roots (ι =

√−1),

τ =
−A± ιB
D ,

which form two complex conjugate pairs. Thus, (3.10) does indeed have exactly two
roots with positive imaginary part (one such double root).

To satisfy uniform ellipticity, we need to show that

1

C
‖d‖4 ≤ |L (ξ,d)| ≤ C‖d‖4,(3.11)

with ‖d‖ = √d2 + e2, for all vectors d �= 0 and points ξ in Ω.
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To prove the left bound in (3.11), let ρ = |β|√
αγ < 1 (see (3.9)). Then

|L (ξ,d)| = (αd2 − 2βde+ γe2)2

≥ (αd2 − 2|β||d||e|+ γe2)2

= (αd2 − 2ρ√αγ|d||e|+ γe2)2

= ((1− ρ)(αd2 + γe2) + ρ(
√
αd−√γe)2)2

≥ ((1− ρ)(αd2 + γe2))2

≥ min((1− ρ)2α2, (1− ρ)2γ2)(d2 + e2)2

= min((1− ρ)2α2, (1− ρ)2γ2)‖d‖4.
To prove the right bound in (3.11), note that Hölder’s inequality implies that

|L (ξ,d)| ≤ (αd2 + 2|β||d||e|+ γe2)2

≤ (αd2 + |β|(d2 + e2) + γe2)2

≤ max((α+ |β|)2, (γ + |β|)2)(d2 + e2)2

= max((α+ |β|)2, (γ + |β|)2)‖d‖4.
We then establish (3.11) by choosing

C = max

{
1

(1− ρ)2α2
,

1

(1− ρ)2γ2
, (α+ |β|)2, (γ + |β|)2

}
.

This shows that operator L satisfies the two conditions of ADN2. We now prove
that the problem is well posed by showing that L1 and B satisfy the complementing
boundary condition. This condition involves comparing two polynomials. We consider
a point on the boundary with normal d = (d e)t and tangent p = (p q)t vectors.
The first polynomial is formed from the roots of (3.10) with positive imaginary parts:

M+(ξ,d, τ) =

[
τ +
A− ιB
D

]2
.(3.12)

The second polynomial is formed from the leading order elements of L and B:

2∑
k=1

ak(BL)km,(3.13)

where

(BL)km =

4∑
j=1

bkj(ξ,d+ τp)ljm(ξ,d+ τp),

and ljm(ξ,d+ τp) are the elements of the (classical) adjoint (l′ij l
jm = δmi L, i, j,m =

1, 2, 3, 4) of l′ij(ξ,d+ τp) and bkj is defined in (3.8).
The polynomials for (3.13) are

(
2∑

k=1

ak(BL)km

)
= D

[
τ +
A+ ιB
D

] [
τ +
A− ιB
D

]
a1(pe− qd)
a2(pe− qd)
a1(A+ τD)
a2(A+ τD)


t

.(3.14)

Comparing polynomials (3.12) and (3.14) and noting that B > 0, we have that (3.12)
is not a factor of (3.14). Thus, the complementing boundary condition is satisfied.
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Theorem 10.5 from [2] implies that, for lij ∈ Cm(Ω), bkj ∈ Cm+1(Γ), there exists
a constant c1 that depends only on D∗,E, r,Ω, and δ such that, if Kj ∈ H1(Ω),
1 ≤ j ≤ 4, solves (3.7) and is unique, then Kj ∈ Hm+1(Ω) and

‖Kj‖m+1,Ω ≤ c1
4

[
4∑

i=1

‖fi‖m,Ω +

2∑
i=1

‖gi‖m+ 1
2 ,Γ

]
,

where fi and gi are the components of f and g, respectively, in (3.7). The coefficients
of L are at least in H1+δ(Ω) and C0(Ω). For the boundary conditions, we have
B = n× and Γ ∈ C3,1, and thus we get bkj ∈ C2(Γ). The boundary conditions are
homogeneous, and so we can drop the boundary term in the inequality. We therefore
have

‖K‖1,Ω ≤ c1‖L(D∗)[K]‖0,Ω ∀ K ∈ H1(Ω)
4.(3.15)

Now considerm = 1. We cannot simply apply ADN2 to the whole system because
the coefficients are not sufficiently smooth. Instead, we split the operator according
to L = L1 + L2 and restrict our ADN2 result to reduced system

L1K = f in Ω,
BK = g on Γ.

Operator L1 satisfies the ADN2 conditions (as illustrated for case m = 0), and thus

‖K‖2,Ω ≤ c1‖L1(D
∗)[K]‖1,Ω ∀ K ∈ H2.(3.16)

The coefficients of L1 are in H2+δ(Ω) and C1(Ω). For the boundary conditions, we
have B = n× and Γ ∈ C3,1, and thus we get bkj ∈ C2(Γ). The boundary conditions
are homogeneous, and so we can drop the boundary term in the inequality.

We use Lemma 3.3 to obtain

‖L2(D
∗)[K]‖1,Ω ≤ c2‖K‖1,Ω ∀ K ∈ H2.(3.17)

Note that c2 depends continuously on supD∈Br
‖D∗ + E‖2+δ,Ω, and thus it depends

on D∗,E, r, Ω, and δ.
Combining (3.16) and (3.17) yields

‖K‖2,Ω ≤ C(‖P′(D∗)[K]‖1,Ω + ‖K‖1,Ω) ∀ K ∈ H2.(3.18)

This is a G̊ardings inequality (cf. [13, 19]), which allows us now to prove that

1

cc
‖K‖2,Ω ≤ ‖P′(D∗)[K]‖1,Ω ∀ K ∈ H2.(3.19)

To this end, assume that (3.19) is not true. Then there exists a sequenceKj ∈ H2

such that

‖Kj‖2,Ω = 1(3.20)

and

‖P′(D∗)[Kj ]‖1,Ω =
1

j
, j = 1, 2 . . . .(3.21)
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Now, because H2(Ω) is compactly imbedded in H1(Ω) (cf. the Rellich selection the-

orem [5]), then (3.20) implies that there exists a limit K̂ ∈ H2 of a subsequence

Kjk → K̂ in the H1(Ω) norm. Combining this with (3.18) and (3.21), we know that
Kjk must also be a Cauchy sequence in the H2(Ω) norm with some limit K̄. However,
from the upper bound in (3.4), we have

limjk→∞ ‖P′(D∗)[Kjk ]−P′(D∗)[K̄]‖1,Ω = limjk→∞ ‖P′(D∗)[Kjk − K̄]‖1,Ω
≤ limjk→∞ ‖Kjk − K̄‖2,Ω = 0.

From (3.21), we thus obtain

‖P′(D∗)[K̄]‖1,Ω ≤ lim
jk→∞

{‖P′(D∗)[Kjk ]−P′(D∗)[K̄]‖1,Ω + ‖P′(D∗)[Kjk ]‖1,Ω} = 0.

However, P′(D∗)[ · ] is one-to-one. Hence, P′(D∗)[K̄] = 0 implies that K̄ = 0, which
in turn implies that ‖K̄‖1,Ω = 0, contradicting (3.20). Thus, (3.4) and the lemma are
established for m = 1. We have thus established (3.6) for both m = 0 and m = 1.

For the general case ofm ∈ [0, 1], bound (3.6) follows from the results in [17, 3, 18]
and the following proof of elliptic regularity of the formal adjoint problem.

Consider boundary value problem (3.7), for K ∈ Hm+1 and LK ∈ Vm = {D ∈
Hm(Ω)4}. From [2], we know that LK = f is onto. This system has normal boundary
conditions, and hence, the formal adjoint problem has normal boundary conditions of
the same type [17]. We thus consider

L∗M = f1 in Ω,
B∗M = 0 on Γ,

for M ∈ (Vm)
∗ = {M ∈ H−m(Ω)4 : B∗M = 0 on Γ} and L∗M ∈ (Hm+1)

∗. The
system is both Petrovskii elliptic, because s1 = s2 = s3 = s4 = 0, and homogeneous
elliptic, because t1 = t2 = t3 = t4; cf. [17]. Thus, the adjoint system is elliptic [17]
and has a similar ellipticity result in the dual space: for all M ∈ (Vm)

∗ we have

‖M‖−m,Ω = sup
V �=0∈Vm

(M,V)

‖V‖m,Ω

= sup
K �=0∈Hm+1

(M,LK)

‖LK‖m,Ω

≤ c1 sup
K �=0∈Hm+1

(L∗M,K)

‖K‖m+1,Ω

= c1‖L∗M‖−(m+1),Ω

and

‖M‖−m,Ω = sup
V �=0∈Vm

(M,V)

‖V‖m,Ω

= sup
K �=0∈Hm+1

(M,LK)

‖LK‖m,Ω

≥ 1

c3
sup

K �=0∈Hm+1

(L∗M,K)

‖K‖m+1,Ω

=
1

c3
‖L∗M‖−(m+1),Ω.
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The result for all m ∈ [0, 1] now follows from interpolation [15], use of local maps,
and a partition of unity. (If we had assumed D∗ ∈ C∞(Ω)4 and Γ ∈ C∞, then the
ellipticity result would hold for all real m; we only need this result for m ∈ [0, 1], and
so we are able to reduce the continuity requirements of [15], as we have.)

We now generalize the result for D ∈ Br. Using a Taylor expansion, the triangle
inequality, Lemmas 3.5 and 3.7, and (3.6), we have (for ε = 0 or δ)

‖P′(D)[K]‖ε,Ω = ‖P′(D∗)[K] +P′′(D̃)[K,D∗ −D]‖ε,Ω
≥ ‖P′(D∗)[K]‖ε,Ω − ‖P′′(D̃)[K,D∗ −D]‖ε,Ω
≥ c1‖K‖1+ε,Ω − c4‖D̃+E‖1+δ,Ω‖K‖1+ε,Ω‖D∗ −D‖1+δ,Ω

≥ ‖K‖1+ε,Ω(c1 − c4r(‖D∗‖1+δ,Ω + ‖E‖1+δ,Ω + r))
≥ 1

cc
‖K‖1+ε,Ω

(3.22)

for sufficiently small r. The lemma now follows.
Lemma 3.7. The second Fréchet derivative of P(D) is bounded for all D ∈ Br:

for every D ∈ Br there exists a constant c2, depending only on D∗, E, r, Ω, and δ,
such that

‖P′′(D)[K,K]‖ε,Ω ≤ c2‖K‖1+δ,Ω‖K‖1+ε,Ω ∀ K ∈ H1+ε(Ω).(3.23)

Here, P′′(D)[K,K] denotes the second Fréchet derivative of P(Dn) with respect to
Dn in directions K and K.

Proof. The products in (2.10) are of the form treated in Lemmas 3.1 and 3.2. In
fact, there exists a constant C, depending only on Ω and δ, such that

‖P′′(D)[K,K]‖ε,Ω ≤ C‖D+E‖1+δ,Ω‖K‖1+δ,Ω‖K‖1+ε,Ω ∀ K ∈ H1+δ(Ω).

The lemma now follows.

4. Numerical results. Here we validate our algorithm with numerical tests.
Define Hh as the space of continuous piecewise bilinear functions corresponding to
a uniform grid. Note that Hh ⊂ H1+δ(Ω) for any δ < 1

2 . The functional to be
minimized is

G(xn+1,Jn+1;xn,Jn,w)
= ε‖Jn+1 −∇xn+1‖20,Ω
+ (1− ε)

∥∥∥ 1
Jn

[
(ĴnĴ

t
n∇)·Jn+1+(Ĵn+1Ĵ

t
n∇)·Jn+(ĴnĴtn+1∇)·Jn−2(ĴnĴtn∇)·Jn

]∥∥∥2

0,Ω

+ (1− ε)‖∇ × Jn+1‖20,Ω + ε‖xn+1 −w‖21
2 ,Γ

+ (1− ε)‖n× Jn+1 − n×∇w‖21
2 ,Γ

.

(4.1)
There are three aspects of (4.1) worth noting. The first is that we are solving for

xn+1,Jn+1 and not Dn+1 as we did for the theory. While it was more convenient in
the theory to incorporate the boundary conditions into the equations, here we enforce
them, so that the last two terms in (4.1) vanish. A second aspect is the interstage
scale factor ε. In [10], we discussed the two-stage algorithm, where, in the first stage,
we set ε = 0 and solve for Jn+1 and, in the second, we set ε = 1 and solve for xn+1.
The second stage amounts to a simple system of decoupled Poisson equations. For
ε ∈ (0, 1), minimizing (4.1) amounts to a single-stage algorithm. In section 4.1, we
compare performance of the first stage of the two-stage algorithm with the single-
stage algorithm for the pinched square (Figure 4.1, below). For the single stage, we
set ε = 1

2 and multiply the entire functional by 2 for fair comparison. Results for both
algorithms are similar, and thus the remaining tests are for the single-stage algorithm.
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The third aspect of (4.1) to notice is the presence of the equation scale factor 1
Jn

in
the second functional term. The EGG equations are derived from the well-understood
Laplace equations, so we exploit this correspondence now to guide the choice of scales.
First note that the augmented first stage of the first-order system [7] associated with
the Laplace equations (2.1) that define ξ is (ignoring boundary conditions and with
Ψ = ∇ξ) (∇ ·Ψ

∇×Ψ
)
=

(
0
0

)
.

Transforming this system to that for the gradient J of the inverse map (without
cancelling terms) yields

1

J2
Ĵ

(
1
J [(ĴĴ

t∇) · J]
∇× J

)
=

(
0
0

)
.(4.2)

The key in scaling this new system is to understand the relative balance between its
two equations. Thus, 1

J2 Ĵ can be dropped in deference to the relative scale reflected
in the 1

J term in the first equation of (4.2). To mimic the Laplace scaling for the EGG
system, we thus choose to scale the second term in (4.1) by 1

J . This expresses the
scaling we use in the numerical experiments. To improve performance in practice, we
use 1

J just to scale the norm; it is not involved in the linearization process. (Presence of
the scale factor 1

J in this way does not affect the theoretical results, so it was omitted in
the analysis to simplify the calculations.) The scaling effect is demonstrated in section
4.3, where we study the convergence factors for increasingly distorted maps for the
pinched square using both unscaled and scaled functionals. In both sections 4.1 and
4.2, we measure actual errors as well as functional values and validate the equivalence
of the square root of the functional and theH1 errors as proved theoretically in section
3.

In section 4.2, we first test the performance of AMG on the one-sided pinched
square with grid size h = 1

64 . We compare the performance of V(q,s)-cycles with
q+ s ≤ 3, where q is the number of relaxation steps before coarse grid correction and
s is the number after. We use V(1,1)-cycles for the rest of our tests because these
initial results suggest that it is one of the most efficient of these choices. We then test
dependence of the linear solver on grid size. We study how the convergence factor for
linear solves suffers with increasingly large perturbations from the identity map for
several different grid sizes.

The method we use to obtain an approximation to D∗ (or J∗) is discussed in
some detail in [10]. Here we give a brief overview. We use a nested sequence of
m+1 rectangular grids with continuous piecewise bilinear function subspaces of H1+δ

denoted by Hh0 ⊂ Hh1 ⊂ · · · ⊂ Hhm ⊂ H1+δ, where hn = 2−nh0, 0 ≤ n ≤ m. Let
V0 denote the initial guess in Hh0 obtained by solving the problem on the coarsest
subspace, Hh0 . In practice, we simply iterate with a discrete Newton iteration until
the error in the approximation is below discretization error. The result, V1, becomes
the initial guess for level h1, where the process continues. In general, the initial guess
for AMG on level hn comes from the final AMG approximation on level hn−1: Vn.

In sections 4.2 and 4.4, we study performance of the NI algorithm. Here we use
transfinite interpolation (TFI), which is analogous to linear interpolation, to form the
initial guess. The basic principle is to add the linear interpolant between the north and
south boundary maps to the linear interpolant between the east and west boundary
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Fig. 4.1. Pinched square with a = 1.

maps, then subtract the interpolant between the four corners. The computational
domain is the unit square. For boundary conditions x = w(ξ), we get

x = ηwn(ξ) +(1− η)ws(ξ) + ξwe(η) + (1− ξ)ww(η)
− [ξηwa + ξ(1− η)wb + (1− ξ)(1− η)wc + (1− ξ)ηwd] ,

where we define wn, ws, we, and ww as the boundary maps on the north, south,
east, and west boundaries, respectively, and wa, wb, wc, and wd as the values on
the northeast, southeast, southwest, and northwest corners, respectively. The initial
condition we use for J is the Jacobian of this map.

On the north and south boundaries, boundary conditions are needed for x, y, J11,
and J12. On the east and west boundaries, boundary conditions are needed for
x, y, J21, and J22. Boundary conditions are imposed on the finite element space.

We first establish the similarity between the first stage of the two-stage algorithm
(ε = 0) and the single-stage algorithm (ε = 1

2 and the functional in (4.1) multiplied by
2). Second, we test the effect of different numbers of relaxation sweeps for multigrid
V-cycles to suggest a good choice for the remainder of the tests. Third, we study
performance of the AMG solver for increasingly distorted grids for the pinched square.
Finally, we study the algorithm on the arch. Further results can be found in [9].

4.1. First-stage and single-stage algorithms. The one-sided pinched square
map has the following exact solution:

x = ξ, y =
η

aξ + 1
,

J11 = 1, J21 = 0,

J12 =
aη

(aξ + 1)2
, J22 =

1

aξ + 1
,

(4.3)

where a ∈ [0, 1]. The physical domain is a square for a = 0, with the pinch increasing
as a increases. See Figure 4.1.

To test performance of the first-stage and single-stage algorithms for standard
Newton iterations and NI on the pinched square with a = 1.0, we add a varying
amount of small error at each grid point (except for those on the boundary) to TFI
(the exact solution in this case) to form the initial guess:

x = ξ + g sin(bξ + cη), y =
η

ξ + 1
+ g sin(dξ + eη),

J11 = 1 + g sin(bξ + cη), J21 = g sin(bξ + cη),

J12 =
η

(ξ + 1)2
+ g sin(dξ + eη), J22 =

1

ξ + 1
+ g sin(dξ + eη),
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Table 4.1
Asymptotic convergence factors for V(1, 1)-cycles, with varying grid size and Newton iterations.

Newton 1
16

1
32

1
64

1
128

1 0.96 0.93 0.90 0.95
2 0.49 0.85 0.56 0.50
3 0.24 0.47 0.41 0.40
4 0.25 0.33 0.40 0.43
5 0.25 0.32 0.40 0.41
6 0.25 0.33 0.40 0.44
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Fig. 4.2. First-stage functional. Newton convergence, using standard Newton iterations with
imposed boundary conditions, in both functional (left) and H1 error (right) measures. Differences
between the values at the current and sixth Newton steps are plotted.

where

g = fξη(1− ξ)(1− η),
b = 12967493.946193764, c = 491843027.481264509,
d = 184625498.4710938, e = 174365204.5761938,

with f = 2 for grid h = 1
128 , f = 4 for grids h = 1

64 and h = 1
32 , f = 7 for grid h = 1

16 ,
and f = 24 for NI (with coarsest grid h = 1

4 ). Note that the exact solutions for x,
J11, and J21 are in the finite-dimensional subspaces.

Consider the first-stage one-sided pinched square. (Recall that there are no x or
y terms.) Table 4.1 depicts asymptotic convergence factors for the AMG solver. Note
the poor performance shown in the early Newton steps. This degradation probably
occurs because the functional is suffering from loss of elliptic character due to the crude
initial guess inheriting poor values for the Jacobian map. Nested iteration tends to
ameliorate this potential difficulty, so we may focus on later Newton iterations, where
these results suggest that two V (1, 1)-cycles yield overall convergence factors of about
0.2. We use two V (1, 1)-cycles in the tests that follow.

Figure 4.2 depicts Newton convergence results for grids h = { 1
16 ,

1
32 ,

1
64 ,

1
128}. We

study performance in terms of both the functional error measure (i.e., square root of
the functional) and the relative H1 errors in J,

eJ ≡ ‖J∗ − Jn‖1,Ω√‖J∗‖1,Ω‖Jn‖1,Ω .

The graphs show the differences between the values at the current and sixth Newton
steps. We are interested in the functional measure because it is equivalent to the H1
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Fig. 4.3. First-stage functional. Functional and H1 error measures for standard Newton
iterations and NI with imposed boundary conditions. One work unit is the equivalent of one step on
the h = 1

128
grid using two V(1, 1)-cycles.

norm of the errors, as we established theoretically in [10] and as these graphs suggest.
The left-hand graph contains the functional values, and the right-hand graph contains
the errors. Convergence appears to be approximately linear, which is consistent with
the theoretical result. The factors also appear to be bounded independent of grid size.

Figure 4.3 compares standard Newton and NI results. We again report on the
functional and relative H1 error measures in J. For proper comparison of cost, we
now base the data on a work unit, defined to be the equivalent of one Newton step
on the h = 1

128 grid. (One Newton step has two V(1,1)-cycles.) We thus count one
Newton step on the h = 1

64 grid as 1
4 of a work unit, 1

16 on the next coarser grid,
and so on. After about the sixth standard Newton step for each of the grid sizes,
the change in the functional value (and the H1 error) at each iteration is very small
relative to the functional value itself. The exact solution is only approximated by the
finite-dimensional subspace. Thus, while the functional value for the exact solution
is zero, the minimum on the finite-dimensional subspace is not. With more Newton
steps, we can thus get as close as we choose to the finite-dimensional approximation
of the exact solution, but the decrease in the functional and, hence, in the error, stalls
because discretization error is reached. The ratios of the functional and the relative
H1 error measures in J are about 1.16 near the solution for grids h = { 1

16 ,
1
32 ,

1
64}

and 1.14 for grid h = 1
128 . After the third Newton step, this ratio is a constant for all

grid sizes, which affirms H1 equivalence.
Next we study performance of the single-stage algorithm, with the same map

and initial guess. Again, we report on functional and relative H1 error measures in J.
Figure 4.4 contains graphs of differences between these values at the current and sixth
Newton steps. Consistent with the theory, convergence using this measure appears to
be approximately linear, with factors bounded independent of grid size.

Figure 4.5 compares standard Newton iterations with NI based on work units as
defined above. Behavior of the errors for the single stage is essentially the same as
for the first stage. The ratios of functional measures of the single stage to the first
stage varies between 0.87 and 1.12, fixing at 1.09 after Newton step 4 for each grid.
For NI, the ratio is 1.09 for all the finer grids.

The relative error in the computed solution does not appear to vary with grid size
because the variation is small compared to the error. Again, on any finite-dimensional
subspace, we cannot expect to reduce the error to zero because of discretization error.



2228 CODD, MANTEUFFEL, MCCORMICK, AND RUGE

0 1 2 3 4 5
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
 2

Newton Steps

(F
un

ct
io

na
l)1/

2  -
 (

N
6 F

un
ct

io
na

l)1/
2

1/128 Grid
1/64 Grid 
1/32 Grid 
1/16 Grid 

0 1 2 3 4 5
10

- 8

10
- 7

10
- 6

10
- 5

10
- 4 

10
- 3

10
- 2

10
- 1

10
0

10
1

10
 2

Newton Steps

H
1  r

el
at

iv
e 

er
ro

rs
 (

e j)

1/128 Grid
1/64 Grid 
1/32 Grid 
1/16 Grid 

Fig. 4.4. Newton convergence, using standard Newton iterations with imposed boundary condi-
tions, in both functional (left) and H1 error (right) measures. Differences between the value at the
current and sixth Newton steps are plotted.
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Fig. 4.5. Newton versus NI results, with imposed boundary conditions, in both functional (left)
and H1 error (right) measures.

The ratios of the functional andH1 error measures in J are about 1.3 near the solution
for grids h = { 1

16 ,
1
32 ,

1
64} and 1.2 for grid h = 1

128 . After the third Newton step, this
ratio is a constant for all grid sizes, which affirms H1 equivalence. We need at least 4
standard Newton steps to reduce the functional to about the same level for which NI
needed an equivalent of only about 1.5 steps. We expect this difference to widen for
larger problems, where the required steps for standard Newton would tend to grow,
while NI would probably remain below an equivalent of two.

4.2. V-cycle tests. To determine which V(q,s)-cycle is most efficient, we study
asymptotic convergence factors with q + s ≤ 3 and h = 1

64 . Here we linearize the
equations about the exact solution, set the right-hand side to zero, start with a ran-
dom initial guess, and then observe residual reduction factors after many V-cycles.
Table 4.2 shows the observed V-cycle convergence factors for different values of a.
The cycles with more relaxation sweeps naturally have better convergence factors but
involve more computation. We thus consider a measure of the time required to reduce
the initial residual by a factor of 10. Since we are interested only in comparisons, we
choose the relative measure t ≡ (q+s+c)ln(0.1)/ln(r), where r is the observed asymp-
totic convergence factor for the V(q,s)-cycle and c estimates the fixed cost of a cycle.
We choose c = 2 because of residual calculations and intergrid transfers. Observed
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Table 4.2
Asymptotic convergence factors for different V-cycles and values of a; grid size h = 1

64
.

a V(0,1) V(1,0) V(0,2) V(1,1) V(2,0) V(0,3) V(1,2) V(2,1) V(3,0)
0.0 0.33 0.23 0.20 0.13 0.13 0.16 0.11 0.11 0.11
0.1 0.33 0.25 0.21 0.14 0.14 0.16 0.12 0.12 0.12
0.4 0.38 0.30 0.26 0.18 0.19 0.21 0.15 0.15 0.16
0.7 0.47 0.39 0.34 0.26 0.25 0.28 0.22 0.22 0.22
1.0 0.60 0.53 0.45 0.40 0.39 0.37 0.32 0.32 0.28

Table 4.3
Relative time to reduce residual by a factor of 10 with various a for different V-cycles and h = 1

64
.

a V(0,1) V(1,0) V(0,2) V(1,1) V(2,0) V(0,3) V(1,2) V(2,1) V(3,0)
0.0 6.2 4.7 5.7 4.5 4.5 6.3 5.2 5.2 5.2
0.1 6.2 5.0 5.9 4.7 4.7 6.3 5.4 5.4 5.4
0.4 7.1 5.7 6.8 5.4 5.5 7.4 6.1 6.1 6.3
0.7 9.1 7.3 8.5 6.8 6.6 9.0 7.6 7.6 7.6
1.0 13.5 10.9 11.5 10.1 9.8 11.6 10.1 10.1 9.0
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Fig. 4.6. Asymptotic convergence factors for various grid sizes and values of a. The scaled
functional was used in all but the test for h = 1

64
.

values for t for the h = 1
64 grid and different values of a are given in Table 4.3. While

performance of the V(1,1)- or V(2,0)-cycles were similar, we chose the V(1,1)-cycle
for the remainder of our tests.

4.3. AMG tests. We next test the performance of the linear solver with varying
h. Again, the equations are linearized about the solution and the right-hand side is set
to zero. We study the deterioration in asymptotic convergence factors as a increases
from zero to one; the results are plotted in Figure 4.6. In all but one test, we used the
scaled functional in (4.1) with the boundary conditions enforced so that the boundary
terms vanish. For the test marked “unscaled” and for which h = 1

64 , factor
1
Jn

in
the second term of the functional in (4.1) was omitted. For the scaled functional,
asymptotic convergence factors increase as a increases, as expected. At a = 0, which
corresponds to the identity map, convergence factors are similar to those for the
Laplace problem. There is some variation with respect to the grid size, although
for smaller h

(
1
64 and

1
128

)
the factors are similar. The results for the unscaled and

scaled convergence factors for the h = 1
64 grid confirm that scaling the second term of

the functional in (4.1) by 1
Jn

significantly improves convergence factors: the unscaled
factors are significantly larger than the scaled factors for a ≥ 0.5.
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Table 4.4
Asymptotic convergence factors for the V(1, 1)-cycle, with varying grid size and Newton itera-

tions, for the arch.

Newton 1
16

1
32

1
64

1
128

1 0.59 0.50 0.43 0.59
2 0.63 0.65 0.67 0.61
3 0.66 0.67 0.68 0.67
4 0.63 0.67 0.66 0.67
5 0.66 0.68 0.66 0.68
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Fig. 4.7. NI and standard Newton methods for the arch.

4.4. Nested iteration for the arch. We compare standard Newton iterations
for h = 1

128 ,
1
64 ,

1
32 , and

1
16 to NI with h = 1

4 for the coarsest grid and h = 1
128 for the

finest grid. The initial guess for the arch is

x = 1.5 + (1.5− ξ) cos(π(1− η)), y = (1.5− ξ) sin(π(1− η)),
J11 = − cos(π(1− η)), J21 = π(1.5− ξ) sin(π(1− η)),
J12 = − sin(π(1− η)), J22 = −π(1.5− ξ) cos(π(1− η)).

Choices of the numbers of V(1,1)-cycles per iteration and Newton steps on each
grid are currently made by observation. In the theoretical section of [10], we suggested
ρν0 ≤ 1

8 as a criterion, where ρ is the convergence factor and ν0 is the number of V-
cycles. A significantly larger value would allow the iterates to wander too far from
the true solution as the grid was refined. We could choose a smaller value for ρν0 so
that the multigrid solutions would shadow the exact finite-dimensional solutions more
closely. But too small a value would likely be less efficient than simply proceeding
to finer meshes. NI required significantly less work to obtain the same discretization
error than did the standard Newton method. Standard Newton needed just a few
steps to reach discretization error for our tests anyway, but the savings afforded by
NI for smaller h should be much larger still. More results can be found in [9].

Table 4.4 depicts asymptotic convergence factors for standard Newton iterations.
These factors are not small enough to allow just one V-cycle per Newton step. We
thus used three V(1,1)-cycles to solve each Newton step. Thus one work unit is three
V(1,1)-cycles on the 1

128 grid. Here we performed two coarsest-grid Newton iterations,
with only one on all finer grids.

Three standard Newton steps were required to reach discretization error, while
NI required less than one-and-a-half equivalents (see Figure 4.7). The final functional
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value decreases by about a factor of four as the grid size is halved, which confirms the
O(h) approximation in the H1(Ω) norm.

5. Conclusion. We showed theoretically that the nested iteration process in-
volving only one discrete Newton step on each level produces a result on the finest
level that is within discretization error of the exact solution. We also showed this
result numerically using an H1+δ(Ω) discrete space for each of the unknowns. Future
directions involve automating the numerical tests to include the following choices:
number of relaxations before and after coarsening, number of V-cycles, number of
Newton steps on each grid, size and choice of solvers for the coarsest grid, parameter-
ization of the boundary maps, and adaptive mesh refinement.

The first three choices dictate the overall efficiency of the algorithm and should be
considered carefully for maximum effectiveness. Automation would require heuristics
to sense performance of smoothing and coarse-grid correction, as well as linearization
trade-offs. We used one Newton step on all but the coarsest grid in our examples and
theory, but severely distorted regions may dictate more such steps to improve effective-
ness, and possibly other continuation methods to address the Newton method’s local
convergence characteristics. In any case, the special ability of the FOSLS functional
to signal errors could be exploited to make these choices in an effective and automatic
way. The fourth coarsest-grid choice rests heavily on the geometry of the particu-
lar map. Complex regions may require a fairly small coarsest grid and a significant
amount of effort to solve the nonlinear problem there. Damped Newton methods and
various forms of continuation techniques may come into play. Of course, complicated
regions generally require very fine meshes to supply meaningful simulations, so the
relative cost of such coarsest-grid effort may again be fairly minimal. Moreover, the
special properties of the FOSLS functional may also be exploited for these choices.
The fifth choice would be to use a parameterization of the boundary in the associated
terms of the functional that would allow concentration of grid points near special
boundary features. The final choice of adaptive mesh refinement can be served by
noting that the functional value on each element is a sharp measure of the error on
that element, which makes it suitable as a measure for determining which elements
need to be further subdivided (cf. [4]).
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Abstract. We provide two simple ways of discretizing a large class of boundary conditions for
first order Hamilton–Jacobi equations. We show the convergence of the numerical scheme under mild
assumptions. However, many types of such boundary conditions can be written in this way. Some
provide “good” numerical results (i.e., without boundary layers), whereas others do not. To select
a good one, we first give some general results for monotone schemes which mimic the maximum
principle of the continuous case, and then we show in particular cases that no boundary layer can
exist. Some numerical applications illustrate the method. An extension to a geophysical problem is
also considered.
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1. Introduction. The problem of discretizing first order Hamilton–Jacobi equa-
tions in R

N has been considered by several authors (see, e.g., [8, 9, 3]) on various types
of meshes (see the previous references and [1]). However, in our knowledge, the dis-
cretization of boundary conditions has not yet been considered in a systematic way.
The aim of this paper is to provide a simple and systematic way of discretizing a
wide variety of boundary conditions. This is done in the framework of discontinuous
viscosity solutions [4]. More precisely, we consider the following problem:{

H(x, u,Du) = 0, x ∈ Ω,
F (x, u,Du) = 0, x ∈ ∂Ω,

(1.1)

where the Hamiltonian is continuous on Ω × R × R
N and the boundary condition F

is continuous on ∂Ω× R× R
N .

For any function z, we consider the upper semicontinuous (u.s.c) and lower semi-
continuous (l.s.c) envelopes of z with respect to all variables. These are defined by

z∗(x) = lim sup
x→y

z(y) and z∗(x) = lim inf
x→y z(y).

Following [4], we introduce the function G:

G(x, u, p) =

{
H(x, u, p), x ∈ Ω,
F (x, u, p), x ∈ ∂Ω.

A locally bounded u.s.c function u defined on Ω is a viscosity subsolution of (1.1)
if and only if, for any φ ∈ C1(Ω), if x0 ∈ Ω is a local maximum of u− φ, then

G∗(x0, u(x0), Dφ(x0)) ≤ 0.(1.2)
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Similarly, u, a locally bounded l.s.c. function defined on Ω, is a viscosity supersolution
of (1.1) if and only if, for any φ ∈ C1(Ω), if x0 ∈ Ω is a local minimum of u− φ, then

G∗(x0, u(x0), Dφ(x0)) ≥ 0.(1.3)

The computation of G∗ and G∗ is easy, and we have
G∗(x, u, p) = G∗(x, u, p) = H(x, u, p) if x ∈ Ω,

G∗(x, u, p) = min(H(x, u, p), F (x, u, p)) if x ∈ ∂Ω,

G∗(x, u, p) = max(H(x, u, p), F (x, u, p)) if x ∈ ∂Ω.

(1.4)

More specifically, we consider the cases of the Dirichlet and Neumann boundary con-
ditions, but the results of this paper may extend to more general boundary conditions,
provided they are of the form (1.1) and if some regularity on F is assumed. In the
case of Dirichlet boundary conditions, namely u = ϕ, we have

F (x, u, p) = u(x)− ϕ(x),(1.5)

and for Neumann boundary conditions we have

F (x, u, p) =
∂u

∂n
− g(x),(1.6)

where g is defined on ∂Ω and continuous.
This paper is organized as follows. We first recall a convergence result by Barles

and Souganidis [5]. Then, starting from the dynamical programming principle, we
indicate a way of discretizing general boundary conditions, and show the convergence
of this scheme. In a second part, we describe several particular cases for convex and
nonconvex Hamiltonians. A particular emphasis is set on the Dirichlet boundary
conditions because it is more difficult to provide effective boundary conditions in
that case, at least more difficult than for Neumann conditions. This problem is
explained and has many similarities with the technical difficulties encountered in the
study of these conditions in the continuous case. We provide numerical illustrations
that show the effectiveness of the schemes. It is known that first order Hamilton–
Jacobi equations have many similarities with a particular class of hyperbolic systems.
Because of that, one might think that boundary conditions built on the structure
of inflow and outflow characteristics would be efficient enough. This is true if the
structure of the solution is known a priori. This is rarely the case in practice, and we
provide an example where the structure of the solution at the boundary is not known
a priori, so more sophisticated approximations are required. Another example has its
origin in seismology problems.

Throughout the paper, we consider an open and bounded domain Ω. To simplify
the presentation, we assume Ω ⊂ R

2, but our results are also valid for R
N , N ≥ 2. The

open set Ω is discretized by a triangulation Tρ. The nodes of the mesh are denoted
by xi, i = 1, . . . , ns; the triangles are denoted by Tk, k = 1, . . . , nT . The vertices of T
are denoted by xik , k = 1, . . . , 3. The parameter ρ above is, for example, the largest
radius of the circumscribed circles of Tk, k = 1, . . . , nT .

2. A convergence result.
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2.1. Preliminaries. All our results rely on the following one by Barles and
Souganidis [5]. The symbol B(Ω) denotes the set of bounded functions over Ω.

They consider approximations schemes of the form

S(ρ, x, uρ(x), uρ) = 0 in Ω,(2.1)

where S maps R
+ ×Ω×R×B(Ω) onto R, is locally bounded, and has the following

properties:
1. monotonicity: if u ≥ v, for all ρ ≥ 0, x ∈ Ω, t ∈ R, and u, v ∈ L∞(Ω) we have

S(ρ, x, t, u) ≤ S(ρ, x, t, v);(2.2)

2. stability: for all ρ > 0 there exists a solution uρ ∈ L∞(Ω) to (2.1) with a
bound independent of ρ;

3. consistency: for all x ∈ Ω and φ ∈ C∞b (Ω) (the set of C∞ bounded functions),

lim sup
ρ→0,y→x,ξ→0

S(ρ, y, φ(y) + ξ, φ + ξ) ≤ G∗(x, φ(x), Dφ(x))(2.3)

and

lim inf
ρ→0,y→x,ξ→0

S(ρ, y, φ(y) + ξ, φ + ξ) ≥ G∗(x, φ(x), Dφ(x));(2.4)

4. strong uniqueness principle: if u ∈ L∞(Ω) is an u.s.c subsolution of (1.1) and
v ∈ L∞(Ω) is an l.s.c supersolution of (1.1), then u ≤ v on Ω.

Theorem 2.1 (from Barles and Souganidis). Assuming the monotonicity, con-
sistency, and stability of the scheme (2.1) and the strong uniqueness property of the
problem (1.1), then the solution uρ of (2.1) converges locally uniformly to the unique
continuous viscosity solution of (1.1).

The stability, (2.2), (2.3), and (2.4) imply that the functions

ū = lim sup
ρ→0,y→x

uρ(y) and u = lim inf
ρ→0,y→x

uρ(y)

are defined on Ω; they are, respectively, u.s.c. subsolutions and l.s.c. supersolutions
of (1.1). By definition, we have u ≤ u. The opposite inequality follows from the
uniqueness property. Note that if we have only this uniqueness property on Ω, as is
the case for Dirichlet boundary conditions, the same argument shows that u = u on
Ω.

2.2. Two numerical schemes. We consider a bounded open domain Ω that is
discretized by means of a triangulation Tρ. The parameter ρ is the maximum, on the
elements T of Tρ, of the radius of the smallest disk containing T .

We consider a scheme for H(x, u,Du) = 0 that is defined for any point of the
mesh except perhaps for the boundary nodes. It is written as

SH(ρ, x, uρ(x), uρ) = 0.(2.5)

We also consider an approximation of the boundary conditions that is defined for any
node of the triangulation on the boundary of Ω,

SF (ρ, x, uρ(x), uρ) = 0.(2.6)
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Let (x, t, p) �→ Hb(x, t, p) be a Hamiltonian defined at least in a neighborhood of
∂Ω×R×R

N . It fulfills the same assumptions as H. We also have a numerical scheme
SHb

for the Hamiltonian Hb. We define the following scheme for (1.1):

0 = S(ρ, x, uρ(x), uρ) =

{
SH(ρ, x, uρ(x), uρ) if x ∈ Ω,
max(SHb

(ρ, x, uρ(x), uρ), SF (ρ, x, uρ(x), uρ)) if x ∈ ∂Ω.

(2.7)

Another a priori reasonable scheme could also be

0 = S(ρ, x, uρ(x), uρ) =

{
SH(ρ, x, uρ(x), uρ) if x ∈ Ω,
min(SHb

(ρ, x, uρ(x), uρ), SF (ρ, x, uρ(x), uρ)) if x ∈ ∂Ω.

(2.8)

The questions are the following: On which conditions can the scheme (2.7) or (2.8)
be considered as a good numerical approximation of (1.1)? Can we identify criteria
for preferring scheme (2.7) to (2.8)?

Before giving conditions that ensure the convergence of the schemes (2.7) and
(2.8), we motivate the “max” condition of (2.7) in the case of a convex Hamiltonian.
The justification comes from the dynamical programming principle and is therefore
valid for convex Hamiltonians. We could make the same type of justification for the
“min” condition of (2.8) for concave Hamiltonians.

Dynamical programming principle. We assume that the Hamiltonian is given by

H(x, u, p) = sup
v∈V
{−b(x, v) . p + λu− f(x, v)} ,

where the space of controls V is compact, and we have standard assumptions on b
and f . We also assume λ > 0. For the Dirichlet condition (1.5), the solution of (1.1)
is given by, for any T > 0,

0 = u(x)− inf
v(.)

[∫ min(T,τ)

0

f(yx(t), v(t))e−λtdt + 1{T<τ}u(yx(T ))e−λT(2.9)

+ 1{T≥τ}ϕ(yx(τ))e−λτ
]
.

As usual, the trajectory yx(.) satisfies yx(0) = x ∈ Ω and

d

dt
yx(t) = b(yx(t), v(t)) for t > 0.

The exit time τ is

τ = inf{t ≥ 0, yx(t) �∈ Ω}.
Now, the set of controls can be split into two parts: the set V1 for which T < τ , and
V2 for which T ≥ τ . Hence,

u(x) = min

(
inf
v∈V1

[· · · ] , inf
v∈V2

[· · · ]
)
.

Let &n be the interior normal to Ω at x ∈ Ω. Since T is arbitrary, it can be chosen as
small as possible. In the limit T → 0, the set V1 would be the set of controls for which
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b(x, v) . &n > 0, i.e., the control for which the trajectory goes into Ω. The dynamical
programming principle infv∈V1 [· · · ]− u(x) = 0 corresponds to the Hamiltonian

Hb(x, t, p) = sup
v∈V1
{b(x, v) . p + λt− f(x, v)}.

We also have the relation Hb ≤ H.
The “inf” on V2 can be approximated, if T is small, by ϕ(yx(τ)). Since T ≤ τ

and if we can choose controls for which T � τ , we get

ϕ(yx(τ)) � ϕ(x)

because ϕ is continuous. Thus, by setting SF = u(x)−ϕ(x), we see that (2.9) can be
approximated by

0 = max(SHb
, SF ),

which is want we wanted. We have the following result.
Theorem 2.2. Assume that
1. Hb ≤ H;
2. SH , SHb

, and SF are monotone and stable;
3. for all φ ∈ C∞b (Ω), we have

for any x ∈ Ω,

lim
ρ→0,y→x,ξ→0

SH(ρ, y, ϕ(y) + ξ, ϕ + ξ) = H(x, ϕ(x), Dϕ(x)),

for any x in a neighborhood of ∂Ω,

lim
ρ→0,y→x,ξ→0

SHb
(ρ, y, ϕ(y) + ξ, ϕ + ξ) = Hb(x, ϕ(x), Dϕ(x)),

for any x ∈ ∂Ω,

lim
ρ→0,y→x,ξ→0

SF (ρ, y, ϕ(y) + ξ, ϕ + ξ) = F (x, ϕ(x), Dϕ(x));

4. the equation (1.1) has a uniqueness principle.
Then the family uρ defined by (2.7) converges locally uniformly to the solution of (1.1)
in Ω. We have the same result for (2.8), provided that the condition 1 is replaced by
H ≤ Hb.

Proof. We make the proof for the scheme (2.7). The proof for (2.8) is similar.
We first note that, on the boundary,

lim sup
ρ→0,y→x,ξ→0

S(ρ, y, ϕ(y) + ξ, ϕ + ξ)

= max
(
H(x, ϕ(x), Dϕ(x)),max(Hb(x, ϕ(x), Dϕ(x)), F (x, ϕ(x), Dϕ(x)))

)
,

lim inf
ρ→0,y→x,ξ→0

S(ρ, y, ϕ(y) + ξ, ϕ + ξ)

= min
(
H(x, ϕ(x), Dϕ(x)),max(Hb(x, ϕ(x), Dϕ(x)), F (x, ϕ(x), Dϕ(x)))

)
,

while in the interior points,

lim
ρ→0,y→xξ→0

S(ρ, y, ϕ(y) + ξ, ϕ + ξ) = H(x, ϕ(x), Dϕ(x)).(2.10)
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Then we proceed as in [4]. We define

u(x) = lim sup
y→x,ρ→0

uρ(y) and u(x) = lim inf
y→x,ρ→0

uρ(y).

They are defined on Ω because uρ has bounds independent of ρ. We will show now
that the functions u and u are, respectively, sub- and supersolutions of (1.1). In fact,
we show first that if x0 ∈ ∂Ω is a local minimum of u− φ, then

max
(
H(x0, u(x0), Dϕ(x0)),max(Hb(x0, u(x0), Dϕ(x0)), F (x0, u(x0), Dϕ(x0)))

) ≥ 0,

(2.11)

while if x0 ∈ ∂Ω is a local maximum of u− φ for some φ ∈ Cb∞(Ω), then

min
(
H(x0, u(x0), Dϕ(x0)),max(Hb(x0, u(x0), Dϕ(x0)), F (x0, u(x0), Dϕ(x0)))

) ≤ 0.

(2.12)

To show (2.11), we repeat Barles and Souganidis’s arguments. Equation (2.12) is
obtained in the same way. We may assume that x0 is a strict minimum, u(x0) = φ(x0),
and φ ≤ 2 infρ ||uρ||∞ outside of B(x0, r), where r is such that

u(x)− φ(x) ≥ u(x0)− φ(x0) = 0 in B(x0, r).

There exist sequences ρn and yn ∈ Ω such that n→ +∞, ρn → 0, yn → x0, uρn(yn)→
u(x0), and yn is a global minimum of uρn−φ. We denote by ξn the quantity uρn(yn)−
φ(yn). We have ξn → 0 and uρn(y) ≥ φ(y) + ξn in B(x0, r). Since S is monotone, we
get

0 ≤ lim sup
n

S(ρn, yn, φ(yn) + ξn, φ + ξn) ≤ lim sup
ρ→0,y→x0,ξ→0

S(ρ, y, ϕ(y) + ξ, ϕ + ξ)

= max(H(x0, ϕ(x0), Dϕ(x0)),max(Hb(x0, ϕ(x0), Dϕ(x0)), F (x, ϕ(x0), Dϕ(x0)))).

If x0 ∈ Ω is a local maximum (resp., minimum) of u − φ (resp., u − φ), we use
(2.10) and the same arguments as above to get

H(x0, u(x0), Dφ(x0)) ≤ 0 (resp., H(x0, u(x0), Dφ(x0)) ≥ 0).(2.13)

Now we have to check that the condition (2.12) (resp., (2.11)) implies the super-
solution (resp., subsolution) condition.

• Inequality (2.12). If F (x0, u(x0), Dφ(x0)) ≤ 0, there is nothing to prove. We
assume F (x0, u(x0), Dφ(x0)) > 0. We have either

H(x0, u(x0), Dϕ(x0)) ≤ 0(2.14)

or

max(Hb(x0, u(x0), Dφ(x0)), F (x0, u(x0), Dφ(x0))) ≤ 0.

In the second case, we necessarily have (2.14), and in both cases the inequality
holds.
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• Inequality (2.11). If F (x0, u(x0), Dφ(x0)) ≥ 0, there is nothing to prove. If
we assume F (x0, u(x0), Dφ(x0)) < 0, then we must have either H(x0, u(x0),
Dφ(x0)) ≥ 0 or

max(Hb(x0, u(x0), Dφ(x0)), F (x0, u(x0), Dφ(x0))) ≥ 0.

Since F < 0, this inequality implies Hb ≥ 0, so that

H(x0, u(x0), Dφ(x0)) ≥ Hb(x0, u(x0), Dφ(x0)) ≥ 0.

Thus, in both cases, we get H(x0, u(x0), Dφ(x0)) ≥ 0, which is what we
wanted.

This shows that u is a supersolution and u is a subsolution of (1.1). The strong
uniqueness principle enables us to conclude.

In the following section, we explain the role of Hb and give some examples for
(2.7). These examples can easily be extended to (2.8). In section 4.1, we provide
some simple criteria on H for choosing between (2.7) and (2.8).

3. Some examples. In [9, 1], two classes of numerical Hamiltonian were con-
sidered, Godunov and Lax–Friedrichs Hamiltonians. Here, we recall the main results
of [1] because they can be applied to a more general setting than those of [9] from
which they are inspired. In both cases, only the case of the domain R

N has been
studied, i.e., in the present setting, the case of interior nodes.

In order to discretize the problem{
ut + H(Du) = 0,
u(x, 0) = u0(x)

for x ∈ R
N and t > 0, where u0 is Lipschitz continuous, we have considered the

scheme

u0
i = u0(xi),

un+1
i = uni −∆tHρ(DT1un, . . . , DTki

un).
(3.1)

In (3.1), un represents the piecewise linear interpolant of (unj ), the set {T1, . . . , Tki}
is the set of triangles that contain xi, and DTu

n represents the (constant) gradient of
un in the triangle T . The parameter ρ describes the local geometry of the mesh. In
the examples to come, we specify this parameter; see Remark 1. For any R > 0, let
us introduce the set CR of continuous piecewise linear functions defined by

CR = {u continuous piecewise linear s.t. ||DTu|| ≤ R for any triangle T}.(3.2)

We have to define the numerical Hamiltonians (p1, . . . , pk) �→ Hρ(p1, . . . , pki).
They have been designed to have the following properties:

1. consistency: Hρ(p, . . . , p) = H(p),
2. monotonicity: there exists ∆tR such that for all ∆t ≤ ∆tR, if un, vn ∈ CR

and if uni ≤ vni for all i, then un+1
i ≤ vn+1

i ,
3. intrinsicness: the definition of Hρ does not depend on the geometrical de-

scription of un. For any vertex xi, for any triangle T such that xi is a vertex
of T , if T is split into two triangles T1 and T2 for which xi is still a vertex,
then the value of the numerical Hamiltonian is not modified; see Figure 1.
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T1

T2

T

xi xi

Fig. 1. Geometrical elements for the intrinsic property: the numerical Hamiltonian is not
modified if the triangle T is split into T1 and T2 and the value of u at the new vertex is evaluated
by linear interpolation.

We also assume that Hρ is uniformly continuous in the p and ρ variables. Of course,
the number of arguments changes from one mesh point to the other, but if the mesh is
regular, the number of neighbors is bounded above, and, thanks to the “intrinsicness”
property, we can think of Hρ as the same function everywhere. Assuming these
properties, it is possible to show the convergence of the scheme (3.1) and to give an
error estimate [8, 1].

Notation. In what follows, when we consider numerical schemes that can be put
in the form (3.1), sometimes the DTlu

n’s are rewritten in terms of uni and the values
of un for the neighboring nodes of xi. For the sake of convenience, we denote the set
of the neighbors of xi (excluding xi) by Ni, and we rewrite the scheme as

un+1
i = Gρ(u

n
i , {unj , j ∈ Ni}; ∆t).(3.3)

More generally, when the Hamiltonian is of the form H(x, u(x), Du(x)), the scheme
is sometimes rewritten as

un+1
i = Gρ(xi, u

n
i , {unj , j ∈ Ni}; ∆t) = uni −∆tHρ

(
xi, u

n
i , {unj , j ∈ Ni}

)
.(3.4)

In the G-function, Gρ(x, t, {tl, l ∈ N}; ∆t), t is similar to uρ(x), and the variables t,
{tl, l ∈ N}, provide a description of uρ in a neighborhood of xi.

When we are interested in steady problems, the scheme, in the most general case
considered in the paper, is

Hρ(xi, uni , {unj , j ∈ Ni}) = 0.(3.5)

Similar definitions are also considered for implicit schemes.
In the case of schemes (3.3) and (3.4), the monotonicity condition is equivalent

to the following property of Gρ: (x, t, {tl, l ∈ Ni}) �→ Gρ(x, t, {tl, l ∈ Ni}; ∆t). For
any fixed grid point x = xi, G should be increasing in t and {tl, l ∈ Ni}. In practice,
the numerical Hamiltonian Hρ is an increasing function of {tl, l ∈ Ni} and decreasing
in t, so that the monotonicity condition for the explicit scheme is true, provided
that a CFL-type condition on the time step holds. In the case of schemes (3.5), the
monotonicity condition stated in Theorem 2.1 is less restrictive than for unsteady
problems: Hρ is decreasing with respect to t and increasing with respect to tl.
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Two types of Hamiltonians have been constructed so far, and for the sake of sim-
plicity we describe them in the simplest case. The general case can be treated by
“freezing” the x and u(x) variables. They all satisfy the following “translation invari-
ance” property, which mimics the facts that the t-arguments are used to approximate
a gradient:

∀x, t, tl, C ∈ R, Gρ(x, t + C, {tl + C, l ∈ Ni}; ∆t) = Gρ(x, t, {tl, l ∈ Ni}; ∆t).(3.6)

Godunov Hamiltonians. If H = H1 + H2, where H1 (resp., H2) is convex (resp.,
concave),1 then we set

HGρ (p1, . . . , pki) = inf
q∈R2

max
0≤l≤ki

sup
y∈−Ωl+q

[(pi | y − q)−H∗1 (y)−H∗2 (q)] ,(3.7)

where Ωl, l = 1, . . . , k1, are the angular sectors defined by the triangles T1, . . . , Tki
at node xi; H

∗
1 , for any l, −Ωl is the symmetric of Ωl with respect to xi; and H∗2 are

the Legendre transforms of H1 and H2. We have denoted by (x | y) the dot product
of x and y.

If h is the smallest radius of the circles of center xi contained in ∪kii=1Ti, and if L1

and L2 are Lipschitz constants for H1 and H2, then the scheme is monotone, provided
that the time step satisfies

∆t

h
(L1 + L2) ≤ 1

2
.

The numerical Hamiltonian (3.7) is obtained by saying that H1 + H2 is bounded
below by the convex functions Hq(p) = H1(p) − (p | q) + H∗2 (q). Another monotone
Hamiltonian can also be obtained, as in [1], by saying that H1 +H2 is bounded above
by the concave functions Hq(p) = H2(q) + (p | q)−H∗1 (p).

Lax–Friedrichs Hamiltonians. Here we set

HLFρ (p1, . . . , pki) = H(Ū)− ε

h

∮
Ch

[u(x)− u(xi)]dl,

where Ch (resp., Dh) is a circle (resp., disk) of center xi and radius h,

Û =

∫
Dh

Du dxdy

πh2
,

and ε is larger than any Lipschitz constant of H divided by 2π.
Remark 1. For the Godunov and Lax–Friedrichs Hamiltonians, and at a mesh

node x, the ρ parameter is the set of unit vectors defining the edges of the triangles
at this node and the angles (at node x) of the triangles; see Figure 2.

3.1. Godunov boundary Hamiltonians for convex Hamiltonians. We
look for a Hamiltonian Hbρ of the form

Hbρ(p1, . . . , pk) = max
0≤l≤ki

sup
z∈−Ωl

{(pl | z)−H∗b (z)},

where the pi’s are the local gradients of a piecewise linear continuous function defined
on Ω and the Ωl’s are the angular sectors as before. We need that

Hbρ(p, . . . , p) = Hb(p) ≤ H(p).

1In the case of a Cartesian mesh, this assumption can be relaxed as shown in [9].
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Fig. 2. A description of ρ.

If we assume that Hb is convex, this inequality implies H∗b ≥ H∗ ; the most natural
choice is to take  H∗b (q) = H∗(q) if q ∈ ∪kij=1Ωj ,

H∗b (q) = +∞ otherwise,

(3.8)

but any convex Hamiltonian K such that K∗ ≥ H∗b , which domain is included in

∪kij=1Ωj , would also be a solution. The monotonicity condition is automatically satis-
fied, thanks to the Hopf formula. In the case of an unsteady problem, the same CFL
condition is valid; i.e., if L is a Lipschitz constant of H, the time step satisfies

∆t

h
L ≤ 1

2
,

because the Lipschitz constant of Hb is at most that of H. If L is a Lipschitz constant
of H, H∗(p) may be finite only if p belongs to the ball B(0, L) of center 0 and radius
L. Since H∗b is finite when H is finite, a Lipschitz constant of H is a Lipschitz constant
for Hb.

Note that the Hamiltonian (3.8) is the largest possible choice and is the one
suggested by the analysis from the dynamical programming principle. It can be
interpreted by saying that we take into account all the outgoing rays.

3.2. Godunov boundary Hamiltonians for concave Hamiltonians. The
analysis via the dynamical programming principle suggests choosing the boundary
condition (2.8). We define Hb by (3.8), where the +∞ condition is replaced by −∞.

3.3. Lax–Friedrichs boundary Hamiltonians for convex Hamiltonians.
Here, we are looking for Hamiltonians of the type

Hbρ(p1, . . . , pk) = K(Ū)− εb
h

∮
Ch

[u(x)− u(xi)]dl,

where K is unknown, as well as the numerical dissipation εb. The average state is
once more defined by

Ū =

∫
Dh∩Ω

Du dxdy

|Dh ∩ Ω| .
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Fig. 3. Definition of Γ1 and Γ2.

The monotonicity condition is satisfied, provided that, Lb being a Lipschitz constant
of K,

εb ≥ Lb h

|Dh ∩ Ω)| .

The area ∂(Dh ∩Ω) is θ h, where θ is the angle of Dh ∩Ω at xi. This can be seen by
using the same arguments as in [1].

We denote by Γ1 the part of ∂(Dh∩Ω) which is inside Ω, and by Γ2 the boundary
part; see Figure 3. To determine K, we consider the consistency condition. It is easy
to see that

Hb(p) ≡ Hbρ(p, . . . , p) = K(p)− εb
h

(
p
∣∣∣{∫

Γ1

&ndl −
∫

Γ2

&τdl

})
,

where &n is the outward unit normal to Γ1 and &τ is the unit tangent vector to Γ2. The
vector

&N = − 1

h

(∫
Γ1

&ndl −
∫

Γ2

&τdl

)
enters into Ω if ∂Ω is regular enough.

The convergence property of Theorem 2.2 is satisfied if Hb ≤ H. When Hb is
assumed to be convex, this condition is equivalent to asking for K to be convex and(

K + εb

(
&N | .

))∗
(q) ≥ H∗(q) ∀q ∈ R

2.

The Legendre transform of x �→ K(x) + εb( &N |x) is

q �→ K∗(q + εb &N),

and consequently K∗ is defined by the relation

K∗(q) ≥ H∗(q − εb &N).(3.9)

Let us call Dom(H∗) (resp., Dom(Hb)) the subset of R
2 for which H∗(q) (resp., (Hb)∗)

is finite. If L is a Lipschitz constant of H, Dom(H∗) ⊂ B(L). A similar result holds
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Fig. 4. Geometrical representation of the conditions.

for K. These sets are convex. There is a solution to the problem (different from
K = −∞) if and only if we can find εB such that

(Dom(H)− εb &N) ∩Dom(H) �= ∅,
(Dom(H)− εb &N) ∩B(εb) �= ∅.(3.10)

See Figure 4 for a representation of these conditions.
In some cases, there is no solution at all. The simplest counterexample is given

by

H(x) = (&a | x)

with &a �= 0. In this case, Dom(H) = {&a}. The first condition implies εb = 0 (thus
||&a|| = 0); the second one gives &a = 0.

In some cases, there are solutions. An example is given by any Hamiltonian for
which minH > −∞: since 0 ∈ Dom(H), we can set εb = 0 and K ≡ minH. Another
example is provided by H(x) = ||x||. Here, we can choose any εb ∈ [0, 1

2|| "N || ].

3.4. Other choices. In sections 3.1 and 3.3, a very obvious choice would be
Hb ≡ −∞. This choice enables us to satisfy our convergence conditions. In fact we
have

min(H,max(−∞, F )) = min(H,F ),
max(H,max(−∞, F )) = max(H,F ),

so that the viscosity inequalities are obviously satisfied. This reduces to strongly
imposing the boundary conditions. However, this is not be the best choice, since a
numerical boundary layer may be generated, especially in the case of Dirichlet bound-
ary conditions. The scheme converges, but very slowly, as can be seen by numerical
experiments; see section 5. Moreover, the results of this paper have been formally
extended to more general cases, particularly the case of discontinuous Dirichlet condi-
tions. In this particular case, the choice Hb = −∞ may prevent convergence, whereas
the Godunov or Lax Friedrichs boundary Hamiltonian seems to ensure convergence.
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It now becomes clear that some selection procedures must be established. We
will provide some, in special cases.

4. Some selection criteria. In this section, we discuss the problem of finding
suitable boundary Hamiltonians and the question of selecting between the min and
max conditions. These two questions are related, but the most difficult one is to find
a “good” boundary Hamiltonian. If no care is taken, the numerical solution may
develop a boundary layer structure, especially in the case of Dirichlet conditions; i.e.,
the gradient of the numerical solution may become unbounded when the mesh size
tends to zero. If Theorem 2.2 provides some necessary conditions for convergence,
this is not acceptable in general because practical calculations are done with finite
but nonvanishing mesh sizes.

This situation is very similar to the technical difficulties encountered in the anal-
ysis of the boundary problem in the continuous case; see [4]. To explain this point,
let us consider a simple one dimensional example.

If, for example, we think of a numerical scheme for{ |u′(x)| = 1, x ∈ ]0, 1[,
u(0) = 0, u(1) = 2,

where the boundary conditions are strongly imposed as being modeled by{ |u′(x)| − εuxx = 1, x ∈ ]0, 1[,
u(0) = 0, u(1) = 2,

(4.1)

the solution should look like

uε(x) = x +
exp

(
x−1
ε

)− exp
(− 1
ε

)
1− exp

(− 1
ε

) ,

and hence a boundary layer exists: the derivative of u is not bounded at x = 1 when
ε→ 0. Its thickness tends to 0 as ε→ 0.

This simple example is quite generic from the numerical point of view. Assume
that the numerical solution uρ converges in the neighborhood of the boundary to
a regular solution u. Then, up to second order truncation errors, the numerical
Hamiltonian behaves like

H(p1, . . . , pki) � H(Du)− ε(ρ)D2u,

where D2u represents some elliptic operator and ε(ρ) → 0 as the mesh size tends
to zero. In [8], some numerical schemes are constructed by directly using this idea.
Because of that, if one sets the boundary condition strongly on ∂Ω, as in the example
(4.1), a boundary layer must exist in the vicinity of ∂Ω. Its thickness tends to 0 as
ε→ 0. Its thickness also tends to 0 as ε(ρ)→ 0.

4.1. Choosing between the “min” and “max” conditions for Dirichlet
boundary conditions. In some situations, the choice can be motivated by some a
priori knowledge of the behavior of the exact solution. For example, if one makes the
following assumption—there exists R ∈ ]0,+∞[ such that

lim
λ→+∞

H(x, u, p− λ&n) = +∞
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uniformly on x in a neighborhood of ∂Ω, −R ≤ u ≤ R and p bounded2—then one
can prove that if ϕ is continuous and u is the solution of

H(x, u(x), Du(x)) = 0, x ∈ Ω,
u(x) = ϕ(x), x ∈ ∂Ω,

then u(x) ≤ ϕ(x) on ∂Ω (see [4]). The boundary condition (2.7) implies that u ≤ φ at
the discrete level, while (2.8) implies the opposite inequality. Hence, when the above
assumption is true, the boundary condition (2.7) is the natural one to consider. This
situation is encountered for nonbounded convex Hamiltonians.

When we have

lim
λ→+∞

H(x, u, p− λ&n) = −∞,

the boundary condition (2.8) is the natural one to consider. This situation is encoun-
tered for nonbounded concave Hamiltonians.

4.2. The case of coercive Hamiltonians and boundary conditions (2.7).
We are not able to provide an error bound between the numerical and the exact
solutions. However, when the Hamiltonians H and Hb are coercive, we can show that
no numerical boundary layer can appear; i.e., the gradient of the numerical solution
is bounded when the mesh size tends to zero.

We say that H is coercive if

H(x, u, p)→ +∞ when ||p|| → +∞
uniformly for x ∈ Ω, u ∈ [−R,R], R ∈ ]0,+∞[. We say that the boundary Hamilto-
nian is coercive if

Hb(x, u, p)→ +∞ when ||p|| → +∞ and (p | &n) ≥ 0

uniformly for x ∈ ∂Ω, u ∈ [−R,R] for all R ∈ [0,+∞[. Here &n is the inward unit
vector at point x ∈ ∂Ω. We have implicitly assumed that ∂Ω is C1. In what follows,
we consider the Dirichlet problem

{ Hρ(xi, ui, DT1u, . . . ,DTiku) = 0, xi interior node and il ∈ Ni,
max(Hρ(xi, ui, DT1u, . . . ,DTiku), ui − ϕ(xi)) = 0, xi boundary node and il ∈ Ni

(4.2)

but our results clearly extend to the more general case considered in this paper.
Proposition 4.1. Let Hρ and Hbρ be monotone Hamiltonians consistent with H

and Hb. Assume that Hρ and Hbρ also satisfy (3.6), and that H and Hb are continuous,
convex, and coercive. Assume also that the mesh is regular. Then the scheme (2.7)
is convergent and the maximum over the triangles T of the norm of the numerical
solution, when h→ 0 remains bounded.

The boundary of Ωh = ∪T∈ThT is denoted by Γh.
Proof. The convergence is a consequence of Theorem 2.2. The uniform bounded-

ness of the gradients is a consequence of the following lemma.
Lemma 4.2. If H, Hρ, Hbρ, and the mesh satisfy the assumptions of Proposition

4.1, and if u is a subsolution of (4.2), then there exists C independent of h such that
for any two mesh points Mi, Mj we have

|ui − uj | ≤ CMiMj .

2�n is the inward unit normal to ∂Ω.
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Proof. For the sake of simplicity, we assume that H and Hb depend only on the
p variable.

Let K > 0 and xi be a mesh point. For now we let K be free. Since Ωh has
a finite number of points, there exists M ′, a mesh point such that ul − KMlMi is
maximum at M ′:

ul −KMlMi ≤ uM ′ −KM ′Mi.

This indicates that vl = (u(x′)−K ||x′ − xi||) + K ||xl − xi|| is greater that u, with
an equality at node x′. Hence, using the same techniques as in Appendix A, if x′ is
an interior node,

0 ≥ Hρ(u) ≥ Hρ(K ||x− xi||),(4.3)

where we have written Hρ(u) instead of Hρ(DTi1u, . . . ,DTiku), for short. Similarly,

since max(Hbρ(u), u− ϕ) ≤ 0, we have Hbρ(u), and by the monotonicity of Hbρ, we get

0 ≥ Hρ(K ||x− xi||)(4.4)

at x′ if it is on the boundary. Assume that x′ �= xi. We show that if K is large enough,
we have a contradiction. We can assume that xi = 0 so that we have to deal with the
piecewise interpolant πh||x|| of the convex function x �→ ||x||. Note that 0 = xi does
not lie in the interior of any triangle. A simple consequence of the Taylor formula [7]
shows that there exists C ′ > 0 such that if the mesh is regular,∣∣∣∣∣∣∣∣DTπh|x| − xG

||xG||
∣∣∣∣∣∣∣∣ ≤ C1h,

where xG is the gravity center of T .
Since H is regular, there exist C2 > 0 such that∣∣∣∣Hρ(πh||x||)−Hρ(K xG1

||xG1 ||
, . . . ,K

xGk

||xGk
||
)∣∣∣∣ ≤ C2h.

The same inequality is also true for Hbρ. Since the scheme is consistent with uniformly
continuous numerical Hamiltonians, and because O = xi does not belong to the
interior of the molecule associated with x′, we can replace Hρ(K xG1

||xG1
|| , . . . ,K

xGk

||xGk
|| )

by H(K x′
||x′|| ) up to an O(h) term. The same is true for Hbρ. Hence we get that

H(K x′
||x′|| ) ≤ O(h), which is impossible if K is large enough. This shows that if

K = C + 1, where C is chosen so that

H(C p) < 0 with ||p|| = 1 and Hb(C p) < 0 with ||p|| = 1 and (p | &n) < 0,

we have that x′ = xi, and then

ul − ui ≤ K||xl − xi||

when h is small enough. The conclusion holds by symmetry.
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An example. We consider the example of a convex Hamiltonian. The boundary
Hamiltonian consistent with the Godunov boundary Hamiltonian is

Hb(p) = max
(y | "n)≤0

((y | p)−H∗(y)) ,

where &n is the inward unit vector. If we assume that H is smooth enough, the optimal
ray is p∗ = DH(p). A sufficient (and crude) condition to ensure that Hb is coercive
if H is coercive is to state that (p∗ | &n) ≤ 0, because in this case Hb(p) = H(p). To
obtain this sufficient condition, it is enough to say that

λ ∈ R
+ �→ H(p + λ&n)

is monotone increasing. This has to be connected to the conditions of section 4.1. An
example where (p∗ | &n) ≤ 0 is given by the eikonal Hamiltonian because p∗ = p

||p|| .

4.3. Extension to nonconvex Hamiltonians. Let us consider a problem
where H = H1 + H2, with H1 convex and H2 concave. Following (3.7), a natural
boundary Hamiltonian is also

Hbρ(p1, . . . , pki) = inf
q∈R2

max
0≤l≤ki

sup
y∈−Ωl+q

[(pi | y − q)−H∗1 (y)−H∗2 (q)] .

Since ∪lΩl is a strict subset of R
2, we have

Hb(p) ≡ inf
q∈R2

sup
(y | "n)≥0

[(p | y − q)−H∗1 (y)−H∗2 (q)] ≤ H(p),

and the conditions of Theorem 2.2 are satisfied.
If the family {H1(p) − (p | q)}q∈R2 is uniformly coercive, then the numerical so-

lution develops no numerical layer; this is a simple consequence of Proposition 4.1.

5. Applications.

5.1. Some numerical tests. We have not been able to get error estimates for
the schemes presented above. Even in the case of the crudest approximations of
the boundary condition, i.e., by taking Hb = −∞, we can show the convergence of
the numerical solution. However, we have shown in a special case that no numer-
ical boundary layer exists even for Dirichlet conditions when the Hamiltonians are
coercive.

The purpose of this paragraph is to illustrate the various phenomena that we
have encountered, for Dirichlet and Neuman conditions. In each case, the strong
boundary conditions are obtained with Hb = −∞, and the weak ones with Hb being
the Godunov Hamiltonian. In sections 5.1.1 and 5.1.2, the interior Hamiltonian is the
Lax–Friedrichs one. In section 5.2, it is the Godunov Hamiltonian. Other experiments
with the Lax–Friedrichs condition have been done, but they are not reported here.
They provide the same results. We also show the behavior of the schemes on a problem
with nonconvex Hamiltonians and Dirichlet conditions; this is the subject of section
5.1.3.

5.1.1. Dirichlet conditions. The domain Ω is limited by two “concentric” cir-
cles of radius 0.5 and 1. It is discretized by a finite element–type mesh, but this is not
essential. The problems are ||Du|| = 1 in Ω,

u = 0 for ||x|| = 0.5,
u = C for ||x|| = 1.

(5.1)
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Table 5.1
Boundary condition for the Dirichlet boundary conditions.

Case 1 2 3 4
C 0.5 10 0.25 −11

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.05
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0.35
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0.45

0.5

(a) (b)

Fig. 5. Comparison of different implementations of Dirichlet conditions for problem (5.1) and
Case 1: (a) weak conditions, (b) comparison of weak (◦) and strong (∗).

The constant C takes the values displayed in Table 5.1.
The viscosity solution is given as follows:
• Case 1 and 2: u(x) = ||x|| − 0.5;
• Case 3: u(x) = ||x|| − 1

2 if ||x|| ∈ [ 12 ,
7
8 ] and u(x) = −||x||+ 5

4 if ||x|| ∈ [ 78 , 1];
• Case 4: u(x) = −||x||+ 1

2 .
The difference between these test cases is that for Cases 1 and 3, the boundary
conditions on ||x|| = 1 are enforced strongly, whereas for 2 and 4, they are enforced
in the viscosity sense only.

We plot the cross section only in the y-direction and positive abscissa. Two
kinds of tests have been done. In the first, we have strongly imposed the boundary
conditions; i.e., we have taken Hb = −∞. In the second test, the conditions have
been imposed weakly, with the Godunov boundary Hamiltonian.

Comparison of Figures 5, 6, 7, 8 clearly shows that when the boundary condition
is strongly enforced by the viscosity solution, no special treatment is needed. On the
contrary, when it is only weakly enforced, then a special treatment is mandatory,
otherwise a boundary layer–type phenomenon is observed.

5.1.2. Neumann conditions. Here, we test the problem
||Du|| = 1 in Ω,
u = 0 for ||x|| = 1,
∂u
∂n = 0 for ||x|| = 0.5.

(5.2)

Its solution is u(x) = −||x||+ 1
2 .

The viscosity solution is given by the solution for Case 1. Once more, the nu-
merical solution is obtained by imposing the boundary conditions either strongly or
weakly.

The problem ∂u
∂n = g is approximated at node A in the following way (see Fig-

ure 9). The outward unit normal is approximated as &nA =
−→
AB⊥ +

−→
AC⊥, which is
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Fig. 6. Comparison of different implementations of Dirichlet conditions for problem (5.1) and
Case 2: (a) weak conditions, (b) comparison of weak (◦) and strong (∗).
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Fig. 7. Comparison of different implementation of Dirichlet conditions for problem (5.1) and
Case 3: (a) weak conditions, (b) comparison of weak (◦) and strong (∗).

normalized. Here, &x⊥ is the orthogonal vector to &x such that (&x, &x⊥) is positive. Then
we consider a node D which is on the side of the triangle opposite to D, which is cut
by −&nA. We then set

u(A) = ||−→AD||g(A) + u(C).(5.3)

Here, u is the piecewise linear interpolation of the data.
In the strong formulation, we use (5.3) directly. In the weak formulation, we set

max

(
un+1
A − unA

∆t
−Hbρ(un),

un+1
A − un+1

C

AC
− g(unA)

)
= 0.

From Figure 10, it is clear that the weak formulation gives much better results.
However, the difference between the two formulations is not as important as for the
Dirichlet problem, as expected.
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Fig. 8. Comparison of different implementation of Dirichlet conditions for problem (5.1) and
Case 4: (a) weak conditions, (b) comparison of weak (◦) and strong (∗).

A
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C

D

Fig. 9. Schema for the approximation of the Neuman boundary conditions.

5.1.3. The case of a nonconvex Hamiltonian and Dirichlet conditions.
In general, it is difficult to compute analytically the solution of a first order Hamilton–
Jacobi equation, and the situation is even worse when the Hamiltonian is not convex
(nor concave), because the analogy with hyperbolic systems becomes looser in general.
Hence, it becomes more difficult to judge the quality of numerical results. To overcome
this difficulty in a special case, we consider H(p) = (||p|| − 1)3 and the problem

H(Du) = 0 on Ω,
u = 0 on Γ1,
u = 10 on Γ2,

(5.4)

where Ω is depicted in Figure 11. Since t �→ t3 is monotone increasing, u is a solution
of (5.4) if and only if it is a solution of

||Dv|| − 1 = 0 on Ω,
v = 0 on Γ1,
v = 10 on Γ2.

(5.5)

The solution of (5.4) and (5.5) is the distance to Γ1.
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Fig. 10. Comparison of different implementations of homogeneous Neumann conditions for
problem (5.2): (a) weak conditions, (b) comparison of weak (◦) and strong (∗).
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Fig. 11. Computational domain for problem (5.4). Γ1 is the inner circle of center (0, 0) and
radius r = 1, Γ2 is the outer circle of center (0, 0.5) and radius r = 3.

In order to discretize (5.4), we write H = H1 +H2, with H1(p) = max(|p||−1, 0)3

and H2(p) = min(||p|| − 1, 0)3. These functions are respectively convex and concave.
The numerical Hamiltonian and the boundary Hamiltonian are the same as in sections
3 and 4.3. The numerical solution is displayed in Figure 12(a). The solution of (5.5)
with the Godunov Hamiltonian is provided in Figure 12(b). A close comparison shows
that they are (almost) identical.

Another application of the boundary conditions developed in this paper is given
by the approximation of the following problem, on the same geometry:

H(Du) = 0 on Ω,
u(x, y) = 0, (x, y) ∈ Γ1,
u(x, y) = 3 cos(2πx), (x, y) ∈ Γ2.

(5.6)

Since H is nonconvex, it is difficult to know a priori what the value of the solution
on the boundary would be. The computed solution is given in Figure 13(a). It can
be seen that the solution satisfies the boundary condition strongly on Γ2 and only
weakly on Γ1 (in contrast to the previous example). Note, however, that the boundary
conditions have been numericaly weakly imposed on Γ1 and Γ2. The solution is also
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(a) (b)

Fig. 12. (a) Solution of problem (5.4), min = 0, max = 1.48. (b) Solution of problem (5.10),
min = 0, max = 1.504.

(a) (b)

Fig. 13. (a) Solution of problem (5.6), min = −3, max = −1.53. (b) Solution of problem (5.7),
min = −3, max = −1, 47.

in very good agreement with the one obtained from the discretization of

||Dv|| − 1 = 0 on Ω,
v(x, y) = 0, (x, y) ∈ Γ1,
v(x, y) = 3 cos(2πx), (x, y) ∈ Γ2,

(5.7)

which is displayed in Figure 13(b).

5.2. Application to a problem in geophysics. In [6] is developed a tech-
nique to compute the multivalued solutions τ of the Eikonal equation with an initial
condition

τ(xS) = 0

at the source term xS . This corresponds to the problem of computing the very high
frequency approximation of the wave equation in a possibly inhomogeneous media,
when the source term is located at a single point with a Dirac source term. In this
case, the solution consists of a wave front that might have a very complex structure.
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The solution of this problem is important in geophysics applications; it is the core of
an inverse method for reconstructing the index of the media knowing only the arrival
times of the wave fronts at the ground.

In Benamou’s method [6], we need to be able to solve, in several arbitrary domains
Ω containing xS , the following problem: ||Dτ || − n(x) = 0 in Ω,

τ(xS) = 0,
τ(x) = +∞ if x ∈ ∂Ω− {xS}.

(5.8)

The boundary conditions have to be understood in the viscosity sense. In particular,
the second boundary solution corresponds to the Soner boundary condition. The
solution to this problem is known,

τ(x) = inf
yx

[∫ min(T,ζ)

0

n(yx(s))

∣∣∣∣dyxds
∣∣∣∣ ds
]
,(5.9)

where the trajectory yx starts at xS for s = 0, and ζ is its first exit time, i.e.,

ζ = inf{s ≥ 0; yx(s) �∈ Ω}.
In other words, we do not take into account the rays that start at xS and come into
Ω.

The idea is to characterize the solution of (5.8) as the steady solution of
ut + ||Du|| − n(x), t > 0 and x ∈ Ω,
u(x, t = 0) = 0, x ∈ Ω,
u(xS , t) = 0 at xS
u(x, t) = +∞, x ∈ ∂Ω− {xS}.

(5.10)

It is clear that neither (5.9) nor (5.10) falls into the framework that we have
considered here. The idea is to introduce an approximation of τeρ , the solution of ||Dτ || − 1 = 0 in Ω,

τ(xS) = 0,
τ(x) = 0, x ∈ ∂Ω− {xS},

(5.11)

given by (5.9) for n ≡ 1. We then show that the scheme (5.12) can be rewritten as


un+1
i −uni

∆t +Hρ(DT1un, . . . , DT1un)− n(xi), n > 0 and xi interior point,
u0
i = 0 for all i,

unxS = 0 for n ≥ 1,
uni = min(uni −∆tHbρ(DT1un, . . . , DT1un)− n(xi),Kτeρ ), n > 0 and xi �= xS ,

(5.12)

for K large enough, uniformly in ρ. Once this is shown, we can apply the arguments
of (2.2) to conclude. In what follows, we restrict ourselves to the case of the Godunov
Hamiltonian.

5.2.1. Finding an elementary supersolution of (5.11) when n ≡ 1. Our
aim is to find an elementary supersolution of Hρ(u, xi) = 1 for any node different from xS ,

u(xS) = 0.
(5.13)
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Here, the numerical Hamiltonian is the Godunov Hamiltonian for H(x, p) = ||p|| − 1.
For any mesh points xi and xj , we consider a path P (xi → xj) = xi . . . Pk . . . xj

connecting xi and xj . The points Pk of P (xi → xj) are nodes of the mesh. We define
#(P (xi → xj)) as the number of nodes that define the path P (xi → xj). We consider
u defined by

ue(xi) = min
P (xi→xS))

#(P (xi→xS))∑
l=1

PlPl+1

 ,(5.14)

with the convention P1 = xi and P#(P (xi→xS)) = xS .
Lemma 5.1. Let k ≥ 0. We have, for any mesh point x-,

τeρ (xi) = min
P (xi→xS)

#(P (xi→xS))∑
l=0

PjPj+1 + τeρ (x-)

 .

Proof. Let P be an optimal path that connects x- to xS , and P ′ be a path that
connects xi to x-. The path P ∪ P ′ connects xi to xS , and we have

τeρ (xi) ≤
#(P (xi→xS))∑

j=1

PjPj+1 + τeρ (x-).

By taking the infinum, we have the first inequality. Let P now be an optimal path
for

v(xi) = min
P (xi→x
)

#(P (xi→xS))∑
l=0

PjPj+1 + τeρ (x-)

 .

If P ′ is an optimal path for u(x-), by connecting the two paths, we get the opposite
inequality.

We show that τeρ defined in (5.14) is a supersolution of the problem. First it is
clear that u(xS) = 0. For any node xi, we denote by N (xi) the neighboring nodes of
xi in the mesh. We show now that

max
x∈N (xi)

(
τeρ (xi)− τeρ (x)

||xi − x||
)
≥ 1.(5.15)

This is a direct consequence of Lemma 5.1. Since Hρ ≥ maxx∈N (xi)

( τeρ (xi)−τeρ (x)

||xi−x||
)
,3

the function τeρ is a supersolution of (5.12) when n ≡ 1.

5.2.2. Study of the scheme (5.12). For any K > maxΩ n(x), we consider the
scheme (5.12). By using the maximum principle, it is easy to get the next result.

Proposition 5.2. Under the CFL restriction ∆t
h ≤ 1/2, the numerical values

(uni )xi,n≥0 satisfy the following:
• at the source point xS, unxS = 0 for any n ≥ 0.

3This is true because on each angular sector the maximum is reached by one of the terms
τeρ (xi)−τeρ (x)

||xi−x|| for x ∈ Ni or by the gradient of τeρ in this angular sector. If we take �e = x−xi
||x−xi|| , we

have
τeρ (xi)−τeρ (x)

||xi−x|| ≤ | (Du | �e) | ≤ ||Dτeρ ||, and the inequality follows.
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• 0 ≤ uni ≤ Kτeρ (xi) for any xi, tn = n∆t.
• For any i, the sequence (uni ) has a limit when n→ +∞, which is the solution
of 

Hρ(DT1u, . . . ,DT1u)− n(xi) = 0 for any xi,
uxS = 0 at xS ,
max

(Hbρ(DT1u, . . . ,DT1u)− n(xi),Kτeρ (xi)
)

on the boundary.

In particular, uni is independent of K and ρ when K ≥ maxΩ n(x).
Proof.
• 0 ≤ uni . This is obvious since the scheme is monotone and u0

i = 0.
• uni ≤ Kτeρ (xi). The previous results show that Kτeρ is a supersolution of (5.12)

when K ≥ maxΩ n(x). The uniqueness principle shows that uni ≤ Kτeρ (xi).
• At the source point, unxS = 0 . This is true for n = 0. Assume that unxS = 0.

Since 0 ≤ uni , and thanks to the monotonicity property ofHρ, we haveHρ ≤ 0
at xS . Since τeρ (xS) = 0, we have

un+1
xS = min(−∆tHρ + ∆tn(xS), 0) = 0.

The last statement is obvious by continuity.
By applying the result of Theorem 2.2, we conclude the following.
Proposition 5.3. The solution of the scheme

Hρ(DT1u, . . . ,DT1u)− n(xi) = 0 for any xi,
uxS = 0 at xS ,
max

(Hbρ(DT1u, . . . ,DT1u)− n(xi),Kτeρ (xi)
)

on the boundary

converges, as ρ→ 0, to the function (5.9) when Ω is smooth enough.

5.2.3. Numerical application. We have considered in numerical applications
[2] the index n given by a realistic model of the underground of the Gabon gulf, the
Marmousi model developed by the French Petroleum Institute (IFP). Since there is
no exact solution in closed form for this problem, it is probably more enlightening to
consider a more academical problem where an exact solution is known. The compu-
tational domain is represented in Figure 14, and the solution at any point M is the
distance between the point S and M . A mesh is displayed in Figure 15. The numer-
ical solution is shown in Figure 16. The boundary conditions are very well taken into
account: there is no boundary layer, and the isolines of the solution are orthogonal
to the circle, as they should be. In Figure 17, we display the isolines of the logarithm
of the error between the exact and the computed solutions.

6. Conclusion and summary. In this paper, we have described two ways of
discretizing boundary conditions for first order Hamilton–Jacobi equations for which
convergence can be proved. This is done through a boundary numerical Hamiltonian.
In the case of convex or concave Hamiltonians, we have given explicit formulas. In the
case of a coercive Hamiltonian, we have shown that the natural boundary conditions
prevent the appearance of numerical boundary layers. Then we have illustrated the
schemes by simple numerical examples. An extension to geophysics is also provided.

Appendix A. Some properties of monotone numerical schemes. The
aim of this section is to provide some properties of the maximum principle type for
monotone numerical schemes:
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Source

Fig. 14. Test case for the Soner/source boundary conditions. The Soner condition is imposed
everywhere except at the source.

Fig. 15. Zoom of the mesh around the source. Number of vertices: 5906; number of triangles:
11430.

• For steady problems,

Hρ(xi, uni , {unj , j ∈ Ni}) = 0.(A.1)

• For unsteady problems,

un+1
i = Gρ(xi, u

n
i , {unj , j ∈ Ni}; ∆t) = uni −∆tHρ

(
xi, u

n
i , {unj , j ∈ Ni}

)
.

(A.2)

These results are useful in section 4. The notation is the same as in section 3.
As in the continuous case, we say that a piecewise linear function u is a discrete

subsolution of (A.1) if we have

for any xi, Hρ(xi, u(xi), DT1u, . . . ,DTku) ≤ 0.

It is a supersolution of (A.1) if

for any xi, Hρ(xi, u(xi), DT1u, . . . ,DTku) ≥ 0.

Similarly, let R > 0 and ∆t ≤ ∆tR to ensure the monotonicity of the operator G
in (A.2). We say that u ∈ CR is a subsolution of the explicit scheme (A.2) if for all
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Fig. 16. Numerical solution.

Fig. 17. Isolines of log10(τ
exact − τnum), max = −1.82.

n ≥ 0,

for any xi,
un+1
i − uni

∆t
+Hρ(xi, un(xi), DT1u

n, . . . , DTku
n) ≤ 0.

v ∈ CR is a supersolution when the opposite inequality holds. The case of implicit
schemes is dealt with the same way.

A solution is obviously a sub- and supersolution, and by maximum principle we
understand the following: if u (resp., v) is a sub- (resp., super-)solution of (A.1) such
that for any xi on the boundary of Ωh we have

u(xi) ≤ v(xi),

then the same inequality is true for any node of Ωh. We say that there is a maximum
principle on (A.2) and (A.1) if when u and v are sub- and supersolutions of (A.2) and
(A.1) with uni ≤ vni on the boundary nodes of Ωh and for any node of Ωh at t = 0 or
tN , then uni ≤ vni everywhere.

We want to show that under the assumptions (H0)–(H1) or (H0)–(H2) below, we
have a maximum principle for some classes of schemes of the type

Gρ(xi, ξ; {ζl}l∈Ni) = 0.(A.3)
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(H0) The numerical Hamiltonian Hρ is monotone increasing in ζi and monotone
decreasing in ζl, l �= i, for any i. It also satisfies the following: for any i,
ξ ∈ R, and any (ζ1, . . . , ζk), Hρ is invariant by translation on the ζks.

(H1) For any R > 0, for any u, v such that −R ≤ v ≤ u ≤ R, for any p1, . . . , pk
vectors, and for any mesh point xi, we have

γR(u− v) ≤ Hρ(xi, u, p1, . . . , pk)−Hρ(xi, v, p1, . . . , pk).

Here, k is the number of triangles having xi as vertex.
(H2) The Hamiltonian Hρ is convex in the variables p1, . . . , pk, and there exists a

subsolution Φi, i = 1, . . . , ns, and α < 0 such thatHρ(xi, DT1Φ, . . . , DTkΦ) ≤
α for any i.

The assumptions (H1) and (H2) are only the discrete analogue of classical as-
sumptions on the Hamiltonian H.

Here, we provide a maximum principle for a monotone Hamiltonian and a fixed
mesh only. The arguments are too crude to pass to the limit.

A.1. Maximum principle in the steady case.
Theorem A.1. We assume that the scheme satisfies (H0) and (H1). If (ui)xi

and (vi)xi are sub- (super-)solutions of (A.3) in the interior nodes of Ωh and satisfy
ui ≤ vi on its boundary nodes, then ui ≤ vi everywhere.

Proof. Let R = maxxi,i=1,... ,ns(|ui|, |vi|) and xi0 be the mesh point where {ui −
vi}i reaches its maximum. Let us call this maximum M . If xi0 belongs to the
boundary, then M ≤ 0 and we are done. If xi0 is an interior point, then we have

φ = vi0 − ui0 + u = −M + u ≤ v

on Ωh, by assumption. Moreover, φ(xi0) = vi0 .
Since Hρ is monotone, we have

0 ≤ Gρ(xi0 , vi0 , vi1 , . . . , vik)

≤ Gρ(xi0 , vi0 , φ(xi1), . . . , φ(xik))

= Gρ(xi0 , φ(xi0), φ(xi1), . . . , φ(xik))

= Hρ(xi0 , DT1u, . . . ,DTku).

Then, since u is a subsolution, assuming M > 0, we have

γR(ui0 − vi0) ≤ Hρ(xi0 , ui0 ;DT1u, . . . ,DTku)−Hρ(xi0 , vi0 ;DT1u, . . . ,DTku) ≤ 0,

which is absurd.
Theorem A.2. Under (H0)–(H2), there is a maximum principle.
Proof. We consider u and v a sub- and supersolution of Hρ = 0 with u ≤ v on

the boundary of Ωh. We can assume that φ ≤ v on the boundary of Ωh, thanks to
(H0).

Let λ ∈ [0, 1] and uλi = λui + (1 − λ)φi. It is clear that uλ is a subsolution of
Hρ = (1−λ)α and uλ ≤ v on the boundary of Ωh. Let us assume that uλ− v reaches
its maximum Cλ at an interior point xi0 .

By assumption, we haveHρ(xi0 , vi0 , vi1 , . . . , vk) ≥ 0 andHρ(xi0 , uλi0 , uλi1 , . . . , uλk) ≤
(1− λ)α < 0. The same arguments as in the proof of Theorem A.1 show that

(1− λ)α ≥ Hρ(xi0 , uλi0 , uλi1 , . . . ) ≥ Hρ(xi0 , uλi0 , vi1 + Cλ, . . . ) = Hρ(xi0 , vi0 , vi1 , . . . ),
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and we have a contradiction. Thus, uλ − v is maximum on the boundary, and then

uλ ≤ v

in Ω. By taking the limit when λ→ 1, we conclude that u ≤ v in Ω.

A.2. Maximum principle in the unsteady case.
Theorem A.3. If the scheme (A.2) is monotone under ∆t ≤ ∆tR, then we

have a maximum principle. If un ∈ CR (resp., vn ∈ CR) is a subsolution (resp.,
supersolution) of (A.2) such that u0

i ≤ v0
i for all i and uni ≤ vni for each n ≥ 0 and

boundary node, then uni ≤ vni for all n ≥ 0 and i.
The same result holds for an implicit scheme.
Proof. We give the proof for the scheme (A.2). The proof for an implicit scheme is

the same. We proceed by induction on n. For n = 0, the result is true by assumption.
Since u0

i ≤ v0
i for the interior points and the boundary points, we have u1

i ≤ v1
i for

the interior nodes. By assumption, u1
i ≤ v1

i for the boundary points, and the result
follows by induction.

A.3. A uniqueness principle. We consider the scheme
Hbρ(xi, ui;ui, {ul, l ∈ Ni}) = 0 if xi interior node

max(Hρ(xi, ui;ui, {ul, l ∈ Ni}), ui − ϕ(xi)) = 0 otherwise,
(A.4)

which discretizes the Dirichlet problem

H(x, u(x), Du(x)) = 0 if x ∈ Ω,
u = φ otherwise.

We have the following result.
Theorem A.4. Under the assumptions (H0)–(H1) or (H0)–(H2) for Hρ and Hbρ,

if u (resp., v) is a subsolution (resp., supersolution) of (A.4), then ui ≤ vi for any
mesh point xi.

A direct consequence of this result is that if (A.4) has a solution, it is unique.
Proof. We consider M = maxxi(ui − vi), and we assume M > 0. Since the set xi

is finite, the maximum is reached at xi0 . If xi0 is not on the boundary, then we can
repeat the arguments for the discrete maximum principle. Thus we can assume that
xi0 is on the boundary, and we have

max(Hbρ(xi0 , ui0 ;ui0 , {ul, l ∈ Ni0}), ui0 − ϕ(xi0)) ≤ 0,
max(Hbρ(xi0 , vi0 ; vi0 , {vl, l ∈ Ni0}), ui0 − ϕ(xi0)) ≥ 0.

The conditions on u give

Hbρ(xi0 , ui0 ;ui0 , {ul, l ∈ Ni0}) ≤ 0 and ui0 ≤ ϕ(xi0).

Those on v give

Hbρ(xi0 , ui0 ;ui0 , {ul, l ∈ Ni0}) ≥ 0 or vi0 ≥ ϕ(xi0).

First case. ui0 ≤ ϕ(xi0) and vi0 ≥ ϕ(xi0). There is nothing to prove; M ≤ 0.
Second case. Hbρ(xi0 , ui0 ;ui0 , {ul, l ∈ Ni0}) ≤ 0 and Hbρ(xi0 , ui0 ;ui0 , {ul, l ∈ Ni0}) ≥

0. By using the same arguments as in the maximum principle, we get an
absurdity when M > 0.

Thus we have proved that M ≤ 0, i.e., ui ≤ vi for any xi.
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Abstract. This paper is devoted to the analysis and the approximation of parabolic hyperbolic
degenerate problems defined on bounded domains with nonhomogeneous boundary conditions. It
consists of two parts. The first part is devoted to the definition of an original notion of entropy
solutions to the continuous problem, which can be adapted to define a notion of measure-valued
solutions, or entropy process solutions. The uniqueness of such solutions is established. In the
second part, the convergence of the finite volume method is proved. This result relies on (weak)
estimates and on the theorem of uniqueness of the first part. It also entails the existence of a
solution to the continuous problem.
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1. Introduction. Let Ω be an open bounded polyhedral subset of R
d and T ∈

R
∗
+. Let us denote by Q the set (0, T )× Ω, and by Σ the set (0, T )× ∂Ω.
We consider the following parabolic-hyperbolic problem: ut + div(F (t, x, u))−∆ϕ(u) = 0, (t, x) ∈ Q,

u(0, x) = u0(x), x ∈ Ω,
u(t, x) = ū(t, x), (t, x) ∈ Σ .

(1)

Such an equation of quasilinear advection with degenerate diffusion governs the evolu-
tion of the saturation of the wetting fluid in the study of diphasic flow in porous media
[GMT96], [Mic01], [EHM01]. In that case, the function ϕ can be expressed using the
capillary pressure and the relative mobilities. The function ϕ is only supposed to be
a nondecreasing Lipschitz continuous function. In particular, the study of problem
(1) includes the study of nonlinear hyperbolic problems (cases where ϕ′ = 0).

The analysis of the approximation of nonlinear hyperbolic problems via the finite
volume (FV) method began in the mid 1980s, involving several authors including,
for example, Cockburn, Coquel, and LeFloch [CCL95], Szepessy [Sze91], Vila [Vil94],
Kröner, Rokyta, and Wierse [KRW96], and Eymard, Gallouët, and Herbin [EGH00].
Results on the convergence of FV schemes for degenerate problems in general came
to light in more recent years [EGHM02], [Ohl01]. See also [BGN00], [EK00] for other
methods of approximation.

When the function ϕ is strictly increasing, problem (1) is of parabolic type. In
that case, the existence of a unique weak solution is well known. In the case where
ϕ′ = 0, problem (1) is a nonlinear hyperbolic problem, the uniqueness of a weak
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solution is not ensured, and one has to define a notion of entropy solutions to recover
uniqueness [Kru70]. Therefore, it is quite difficult to define a notion of solution in the
case where ϕ is merely a nonincreasing function. In fact, as far as the Cauchy problem
in the whole space is concerned, such a definition has been done for a long time, since
Volpert and Hudjaev [VH69], but uniqueness with nonlinear parabolic terms has only
been proved recently by Carrillo [Car99] (see also [KO01], [KR00]).

Another difficulty in the study of degenerate parabolic problems is analysis of the
boundary conditions (see [LBS93], [RG99]). It is not always easy to give a correct
formulation of the boundary conditions, or of the way they have to be taken into
account. In the case where the function ϕ is strictly increasing, the classical framework
of variational solutions of parabolic equations is enough to satisfy this wish. In the
case where ϕ′ = 0, things are completely different. Even if the (entropy) solution u
of problem (1) admits a trace (say, γu) on Σ, the equality γu = u on Σ does not
necessarily hold. Actually, a condition on Σ can be given, which is known as the
BLN condition [BLN79]: this is the right way to formulate boundary conditions in
the study of scalar hyperbolic problems. However, the notion of entropy solution
to nonlinear Cauchy–Dirichlet hyperbolic problems given by Bardos, LeRoux, and
Nédélec is not really suitable to the study of FV schemes since it requires that the
solution u be in a space BV (because the trace of u is involved in the formulation of
the BLN condition), and it is known that it is difficult to get BV estimates on the
numerical approximations given by the FV method on non-Cartesian grids. Actually,
Otto gave an integral formulation of entropy solutions to scalar hyperbolic problems
with boundary conditions [Ott96], and this indeed allows us to prove the convergence
of the FV method [Vov02].

To our knowledge, the problem that we deal with (convergence of the FV method
for degenerate parabolic equations with nonhomogeneous boundary conditions) has
never been considered before. Nevertheless, in [MPT02], the authors give a definition
of entropy solution for which uniqueness and consistency with the parabolic approxi-
mation are proved. This definition is not completely in integral form and therefore not
suitable for proving the convergence of the FV method, since only poor compactness
results are available on the numerical approximation. That is why we give an origi-
nal definition of the problem (see Definition 3.1). This complete integral formulation
includes the definition of Otto but not exactly the one of Carrillo (see the comments
that follow Definition 3.1). It is well suited to the study of the convergence of several
approximations of problem (1) and is used, for example, in [GMT02] to prove the
convergence of a discrete Bhatnagar–Gross–Krook (BGK) model (see also [MPT02]
for the parabolic approximation).

Notice that some particular cases have been fully treated: in [EGHM02], the
authors prove the convergence of the FV method in the case where F (x, t, s) =
q(x, t)f(s), div(q) = 0, with q · n = 0 on Σ. In that case, the boundary condi-
tion does not act on the hyperbolic part of the equation. From a technical point of
view, this means that the influence of the boundary condition appears in the terms
related to the parabolic degenerate part of the equation. These parabolic degenerate
terms are estimated by following the methods of Carrillo in [Car99], who deals with
homogeneous boundary conditions. On the other hand, in [Vov02], the author proves
the convergence of an FV method in the case where ϕ′ = 0, adapting the ideas of Otto
[Ott96]. In that case, the effects of the boundary condition in the hyperbolic equation
are the center of the work. In this paper we mix these two precedent approaches to
deal with the parabolic degenerate problem with general boundary conditions.
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We will make the following assumptions on the data:

(H1) F : (t, x, s) �→ F (t, x, s) ∈ C1(R+ × R
d × R) , divxF = 0,

∂F

∂s
is locally Lipschitz continuous uniformly with respect to (t, x);

(H2) ϕ : s �→ ϕ(s) is a nondecreasing Lipschitz continuous function;

(H3) u0 : x �→ u0(x) ∈ L∞(Ω); and
(H4) the function ū : (x, t) �→ ū(x, t) ∈ L∞(Σ) and is the trace of a function

ū ∈ L∞(Q)with ϕ(ū) ∈ L2(0, T ;H1(Ω)) .

To prove the convergence of the FV method, we will also assume that the bound-
ary datum satisfies

(H5) the function ū : (x, t) �→ ū(x, t) ∈ L∞(Σ) and is the trace of a function
ū ∈ L∞(Q) with ϕ(ū) ∈ L2(0, T ;H1(Ω)) , ∇ū ∈ L2(Q) , ūt ∈ L1(Q) .

In the course of the proof of uniqueness of the entropy process solution (Theorem
4.1), additional hypotheses on the boundary datum are required. Using the notation
defined in subsection 4.1, they read

(H6) uΣ ∈W 1,1((0, T )×B ∩Q) and ∆ϕ(uΣ) ∈ L1((0, T )×B ∩Q) .
Remark 1.1. As suggested by Porretta [MPT02], hypothesis (H6) may be relaxed

as

(H6Bis) uΣ ∈W 1,1((0, T )×B ∩Q) and

∆ϕ(uΣ) is a bounded Radon measure on (0, T )×Π .
We do not give a justification of this assertion now. Indeed, hypothesis (H6) is involved
in the proof of Lemma 4.2, and we have waited until Remark 4.1, just after this proof,
to specify to what extent hypothesis (H6Bis) is admissible.

Under assumptions (H3)–(H4), there exists (A,B) ∈ R
2 such that

A ≤ min
(
ess inf

Ω
(u0), ess inf

Q
(ū)

)
≤ max

(
ess sup

Ω
(u0), ess sup

Q
(ū)

)
≤ B,(2)

and we set

M = max

{∣∣∣∣∂F∂s (t, x, s)
∣∣∣∣ , (t, x, s) ∈ Q× [A,B]} .

We introduce the function ζ defined by ζ ′ =
√
ϕ′. (This makes sense in view of (H2).)

We will derive L2(0, T ;H1) estimates on nonlinear quantities such as ζ(u). A simple
explanation for this fact is the following. Consider the equation ut −∆ϕ(u) = 0 on
(0, T ) × Ω. Multiply it by u, and sum the result with respect to x ∈ Ω. The formal
identity

∫
Ω
∇ϕ(u) · ∇u = ∫

Ω
|∇ζ(u)|2 then leads to 1

2
d
dt

∫
Ω
u2dx +

∫
Ω
|∇ζ(u)|2 ≤ 0,

from which can be derived an energy estimate.
Notice that the hypothesis divxF = 0 can be relaxed, and source terms can be

considered in the right-hand side of (1).
The assumption that ū is the trace of an L∞ function ū such that ϕ(ū) ∈

L2(0, T ;H1(Ω)) is a necessary condition for the existence of solutions to problem (1);
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the additional hypotheses introduced in (H5) are involved in the proofs of different
estimates on the approximate solution, defined thanks to the FV method.

As implied at the beginning of this introduction, one of the main points in the
study of problem (1) is the definition of a notion of solution suitable for the classical
techniques of convergence of FV schemes. This point is specified in section 2. In
section 3, we introduce and define a notion of entropy process solutions (a concept
similar to the concept of measure-valued solutions), and in section 4 we prove the
uniqueness of such solutions (see Theorem 4.1). Section 5 is devoted to the FV scheme
used to approximate problem (1); a priori estimates are derived and the convergence
is proved.

2. Entropy weak solution. Here, as in the study of purely hyperbolic prob-
lems, the concept of weak solutions is not sufficient since the uniqueness of such solu-
tions may fail. Thus, we turn to the notion of weak entropy solutions. The entropy-
flux pairs considered in the definition of this solution are the so-called Kruzhkov semi
entropy-flux pairs (η±κ ,Φ

±
κ ) (see [Car99], [Ser96], [Vov02]). They are defined by the

formula{
η+
κ (s) = (s− κ)+ = s�κ− κ,
η−κ (s) = (s− κ)− = κ− s⊥κ,

{
Φ+
κ (t, x, s) = (s− κ)+ = F (t, x, s�κ)− F (t, x, κ),
Φ−κ (t, x, s) = (s− κ)− = F (t, x, κ)− F (t, x, s⊥κ),

with a�b = max(a, b) and a⊥b = min(a, b). Notice that, in the case where κ is con-
sidered as a variable, for example when the doubling variable technique of Kruzhkov
is used, the entropy-fluxes will be written

Φ+(x, t, s, κ) = Φ+
κ (t, x, s) and Φ−(x, t, s, κ) = Φ−κ (t, x, s).

Definition 2.1 (entropy weak solution). A function u of L∞(Q) is said to be
an entropy weak solution to problem (1) if it is a weak solution of problem (1), that
is, if ϕ(u)− ϕ(u) ∈ L2(0, T ;H1

0 (Ω)) and

∀θ ∈ C∞c ([ 0, T )× Ω) ,(3) ∫
Q

u θt + (F (t, x, u)−∇ϕ(u)) · ∇θ dx dt +

∫
Ω

u0 θ(0, x) dx = 0,

and if it satisfies the following entropy inequalities for all κ ∈ [A,B], for all ψ ∈
C∞c ([ 0, T )× R

d) such that ψ ≥ 0 and sgn±(ϕ(u)− ϕ(κ))ψ = 0 a.e. on Σ:∫
Q

η±κ (u)ψt + (Φ
±
κ (t, x, u)−∇ (ϕ(u)− ϕ(κ))

±
) · ∇ψ dx dt +

∫
Ω

η±κ (u0)ϕ(0, x) dx

+M

∫
Σ

η±κ (ū)ψ dγ(x) dt ≥ 0.(4)

Notice that the weak equation (3) is superfluous, for it is a consequence of (4).
However, if the function ϕ were (strictly) increasing, (3) would be enough to define
a notion of the solution of problem (1) for which existence and uniqueness hold: in
that case, problem (1) would merely be a nonlinear parabolic problem. For general
ϕ, the uniqueness of the solution will be a consequence of the entropy inequalities (4);
indeed, the class of Kruzhkov semi entropy-flux pairs is wide enough to ensure the
uniqueness of the weak entropy solution, while—and we stress this fact—the class of
classical Kruzhkov entropy-flux pairs s �→ |s− κ| is not.
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Also notice that, first, in the homogeneous case ū = 0, the previous definition
is slightly different from the original definition given by Carrillo [Car99] and that,
second, if ϕ′ = 0 (problem (1) becomes hyperbolic), then the previous definition of
the entropy solution coincides with the definition of a solution suitable for hyperbolic
problems; see Otto [Ott96] and [Vov02]. A notion of an entropy solution for degenerate
parabolic problems with nonhomogeneous boundary conditions has also been defined
by Mascia, Porretta, and Terracina in [MPT02]. It is interesting to notice that, in
their definition, they directly require that the entropy condition satisfy the entropy
condition on the boundary (14) as stated in Proposition 4.1. We prove that this
property (14) is, in fact, a consequence of the entropy inequalities (4) and then follow
the main lines of the uniqueness theorem proved in [MPT02].

3. Entropy process solution. The proof of the existence of a weak entropy
solution to problem (1) lies in the study of the numerical solution uD defined by an
FV method for problem (1) (see section 5.2). Theorem 5.1 states that the numerical
solution satisfies approximate entropy inequalities (see (50)), but the bounds on uD
(a bound in L∞(Q) and a bound on the discrete H1-norm of ϕ(uD)) do not give
strong compactness, only weak compactness. Therefore, in order to be able to take
the limit of the nonlinear terms of uD (as Φ±κ (uD), in particular), we have to turn
to the notion of measure-valued solutions (see DiPerna [DiP85], Szepessy [Sze91]) or,
equivalently, to the notion of entropy process solution defined by Eymard, Gallouët,
and Herbin [EGH00]. In light of the following theorem, it appears that the notion of
entropy process solution is indeed well suited to compensate for the weakness of the
compactness estimates on the approximate solution uD and to deal with nonlinear
expressions of uD.

Theorem 3.1 (nonlinear convergence for the weak-� topology). Let O be a
Borel subset of R

m, R be positive, and (un) be a sequence of L∞(O) such that, for
all n ∈ N, ||un||L∞ ≤ R. Then there exists a subsequence, still denoted by (un) and
µ ∈ L∞(O × (0, 1)), such that

∀g ∈ C(R), g(un) −→
∫ 1

0

g(µ(., α)) dα in L∞(O) weak- � .

Now the notion of an entropy process solution can be defined.
Definition 3.1 (weak entropy process solution). Let u be in L∞(Q × ( 0, 1)).

The function u is said to be an entropy process solution to problem (1) if

ϕ(u)− ϕ(u) ∈ L2(0, T ;H1
0 (Ω))(5)

and if u satisfies the following entropy inequalities for all κ ∈ [A,B], for all ψ ∈
C∞c ([ 0, T )× R

d) such that ψ ≥ 0 and sgn±(ϕ(u)− ϕ(κ))ψ = 0 a.e. on Σ:∫
Q

∫ 1

0

η±κ (u(t, x, α))ψt(t, x)

+
(
Φ±κ (t, x, u(t, x, α))−∇ (ϕ(u)(t, x)− ϕ(κ))

±
)
· ∇ψ(t, x)dαdxdt

+

∫
Ω

η±κ (u0)ψ(0, x) dx +M

∫
Σ

η±κ (ū)ψ dγ(x)dt ≥ 0 .(6)

Notice that if the function u is an entropy process solution of problem (1), then
it satisfies condition (5), which means in particular that ϕ(u) does not depend on the
last variable α and is denoted by ϕ(u)(t, x).
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Notation. We set Q = Q× (0, 1).
We will now show that any entropy process solution actually reduces to an entropy

weak solution.

4. Uniqueness of the entropy process solution.
Theorem 4.1 (uniqueness of the entropy process solution). Let u, v ∈ L∞(Q×

(0, 1)) be two entropy process solutions of problem (1) in accordance with Definition
3.1. Suppose that Ω is either a polyhedral open subset of R

d or a strong C1,1 open
subset of R

d, and assume hypotheses (H1), (H2), (H3), (H4), and (H6) (or (H6Bis)).
Then there exists a function w ∈ L∞(Q) such that

u(t, x, α) = w(t, x) = v(t, x, β) for almost every (t, x, α, β) ∈ Q× ( 0, 1)2 .
Corollary 4.1 (uniqueness of the weak entropy solution). If Ω is either a

polyhedral open subset of R
d or a strong C1,1 open subset of R

d, and under hypotheses
(H1), (H2), (H3), (H4), and (H6) (or (H6Bis)), problem (1) admits at most one weak
entropy solution.

In the case where Ω is a polyhedral open subset of R
d, the proof of Theorem 4.1

is slightly more complicated than the proof in the case where Ω is a strong C1,1 open
subset of R

d. Besides, although the study of the FV method applied to (1) relies
on Theorem 4.1 only in the case of Ω polyhedral, we wish to specify the validity of
Theorem 4.1 when Ω is C1,1. Indeed, problem (1) may of course be posed on such
an open set, and, in that case, Theorem 4.1 would be one of the major steps in the
proof of the convergence of such an approximation, as for the vanishing viscosity
approximation, for example.

We therefore explain the proof of Theorem 4.1 in the case where Ω is C1,1 and
then indicate how to adapt it to the case where Ω is a polyhedral open subset of R

d

(see subsection 4.6).

4.1. Proof of Theorem 4.1: Definitions and notation.

4.1.1. Localization near the boundary. We suppose that Ω is a strong C1,1

open subset of R
d. In that case, there exists a finite open cover (Bν)0,... ,N of Ω and a

partition of unity (λν)0,... ,N on Ω subordinate to (Bν)0,... ,N such that, for ν ≥ 1, up
to a change of coordinates represented by an orthogonal matrix Aν , the set Ω∩Bν is
the epigraph of a C1,1-function fν : R

d−1 → R; that is,

Ω ∩Bν = {x ∈ Bν ; (Aν x)d > fν(Aν x)} and

∂Ω ∩Bν = {x ∈ Bν ; (Aν x)d = fν(Aν x)} ,
where y stands for (yi)1,d−1 if y ∈ R

d.
Until the end of the proof of Theorem 4.1, the problem will be localized with the

help of a function λν . We drop the index ν and, for the sake of clarity, suppose that
the change of coordinates is trivial: A = Id. We denote by Π = {x̄, x ∈ Ω∩B} ⊂ R

d−1

the projection of B ∩ Ω onto the (d − 1) first components, and Πλ = {x̄, x ∈ supp
(λ)∩Ω} (see Figure 1). If a function ψ is defined on Σ, we denote by ψΣ the function
defined on [0, T ) × B ∩ Q by ψΣ(t, x) = ψ(t, x̄, f(x)). Notice that the function ψΣ

does not depend on xd and that, by abusing the notation, we shall also denote by ψΣ

the restriction of ψΣ to [0, T )×Π. In the same way, if Li is defined on [0, T ]×Π, we
also denote by Li the function defined on [0, T )×B ∩Q by Li(t, x) = Li(t, x).

4.1.2. Weak notion of trace. An important step in the proof of the uniqueness
of entropy process solutions is the derivation of the condition satisfied by any entropy
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Fig. 1. Localization by λ in the ball B.

process solution on the boundary of the domain. This condition is the matter of
Proposition 4.1. (It can be viewed as a kind of BLN condition [BLN79], balanced
by second order terms issued from the degenerate parabolic part of the equation of
(1).) In the course of the proof of Proposition 4.1, we need to define the normal trace
of certain fluxes (Φ+

κ (t, x, u) − ∇(ϕ(u) − ϕ(κ))+, among others, for example) and,
more precisely, to ensure the consistency of this definition of the normal trace with
different approximations. For that purpose, we turn to the work of Chen and Frid
[CF02]. Adapted to our context, the main theorem of [CF02] is the following.

Theorem 4.2 (see Chen and Frid [CF02]). Recall that Q = (0, T )×Ω, and denote
by ν the outward unit normal to Q. Let F ∈ (L2(Q))d+1 be such that divF is a bounded
Radon measure on Q. Then there exists a linear functional Tν on W 1/2,2(∂Q)∩C(∂Q)
which represents the normal traces F · ν on ∂Q in the sense that, first, the following
Gauss–Green formula holds: for all ψ ∈ C∞c (Q),

〈Tν , ψ〉 =
∫
Q

ψ divF +
∫
Q

∇ψ · F .(7)

Second, 〈Tν , ψ〉 depends only on ψ|∂Q, while, third, if (B, λ, f) is as above (subsection
localization near the boundary), then for all ψ ∈ C∞c ([0, T )× Ω),

〈Tν , ψλ〉 = − lim
s→0

1

s

∫ T

s

∫
Π

∫ f(x)+s

f(x)

F ·
 −∇f(x)

1
0

 ψλdxd dx dt(8)

+

∫ s

0

∫
Ω

F ·
 0
0
1

 ψλdx dt

 .

Let u be an entropy weak solution of problem (1). The entropy inequality (4)
shows that the divergence of the field

F+
κ (t, x) =

(
(u− κ)+

Φ+
κ (t, x, u)−∇(ϕ(u)− ϕ(κ))+

)
is a bounded Radon measure on Q. This field belongs to (L2(Q))d+1, and according
to the previous theorem, there exists a linear functional T +

ν,κ on W
1/2,2(∂Q) ∩ C(∂Q)

which represents F+
κ (t, x) · ν. Then, to define a notion of the normal trace of the flux
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Φ+
κ (t, x, u)−∇(ϕ(u)− ϕ(κ))+, we set

〈T +
n,κ, ψ〉 = 〈T +

ν,κ, ψ〉+
∫

Ω

(u0 − κ)+ψ(0, x) dx ∀ψ ∈ C∞c ([0, T )× Ω) .(9)

This definition makes sense because the entropy weak solution assumes the values of
the initial data u0:

lim
s→0

1

s

∫ s

0

∫
Ω

(u− κ)+ψ dx dt =

∫
Ω

(u0 − κ)+ψ(0, x) dx ,

as can be seen by choosing s−t
s χ(0,s)(t)ψ as a test-function in (4). In particular,

〈T +
n,κ, ψλ〉 depends only on ψ|Σ, and from (8) we can derive the formula
〈T +

n,κ, ψλ〉

= − lim
s→0

1

s

∫ T

s

∫
Π

∫ f(x)+s

f(x)

(Φ+
κ (t, x, u)−∇(ϕ(u)− ϕ(κ))+) ·

(−∇f(x)
1

)
ψλdxd dx dt

for all ψ ∈ C∞c ([0, T )× Ω).
4.1.3. Mollifiers ρn and the cut-off function ωε. Technically, the heart of

the proof of uniqueness is the doubling of variables. This technique involves mollifiers,
which are defined as ρn(t) = nρ(nt), where ρ is a nonnegative function of C∞c (−1, 0)
such that

∫ 0

−1
ρ(t) dt = 1. (Notice that the the support of the function ρ is located to

the left of zero.) For ε a positive number, ρε naturally denotes the map t �→ 1
ερ(

t
ε ),

and we define Rn(t) =
∫ −t
−∞ ρn(s) ds. Since the technique of doubling of variables

interferes with a certain evaluation of the boundary behavior of the entropy process
solution (described by (14)), we need to define a cut-off function ωε built upon the
sequence of mollifiers. We set

ωε(x) =

∫ 0

f(x)−xd

ρε(z) dz =

∫ 0

f(x)−xd
ε

ρ(z) dz.(10)

On Ω∩B, the function ωε vanishes in a neighborhood of ∂Ω and equals 1 if dist(x, ∂Ω) >
ε; in particular, ωε → 1 in L1(Ω ∩B) and, if ψ ∈ H1(Ω), then∫

Ω

λψ · ∇ωε = −
∫

Ω

div(λψ)ωε
ε→0→ −

∫
Ω

div(λψ) = −
∫
∂Ω

λψ · n .

Roughly speaking, if F : Ω→ R
d, then −F · ∇ωε approaches the normal trace F · n.

To make this idea more precise, for the field F = Φ+
κ (t, x, u) − ∇(ϕ(u) − ϕ(κ))+

we call upon the notion of normal trace defined above (subsection 4.1.2). Let ψ ∈
C∞c ([0, T ) × Ω). Since ψ = ψ(1 − ωε) on Σ, 〈T +

n,κ, ψλ〉 = 〈T +
n,κ, ψλ(1 − ωε)〉. The

definition of T +
n,κ (see (9)) and the Gauss–Green formula (7) yield

〈T +
n,κ, ψλ〉 =

∫
Q

ψ(1−ωε)λ divF+
κ +

∫
Q

∇(ψ(1−ωε)λ)·F+
κ +

∫
Ω

(u0−κ)+ψ(1−ωε)λ dx.

Since 0 ≤ 1 − ωε ≤ 1 and ωε(x) → 1 for all x ∈ Ω ∩ B, the dominated convergence
theorem ensures that limε→0

∫
Q
ψ(1− ωε)λ divF+

κ = 0 and

〈T +
n,κ, ψλ〉 = − lim

ε→0

∫
Q

[Φ+
κ (t, x, u)−∇(ϕ(u)− ϕ(κ))+] · ∇ωε ψλdx dt .
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4.1.4. Otto entropy-fluxes. Let u ∈ L∞(Q × ( 0, 1)) be an entropy process
solution of problem (1) and κ ∈ [A,B]. Set Φ = Φ++Φ−. We denote by Gx(t, x, u, κ)
the quantity

Gx(t, x, u, κ) = Φ(t, x, u(t, x, α), κ)−∇x|ϕ(u)(t, x)− ϕ(κ)| .(11)

For w ∈ R, the function Fϕ is defined by the formula

Fϕ(t, x, u, κ, w) = Gx(t, x, u, κ) + Gx(t, x, u, w)− Gx(t, x, κ, w) .(12)

4.2. A result of approximation.
Lemma 4.1. Let U be a bounded open subset of R

q, q ≥ 1. If f ∈ L∞ ∩BV (U),
then, given ε > 0, there exists g ∈ C(U) such that

g ≥ f a.e. on U and

∫
U

(g(x)− f(x)) dx < ε .

This result may be false if f /∈ BV (U) (consider f = 11Q∩(0,1) on U = (0, 1)), but
this is not a necessary condition, because, on U = (0, 1), the function f = 11K , where
K is the triadic Cantor, can be approximated in L1(0, 1) by continuous functions g
such that g ≥ f a.e. Indeed, we claim that, if E is a measurable subset of U , then
f = 11E satisfies the conclusion of Lemma 4.1 if and only if

m(E) = inf {m(K) ; E ⊂ K , K compact} .(13)

(Here, m denotes the Lebesgue measure on R
q.)

Before proving Lemma 4.1, let us justify this assertion. If (13) holds, then, given
ε > 0, there exists a compact K of U such that E ⊂ K and m(K \ E) < ε. Since
the Lebesgue measure is regular, there exists an open subset V of U such that K ⊂
V ⊂ V ⊂ U and m(V \K) < ε. Then the function g : x �→ d(x,Rq \ V )/(d(x,K) +
d(x,Rq \ V )) is continuous on R

q, g ≥ 11E , and
∫
U
(g − 11E) < 2ε.

Conversely, suppose that, given ε > 0, there exists g ∈ C(U) such that g ≥ 11E
and

∫
U
(g − 11E) < ε. Then K = {x ∈ U ; g(x) ≥ 1} is compact, E ⊂ K, and

m(K \ E) < ε.
Proof of Lemma 4.1. Notice that, if E is a measurable subset of U such that

m(∂E) = 0, then (13) holds (consider the compact E). If E is a level set of a BV
function, then E has almost surely a finite perimeter and, consequently, m(∂E) = 0,
which ensures that 11E satisfies the conclusion of Lemma 4.1. This result may be seen
as the heart of the proof. Indeed, first suppose that 0 ≤ f(x) ≤ 1 for every x ∈ U .
For t ∈ [0, 1], set Et = {x ∈ U ; f(x) < t}. Then, for almost every t, Et is a set
with finite perimeter since f ∈ BV (U). Let (tn) be a sequence of reals dense in [0, 1]
and such that t1 = 1; Etn is a set with finite perimeter for every n. We will define a
sequence of simple functions θn =

∑n
i=1 α

n
i 11An

i
which approximate f from above and

such that each set An
i is built upon the level sets Eti . To that purpose, first define

θ1(x) = 1 for all x ∈ U . If n > 1, let {k1, . . . , kn} be an enumeration of {1, . . . , n}
such that tk1 > · · · > tkn . Set

An
i = Etki

\ Etki+1
if 1 ≤ i < n ,

An
n = Etkn

and θn =
∑n

i=1 tki 11An
i
. Notice that (An

i )1≤i≤n is a partition of U and that A
n
i ⊂ Etki

;
therefore, if x ∈ U , say x ∈ An

i , then θn(x) = tki
> f(x) and θn ≥ f . Besides,
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the sequence (Etki
)1≤i≤n is decreasing, and this, together with the definition of An

i ,
ensures that θn(x) ≤ ti if x ∈ Eti for 1 ≤ i ≤ n. Now, given x ∈ U and ε > 0,
there exists n0 such that f(x) + ε > tn0

> f(x). Then, for every n ≥ n0, x ∈ Etn0

and, consequently, θn(x) ≤ tn0 < f(x) + ε. Thus, (θn) converges to f everywhere on
U (in fact, the convergence is monotone, but we do not prove this fact), and, since
0 ≤ θn ≤ 1, the dominated convergence theorem shows that

lim
n→+∞

∫
U

θn − f = 0 .

However, for each fixed n, the function θn satisfies the conclusion of the lemma.
Indeed, let ε > 0 be fixed. Since Etki+1

⊂ Etki
, we have 11An

i
= 11Etki

− 11Etki+1
.

The functions 11Etki
and 11Etki+1

are in BV (U), by the definition of a set with finite

perimeter. Thus 11An
i
is BV too, and An

i is a set with finite perimeter. As noticed

in the beginning of the proof, An
i satisfies (13), and there exists gi ∈ C(U) such that

gi ≥ tki 11An
i
and

∫
U
(gi − tki

11An
i
) < ε/n. Moreover, we can suppose that gi ≤ tki for

every i. Set g = max1≤i≤n gi. The function g is continuous on U , and g ≥ θn on U
by construction. It remains to compute ||g − θn||L1(U). If x ∈ An

i , then gi(x) = tki
,

and the condition gj ≤ tkj
enforces the maximum of the gj(x) to be reached for

j ∈ {i, . . . , n}. We then have

(g − θn)(x) = gj(x)− tki ≤ gj(x)− tkj 11An
j
(x).

Indeed, if j = i, this is obvious, and if j > i, we have 11An
j
(x) = 0, while tki ≥ 0.

Consequently, (g− θn)(x) ≤
∑n

i=1(gj − tkj 11An
j
)(x) and

∫
U
(g− θn) < n× ε/n = ε. If

n has been chosen such that
∫
U
(θn − f) < ε, then g is relevant to the conclusion of

the lemma.
We suppose that 0 ≤ f(x) ≤ 1 for every x ∈ U . For a general function f ∈

L∞∩BV (U), we can suppose, after an adequate modification of the function on a set
of negligible measure, that −M ≤ f(x) ≤M for every x ∈ U , where M = ||f ||L∞(U).
Then we consider the function f1 = (f + M)/(2M). Given ε > 0, there exists
g1 ∈ C(U) such that g1(x) ≥ f1(x) and ||g1 − f1||L1(U) < ε/(2M) and g = 2Mg1 −M
is convenient.

4.3. Proof of Theorem 4.1 (preliminary): Boundary condition.
Proposition 4.1 (boundary condition). Let u ∈ L∞(Q × ( 0, 1)) be an entropy

process solution of problem (1), and let Fϕ be defined by (12). Assume hypotheses
(H1), (H2), (H3), (H4), and (H6) (or (H6Bis)). Then, for all κ ∈ [A,B], for all
nonnegative ψ ∈ C∞c ([ 0, T )× R

d),

lim
ε→0

∫
Q
Fϕ(t, x, u(t, x, α), κ, uΣ(t, x)) · ∇ωε(x)ψ(t, x)λ(x) dα dx dt ≤ 0 .(14)

In the case of a purely hyperbolic problem (ϕ′ = 0), inequality (14) is the bound-
ary condition written by Otto [Ott96], equivalent to the BLN condition [BLN79] for
BV solutions. If the problem is strictly parabolic (that is, ϕ′(u) ≥ Φmin > 0),
then inequality (14) is trivially satisfied by any weak solution of the problem (1). In
[MPT02], the condition (14) is listed among the conditions that an entropy solution
should satisfy by definition. We refer to [MPT02] for a complete discussion of (14).
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Proof of Proposition 4.1. We first aim to prove the following result: for every
κ̃ ∈ [A,B], for every nonnegative ψ ∈ C∞c ([0, T )× R

d),

(15)

lim
ε→0

∫
Q
[Φ+(t, x, u, κ̃�uΣ)−∇(ϕ(u)− ϕ(κ̃�uΣ))

+] · ∇ωε(x)ψ(t, x)λ(x) dα dx dt ≤ 0.

Fix κ̃ ∈ [A,B]. In subsections 4.1.2 and 4.1.3, we defined a notion of normal trace for
the flux Φ+

κ (t, x, u)−∇(ϕ(u)−ϕ(κ))+ when u is an entropy weak solution of problem
(1). Of course, the same can be done when u is an entropy process solution of problem
(1); this time just consider the field F+

κ defined by

F+
κ =

( ∫ 1

0
(u− κ)+ dα∫ 1

0
(Φ+

κ (t, x, u)−∇(ϕ(u)− ϕ(κ))+)dα

)
.

Moreover, if T +
n,κ still denotes the normal trace of the spatial part of F+

κ , for all

ψ ∈ C∞c ([ 0, T )× R
d),

〈T +
n,κ, ψλ〉

(16)

=− lim
s→0

1

s

∫ T

s

∫ 1

0

∫
Π

∫ f(x)+s

f(x)

(Φ+
κ (t, x, u)−∇(ϕ(u)− ϕ(κ))+) ·

(−∇f(x)
1

)
ψλdxd dx dt dα

and

〈T +
n,κ, ψλ〉 = − lim

ε→0

∫
Q
[Φ+

κ (t, x, u)−∇(ϕ(u)− ϕ(κ))+] · ∇ωε ψλdx dt dα .(17)

Therefore, if ψ is a nonnegative function of C∞c ([ 0, T ) × R
d) such that sgn+(ϕ(ū) −

ϕ(κ))ψ = 0 a.e. on (0, T )× ∂Ω, then, choosing ψ(1−ωε) as a test-function in (6), we
get

−〈T +
n,κ, ψλ〉 ≤M

∫
Σ

(u− κ)+ ψ λdγ(x) dt .(18)

Now, we intend to define a notion of normal trace for the flux Φ+(t, x, u, uΣ�κ̃) −
∇(ϕ(u)− ϕ(uΣ�κ̃))+. To that purpose, we set

F+
=

( ∫ 1

0
(u− uΣ�κ̃)+ dα∫ 1

0
(Φ+(t, x, u, uΣ�κ̃)−∇(ϕ(u)− ϕ(uΣ�κ̃))+)dα

)
,(19)

and we prove the following lemma.
Lemma 4.2. Let u ∈ L∞(Q × ( 0, 1)) be an entropy process solution of problem

(1), and let the field F+ ∈ (L2((0, T ) × B ∩ Q))d+1 be defined by (19). Assume
hypotheses (H1), (H2), (H3), (H4), and (H6) (or (H6Bis)). Then, for every open

subset D of B such that D ⊂ B, the divergence of F+
is a bounded Radon measure

on (0, T )×D ∩Q.
Proof of Lemma 4.2. Set g = ∂t uΣ+divx F (t, x, uΣ)−∆ϕ(uΣ) . From hypothesis

(H6) we have g ∈ L1((0, T )×B ∩Q), and the function uΣ (which, we recall, belongs
to W 1,1((0, T )× B ∩Q))) can be seen as an entropy solution of the equation ∂t w +
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divx F (t, x, w) − ∆ϕ(w) = g with unknown w. The identity (uΣ�κ̃ − κ)− = (uΣ −
κ)− − (uΣ − κ̃⊥κ)− ensures that the function uΣ�κ̃ satisfies the entropy inequality∫

Q

[
(uΣ�κ̃− κ)− θt + [Φ−(t, x, uΣ�κ̃, κ)−∇(ϕ(uΣ�κ̃)− ϕ(κ))−] · ∇θ ] dα dx dt

+

∫
Ω

(uΣ�κ̃(0, x)− κ)− θ(0) dx +
∫
Q
sgn−(uΣ�κ̃− κ) g θ dx dt dα ≥ 0

for every κ ∈ [A,B] and nonnegative function θ ∈ C∞c ([0, T ) × B ∩ Q). Now we use
a result of comparison and assert that, for any nonnegative function θ ∈ C∞c ([0, T )×
B ∩Q), we have∫
Q

[
(u− uΣ�κ̃)+ θt + [Φ

+(t, x, u, uΣ�κ̃)−∇(ϕ(u)− ϕ(uΣ�κ̃))+] · ∇θ
]
dα dx dt

+

∫
Ω

(u0 − uΣ�κ̃(0, x))+ θ(0) dx +

∫
Q
sgn+(u− uΣ�κ̃) g θ dx dt dα ≥ 0.(20)

This result of comparison, proved in [Car99] for entropy weak solution, remains true
when applied to entropy process solutions. Notice that we state a result of comparison
inside [0, T )×Ω (the previous function θ vanishes on [0, T )×∂Ω); this point is crucial.
A result of comparison on the whole domain Q is the object of Theorem 4.1, which
we are actually proving. As a matter of fact, we would like to rule out the hypothesis
that θ vanishes on [0, T )× ∂Ω. Toward that end, first notice that (20) is still true if
θ ∈ C1

c ([0, T )× (B∩Ω)) and θ = 0 on [0, T )× (B∩∂Ω). Let θ̃ ∈ C∞c ([0, T )× (B∩Ω)),
define, for s > 0, hs(x) = min([xd − f(x)]/s, 1), and choose θ = θ̃ hs in (20) to get

∫
Q

[
(u− uΣ�κ̃)+ θ̃t + [Φ

+(t, x, u, uΣ�κ̃)−∇(ϕ(u)− ϕ(uΣ�κ̃))+] · ∇θ̃
]
hs dα dx dt

(21)

+

∫
Ω

(u0 − uΣ�κ̃(0, x))+ θ̃(0)hs dx +

∫
Q
sgn+(u− uΣ�κ̃) g θ̃ hs dx dt dα ≥ As +Bs,

where

As = −1
s

∫ T

0

∫ 1

0

∫
Π

∫ f(x)+s

f(x)

Φ+(t, x, u, uΣ�κ̃) · ∇x(xd − f(x)) θ̃ dxd dx dt dα,

Bs =
1

s

∫ T

0

∫
Π

∫ f(x)+s

f(x)

∇(ϕ(u)− ϕ(uΣ�κ̃))+ · ∇x(xd − f(x)) θ̃ dxd dx dt.

Let C be a bound of Φ+(t, x, z, w) · ∇x(xd− f(x)) in L∞(Q× [A,B]2). Such a bound
exists and, for every s,

As ≥ −C T |Π| ||θ̃||L∞([0,T )×(B∩Ω)) .(22)

On the other hand, the term Bs can be decomposed as Bs = Bs +Bd
s , where

Bs = −1
s

∫ T

0

∫
Π

∫ f(x)+s

f(x)

∇x(ϕ(u)− ϕ(uΣ�κ̃))+ · ∇xf(x) θ̃ dxd dx dt,

Bd
s =

1

s

∫ T

0

∫
Π

∫ f(x)+s

f(x)

∂xd
(ϕ(u)− ϕ(uΣ�κ̃))+ θ̃ dxd dx dt.
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Integration by parts with respect to x in Bs and integration by parts with respect to
xd in B

d
s (we use the fact that ϕ(u)(t, x, f(x)) = ϕ(uΣ)(t, x)) yields the following: for

almost every positive s (small enough),

Bs =
1

s

∫ T

0

∫
Π

∫ f(x)+s

f(x)

(ϕ(u)− ϕ(uΣ�κ̃))+divx∇xf(x) θ̃ dxd dx dt,

Bd
s = −1

s

∫ T

0

∫
Π

∫ f(x)+s

f(x)

(ϕ(u)− ϕ(uΣ�κ̃))+ ∂xd
θ̃ dxd dx dt

+
1

s

∫ T

0

∫
Π

(ϕ(u)− ϕ(uΣ�κ̃))+(t, x, f(x) + s) θ̃(x, f(x) + s)dx dt.

Notice that, first, the second term on the right-hand side of the previous equal-

ity in nonnegative; that, second, lims→0Bs = 0 and lims→0
1
s

∫ T

0

∫
Π

∫ f(x)+s

f(x)
(ϕ(u) −

ϕ(uΣ�κ̃))+ ∂xd
θ̃ dxd dx dt = 0 (because the trace of ϕ(u) is ϕ(ū)); and that, third,

hs converge to 1 in L1(B ∩ Ω). Consequently, letting s go to zero on both sides of
inequality (21) yields∫

Q

[
(u− uΣ�κ̃)+ θ̃t + [Φ

+(t, x, u, uΣ�κ̃)−∇(ϕ(u)− ϕ(uΣ�κ̃))+] · ∇θ̃
]
dα dx dt

+

∫
Ω

(u0 − uΣ�κ̃(0, x))+ θ̃(0) dx +

∫
Q
sgn+(u− uΣ�κ̃) g θ̃ dx dt dα ≥ lim inf

s→0
As.

Let D be an open subset of B whose closure is a subset of B too. From (22), it appears
that lim infs→0As can be viewed as the action of a certain distribution A∞ on θ̃ and
that A∞ is a bounded Radon measure on [0, T )×D ∩Q. Since ∫ 1

0
sgn+(u− uΣ) g dα

and (u0 − uΣ�κ̃(0, x))+δt=0 are bounded Radon measures on [0, T ) × D ∩ Q, the

previous inequality shows that the divergence of the field F+
is a bounded Radon

measure on [0, T )×D ∩Q. This ends the proof of Lemma 4.2.
Remark 4.1. If uΣ satisfies (H6Bis) instead of (H6), then uΣ can be seen as the

entropy solution of the equation ∂t w + divx F (t, x, w) − ∆ϕ(w) = g, with a source
term g which is a bounded Radon measure on (0, T ) × B ∩ Q. In the proof of the
previous lemma we used a theorem of comparison of Carrillo (Theorem 8 in [Car99])
between two entropy solutions ui (i ∈ {1, 2}) of the equation

∂tui + divF (t, x, ui)−∆ϕ(ui) = fi

(where fi ∈ L1) to derive the inequality (20). A careful study of the proof of the result
of comparison given by Carrillo shows that it still holds if f1 = 0 and f2 is a bounded
Radon measure. Consequently, inequality (20) remains true under hypothesis (H6Bis)
and Lemma 4.2 also.

As a consequence of this lemma, we can define a functional T +

n,κ̃, which represents
the normal trace of the flux Φ+(t, x, u, uΣ�κ̃)−∇(ϕ(u)−ϕ(uΣ�κ̃))+ on (0, T )×(∂Ω∩
D) and satisfies the analogue of the relations (16) and (17), where κ has been replaced
by uΣ�κ̃ in these latter. (We use the fact that there exists an open set D such that
supp(λ) ⊂ D ⊂ D ⊂ B to ensure that these limits make sense.)

Now, denote by S the set of all the functions v : (0, T )×Π→ R satisfying

v(t, x) =

Nv∑
i=1

wi Li(t, x),(23)
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where

∀i, wi ∈ R, Li ∈ C∞([0, T ]×Π), Li ≥ 0, and
Nv∑
i=1

Li = 1 on [0, T ]×Πλ.(24)

We say that v ∈ S+
if v ∈ S and admits a decomposition as (23) such that

wi ≥ uΣ a.e. on supp(Li) for all i. If v ∈ S and satisfies (23), we set

〈T +
n,vκ̃, ψλ〉 =

Nv∑
i=1

〈T +
n,wiκ̃, Liψλ〉.

Notice that this is a notation and not a definition, because the decomposition (23)
with wi, Li satisfying (24) is not unique. An immediate consequence of (18) is the

following: if v ∈ S+
, then

−〈T +
n,vκ̃, ψλ〉 ≤ 0 ∀ψ ∈ C∞c ([0, T )× R

d), ψ ≥ 0.(25)

Furthermore, we claim that, if v ∈ S+
, then

〈T +
n,vκ̃ − T

+

n,κ̃, ψλ〉 ≤M
√
1 + ||∇xf ||2∞

Nv∑
i=1

∫ T

0

∫
Π

|wi − uΣ|ψλLi dx dt.(26)

Let us prove this result: from (16) we have 〈T +
n,vκ̃−T

+

n,κ̃, ψλ〉 = − lim
s→0

∑Nv

i=1(Hi(s)+

Pi(s)), where

Hi(s) =
1

s

∫ T

s

∫ 1

0

∫
Π

∫ f(x)+s

f(x)

( Φ +(t, x, u, wi�κ̃)

− Φ+(t, x, u, uΣ�κ̃)) ·
( −∇f(x)

1

)
Liψλdxd dx dt dα,

Pi(s) =
1

s

∫ T

s

∫
Π

∫ f(x)+s

f(x)

∇(( ϕ (u)− ϕ(uΣ�κ̃))+

− (ϕ(u)− ϕ(wi�κ̃))+) ·
( −∇f(x)

1

)
Liψλdxd dx dt.

Since the function Φ+(t, x, u, v) isM -Lipschitz continuous with respect to v, uniformly
with respect to (t, x, u) ∈ Q× [A,B], we have

Hi(s) ≥ −1
s
M
√
1 + ||∇xf ||2∞

∫ T

0

∫
Π

∫ f(x)+s

f(x)

|wi�κ̃− uΣ�κ̃|Liψλdxd dx dt

≥ −1
s
M
√
1 + ||∇xf ||2∞

∫ T

0

∫
Π

∫ f(x)+s

f(x)

|wi − uΣ|Liψλdxd dx dt .

Consequently,

Nv∑
i=1

Hi(s) ≥ −1
s
M
√
1 + ||∇xf ||2∞

Nv∑
i=1

∫ T

0

∫
Π

∫ f(x)+s

f(x)

|wi − uΣ|ψλLi dxd dxdt,
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and the limit of the right-hand side of this latter inequality can be explicitly computed
since the function ψλLi is smooth:

lim
s→0

Nv∑
i=1

Hi(s) ≥ −M
√
1 + ||∇xf ||2∞

Nv∑
i=1

∫ T

0

∫
Π

|wi − uΣ|ψλLi dx dt .(27)

On the other hand, we have lim sups→0 Pi(s) ≥ 0. We will not detail the proof of
this result, for it is identical to the justification of the fact that lim sups→0Bs ≥ 0 in
the proof of Lemma 4.2. Together with (27), the result lim sups→0 Pi(s) ≥ 0 yields
(26). Furthermore, (26) combined with (25) shows that, if v ∈ S+

(v satisfies (23),
with wi ≥ uΣ a.e. on supp(Li)), then

−〈T +

n,κ̃, ψλ〉 ≤M
√
1 + ||∇xf ||2∞

Nv∑
i=1

∫ T

0

∫
Π

(wi − uΣ)ψλLi dx dt.(28)

Since

〈T +

n,κ̃, ψλ〉 = − lim
ε→0

∫
Q
[Φ+(t, x, u, uΣ�κ̃)−∇(ϕ(u)− ϕ(uΣ�κ̃))+] · ∇ωε ψλdx dt dα ,

our first aim, which is the proof of (15), will be reached if the right-hand side of
(28) can be made as small as desired. Let us prove this fact: ε > 0. Since uΣ ∈
L∞ ∩W 1,1((0, T ) × Π) (hypothesis (H6)), we have uΣ ∈ L∞ ∩ BV ((0, T ) × Π), and
Lemma 4.1 shows that there exists g ∈ C([0, T ]×Π) such that g ≥ uΣ a.e. on (0, T )×Π
and

∫
(0,T )×Π

g− uΣ < ε. Let η be a modulus of uniform continuity of g on [0, T ]×Π.
The set (0, T )×Π (with compact closure) can be covered by a finite number of balls
with radius η centered in (0, T )×Π, say V1, . . . , VQ. Let (Li)1,Q be a regular partition
of unity subordinate to the open coverage (Vi) of [0, T ]×Π. For a certain (ti, xi) ∈ Vi,
set wi = g(ti, xi) + ε and define v =

∑Q
i=1 wi Li. Then v ∈ S+

and

Q∑
i=1

∫ T

0

∫
Π

(wi − uΣ)ψλLi dx dt=

∫ T

0

∫
Π

(v − uΣ)ψλdx dt

=

∫ T

0

∫
Π

(v − g)ψ λdx dt+

∫ T

0

∫
Π

(g − uσ)ψ λdx dt

≤ 2||ψ λ||∞ T |Π| ε.

This completes the proof of (15). Similarly, we can prove

(29)

lim
ε→0

∫
Q
[Φ−(t, x, u, κ̃⊥uΣ)−∇(ϕ(u)− ϕ(κ̃⊥uΣ))

−] · ∇ωε(x)ψ(t, x)λ(x) dα dx dt ≤ 0

for every κ̃ ∈ [A,B] and for every nonnegative ψ ∈ C∞c ([0, T )×R
d). Then Proposition

4.1 follows from the formula

Fϕ(t, x, u, κ, w)=
[
Φ +(t, x, u, κ�w)−∇(ϕ(u)− ϕ(κ�w))+]
+
[
Φ−(t, x, u, κ⊥w)−∇(ϕ(u)− ϕ(κ⊥w))−] .
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4.4. Proof of Theorem 4.1 (step 1): Inner comparison. Let u and v ∈
L∞(Q× ( 0, 1)) be two entropy process solutions of problem (1). The following result
of comparison between u and v involving test-functions which vanish on the boundary
of Ω can be proved (see [Car99] or [EGHM02]).

Proposition 4.2 (inner comparison). Let u and v ∈ L∞(Q × ( 0, 1)) be two
entropy process solutions of problem (1). Assume hypotheses (H1), (H2), (H3), and
(H4). Let ζ be a nonnegative function of C∞([ 0, T )× R

d × [ 0, T )× R
d) such that

{ ∀(s, y) ∈ Q , (t, x) �−→ ζ(t, x, s, y) ∈ C∞c ([ 0, T )× Ω),
∀(t, x) ∈ Q , (s, y) �−→ ζ(t, x, s, y) ∈ C∞c ([ 0, T )× Ω).

Then we have

∫
Q

∫
Q


|u(t, x, α)− v(s, y, β)|(ζt + ζs)

+Gx(t, x, u(t, x, α), v(s, y, β)) · ∇xζ
+Gy(s, y, v(s, y, β), u(t, x, α)) · ∇yζ
−∇x|ϕ(u)(t, x)− ϕ(v)(s, y)| · ∇yζ
−∇y|ϕ(u)(t, x)− ϕ(v)(s, y)| · ∇xζ

 dαdxdtdβdyds

+

∫
Q

∫
Ω

|u0(x)− v(s, y, β)| ζ(0, x, s, y) dx dβ dy ds

+

∫
Q

∫
Ω

|u0(y)− u(t, x, α)| ζ(t, x, 0, y) dy dα dx dt ≥ 0.

(30)

4.5. Proof of Theorem 4.1 (step 2): General test-function. We now follow
the lines of the proof of uniqueness given by Mascia, Porretta, and Terracina in
[MPT02].

First, we would like to consider test-functions which do not necessarily vanish on
∂Ω and are localized into the ball B. For x ∈ R

d−1, set ρm(x) = ρm(x1) · · · ρm(xd−1)
and define the function ξ by

ξ(t, s, x, y) = ψ(t, x) ρl(t− s) ρm(x− y) ρn(xd − yd) .(31)

We took care to choose ρ satisfying supp(ρ) ⊂ [−1, 0) to ensure

∀(t, x) ∈ Q , (s, y) �−→ ξ(t, s, x, y) ∈ C∞c (Q) ,
∀(t, s, x) ∈ [ 0, T )× [ 0, T )× supp (λ), suppy ξ(t, s, x, ·) ⊂ B.

(32)

For ε > 0 define ζ to be the function

ζ : (t, s, x, y) �−→ ωε(x) ξ(t, s, x, y)λ(x).

Then, for m large enough compared with n, the assumptions of Proposition 4.2 are
satisfied, and, with this particular choice of function ζ, inequality (30) turns into the
inequality
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∫
Q

∫
Q



|u− v̂|ωε(x) ((ξλ)t + (ξλ)s)
+
(
Gx(t, x, u, v̂) · ∇x(ξ λ)

+Gy(t, y, v̂, u) · ∇y(ξ λ)
)
ωε(x)

−
(
∇x|ϕ(u)− ϕ(v̂)| · ∇y(ξ λ)

+∇y|ϕ(u)− ϕ(v̂)| · ∇x(ξ λ)
)
ωε(x)


dxdtdαdydsdβ

+

∫
Q

∫
Q
Gx(t, x, u, v̂) · ∇ωε(x) ξ λ dα dx dt dβ dy ds

−
∫
Q

∫
Q
∇y|ϕ(u)− ϕ(v̂)| · ∇ωε(x) ξ λ dx dt dα dy ds dβ

+

∫
Ω

∫
Q
|u0(x)− v̂| (ξ λ)(0, x, y)ωε(x) dxδβ dy ds ≥ 0,

where

u = u(t, x, α) and v̂ = v(s, y, β).

Using formula (12), this inequality can be rewritten as

∫
Q

∫
Q


|u− v̂|ωε(x) ((ξ λ)t + (ξλ)s)

+ (Gx(t, x, u, v̂) · ∇x(ξ λ) + Gy(t, y, v̂, u) · ∇y(ξ λ))ωε(x)
− (∇x|ϕ(u)− ϕ(v̂)| · ∇y(ξ λ)
+∇y|ϕ(u)− ϕ(v̂)| · ∇x(ξ λ))ωε(x)

 dαdxdtdβdyds

+

∫
Q

∫
Q
Fϕ(t, x, u, v̂, uΣ) · ∇ωε(x) ξ λ dα dx dt dβ dy ds

+

∫
Ω

∫
Q
|u0(x)− v̂| (ξ λ)(0, x, y)ωε(x) dx dy ds dβ ≥ A+B + C,

(33)

where

A =

∫
Q

∫
Q

∇y|ϕ(u)− ϕ(v̂)| · ∇ωε(x) ξ λ dx dt dy ds,

B = −
∫
Q

∫
Q
Gx(t, x, v̂, uΣ) · ∇ωε(x) ξ λ dα dx dt dβ dy ds,

C =

∫
Q

∫
Q
Gx(t, x, u, uΣ) · ∇ωε(x) ξ λ dα dx dt dβ dy ds.

Using Proposition 4.1 and taking the limit of both sides of the previous inequality
with respect to ε then yields

∫
Q

∫
Q

 |u− v̂| ((ξ λ)t + (ξ λ)s)
+Gx(t, x, u, v̂) · ∇x(ξ λ) + Gy(t, y, v̂, u) · ∇y(ξ λ)

−∇x|ϕ(u)− ϕ(v̂)| · ∇y(ξ λ) +∇y|ϕ(u)− ϕ(v̂)| · ∇x(ξ λ)

 dα dx dt dβ dy ds
+

∫
Ω

∫
Q
|u0(x)− v̂| (ξ λ)(0, x, y) dβ dy ds dx ≥ lim

ε→0
(A+B + C ),
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or (using formula (11))

∫
Q

∫
Q

 |u− v̂| ((ξ λ)t + (ξ λ)s)
+Φ(t, x, u, v̂) · ∇x(ξ λ) + Φ(t, y, v̂, u) · ∇y(ξ λ)

− (∇x|ϕ(u)− ϕ(v̂)|+∇y|ϕ(u)− ϕ(v̂)|) · (∇y +∇x)(ξ λ)

 dα dx dt dβ dy ds
+

∫
Ω

∫
Q
|u0(x)− v̂| (ξ λ)(0, x, y) dβ dy ds dx ≥ lim

ε→0
(A+B + C ).

(34)

Now, we intend to pass to the limit on l, m, and n in the previous inequality.
We will do so (on l and m and, eventually, on n), but notice that the study of the
behavior of A, B, and C as [ε→ 0] and the doubling variable technique itself interfere
with each other.

Using the definition of ξ from (31), it appears that C does not depend on l, m,
and n:

C =

∫
Q
Gx(t, x, u, uΣ) · ∇ωε(x)ψ λdα dx dt.

Moreover, inequality (34) can be rewritten as

∫
Q

∫
Q

 |u− v̂| ρl ρm ρn(ψ λ)t
+Φ(t, x, u, v̂) · ∇x(ψ λ)ρl ρm ρn

− (∇x|ϕ(u)− ϕ(v̂)|+∇y|ϕ(u)− ϕ(v̂)|) · ∇x(ψ λ) ρl ρm ρn

 dα dx dt dβ dy ds

+

∫
Ω

∫
Ω

|u0(x)− u0(y)| (ψ λ)(0, x) ρm ρn dx dy ≥ lim
ε→0

(A+B + C ) +D + E,

(35)

where

D = −
∫
Q

∫
Q
[Φ(t, x, u, v̂)− Φ(t, y, u, v̂)] · ∇x(ρl ρm ρn)ψ λdα dx dt dβ dy ds,

E =

∫
Ω

∫
Q
|u0(y)− v̂| (ψ λ)(0, x) ρl(−s) ρm ρn dβ dy ds dx.

The term E can be estimated by using the fact that the solution v completely satisfies

the initial condition, which means, for example, that ess lims→0+

∫
Ω

∫ 1

0
|v(s, y, α) −

u0(y)| dβ dy = 0. On the other hand, if the flux function F does not depend on
the (t, x)-variables, then D = 0, and more generally, one can prove (see [CH99])
D + E ≥ H, where

H = −C(F,ψ) sup
{ ∫
Q
|v(s, y, yd, β)− v(s+ σ, y + h, yd + k, β)|ds dy dyd dβ ;

|σ| ≤ 1
l
, |h| ≤ 1

m
, |k| ≤ 1

n

}
.(36)

Notice that, by continuity of the translations in L1, we have liml,m,n→+∞H = 0.
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4.5.1. Study of A + B. Going back to the study of A, B, we write A + B =
I + Jy + Jx, where

I = −
∫
Q

∫
Q
(Φ(t, x, v̂, uΣ(t, x)) · ∇ωε(x) ξ λ dα dx dt dβ dy ds,

Jy =

∫
Q

∫
Q

∇y|ϕ(u)(t, x)− ϕ(v)(s, y)| · ∇ωε(x) ξ λ dx dt dy ds,

Jx =

∫
Q

∫
Q

∇x|ϕ(v̂)− ϕ(uΣ(t, x))| · ∇ωε(x) ξ λ dx dt dy ds.

Recall that

∇ωε(x) = ρε(f(x)− xd)

(−∇f(x)
1

)
,

so that

Ĩ = lim
ε→0

I

= −
∫
Q

∫
[0,T )×Π×(0,1)

(Φ(t, x, f(x), v̂, uΣ(t, x)) ·
(−∇f(x)

1

)
(ξ λ)Σx

dαdxdtdβdyds,

where the index Σx indicates that the transformation concerns only the x variable.
Here, for example, (ξ λ)Σx

(t, x, y) = ξ(t, x, f(x), y)λ(x, f(x)). To study the term Jx,
we notice that the function uΣ does not depend on xd, and thus

J̃x = lim
ε→0

Jx = −
∫

[0,T )×Π

∫
Q

∇x |ϕ(v̂)− ϕ(uΣ(t, x))| · ∇f(x) (ξ λ)Σx
dx dt dy ds.

Integration by parts with respect to x in J̃x yields J̃x = J̃x
f + J̃x

ψ + J̃x
ρm
+ J̃x

ρn
, where

J̃x
f =

∫
[0,T )×Π

∫
Q

|ϕ(v̂)− ϕ(uΣ)|∆f(x) (ψ λ)Σx
ρl(t− s)

×ρm(x− y) ρn(f(x)− yd) dx dt dy ds,

J̃x
ψ =

∫
[0,T )×Π

∫
Q

|ϕ(v̂)− ϕ(uΣ)|∇f(x)
·∇x ((ψ λ)Σx

)ρl(t− s) ρm(x− y)ρn(f(x)− yd)dxdtdyds,

J̃x
ρm
=

∫
[0,T )×Π

∫
Q

|ϕ(v̂)− ϕ(uΣ)|∇f(x)
·∇x ρm(x− y) ρn(f(x)− yd) ρl(t− s)ψ λdx dt dy ds,

J̃x
ρn
=

∫
[0,T )×Π

∫
Q

|ϕ(v̂)− ϕ(uΣ)||∇f(x)|2ρl(t− s)

×ρm(x− y) ρ′n(f(x)− yd) (ψ λ)Σxdxdtdyds.

On the other hand, via integration by parts in Jy with respect to y, and recalling that
the boundary condition ϕ(u) = ϕ(u) on Σ is strongly satisfied according to Definition
3.1, we get

J̃y = lim
ε→0

Jy

= −
∫

[0,T )×Π

∫
Q

|ϕ(uΣ(t, x))− ϕ(v̂)|
(−∇f(x)

1

)
· ∇y(ξ λ)(t, s, x, f(x), y) dx dt dy ds,
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and, developing the scalar product,

J̃y =

∫
[0,T )×Π

∫
Q

|ϕ(uΣ(t, x))− ϕ(v̂)|∇f(x) · ∇y(ξ λ)(t, s, x, f(x), y)dy dx dt ds

−
∫

[0,T )×Π

∫
Q

|ϕ(uΣ(t, x))− ϕ(v̂)|∂yd (ξ λ)(t, s, x, f(x), y) dy dx dt ds

= −J̃x
ρm
+

∫
[0,T )×Π

∫
Q

|ϕ(uΣ)− ϕ(v̂)|ρl(t− s)

× ρm(x− y) ρ′n(f(x)− yd) (ψ λ)Σx
dy dx dt ds,

so that

J̃x + J̃y = J̃x
f + J̃x

ψ +

∫
[0,T )×Π

∫
Ω

|ϕ(uΣ)− ϕ(v̂)| (1 + |∇f(x)|2)

× ρl(t− s) ρm(x− y)ρ′n(f(x)− yd) (ψ λ)Σx
dx dt dy ds.

In particular, no derivatives of the functions ρm or ρl appear in J
x + Jy. Hence,

summing up by ṽ the quantity v(t, x, yd, β) and passing to the limit [l,m → +∞] in
limε→0(A+B) = Ĩ + J̃x + J̃y, we get

lim
l,m→+∞

lim
ε→0

(A+B) = I + Jf + Jψ + Jρn ,

with

I = −
∫

[0,T )×Π×(0,1)

∫ ∞
0

∫ 1

0

Φ(t, x, f(x), ṽ, uΣ)

·
(−∇f(x)

1

)
ρn(f(x)− yd)(ψ λ)Σxdxdtdαdyddβ,

Jf =

∫
[0,T )×Π

∫ ∞
0

|ϕ(ṽ)− ϕ(uΣ)|∆f(x) (ψ λ)Σx
ρn(f(x)− yd) dx dt dyd,

Jψ =

∫
[0,T )×Π

∫ ∞
0

|ϕ(ṽ)− ϕ(uΣ)|∇f(x) · ∇x ((ψ λ)Σx
) ρn(f(x)− yd) dx dt dyd,

Jρn =

∫
[0,T )×Π

∫ ∞
0

|ϕ(ṽ)− ϕ(uΣ)| (1 + |∇f(x)|2) ρ′n(f(x)− yd) (ψ λ)Σx dx dt dyd.

To compute the limit as n tends to +∞ of the four preceding terms, first recall that
trace((ϕ(v))− ϕ(uΣ)) = 0, and that, consequently,

lim
n→+∞ Jf = 0 and lim

n→+∞ Jψ = 0.

Besides, we note that

∆ω1/n(x) = −ρ′n(f(x)− xd) (1 + |∇f(x)|2) + ρn(f(x)− xd)∆f(x),

so that, replacing yd by xd in Jρn
, we have

Jρn = −
∫
Q

|ϕ(v)− ϕ(uΣ(t, x))|∆ω1/n(x) (ψ λ)(t, x, f(x)) dx dt+ Jf

=

∫
Q

∇|ϕ(v)− ϕ(uΣ(t, x))| ∇ω1/n(x) (ψ λ)(t, x, f(x)) dx dt+ ε1n .
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Here, the quantity ε1n = Jf +
∫
Q
|ϕ(v)− ϕ(uΣ(t, x))| ∇ω1/n(x) · ∇(ψ λ)Σx

dx dt tends
to zero when n→ +∞. Moreover,

I = −
∫
Q
Φ(t, x, v, uΣ) · ∇ω1/n(x) (ψ λ)Σx

dβ dx dt + ε2n ,

where ε2n =
∫
Q (Φ(t, x, v, uΣ) − Φ(t, x, f(x), v, uΣ)) · ∇ω1/n(x) (ψ λ)Σx

dβ dx dt tends
to zero when n→ +∞.

Using formula (11), we get

lim inf
n→+∞ lim

l,m→+∞
lim
ε→0

(A+B)

= − lim sup
n→+∞

∫
Q
Gx(t, x, v(t, x, β), uΣ) · ∇ω1/n(x) (ψ λ)Σ dx dt dβ .

Starting from inequality (35) and taking the limit with respect to l, m, then the
limit with respect to n of both sides yields

(37)

∫
Q

∫ 1

0

∫ 1

0

[|u− v| (ψλ)t + Gx(t, x, u, v) · ∇(ψλ) ] dβ dα dx dt

≥


− lim

n→+∞

∫
Q

∫ 1

0

Gx(t, x, v(t, x, β), uΣ(t, x)) · ∇ω1/n (ψ λ)(t, x, f(x)) dβ dx dt

+ lim
ε→0

∫
Q

∫ 1

0

Gx(t, x, u, uΣ(t, x)) · ∇ωε(x) (ψ λ)(t, x, f(x)) dα dx dt
+ lim

n→+∞ lim
l,m→+∞

H

 .

Since limn→+∞ liml,m→+∞H = 0 (see (36)), the right-hand side of (37) is an anti-
symmetric function in (u, v), while the left-hand side of (37) is a symmetric function
of (u, v). We therefore have∫

Q

∫ 1

0

[|u− v| (ψλ)t + Gx(t, x, u, v) · ∇(ψλ) ] dβ dα dx dt ≥ 0.(38)

Now, recall that λ = λα is an element of the partition of unity (λα)0≤α≤N ; summing
the previous inequality over α ∈ 0, . . . , N yields∫

Q

∫ 1

0

[|u− v|ψt + Gx(t, x, u, v) · ∇ψ ] dβ dα dx dt ≥ 0.(39)

We define the nonnegative function ψ0 by ψ0(t, x) = ψ0(t) = (T − t)χ(0,T )(t), and
apply (39) with ψ0 as a test-function to get∫ T

0

∫
Ω

∫ 1

0

∫ 1

0

|u(t, x, α)− v(t, x, β)| dβ dα dx dt ≤ 0.

Consequently, we have u(t, x, α) = v(t, x, β) for a.e. (t, x, α, β) ∈ Q × ( 0, 1) × ( 0, 1).
Defining the function w by the formula

w(t, x) =

∫ 1

0

u(t, x, α) dα

and accounting for the product structure of the measurable space Q× ( 0, 1)× ( 0, 1),
we conclude

u(t, x, α) = w(t, x) = v(t, x, β) for a.e. (t, x, α, β) ∈ Q× ( 0, 1)2.
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4.6. Proof of Theorem 4.1 for Ω a bounded polyhedral subset. Let d be
the Euclidean distance on R

d. Denote by (∂Ωi)i=1,...,N the faces of Ω, and by ni the
outward unit normal to Ω along ∂Ωi. For ε > 0 small, let B

ε
i be the subset of all x ∈ Ω

such that d(x, ∂Ωi) < ε and d(x, ∂Ωi) < d(x, ∂Ωj) if i �= j; define Gε
i to be the largest

cylinder generated by ni included in B
ε
i , and set ∆

ε
i = Bε

i \Gε
i , Ωε = Ω \ (∪1,N∆

ε
i ),

and bε = 11Ωε/2
� ρε/4. We have meas(Ω \ Ωε) ≤ Cε2. If λi ∈ C∞c (Rd) is such that

supp(λi) ∩ ∂Ω ⊂ ∂Ωi and such that the orthogonal projection of supp(λi) on the
affine hyperplane determined by ∂Ωi is included in ∂Ωi, then of course the whole
previous proof explained in the case where Ω is C1,1 applies here (we look at a half-
space), to give a result of comparison on supp(λ). Otherwise, for such a choice of
function λi, (38) is true. Equation (38) is also still true if λ = λ0, where λ0 ∈ C∞c (Rd)
and supp(λ0) ⊂ Ω (use Proposition 4.2). Since the function bε can be written as
bε =

∑
i=0,N λi for functions λi as above, we have∫

Q

∫ 1

0

[|u− v| (ψbε)t + Gx(t, x, u, v) · ∇(ψbε) ] dβ dα dx dt ≥ 0.(40)

Equation (40) can be rewritten as∫
Q

∫ 1

0

[|u− v|ψt + Gx(t, x, u, v) · ∇ψ] dβ dα dx dt ≥ αε,

where αε =
∫
Q
∫ 1

0
Gx(t, x, u, v) · ∇bεψ dβ dα dx dt tends to zero when ε → 0. Indeed,

we have ∇bε = 0 on Ωε, so that, setting Rε = (0, T )× (Ω \ Ωε)× (0, 1)2, we have

αε≤ ||ψ||L∞ ||Gx(t, x, u, v)||L1(Rε)||∇bε||L∞(Rε)

≤ ||ψ||L∞meas(Rε)
1/2||Gx(t, x, u, v)||L2(Rε)||11Ωε/2

||L∞(Rε)||∇ρε/4||L1(Rε)

≤C(T, ψ) ε · ||Gx(t, x, u, v)||L2(Rε) · 1
ε ,

and we conclude by using ||Gx(t, x, u, v)||L2(Rε) → 0 when ε → 0. We thus obtain
(39), from which Theorem 4.1 follows.

5. The FV scheme. The mesh used to discretize problem (1) has to be regular
enough to ensure the consistency of the numerical fluxes, mainly because a second
order problem is considered (at least when the function ϕ is not constant). This is
specified in the following section.

5.1. Assumptions and notation. We set d to be the Euclidean distance on
R
d and denote by γ the (d− 1)-Hausdorff measure on ∂Ω.
Definition 5.1 (admissible mesh of Ω). An admissible mesh of Ω consists of a

set T of open bounded polyhedral convex subsets of Ω called control volumes, a family
E of subsets of Ω̄ contained in hyperplanes of R

d with positive measure, and a family
of points (the “centers” of control volumes) satisfying the following properties:

(i) The closure of the union of all control volumes is Ω̄.
(ii) For any K ∈ T , there exists a subset EK of E such that ∂K = K̄\K = ∪σ∈EK σ̄.

Furthermore, E = ∪K∈T EK .
(iii) For any (K,L) ∈ T 2 with K �= L, either the “length” (i.e., the (d − 1)-

dimensional Lebesgue measure) of K̄ ∩ L̄ is 0 or K̄ ∩ L̄ = σ̄ for some σ ∈ E. In the
latter case, we shall write σ = K|L and Eint = {σ ∈ E ,∃(K,L) ∈ T 2, σ = K|L}. For
any K ∈ T , we shall denote by NK the set of neighbor control volumes of K, i.e.,
NK = {L ∈ T ,K|L ∈ EK}.
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(iv) The family of points (xK)K∈T is such that xK ∈ K (for all K ∈ T ), and, if
σ = K|L, it is assumed that the straight line (xK , xL) is orthogonal to σ.

Given a control volume K ∈ T , we will denote by m(K) its measure and by Eext,K
the subset of the edges of K included in the boundary ∂Ω. If L ∈ NK , m(K|L) will
denote the measure of the edge between K and L, and TK|L the “transmissibility”

through K|L, defined by TK|L = m(K|L)
d(xK ,xL) . Similarly, if σ ∈ Eext,K , we will denote

by m(σ) its measure and by τσ the “transmissibility” through σ, defined by τσ =
m(σ)

d(xK ,σ) . One also denotes by Eext the union of the edges included in the boundary of
Ω: ∪K∈T Eext,K . The size of the mesh T is defined by

size(T ) = max
K∈T

diam(K),

and we introduce the following geometrical factor, linked with the regularity of the
mesh, defined by

reg(T ) = min
K∈T ,σ∈EK

d(xK , σ)

diam(K)
.

Remark 5.1. Some examples of meshes satisfying these assumptions are the
triangular meshes, which verify the acute angle condition (in fact this condition may
be weakened to the Delaunay condition), the rectangular meshes, or the Voronöı
meshes; see [EGH99] or [EGH00] for more details.

Definition 5.2 (time discretization of (0, T )). A time discretization of (0, T ) is
given by an integer value N and by an increasing sequence of real values (tn)n∈[[0,N+1]]

with t0 = 0 and tN+1 = T . The time steps are then defined by δtn = tn+1 − tn, for
n ∈ [[0, N ]].

Definition 5.3 (space-time discretization of Q). A finite volume discretization
D of Q is a family D = (T , E , (xK)K∈T , N ,(tn)n∈[[0,N ]]), where T , E, (xK)K∈T is
an admissible mesh of Ω according to Definition 5.1 and N , (tn)n∈[[0,N+1]] is a time
discretization of (0, T ) according to Definition 5.2. For a given FV discretization D,
one defines

size(D) = max(size(T ), (δtn)n∈[[0,N ]]) and reg(D) = reg(T ).
5.2. The FV scheme. We may now define the FV discretization of (1). Let D

be a FV discretization of Q according to Definition 5.3. First, the initial and boundary
data are discretized by setting

U0
K =

1

m(K)

∫
K

u0(x)dx ∀K ∈ T(41)

and

Ūn+1
σ =

1

δtn m(σ)

∫ tn+1

tn

∫
σ

ū(t, x)dγ(x)dt ∀σ ∈ Eext,∀n ∈ [[0, N ]].(42)

An implicit FV scheme for the discretization of problem (1) is given by the fol-
lowing set of nonlinear equations with unknowns UD = (Un+1

K )K∈T ,n∈[[0,N ]]: ∀K ∈
T ,∀n ∈ [[0, N ]],
(43)

Un+1
K − Un

K

δtn
m(K) +

∑
σ∈EK

m(σ)Fn+1
K,σ (U

n+1
K , Un+1

Kσ
)−

∑
σ∈EK

τσ(ϕ(U
n+1
Kσ

)− ϕ(Un+1
K )) = 0,
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where

Un+1
Kσ

=

{
Un+1
L if σ = K|L,

Ūn+1
σ if σ ∈ Eext,(44)

and where the function Fn+1
K,σ is a monotonous flux consistent with the function F ,

which means that
• for all v ∈ R, u �→ Fn+1

K,σ (u, v) is a nondecreasing function and for all u ∈ R,

v → Fn+1
K,σ (u, v) is a nonincreasing function,

• Fn+1
K,σ (u, v) = −Fn+1

K,σ (v, u) for all (u, v) ∈ R
2,

• Fn+1
K,σ is M -Lipschitz continuous with respect to each variable,

• Fn+1
K,σ (s, s) =

1
δtn

1
m(σ)

∫ tn+1

tn

∫
σ
F (x, t, s) · nK,σdγ(x) dt.

The Godunov scheme and the splitting flux scheme of Osher may be the most
common examples of schemes with monotone fluxes.

We call an approximate solution the piecewise constant function uD defined a.e.
on Q by

uD(t, x) = Un+1
K , t ∈ (tn, tn+1), x ∈ K.(45)

5.3. Monotony of the scheme and direct consequences. As already said in
the introduction, it is a necessity to select a physically admissible solution by means of
the entropy inequalities. The schemes with monotonous fluxes are well known to add
numerical viscosity to the equations. They are L∞ stable, and they are monotonous
so that they respect discrete entropy inequalities. In other words, continuous entropy
inequalities have their discrete analogue, and they are respected by any solution of
(41)–(44). This is summarized in the following proposition.

Proposition 5.1 (monotony). Assume hypotheses (H1), (H2), (H3), and (H4).
Then there exists a unique solution to the scheme. Moreover, this solution satisfies the
following maximum principle and discrete entropy inequalities: ∀K ∈ T ,∀n ∈ [[0, N ]],

A ≤ Un+1
K ≤ B,(46)

η±κ (U
n+1
K )− η±κ (U

n
K)

δtn
m(K) +

∑
σ∈EK

m(σ)Φ±,n+1
K,σ,κ (U

n+1
K , Un+1

Kσ
)(47)

−
∑
σ∈EK

τσ
(
η±κ (ϕ(U

n+1
Kσ

))−η±κ (ϕ(Un+1
K ))

) ≤ 0,
where Φ+,n+1

K,σ,κ and Φ−,n+1
K,σ,κ are the numerical entropy-fluxes defined by

Φ+,n+1
K,σ,κ (u, v) = Fn+1

K,σ (u�κ, v�κ)− Fn+1
K,σ (κ, κ) and(48)

Φ−,n+1
K,σ,κ (u, v) = Fn+1

K,σ (κ, κ)− Fn+1
K,σ (u⊥κ, v⊥κ).

Proof. We give only some elements of the proof of this proposition because it
consists of rewriting the proofs of three lemmas that can be found in [EGHM02]
(Lemmas 3.1, 3.3, and 3.4 there) in the case where the convective flux q(x, t)f(u) is
replaced by a more general flux F (x, t, u) and the Kruzhkov entropies are replaced by
the semi-Kruzhkov entropies as in the work of Vovelle [Vov02].

We follow the classical framework of implicit FV schemes for conservation laws
(see [EGH00]). The function UD is defined in an implicit way, so we first show, using
the monotony of the scheme, that if a function UD is a solution to the scheme, then
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it satisfies the discrete inequalities (47). Then we derive the maximum principle (46)
that provides a result of existence by use of the Leray–Schauder theorem. Uniqueness
of UD is proved by using a method analogous to the one used to prove the discrete
entropy inequalities.

5.4. A priori estimates. The inequalities derived from the properties of monot-
ony and local conservation are L∞ and L1 estimates. We will prove now L2 estimates.
We introduce a discretization ŪD = (Ū

n+1
K ){K∈T ,n∈[[0,N ]]} of ū defined by

Ūn+1
K =

1

δtn

1

m(K)

∫ tn+1

tn

∫
K

ū dx dt ∀K ∈ T , ∀n ∈ [[0, N ]] .

Proposition 5.2 (L2(0, T,H1(Ω)) and weak BV estimate). Assume hypotheses
(H1), (H2), (H3), (H4), and (H5). Let uD be the approximate solution defined by
(41)–(44), and assume that reg(D) ≥ ξ, where ξ > 0. Then there exists a constant C
depending only on ξ, T , Ω, Lip(ϕ), M , ū, A, B such that

(ND(ζ(uD))
)2
=

N∑
n=0

δtn
∑
K∈T

1
2

∑
σ∈Eint,K

τσ(ζ(U
n+1
K )− ζ(Un+1

Kσ
))2

+
∑

σ∈Eext,K

τσ(ζ(U
n+1
K )− ζ(Un+1

Kσ
))2

 ≤ C

and

N∑
n=0

δtn
∑
K∈T

1

2

∑
σ∈Eint,K

m(σ) max
Un+1

K
≤c≤d≤Un+1

Kσ

(
(Fn+1

K,σ (d, c)− Fn+1
K,σ (d, d))

2

+ (Fn+1
K,σ (d, c)− Fn+1

K,σ (c, c))
2
) ≤ C.(49)

Remark 5.2. The inequality (49) is called the “weak BV inequality.” See [EGH00],
[CGH93], or [CH99].

Proof. As for Proposition 5.1, the proof has already been done in a simpler case in
[EGHM02] (Proposition 3.1). The details of the proof differ only by some arguments
that can be found in [Vov02].

These estimates are discrete energy estimates. They are obtained by multiplying
(41)–(44) by δtn(U

n+1
K − Ūn+1

K ) and summing over K ∈ T and n ∈ [[0, N ]]. In the
proof, we separate terms that contain only UD from terms containing UD and ŪD.
Then we use the Cauchy–Schwarz inequality and regularity hypotheses (H5) on ū to
control the second type of terms. To get a bound on ND(ŪD), which is a discrete
L2(0, T,H1)-norm for ŪD, we use the following inequality proved in [EGH99]:

ND(ū) ≤ C(reg(D))‖∇ū‖L2(Q).

This is a consequence of the local conservativity of the scheme combined with the
consistency of the numerical fluxes.

The last ingredient is the assumption divx(F (x, t, u)) = 0, which ensures that
the boundary terms in the discrete integrations-by-parts concerning the hyperbolic
terms can be controlled. The constant C depends on ξ, m(Ω), T , B, A, Lip(Fn+1

K,σ ),
‖ūt‖L1(Q), and on ‖∇ū‖L2(Q).
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5.5. Continuous entropy inequalities. From the discrete entropy inequalities
we deduce continuous approximate entropy inequalities. The following theorem is
central in the proof of the convergence of the scheme.

Theorem 5.1 (continuous approximate entropy inequalities). Assume hypothe-
ses (H1), (H2), (H3), (H4), and (H5). Let D be an admissible discretization of Q, and
let uD be the corresponding approximate solution defined above. Then uD satisfies the
following approximate entropy inequalities: for all κ ∈ R, for all ψ ∈ C∞(R+ × R

d)
such that ψ ≥ 0 and (ϕ(ū)− ϕ(κ))

±
ψ = 0 a.e. on Σ,∫

Q

η±κ (uD)ψt+Φ
±
κ (t, x, uD)·∇ψ+η±ϕ(κ)(ϕ(uD))∆ψ dxdt−

∫
Σ

η±ϕ(κ)(ϕ(ū))∇ψ ·ndγ(x)dt

+

∫
Ω

η±κ (u0)ψ(0)dx+M

∫
Σ

η±κ (ū)ψ dγ(x)dt ≥ −E±D(ψ).(50)

Also assume that a uniform CFL condition δtn ≤ Csize(T ) for all n holds true (with
a CFL number C that can be as large as desired). Then, for a given ψ, E±D(ψ) tends
to zero when the size of the discretization tends to zero.

Proof. The proof of Theorem 5.1 is quite similar to the proof of Theorem 5.1 in
[EGHM02], except for the boundary terms, which require extra care. We will therefore
stress the analysis of these terms and make reference to [EGHM02] when needed. Of
course, we can also limit ourselves to giving the proof of (50) when the nonnegative
Kruzhkov entropy pairs are under consideration.

Let κ ∈ R, and let ψ ∈ C∞(R+ × R
d) be a nonnegative function satisfying

(ϕ(ū) − ϕ(κ))+ψ = 0 a.e. on Σ. We define discrete values of ψ with respect to
the mesh as

Ψ0
K = ψ(0, xK) ∀K ∈ T ,

Ψn+1
K =

1

δtn

∫ tn+1

tn
ψ(t, xK)dt ∀K ∈ T ,∀n ∈ [[0, N ]],

ψn+1
σ =

1

δtn

∫ tn+1

tn
ψ(t, xσ)dt ∀σ ∈ Eext,∀n ∈ [[0, N ]]

and set Ψn+1
K,σ = Ψ

n+1
L if σ = K|L and Ψn+1

K,σ = ψn+1
σ if σ ∈ Eext,K .

The definition of the numerical flux Φ+,n+1
K,σ,κ (see (48)) ensures that it is a conser-

vative flux, consistent with the function Φ+
κ . Therefore, we have∑

σ∈EK
m(σ)Φ+,n+1

K,σ,κ (U
n+1
K , Un+1

K ) = 0 ∀K ∈ T , n ∈ [[0, N ]],

and the discrete entropy inequality (47) can then be rewritten as

η+
κ (U

n+1
K )− η+

κ (U
n
K)

δtn
m(K)+

∑
σ∈EK

m(σ)(Φ+,n+1
K,σ,κ (U

n+1
K , Un+1

Kσ
)− Φ+,n+1

K,σ,κ (U
n+1
K , Un+1

K ))

−
∑
σ∈EK

τσ
(
η+
ϕ(κ)(ϕ(U

n+1
Kσ

))− η+
ϕ(κ)(ϕ(U

n+1
K ))

) ≤ 0.(51)

Multiplying (51) by δtnΨ
n+1
K and summing over K ∈ T and n ∈ [[0, N ]] yields

A1 +A2 +A3 ≤ 0,
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where

A1 =
N∑
n=0

∑
K∈T

m(K)(η+
κ (U

n+1
K )− η+

κ (U
n
K))Ψ

n+1
K ,

and, summing over the edges, A2 = A2int +A2ext, with

A2int =

N∑
n=0

δtn
∑
K∈T

1

2

∑
σ∈Eint,K

m(σ)
(
Ψn+1
K (Φ+,n+1

K,σ,κ (U
n+1
K , Un+1

Kσ
)− Φ+,n+1

K,σ,κ (U
n+1
K , Un+1

K ))

−Ψn+1
K,σ (Φ

+,n+1
K,σ,κ (U

n+1
K , Un+1

Kσ
)− Φ+,n+1

K,σ,κ (U
n+1
Kσ

, Un+1
Kσ

))
)

and

A2ext =

N∑
n=0

δtn
∑
K∈T

∑
σ∈Eext,K

m(σ)Ψn+1
K

(
Φ+,n+1
K,σ,κ (U

n+1
K , Un+1

Kσ
)− Φ+,n+1

K,σ,κ (U
n+1
K , Un+1

K )).

Similarly, A3 admits the decomposition A3 = A3int +A3ext, with

A3int =
N∑
n=0

δtn
∑
K∈T

1

2

∑
σ∈Eint,K

τσ
(
η+
ϕ(κ)(ϕ(U

n+1
K ))− η+

ϕ(κ)(ϕ(U
n+1
Kσ

))
)
(Ψn+1

K −Ψn+1
K,σ )

and

A3ext =
N∑
n=0

δtn
∑
K∈T

∑
σ∈Eext,K

τσ
(
η+
ϕ(κ)(ϕ(U

n+1
K ))− η+

ϕ(κ)(ϕ(U
n+1
Kσ

))
)
Ψn+1
K .

Now, set

I1 = −
∫
Q

η+
κ (uD)ψt dx dt−

∫
Ω

η+
κ (u0)ψ(0, x) dx,

I2 = −
∫
Q

Φ+
κ (t, x, uD) · ∇ψ dx dt−M

∫
Σ

η+
κ (ū)ψ dγ(x)dt,

I3 = −
∫
Q

η+
ϕ(κ)(ϕ(uD))∆ψ dx dt+

∫
Σ

η+
ϕ(κ)(ϕ(ū))∇ψ · n dγ(x) dt .

We aim at proving the estimate I1+ I2+ I3 ≤ E+
D(ψ) and, to that purpose, compare

I1 to A1, I2 to A2, and I3 to A3, respectively.
A discrete integration by parts leads to |I1 − A1| ≤ E1,D(ψ), with E1,D(ψ) → 0

as size(D)→ 0 (see [EGHM02]).
Using integration by parts in I2 and the fact that uD is piecewise constant, we

obtain

I2 = I2int + I2ext,

where I2ext is the boundary term and I2int gathers the sums on the internal edges.
Precisely, we have

I2int = −
N∑
n=0

∑
K∈T

1

2

∑
σ∈Eint,K

(∫ tn+1

tn

∫
σ

Φ+
κ (t, x, U

n+1
K ) · nK,σψ dγ(x) dt

−
∫ tn+1

tn

∫
σ

Φ+
κ (t, x, U

n+1
Kσ

) · nK,σψ dγ(x) dt

)
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and

I2ext = −
N∑
n=0

∑
K∈T

∑
σ∈Eext,K

∫ tn+1

tn

∫
σ

Φ+
κ (t, x, U

n+1
K ) · nK,σψdγ(x)dt−M

∫
Σ

η+
κ (ū)ψdγ(x)dt.

As in [EGHM02], we prove |I2int−A2int| ≤ E int
2,D(ψ), with E int

2,D(ψ)→ 0 as size(D)→
0.

The comparison of I2ext with A2ext involves a term corresponding to the consis-
tency error, and three terms related to the approximation of the boundary data:

I2ext−A2ext ≤ Ec1,ext
2,D (ψ) + Eb1,ext

2,D (ψ) + Eb2,ext
2,D (ψ)− T b2,ext

2,D (ψ),

where

Ec1,ext
2,D (ψ) =

N∑
n=0

∑
K∈T

∑
σ∈Eextκ

∣∣∣∣∣
∫ tn+1

tn

∫
σ

(Ψn+1
K − ψ)Φ+

κ (·, ·, Un+1
K ) · nK,σ dγ(x) dt

∣∣∣∣∣ ,

Eb1,ext
2,D (ψ) =

N∑
n=0

δtn
∑
K∈T

∑
σ∈Eextκ

m(σ)|(Ψn+1
K − ψn+1

σ )Φ+,n+1
K,σ,κ (U

n+1
K , Un+1

Kσ
)|,

and

Eb2,ext
2,D (ψ) =M

N∑
n=0

∑
K∈T

∑
σ∈Eextκ

∣∣∣∣∣
∫ tn+1

tn

∫
σ

(ū− κ)+ψ dγ(x) dt

− δtnm(σ)(U
n+1
Kσ

− κ)+ψn+1
σ

∣∣∣∣∣
are three terms converging to zero when size(D)→ 0 and

T b2,ext
2,D (ψ) =

N∑
n=0

δtn
∑
K∈T

∑
σ∈Eextκ

m(σ)ψn+1
σ

(
Φ+,n+1
K,σ,κ (U

n+1
K , Un+1

Kσ
) +M(Un+1

Kσ
− κ)+

)
.

From the definition of Φ+,n+1
K,σ,κ (see (48)) and from the monotony of the scheme,

Φ+,n+1
K,σ,κ (a, b) = Fn+1

K,σ (a�κ, b�κ)− Fn+1
K,σ (κ, κ) ≥ −Lip(Fn+1

K,σ )(b− κ)+

follows, and this entails T b2,ext
2,D (ψ) ≥ 0 .

Now, to compare I3 to A3 we make the distinction between the different contribu-
tions of the terms (inside and on the boundary of Ω). Indeed, since the approximate
solution uD is piecewise constant, the term I3 reads as I3 = I3int + I3ext, where

I3int =

N∑
n=0

∑
K∈T

1

2

∑
σ∈Eintκ

(η+
ϕ(κ)(ϕ(U

n+1
Kσ

))− η+
ϕ(κ)(ϕ(U

n+1
K )))

∫ tn+1

tn

∫
σ

∇ψ · nK,σ dγ(x) dt

and

I3ext =

N∑
n=0

∑
K∈T

∑
σ∈Eextκ

∫ tn+1

tn

∫
σ

(η+
ϕ(κ)(ϕ(ū))− η+

ϕ(κ)(ϕ(U
n+1
K )))∇ψ · nK,σ dγ(x) dt.
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A consistency error term controls the proximity of A3int to I3int:

|I3int−A3int| ≤ Ec,int
3,D (ψ),

with Ec,int
3,D (ψ)→ 0 when size(D)→ 0 [EGHM02].

In order to compare I3ext and A3ext, rearrange the term I3ext, up to consistency
or approximation errors, to get

I3ext ≤
N∑
n=0

δtn
∑
K∈T

∑
σ∈Eextκ

τσ

(
η+
ϕ(κ)(ϕ(U

n+1
Kσ

))− η+
ϕ(κ)(ϕ(U

n+1
K ))

)
(Ψn+1

K,σ −Ψn+1
K )

+ Ec,ext
3,D (ψ) + Eb1,ext

3,D (ψ),

where

Ec,ext
3,D (ψ)

=
N∑
n=0

∑
K∈T

∑
σ∈Eextκ

2 max
u∈[A,B]

η+
ϕ(κ)(ϕ(u))

∣∣∣∣∣
∫ tn+1

tn

∫
σ

(
∇ψ · n− ψn+1

σ −Ψn+1
K

dK , σ

)
dγ(x) dt

∣∣∣∣∣ ,
Eb1,ext
3,D (ψ) =

N∑
n=0

∑
K∈T

∑
σ∈Eextκ

∫ tn+1

tn

∫
σ

∣∣ϕ(ū)− ϕ(Ūn+1
σ )

∣∣∣∣∇ψ · n∣∣ dγ(x) dt.
Then we have

I3ext−A3ext =

N∑
n=0

δtn
∑
K∈T

∑
σ∈Eextκ

τσ(η
+
ϕ(κ)(ϕ(U

n+1
Kσ

)) − η+
ϕ(κ)(ϕ(U

n+1
K )))Ψn+1

K,σ

+ Ec,ext
3,D (ψ) + Eb1,ext

3,D (ψ) .

Now, either η+
ϕ(κ)(ϕ(U

n+1
Kσ

)) = 0, and in that case

(η+
ϕ(κ)(ϕ(U

n+1
Kσ

))− η+
ϕ(κ)(ϕ(U

n+1
K ))Ψn+1

K,σ ) ≤ 0,

or η+
ϕ(κ)(ϕ(U

n+1
Kσ

)) > 0. In the latter case, the condition (ϕ(ū)− ϕ(κ))
+
ψ = 0 a.e. on

Σ ensures that there exists (t, x) ∈ [tn, tn+1]× σ such that ψ(t, x) = 0. Consequently,
we have

Ψn+1
K,σ ≤ Lip(ψ)(δtn + diam(σ)) .

This estimate, combined with the inequality

η+
ϕ(κ)(ϕ(U

n+1
Kσ

))− η+
ϕ(κ)(ϕ(U

n+1
K )) ≤ (η+

ϕ(κ))
′(ϕ(Ūn+1

σ ))(ϕ(Ūn+1
σ )− ϕ(Un+1

K )),

which is consequence of the convexity of the function η+
ϕ(κ), leads to

I3ext−A3ext ≤ Eb2,ext
3,D (ψ) + Ec,ext

3,D (ψ) + Eb1,ext
3,D (ψ),

where

Eb2,ext
3,D (ψ) =

N∑
n=0

δtn
∑
K∈T

∑
σ∈Eextκ

τσLip(ψ)(δtn + diam(σ))|ϕ(Ūn+1
σ )− ϕ(Un+1

K )| .
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Using the Cauchy–Schwarz inequality, together with the L2(0, T ;H1
0 (Ω)) estimate of

Proposition 5.2 and the inequality ϕ(a)− ϕ(b) ≤√
Lip(ϕ)(ζ(a)− ζ(b)), yields

Eb2,ext
3,D (ψ) ≤ C

N∑
n=0

δtn
∑
K∈T

∑
σ∈Eextκ

τσ(δtn + diam(σ))2 .

Therefore, a simple way to ascertain that Eb2,ext
3,D (ψ) converges to zero is to suppose a

uniform CFL condition such as δtn ≤ Csize(T ) for all n (where the CFL number C
can be as large as desired). Then we conclude the proof of Theorem 5.1 by defining

E+
D(ψ) as the sum of the errors E1,D(ψ), E int

2,D(ψ), Ec1,ext
2,D (ψ), Eb1,ext

2,D (ψ), Eb2,ext
2,D (ψ),

Ec,int
3,D (ψ), Ec,ext

3,D (ψ), Eb1,ext
3,D (ψ), and Eb2,ext

3,D (ψ).

5.6. Convergence of the scheme. Let Dn be a sequence of discretizations,
such that size(Dn) tends to zero. We wish to prove the convergence of uDn to an
entropy solution of problem (1). For that purpose, in view of the uniqueness Theorem
4.1, it suffices to show that, up to a subsequence, uDn

tends in the nonlinear weak-�
sense to an entropy process solution of (1). We obtain compactness properties using
estimates on uDn derived from discrete estimates on UDn , then pass to the limit in
inequality (50).

5.6.1. Nonlinear weak-� compactness. The maximum principle ensures that
(uDn

) is bounded in L∞(Q). Consequently, there exist u ∈ L∞(Q× (0, 1)) such that,
up to a subsequence, uDn tends to u in the nonlinear weak-� sense.

5.6.2. Compactness in L2(Q). From discrete estimates obtained in Propo-
sition 5.2 we easily deduce (see, e.g., [EGH00]) the following inequalities on zD =
ζ(uD)− ζ(ūD).

Proposition 5.3 (space translation estimates). Assume hypotheses (H1), (H2),
(H3), (H4), and (H5). There exists a constant C1 such that

∀y ∈ R
d,

∫ T

0

∫
Ωy

(zD(t, x+ y)− zD(t, x))
2dxdt ≤ C1|y|(|y|+ size(T )),

where Ωy = {x ∈ Ω, [x, x+ y] ⊂ Ω}.
The hypothesis (H5) includes the assumption ūt ∈ L1(Q), while the discrete

evolution equation (43) relates the discrete time derivative of uD to its discrete space
derivative. Therefore the following time translation estimate on zD is available.

Proposition 5.4 (time translation estimates). Assume hypotheses (H1), (H2),
(H3), (H4), and (H5). There exists a constant C2 such that

∀s > 0,
∫ T−s

0

∫
Ω

(zD(t+ s, x)− zD(t, x))
2dxdt ≤ C2 s.

Since the function zD vanishes on Σ, it can be extended by zero out of Q. Then
using the Fréchet–Kolmogorov theorem (see, e.g., [Bre83]), we get the existence of
a function z ∈ L2(0, T,H1(Ω)) such that, up to a subsequence, zDn → z in L2(Q).
Besides, since zD = ζ(uD)− ζ(ūD) and ζ(ūD) converges to ζ(ū) in L

2(Q), we get the
convergence of ζ(uDn) in L

2(Q) (to ζ(ū)+z). On the other hand, the nonlinear weak-
� convergence of (uDn

) shows that ζ(uDn
) converges also to ζ(u) weakly in L∞(Q), so

that ζ(ū)+z = ζ(u). In particular, ζ(u) does not depend on the last argument α, and
the trace of ζ(u) on Σ is ζ(ū). See [EGHM02] for more details on this step of the proof.
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5.6.3. Conclusion. It remains to pass to the limit in the continuous entropy
inequalities to prove that u is an entropy process solution. The uniqueness Theorem
4.1 proves that u does not depend on α and is the unique entropy weak solution of
problem (1). Besides, the whole sequence uDn is convergent (u is the unique possible
limit), and by definition of the nonlinear weak-� convergence, (uDn

)2 also converges
weakly to (u)2 so that uDn converges to u in L2(Q) (strong), and in all Lp(Q), for
1 ≤ p < +∞. Therefore, we have proved the following theorem.

Theorem 5.2. Let Dn be a sequence of discretizations, such that size(Dn) tends
to zero. Assume hypotheses (H1), (H2), (H3), (H4), (H5), and (H6) (or (H6bis)).
Then, for every 1 ≤ p < +∞, (uDn) converges to the unique entropy solution of
problem (1) in Lp(Q).
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ASYMPTOTICALLY EXACT A POSTERIORI ERROR
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Abstract. In Part I of this work, we develop superconvergence estimates for piecewise lin-
ear finite element approximations on quasi-uniform triangular meshes where most pairs of triangles
sharing a common edge form approximate parallelograms. In particular, we first show a superconver-
gence of the gradient of the finite element solution uh and to the gradient of the interpolant uI . We
then analyze a postprocessing gradient recovery scheme, showing that Qh∇uh is a superconvergent
approximation to ∇u. Here Qh is the global L2 projection. In Part II, we analyze a superconver-
gent gradient recovery scheme for general unstructured, shape regular triangulations. This is the
foundation for an a posteriori error estimate and local error indicators.

Key words. superconvergence, gradient recovery

AMS subject classifications. 65N50, 65N30
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1. Introduction. The study of superconvergence and a posteriori error esti-
mates has been an area of active research; see the monographs by Verfürth [17], Chen
and Huang [8], Wahlbin [18], Lin and Yan [16], and Babuška and Strouboulis [3] and
a recent article by Lakhany, Marek, and Whiteman [13] for overviews of the field. In
this two-part work we study some new superconvergence results. In Part I, we develop
some superconvergence results for finite element approximations of a general class of
elliptic partial differential equations (PDEs), based mainly on the geometry of the
underlying triangular mesh. In Part II, we develop a gradient recovery technique that
can force superconvergence on general shape regular meshes. Patch recovery tech-
niques have been studied by Zienkiewicz and Zhu and this subject has itself evolved
into an active subfield of research [25, 14, 23, 24, 9, 22]. Although our algorithm in
some respects resembles this and other similar schemes [12, 19, 4, 6, 2, 10], it draws
much of its motivation from multilevel iterative methods.

Let Ω ⊂ R
2 be a bounded domain with Lipschitz boundary ∂Ω. For simplicity

of exposition, we assume that Ω is a polygon. We assume that Ω is partitioned by
a shape regular triangulation Th of mesh size h ∈ (0, 1). Let Vh ⊂ H1(Ω) be the
corresponding continuous piecewise linear finite element space associated with this
triangulation Th, and uh ∈ Vh be a finite element approximation to a second order
elliptic boundary value problem.

Our development has three main steps. In the first step, we prove a supercon-
vergence result for |uh − uI |1,Ω, where uI is the piecewise linear interpolant for u. In
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particular, we show in Theorem 3.1 that

|uh − uI |1,Ω � h1+min(1,σ)| log h|1/2||u||3,∞,Ω.(1.1)

Estimate (1.1) holds on quasi-uniform meshes, where an O(h2) approximate parallel-
ogram property is satisfied for pairs of adjacent triangles in most parts of Ω except
for a region of size O(h2σ); see section 2 for details.

The estimate (1.1) is well known in the literature for the special case σ = ∞;
namely, the O(h2) approximate parallelogram property is satisfied for all pairs of
adjacent triangles, and it is also known for cases when the O(h2) approximate par-
allelogram property is satisfied except for triangles along a few lines (see Xu [20]
and Lin and Xu [15]) or triangles along the domain boundary (see Lin and Yan [16],
Hlaváček and Kř́ıžek [11]). Lakhany, Marek, and Whiteman [13] consider a less re-
strictive O(h1+α) approximate parallelogram property. Our new estimate (1.1) is a
significant generalization of these known results. First, our analysis is based on local
identities for each element that simplify existing techniques. For example, our result
can be extended in a straightforward fashion to the mesh in which an O(h1+α) (in-
stead of O(h2)) approximate parallelogram property holds for most pairs of triangles
(see [13]). Second, the assumptions that we make are weaker than existing ones and
should hold for many practical grids for some σ > 0, although in some cases σ could
be very small.

One important case that our theory does not cover in this paper is locally re-
fined grids. Lakhany, Marek, and Whiteman [13] have some results on this topic for
piecewise uniform grids (see also Lin and Xu [15]). Because of the local nature of our
analysis, our technique can be extended to this type of grid. We will report this type
of extension in future work.

Superconvergence results typically depend on delicate estimates involving cancel-
lation of the lowest order terms in some asymptotic expansion of the local error. When
one derives elementwise expressions using continuous finite element spaces, often one
encounters boundary integrals involving the normal component of the gradient of the
test function. Thus, although one can determine that some cancellation takes place
between certain error local components, it is difficult to combine elementwise state-
ments because the normal components of the gradient of vh ∈ Vh are discontinuous.
On the other hand, tangential components of ∇vh along element edges are continuous.
Thus our approach is to derive some expressions for the element error that involve
only the tangential derivative of the test function on the element boundary. The key
identity of this type is Lemma 2.3.

We also note that Lemma 2.3 is an identity rather than an estimate. Thus global
versions of this identity give exact characterizations of the error for arbitrary trian-
gulations. In effect, one can see exactly the cancellations that might occur even on
completely unstructured meshes. The O(h2) approximate parallelogram property can
be viewed in this context as one set of sufficient conditions for obtaining superconver-
gent bounds for those terms.

The techniques used in our analysis are related to but much more refined than
many existing superconvergence techniques in the literature such as those summarized
in [8, 16]. For example, the identity in Lemma 2.3 may be compared with the integral
identities for rectangular elements [16]. In fact it was not known how the integral
identities for rectangular elements in [16] could be generalized to triangular elements.
Lemma 2.3 offers clues for such generalizations, and more work can obviously be done
in this direction.
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The second major component of our analysis is a superconvergent approxima-
tion to ∇u. This approximation is generated by a gradient recovery procedure. In
particular, in Theorem 4.2 we show

||∇u−Qh∇uh||0,Ω � h1+min(1,σ)| log h|1/2||u||3,∞,Ω,(1.2)

where Qh is the L2 projection. When the mesh does not satisfy the O(h2) parallel-
ogram property or σ becomes very close to zero, then the superconvergence demon-
strated in (1.2) will be diminished. Intuitively, it appears that this is due mainly
to high frequency errors introduced by the small nonuniformities of the mesh. Pref-
erentially attenuating high frequency errors in mesh functions is of course a widely
studied problem in multilevel iterative methods. Our proposal here is to apply these
ideas in the present context. Thus, to enhance the superconvergence effect on general
shape regular meshes, we compute SmQh∇uh, where S is an appropriate multigrid-
like smoothing operator. In Part II of this manuscript [7], we analyze this procedure
and prove superconvergence estimates somewhat like (1.2) for ||u− SmQh∇uh||0,Ω.

In the third major component of our analysis, we use the recovered gradient to
develop an a posteriori error estimate. An obvious choice is to use (I − SmQh)∇uh
to approximate the true error ∇(u − uh). In [7], we show that this is a good choice
and that in many circumstances we can expect the error estimate to be asymptotically
exact; that is,

lim
||(I − SmQh)∇uh||0,Ω
||∇(u− uh)||0,Ω = 1

as h→ 0 and m→∞ in an appropriate fashion.
We also use the recovered gradient to construct local approximations of interpo-

lation errors to be used as local error indicators for adaptive meshing algorithms; see
[7] for details.

We remark that both our gradient recovery scheme and our a posteriori error esti-
mate are largely independent of the details of the PDE. Indeed, all of the preliminary
lemmas in section 2 are also independent of the PDE. The PDE directly enters only
in the proof of Theorem 3.1, and there the properties that we assume are standard.
This suggests that superconvergence can be expected for a wide variety of problems,
as long as the adaptive meshing yields smoothly varying, shape regular meshes.

The rest of this paper is organized as follows: section 2 contains technical identi-
ties and estimates that form the basis for the estimate (1.1). In section 3, we prove
(1.1) for general linear elliptic boundary value problems under standard assumptions.
We also explore an application to nonlinear elliptic problems. In section 4 we develop
and analyze the superconvergent gradient recover scheme in the case of O(h2) paral-
lelogram meshes. In section 5 we present a few numerical examples illustrating the
effectiveness of our procedures.

2. Preliminary lemmas. We begin with some geometric identities for a canon-
ical element τ . Let τ have vertices ptk = (xk, yk), 1 ≤ k ≤ 3, oriented counterclock-
wise, and corresponding nodal basis functions (barycentric coordinates) {φk}3k=1. Let
{ek}3k=1 denote the edges of element τ , {θk}3k=1 the angles, {nk}3k=1 the unit outward
normal vectors, {tk}3k=1 the unit tangent vectors with counterclockwise orientation,
{�k}3k=1 the edge lengths, and {dk}3k=1 the perpendicular heights (see Figure 2.1). Let
p̃ be the point of intersection for the perpendicular bisectors of the three sides of τ .
Let |sk| denote the distance between p̃ and side k. If τ has no obtuse angles, then the
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p3p3

θ3

p̃

p2p2 p1p1 e3

d3

�3t3

s3

n3

Fig. 2.1. Parameters associated with the triangle τ .

sk will be nonnegative; otherwise, the distance to the side opposite the obtuse angle
will be negative.

There are many relationships among these quantities; in particular, we note the
following, which hold for 1 ≤ k ≤ 3 and k ± 1 permuted cyclically:

�kdk = �k+1�k−1 sin θk = 2|τ |,
2�k+1�k−1 cos θk = �2k+1 + �2k−1 − �2k,

sin θk = nk−1 · tk+1 = −nk+1 · tk−1,

cos θk = −tk−1 · tk+1 = −nk−1 · nk+1,

∇φk = −nk
dk

,

sk = −|τ | �k∇φk−1 · ∇φk+1 =
�k cos θk
2 sin θk

.

Let Dτ be a symmetric 2× 2 matrix with constant matrix entries. We define

ξk = −nk+1 · Dτnk−1.

The important special case Dτ = I corresponds to −∆, and in this case ξk = cos θk.
Let qk = φk+1φk−1 denote the quadratic bump function associated with edge ek, and
let ψk = φk(1− φk). In Lemma 2.1 we collect several simple identities that are used
in the proof of Lemma 2.3.

Lemma 2.1.

sin θk∇u · Dτnk = ξk−1
∂u

∂tk−1
− ξk+1

∂u

∂tk+1
,(2.1)

∂u

∂tk+1
= − cos θk−1

∂u

∂tk
− sin θk−1

∂u

∂nk
,(2.2)

∂u

∂tk−1
= − cos θk+1

∂u

∂tk
+ sin θk+1

∂u

∂nk
,(2.3) ∫

τ

∂u

∂tk
= − sin θk+1

∫
ek−1

u+ sin θk−1

∫
ek+1

u,(2.4)

sin θk

∫
ek−1

qk−1u =

∫
τ

ψk+1
∂u

∂tk+1
+ sin θk−1

∫
ek

qku,(2.5)
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sin θk

∫
ek+1

qk+1u = −
∫
τ

ψk−1
∂u

∂tk−1
+ sin θk+1

∫
ek

qku.(2.6)

Proof. We note that (2.1) is an immediate consequence of

Dτnk =
nk+1 · Dτnk
nk+1 · tk−1

tk−1 +
nk−1 · Dτnk
nk−1 · tk+1

tk+1 =
ξk−1

sin θk
tk−1 − ξk+1

sin θk
tk+1.

Proofs for (2.2)–(2.3) follow the same pattern. For (2.4), we note that from Green’s
identity ∫

τ

∇u · tk =

3∑
j=1

nj · tk.
∫
ek

u.

For (2.5)–(2.6), we note that ψk is constant along lines parallel to ek, and ∂ψk/∂tk ≡ 0.
Thus

∂(ψku)

∂tk
= ψk

∂u

∂tk
.

Also, on edge ek we have qk = ψk+1 = ψk−1. Equations (2.5)–(2.6) follow from these
observations and (2.4).

Lemma 2.2. Let u ∈W 3,∞(Ω). Let uI and uq be the continuous piecewise linear
and piecewise quadratic interpolants, respectively, for u. Then∫

ek

(u− uI) =
�2k
2

∫
ek

qk
∂2u

∂t2k
,(2.7) ∫

τ

(u− uI) = − 1

24

∫
τ

3∑
k=1

�2k
∂2uq

∂t2k
+

∫
τ

(u− uq).(2.8)

Proof. Identity (2.7) is equivalent to the following:∫ b

a

u(s)ds− (b− a)

2
(u(a) + u(b)) =

1

2

∫ b

a

(s− a)(s− b)u′′(s)ds,

which follows by an integration by parts. To show (2.8), we note that uq − uI is
a piecewise quadratic polynomial that is zero at all of the vertices in the mesh and
that therefore can be expressed in terms of the quadratic bump functions. A simple
calculation shows in a given element τ

uq − uI =

3∑
k=1

�2kt
t
kMτ tk qk(x, y),(2.9)

where

Mτ = −1

2

(
∂11uq ∂12uq
∂21uq ∂22uq

)
.(2.10)

The matrix Mτ is constant since uq is quadratic. Let mk = (pk+1 + pk−1)/2 denote
the midpoint of the kth edge. Then

ttkMτ tk
2

=
2u(mk)− u(pk+1)− u(pk−1)

�2k
.
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Identity (2.8) follows from∫
τ

(u− uI) =

∫
τ

(uq − uI) +

∫
τ

(u− uq)

= −1

2

3∑
k=1

�2k
∂2uq

∂t2k

∫
τ

qk +

∫
τ

(u− uq)

= −|τ |
24

3∑
k=1

�2k
∂2uq

∂t2k
+

∫
τ

(u− uq)

= − 1

24

∫
τ

3∑
k=1

�2k
∂2uq

∂t2k
+

∫
τ

(u− uq).

The following is a fundamental identity in our analysis.

Lemma 2.3. Let Dτ be a 2× 2 symmetric matrix with constant entries. Then

∫
τ

∇(u− uI) · Dτ∇vh =

3∑
k=1

∫
ek

ξkqk
2 sin θk

{
(�2k+1 − �2k−1)

∂2u

∂t2k
+ 4|τ | ∂2u

∂tk∂nk

}
∂vh
∂tk

−
∫
τ

3∑
k=1

�kξk

2 sin2 θk

{
�k+1ψk−1

∂3u

∂2tk+1∂tk−1
+ �k−1ψk+1

∂3u

∂2tk−1∂tk+1

}
∂vh
∂tk

.

Proof. Using Lemmas 2.1–2.2, we have

∫
τ

∇(u− uI) · Dτ∇vh =

3∑
k=1

∫
ek

(u− uI)∇vhvh · Dτnk

=

3∑
k=1

∫
ek

(u− uI)

{
ξk−1

sin θk

∂vh
∂tk−1

− ξk+1

sin θk

∂vh
∂tk+1

}

=

3∑
k=1

{
ξk

sin θk+1

∫
ek+1

(u− uI)
∂vh
∂tk

}
−
{

ξk
sin θk−1

∫
ek−1

(u− uI)
∂vh
∂tk

}

=

3∑
k=1

{
�2k+1ξk

2 sin θk+1

∫
ek+1

qk+1
∂2u

∂t2k+1

∂vh
∂tk

}
−
{

�2k−1ξk

2 sin θk−1

∫
ek−1

qk−1
∂2u

∂t2k−1

∂vh
∂tk

}

=
3∑
k=1

�kξk
2 sin θk

{
�k+1

∫
ek+1

qk+1
∂2u

∂t2k+1

∂vh
∂tk
− �k−1

∫
ek−1

qk−1
∂2u

∂t2k−1

∂vh
∂tk

}

=

3∑
k=1

ξk
2 sin θk

∫
ek

qk

{
�2k+1

∂2u

∂t2k+1

− �2k−1

∂2u

∂t2k−1

}
∂vh
∂tk

−
∫
τ

3∑
k=1

�kξk

2 sin2 θk

{
�k+1ψk−1

∂3u

∂tk−1∂t
2
k+1

+ �k−1ψk+1
∂3u

∂tk+1∂t
2
k−1

+

}
∂vh
∂tk

.

To complete the proof, we focus attention on the term

�2k+1

∂2u

∂t2k+1

− �2k−1

∂2u

∂t2k−1

.
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Using Lemma 2.1 once again, we have

∂2u

∂t2k+1

= cos2 θk−1
∂2u

∂t2k
+ 2 cos θk−1 sin θk−1

∂2u

∂tk∂nk
+ sin2 θk−1

∂2u

∂n2
k

,

∂2u

∂t2k−1

= cos2 θk+1
∂2u

∂t2k
− 2 cos θk+1 sin θk+1

∂2u

∂tk∂nk
+ sin2 θk+1

∂2u

∂n2
k

.

We also need the following identities:

�2k+1 sin
2 θk−1 − �2k−1 sin

2 θk+1 = 0,

�2k+1 cos
2 θk−1 − �2k−1 cos

2 θk+1 = �2k+1 − �2k−1,

�2k+12 cos θk−1 sin θk−1 + �2k−12 cos θk+1 sin θk+1 = 4|τ |.

Combining these equations leads to

�2k+1

∂2u

∂t2k+1

− �2k−1

∂2u

∂t2k−1

= (�2k+1 − �2k−1)
∂2u

∂t2k
+ 4|τ | ∂2u

∂tk∂nk
,

completing the proof.
Let e be an interior edge in the triangulation Th. Let τ and τ ′ be the two

elements sharing e. We say that τ and τ ′ form an O(h2) approximate parallelogram
if the lengths of any two opposite edges differ only by O(h2). Let x be a vertex lying
on ∂Ω, and let e and e′ be the two boundary edges sharing x as an endpoint. Let
τ and τ ′ be the two elements having e and e′, respectively, as edges, and let t and
and t′ be the unit tangents. Take e and e′ as one pair of corresponding edges, and
make a clockwise traversal of ∂τ and ∂τ ′ to define two additional corresponding edge
pairs. In this case, we say that τ and τ ′ form an O(h2) approximate parallelogram if
|t− t′| = O(h), and the lengths of any two corresponding edges differ only by O(h2).

Definition 2.4. The triangulation Th is O(h2σ) irregular if the following hold:
1. Let E = E1⊕E2 denote the set of interior edges in Th. For each e ∈ E1, τ and

τ ′ form an O(h2) approximate parallelogram, while
∑
e∈E2 |τ |+ |τ ′| = O(h2σ).

2. Let P = P1⊕P2 denote the set of boundary vertices. The elements associated
with each x ∈ P1 form an O(h2) approximate parallelogram, and |P2| = κ,
where κ is fixed independent of h.

The boundary points P and the decomposition P = P1⊕P2 are used only in the
case of Neumann boundary conditions. Generally speaking, we expect P2 to consist
of the geometric corners of Ω and perhaps a few other isolated points.

We can now state our main lemma.
Lemma 2.5. Let the triangulation Th be O(h2σ) irregular. Let Dτ be a piecewise

constant matrix function defined on Th, whose elements Dτij satisfy

|Dτij | � 1,

|Dτij −Dτ ′ij | � h,

for i = 1, 2, j = 1, 2. Here τ and τ ′ are a pair of triangles sharing a common edge.
Then ∣∣∣∣∣∑

τ∈Th

∫
τ

∇(u− uI) · Dτ∇vh
∣∣∣∣∣ � h1+min(1,σ)| log h|1/2||u||3,∞,Ω|vh|1,Ω.(2.11)
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Proof. Applying Lemma 2.3,∑
τ∈Th

∫
τ

∇(u− uI) · Dτ∇vh = I1 + I2,(2.12)

where

I1 =
∑
τ∈Th

3∑
k=1

∫
ek

ξkqk
2 sin θk

{
(�2k+1 − �2k−1)

∂2u

∂t2k
+ 4|τ | ∂2u

∂tk∂nk

}
∂vh
∂tk

,

I2 = −
∑
τ∈Th

∫
τ

3∑
k=1

�kξk

2 sin2 θk

{
�k+1ψk−1

∂3u

∂2tk+1∂tk−1
+ �k−1ψk+1

∂3u

∂2tk−1∂tk+1

}
∂vh
∂tk

,

I2 is easily estimated by

|I2| � h2||u||3,Ω|vh|1,Ω.(2.13)

To estimate I1, let E = E1 ⊕ E2 denote the set of interior edges. For each e ∈ E , let τ
and τ ′ share e as a common edge. Denote, with respect to τ ,

αe =
ξk

2 sin θk
(�2k+1 − �2k−1), βe =

ξk
2 sin θk

4|τ |,

and with respect to τ ′,

α′e =
ξk′

2 sin θk′
(�2k′+1 − �2k′−1), β′e =

ξk′

2 sin θk′
4|τ ′|.

Take n and t to correspond to τ . Then we can write

I1 = I11 + I12 + I13,

where

I1j =
∑
e∈Ej

∫
e

qe

{
(αe − α′e)

∂2u

∂t2
+ (βe − β′e)

∂2u

∂t∂n

}
∂vh
∂t

for j = 1, 2, and

I13 =
∑
e⊂∂Ω

∫
e

qe

{
αe

∂2u

∂t2
+ βe

∂2u

∂t∂n

}
∂vh
∂t

.

Using the elementary identity∣∣∣∣∫
e

f

∣∣∣∣ � h−1

∫
τ

|f |+
∫
τ

|∇f |,

we obtain (for z = t and z = n)∣∣∣∣∫
e

qe
∂2u

∂t∂z

∂vh
∂t

∣∣∣∣ � h−1

∫
τ

|∇2u||∇vh|+
∫
τ

|∇3u||∇vh|.(2.14)
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We can estimate this term in a slightly different way:∣∣∣∣∫
e

qe
∂2u

∂t∂z

∂vh
∂t

∣∣∣∣ � h−1|u|2,∞,Ω
∫
τ

|∇vh|.(2.15)

For e ∈ E1,

|αe − α′e| � h3,

|βe − β′e| � h3.

Combining this with (2.14), we have

|I11| � h2

∫
Ω

(|∇2u|+ h∇3u|)|∇vh| � h2||u||3,Ω|vh|1,Ω,(2.16)

or, by (2.15), we have

|I11| � h2|u|2,∞,Ω|vh|1,Ω.

Now we turn to the estimate for I12. For e ∈ E2, we simply estimate

|αe − α′e| ≤ |αe|+ |α′e| � h2,

|βe − β′e| ≤ |βe|+ |β′e| � h2.

Using (2.15), this leads to

|I12| � h1+σ|u|2,∞,Ω|vh|1,Ω.

We now consider I13. It is easy to see that, if vh = 0 on ∂Ω, then I13 = 0. In the
general case, we set

Be(u) = αe
∂2u

∂t2
+ βe

∂2u

∂t∂n

and

Be(u) = |e|−1

∫
e

Be(u).

Then

I13 =
∑
e⊂∂Ω

∫
e

qeBe(u)
∂vh
∂t

=
∑
e⊂∂Ω

∫
e

qeBe(u)
∂vh
∂t

+
∑
e⊂∂Ω

∫
e

qe(Be(u)−Be(u))
∂vh
∂t

.

For the second term, we have∣∣∣∣∣ ∑
e⊂∂Ω

∫
e

qe(Be(u)−Be(u))
∂vh
∂t

∣∣∣∣∣ � h3|u|3,∞,Ω
∑
e⊂∂Ω

∫
e

∣∣∣∣∂vh∂t
∣∣∣∣

� h5/2|u|3,∞,Ω|vh|1,Ω.
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We now estimate the first term. Let P = P1 ⊕ P2 denote the set of vertices on ∂Ω.
Then we have ∑

e⊂∂Ω

∫
e

qeBe(u)
∂vh
∂t

=
∑
e⊂∂Ω

Be(u)
∂vh
∂t

∫
e

qe

=
∑
e⊂∂Ω

Be(u)
∂vh
∂t

|e|
6

=
1

6

∑
x∈P

(
Be(u)−Be′(u)

)
vh(x).

For x ∈ P1, we have

|αe − αe′ | � h3,

|βe − βe′ | � h3.

Thus ∣∣Be(u)−Be′(u)
∣∣ � h3|u|3,∞,Ω.

For x ∈ P2, we have∣∣Be(u)−Be′(u)
∣∣ ≤ ∣∣Be(u)

∣∣+ ∣∣Be′(u)
∣∣ � h2|u|2,∞,Ω.

Combining these estimates, we have∣∣∣∣∣∑
x∈P

(
Be(u)−Be′(u)

)
vh(x)

∣∣∣∣∣ � h2 (|u|3,∞,Ω + κ|u|2,∞,Ω) ||vh||∞,∂Ω

� h2| log h|1/2||u||3,∞,Ω||vh||1,Ω.
In the last step, we used the well-known Sobolev inequality

||vh||∞,Ω � | log h|1/2||vh||1,Ω.
Here ||vh||1,Ω can be replaced by |vh|1,Ω by a standard argument. Thus our final
estimate is

|I13| � h2| log h|1/2||u||3,∞,Ω|vh|1,Ω.
Consequently

|I1| � h1+min(1,σ)| log h|1/2||u||3,∞,Ω|vh|1,Ω.(2.17)

Combining (2.12) with (2.13) and (2.17), we obtain (2.11).
For pure Dirichlet boundary conditions, we have the following better estimate.
Corollary 2.6. Assume the conditions of Lemma 2.5, except for the second

part of Definition 2.4 concerning regularity on the elements near the boundary. Then∣∣∣∣∣∑
τ∈Th

∫
τ

∇(u− uI) · Dτ∇vh
∣∣∣∣∣

� h1+min(1,σ)(||u||3,Ω + ||u||2,∞,Ω)|vh|1,Ω, vh ∈ Vh ∩H1
0 (Ω).
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Proof. Use I13 = 0 in Lemma 2.5.
In the general case, without the second part of Definition 2.4, we have this slightly

weaker result.
Corollary 2.7. Assume the conditions of Lemma 2.5, except for the second

part of Definition 2.4 concerning regularity on the elements near the boundary. Then∣∣∣∣∣∑
τ∈Th

∫
τ

∇(u− uI) · Dτ∇vh
∣∣∣∣∣ � h1+min(1/2,σ)(||u||3,Ω + ||u||2,∞,Ω)|vh|1,Ω, vh ∈ Vh.

Proof. We always have the following estimate for I13:

|I13| � h3/2|u|2,∞,∂Ω|vh|1,Ω.
We conclude with a final technical result needed in section 4.
Lemma 2.8. Let the triangulation Th be O(h2σ) irregular. Then∣∣∣∣∣∑

τ

∫
∂τ

3∑
k=1

�2k
∂2u

∂t2k
vh · n

∣∣∣∣∣ � h1+min(1,σ)| log h|1/2||u||3,∞,Ω||vh||0,Ω.(2.18)

Proof. Let e ≡ ek be an arbitrary edge of element τ . We begin with the identity

�2k
∂2u

∂t2k
+ �2k+1

∂2u

∂t2k+1

+ �2k−1

∂2u

∂t2k−1

= (αe − δe)
∂2u

∂t2k
+ βe

∂2u

∂tk∂nk
+ δe

∂2u

∂n2
k

,

where

αe = �2k + �2k+1 + �2k−1,

βe = (�2k+1 − �2k−1)4|τ |/�2k,
δe = 8|τ |2/�2k.

For e ∈ E , let τ and τ ′ share e as a common edge. Take n and t to correspond to τ .
Then we can write ∑

τ

∫
∂τ

3∑
k=1

�2k
∂2u

∂t2k
vh · n = I1 + I2 + I3,

where

Ij =
∑
e∈Ej

∫
e

{
(αe − α′e)

∂2u

∂t2
+ (βe − β′e)

∂2u

∂t∂n

}
vh · n

for j = 1, 2 and

I3 =
∑
e∈∂Ω

∫
e

{
(αe − δe)

∂2u

∂t2
+ βe

∂2u

∂t∂n
+ δe

∂2u

∂n2

}
vh · n.

Following the pattern of proof in Lemma 2.5, we estimate

|I1| � h2||u||3,Ω||vh||0,Ω,
|I2| � h1+σ|u|2,∞,Ω||vh||0,Ω,

|I3| � h1+min(1,σ)| log h|1/2||u||3,∞,Ω||vh||0,Ω.
Equation (2.18) now follows directly from these estimates.
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3. Elliptic boundary value problems. We consider the non–self-adjoint and
possibly indefinite problem: find u ∈ H1(Ω) such that

B(u, v) =

∫
Ω

(D∇u+ bu) · ∇v + cuv dx = f(v)(3.1)

for all v ∈ H1(Ω). Here D is a 2×2 symmetric positive definite matrix, b a vector, and
c a scalar, and f(·) is a linear functional. We assume that all the coefficient functions
are smooth.

In order to insure that (3.1) has a unique solution, we assume that the bilinear
form B(·, ·) satisfies the continuity condition

|B(φ, η)| ≤ ν ||φ||1,Ω||η||1,Ω(3.2)

for all φ, η ∈ H1(Ω). We also assume the inf-sup conditions

inf
φ∈H1

sup
η∈H1

B(φ, η)

||φ||1,Ω||η||1,Ω = sup
φ∈H1

inf
η∈H1

B(φ, η)

||φ||1,Ω||η||1,Ω ≥ µ > 0.(3.3)

Let Vh ⊂ H1(Ω) be the space of continuous piecewise linear polynomials associ-
ated with the triangulation Th, and consider the approximate problem: find uh ∈ Vh
such that

B(uh, vh) = f(vh)(3.4)

for all vh ∈ Vh. To insure a unique solution for (3.4) we assume the inf-sup conditions

inf
φ∈Vh

sup
η∈Vh

B(φ, η)

||φ||1,Ω||η||1,Ω = sup
φ∈Vh

inf
η∈Vh

B(φ, η)

||φ||1,Ω||η||1,Ω ≥ µ > 0.(3.5)

Xu and Zikatanov [21] have shown that, under these assumptions,

||u− uh||1,Ω ≤ ν

µ
inf

vh∈Vh
||u− vh||1,Ω.

See also Aziz and Babuška [1].
We define the piecewise constant matrix function Dτ in terms of the diffusion

matrix D as follows:

Dτij = 1

|τ |
∫
τ

Dij dx.

Note that Dτ is symmetric and positive definite.
Theorem 3.1. Assume that the solution of (3.1) satisfies u ∈W 3,∞(Ω). Further,

assume the hypotheses of Lemma 2.5, with Dτ defined as above. Then

||uh − uI ||1,Ω � h1+min(1,σ)| log h|1/2||u||3,∞,Ω.
Proof. We begin with the identity

B(u−uI , vh) =
∑
τ∈Th

∫
τ

∇(u−uI) · Dτ∇vh dx+
∑
τ∈Th

∫
τ

∇(u−uI) · (D−Dτ )∇vh dx

+

∫
Ω

(u− uI)(b · ∇vh + cvh) dx = I1 + I2 + I3.
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The first term I1 is estimated using Lemma 2.5. I2 and I3 can be easily estimated by

|I2|+ |I3| � h2||u||2,Ω||vh||1,Ω.
Thus

|B(u− uI , vh)| � h1+min(1,σ)| log h|1/2||u||3,∞,Ω||vh||1,Ω.
We complete the proof using the inf-sup condition in

µ||uh − uI ||1,Ω ≤ sup
vh∈Vh

B(uh − uI , vh)

||vh||1,Ω
= sup
vh∈Vh

B(u− uI , vh)

||vh||1,Ω
� h1+min(1,σ)| log h|1/2||u||3,∞,Ω.

We now consider a more general nonlinear problem: find u ∈ H1(Ω) such that

B(u, v) = f(v)(3.6)

for all v ∈ H1(Ω). Here the form B(·, ·) is assumed to be linear in its second argument,
but nonlinear in its first. Once again, f(v) is a linear functional. Let uh be the finite
element approximation: find uh ∈ Vh such that

B(uh, vh) = f(vh)(3.7)

for all vh ∈ Vh. We assume that B(·, ·) is such that its linearization about u is a bilinear
form B(·, ·) as in (3.1), although the coefficient functions will now generally depend
on u. We assume that B(·, ·) satisfies the continuity and inf-sup conditions (3.2),
(3.3), and (3.5), so that both (3.6) and (3.7) have unique solutions. The linearization
process also satisfies

B(u, vh)− B(uh, vh) = B(u− uh, vh) +Q(u− uh, vh) = 0

for all vh ∈ Vh. The form Q(·, ·) contains higher order truncation terms in the
linearization process; as with B(·, ·), it is linear in its second argument. We assume

|Q(u− uh, vh)| � ||u− uh||21,Ω||vh||1,Ω.(3.8)

Theorem 3.2. Assume the hypotheses of Theorem 3.1 and (3.8). Then

||uh − uI ||1,Ω � h1+min(1,σ)| log h|1/2||u||3,∞,Ω + ||u− uh||21,Ω.
Proof. As in the proof of Theorem 3.1,

µ||uh − uI ||1,Ω ≤ sup
vh∈Vh

B(uh − uI , vh)

||vh||1,Ω
≤ sup
vh∈Vh

B(u− uI , vh)

||vh||1,Ω +
Q(u− uh, vh)

||vh||1,Ω
� h1+min(1,σ)| log h|1/2||u||3,∞,Ω + ||u− uh||21,Ω.

If ||u−uh||1,Ω is sufficiently small (e.g., ||u−uh||1,Ω ≤ C(u)h), then we will observe
superconvergence.
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4. A gradient recovery algorithm for O(h2) approximate parallelogram
meshes. In this section, we show that Qh∇uI can superconverge to ∇u for meshes
that are O(h2σ) irregular.

Theorem 4.1. Let u ∈ W 3,∞(Ω), and assume the hypotheses of Lemma 2.8.
Then

||∇u−Qh∇uI ||0,Ω � h1+min(1,σ)| log h|1/2||u||3,∞,Ω.
Proof. Given vh ∈ Vh × Vh, we have

(Qh∇(u− uI),vh) = (∇(u− uI),vh) = −((u− uI),∇ · vh) +
∫
∂Ω

(u− uI)vh · n.
(4.1)

We estimate the two terms on the right-hand side of (4.1). First,∣∣∣∣∫
∂Ω

(u− uI)vh · n
∣∣∣∣ � h3/2|u|2,∞,Ω||vh||0,Ω.

For the other, we use Lemma 2.2 to get∫
τ

(u− uI)∇ · vh = − 1

24

∫
τ

3∑
k=1

�2k
∂2uq

∂t2k
∇ · vh +

∫
τ

(u− uq)∇ · vh

= − 1

24

∫
τ

3∑
k=1

�2k
∂2u

∂t2k
∇ · vh

− 1

24

∫
τ

3∑
k=1

�2k
∂2(uq − u)

∂t2k
∇ · vh +

∫
τ

(u− uq)∇ · vh

= − 1

24

∫
∂τ

3∑
k=1

�2k
∂2u

∂t2k
vh · n+

1

24

∫
τ

3∑
k=1

�2k∇
∂2u

∂t2k
vh

− 1

24

∫
τ

3∑
k=1

�2k
∂2(uq − u)

∂t2k
∇ · vh +

∫
τ

(u− uq)∇ · vh

= I1 + I2 + I3 + I4.

Easy estimates show

|I3|+ |I4| � h3||u||3,τ |vh|1,τ � h2||u||3,τ ||vh||0,τ ,
|I2| � h2||u||3,τ ||vh||0,τ .

|I1| is estimated using Lemma 2.8. Consequently,

|(Qh∇(u− uI),vh)| � h1+min(1,σ)| log h|1/2||u||3,∞,Ω||vh||0,Ω.
Taking vh = Qh∇(u− uI), it follows that

||Qh∇(u− uI)||0,Ω � h1+min(1,σ)| log h|1/2||u||3,∞,Ω.
Theorem 4.1 now follows from the triangle inequality

||∇u−Qh∇uI ||0,Ω ≤ ||∇u−Qh∇u||0,Ω + ||Qh∇(u− uI)||0,Ω.
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The next result is an immediate consequence of Theorems 3.1 and 4.1.

Theorem 4.2. Let u ∈ W 3,∞(Ω), and assume the hypotheses of Theorems 3.1
and 4.1. Then

||∇u−Qh∇uh||0,Ω � h1+min(1,σ)| log h|1/2||u||3,∞,Ω.

Proof. Using the triangle inequality,

||∇u−Qh∇uh||0,Ω ≤ ||∇u−Qh∇uI ||0,Ω + ||Qh∇(uI − uh)||0,Ω
≤ ||∇u−Qh∇uI ||0,Ω + ||∇(uI − uh)||0,Ω.(4.2)

We estimate the two terms on the right-hand side of (4.2) using Theorems 4.1 and
3.1.

Finally, we would like to point out that many results presented above (such as
Theorems 3.1, 3.2, 4.1, and 4.2) can be refined in many ways. Before the end of this
section, let us give one such refinement for a piecewise O(h2σ) irregular grid.

Definition 4.3. The triangulation Th is piecewise O(h2σ) irregular if Ω can be
written as the union of a bounded number of polygonal subdomains and Th is O(h2σ)
irregular on each of these subdomains.

By applying Lemma 2.5 on each subdomain, we can easily get the following result.

Theorem 4.4. Lemma 2.5, Lemma 2.8, Theorem 3.1, Theorem 3.2, Theorem
4.1, and Theorem 4.2 are all valid for piecewise O(h2σ) grids.

The above theorem is related to superconvergence results on piecewise regular (or
strongly regular) grids that were discussed in earlier literature (cf. Xu [20] and Lin
and Xu [15]). The significance of such an extension will be discussed in the following
section.

5. Applications and numerical experiments. In this section, we develop a
few simple applications of our results and present some numerical examples. The
numerical experiments were performed using the PLTMG software package [5]. The
experiments were done on an Linux PC using double precision arithmetic and the g77
compiler.

We begin our discussion with a very simple example of piecewise uniform grids.
As shown in Figure 5.1, we began with a uniform 3×3 mesh with nt = 8 elements, and
computed a sequence of uniformly refined meshes through regular refinement of each
element of a given mesh into four similar triangles in the refined mesh by connecting
the midpoints pairwise.

This grid is O(h) irregular (σ = 1/2) by Definition 2.4, but piecewise O(h2σ)
irregular with σ = ∞ (namely, piecewise regular) by Definition 4.3. Consequently,
for this example, the result claimed by Theorem 4.4 is O(h1/2) better than the cor-
responding result from previous sections. In our first experiment, we consider the
problem

−∆u+ u = f,(5.1)

Ω = (0, 1)× (0, 1) with either Dirichlet or Neumann boundary conditions. The right-
hand side f and the boundary conditions were chosen such that u = ex+y was the
exact solution. In this experiment, we begin with the uniform 3× 3 mesh with eight
triangles described above, and make seven levels of uniform regiment. The results are
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Fig. 5.1. A (globally) O(h2σ) irregular grid with σ = 1/2, but piecewise O(h2σ) irregular grid
with σ = ∞.

Table 5.1
Results for a square domain, uniform refinement.

Dirichlet problem Neumann problem

nt H1 H̃1 H1 H1 H̃1 H1

8 1.2e 0 2.7e-1 6.0e-1 9.5e-1 7.2e-1 6.7e-1
32 6.0e-1 8.1e-2 2.4e-1 5.5e-1 2.4e-1 3.0e-1
128 3.0e-1 2.3e-2 8.8e-2 2.9e-1 7.5e-2 1.1e-1
512 1.5e-1 6.1e-3 3.2e-2 1.5e-1 2.2e-2 3.7e-2
2048 7.5e-2 1.6e-3 1.1e-2 7.5e-2 6.1e-3 1.3e-2
8192 3.8e-2 4.4e-4 4.0e-3 3.8e-2 1.7e-3 4.3e-3
32768 1.9e-2 1.2e-4 1.4e-3 1.9e-2 4.5e-4 1.5e-3
131072 9.4e-3 3.0e-5 5.1e-4 9.4e-3 1.2e-4 5.2e-4
order 1.01 1.95 1.51 1.01 1.91 1.55

reported in Table 5.1. In Table 5.1 and subsequent tables,

H1 = ||∇(u− uh)||0,Ω,
H̃1 = ||∇(uI − uh)||0,Ω,

H1 = ||∇u−Qh∇uh)||0,Ω,

where uI is the linear interpolant of u. In the last line, the order of convergence was
estimated from the reported data using a least squares technique.

In Table 5.1, we see quite clearly the first order convergence of ||∇(u − uh)||0,Ω
and the superconvergence of ||∇(uI − uh)||0,Ω. In the latter case, the rate is nearly
second order, which is consistent with Theorem 4.4. We also note superconvergence
of ||∇u − Qh∇uh)||0,Ω, with order close to 3/2. This is perhaps the result of most
practical significance.

We then repeated the experiment, replacing uniform refinement with the adaptive
refinement procedure in PLTMG. This adaptive refinement procedure is based on
longest-edge bisection and also includes a mesh smoothing phase that allows the
vertices in the mesh to move. The result was a sequence of unstructured, nonuniform,
nonnested, shape regular meshes. The target values for the adaptive procedure were
selected to produce a sequence of meshes with approximately the same number of
elements as for the uniform refinement case. The results are shown in Table 5.2.

For the adaptive meshes, the story is a quite different; ||∇(uI−uh)||0,Ω and ||∇u−
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Table 5.2
Results for a square domain, adaptive refinement.

Dirichlet problem Neumann problem

nt H1 H̃1 H1 nt H1 H̃1 H1

8 1.2e 0 2.7e-1 6.0e-1 8 9.5e-1 7.2e-1 6.7e-1
34 5.8e-1 1.0e-1 2.3e-1 36 4.6e-1 2.7e-1 2.3e-1
136 2.2e-1 7.2e-2 7.7e-2 134 2.5e-1 9.3e-2 1.0e-1
528 1.2e-1 3.4e-2 3.8e-2 526 1.2e-1 4.0e-2 3.8e-2
2079 6.0e-2 1.7e-2 1.7e-2 2080 6.0e-2 1.8e-2 1.6e-2
8254 2.9e-2 6.9e-3 7.1e-3 8257 2.9e-2 7.9e-3 7.2e-3
32888 1.4e-2 3.2e-3 3.0e-3 32890 1.4e-2 3.7e-3 3.2e-3
131301 6.9e-3 1.5e-3 1.4e-3 131311 7.0e-3 1.8e-3 1.5e-3
order 1.05 1.10 1.17 1.04 1.11 1.13

Fig. 5.2. Lake Superior mesh with nt = 2765. Elements are colored according to size.

Qh∇uh)||0,Ω show less superconvergence. In this case σ > 0, but it is clearly much
smaller than in the uniform refinement case. In Part II of this work [7], we show how
to obtain strong superconvergence for such meshes using SmQh∇uh as the recovered
gradient. Here S is a multigrid-like smoothing operator, and m is a small integer
(m = 1 or m = 2 is usually satisfactory). Analysis and a complete description are
deferred to Part II of this work.

In our second experiment, we solved (5.1) on a domain Ω in the shape of Lake
Superior. The true solution u in this case was chosen to be u = sinx sin y. In this
case, the initial mesh with nt = 2765 elements was unstructured and nonuniform,
but shape regular. This mesh is shown in Figure 5.2. As in the first example, we
first computed a sequence of uniformly refined meshes through regular refinement of
each element of a given mesh into four similar triangles. The results are shown in
Table 5.3.

In Table 5.3, we see quite clearly the first order convergence of ||∇(u−uh)||0,Ω and
the superconvergence of ||∇(uI − uh)||0,Ω. In the latter case, the rate is nearly second
order, which is again consistent with Theorem 4.4. Evidently, the many small uniform
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Table 5.3
Lake Superior domain, uniform refinement.

Dirichlet problem Neumann problem

nt H1 H̃1 H1 H1 H̃1 H1

2765 9.2e-1 1.5e-1 2.5e-1 9.1e-1 1.6e-1 2.6e-1
11060 4.6e-1 4.5e-2 1.0e-1 4.6e-1 4.8e-2 1.0e-1
44240 2.3e-1 1.3e-2 3.5e-2 2.3e-1 1.4e-2 3.5e-2
176960 1.2e-1 3.6e-3 1.2e-2 1.2e-1 3.8e-3 1.2e-2
order 1.02 1.88 1.54 1.02 1.89 1.54

Table 5.4
Lake Superior domain, adaptive refinement.

Dirichlet problem Neumann problem

nt H1 H̃1 H1 nt H1 H̃1 H1

2765 9.2e-1 1.5e-1 2.5e-1 2765 9.1e-1 1.6e-1 2.6e-1
11565 2.5e-1 4.0e-2 5.3e-2 11560 2.5e-1 4.3e-2 5.3e-2
45524 1.2e-1 1.8e-2 2.2e-2 45521 1.2e-1 1.9e-2 2.2e-2
179655 6.1e-2 8.3e-3 9.9e-3 179666 6.1e-2 8.7e-3 9.9e-3
order 1.12 1.22 1.32 1.12 1.26 1.32

patches were sufficient to produce a very strong superconvergence effect. We also see
superconvergence of Qh∇uh to ∇u, in a way similar to that of the first example.

We then repeated the experiment, replacing uniform with adaptive refinement.
The target values for the adaptive procedure once again were selected to produce
a sequence of meshes with approximately the same numbers of elements as in the
uniform refinement case. The results are shown in Table 5.4.

The results here are qualitatively similar to those for the first example. In Ta-
ble 5.4 we note slightly elevated estimates for the estimated order of convergence of
||∇(u− uh)||0,Ω. This is an artifact of the least squares procedure. Notice that in the
first adaptive step there was an unusually large decrease in ||∇(u− uh)||0,Ω. This was
because the initial nonuniform mesh was adapted mainly to the complex geometry of
Ω and not to the character of the solution. In subsequent adaptive refinement steps,
the error is rapidly approaching first order behavior. The orders for H1 and H1 are
also slightly elevated by unusually large decreases in the first adaptive step.
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analyzed superconvergence for piecewise linear finite element approximations on triangular meshes
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a postprocessing gradient recovery scheme for the finite element solution uh, inspired in part by
the smoothing iteration of the multigrid method. This recovered gradient superconverges to the
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provide several numerical examples illustrating the effectiveness of our procedures.
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1. Introduction. In Part I of this work [10], we developed some superconver-
gence estimates and a gradient recovery algorithm appropriate for piecewise linear
finite element approximations of elliptic boundary problems. In that work, we re-
stricted attention to triangular meshes that are O(h2σ) irregular [10]. In this work,
we extend the gradient recovery scheme to more general meshes and develop an a pos-
teriori error estimate and local error indicator for use in adaptive meshing algorithms.
See [15, 23, 24, 25, 14, 22, 12, 16, 20, 5, 13, 1] for related work, and in particular the
monographs by Verfürth [18], Babuška and Strouboulis [4], Chen and Huang [11], Lin
and Yan [17], and Wahlbin [19] for recent surveys of the field as a whole.

Our overall development has three major steps. Let Vh ⊂ H1(Ω) be the finite
element subspace consisting of continuous piecewise linear polynomials associated
with a shape regular triangulation Th. Let uh ∈ Vh be the finite element solution
of an appropriate linear or nonlinear elliptic boundary value problem. In the first
component of our development, we prove a superconvergence result for |uh − uI |1,Ω,
where uI is the piecewise linear interpolant for u. In particular, in Part I of this
manuscript [10], we prove that

|uh − uI |1,Ω � h1+min(1,σ)| log h|1/2||u||3,∞,Ω.(1.1)

Estimate (1.1) holds on nonuniform meshes, where most pairs of adjacent triangles
satisfy an O(h2) approximate parallelogram property. σ > 0 in some sense measures
the extent to which this condition is violated; see [10] for details.
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The second major component is a superconvergent approximation to ∇u. This
approximation is generated by a gradient recovery procedure. In particular, in section
2 of this manuscript we compute SmQh∇uh, where S is an appropriate smoothing
operator and Qh is the L

2 projection operator. In words, the discontinuous, piecewise
constant gradient ∇uh is projected into the space of continuous piecewise linear poly-
nomials, and then smoothed, using a multigrid-like smoothing operator. Although
the L2 projection operator is global, the overall work estimate is still O(N) for a
mesh with N vertices. In the case of a small number of smoothing steps (the most
interesting case), Theorem 2.7 shows that

||∇u− SmQh∇uh||0,Ω � h

{
min

(
hmin(1,σ)| log h|,

[
κ− 1

κ

]m)
+mh1/2

}
||u||3,∞,Ω.

(1.2)

Here κ > 1 is a constant independent of h and u. The term (1 − κ−1)m illustrates
the well-known effectiveness of a few smoothing steps and is reminiscent of terms
arising in connection with multigrid convergence analysis [7]. If σ is sufficiently large,
then the L2 projection itself (m = 0) is sufficient to produce superconvergence. The
purpose of smoothing is to improve the performance when σ ≈ 0 and the mesh is
shape regular.

In the third major component of our analysis, presented in section 3 of this
manuscript, we use the recovered gradient to develop an a posteriori error estimate.
An obvious choice is to use (I−SmQh)∇uh to approximate the true error ∇(u−uh).
In Theorem 3.1 we show this is a good choice, and that in many circumstances we
can expect the error estimate to be asymptotically exact; that is,

lim
||(I − SmQh)∇uh||0,Ω
||∇(u− uh)||0,Ω = 1

as h→ 0 and m→∞ in an appropriate fashion.
We also use the recovered gradient to construct local approximations of interpola-

tion errors to be used as local error indicators for adaptive meshing algorithms. This
is motivated by noting that, under certain circumstances, |uq − uI |1,Ω is an asymp-
totically exact estimate of |u− uh|1,Ω. Here uq is the piecewise quadratic interpolant
for u. Thus uq − uI is a locally defined quadratic polynomial with value zero at all
vertices of the mesh. On a given element τ , uq − uI can be expressed as a linear
combination of quadratic “bump functions” qk associated with the edge midpoints
of τ ,

uq − uI =

3∑
k=1

�2kt
t
kMτ tk qk(x, y),(1.3)

where �k is the length of edge k, tk is the unit tangent, and

Mτ = −1
2

(
∂11uq ∂12uq
∂21uq ∂22uq

)
(1.4)

is the Hessian matrix (for details, see section 3). For convenience in notation, we
let ∂iu denote the partial derivative ∂u/∂xi. All terms on the right-hand side of
(1.3) are known except for the second derivatives appearing in the Hessian matrix
Mτ . In our local error indicator, we simply replace ∂ijuq by ∂iS

mQh∂juh. Let ετ
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denote this locally defined a posteriori error estimate. In Theorem 3.2, we prove the
superconvergence estimate

||∂i(∂ku− SmQh∂kuh)||0,Ω �
{
min

(
hmin(1,σ)| log h|,

[
κ− 1

κ

]m)
+mh1/2

}
||u||3,∞,Ω.

(1.5)

We remark that both our gradient recovery scheme and our a posteriori error
estimate are largely independent of the details of the PDE. This suggests that super-
convergence can be expected for a wide variety of problems, as long as the adaptive
meshing yields smoothly varying, shape regular meshes.

It also is interesting to note that the superconvergent global approximation to
∇u emphasizes once again a classic dilemma in error estimation. On the one hand,
generally it seems quite advantageous to take the superconvergent approximation
SmQh∇uh as the “accepted” approximation to ∇u. Not only is it of higher order than
∇uh, but also it is globally continuous and differentiable, often desirable properties.
On the other hand, the a posteriori error estimates and resulting adaptive meshing
algorithms use SmQh∇uh to estimate the error in∇uh. In some respects, the situation
is analogous to adaptive time step selection schemes for initial value problems where
order p and p+1 approximations are computed to estimate the local error in the order
p approximation, which is then used to control the time step.

Finally, as a point of practical interest, since the gradient recovery and a posteri-
ori error estimates are independent of the PDE, a single implementation can be used
across a broad spectrum of problems. There is no need to have special implementa-
tions for each problem class, as is typical of schemes that involve the solution of local
problems in each element or patch of elements [3, 9].

The rest of this paper is organized as follows: In section 2, we first provide some
notation, describe our gradient recovery scheme, and summarize the main supercon-
vergence estimates of [10] for the case of O(h2σ) irregular meshes. We then extend
the gradient recovery scheme to more general meshes through the use of a multigrid
smoother. In section 3, we develop and analyze our a posteriori error estimate and
prove (1.5). Finally, in section 4, we present several numerical examples, involving
both uniform and nonuniform (adaptive) meshes, with some solutions that satisfy
our smoothness assumptions and some that do not. In the latter cases, we observe
superconvergence away from singularities for adaptive meshes, although this effect is
not covered by our current analysis.

2. A gradient recovery algorithm for shape regular triangulations. Let
Ω ⊂ R

2 be a bounded domain with Lipschitz boundary ∂Ω. For simplicity of ex-
position, we assume that Ω is a polyhedron. We assume that Ω is partitioned by a
shape regular triangulation Th of mesh size h. Let Vh ⊂ H1(Ω) be the corresponding
continuous piecewise linear finite element space associated with this triangulation Th.

We consider the non–self-adjoint and possibly indefinite problem: Find u ∈ H1(Ω)
such that

B(u, v) =

∫
Ω

(D∇u+ bu) · ∇v + cuv dx = f(v)(2.1)

for all v ∈ H1(Ω). Here D is a 2×2 symmetric positive definite matrix, b a vector, and
c a scalar, and f(·) is a linear functional. We assume that all the coefficient functions
are smooth. Choosing H1(Ω) as trial space implies Neumann boundary conditions, a



2316 RANDOLPH E. BANK AND JINCHAO XU

choice made for convenience. In [10], we also analyzed more general nonlinear PDEs
and boundary conditions. However, since the details of the PDE do not strongly
influence our gradient recovery scheme, here we consider only the most simple case.

In order to insure that (2.1) has a unique solution, we assume that the bilinear
form B(·, ·) satisfies the continuity condition

|B(φ, η)| ≤ ν ||φ||1,Ω||η||1,Ω(2.2)

for all φ, η ∈ H1(Ω). We also assume the inf-sup conditions

inf
φ∈H1

sup
η∈H1

B(φ, η)

||φ||1,Ω||η||1,Ω = sup
φ∈H1

inf
η∈H1

B(φ, η)

||φ||1,Ω||η||1,Ω ≥ µ > 0.(2.3)

For simplicity, we assume that µ and ν are such that the standard Galerkin finite
element approximation is an appropriate discretization. Let Vh ⊂ H1(Ω) be the space
of continuous piecewise linear polynomials associated with the triangulation Th, and
consider the approximate problem: Find uh ∈ Vh such that

B(uh, vh) = f(vh)(2.4)

for all vh ∈ Vh. To insure a unique solution for (2.4), we assume the inf-sup conditions

inf
φ∈Vh

sup
η∈Vh

B(φ, η)

||φ||1,Ω||η||1,Ω = sup
φ∈Vh

inf
η∈Vh

B(φ, η)

||φ||1,Ω||η||1,Ω ≥ µ > 0.(2.5)

Xu and Zikatanov [21] have shown that, under these assumptions,

||u− uh||1,Ω ≤ ν

µ
inf

vh∈Vh
||u− vh||1,Ω.

See also Babuška and Aziz [2]. In this situation, we have standard a priori estimates
of the form

||u− uh||α,Ω � h2−α||u||2,Ω
for 0 ≤ α ≤ 1.

We define the piecewise constant matrix function Dτ in terms of the diffusion
matrix D as follows:

Dτij = 1

|τ |
∫
τ

Dij dx.

Note that Dτ is symmetric and positive definite. The following results are proved in
[10].

Theorem 2.1. Let the triangulation Th be O(h2σ) irregular [10]. Assume that
Dτ defined above satisfies

|Dτij | � 1,

|Dτij −Dτ ′ij | � h

for i = 1, 2, j = 1, 2. Here τ and τ ′ are a pair of triangles sharing a common edge.
Assume that the solution of (2.1) satisfies u ∈ W 3,∞(Ω) and that uh ∈ Vh is the
solution of (2.4). Then

||∇uh −∇uI ||0,Ω � h1+min(1,σ)| log h|1/2||u||3,∞,Ω,
||∇u−Qh∇uI ||0,Ω � h1+min(1,σ)| log h|1/2||u||3,∞,Ω,
||∇u−Qh∇uh||0,Ω � h1+min(1,σ)| log h|1/2||u||3,∞,Ω.
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When the mesh is not O(h2σ) irregular or when σ becomes very close to zero,
the superconvergence demonstrated in Theorem 2.1 will be diminished. Intuitively,
it appears that superconvergence of Qh∇uh is diminished mainly because of high
frequency errors introduced by the small nonuniformities of the mesh. Preferentially
attenuating high frequency errors in mesh functions is of course a widely studied
problem in multilevel iterative methods. Our proposal here is to apply these ideas
in the present context. In particular, we construct a multigrid smoother S and take
SmQh∇uh as our recovered gradient. As with multigrid methods, we expect that a
very small number of smoothing steps will suffice; in our code, we take m = 2 as
default.

Our postprocessing gradient recovery scheme is based on the following bilinear
form:

a(u, v) = (∇u,∇v) + (u, v).(2.6)

We introduce the discrete operator A : vh �→ Vh defined by

(Auh, vh) = a(uh, vh) ∀uh, vh ∈ Vh.
We note that A is symmetric positive definite on Vh and

λ ≡ ρ(A) � h−2.(2.7)

Using A, we introduce the smoothing operator S defined by

S = I − λ−1A.

The usual multigrid convergence function

f(α, β) =
ααββ

(α+ β)(α+β)
,

α, β > 0, plays an important role. Here we summarize some standard properties of
f(α, β). Let p, α, β > 0. Then

sup
x∈[0,1]

xα(1− x)β = f(α, β),

f(α, β)p = f(pα, pβ),

f(α, β) = f(β, α).

For convenience in notation, we let ∂iu denote the partial derivative ∂u/∂xi. We
now state and prove some preliminary lemmas leading up to the main Theorem 2.7
in this section.

Lemma 2.2. For any z ∈ Vh,
||(I − Sm)z||0,Ω � mh

(||z − ∂iu||1,Ω + h||u||3,Ω + h1/2|u|2,∞,∂Ω

)
.

Proof. We note, from the definition of S,

||(I − Sm)z|| = λ−1||(I − Sm)(I − S)−1Az||
≤ λ−1 max

s∈[0,1]
[(1− sm)(1− s)−1]||Az||

≤ λ−1m||Az||
� mh2||Az||.
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Let w = Az. By definition,

(w, φ) = (∇z,∇φ) + (z, φ)(2.8)

for all φ ∈ Vh. We take φ = w in (2.8) and estimate the terms on the right-hand side.
The critical term is (∇z,∇w), where we have

(∇z,∇w) = (∇(z − ∂iu),∇w) + (∇∂iu,∇w)
� ||∇(z − ∂iu)||||∇w|| − (∆∂iu,w) +

∫
∂Ω

∇∂iu · nw ds

� (h−1||z − ∂iu||1,Ω + ||u||3,Ω)||w||0,Ω + |u|2,∞,∂Ω

∫
∂Ω

|w| ds

�
(
h−1||z − ∂iu||1,Ω + ||u||3,Ω + h−1/2|u|2,∞,∂Ω

)||w||0,Ω.
Also

(z, w) = (z − ∂iu,w) + (∂iu,w) � (h−1||z − ∂iu||1,Ω + ||u||3,Ω)||w||0,Ω.
Thus for z ∈ Vh,

||Az|| � h−1||z − ∂iu||1,Ω + ||u||3,Ω + h−1/2|u|2,∞,∂Ω,

completing the proof.
Lemma 2.3. Suppose that for v ∈ Vh and some 0 < α ≤ 1 we have

||v|| ≤ ω(h, v),

||v||−α ≡ ||A−α/2v|| ≤ (Ch)αω(h, v).
Then

||Smv|| ≤ εm ω(h, v),

where

εm =

 κα/2f(m,α/2) � m−α/2 for m > (κ− 1)α/2,

[(κ− 1)/κ]
m

for m ≤ (κ− 1)α/2,

and κ = (Ch)2λ.
Proof. Let 0 ≤ β ≤ α. Then from the Hölder inequality

||v||−β ≤ ||v||β/α−α ||v||1−β/α

and the hypotheses of the lemma, it follows that

||v||−β ≤ (Ch)βω(h, v)
for 0 ≤ β ≤ α.

Now,

||Smv|| = λβ/2||Sm(I − S)β/2A−β/2v||
≤ λβ/2 max

s∈[0,1]
[sm(1− s)β/2]||A−β/2v||

≤ λβ/2f(m,β/2)(Ch)βω(h, v)
≤ κβ/2f(m,β/2)ω(h, v),
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where κ = (Ch)2λ. We now minimize this bound with respect to β on the interval
0 ≤ β ≤ α.

∂κβ/2f(m,β/2)

∂β
=

1

2
log

{
(κβ)

(2m+ β)

}
· κβ/2f

(
m,

β

2

)
= 0

⇔ κβ

(2m+ β)
= 1

⇒ β =
2m

(κ− 1)
.

There are two cases: The first is when 2m/(κ− 1) > α. Here the minimum occurs at
β = α. Hence, for m > (κ− 1)α/2,

εm = κα/2f(m,α/2).

The second case is when 2m/(κ− 1) ≤ α. Here β = 2m/(κ− 1) and

εm =

(
κ− 1

κ

)m
.

Lemma 2.4. Let w ∈ H1(Ω). Then, for 1/2 < α ≤ 1,

||SmQh∂iw||0,Ω � εm
(
h−1||w||0,Ω + ||w||1,Ω + h−α||w||0,∞,∂Ω

)
,

with εm defined as in Lemma 2.3.
Proof. Our plan is to apply Lemma 2.3 to v = Qh∂iw. Note that

||v||−α = ||Qh∂iw||−α = sup
φ∈Vh

(Qh∂iw, φ)

||φ||α = sup
φ∈Vh

(∂iw, φ)

||φ||α .

Using integration by parts,

(∂iw, φ) = −(w, ∂iφ) +
∫
∂Ω

wφni ds

� ||w||0,Ω||φ||1,Ω + ||w||0,∞,∂Ω

∫
∂Ω

|φ| ds

� hα−1||w||0,Ω||φ||α,Ω + ||w||0,∞,∂Ω||φ||α,Ω
� (hα−1||w||0,Ω + ||w||0,∞,∂Ω)||φ||α,Ω.

Thus

||v||−α,Ω � hαω(h, v)

with

ω(h, v) = h−1||w||0,Ω + ||w||1,Ω + h−α||w||0,∞,∂Ω.

Since

||v||0,Ω = ||Qh∂iw||0,Ω ≤ ω(h, v),

the desired estimate now follows from Lemma 2.3.
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Lemma 2.5. Let u ∈ H3(Ω)∩W 2,∞(Ω). Then for any vh ∈ Vh and 1/2 < α ≤ 1
we have

||∇u− SmQh∇vh||0,Ω � mh3/2
(
h1/2||u||3,Ω + |u|2,∞,∂Ω

)
+ εm

(
h−1||u− vh||0,Ω + ||u− vh||1,Ω + h−α||u− vh||0,∞,∂Ω

)
,

with εm defined as in Lemma 2.3.
Proof. By the triangle inequality,

||∂iu− SmQh∂ivh||0,Ω ≤ ||(I −Qh)∂iu||0,Ω + ||(I − Sm)Qh∂iu||0,Ω + ||SmQh∂i(u− vh)||0,Ω.
We now estimate these three terms. The first term is easy; by standard arguments,

||(I −Qh)∂iu||0,Ω � h2||u||3,Ω.
The second term is estimated by Lemma 2.2 with z = Qh∂iu. For the third, we apply
Lemma 2.4 with w = u− vh.

In the case in which vh = uh ∈ Vh ∩H1
0 (Ω) is the finite element approximation

to u ∈ H1
0 (Ω), the boundary terms vanish and

||∇u− SmQh∇vh||0,Ω � h(mh+ εm)||u||3,Ω.
In the more general case, if vh = uh ∈ Vh and 1/2 < α < 1, we use the well-known
L∞ norm estimate for the linear finite element approximation to obtain

h−α||u− uh||0,∞,∂Ω � h1−α| log h|h|u|2,∞,Ω � h|u|2,∞,Ω
and, hence,

||∇u− SmQh∇vh||0,Ω � h(mh1/2 + εm)(||u||3,Ω + |u|2,∞,Ω).
Similar estimates hold for the case v = uI . We now turn to the main theorems in this
section. The next theorem is based only on the results developed in this section and
summarizes the above discussion.

Theorem 2.6. Let u ∈ H3(Ω) ∩W 2,∞(Ω) and uh ∈ Vh be an approximation of
u satisfying

||u− uh||k,Ω � h2−k|u|2,Ω, k = 0, 1,

||u− uh||0,∞Ω � h2| log h||u|2,∞Ω.

Then

||∇u− SmQh∇uh||0,Ω � h(mh1/2 + εm) (||u||3,Ω + |u|2,∞,Ω) ,
where εm is defined as in Lemma 2.3 and 1/2 < α < 1.

The following theorem combines results from this section with our earlier super-
convergence results.

Theorem 2.7. Let u ∈ W 3,∞(Ω), and assume the hypotheses of Theorem 2.1.
Then

||∇u− SmQh∇uI ||0,Ω � h
(
min(hmin(1,σ)| log h|, εm) +mh1/2

)||u||3,∞,Ω,(2.9)

||∇u− SmQh∇uh||0,Ω � h
(
min(hmin(1,σ)| log h|, εm) +mh1/2

)||u||3,∞,Ω,(2.10)

where εm is defined as in Lemma 2.3 and 1/2 < α < 1.
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Proof. Our proof combines Lemma 2.5 and Theorem 2.1. We first use the triangle
inequality

||∂iu− SmQh∂iuI ||0,Ω ≤ ||(I −Qh)∂iu||0,Ω + ||(I − Sm)Qh∂iu||0,Ω + ||SmQh∂i(u− uI)||0,Ω.

The first two terms are estimated as in Lemma 2.5. For the third term, we can first
use Theorem 2.1 as

||SmQh∂i(u− uI)||0,Ω � ||Qh∂i(u− uI)||0,Ω
� ||∂iu−Qh∂iuI ||0,Ω + ||(I −Qh)∂iu||0,Ω
� h1+min(1,σ)| log h|1/2||u||3,∞,Ω + h2||u||3,Ω.

The third term can also be estimated as in Lemma 2.5. Taken together, these esti-
mates establish (2.9). The proof of (2.10) is identical.

We conclude with a few implementation details. First, with respect to the selec-
tion of the critical parameter m: Balancing the terms(

κ− 1

κ

)m
≈ mh−1/2

suggests that m should grow in a logarithmic-like fashion as the mesh is refined. On
the other hand, in our empirical investigations, we have found that taking m ≤ 2 has
been adequate for scalar PDE equations involving O(105) unknowns, which suggests
that a simple fixed strategy is good enough for most purposes.

Second, with respect to the L2 projection: This linear system is solved approxi-
mately by an iterative method, in our case, a symmetric Gauss–Seidel method with
conjugate gradient acceleration (SGSCG). The mass matrix is assembled in the stan-
dard nodal basis and is sparse and diagonally dominant, so convergence is very rapid;
typically 4–6 iterations are sufficient. In the context of an adaptive refinement feed-
back loop, the initial guess is taken as zero for the first (coarsest) mesh and in-
terpolated from the previous mesh at all subsequent refinement steps. The overall
complexity of this step is thus O(N) for a mesh with N vertices. If necessary, this
step could be made more efficient (in terms of the size of the constant, not the order
of complexity) by using some standard mass lumping scheme to construct a diagonal
approximation to the mass matrix. This would also make the calculation local rather
than global.

Third, with respect to the smoothing steps: We do not compute the constant λ
exactly. In fact, we use a Jacobi conjugate gradient (JCG) iteration. The stiffness
matrix A corresponding to the operator −∆ is assembled in the nodal basis; this
matrix is symmetric positive semidefinite with a one dimensional kernel corresponding
the constant function. (We used the complete H1 inner product in our analysis to
avoid the technical complications introduced by a nontrivial kernel.) Then m JCG
steps are applied to the linear system Ax = 0, with initial guess corresponding to the
finite element function Qh∂iuh. Our default choice is m = 2 iterations; thus this step
also has complexity O(N).

3. An a posteriori error estimator. In this section we use the recovered
gradient to develop an a posteriori error estimator. The obvious choice for a global a
posteriori error estimator is to approximate ||∇(u− uh)||0,Ω by ||(I − SmQh)∇uh||0,Ω.
In Theorem 3.1, we show that this is indeed a good approximation.
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Theorem 3.1. Assume the hypotheses of Theorem 2.7. Then

(3.1) ||∇(u− uh)||0,Ω ≤ ||(I − SmQh)∇uh||0,Ω
+ Ch

(
min(hmin(1,σ)| log h|, εm) +mh1/2

)||u||3,∞,Ω,
(3.2) ||(I − SmQh)∇uh||0,Ω ≤ ||∇(u− uh)||0,Ω

+ Ch
(
min(hmin(1,σ)| log h|, εm) +mh1/2

)||u||3,∞,Ω,
where εm is defined as in Lemma 2.3 for 1/2 < α < 1. Furthermore, if there exists a
positive constant c0(u) independent of h such that

||∇(u− uh)||0,Ω ≥ c0(u)h,(3.3)

then ∣∣∣∣ ||(I − SmQh)∇uh||0,Ω
||∇(u− uh)||0,Ω − 1

∣∣∣∣ � min(hmin(1,σ)| log h|, εm) +mh1/2.(3.4)

Proof. The proof of (3.1)–(3.2) is just a simple application of the triangle inequal-
ities

||∇(u− uh)||0,Ω ≤ ||(I − SmQh)∇uh||0,Ω + ||∇u− SmQh∇uh||0,Ω,
||(I − SmQh)∇uh||0,Ω ≤ ||∇(u− uh)||0,Ω + ||∇u− SmQh∇uh||0,Ω

and Theorem 2.7. Estimate (3.4) follows from (3.1)–(3.2) and from the assumption
(3.3).

Taken together, (3.1)–(3.2) show that if the true error is first order, ||∇(u −
uh)||0,Ω = O(h), then the a posteriori error estimate ||(I − SmQh)∇uh||0,Ω will also
be O(h). In particular, given a superconvergent approximation to ∇u, we can expect
the effectivity ratio ||(I − SmQh)∇uh||0,Ω/||∇(u − uh)||0,Ω to be close to unity. Fur-
thermore, in this case Theorem 3.1 shows that the a posteriori error estimate will be
asymptotically exact.

In terms of local error indicators, an obvious choice would be to estimate the local
error in a given element τ by ||(I − SmQh)∇uh||0,τ . For practical reasons discussed
below, we prefer an alternative approach where the recovered gradient is used to
approximate the Hessian matrix of second derivatives of u. By way of motivation, we
note that for an O(h2σ) irregular mesh

||∇(u− uh)||0,Ω ≤ ||∇(u− uq)||0,Ω + ||∇(uq − uI)||0,Ω + ||∇(uI − uh)||0,Ω
≤ C(u)h1+min(1,σ)| log h|+ ||∇(uq − uI)||0,Ω,

||∇(uq − uI)||0,Ω ≤ ||∇(uq − u)||0,Ω + ||∇(u− uh)||0,Ω + ||∇(uh − uI)||0,Ω
≤ C(u)h1+min(1,σ)| log h|+ ||∇(u− uh)||0,Ω.

From this pair of estimates, it follows that ||∇(uq − uI)||0,Ω = O(h) if and only if
||∇(u−uh)||0,Ω = O(h), and that in this case ||∇(uq −uI)||0,Ω is asymptotically exact.

The function uq − uI is a locally defined, piecewise quadratic polynomial with
value zero at all vertices of the mesh. Let a canonical element τ ∈ Th have vertices
ptk = (xk, yk), 1 ≤ k ≤ 3, oriented counterclockwise, and corresponding nodal basis
functions (barycentric coordinates) {ψk}3k=1. Let {ek}3k=1 denote the edges of element
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Fig. 3.1. Parameters associated with the triangle τ .

τ , {nk}3k=1 the unit outward normal vectors, {tk}3k=1 the unit tangent vectors with
counterclockwise orientation, and {�k}3k=1 the edge lengths (see Figure 3.1). Let
qk = ψk+1ψk−1 denote the quadratic bump function associated with edge k of τ ,
where (k − 1, k, k + 1) is a cyclic permutation of (1, 2, 3). Thus in element τ , uq − uI
is a linear combination of the quadratic bump functions associated with the edge
midpoints of the element,

uq − uI =

3∑
k=1

�2kt
t
kMτ tk qk(x, y),

where

Mτ = −1
2

(
∂11uq ∂12uq
∂21uq ∂22uq

)
.

In our local error indicator, we simply approximate the second derivatives in the
Hessian matrix Mτ using gradients of SmQh∂iuh. In particular, let

M̃τ = −1
2

(
∂1S

mQh∂1uh ∂1S
mQh∂2uh

∂2S
mQh∂1uh ∂2S

mQh∂2uh

)
,

M̄τ =
ατ
2
(M̃τ + M̃ t

τ ),

where ατ > 0 is a constant described below. For the case of meshes that are O(h2σ)
irregular, we can have m = 0, but for general shape regular meshes, we have m > 0.
In either case, the local error estimate ετ is given by

ετ =

3∑
k=1

�2kt
t
kM̄τ tk qk(x, y).(3.5)

The normalization constant ατ is chosen such that the local error indicator ητ satisfies

ητ ≡ ||∇ετ ||0,τ = ||(I − SmQh)∇uh||0,τ .
Normally we expect that ατ ≈ 1, which is likely to be the case in regions where
the Hessian matrix for the true solution is well defined. Near singularities, u is not
smooth, and we anticipate difficulties in estimating the Hessian. For elements near
such singularities, ατ provides a heuristic for partly compensating for poor approxi-
mation.



2324 RANDOLPH E. BANK AND JINCHAO XU

The form of our a posteriori error estimate (3.5) is quite useful in practice. It
explicitly shows the dependence on the shape, size, and orientation of the elements, as
well as the dependence on the second derivatives of u. This leads to many interesting
algorithms for adaptive mesh smoothing and topology modification (e.g., “edge flip-
ping”) [8]. For example, if M̄τ is assumed to be constant, then ετ and η

2
τ are rational

functions of vertex locations, and derivatives with respect to the vertex locations are
easily computed.

Using ετ also provides a simple, robust, and elegant solution to an important
practical problem for adaptive mesh refinement schemes: how to provide error esti-
mates for the refined elements without immediately resolving the global problem. In
the past, most schemes were based on crude (or not-so-crude) extrapolation ideas,
using the error indicator of the parent element as a basis. In most such schemes it
is difficult to take into account the details of the geometry, and they tend to become
very inaccurate after only a few levels of refinement. On the other hand, with our er-
ror estimator, the children elements inherit only the Hessian matrix from the parent,
and all the geometrical information is derived from the refined elements themselves.
Thus it is possible to have many levels of refinement before the approximation breaks
down and a new global solution is required. This has proved to be very effective in
the PLTMG 8.0 package [6], which employs this scheme, but uses a different a poste-
riori error estimate to compute the approximate Hessian matrix [8]. In Theorem 3.2,
we show that our recovered gradients can provide reasonable approximation to the
Hessian.

Theorem 3.2. Assume the hypotheses of Theorem 2.7. Then

||∂i(∂ku− SmQh∂kuh)||0,Ω �
(
min(hmin(1,σ)| log h|, εm) +mh1/2

)||u||3,∞,Ω,(3.6)

where εm is defined as in Lemma 2.3 for 1/2 ≤ α < 1.
Proof. Let z = Ih∂ku ∈ Vh. Then

||∂i(∂ku− SmQh∂kuh)||0,Ω ≤ ||∂i(∂ku− z)||0,Ω + ||∂i(z − SmQh∂kuh)||0,Ω
� h||u||3,Ω + h−1||z − SmQh∂kuh||0,Ω
� h||u||3,Ω + h−1 (||z − ∂ku||0,Ω + ||∂ku− SmQh∂kuh||0,Ω)
�
(
min(hmin(1,σ)| log h|, εm) +mh1/2

)||u||3,∞,Ω.
4. Numerical experiments. In this section, we present some numerical il-

lustrations of our recovery scheme in the cases of uniform and adaptively refined
(nonuniform) meshes. Our gradient recovery scheme and a posteriori error estimate
were implemented in the PLTMG package [6], which was then used for our numerical
experiments. The experiments were done on an SGI Octane using double precision
arithmetic.

In our first example, we consider the solution of the problem

−∆u = f in Ω = (0, 1)× (0, 1),

u = g on ∂Ω,

where f and g are chosen such that u = ex+y is the exact solution. This is a very
smooth solution that satisfies all the assumptions of our theory. Here we will compare
the recovery scheme withm = 2 smoothing steps, for the case of uniform and adaptive
meshes. We begin with a uniform 3 × 3 mesh consisting of eight right triangles, as
shown in Figure 4.1. Elements in Figure 4.1 are shaded according to size; this allows
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Fig. 4.1. Top left: 3 × 3 initial mesh. Top right: uniform refinement with nt = 128. Bottom
left: adaptive refinement with nt = 134. Bottom right: adaptive refinement with nt = 130961.
Elements are shaded according to size.

Table 4.1
Error estimates for the case m = 2.

Adaptive meshes Uniform meshes
nt L2 H1 Ef nt L2 H1 Ef
8 1.5e-1 1.7e 0 1.68 8 1.5e-1 1.7e 0 1.68

34 4.9e-2 5.9e-1 1.36 32 3.8e-2 8.7e-1 1.74
134 1.3e-2 2.9e-1 1.54 128 9.6e-3 3.6e-1 1.50
510 2.4e-3 7.1e-2 1.17 512 2.4e-3 1.6e-1 1.41

2037 5.2e-4 2.4e-2 1.09 2048 6.0e-4 6.7e-2 1.30
8148 1.1e-4 7.1e-3 1.04 8192 1.5e-4 2.6e-2 1.20

32683 2.7e-5 2.0e-3 1.01 32768 3.8e-5 1.0e-2 1.12
130961 7.0e-6 6.2e-4 1.00 131072 9.4e-6 3.7e-3 1.07

L2 H1 H̃1 L2 H1 H̃1
Order 2.06 1.76 1.04 2.03 1.42 1.01

one to obtain some impression of the structure of highly refined meshes with many
elements, even if individual elements can no longer be resolved.

In Table 4.1, we record the results of the computation. We give the error as
a function of the number of elements, choosing targets for the adaptive refinement
procedure to produce adaptive meshes with numbers of elements similar to those for
the uniform refinement case. The values are defined as follows:

L2 = ||u− uh||0,Ω,
H1 = ||∇u− SmQh∇uh||0,Ω,

H̃1 = ||∇(u− uh)||0,Ω,

Ef =
||(I − SmQh)∇uh||0,Ω
||∇(u− uh)||0,Ω .
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Table 4.2
Order of convergence as a function of m for adaptive meshes.

m = 0 m = 1 m = 2 m = 3 m = 10
K H1 Ef H1 Ef H1 Ef H1 Ef H1 Ef
1 6.1e 0 0.83 7.8e-1 1.16 1.7e 0 1.68 1.7e 0 1.70 1.7e 0 1.70
2 2.3e-1 0.92 3.2e-1 1.00 5.9e-1 1.36 1.3e 0 2.34 1.8e 0 3.67
3 7.8e-2 0.94 1.1e-1 1.06 2.9e-1 1.54 3.8e-1 1.64 1.8e 0 6.75
4 3.8e-2 0.95 3.4e-2 1.02 7.1e-2 1.17 1.5e-1 1.49 1.1e 0 7.09
5 1.7e-2 0.96 1.1e-2 1.01 2.4e-2 1.09 4.8e-2 1.26 3.2e-1 4.05
6 7.2e-3 0.97 3.7e-3 1.00 7.1e-3 1.04 1.3e-2 1.09 1.2e-1 3.63
7 3.0e-3 0.98 1.4e-3 1.00 2.0e-3 1.01 3.4e-3 1.03 3.2e-2 2.27
8 1.5e-3 0.98 5.7e-4 1.00 6.2e-4 1.00 8.9e-4 1.01 7.0e-3 1.34

H1 H̃1 H1 H̃1 H1 H̃1 H1 H̃1 H1 H̃1
Order 1.16 1.04 1.39 1.03 1.76 1.04 1.92 1.07 2.01 1.08

For the cases of L2, H1, and H̃1, we made a least squares fit of the data to a function
of the form F (N) = CN−p/2 to estimate the order of convergence p. All integrals were
approximated using a 12-point order 7 quadrature formula applied to each triangle.

What is most striking is the similarity in the data. L2 is approximately the same
for both uniform and adaptive refinement, while H1 is slightly better in the adaptive
case. This is consistent with our strategy, which adaptively refines with respect to
||∇ετ ||0,τ . Nonetheless, both cases exhibit some superconvergence for the recovered
gradients. This is further supported by noting that the effectivity ratios Ef suggest
asymptotic exactness of the a posteriori error estimates.

In Table 4.2, we show the effect of varying the number of smoothing steps. To
reduce the amount of data, we report only the case of adaptive meshes. Since the a
posteriori error estimates are used to create the meshes, the meshes differ for each
value of m but at level K have nt ≈ 22K+1 elements. For m = 0, we note only slight
superconvergence; thus although the meshes are shape regular and quasi-uniform,
apparently σ ≈ 0. In contrast, uniform meshes for m = 0 have a computed order of
convergence for H1 of 1.52, essentially that predicted by our theory. However, the
data show that the situation for adaptive meshes improves dramatically for m = 1, 2.
For m = 10, one can see the effects of “too many” smoothings; Ef becomes more
erratic, and H1 increases for some of the coarser refinement steps. But even in this
case, for more refined meshes (e.g., K = 8), Ef again appears to be converging
towards 1. This is likely due to the well-known (and in this case extremely useful)
effect of the smoothing iteration “slowing down” quickly as h becomes smaller.

In Table 4.3, we explore the effect of “lumping” the mass matrix in the L2 pro-
jection step. In particular, the mass matrix was replaced by a diagonal matrix, with
diagonal entries given by the sum of all nonzero entries of the corresponding row of
the mass matrix. In Table 4.3, we see results that are quite comparable to those
of Table 4.1, although the gradient errors are generally slightly larger. Nonetheless,
these results suggest that our gradient recovery algorithm could be modified to use
only local calculations without much loss in effectiveness.

In our second example, we consider the nonlinear problem

−∇ · (a∇u) + eu = f in Ω = (0, 1)× (0, 1),

u = 0 on ∂Ω,
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Table 4.3
The effect of a lumped mass matrix.

Adaptive meshes Uniform meshes
nt L2 H1 Ef nt L2 H1 Ef
8 1.5e-1 1.7e 0 1.69 8 1.5e-1 1.7e 0 1.69

34 4.9e-2 8.2e-1 1.70 32 3.8e-2 1.1e 0 2.02
134 1.3e-2 3.0e-1 1.57 128 9.6e-3 5.2e-1 1.96
514 2.8e-3 8.9e-2 1.23 512 2.4e-3 2.2e-1 1.74

2036 5.5e-4 2.7e-2 1.11 2048 6.0e-4 9.3e-2 1.55
8148 1.2e-4 7.7e-3 1.04 8192 1.5e-4 3.7e-2 1.37

32676 2.8e-5 2.3e-3 1.01 32768 3.8e-5 1.4e-2 1.23
130904 6.8e-6 8.2e-4 1.01 131072 9.4e-6 5.1e-3 1.13

L2 H1 H̃1 L2 H1 H̃1
Order 2.10 1.64 1.05 2.03 1.43 1.01

Fig. 4.2. Left: adaptive refinement with nt = 138. Right: adaptive refinement with nt =
131112. Elements are shaded according to size.

Table 4.4
Error estimates for the case m = 2.

Adaptive meshes Uniform meshes
nt L2 H1 Ef nt L2 H1 Ef
8 1.9e-3 1.7e-2 0.30 8 1.9e-3 1.7e-2 0.30

32 1.0e-3 1.6e-2 0.84 32 1.0e-3 1.6e-2 0.84
138 2.7e-4 1.1e-2 1.46 128 3.8e-4 1.2e-2 1.42
531 2.4e-3 3.7e-3 1.67 512 1.1e-4 7.8e-3 1.89

2060 4.4e-5 1.0e-3 1.32 2048 3.0e-5 4.1e-3 2.09
8203 1.2e-5 2.6e-4 1.09 8192 7.7e-6 1.9e-3 2.01

32736 8.6e-7 7.6e-5 1.00 32768 1.9e-6 7.7e-4 1.79
131112 2.5e-7 3.0e-5 0.98 131072 4.9e-7 3.0e-4 1.53

L2 H1 H̃1 L2 H1 H̃1
Order 1.83 1.58 1.05 2.01 1.30 1.02

where a is the 2× 2 diagonal matrix

a =

(
.01

1

)
.

The function f is chosen such that u = x(1− x)3y5(1− y) is the exact solution. We
repeat the same computations as in the first example, with uniform and adaptive
meshes. The uniform meshes are identical to those of the first example. Some of the
adaptive meshes are shown in Figure 4.2. The numerical results are summarized in
Table 4.4.
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Fig. 4.3. Top left: the initial mesh. Top right: uniform refinement with nt = 128. Bottom left:
adaptive refinement with nt = 138. Bottom right: adaptive refinement with nt = 131105. Elements
are shaded according to size.

This problem is more difficult than the first in several respects. The diffusion is
anisotropic, and the operator is nonlinear. The solution is smooth but generally has
larger derivatives than the first example. Nonetheless, we see a similar behavior of the
gradient recovery scheme and a posteriori error estimate. In this example, the adaptive
meshes are more strongly graded than in the first example, suggesting that localization
and equilibration of the error are more important effects for superconvergence of our
gradient recovery procedure than geometric uniformity in the mesh.

In our third example, we consider the problem

−∆u = 0 in Ω,

u = g on ∂Ω1,

un = 0 on ∂Ω2,

where Ω is a circle of radius one centered at the origin, and with a crack along the
positive x-axis, 0 ≤ x ≤ 1. ∂Ω2 is the bottom edge of the crack, and ∂Ω1 = ∂Ω−∂Ω2.
The function g is chosen such that the exact solution is u = r1/4 sin(θ/4), the leading
term of the singularity associated with the interior angle of 2π and change in boundary
conditions at the origin. In Figure 4.3 we illustrate the initial mesh and several of the
uniformly and adaptively refined meshes.

Convergence results for uniform and adaptive refinement are reported in Table
4.5. The solution u is not smooth in this case (u ∈ H5/4−ε(Ω)), and this is reflected
in the results. For the case of uniform refinement, the 0.25 order of convergence of
the gradient coincides with the smoothness of the solution. For the adaptive meshes,
the order of convergence improves and seems to be approaching order one for the gra-
dient. This sort of behavior is typical of a reasonable adaptive refinement procedure.
However, even in this case, there is no apparent superconvergence.
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Table 4.5
Error estimates for the case m = 2.

Adaptive meshes Uniform meshes
nt L2 H1 Ef nt L2 H1 Ef
8 3.0e-1 7.1e-1 1.32 8 3.0e-1 7.1e-1 1.32

31 1.9e-1 6.0e-1 1.14 32 1.8e-1 5.9e-1 1.18
138 8.3e-2 5.3e-1 1.18 128 1.1e-1 5.4e-1 1.16
535 3.3e-2 3.9e-1 1.26 512 7.3e-2 4.6e-1 1.14

2091 1.1e-2 2.3e-1 1.22 2048 4.9e-2 3.9e-1 1.12
8242 2.9e-3 1.2e-1 1.28 8192 3.4e-2 3.3e-1 1.11

32832 6.8e-4 4.9e-2 1.08 32768 2.3e-2 2.8e-1 1.10
131105 1.3e-4 2.2e-2 1.11 131072 1.6e-2 2.3e-1 1.10

L2 H1 H̃1 L2 H1 H̃1
Order 2.23 1.15 1.10 0.54 0.25 0.27

Table 4.6
The effect of the singularity.

Adaptive meshes Uniform meshes
nt L2′ H1′ Ef ′ nt L2′ H1′ Ef ′
8 3.0e-1 7.1e-1 1.32 8 3.0e-1 7.1e-1 1.32

31 1.9e-1 6.0e-1 1.14 32 1.8e-1 5.9e-1 1.18
138 8.3e-2 5.3e-1 1.18 128 1.1e-1 5.4e-1 1.16
535 3.0e-2 2.4e-1 0.92 512 7.3e-2 4.6e-1 1.14

2091 1.0e-2 4.3e-2 0.78 2048 4.6e-2 1.9e-1 0.69
8242 2.7e-3 1.2e-2 0.94 8192 3.1e-2 1.1e-1 0.28

32832 6.2e-4 3.0e-3 0.99 32768 2.1e-2 7.8e-2 0.19
131105 1.2e-4 7.9e-4 1.00 131072 1.5e-2 5.3e-2 0.13

L2′ H1′ H̃1
′

L2′ H1′ H̃1
′

Order 2.24 1.95 1.12 0.56 0.60 0.61

Let Ω′ now denote the union of all triangles in Ω with a least one vertex outside
a circle of r = 0.1; note that this definition of Ω′ is mesh dependent, but eventually
Ω′ excludes small triangles close to the singularity. In Table 4.6, we report results for
the same computations but with the error calculation restricted to Ω′. For L2′, the
results do not change much. However, for the gradients (H1′), the results are quite
striking. For the case of adaptive refinement, the improvement is quite dramatic,
in that, away from the singularity, the gradient recovery scheme exhibits the same
sort of behavior as for a smooth problem. For the case of uniform refinement, there
is also some improvement in order of convergence, but the recovered gradient does
not appear significantly more accurate than ∇uh. We also note the quite different
behavior of Ef ′ compared with Ef for the case of uniform refinement. Taken as a
whole, it seems likely that the error in the uniform refinement case is not localized,
and pollution effects are still dominant even on the most refined meshes.

In our fourth example, we consider a problem with discontinuous coefficients:

−∇ · (a∇u) = f in Ω,

u = 0 on ∂Ω,

where Ω is once again the unit square (0, 1) × (0, 1). The scalar coefficient function
a(p) = 1 for p ∈ Ω1 ≡ (0, 1/2) × (0, 1/2) ∪ (1/2, 1) × (1/2, 1), and a(p) = 10−2 for
p = Ω − Ω1. The function f is given by f = 8π2 sin(2πx) sin(2πy), and the exact
solution u is given by u = a−1 sin(2πx) sin(2πy). The initial mesh is the same as
that in the first two examples. In Table 4.7, we give the results for both uniform and
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Table 4.7
Error estimates for the case m = 2.

Adaptive meshes Uniform meshes
nt L2 H1 Ef nt L2 H1 Ef
8 3.5e 1 3.2e 2 0.00 8 3.5e 1 3.2e 2 0.00

32 1.7e 1 2.9e 2 1.97 32 1.7e 1 3.0e 2 1.07
136 2.6e 0 2.2e 2 2.72 128 5.6e 0 2.5e 2 1.96
528 7.4e-1 1.1e 2 2.81 512 1.5e 0 1.7e 2 2.76

2071 2.2e-1 5.8e 1 2.67 2048 3.8e-1 9.0e 1 3.04
8143 6.9e-2 2.8e 1 2.42 8192 9.5e-2 5.4e 1 3.64

33102 2.0e-2 1.4e 1 2.36 32768 2.4e-2 3.7e 1 4.85
130809 6.1e-3 7.3e 0 2.31 131072 6.0e-3 2.6e 1 6.72

L2 H1 H̃1 L2 H1 H̃1
Order 1.78 1.00 0.94 2.04 0.58 1.02

Table 4.8
The effect of the discontinuity.

Adaptive meshes Uniform meshes
nt L2′ H1′ Ef ′ nt L2′ H1′ Ef ′
8 3.5e 1 3.2e 2 0.00 8 3.5e 1 3.2e 2 0.00

32 7.1e 0 3.1e 2 2.11 32 1.7e 1 3.1e 2 1.11
136 3.5e 0 1.7e 2 1.83 128 5.6e 0 2.3e 2 1.81
532 9.1e-1 7.6e 1 1.85 512 1.5e 0 1.5e 2 2.49

2071 1.6e-1 2.4e 1 1.57 2048 3.8e-1 7.2e 1 2.47
8092 4.2e-2 6.3e 0 1.20 8192 9.5e-2 2.4e 1 1.84

32486 9.4e-3 1.3e 0 1.05 32768 2.4e-2 7.3e 0 1.37
130586 2.4e-3 3.0e-1 1.01 131072 6.0e-3 2.2e 0 1.15

L2 H1 H̃1 L2 H1 H̃1
Order 2.10 2.16 1.09 2.04 1.68 1.02

adaptive meshes. Here we note no superconvergence for H1 in either case; indeed, in
the uniform mesh case, SmQh∇uh is much less accurate than ∇uh in terms of order
of convergence. The gradient of the exact solution is discontinuous along the lines
x = 1/2 and y = 1/2. Since the mesh is aligned with the discontinuity, ∇uh is able to
capture this discontinuity with no problem. Since Qh∇uh is continuous, the lack of
superconvergence is due to the global L2 projection; making local L2 projections in
each of the four subregions where a(p) is constant would allow the projected gradient
to remain discontinuous along the interfaces. In Table 4.8, we show the results for
such a calculation. We computed SmQ̂h∇uu, where Q̂h corresponds to the four local
L2 projections. Since we used a different projection, the adaptive meshes changed
slightly. Nonetheless, we see quite clearly that allowing for the discontinuity in ∇u
corrects the problems. We observe superconvergence in H1′ for both the uniform and
adaptive meshes, as well as significant improvement in the effectivity ratios Ef ′. We
note in passing that, away from the discontinuities, the approximation SmQh∇uh is
superconvergent. In this respect, the behavior here is similar to that in the third
example.

These numerical examples show that the effectiveness of our adaptive scheme does
not necessarily depend critically on either the quasi-uniformity of the mesh or on the
global regularity of the solution. However, theoretically there is still much work to do
to fill in the gaps. We believe that our quasi-uniformity assumption on the triangular
meshes can be removed with some extra effort. Our results are very local in the sense
that the domain Ω in our theorems could be any subdomain of the actual physical
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domain. It will be much more challenging to obtain theoretical results with more
realistic assumptions on a continuous solution’s regularity. However, heuristically
speaking, at places where the solution is singular, the solution will have large (or
infinite) W 3

∞ norm, and as a result, our error indicator will be large in those regions
and hence the grid will be refined there.
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Abstract. Solutions of partial differential equations with coordinate singularities often have
special behavior near the singularities, which forces them to be smooth. Special treatment for these
coordinate singularities is necessary in spectral approximations in order to avoid degradation of
accuracy and efficiency. It has been observed numerically in the past that, for a scheme to attain
high accuracy, it is unnecessary to impose all the pole conditions, the constraints representing the
special solution behavior near singularities. In this paper we provide a theoretical justification for
this observation. Specifically, we consider an existing approach, which uses a pole condition as
the boundary condition at a singularity and solves the reformulated boundary value problem with
a commonly used Gauss–Lobatto collocation scheme. Spectral convergence of the Legendre and
Chebyshev collocation methods is obtained for a singular differential equation arising from polar and
cylindrical geometries.
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1. Introduction. Physical problems in polar, cylindrical, or spherical geome-
tries often give rise to mathematical models involving singular partial differential
equations (PDEs) with smooth solutions. A common feature of these PDEs is that
their solutions have special behavior near coordinate singularities, which forces the
solutions to be smooth. For the spectral solution of this type of equation, special
treatment for the coordinate singularities is needed, since a traditional spectral scheme
either does not fully capture the special solution behavior or is ill-suited to fast trans-
form techniques; e.g., see [6, 7, 11].

A number of spectral approaches have been developed in the past in attempts
to capture the solution behavior near coordinate singularities. They include those
expanding the solution in specially designed basis functions, such as spherical har-
monics, parity-modified Fourier series, modified Robert functions, and eigenfunctions
of singular Sturm–Liouville problems [6, 9, 11, 20, 21, 22, 27]; approaches using in-
herent symmetries of the solution [9, 10]; and methods using pole conditions (i.e.,
compatibility conditions at the center of polar coordinates) as boundary conditions
in the collocation context [12] and the Galerkin context [24, 25]. Many of these ap-
proaches have been successfully applied to steady state and time dependent problems
including the Navier–Stokes equations; e.g., see [13, 14, 20, 23, 26, 28].
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The solution behavior of PDEs near coordinate singularities can be described by
an infinite number of pole conditions derived either from the underlying differential
equation, by assuming some kind of smoothness of the solution, or more generally
from the analyticity of the solution at singularities. Most of the existing methods
are developed more or less to accommodate this behavior. However, it is observed
numerically first by Orszag [21] and then by many other researchers (e.g., [6]) that
it is unnecessary to impose all of the pole conditions in order for a numerical scheme
to attain high accuracy. In fact, Huang and Sloan [12], using some of these pole con-
ditions as the boundary conditions at the coordinate singularities, show numerically
that the spectral collocation approximation of the Helmholtz equation on the unit
disk has a spectral convergence rate.

Three Legendre-type pseudospectral schemes and their convergence analysis have
been developed for axisymmetric domains by Bernardi, Dauge, and Maday in their
recent book [1]. The basic idea behind these schemes is to incorporate the natural
measure rdr of the coordinate singularity into the quadrature formula defining the
spectral approximation. In the radial direction the formula reads as∫ 1

0

v(r)rdr =

N∑
j=0

v(rj)ωj ∀v ∈ P,(1.1)

where P is a polynomial space, rj = (1 + ρj)/2, and the ωj ’s are the corresponding
weights. Three sets of ρj ’s and P are chosen, one for each scheme:

Method A (Gauss–Radau): P = P2N , ρN = 1,
ρj (0 ≤ j ≤ N − 1) are the roots of L′N+1(ρ);

Method B (Gauss–Lobatto): P = P2N−1, ρ0 = −1, ρN = 1,

ρj (1 ≤ j ≤ N − 1) are the roots of
(
LN (ρ)+LN+1(ρ)

1+ρ

)′
;

Method C (Gauss–Radau): P = P2N−1, ρN = 1,
ρj (0 ≤ j ≤ N − 1) are the roots of LN+1(ρ)−LN (ρ),

where LN is the Legendre polynomial of degree N . The pseudospectral approxima-
tions are then defined through the boundary condition(s) and the Galerkin formulation

of the underlying problem in the discrete inner product ((u, v))N ≡
∑N
j=0 u(rj)v(rj)ωj

induced from the quadrature formula (1.1). It is noted that the nodes used in these
schemes are different from those in a traditional (unweighted) spectral collocation
method. Moreover, among these three schemes, only Method C is equivalent to a
collocation system. Furthermore, the authors of the book suggest that two boundary
conditions u(0) = 0 (which is a pole condition, cf. (2.6)) and u(1) = g be used for
a reduced equation (see (2.1)–(2.2)) with n �= 0. Thus, only Method B, which uses
the Gauss–Lobatto nodes but cannot be interpreted as a collocation scheme, can be
applied to the case n �= 0.

The objective of this paper is to provide a theoretical justification for the method
developed in [12], which uses a pole condition as the boundary condition at the coor-
dinate singularity and solves the reformulated boundary value problem with a Gauss–
Lobatto collocation scheme. The method corresponds to the standard quadrature
formula ∫ 1

0

v(r)ω(r)dr =

N∑
j=0

wjv(rj) for v ∈ P2N−1,(1.2)



SPECTRAL COLLOCATION FOR A SINGULAR DE 2335

where ω(r) is the weight function and rj = (1 + ρj)/2. For example, ω(r) = 1 and

ρj (0 ≤ j ≤ N) are the roots of (1 − ρ2)L
′
N (ρ) for the Legendre collocation method,

and ω(r) = (r − r2)−1/2 and ρj = cos π(N−j)
N (0 ≤ j ≤ N) for the Chebyshev col-

location method. We emphasize that the method of [12], which is no more than a
traditional collocation method, is different from those considered by Bernardi, Dauge,
and Maday [1]. The method shares with many existing methods the common feature
of explicitly using pole conditions, and has been successfully applied to practical prob-
lems including the Navier–Stokes equations; e.g., see [13, 14]. Our analysis is given for
both the Legendre and Chebyshev schemes. A Chebyshev collocation scheme is often
desirable in practical computation because the fast Fourier transformation (FFT) can
be utilized. We find that for the current situation with coordinate singularities the
corresponding bilinear form lacks the coercive property which is often crucial to the
convergence analysis of a Chebyshev scheme. Because of this, the error estimate of
the Chebyshev scheme is obtained in the weighted energy norm ‖ · ‖En,ω with ω(r)
being the Chebyshev weight function for the reduced equation with n > 0, but in the
unweighted norm ‖ · ‖En

for the case n = 0.

An outline of this paper is as follows. The method of [12] is briefly described
in section 2. The convergence analysis of the Legendre and Chebyshev methods is
given in section 3. In section 4 we present numerical results to verify the theoretical
findings. Finally, section 5 contains conclusions and further comments.

2. Pole conditions and spectral collocation approximation. In this sec-
tion we briefly describe the spectral collocation method of [12] for a model problem

−d
2u

dr2
− 1
r

du

dr
+
n2

r2
u = f, 0 < r < 1,(2.1)

u(1) = g,(2.2)

where n ≥ 0 is a given integer. This problem is obtained using separation of variables
for the Poisson equation on the unit disk.

2.1. Pole conditions. Equation (2.1) has a coordinate singularity at r = 0.
Assume that both f and u are sufficiently smooth. A Taylor series expansion of u
about r = 0 yields the pole conditions

O

(
1

r2

)
: n2u(0) = 0,(2.3)

O

(
1

r

)
: (n2 − 1)du

dr
(0) = 0,(2.4)

O (1) :

(
n2

2
− 2
)
d2u

dr2
(0) = f(0),(2.5)

· · · · · ·

These conditions contain full information about the solution behavior near r = 0. It
was observed first by Orszag [21] and later by many other researchers (see [6]) that it
is unnecessary to impose all of these pole conditions in order for a numerical scheme
to obtain high accuracy. In fact, using one constraint{

u(0) = 0 for n �= 0,
du
dr (0) = 0 for n = 0

(2.6)
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as the boundary condition at r = 0, Huang and Sloan [12] obtain spectrally accurate
solutions; also see [24, 25] for the spectral Galerkin approximation. Once a boundary
condition has been defined at r = 0, it is straightforward to apply a traditional spectral
collocation scheme to the singular problem (2.1) and (2.2).

2.2. Legendre and Chebyshev collocation approximations. Hereafter, the
weight functions ω(r) = 1 and ω(r) = (r−r2)−1/2 will be associated with the Legendre
and Chebyshev methods, respectively. For simplicity, we use subscript ω in common
notation for both methods and for those which apply only to the Chebyshev method,
and suppress the subscript for the Legendre method.

For a given integer N > 0, let {ρj,ω}Nj=0 be a set of Gauss–Lobatto points associ-
ated with the weight function ω(r). Define

rj,ω =
1 + ρj,ω
2

, j = 0, 1, . . . , N.(2.7)

The solution u(r) is approximated by

uN (r) =

N∑
j=0

uj,ωlj,ω(r),(2.8)

where uj,ω denotes the approximation of u(rj,ω) and lj,ω(r) is the Lagrangian inter-
polation polynomial

lj,ω(r) =

N∏
i=0
i�=j

r − ri,ω
rj,ω − ri,ω .(2.9)

A collocation approximation to (2.1), (2.2), and (2.6) is then defined by the collocation
equations

−d
2uN

dr2
(rj,ω)− 1

rj,ω

duN

dr
(rj,ω) +

n2

r2j,ω
uN (rj,ω) = f(rj,ω),(2.10)

j = 1, . . . , N − 1,
uN (1) = g,(2.11) {
uN (0) = 0 for n �= 0,
duN

dr (0) = 0 for n = 0.
(2.12)

Recall that the transformed Gauss–Lobatto quadrature rule satisfies

∫ 1

0

v(r)ω(r)dr =

N∑
j=0

wj,ωv(rj,ω) for v ∈ P2N−1,(2.13)

where the wj,ω’s are the corresponding weights and P2N−1 is the space of real poly-
nomials (in r) of degree no more than 2N − 1. The associated interpolation operator
IN : C[0, 1]→ PN is defined as

INv ∈ PN : (INv)(rj,ω) = v(rj,ω), j = 0, 1, . . . , N.(2.14)
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We use the notation

〈u, v〉ω =
∫ 1

0

uvωdr, ‖u‖ω = 〈u, u〉1/2ω ,(2.15)

‖u‖m,ω =
(

m∑
k=0

∥∥∥∥dkudrk

∥∥∥∥2

ω

)1/2

for u ∈ Hm
ω ,(2.16)

〈u, v〉ω,N =

N∑
j=0

wj,ωu(rj,ω)v(rj,ω), ‖u‖ω,N = 〈u, u〉1/2ω,N ,(2.17)

where Hm
ω (m ≥ 0) is a (weighted) Sobolev space on [0, 1].

For the Legendre collocation scheme, the set of Legendre–Gauss–Lobatto points
is defined by ρ0 = −1, ρN = 1, and ρj (j = 1, 2, . . . , N − 1) being the roots of L′

N ,
the first derivative of the Legendre polynomial LN of degree N . We have

lj(r) =
2

N(N + 1)

r(1− r)L̄′
N (r)

(r − rj)L̄N (rj) , wj =
1

N(N + 1)

1

L̄2
N (rj)

,

with L̄N (r) being the transformed Legendre polynomial LN (2r − 1).
For the Chebyshev approximation, the set of Gauss–Lobatto points is defined

by ρ0,ω = −1, ρN,ω = 1, and ρj,ω (j = 1, 2, . . . , N − 1) being the roots of T ′
N , the

derivative of the Chebyshev polynomial TN of degree N . We have

lj,ω(r) = (−1)j+1 2

cjN2

r(1− r)T̄ ′
N (r)

(r − rj,ω) , wj,ω =
π

cjN
,

where T̄k(r) is the transformed Chebyshev polynomial Tk(2r − 1) and

cj =

{
2, j = 0, N,
1, j = 1, . . . , N − 1.

3. Convergence analysis.

3.1. Preliminary approximation results. To start with, we introduce some
preliminary results. Hereafter, C is used to denote the generic constant. We shall
assume that N � m (the smoothness order of functions); otherwise, the estimates
given below, especially those involving seminorms, will not be true.

Lemma 3.1. Let PN denote the Legendre (or Chebyshev) truncated operator;
i.e., PNv is the truncated Legendre (or Chebyshev) series of v. Then, for m ≥ 0 and
for ω(r) = 1 (the Legendre case) or ω(r) = (r − r2)−1/2 (the Chebyshev case),

‖v − PNv‖ω ≤ CN−m
∥∥∥∥(r − r2)m/2 dmvdrm

∥∥∥∥
ω

∀v ∈ Hm
ω .(3.1)

Lemma 3.2. For ω(r) = 1 (the Legendre case) or ω(r) = (r − r2)−1/2 (the
Chebyshev case) and for m ≥ 1,∥∥(r − r2)−1/2(v − INv)∥∥

ω
+N−1‖v − INv‖1,ω

≤ CN−m
∥∥∥∥(r − r2)m−1

2
dmv

drm

∥∥∥∥
ω

∀v ∈ Hm
ω .(3.2)
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Lemma 3.3. Let ω(r) = 1 (for the Legendre case) or ω(r) = (r− r2)−1/2 (for
the Chebyshev case). There exists a positive constant C, independent of N and M ,
such that for all φ ∈ PM with M being any nonnegative integer,

‖φ‖ω,N ≤ C

(
1 +

M

N

)
‖φ‖ω,(3.3)

‖φ‖ω ≤ ‖φ‖ω,N ≤ C‖φ‖ω.(3.4)

The interested reader is referred to [2, 3, 4, 7, 16, 18, 19] for the proofs of these
Lemmas. Lemmas 3.1 and 3.2 are the improvements of existing results in terms of
the weight and can be obtained by the method in the aforementioned references.

3.2. Convergence analysis of the Legendre method. We now proceed to
the convergence analysis for the Legendre approximation (2.10)–(2.12). Let φ be an
arbitrary polynomial in PN satisfying{

φ(1) = φ(0) = 0 if n �= 0,
φ(1) = 0 if n = 0.

(3.5)

Multiplying (2.10) by rjwjφ(rj) and summing over the range of j from 1 to N − 1,
we have

N−1∑
j=1

wjφ(rj)

[
−rj d

2uN

dr2
(rj)− duN

dr
(rj) +

n2

rj
uN (rj)

]
=

N−1∑
j=1

rjwjφ(rj)f(rj).(3.6)

It is not difficult to see from (3.5) that

wNφ(rN )

[
−rN d

2uN

dr2
(rN )− duN

dr
(rN ) +

n2

rN
uN (rN )

]
(3.7)

= rNwNφ(rN )f(rN )

= 0.

Noticing that uN (r)/r is a polynomial of degree not greater than N−1, that φ(r0) = 0
(see (3.5)) when n �= 0, and that (duN/dr)(r0) = 0 when n = 0, we have

w0φ(r0)

[
−r0 d

2uN

dr2
(r0)− duN

dr
(r0) +

n2

r0
uN (r0)

]
(3.8)

= r0w0φ(r0)f(r0)

= 0.

Thus, (3.6)–(3.8) imply that〈
− r d

2uN

dr2
− duN

dr
+
n2

r
uN , φ

〉
N

= 〈rf, φ〉N .(3.9)

Since rφ(d2uN/dr2), φ(duN/dr), and n2uNφ/r are in P2N−1, (2.13) and (3.9) lead
to 〈

− r d
2uN

dr2
− duN

dr
+
n2

r
uN , φ

〉
= 〈rf, φ〉N(3.10)
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or, taking integration by parts,〈
duN

dr
, r
dφ

dr

〉
+ n2

〈
uN

r
, φ

〉
= 〈rf, φ〉N .(3.11)

Multiplying the continuous equation (2.1) by rφ and integrating from r = 0 to 1, we
obtain 〈

du

dr
, r
dφ

dr

〉
+ n2

〈u
r
, φ
〉
= 〈rf, φ〉.(3.12)

Then, subtracting (3.11) from (3.12) gives the error equation〈
d(u− uN )

dr
, r
dφ

dr

〉
+ n2

〈
u− uN

r
, φ

〉
= 〈rf, φ〉 − 〈rf, φ〉N ,(3.13)

which can be written in a simpler form as

ar,n(u− uN , φ) = Fr(φ) ∀φ ∈ PN ,(3.14)

where

ar,n(u, v) =

〈
du

dr
, r
dv

dr

〉
+ n2

〈
u,
v

r

〉
,

‖v‖En
= ar,n(v, v)

1/2,

Fr(φ) = 〈rf, φ〉 − 〈rf, φ〉N .(3.15)

We first consider the case n �= 0. Recall that we have uN (0) = u(0) = 0 (cf.
(2.6)). Let

V0g = {v ∈ H1(I) : v(0) = 0, v(1) = g}, V N0g = V0g ∩PN .

Lemma 3.4. Let u and uN be the solutions of the problem (2.1)–(2.2) (n �=
0, u(0) = 0) and the approximation (2.10)–(2.11) (uN (0) = 0), respectively. We have

‖u− uN‖En
≤ sup
ϕ∈V N

00

Fr(ϕ)

‖ϕ‖En

+ 2 inf
v∈V N

0g

‖v − u‖En
.(3.16)

Proof. Equation (3.14) can be rewritten as

ar,n(v − uN , φ) = Fr(φ) + ar,n(v − u, φ) ∀φ ∈ V N00 and v ∈ V N0g .
Taking φ = v − uN ∈ V N00 results in

‖v − uN‖2En
= ar,n(v − uN , φ) ≤ sup

ϕ∈V N
00

Fr(ϕ)

‖ϕ‖En

‖φ‖En + ar,n(v − u, φ) .

Since

ar,n(v − u, φ)
≤ ‖r1/2(v − u)r‖ · ‖r1/2φr‖+ n2‖r−1/2(v − u)‖ · ‖r−1/2φ‖
≤
(
‖r1/2(v − u)r‖2 + n2‖r−1/2(v − u)‖2

)1/2 (
‖r1/2φr‖2 + n2‖r−1/2φ‖2

)1/2

≤ Car,n(v − u, v − u)1/2ar,n(φ, φ)1/2
= C‖v − u‖En

· ‖v − uN‖En ,
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we have

‖v − uN‖2En
≤ C

(
sup
ϕ∈V N

00

Fr(ϕ)

‖ϕ‖En

+ ‖v − u‖En

)
‖v − uN‖En .

Then the desired result follows from

‖u− uN‖En
≤ ‖u− v‖En

+ ‖v − uN‖En .

We now use Lemma 3.4 to obtain the estimate of ‖u− uN‖En . For the first term
on the right-hand side of (3.16), we have from the Cauchy–Schwarz inequality and
Lemmas 3.1–3.3 that, for any φ ∈ PN ,

|Fr(φ)| = |〈rf, φ〉 − 〈rf, φ〉N |
= |〈rf, φ〉 − 〈PN−1(rf), φ〉
+ 〈PN−1(rf), φ〉 − 〈IN (rf), φ〉N |

≤ |〈rf − PN−1(rf), φ〉|+ |〈PN−1(rf)− IN (rf), φ〉N |
≤ ‖rf − PN−1(rf)‖ ‖φ‖+ C‖PN−1(rf)− IN (rf)‖ ‖φ‖N
≤ ‖rf − PN−1(rf)‖ ‖φ‖+ C

(‖rf − PN−1(rf)‖+ ‖rf − IN (rf)‖) ‖φ‖
= C

(‖rf − PN−1(rf)‖+ ‖rf − IN (rf)‖) ‖φ‖.(3.17)

By Lemmas 3.1 and 3.2 (and taking v = rf ∈ Hm̄, m̄ := max {m− 1, 1}), we obtain

|Fr(φ)| ≤ CN1−m
∥∥∥∥(r − r2) m̄−1

2
dm̄(rf)

drm̄

∥∥∥∥ ‖φ‖
≤ CN1−m

∥∥∥∥(r − r2) m̄−1
2
dm̄(rf)

drm̄

∥∥∥∥ ‖φ‖En
.(3.18)

For the second term on the right-hand side of (3.16), taking v = INu and using the
definition of the energy norm leads to

‖v − u‖En
≤ |v − u|1 + ‖[r(1− r)]−1/2(v − u)‖
≤ CN1−m

∥∥∥∥(r − r2)m−1
2
dmu

drm

∥∥∥∥ .(3.19)

Substituting (3.18) and (3.19) into (3.16), we obtain the estimate

‖u− uN‖En ≤ CN1−m
(∥∥∥∥(r − r2)m−1

2
dmu

drm

∥∥∥∥+ ∥∥∥∥(r − r2) m̄−1
2
dm̄(rf)

drm̄

∥∥∥∥) .(3.20)

We now consider the case n = 0. Recall again that we have duN

dr (0) =
du
dr (0) = 0.

Define

Wg = {v ∈ H1(I) : v(1) = g}, WN
g =Wg ∩PN .

Lemma 3.5. Let u and uN be the solutions of the problem (2.1)–(2.2) (n =

0, dudr (0) = 0) and the approximation (2.10)–(2.11) (du
N

dr (0) = 0), respectively. We
have

‖u− uN‖E0 ≤ 2 sup
ϕ∈WN

0

Fr(ϕ)

‖ϕ‖E0

+ 2 inf
v∈WN

g

‖v − u‖E0 .
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Proof. Equation (3.14) can be written as

ar,0(v − uN , φ) = Fr(φ) + ar,0(v − u, φ) ∀φ ∈WN
0 and v ∈WN

g .

Taking φ = v − uN ∈WN
0 , we have

‖v − uN‖2E0
= ar,0(v − uN , φ)

≤
(
sup

ϕ∈WN
0

Fr(ϕ)

‖ϕ‖E0

+ ‖v − u‖E0

)
‖v − uN‖E0

.

Then the conclusion follows.
From the Hardy-type inequality

‖v‖ ≤
∥∥∥∥√r dvdr

∥∥∥∥ = ‖v‖E0 ∀v ∈W0,

Lemma 3.5 leads to the same result as in (3.20). Hence, we have proved the following
theorem.

Theorem 3.1. For any integer m ≥ 1, the Legendre-collocation approxima-
tion uN defined by the scheme (2.10)–(2.12) for the problem (2.1) and (2.2) satisfies

‖u− uN‖En
≤ CN1−m

(∥∥∥∥(r − r2)m−1
2
dmu

drm

∥∥∥∥+ ∥∥∥∥(r − r2) m̄−1
2
dm̄(rf)

drm̄

∥∥∥∥) ,(3.21)

where u is the exact solution of (2.1) and (2.2) and m̄ = max{m− 1, 1}.
This theorem shows that the Legendre collocation approximation is convergent

and the error decays faster than algebraically, provided that the right-hand-side term
f and the solution u are infinitely differentiable. As shown in [1], the correct regularity
requirement for u and f should be considered in a weighted Sobolev space

Hs
r =

{
v

∣∣∣∣∣
s∑
l=0

∥∥∥∥√r dlvdrl
∥∥∥∥2

<∞
}

(3.22)

for some integer s. It is not difficult to see that the terms in the bracket on the
right-hand side of (3.21) are bounded for u ∈ Hm

r and f ∈ Hm̄
r with m ≥ 2. In this

sense, the result of Theorem 3.1 is optimal.

3.3. Convergence analysis of the Chebyshev method. We now consider
the convergence of the Chebyshev method (2.10)–(2.12). Let φ be the same as in
(3.5). As for (3.10), we have〈

− r d
2uN

dr2
− duN

dr
+
n2

r
uN , φ

〉
ω

= 〈rf, φ〉ω,N(3.23)

or, taking integration by parts,〈
duN

dr
, r
d(φω)

dr

〉
+ n2

〈
uN

r
, φ

〉
ω

= 〈rf, φ〉ω,N .(3.24)

The error equation reads as〈
d(u− uN )

dr
, r
d(φω)

dr

〉
+ n2

〈
u− uN

r
, φ

〉
ω

= 〈rf, φ〉ω − 〈rf, φ〉ω,N .(3.25)
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We also write it in a simpler form

ar,n,ω(u− uN , φ) = Fr,ω(φ) ∀φ ∈ PN ,(3.26)

where

ar,n,ω(u, v) = br,ω(u, v) + n2
〈
u,
v

r

〉
ω
,

br,ω(u, v) =

〈
du

dr
, r
d(vω)

dr

〉
,

Fr,ω(φ) = 〈rf, φ〉ω − 〈rf, φ〉ω,N .(3.27)

It is known that the nonsymmetric bilinear form br,ω(·, ·), without the factor
r, is coercive (see [3, 7, 8, 17, 15]). On the other hand, in the current situation,
br,ω(v, v) can become negative for some polynomials subject to the boundary condi-
tions v(−1) = v(1) = 0 or dv

dr (−1) = v(1) = 0. We have the following G̊arding-type
inequality.

Lemma 3.6. For all u, v ∈ H1
ω,0 we have

1

4

∥∥∥∥√r dvdr
∥∥∥∥2

ω

+
3

8

∥∥∥∥ v√
1− r

∥∥∥∥2

ω

− 1
8

∥∥∥∥ v√
r

∥∥∥∥2

ω

≤ br,ω(v, v) ≤
∥∥∥∥√r dvdr

∥∥∥∥2

ω

,(3.28)

|br,ω(u, v)| ≤ 3
∥∥∥∥√r dudr

∥∥∥∥
ω

∥∥∥∥√r dvdr
∥∥∥∥
ω

.(3.29)

Proof. For notational simplicity, define

I1(v) =

∫ 1

0

(
dv

dr

)2

rω dr.(3.30)

We have from integrating by parts

br,ω(v, v) = I1(v)−
∫ 1

0

dv

dr
v
1− 2r
2(r − r2)rω dr

= I1(v)− 1
8

∫ 1

0

v2r(1− 2r + 4r2)ω5 dr

= I1(v)− 3
8

∫ 1

0

v2r3ω5 dr − 1
8

∫ 1

0

v2r(1− r)2ω5 dr.(3.31)

Thus br,ω(v, v) ≤ I1(v). On the other hand,

0 ≤
∫ 1

0

(
dv

dr
+ vrω2

)2

rω dr

= I1(v) +

∫ 1

0

v2r3ω5 dr +

∫ 1

0

d(v2)

dr
r2ω3 dr

= I1(v)− 1
2

∫ 1

0

v2r2ω5 dr,(3.32)

which gives

br,ω(v, v) ≥ 1
4
I1(v) +

3

8

∫ 1

0

v2r2(1− r)ω5 dr − 1
8

∫ 1

0

v2

r
ω dr.(3.33)
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The result (3.28) follows. To prove (3.29), we estimate br,ω(u, v) by

|br,ω(u, v)| ≤
∣∣∣∣∫ 1

0

du

dr

dv

dr
rω dr

∣∣∣∣+ ∣∣∣∣∫ 1

0

du

dr
v
1− 2r
2(r − r2)rω dr

∣∣∣∣
≤ [I1(u)]1/2[I1(v)]1/2 + I2(u, v),(3.34)

where

I2(u, v) =

∣∣∣∣∫ 1

0

du

dr
v
1− 2r
2(r − r2)rω dr

∣∣∣∣ ≤ [I1(u)]1/2[I3(v)]1/2(3.35)

with

I3(v) =

∫ 1

0

v2 (1− 2r)2
4(r − r2)2 rω dr =

1

4

∫ 1

0

v2r(1− 2r)2ω5 dr.(3.36)

On the other hand, from integrating by parts,

I2(v, v) =
1

8

∫ 1

0

v2(2r2 + r(1− 2r)2)ω5 dr ≥ 1
2
I3(v).(3.37)

Thus we get from (3.37) and (3.35)

I3(v) ≤ 2I2(v, v) ≤ 2[I1(v)]1/2[I3(v)]1/2,(3.38)

which gives I3(v) ≤ 4I1(v) and

|br,ω(u, v)| ≤ [I1(u)]1/2([I1(v)]1/2 + [I3(v)]1/2)
≤ 3[I1(u)]1/2[I1(v)]1/2.(3.39)

We first consider the case n �= 0. Let V0g and V
N
0g be the same as before and

‖v‖En,ω =

(∥∥∥∥√r dvdr
∥∥∥∥2

ω

+ n2

∥∥∥∥ v√
r

∥∥∥∥2

ω

)1/2

.

Lemma 3.7. Let u and uN be the solutions of the problem (2.1)–(2.2) (n �=
0, u(0) = 0) and the Chebyshev approximation (uN (0) = 0), respectively. We have

‖u− uN‖En,ω ≤ C sup
ϕ∈V N

00

Fr,ω(ϕ)

‖ϕ‖En,ω
+ C inf

v∈V N
0g

‖v − u‖En,ω.(3.40)

Proof. Equation (3.26) can be rewritten as

ar,n,ω(v − uN , φ) = Fr,ω(φ) + ar,n,ω(v − u, φ) ∀φ ∈ V N00 and v ∈ V N0g .

Taking φ = v − uN ∈ V N00 and using the inequality (3.28) of Lemma 3.6 yields

‖v − uN‖2En,ω ≤ Car,n,ω(v − uN , φ) ≤ C sup
ϕ∈V N

00

Fr,ω(ϕ)

‖ϕ‖En,ω
‖φ‖En,ω + Car,n,ω(v − u, φ) .
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From (3.29) of Lemma 3.6 we have

ar,n,ω(v − u, φ)
≤ C

∥∥∥∥√r d(v − u)dr

∥∥∥∥
ω

∥∥∥∥√r dφdr
∥∥∥∥
ω

+ n2

∥∥∥∥v − u√r
∥∥∥∥
ω

∥∥∥∥ φ√
r

∥∥∥∥
ω

≤ C

(∥∥∥∥√r d(v − u)dr

∥∥∥∥2

ω

+ n2

∥∥∥∥v − u√r
∥∥∥∥2

ω

)1/2(∥∥∥∥√r d(φ)dr

∥∥∥∥2

ω

+ n2

∥∥∥∥ φ√
r

∥∥∥∥2

ω

)1/2

= C‖v − u‖En,ω · ‖v − uN‖En,ω,

and therefore

‖v − uN‖2En,ω ≤ C

(
sup
w∈V N

00

Fr,ω(w)

‖w‖En,ω
+ ‖v − u‖En,ω

)
‖v − uN‖En,ω.

Then, the desired result follows from the triangular inequality:

‖u− uN‖En,ω ≤ ‖u− v‖En,ω + ‖v − uN‖En,ω.

We now use Lemma 3.7 to obtain the estimate of ‖u − uN‖En,ω. For the first
term on the right-hand side of (3.40), we have from the Cauchy–Schwarz inequality
and Lemmas 3.1–3.3 that, for any φ ∈ PN ,

|Fr,ω(φ)| = |〈rf, φ〉ω − 〈rf, φ〉ω,N |
= |〈rf, φ〉ω − 〈PN−1(rf), φ〉ω + 〈PN−1(rf), φ〉ω − 〈IN (rf), φ〉ω,N |
= C

(‖rf − PN−1(rf)‖ω + ‖rf − IN (rf)‖ω
) ‖φ‖ω.

Then, by Lemmas 3.1 and 3.2,

|Fr,ω(φ)| ≤ CN1−m
∥∥∥∥(r − r2) m̄−1

2
dm̄(rf)

drm̄

∥∥∥∥
ω

‖φ‖ω

≤ CN1−m
∥∥∥∥(r − r2) m̄−1

2
dm̄(rf)

drm̄

∥∥∥∥
ω

‖φ‖En,ω.(3.41)

For the second term on the right-hand side of (3.16), taking v = INu leads to

‖v − u‖En,ω ≤
∥∥∥∥√r d(v − u)dr

∥∥∥∥
ω

+

∥∥∥∥∥ v − u√
r(1− r)

∥∥∥∥∥
ω

≤ CN1−m
∥∥∥∥(r − r2)m−1

2
dmu

drm

∥∥∥∥
ω

.(3.42)

Substituting (3.41) and (3.42) into (3.16), we obtain the estimate

‖u− uN‖En,ω

≤ CN1−m
(∥∥∥∥(r − r2)m−1

2
dmu

drm

∥∥∥∥
ω

+

∥∥∥∥(r − r2) m̄−1
2
dm̄(rf)

drm̄

∥∥∥∥
ω

)
.(3.43)

We now consider the case n = 0. In this case, ar,0,ω(·, ·) = br,ω(·, ·) is not coercive.
Thus it does not seem likely to us that an error bound can be obtained in the weighted
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energy norm ‖ · ‖E0,ω. For this reason, we conduct the estimation in the energy
norm ‖ · ‖E0 without the Chebyshev weight. We first note that the polar condition
duN

dr (0) = 0 allows us to extend the collocation equations

−rj,ω d
2uN

dr2
(rj,ω)− duN

dr
(rj,ω) = rj,ωf(rj,ω), 1 ≤ j ≤ N − 1,(3.44)

to the point r = rj,ω = 0. Since the left-hand side of (3.44) is a polynomial of degree
N − 1, (3.44) holds for all r ∈ [0, 1], provided that f ∈ PN−2. We introduce an
auxiliary interpolation operator ĨN−2: C([0, 1])→ PN−2 defined by

ĨN−2v(rj) = v(rj), 1 ≤ j ≤ N − 1.(3.45)

Thus we are able to rewrite (3.44) as

−r d
2uN

dr2
(r)− duN

dr
(r) = rĨN−2f(r), 0 ≤ r ≤ 1.(3.46)

Let Wg and W
N
g be the same as before.

Lemma 3.8. Let u and uN be the solutions of the problem (2.1)–(2.2) (n =

0, dudr (0) = 0) and the Chebyshev collocation approximation (du
N

dr (0) = 0), respectively.
We have

‖u− uN‖E0 ≤ sup
ϕ∈WN

0

F̃r(ϕ)

‖ϕ‖E0

+ 2 inf
v∈WN

g

‖v − u‖E0 ,

where F̃r(ϕ) = 〈rf − rĨN−2f, ϕ〉.
Proof. We have from (2.1) and (3.46)

ar,0(v − uN , φ) = F̃r(φ) + ar,0(v − u, φ) ∀φ ∈WN
0 and v ∈WN

g .

Taking φ = v − uN ∈WN
0 , we have

‖v − uN‖2E0
= ar,0(v − uN , φ)

≤
(
sup

ϕ∈WN
0

F̃r(ϕ)

‖ϕ‖E0

+ ‖v − u‖E0

)
‖v − uN‖E0 ,

which gives the desired result.
We need further to estimate the term F̃r(ϕ). According to the definition, it is

easy to see that (r−r2)ĨN−2f = IN ((r−r2)f). Therefore, we have from the Cauchy–
Schwarz inequality and Lemma 3.2 that, for any ϕ ∈WN

0 ,

|F̃r(ϕ)| = |〈(r − r2)f − IN ((r − r2)f), (1− r)−1ϕ〉|
≤ ‖(r − r2)f − IN ((r − r2)f)‖ ‖(1− r)−1ϕ‖
≤ CN1−m

∥∥∥∥(r − r2) m̄−1
2
dm̄((r − r2)f)

drm̄

∥∥∥∥
ω

‖ϕ‖E0
,(3.47)

where we have used

‖(1− r)−1ϕ‖ ≤ 2
∥∥∥∥√r dϕdr

∥∥∥∥ ∀ϕ ∈WN
0 ,(3.48)
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which can be derived from

0 ≤
∫ 1

0

(√
r
dϕ

dr
− 1
2
(1− r)−1ϕ

)2

dr

=

∥∥∥∥√r dϕdr
∥∥∥∥2

+
1

4
‖(1− r)−1ϕ‖2 − 1

2

∫ 1

0

d(ϕ)2

dr
r1/2(1− r)−1 dr

≤
∥∥∥∥√r dϕdr

∥∥∥∥2

− 1
4
‖(1− r)−1ϕ‖2.(3.49)

Hence, we have proved the following theorem.
Theorem 3.2. For any integer m ≥ 1, the Chebyshev-collocation approxima-

tion uN defined by the scheme (2.10)–(2.12) for the problem (2.1) and (2.2) satisfies

‖u− uN‖En ≤ CN1−m
(∥∥∥∥(r − r2)m

2 − 3
4
dmu

drm

∥∥∥∥+ ∥∥∥∥(r − r2) m̄
2 − 3

4
dm̄(rf)

drm̄

∥∥∥∥
+

∥∥∥∥(r − r2) m̄
2 − 3

4
dm̄((r − r2)f)

drm̄

∥∥∥∥) ,(3.50)

where u is the exact solution of (2.1) and (2.2) and m̄ = max{m− 1, 1}. For the case
n �= 0, (3.50) also holds in the stronger norm ‖ · ‖En,ω.

Thus, we obtain a convergence result similar to that of the Legendre collocation
method. As in Theorem 3.1, when u ∈ Hm

r and f ∈ Hm̄
r with m ≥ 5/2, the terms in

the bracket on the right-hand side of (3.50) are bounded.

4. Numerical experiments. In this section we present some numerical results
to demonstrate the accuracy of the Legendre and Chebyshev collocation methods
(2.10)–(2.12) for the model problem (2.1)–(2.2).

Example 1. The function f(r) and the Dirichlet boundary condition at r = 1 are
chosen such that the exact solution of (2.1) and (2.2) is

u(r) = r2 cos(10πr), 0 < r < 1.(4.1)

We note that the energy norm ‖ · ‖En
is stronger than the L∞ norm for n > 0. (This

is not true for n = 0.) For this reason, we use the maximum norm to measure the
error for the case n > 0, but use the energy norm for the case n = 0. These norms
are numerically approximated in the computations, viz.,

E0,N =


N∑
j=0

rj

∣∣∣∣dudr (rj)− duN

dr
(rj)

∣∣∣∣2 wj


1/2

for n = 0,(4.2)

E1,N = max
0≤j≤N

|u(rj,ω)− uN (rj,ω)| for n = 1,(4.3)

where the Legendre points {rj} are used in (4.2) and both the Legendre and Cheby-
shev points {rj,ω} are used in (4.3). The numerical results for the cases n = 0 and
n = 1 are listed in Table 1. The spectral convergence of the methods is clearly shown
in the table. One may also notice that the Legendre and Chebyshev collocation meth-
ods produce very comparable results.

Example 2. The function f(r) and the boundary condition at r = 1 are chosen
such that the problem has a less regular solution

u(r) = r5/2, 0 < r < 1.(4.4)
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Table 1
Numerical results obtained with the Legendre (LC) and Chebyshev (CC) collocation methods

for Example 1. The convergence order is N−Order .

n = 0 n = 1
LC-method CC-method LC-method CC-method

N E0,N Order E0,N Order E1,N Order E1,N Order
10 6.9e+01 1.5e+02 1.7e+01 4.1e+01
20 2.1e+01 1.8 2.4e+01 2.7 3.9e+00 2.2 5.0e+00 3.1
30 1.0e+00 7.4 1.3e+00 7.2 5.3e−02 10.6 6.4e−02 10.7
40 2.0e−03 21.7 2.9e−03 21.2 7.3e−05 22.9 9.2e−05 22.8
50 1.8e−07 41.8 3.5e−07 40.5 6.7e−09 41.7 7.3e−09 42.3
60 1.6e−12 63.9 1.9e−12 66.3 7.8e−14 62.3 1.0e−13 61.3
70 2.2e−13 4.2e−12 1.5e−14 1.2e−13

Table 2
Numerical results obtained with the Legendre collocation method for Example 2. The conver-

gence order is N−Order .

n = 0 n = 1
N E0,N Order E1,N Order
40 3.2e−07 1.7e−08
80 1.2e−08 4.75 5.6e−10 4.96
120 1.7e−09 4.79 7.4e−11 4.97
160 4.2e−10 4.81 1.8e−11 4.98
200 1.4e−10 4.82 5.8e−12 4.96
240 5.9e−11 4.83 2.4e−12 4.91

The computation is done with the Legendre collocation method for n = 0 and n = 1.
The solution error and the convergence order are listed in Table 2. One can easily
see that E0,N ≈ O

(
N−5

)
and E1,N ≈ O

(
N−5

)
. That is, the rate of convergence is

nearly twice the exponent of r in (4.4), 5/2. On the other hand, it is not difficult
to show that the first term on the right-hand side of (3.21) is bounded for m < 5,
while the second term is bounded for m̄ < 3 or m < 4 for the current example.
Thus, the right-hand-side terms are bounded for m < 4. From Theorem 3.1, we have
‖u− uN‖En ≈ O(N−3). This indicates that the convergence rate predicted by (3.21)
is not sharp, although the estimate is optimal according to the regularity requirement
([1]; also cf. (3.22)). Such an order loss seems typical in the convergence analysis
of collocation schemes, especially for problems involving force terms; e.g., see [4] for
comparison of typical estimates for the Legendre Galerkin method ((8.7) on p. 274)
and the Legendre collocation method ((15.15) on p. 310). It is interesting to note that
sharp estimates have been obtained for the p-version finite element method (which
is of Galerkin type); e.g., see Babuska and Suri [5]. Finally, we mention that the
Chebyshev collocation method leads to very comparable results.

5. Conclusions and comments. In the previous sections we have proved that
the Legendre and Chebyshev collocation approximations presented in [12] are conver-
gent and that the error decays faster than algebraically when f and u are infinitely
differentiable for the singular problem (2.1) and (2.2). Our main results are given in
Theorems 3.1 and 3.2.

The key feature of the spectral collocation approximation is that it uses a pole
condition as the boundary condition at the singularity and employs a commonly used
collocation scheme. Thus, the convergence result provides a theoretical justification
for the well-known fact that it is unnecessary to impose all the pole conditions in order
for numerical schemes to obtain high accuracy. Because most of the existing spectral
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approaches for singular problems use more or less the pole conditions, we expect that
our result can also be regarded as a theoretical justification for these methods.

Finally we make a few comments on the method we analyzed. The method has
been successfully applied to solving steady-state Navier–Stokes equations in [13, 14].
However, since it uses the Chebyshev or Legendre type of collocation methods in the
r interval (0,1), one may suspect that the clustering of grid points near r = 0 leads
to a very severe restriction on time steps for time dependent problems. To see this,
let us consider the time dependent problem on the unit disk

ut = ∆u+ aux + buy.(5.1)

In polar coordinates the equation becomes

ut =
∂2u

∂r2
+
1

r

∂u

∂r
+
1

r2
∂2u

∂θ2

+(a cos θ + b sin θ)
∂u

∂r
+ (−a sin θ + b cos θ)

1

r

∂u

∂θ
.(5.2)

Assume that (5.2) is approximated in r using the Legendre or Chebyshev collocation,
and in θ using Fourier collocation. Then it is not difficult to see that for the diffusion
term the time step restriction for an explicit integration scheme is

∆tmax ≈ min{(∆r0)2, r1∆r0} ≈ (r1)2 = O

(
1

N4

)
(5.3)

at r ≈ 0 and

∆tmax ≈ min{(∆rN−1)
2, rN∆rN−1} ≈

(
1

N4

)
(5.4)

at r ≈ 1. Obviously these two time scales are the same. For the convection term we
have at r ≈ 0

∆tmax ≈ min{∆r0, r1} ≈ O

(
1

N2

)
(5.5)

and at r ≈ 1

∆tmax ≈ min{∆rN−1, rN} ≈ O

(
1

N2

)
.(5.6)

Once again they are the same. Thus, the above simple analysis tells us that the
clustering of grid points near the singularity does not result in a time restriction worse
than that near the outer boundary. Of course, just like spectral methods applied to
nonsingular problems, a restriction O(1/N4) on time steps is too severe. Implicit or
semi-implicit time integrators should be used. The resultant algebraic systems can
be solved using either iterative methods with effective preconditioners [7, 12] or fast
direct solvers [24].

For problems in spheric geometries the method can be applied straightforwardly.
However, the severe restriction on time steps at the north and south poles could be
a potential problem for the method (see discussion in [6, pp. 480–482]). This issue
deserves further investigation.

Acknowledgment. The authors would like to thank the anonymous referees for
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1. Introduction. Solution of linear and nonlinear systems of equations is a
fundamental problem in numerical analysis, underlying much, if not most, of modern
scientific computation. A system of n equations in n unknowns, where the expressions
defining the system are defined in some closed, bounded subset D of n-dimensional
space, may be expressed mathematically by

F (x) = 0, F : D ⊂ R
n → R

n.(1.1)

Throughout scientific computing, floating point arithmetic is used to solve equa-
tions (1.1) approximately. If F is linear, for example, then various direct (Gaussian
elimination–based) methods, or iterative methods such as the preconditioned conju-
gate gradient method, are used. If F is nonlinear, then numerical solution of (1.1)
involves various iterative methods, and the corresponding computer code can be so-
phisticated or involve numerous heuristics. In both the linear and nonlinear cases,
the result of the computation is an approximate solution vector x̌ ∈ R

n, F (x̌) ≈ 0.
Hopefully, x̌ is near an exact or “true” solution x∗, F (x∗) = 0, such that ‖x̌− x∗‖ is
small.1 However, with a few exceptions, the computation that produces the approx-
imate solution x̌ does not give a bound on ‖x̌− x∗‖. Indeed, it is not hard to find
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instances of practical problems for which the output vector x̌ of an algorithm to solve
a nonlinear system of the form (1.1) is not near a true solution at all, and for which
the modeler does not recognize this fact; see, for example, [5].

On the other hand, efficient methods have been available for some time to con-
struct bounds about such approximate solutions x̌ at which a true solution is known
to exist. Specifically, an interval vector

x = ([x1, x1], [x2, x2], . . . , [xn, xn])
T(1.2)

is found such that each width w([xi, xi]) = xi − xi is small (a small multiple of
the machine precision, depending on the problem), and such that the computational
process has proven mathematically (with no uncertainty due to roundoff error) that
there is an exact solution x∗ ∈ x. Although it is not universally recognized within
the general numerical analysis community, such methods can be developed to be
practical more often than not and can give rigorous bounds that both are tighter than
heuristic error estimates and are obtained with less effort; see, for example, [15]. An
explanation of these methods appears in [6, 11, 17] and in numerous other works. The
mathematical assumptions under which such verification methods can be expected to
be successful are basically that the Jacobi matrix for the system is continuous and
nonsingular at the solution; see the aforementioned references for a precise statement
of the assumptions. For a practical implementation of such methods (with interval
arithmetic), the function residuals and Jacobi matrix need to be representable as a
computer program.

Although these verification methods involve interval arithmetic, notorious for
impracticality due to overestimation when naively used, the intervals (the coordinates
of x) in a posteriori verification computations are small. It is known, from both
theory and practice, that the overestimation in such small intervals is asymptotically
insignificant, making such methods more generally applicable.

In this work, we consider not finding an approximate solution x̌ but constructing
and verifying bounds x about such a point x̌ (however found) such that an exact
solution x∗ lies within x. Specifically, we address the following problem.

Given F : D → R
n, where D is some closed, bounded subset of

R
n with nonempty interior, and given an approximate solution

x̌ ∈ D, construct bounds x ∈ IR
n, x̌ ∈ x, with x as in (1.2), for

which we rigorously verify
• there exists an x∗ ∈ x such that F (x∗) = 0.

(1.3)

Throughout this paper, by “rigorous” we mean “with the same standard as for a
traditional mathematical proof.” Our algorithms for such verification will employ
techniques derived from traditional floating point computations but will use directed
roundings to take the finite nature of floating point arithmetic into account.

As is seen in [6, 11, 17] and elsewhere, when the Jacobian matrix F ′(x∗) is well-
conditioned and not too quickly varying, interval computations have no trouble prov-
ing that there is a unique solution within small boxes with x∗ reasonably near the
center. (Various techniques, such as those in [16], can be used to initially construct
the bounds over which the verification algorithm proceeds.) However, when F ′(x∗)
is ill-conditioned or singular, in general, no computational techniques can verify the
existence of a solution within a given region x of Rn. Indeed, common thinking among
researchers in such verification methods has been that verification is not possible in
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the singular case. Nonetheless, in [14] we introduced an algorithm for computational
but rigorous verification, in the singular case, that a given number of true solutions
exists within a region in complex space containing x. There we studied the simplest
case, when the rank-defect of the Jacobian matrix at the solution is one, and we
developed and experimentally validated algorithms for the case when the topologi-
cal index is 2. There, we also proved the special case of Theorem 3.1 (see section 3
below) when d = 2. Under the same assumptions as those in section 2 below, we
developed specialized versions of the algorithms in section 4 below, and we presented
varying-dimensional experimental results in [14].

We were surprised and pleased that the results in [14] could be generalized so
easily. In particular, we developed an alternate simple, general proof for Theorem 3.1
below. Furthermore, the algorithms in section 4 below, although not taking advantage
of special efficiencies in the degree-2 case as in [14], are similar in structure and have
the same computational complexity as the algorithms in [14].

The developments below proceed by thinking of the function F in terms of a
model of the form

F (x) =M(x) +R(x),(1.4)

whereM(x) is a Taylor approximation to F about x∗ and R(x) is the error term. The
number of solutions to F (x) = 0 is determined according to the topological degree
(reviewed in section 1.2 below) of F . In Theorem 3.1 (see section 3 below) we show
that, if F (x) =M(x), whereM(x) has some verifiable properties, then the topological
degree of F must equal d. (This proves existence, since the topological degree over
a region in complex space is equal to the number of solutions in the region, counting
multiplicities.) Basing the computations on the structure of M , we use a heuristic
test to guess the integer d. Speaking roughly, we then take account of both roundoff
error and the error term R(x) with interval computations. In particular, we use the
structure of M to efficiently arrange an exhaustive search that rigorously verifies that
the topological degree actually is d. Even though the search is exhaustive, completion
of the search requires only the same order of magnitude of computational work as a
step of Newton’s method on the system; this is due to the postulated structure of M
and the way we have arranged the search.

As explained in [14, section 1.4], if d is even, it is meaningless to discuss the
existence of a solution in R

n within the framework of errors in the data, model, and
floating point system, since the topological degree in real space in such cases may
be equal to 0. The even d case is a generalization of the situation with f(x) = x2

at x = 0: The function f itself has a unique solution at x = 0, yet perturbations
of f result in either no solutions or two solutions near x = 0. In contrast, f(z) =
(1+ε1)z

2+ε2z+ε3, |εi| small for i = 1, 2, 3, has two solutions, counting multiplicities,
in all sufficiently large (but with diameters that can be chosen to be O (ε) as ε→ 0)
open sets in C containing z = 0. This illustrates a general phenomenon: Whereas
small perturbations of the data change the existence of (one or more) solutions near a
particular point in R

n, the solutions vary continuously with perturbations of complex
extensions. We have presented one precise statement of this in Theorem 3.1 of [4]:
Under the assumptions in that theorem (essentially, that the Jacobi matrix have rank
defect 1 at the solution, and that certain derivative tensors up to order d vanish),
d(F,x, 0) = 0 for a box x ∈ R

n whenever d is even (and d(F,x, 0) = ±1 over
such a box when d is odd). Thus, in that case when d is even (and, we believe, in
many fairly general cases) verifying the value of the topological degree within the real
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context cannot verify existence of the solution. In contrast, d(F,z, 0) must always be
nonzero if there is a z ∈ z with F (z) = 0 and 0 �∈ ∂z, for z ⊂ C

n. Also, the number
of solutions counting multiplicities can change under perturbations in R

n, even for
odd-order functions such as x3, for which we can use techniques such as those in [4]
to prove existence; in contrast, d(F,z, 0) gives the exact number of solutions within
z, counting multiplicities, for complex-valued functions F of complex variables z.

In this paper, we consider the case of general d, to verify the existence of solutions
in small neighborhoods of C

n, as illustrated in problem (1.5) below. Our hope is that
such verification will be useful in analysis of systems having even-order roots, even
though the validation is in a different space; in any case, rigorous validation of such
systems in the original space may not be possible and may not be meaningful if
the system was derived from measurements with errors. (We present special theory,
analysis, and algorithms for the real case and odd-order roots in [4].)

Given F , D, and x̌ as in problem (1.3), consider an analytic
extension F̃ of F to a domain D̃ ⊆ C

n,D ⊂ D̃. Construct bounds
x as in problem (1.3) and y = ([y

1
, y1], . . . , [yn, yn]), 0 ∈ y, for

which we rigorously verify the following:
• there exists a z∗ ∈ z such that F̃ (z∗) = 0, where
• z = {(x1 + iy1, x2 + iy2, . . . , xn + iyn)

T ∈ C
n
∣∣

xj ∈ xj , yj ∈ yj , 1 ≤ j ≤ n
}
.

(1.5)

Hiding detail and revealing overall ideas, we have simplified the notation in this work,
compared to that in [14].

After introducing our notation in section 1.1, we briefly review the relevant por-
tions of topological degree theory in sections 1.2 and 1.3. We introduce our use of
the structure of the model M(x) in section 2. We present our scheme for setting the
coordinate bounds x within which we prove the existence of solutions in section 2.2;
though related, this scheme is improved and works more generally than that in [14]. In
section 3, we show that the degree must be equal to d if F (x) =M(x) (i.e., R(x) = 0),
within the context introduced in section 2. In section 4, we present the algorithm that
verifies that the degree is d for nonzero R(x), within the framework introduced in sec-
tion 2. In section 5, we present an easily implemented heuristic computation for
guessing the value of d, necessary for the verification algorithm in section 4. Finally,
in section 6.3 we present results of trying the computations on several examples; these
results illustrate that the algorithm can be practical for a variety of problems, and
that the computation does not necessarily increase rapidly with the dimension of the
problem.

1.1. Notation. We assume familiarity with the fundamentals of interval arith-
metic; see [1, 6, 11, 17, 19] for introductory material.

Throughout, scalars and vectors will be denoted by lower case, while matrices
will be denoted by upper case. Intervals, interval vectors (also called “boxes”), and
interval matrices will be denoted by boldface. For instance, x = (x1, . . . ,xn) denotes
an interval vector, A = (ai,j) denotes a point matrix, and A = (ai,j) denotes an
interval matrix. The midpoint of an interval or interval vector x will be denoted by
m(x). As in section 1, w(x) denotes the width of an interval x = [x, x], that is,
w(x) = x − x; if x represents an interval vector, then the midpoint m(x) and width
w(x) will be real vectors, understood componentwise. Real n-space will be denoted by
R
n, while complex n-space will be denoted by C

n. The set of real interval vectors will
be denoted by IR

n, while the set of complex interval vectors will be denoted by IC
n.
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Suppose x = (x1, . . . ,xn) is an n-dimensional real box, where xk = [xk, xk]. The
nonoriented boundary of x, denoted by ∂x, consists of 2n (n − 1)-dimensional real
boxes

xk ≡ (x1, . . . ,xk−1, xk,xk+1, . . . ,xn) and xk ≡ (x1, . . . ,xk−1, xk,xk+1, . . . ,xn),

where k = 1, . . . , n.
The orientation of a region D ⊂ R

n and of its boundary ∂D is a generalization
of the concept of orientation of a region and its boundary (counterclockwise being
positive orientation) in complex analysis, or of the concepts of orientation of a region
and its boundary when applying Green’s theorem or Stokes’ theorem; see [3, pp.
4–10] or [2], for example, for a detailed formal definition. In particular, a simplex
〈a(0), a(1), . . . , a(n)〉, a(k) ∈ R

n, 0 ≤ k ≤ n, is positively oriented, provided that a
certain determinant formed from the coordinates of the points a(k) is positive, and
is negatively oriented if that determinant is negative; polygonal regions formed by
juxtaposing such oriented simplexes have a positive orientation, provided that each
component simplex is positively oriented.

To explain the algorithms in this paper, we need concern ourselves only with
the derived orientation of the boundary of an interval vector (i.e., of a box) x. The
following “definition” can be derived as a theorem from the general definition of
a positively oriented polygonal region. (For a more detailed presentation, see our
technical report [13, pp. 7–8].)

Definition 1.1. Suppose that a box x as in (1.2) is positively oriented. Then
the positively oriented boundary b(x) is given by the formal sum

n∑
k=1

{
(−1)kxk + (−1)k+1xk

}
of the 2n (n− 1)-dimensional boxes xk and xk.

Our model M(x) of F (x) as in (1.4) is a multivariate Taylor polynomial. In
particular we will write a component fi of F as

fi(x) = fi(x̌) +

d∑
j=1

1

j!
Djfi(x̌)[x− x̌, . . . , x− x̌] +O (‖x− x̌‖)d+1

,(1.6)

where

Djfi(x̌)[x− x̌, . . . , x− x̌]

=

n∑
k1=1

· · ·
n∑

kj=1

∂jfi
∂xk1 · · · ∂xkj

(x̌)(xk1 − x̌k1) · · · (xkj − x̌kj )
(1.7)

is the jth derivative tensor.
In our verification algorithms, the domains will be interval vectors, i.e., rectangu-

lar boxes x. However, we state some of the known topological degree theory results
more generally, in terms of the closed, bounded set D with nonempty interior that we
introduced above.

1.2. Formulas from degree theory. In [14], we reviewed the topological de-
gree in the context of this paper. Also see [2, 3, 8, 9, 18, 20]. Here, we repeat several
properties used in the proofs in subsequent sections.
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Although a formal definition of the topological degree is somewhat cumbersome,
one obtains an intuitive understanding of the topological degree from its properties.
In particular, for n = 1, the topological degree of F at 0 over an interval x, denoted
d(F,x, 0), is the number of times the graph of F crosses the x-axis in the positive
direction, minus the number of times the graph of F crosses the x-axis in the negative
direction. If F : C→ C and D is a simply connected region (a region without holes,
such as a disk) containing the origin in C, then the topological degree d(F,D, 0) is
equal to the winding number of F with respect to the curve bounding D. Because
of this fact, d(pd,D, 0) = d, where pd is any polynomial of degree d and D is any
sufficiently large simply connected domain in C with 0 ∈ D (where the size depends
on the particular pd). Thus, in C, the topological degree roughly corresponds to the
notion of algebraic degree, which is the same as the number of solutions, counting
multiplicity. If we think of D as being the closure of a very small region containing
a solution z∗, F (z∗) = 0, then d(F,D, 0) is termed the topological index of z∗; the
topological index corresponds to the multiplicity of z∗. For example, the topological
index of zd at z∗ = 0 is equal to d. In this paper, we prove the existence of solutions
within small domainsD by verifying, essentially, that the topological index is nonzero.

Formal definitions of the topological degree can be given analytically (in terms
of an integral) as in [18, Chapter 6], or in terms of fundamental concepts of algebraic
topology, as in [2]. In either case, either definition can be obtained as a theorem,
starting with the other one as the definition. We can actually think of the degree in
terms of the following.

Theorem 1.2 (see [18, p. 150]). Suppose that F is continuous, and suppose
that the Jacobian matrix F ′(x) is defined and nonsingular at each zero of F within a
domain D, which is the closure of an open region in R

n, and suppose that F (x) �= 0
when x ∈ ∂D. Then, the degree d(F,D, 0) is equal to the number of zeros of F at
which the determinant of the Jacobian matrix F ′(x) is positive, minus the number of
zeros of F at which the determinant of the Jacobian matrix F ′(x) is negative.

Basically, Theorem 1.2 states that the degree is an algebraic number of zeros of F
in D when the Jacobian matrix is nonsingular at each zero. However, the degree does
not change as F is perturbed, and we can imagine the degree remaining defined as two
or more zeros of F coalesce into a single zero at which the Jacobian matrix is singular
(important in our context here). Similarly, F need only be continuous (not necessarily
differentiable) for d(F,D, 0) to be defined. To define the degree for arbitrary contin-
uous functions that do not vanish on the boundary ∂D, the analytic definition as in
[18, Chapter 6] uses an integral and mollifying functions, whereas the topological def-
inition approximates the image of the boundary ∂D with a piecewise-linear simplicial
complex (similar to how engineers approximate an object with triangles for the finite
element method, except that the topologist’s simplicial complex is oriented).

Starting either from the analytical definition of [18] or from the algebraic-topologi-
cal definition of [2], we obtain the following properties of the degree. These properties
are what will concern us in our verification procedures.

Theorem 1.3 (see [18, p. 150]). Let F , G : D ⊂ R
n → R

n be two continuous
functions that do not vanish on ∂D. If F (x) = G(x) for x ∈ ∂D, then d(F,D, 0) =
d(G,D, 0).

Theorem 1.3 states one of the most important properties of degree: The degree
depends only on the function values on the boundary.

Theorem 1.4 (see [18, p. 157]). Let F , G : D ⊂ R
n → R

n be two continuous
functions. If

0 �∈ {tF (x) + (1− t)G(x)|x ∈ ∂D and t ∈ [0, 1]},
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then

d(F,D, 0) = d(G,D, 0).

Theorem 1.4 is the famous Poincaré–Bohl theorem. It is a particular case of
the homotopy invariant property of the topological degree. Since D is compact,
this homotopy invariance implies, without too much argument, that the degree is a
continuous function of F .

Corollary 1.5. Suppose F : D ⊂ R
n → R

n is continuous and d(F,D, 0) = d.
Then there is an ε > 0 such that, for all continuous G : D→ R

n with |F (x)−G(x)| < ε
for x ∈ D, d(F,D, 0) = d(G,D, 0).

Suppose F : D ⊂ C
n → C

n is analytic, and view the real and imaginary com-
ponents of F and its argument z ∈ C

n as real components in R
2n. Let z = x + iy

and F (z) = u(x, y) + iv(x, y), where x = (x1, . . . , xn), y = (y1, . . . , yn), u(x, y) =
(u1(x, y), . . . , un(x, y)), and v(x, y) = (v1(x, y), . . . , vn(x, y)). We define D̃ by

D̃ ≡ {(x1, y1, . . . , xn, yn)|(x1 + iy1, . . . , xn + iyn) ∈ D}
and F̃ : D̃ ⊂ R

2n → R
2n by F̃ = (u1, v1, . . . , un, vn). We then have the following

properties.
Theorem 1.6 (see [14]). Suppose that F : D ⊂ C

n → C
n is analytic, with

F (z) �= 0 for any z ∈ ∂D, and suppose that D̃ and F̃ : D̃ → R
2n are defined

as above. Then d(F̃ , D̃, 0) is nonnegative and is equal to the number of solutions
z∗ ∈ D, F (z∗) = 0, counting multiplicities.

1.3. A basic degree computation formula. Theorem 1.7 below relates the
basic theory of the topological degree to the computational verification procedures
in section 4 below. Theorem 1.7 is similar to Theorem 2.5 of [14]. We can obtain
Theorem 1.7 from formulas (4.12) and (4.14) in [20], by taking into account the
orientations of the faces of x.

Theorem 1.7 characterizes d(F,x, 0) in terms of certain components of F on ∂x.
In particular, set

F¬k(x) ≡
(
f1(x), . . . , fk−1(x), fk+1(x), . . . , fn(x)

)
.

Then we have the following result.
Theorem 1.7. Let s ∈ {−1, 1} be fixed arbitrarily, suppose F �= 0 on ∂x, and

suppose that there is a p, 1 ≤ p ≤ n, such that
1. F¬p ≡ (f1, . . . , fp−1, fp+1, . . . , fn) �= 0 on ∂xk or ∂xk, k = 1, . . . , n; and
2. the Jacobi matrices of F¬p are nonsingular at all solutions of F¬p = 0 on ∂x

and are continuous in a neighborhood of such solutions.
Then

d(F,x, 0) = (−1)p−1s


n∑
k=1

(−1)k
∑
x∈xk

F¬p(x)=0

sgn(fp(x))=s

sgn

∣∣∣∣ ∂F¬p
∂x1x2 · · ·xk−1xk+1 · · ·xn (x)

∣∣∣∣

+
n∑
k=1

(−1)k+1
∑
x∈x

k
F¬p(x)=0

sgn(fp(x))=s

sgn

∣∣∣∣ ∂F¬p
∂x1x2 · · ·xk−1xk+1 · · ·xn (x)

∣∣∣∣
 .
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2. Assumptions and choice of box. In this section, we present the basic
assumptions. We also introduce how we choose the coordinate bounds xi = [xi, xi]
to satisfy the assumptions and enable more efficient algorithms. When the rank of
F ′(x∗) is n− p for some p > 0, an appropriate preconditioner can be used to reduce
F ′(x) to approximately the pattern shown in Figure 2.1. (See [11] and [14] for details
on preconditioning.)

Y F ′(x) ≈



1 0 · · · 0

p︷ ︸︸ ︷∗ · · · ∗
0 1 0 · · · 0 ∗ · · · ∗
...

...
. . .

...
...

0 · · · 0 1 ∗ · · · ∗
0 · · · 0 0 0 · · · 0
...

...
...

...
...

0 · · · 0 0 0 · · · 0


.

Fig. 2.1. An approximate form for a preconditioned singular interval system of approximate
rank n− p, where “∗” represents a nonzero element.

In the analysis to follow, we assume that the system has already been precondi-
tioned, so that it is, to within second-order terms with respect to w(x), of the form
in Figure 2.1. That is, we assume that the preconditioned system is of the form seen
in Figure 2.1 if we interpret “∗” to represent any interval, “1” to represent intervals
of the form [1 − O (‖x− x∗‖) , 1 + O (‖x− x∗‖)], and “0” to represent intervals of
the form [−O (‖x− x∗‖) ,O (‖x− x∗‖)]. Here as in [14], we concentrate on the case
p = 1.

2.1. The basic assumptions. As in the special case d = 2 of [14], we assume
1. F : D ⊂ R

n → R
n can be extended to an analytic function in C

n.
2. x = (x1, . . . ,xn) = ([x1, x1], . . . , [xn, xn]) is a small box constructed to be
centered at an approximate solution x̌, i.e., m(x) = (x̌1, . . . , x̌n).

3. x̌ is near a point x∗ with F (x∗) = 0 such that ‖x̌− x∗‖ is much smaller than
the norm of the width of the box x, and the width of the box x is small
enough that mean value interval extensions lead, after preconditioning, to a
system like Figure 2.1, with small intervals replacing the zeros.

4. F has been preconditioned as in Figure 2.1, and F ′(x∗) has null space of
dimension 1.

Define

αk ≡ ∂fk
∂xn

(x̌), 1 ≤ k ≤ n− 1,
αn ≡ −1,
∆1 ≡

∣∣∣∣ ∂F

∂x1 · · · ∂xn (x̌)
∣∣∣∣

∆l ≡
n∑

k1=1

· · ·
n∑

kl=1

∂lfn
∂xk1 · · · ∂xkl

(x̌)αk1 · · ·αkl , 2 ≤ l.
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The following representation of F (x) near x̌ is appropriate under these assumptions:

fk(x) = (xk − x̌k) + αk(xn − x̌n) +O (‖x− x̌‖)2(2.1)

for 1 ≤ k ≤ n− 1,

fn(x) =

d∑

=2

1

 !
D
fn(x̌)[x− x̌, . . . , x− x̌] +O (‖x− x̌‖)d+1

.(2.2)

Here and below, “d” is a fixed constant that represents the postulated topological
index (obtained, say, with the heuristic in section 5 below); the index d will be verified
with our proposed algorithms (in section 4 below).

We now introduce additional notation to describe the complex extensions. For F :
R
n → R

n, extend F to complex space: x+iy, with y in a small box y =
(
y1, . . . ,yn

)
=(

[y
1
, y1], . . . , [yn, yn]

)
, where y is centered at (0, . . . , 0). As in Theorem 1.6 above,

define x̃ ≡ (x,y) ≡ (x1,y1, . . . ,xn,yn) = ([x1, x1], [y1
, y1], . . . , [xn, xn], [yn, yn]),

uk(x, y) ≡ �(fk(x+ iy)) and vk(x, y) ≡ �(fk(x+ iy)). With this, define

F̃ (x, y) ≡ (u1(x, y), v1(x, y), . . . , un(x, y), vn(x, y)) : R
2n → R

2n.

Also define

F̃¬un
(x, y) ≡ (u1(x, y), v1(x, y), . . . , un−1(x, y), vn−1(x, y), vn(x, y)

)
.

Then, based on (2.1) and (2.2), for 1 ≤ k ≤ (n− 1),

uk(x, y) = (xk − x̌k) + αk(xn − x̌n)

+ O (‖(x− x̌, y)‖)2 ,

vk(x, y) = yk + αkyn +O (‖(x− x̌, y)‖)2 ,

(2.3)

or

uk(x, y) ≈ (xk − x̌k) + αk(xn − x̌n),
vk(x, y) ≈ yk + αkyn.

}
(2.4)

2.2. Choosing the coordinate bounds. In our verification algorithms below,
we drastically reduce the amount of computation required by astutely choosing the
ratios of coordinate widths of the boxes x and y. We will use a scheme similar to
that of section 5 of [14]. In particular, having defined xk and xk in section 1.1, we
define yk and yk similarly:

yk ≡ (x1,y1, . . . ,xk−1,yk−1,xk, yk,xk+1,yk+1, . . . ,xn,yn) and

yk ≡ (x1,y1, . . . ,xk−1,yk−1,xk, yk,xk+1,yk+1, . . . ,xn,yn).

To compute the degree d(F̃ , x̃, 0), we will consider F̃¬un on the boundary of x̃. This
boundary consists of the 4n faces x1, x1, y1, y1, . . ., xn, xn, yn, yn. We will set xn
and yn so that the coordinate widths w(xk) obey

w(xn) ≤ 1
2

min
1≤k≤n−1

{
w(xk)

|αk|
}

and w(yn) ≤
1

2
min

1≤k≤n−1

{
w(yk)

|αk|
}

.(2.5)
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In the above two relationships, when αk = 0 for some k, that particular k can be
ignored in obtaining the minima, and w(xk) and w(yk) can be set to any small
positive values as long as the assumptions in section 2.1 are met. If αk = 0 for
k = 1, . . . , n − 1, then w(xk) and w(yk), k = 1, . . . , n, can independently be set to
any small positive values, as long as the assumptions in section 2.1 are met.

Constructing the box widths this way will make it unlikely that uk(x, y) = 0 on
either xk or xk and unlikely that vk(x, y) = 0 on either yk or yk, for k = 1, . . . , n−1.
This, in turn, will allow us to replace searches on 4n − 4 of the 4n faces of ∂x̃ by
simple interval evaluations, reducing the total computational cost dramatically. See
[14] for details.

A difference between the scheme used here and that of [14] is the way the ratio
w(yn)/w(xn) is chosen. In [14], w(yn) was chosen large relative to xn, to arrange no
solutions of un = 0 on yn and yn. When the degree is odd, that is not possible, and
we have found the strategy represented by formula (4.1) below, implying w(yn) small
relative to w(xn), as in Figure 4.1 below, to be more convenient.

3. When the polynomial model is exact. In [14] we proved that, under

the assumptions in section 2, if the O (‖x− x̌‖)2 term is absent in (2.1) and the

O (‖x− x̌‖)d+1
term is absent in (2.2) with d = 2, and if ∆1 = 0 but ∆2 �= 0, then

d(F̃ , x̃, 0) = 2. Here, we generalize that result to ∆1 = · · · = ∆d−1 = 0, ∆d �=
0. Since the degree doesn’t change under small perturbations of the function F̃
(see Theorem 1.5 above), the conclusion in Theorem 3.1 below also holds for more

general continuous functions for which the O (‖x− x̌‖)2 and O (‖x− x̌‖)d+1
terms

are not absent but are sufficiently small. In our computational existence verification
algorithm in the next section, we use interval arithmetic to rigorously encompass the
O (‖x− x̌‖)2 and O (‖x− x̌‖)d+1

terms. In this way, Theorem 3.1 below provides
guidance for construction of our general algorithm.

Theorem 3.1. Suppose that
1. x̃ is a nondegenerate box in R

2n as defined in section 2;
2. (x̌, y̌) = (x̌1, y̌1, . . . , x̌n, y̌n) is the midpoint of x̃;
3. F and F̃ are as in section 2;
4. F is such that the O (‖x− x̌‖)2 and O (‖x− x̌‖)d+1

terms in (2.1) and (2.2)
are absent; and

5. ∆1 = · · · = ∆d−1 = 0, ∆d �= 0, where 2 ≤ d.
Then d(F̃ , x̃, 0) = d.

In contrast to the proof in [14], we use a homotopy argument to prove Theo-
rem 3.1.

Proof. Let z = (z1, . . . , zn) = (x1 + iy1, . . . , xn + iyn). Then

F (z) = (f1(z), . . . , fn−1(z), fn(z)),

where

fk(z) = (zk − žk) +
∂fk
∂xn

(x̌)(zn − žn)

= (zk − žk) + αk(zn − žn)

for 1 ≤ k ≤ n− 1,

fn(z) =

d∑

=2

1

 !
D
fn(x̌)[z − ž, . . . , z − ž].(3.1)
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We construct A : Cn → C
n by

A(z) = (a1(z), . . . , an−1(z), an(z)),

where

ak(z) = (zk − žk) + αk(zn − žn) for 1 ≤ k ≤ n− 1,

an(z) =
(−1)d∆d

d!
(zn − žn)

d.(3.2)

Let rk(x, y) ≡ �(ak(x + iy)) and sk(x, y) ≡ �(ak(x + iy)). With this, define Ã :
R

2n → R
2n by

Ã(x, y) ≡ (r1(x, y), s1(x, y), . . . , rn(x, y), sn(x, y)).

We construct G : Cn → C
n by

G(z) = (g1(z), . . . , gn−1(z), gn(z)),

where

gk(z) = (zk − žk) for 1 ≤ k ≤ n− 1,

gn(z) =
(−1)d∆d

d!
(zn − žn)

d.(3.3)

Let pk(x, y) ≡ �(gk(x + iy)) and qk(x, y) ≡ �(gk(x + iy)). With this, define G̃ :
R

2n → R
2n by

G̃(x, y) ≡ (p1(x, y), q1(x, y), . . . , pn(x, y), qn(x, y)).

We will prove d(F̃ , x̃, 0) = d(Ã, x̃, 0) = d(G̃, x̃, 0). First, we prove d(F̃ , x̃, 0) =
d(Ã, x̃, 0).

Define

H̃1((x, y), t) ≡ tF̃ (x, y) + (1− t)Ã(x, y)

and H1(z, t) ≡ tF (z) + (1− t)A(z).

We will prove that H̃1((x, y), t) �= 0 when (x, y) ∈ ∂x̃ and t ∈ [0, 1]. It is clear that
H̃1((x, y), t) = 0 is equivalent to H1(z, t) = 0, so we consider H1(z, t). The definition
of H1 and some rearrangement of terms give

H1(z, t) =
(
(z1 − ž1) + α1(zn − žn), . . . , (zn−1 − žn−1) + αn−1(zn − žn),

tfn(z) + (1− t)
(−1)d∆d

d!
(zn − žn)

d
)
.

Thus, H1(z, t) = 0 implies zk = žk − αk(zn − žn) for k = 1, . . . , n− 1. By definition,
αn = −1, and thus zn = žn−αn(zn−žn). Substituting zk−žk = −αk(zn−žn) for each
such k (k = 1, 2, . . . , n) in the derivative tensor evaluation D
fn(x̌)[z − ž, . . . , z − ž]
in (3.1), we obtain

D
fn(x̌)[z − ž, . . . , z − ž] = (−1)
∆
(zn − žn)

, 2 ≤  ≤ d.(3.4)
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Since we are assuming that ∆
,  < d, vanish, (3.4) and (3.1) give

fn(z) =
(−1)d∆d

d!
(zn − žn)

d.(3.5)

Thus, the last component of H1(z, t) is

tfn(z) + (1− t)
(−1)d∆d

d!
(zn − žn)

d

= t
(−1)d∆d

d!
(zn − žn)

d + (1− t)
(−1)d∆d

d!
(zn − žn)

d

=
(−1)d∆d

d!
(zn − žn)

d.

Then, H1(z, t) = 0 implies (zn − žn)
d = 0, and consequently, zn − žn = 0 or zn = žn.

This implies zk = žk − αk(zn − žn) = žk for k = 1, . . . , n− 1.
Now we know that H1(z, t) has a unique zero at (ž1, . . . , žn−1, žn). This is saying

that H̃1((x, y), t) has a unique zero at (x̌, y̌), which is the midpoint of nondegenerate
box x̃. Thus, H̃1((x, y), t) �= 0 for (x, y) ∈ ∂x̃ and t ∈ [0, 1]. Then, by Theorem 1.4,

d(F̃ , x̃, 0) = d(Ã, x̃, 0).

Next, we prove d(Ã, x̃, 0) = d(G̃, x̃, 0). Define

H̃2((x, y), t) ≡ tÃ(x, y) + (1− t)G̃(x, y)

and H2(z, t) ≡ tA(z) + (1− t)G(z).

We will prove that H̃2((x, y), t) �= 0 when (x, y) ∈ ∂x̃ and t ∈ [0, 1]. It is clear that
H̃2((x, y), t) = 0 is equivalent to H2(z, t) = 0, so we consider H2(z, t). The definition
of H2 and some rearrangement of terms give

H2(z, t) =
(
(z1 − ž1) + tα1(zn − žn), . . . , (zn−1 − žn−1) + tαn−1(zn − žn),

(−1)d∆d
d!

(zn − žn)
d
)
.

Because of the last component of H2(z, t), H2(z, t) = 0 implies zn = žn. Then,
from the first n− 1 components of H2(z, t), H2(z, t) = 0 implies zk = žk − tαk(zn −
žn) = žk for k = 1, . . . , n − 1. Thus, H2(z, t) has a unique zero at (ž1, . . . , žn−1, žn).
This is saying that H̃2((x, y), t) has a unique zero at (x̌, y̌), which is the midpoint of
the nondegenerate box x̃. Thus, H̃2((x, y), t) �= 0 for (x, y) ∈ ∂x̃ and t ∈ [0, 1]. Then,
by Theorem 1.4,

d(Ã, x̃, 0) = d(G̃, x̃, 0).

Next, we prove d(G̃, x̃, 0) = d. Perturb G(z) by an arbitrary small ε to define

Gε(z) = (g1ε(z), . . . , g(n−1)ε(z), gnε(z)),

where

gkε(z) = gk(z) = (zk − žk) for 1 ≤ k ≤ n− 1,

gnε(z) = gn(z) + ε =
(−1)d∆d

d!
(zn − žn)

d + ε.(3.6)
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Let pkε(x, y) ≡ �(gkε(x+ iy)) and qkε(x, y) ≡ �(gkε(x+ iy)). With this, define

G̃ε(x, y) ≡ (p1ε(x, y), q1ε(x, y), . . . , pnε(x, y), qnε(x, y)).

It is obvious that pkε(x, y) = xk − x̌k and qkε(x, y) = yk − y̌k for k = 1, . . . , n − 1.
Assume that ε is small enough. Then Gε(z), and thus G̃ε(x, y), have d zeros z̃ =
(z̃1, . . . , z̃n−1, z̃n), or x̃ = (x̃1, ỹ1, . . . , x̃n−1, ỹn−1, x̃n, x̃n) in x̃, with z̃k − žk = 0, or
x̃k − x̌k = 0 and ỹk − y̌k = 0 for k = 1, . . . , n − 1, and (z̃n − žn)

d = d!ε
(−1)d+1∆d

�= 0.
∂gnε

∂zn
(z̃) = (−1)d∆d

(d−1)! (z̃n − žn)
d−1 �= 0.

∣∣∣∣∣ ∂G̃ε

∂x1∂y1 . . . ∂xn∂yn
(x̃)

∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0 0 0
0 1 · · · 0 0 0
...
...
. . .

...
...

0 0 · · · 1 0 0

0 0 · · · 0 ∂pnε

∂xn

∂pnε

∂yn

0 0 · · · 0 ∂qnε

∂xn

∂qnε

∂yn

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣ ∂pnε

∂xn

∂pnε

∂yn
∂qnε

∂xn

∂qnε

∂yn

∣∣∣∣∣ =
∣∣∣∣∣ ∂pnε

∂xn

∂pnε

∂yn

−∂pnε

∂yn

∂pnε

∂xn

∣∣∣∣∣(3.7)

=

(
∂pnε
∂xn

)2

+

(
∂pnε
∂yn

)2

=

∣∣∣∣∂gnε∂zn
(z̃)

∣∣∣∣2 > 0.

Thus, by Theorem 1.2, d(G̃ε, x̃, 0) = d, and then d(G̃, x̃, 0) = d by Theorem 1.5.
Finally,

d(F̃ , x̃, 0) = d(G̃, x̃, 0) = d.

Unless the components of F are exactly linear and degree-d polynomials, the
O (‖x− x̌‖)2 and O (‖x− x̌‖)d+1

terms in (2.1) and (2.2) are not absent. However,
since d(F,z, 0) is a continuous function of F , d(F,z, 0) will still be equal to d if the
widths w(xk − x̌k) (and hence ‖xk − x̌k‖) are small, for 1 ≤ k ≤ n. Nonetheless,
the proof of Theorem 3.1 does not lead to a practical computational verification
technique that the degree is d for such more general F : If we try to verify H(z, t) �= 0
or H̃((x, y), t) �= 0 when (x, y) ∈ ∂x̃ and t ∈ [0, 1], then it would require an inordinate
amount of work for a verification process that would normally require only a single
step of an interval Newton method in the nonsingular case. First, we would need
to compute ∆d, which involves all partial derivatives of order 1 and order d. This
is expensive when both n and d are large. Second, we would need to know where
the solutions of un(x) = 0 and vn(x) = 0 are on xn, xn, yn, and yn when zk =
žk − tαk(zn − žn), and the search process for such solutions is expensive.

We could try to verify H(z, t) �= 0 when (x, y) ∈ ∂x̃ and t ∈ [0, 1] in another
way: verify that H(z, t) = 0 has a unique solution in the interior of x̃ when t ∈ [0, 1].
However, we will run into the singular situation again if we do that.

In fact, there is an alternative algorithm to verify that the degree is d. That will
be the subject of the next section.
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4. Algorithm to verify a nonzero topological degree. The algorithm we
present here is similar to the algorithm in [14]. Based on Theorem 1.7 in section 1.2,
the following theorem underlies our algorithm.

Theorem 4.1. Suppose that
1. uk �= 0 on xk and xk, and vk �= 0 on yk and yk, k = 1, . . . , n− 1;
2. F̃¬un = 0 has solutions, if there are any, on xn and xn with yn in the interior

of yn, and F̃¬un = 0 has solutions, if there are any, on yn and yn with xn
in the interior of xn;

3. un �= 0 at the solutions of F̃¬un
= 0 in condition 2; and

4. the Jacobi matrices of F̃¬un
are nonsingular at the solutions of F̃¬un

= 0 in
condition 2.

Then, for a fixed s ∈ {−1, 1},

d(F̃ , x̃, 0) = −s
∑

xn=x
n

F̃¬un (x,y)=0

sgn(un(x,y))=s

sgn

∣∣∣∣∣ ∂F̃¬un

∂x1y1 · · ·xn−1yn−1yn
(x, y)

∣∣∣∣∣
+ s

∑
xn=xn

F̃¬un (x,y)=0

sgn(un(x,y))=s

sgn

∣∣∣∣∣ ∂F̃¬un

∂x1y1 · · ·xn−1yn−1yn
(x, y)

∣∣∣∣∣
+ s

∑
yn=y

n
F̃¬un (x,y)=0

sgn(un(x,y))=s

sgn

∣∣∣∣∣ ∂F̃¬un

∂x1y1 · · ·xn−1yn−1xn
(x, y)

∣∣∣∣∣
− s

∑
yn=yn

F̃¬un (x,y)=0

sgn(un(x,y))=s

sgn

∣∣∣∣∣ ∂F̃¬un

∂x1y1 · · ·xn−1yn−1xn
(x, y)

∣∣∣∣∣ .
Proof. Condition 1 implies F̃ �= 0 on xk, xk, yk, and yk, k = 1, . . . , n − 1, and

conditions 2 and 3 imply F̃ �= 0 on xn, xn, yn, and yn. Thus, F̃ �= 0 on ∂x̃. Now,
condition 1 implies F̃¬un �= 0 on ∂xk, ∂xk, ∂yk, and ∂yk, k = 1, . . . , n − 1. ∂xn
consists of 2(n− 1) (2n− 2)-dimensional boxes, each of which is either embedded in
some xk, xk, yk, or yk, 1 ≤ k ≤ n−1, or is embedded in ∂yn or ∂yn. Thus, by 1 and
2, F̃¬un �= 0 on ∂xn. Similarly, F̃¬un �= 0 on ∂xn, ∂yn, and ∂yn. Thus, condition 1
in Theorem 1.7 is satisfied. Finally, with condition 4, all the conditions of Theorem
1.7 are satisfied. The formula is thus obtained.

By constructing the box x̃ according to (2.5), we can verify uk �= 0 on xk and xk,
and vk �= 0 on yk and yk, k = 1, . . . , n−1, since uk(x, y) ≈ (xk−x̌k)+αk(xn−x̌n) �= 0
on xk and xk, and vk(x, y) ≈ yk + αkyn �= 0 on yk and yk. This needs only 4n − 4
interval evaluations. Then, we need to search only the four faces xn,xn,yn, and

yn for solutions of F̃¬un
(x, y) = 0, regardless of how large n is. The four faces xn,

xn, yn, and yn remaining to be searched are (2n − 1)-dimensional boxes. However,
exploitation of (2.3) will reduce the search for solutions of F̃¬un(x, y) = 0 on the
(2n− 1)-dimensional boxes to a one-dimensional search. We use xn as an example to
explain this.

On xn, xn = xn. We know from (2.3) that if xn is known precisely, formally

solving uk(x,y) = 0 for xk gives sharper bounds x̃k with w(x̃k) = O (‖(x− x̌,y)‖)2,
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1 ≤ k ≤ n − 1. Then, we can divide yn into smaller subintervals. For a small
subinterval y0

n of yn, we can formally solve vk(x,y) = 0 for yk to get sharper bounds

ỹk with w(ỹk) = O(max(‖(x− x̌,y)‖2, ‖y0
n‖)), 1 ≤ k ≤ n − 1. Thus, we have

reduced the search to searching the one-dimensional interval yn, much less costly
than searching a (2n− 1)-dimensional box when n is large. Furthermore, if we know
approximately where the solutions of F̃¬un

(x, y) = 0 are, we can reduce even the
cost of the one-dimensional search. To this end, we will next analyze the solutions of
F̃¬un

(x, y) = 0 on the four faces xn, xn, yn, and yn.
To expedite the search, we obtain approximate locations of the places on xn,

xn, yn, and yn where F̃¬un(x, y) = 0. To obtain these locations, we assume that

the O (‖x− x̌‖)2 terms in (2.1) and the O (‖x− x̌‖)d+1
terms in (2.2) are absent.

Proceeding as in the proof of Theorem 3.1, we plug zk − žk = −αk(zn − žn), k =
1, . . . , n− 1, into fn(z) to obtain

fn(z) =
(−1)d∆d

d!
(zn − žn)

d

as before. Thus, un(x, y) = �(fn(z)) =
{
(−1)d∆d/d!

}�((zn − žn)
d) and vn(x, y) =

�(fn(z)) =
{
(−1)d∆d/d!

}�((zn − žn)
d). Setting zn − žn = r(cos(θ) + i sin(θ)), we

obtain un(x, y) =
{
(−1)d∆d/d!

}
r cos(dθ) and vn(x, y) =

{
(−1)d∆d/d!

}
r sin(dθ), so

un(x, y) = 0 is equivalent to cos(dθ) = 0 and vn(x, y) = 0 is equivalent to sin(dθ) = 0.
If we choose xn and yn such that

w(yn)

w(xn)
= tan

( π

4d

)
, that is, w(yn) = tan

( π

4d

)
w(xn),(4.1)

then all solutions of vn(x, y) = 0, and consequently all solutions of F̃¬un(x, y) = 0,
are arranged in a known pattern on xn, xn, yn, and yn. In particular, on xn, x̃n =
xn. vn(x, y) = 0 has a unique solution ỹn = 0. Substituting these into the conditions

xk = x̌k − αk(xn − x̌n),
yk = −αkyn,

}
1 ≤ k ≤ n− 1,(4.2)

we get the unique solution of F̃¬un(x, y) = 0 with

(x̃, ỹ) = (x̌1 − α1(xn − x̌n), 0, . . . , x̌n−1 − αn−1(xn − x̌n), 0, xn, 0) .

Similarly, F̃¬un(x, y) = 0 has a unique solution on xn with

(x̃, ỹ) = (x̌1 − α1(xn − x̌n), 0, . . . , x̌n−1 − αn−1(xn − x̌n), 0, xn, 0).

On yn, ỹn = y
n
. vn(x, y) = 0 has d− 1 solutions with

x̃n = x̌n +
w(yn)

2 tan
(
mπ
d

) , m = d− 1, d− 2, . . . , 1.(4.3)

Substituting these into (4.2) gives the d− 1 solutions (x̃, ỹ) of F̃¬un
(x, y) = 0 with

(x̃, ỹ) =
(
x̌1 − α1 (x̃n − x̌n) , α1yn, . . . , x̌n−1 − αn−1 (x̃n − x̌n) ,

− αn−1yn, x̃n, yn

)
.
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✲

✻
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yn

xnxn

yn

yn
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✠

✒
�✿

Fig. 4.1. The zero structure when d is odd. Here, d = 3. vn = 0 on solid lines, and un = 0 on
dashed lines. The thick dots are the solutions of F̃¬un (x, y) = 0 on ∂x̃.

Similarly, F̃¬un(x, y) = 0 has d− 1 solutions on yn with
(x̃, ỹ) = (x̌1 − α1 (x̃n − x̌n) , . . . , x̌n−1 − αn−1 (x̃n − x̌n) ,

− αn−1yn, x̃n, yn) .

For example, Figure 4.1 gives the solutions of vn(x, y) = 0 on the four faces xn, xn,
yn, and yn when d = 3.

To use the above analysis to find approximations to the solutions of F̃¬un
= 0

on the faces we search, we need to know d; we present a heuristic for d in section 5
below.

Now, we present our algorithm. The algorithm consists of three phases:
1. the box-construction phase, where we set x̃,
2. the elimination phase, where we use interval evaluations to verify that uk �= 0
on xk and xk, and vk �= 0 on yk and yk, where 1 ≤ k ≤ n − 1, and thus
eliminate those 4n− 4 faces, and

3. the search phase, where we
(a) search xn, xn, yn, and yn to locate the solutions of F̃¬un(x, y) = 0,

(b) compute the signs of un and determinants of the Jacobi matrices of F̃¬un

at those solutions,
(c) compute the degree contributions of each of the four faces xn, xn, yn,

and yn according to Theorem 4.1, and
(d) finally sum up to get the degree.

Algorithm 1.
INPUT: An approximate solution x̌ ∈ D ⊆ R

n and a heuristically derived guess d for
the topological index of the solution to F̃ (z) = 0 near x̌. (See section 5 below.)
OUTPUT: Either “A solution is verified” or “Verification failed.” If a so-
lution is verified, then also output real bounds x ⊂ R

n, x̌ ∈ x, and imaginary bounds
y ∈ R

n, 0 ∈ y, such that a solution of F̃ (z) = 0 must lie in (x1+ iy1, . . . ,xn+ iyn) ∈
IC

n.
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Box-setting phase.
1. Compute the preconditioner of the original system, using Gaussian elimina-
tion with full pivoting.

2. Set the widths of xk and yk (see explanation below), for 1 ≤ k ≤ n− 1.
3. Set the width of xn as in (2.5).
4. Set the width of yn to be the minimum of that obtained from conditions (2.5)
and (4.1).

Elimination phase.
Do for 1 ≤ k ≤ n− 1
1. DO for xk and xk

(a) Compute the mean-value extension of uk over that face.
(b) IF 0 ∈ uk, THEN STOP and signal failure.
END DO

2. DO for yk and yk
(a) Compute the mean-value extension of vk over that face.
(b) IF 0 ∈ vk, THEN STOP and signal failure.
END DO

Search phase.
1. Set the value of s ∈ {+1,−1}.

(a) Initialize s to be +1. Initialize search lower and search upper to be false.
(See the second note below.)

(b) DO for xn and xn
i. Use mean-value extensions for uk(x,y) = 0 to solve for xk to get

sharper bounds x̃k with width O (‖(x− x̌,y)‖)2, 1 ≤ k ≤ n − 1,
and thus to get a subface x0

n (or x
0
n) of xn (or xn.).

ii. IF x̃k ∩ xk = ∅, THEN CYCLE.
iii. Compute the mean-value extension un over x

0
n (or x

0
n).

iv. IF un contains 0, THEN
A. set search lower (or search upper) to be true
B. CYCLE.
END IF

v. IF un does not contain 0, THEN set s = −sgn(un).
END DO

(c) IF un does not contain 0 on both xn and xn,
THEN set s to be the opposite sign to the sign of un on xn, and
IF un has different signs on xn and xn,
THEN set search lower to be true.

2. For xn (or xn), IF search lower (or search upper) is true,
THEN apply Algorithm 2 with xn (or xn) and 0 as input, to compute the
degree contribution of xn (or xn).

3. For yn (or yn)

(a) Use (4.3) to compute the x̃mn , m = d − 1, d − 2, . . . , 1, x̃d−1
n < x̃d−2

n <
· · · < x̃1

n, corresponding to the d− 1 approximate solutions of F̃¬un = 0
on yn.

(b) Divide xn into d− 1 parts xmn , m = 1, . . . , d− 1, as follows:
x1
n = [xn, (x̃

d−1
n + x̃d−2

n )/2],

xmn = [(x̃
d−(m−1)
n + x̃d−mn )/2, (x̃d−mn + x̃

d−(m+1)
n )/2]

for m = 2, . . . , d− 2, and xd−1
n = [(x̃2

n + x̃1
n)/2, xn].

(c) DO for m = 1, . . . , d− 1
i. Set a subface ymn of yn (or y

m
n of yn) by replacing xn by x

m
n .
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ii. Apply Algorithm 3 with ymn and x̃mn as inputs, to compute the degree
contribution of ymn (or y

m
n ).

END DO
(d) Add the degree contributions in the last step to get the degree contri-

bution of yn (or yn).
4. Add the degree contributions of xn, xn, yn, and yn to get the overall degree.
Notes for Algorithm 1.
1. In step 3 of the box-setting phase, the width w(xn) of xn depends on the
accuracy of the approximate solution x̌ of the system F (x) = 0: w(xn) should
be much larger than |x̌k − x∗k|, but also should be small enough to make a
quadratic model accurate over the box.

2. We may set s to minimize the amount of work required to evaluate the sum
in Theorem 4.1. In particular, if we know sgn(un) = σ on a large number of
faces, then setting s = −σ will eliminate the need to search those faces.

Algorithm 2.
INPUT: xn (or xn) and y from Algorithm 1.
OUTPUT: The contribution of xn (or xn) to the degree in Algorithm 1.

1. (a) Use mean-value extensions for uk(x,y) = 0 to solve for xk to get sharper

bounds x̃k with width O (‖(x− x̌,y)‖)2, 1 ≤ k ≤ n− 1.
(b) IF x̃k ∩ xk = ∅,

THEN RETURN the degree contribution of that face as 0.
(c) Update xk.

2. (a) Compute the mean-value extension un over that face.
(b) IF s× sgn(un) < 0,

THEN RETURN the degree contribution of that face as 0.
3. Construct a small subinterval y0

n of yn centered at y̌n.
4. (Steps 4 to 9 are identical to steps 1(d) to 1(i), respectively, of the search phase
in the algorithm in [14]. These steps are repeated here for completeness.)
(a) Use mean-value extensions for vk(x,y) = 0 to solve for yk to get sharper

bounds ỹk with width O(max(‖(x− x̌,y)‖2, ‖y0
n‖)), 1 ≤ k ≤ n−1, thus

getting a subface x0
n (or x

0
n) of xn (or xn.)

(b) IF ỹk ∩ yk = ∅,
THEN STOP and signal failure.

5. (a) Set up an interval Newton method for F̃¬un
to verify existence and

uniqueness of a zero in the subface x0
n (or x

0
n).

(b) IF the zero cannot be verified,
THEN STOP and signal failure.

6. Inflate y0
n as much as possible subject to verification of existence and unique-

ness of the zero of F̃¬un over the corresponding subface, and thus get a subin-
terval y1

n of yn.
7. In this step, we verify that F̃¬un = 0 has no solutions when yn ∈ yn \ y1

n.
yn \y1

n has two separate parts; we denote the lower part by y
l
n and the upper

part by yun. We present the processing of only the lower part. The upper
part can be processed similarly.
(a) DO

i. Use mean-value extensions for vk(x,y) = 0 to solve for yk to get
sharper bounds for yk, 1 ≤ k ≤ n− 1, and thus to get a subface of
xn (or xn).

ii. Compute the mean-value extensions F̃¬un over the subface obtained
in the last step.
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iii. IF 0 ∈ F̃¬un
, THEN

A. bisect yln, update the lower part as a new y
l
n;

B. CYCLE.
END IF
IF 0 �∈ F̃¬un , THEN EXIT the loop.

END DO
(b) DO

i. IF y1
n
≤ yln, THEN EXIT the loop.

ii. yln ←− [yln, yln +w
(
yln
)
].

iii. Use mean-value extensions for vk(x,y) = 0 to solve for yk to get
sharper bounds for yk, 1 ≤ k ≤ n− 1, and thus to get a subface of
xn (or xn).

iv. Compute the mean-value extensions F̃¬un over the subface obtained
in the last step.

v. IF 0 �∈ F̃¬un
, THEN CYCLE.

IF 0 ∈ F̃¬un
, THEN

A. yln ←− [yln,mid(yln)];
B. CYCLE.
END IF

END DO
8. (a) Compute the mean-value extension of un over x

0
n (or x

0
n).

(b) IF un < 0,
THEN RETURN the degree contribution of that face as 0.

9. (a) Compute | ∂F̃¬un

∂x1y1...xn−1yn−1yn
(x0
n)| (or | ∂F̃¬un

∂x1y1...xn−1yn−1yn
(x0
n)|).

(b) IF 0 ∈ | ∂F̃¬un

∂x1y1...xn−1yn−1yn
(x0
n)| (or 0 ∈ | ∂F̃¬un

∂x1y1...xn−1yn−1yn
(x0
n)|),

THEN STOP and signal failure.
10. Apply Theorem 4.1 to compute the degree contribution of xn or xn.

Algorithm 3.
INPUT: yn (or yn) and x.
OUTPUT: The contribution of yn (or yn) to the degree in Algorithm 1.

1. (a) Use mean-value extensions for vk(x,y) = 0 to solve for yk to get sharper

bounds ỹk with width O (‖(x− x̌,y)‖)2, 1 ≤ k ≤ n− 1.
(b) IF ỹk ∩ yk = ∅,

THEN RETURN the degree contribution of that face as 0.
(c) Update yk.

2. (a) Compute the mean-value extension un over that face.
(b) IF s× sgn(un) < 0,

THEN RETURN the degree contribution of that face as 0.
3. Construct a small subinterval x0

n of xn which is centered at x̌n.
4. (Steps 4 to 9 are identical to steps 2(d) to 2(i), respectively, of the search
phase in the algorithm in [14], but are included here for completeness.) Same
as step 4 of Algorithm 2, except change yk to xk, ỹk to x̃k, yk to xk, x

0
n to

y0
n, x

0
n to y

0
n, xn to yn, and xn to yn.

5. Same as step 5 of Algorithm 2, except change x0
n to y

0
n and x

0
n to y

0
n.

6. Same as step 6 of Algorithm 2, except change y0
n to x

0
n, y

1
n to x

1
n, and yn

to xn.
7. Same as step 7 of Algorithm 2, except change yn \ y1

n to xn \ x1
n.



HIGHER DEGREE EXISTENCE VERIFICATION 2369

8. Same as step 8 of Algorithm 2, except change x0
n to y

0
n and x

0
n to y

0
n.

9. Same as step 9 of Algorithm 2, except change | ∂F̃¬un

∂x1y1...xn−1yn−1yn
(x0
n)| to

| ∂F̃¬un

∂x1y1...xn−1yn−1xn
(y0
n)| and | ∂F̃¬un

∂x1y1...xn−1yn−1yn
(x0
n)| to | ∂F̃¬un

∂x1y1...xn−1yn−1xn
(y0
n)|.

10. Same as step 10 of Algorithm 2.
Notes for Algorithms 2 and 3.
1. Algorithms 2 and 3 are identical to steps 1 and 2 of the search phase of the
algorithm in [14], except, in Algorithm 2, y̌n can be any interior point of
yn, while y̌n is assumed to equal zero in step 1 of the search phase in the
algorithm in [14]. Similarly, in Algorithm 3, x̌n can be any interior point of
xn, whereas x̌n is assumed to equal the center of xn in step 2 of the search
phase in the algorithm in [14].

2. In the overall algorithm, Algorithm 1, the actual inputs are ymn and x̃mn when
Algorithm 3 is applied. However, for notational simplicity, we use yn and x̌n
as inputs in the presentation of Algorithm 3.

In a certain sense, the computational complexity of Algorithms 1, 2, and 3 is
O(n3). (See [14] for detailed analysis.) Thus, the computational complexity of the
overall algorithm, Algorithm 1, is O(n3). This is the best possible order, since com-
puting preconditioners of the original system and the system F̃¬un

is necessary and
computing each preconditioner is of order O(n3).

5. A heuristic for the degree. The algorithms in section 4 require a value for
d to locate the approximate positions of solutions of F̃¬un

= 0 on the faces we search.
Here, we present a practical heuristic for the value of d.

Proceeding as in the proof of Theorem 3.1, we assume that the O (‖x− x̌‖)2
terms in (2.1) and the O (‖x− x̌‖)d+1

terms in (2.2) are absent, and we substitute
xk− x̌k = −αk(xn− x̌n), k = 1, . . . , n−1, into fn to enable us to define the univariate
function

g(xn − x̌n) =
(−1)d∆d

d!
(xn − x̌n)

d =
∆d
d!
(x̌n − xn)

d.(5.1)

Setting

K(r, xn − x̌n) ≡ g(xn − x̌n)

(xn − x̌n)r
=
∆d
d!
(x̌n − xn)

d−r,

it is clear that K(d, xn − x̌n) = ∆d/d! is independent of xn, while K(r, xn − x̌n)
depends on xn for any other r value. Letting δ be a heuristically chosen constant, we
have the following ratios:

K(d, δ(xn − x̌n))

K(d, xn − x̌n)
=

∆d

d!
∆d

d!

= 1, while

R(r) =
K(r, δ(xn − x̌n))

K(r, xn − x̌n)
=

∆d

d! (δ(x̌n − xn))
d−r

∆d

d! (x̌n − xn)d−r
= δd−r

for any other r value. The first ratio R(d) always equals 1, but R(r), r �= d, depends
on the δ value. We can choose δ to distinguish d from other r values. For example, if
we choose δ = 100, then R(r) is not smaller than 100 when r is smaller than d, and
is not larger than 0.01 when r is larger than d. Both values are sufficiently different
from 1. We can also vary the δ value to check our detection of d. Thus, R(r) is a
good heuristic to determine the value of d.



2370 R. BAKER KEARFOTT AND JIANWEI DIAN

The above discussion is based on the assumptions in section 2. However, unless the
first n−1 components of F are exactly linear and the last component is a homogeneous
degree-d polynomial of n variables, those assumptions are only approximately true. In
practice, if g(xn− x̌n) ≈ ∆d

d! (x̌n−xn)
d is an accurate approximation, then (x̌n−xn)

d

should dominate the value of g(xn − x̌n). Actually,

g(xn − x̌n) =

d−1∑
k=1

ck∆k(xn − x̌n)
k + cd∆d(xn − x̌n)

d +

∞∑
k=d+1

ck∆k(xn − x̌n)
k,

where, approximately, ∆1 = · · · = ∆d−1 = 0, ∆d �= 0. Thus, xn − x̌n and δ(xn − x̌n)

should not be too small, since
∑d−1
k=1 ck∆k(xn− x̌n)

k could dominate otherwise. They
should not be too big either, since

∑∞
k=d+1 ck∆k(xn− x̌n)

k could dominate otherwise.
If ∆k ≈ 0, k = 1, . . . , d−1, are quite accurate, then we can choose xn− x̌n very small,
so both

∑d−1
k=1 ck∆k(xn − x̌n)

k and
∑∞
k=d+1 ck∆k(xn − x̌n)

k can be ignored in the
detection of d.

The choice of xn − x̌n is independent of the settings of xk, k = 1, . . . , n, since we
only want to know what d is at that stage.

An alternative choice for detecting d is to compute the values of ∆k, k = 1, 2, . . . ,
by interval evaluations until we get some ∆k0 that is sufficiently different from 0.
Then, we can decide d = k0. The obvious disadvantage of this method is that it
is too expensive for just detecting the value of d, since computation of ∆k involves
computations of all kth-order derivatives. Furthermore, even if we actually evaluate
∆k, k = 1, 2, . . ., spending much time in the process, we still can not detect the value
of d if the magnitudes of ∆k, k = 1, . . . , d − 1, d, are not sufficiently different either
due to the problem itself or due to the range overestimation in interval computations.

6. Numerical results. In this section, we present numerical results for the
algorithm in section 4.

The testing described in this section is not meant to be exhaustive, but is meant to
illustrate that the algorithms are programmable and do succeed for a variety of prob-
lems, as well as to illustrate that the technique can be practical for higher-dimensional
problems. We emphasize that, unless there are programming blunders, the implemen-
tation can never give an incorrect result. (That is, the degree can never be incorrectly
verified to be d.) The only ways that the algorithms can fail are by either asserting
that they cannot verify that the degree is d or by running out of computer resources
(typically, CPU time limits).

6.1. Test problems. Our test problems are represented in Examples 1 through
5 below. This set includes both simple problems, such as Example 1, and slightly
more realistic problems, such as Example 4. There are both lower degree problems,
like Example 2, and slightly higher degree problems, like Example 5.

Consistent with the analysis and algorithms in this paper, the null-space of the
Jacobi matrix at the solution has dimension 1 in all of these examples. (We discuss
the higher-order rank defect case in [12].)

Examples 2, 3, and 4 are variable-dimension examples coming from finite differ-
ence discretization of a bifurcation problem. In choosing these three problems, we
looked for a simple way to vary both the actual topological index at the solution and
the dimension of the problem. Actual verification procedures for differential equation
models should differ somewhat from what is seen here, since the discretization error
should also be taken into account, to be able to assert properties about the solutions
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to the differential equation itself, rather than just properties about solutions of the
discretization.

Although Examples 2, 3, and 4 have a special structure (tridiagonal systems), this
actual structure was not used in the present algorithms; that is, dense linear algebra
was used throughout. In this sense, the observed dependence of computational time on
dimension is representative, although the precise form of the nonlinearity conceivably
could make a difference.

Example 1.

f1(x1, x2) = x2
1 − x2,

f2(x1, x2) = x2
1 + x2.

Example 2 (the same as Example 3 from [14], motivated from considerations
in [7]). Set F (x) = H(x, t) = (1 − t)(Ax − x2) − tx, where A ∈ R

n×n is the matrix
corresponding to central difference discretization of the boundary value problem −u′′ =
0, u(0) = u(1) = 0, and x2 = (x2

1, . . . , x
2
n)
T . t was chosen to be equal to t1 =

λ1/(1 + λ1), where λ1 is the largest eigenvalue of A.
In Example 2, if we change the exponent of x from 2 to 3 and 4, then we get

Examples 3 and 4.
Example 3. This example is identical to Example 2, except that we set F (x) =

H(x, t) = (1− t)(Ax− x3)− tx.
Example 4. This example is identical to Example 2, except that we set F (x) =

H(x, t) = (1− t)(Ax− x4)− tx.
We tested with n = 5, 10, 20, 40, 80, and 160 for Examples 2, 3, and 4.
Example 5.

f1(x1, x2, x3) = x5
1 + x2 + x6

2 + 3x3,

f2(x1, x2, x3) = 4x
5
1 + 5x2 − 4x6

2 + 5x3 − x6
3,

f3(x1, x2, x3) = 7x
5
1 + 8x2 − 100x7

2 + 10x3 + 50x
6
3.

For each test problem, we used (0, 0, . . . , 0), the exact solution to F (x) = 0, as the
approximate solution to the problem F (x) = 0. For each problem except Example 4,
we set the widths w(xk) and w(yk) to 10

−2 for 1 ≤ k ≤ n − 1; then the algorithm
automatically computed w(xn) and w(yn). For Example 4, we set the widths w(xk)
and w(yk) to 10

−1, instead of 10−2, for 1 ≤ k ≤ n− 1. The reason for this setting for
Example 4 is that the system F (x) is flatter near the singular solution, since the degree
is higher. Because of the flatness, the condition number of the Jacobian matrix of
the system F̃¬un is larger. Then, because of this ill-conditioning, the interval Newton
method to verify the unique solutions of F̃¬un in step 5 of Algorithm 2 and step 5 of
Algorithm 3 is less efficient: More iterations can be expected. We tried 10−2 first, but
the interval Newton method was not able to verify the solutions when the maximum
allowed number of iterations was set to be the same as for Examples 2 and 3.

6.2. Test environment. We programmed the algorithms in section 4 in the
Fortran 90 environment developed and described in [10, 11]. Similarly, the test func-
tions were programmed using the same Fortran 90 system, which generated internal
symbolic representations of the functions. In the actual tests, generic routines then
interpreted the internal representations to obtain both floating point and interval
values.

The Sun Fortran 95 compiler, version 6.0, was used on a Sparc Ultra-1 model 140
(with a 140 megaHertz clock) with optimization level 0 (that is, with no optimization).
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Table 6.1
Numerical results.

Heuristic Verified
Problem n degree Success degree CPU time Time ratio

Example 1 2 2 Yes 2 0.13 -

Example 2 5 2 Yes 2 1.13 -
Example 2 10 2 Yes 2 5.99 5.30
Example 2 20 2 Yes 2 38.40 6.41
Example 2 40 2 Yes 2 273.61 7.13
Example 2 80 2 Yes 2 2198.14 8.03
Example 2 160 2 Yes 2 13033.22 5.93

Example 3 5 3 Yes 3 39.27 -
Example 3 10 3 Yes 3 10.31 0.26
Example 3 20 3 Yes 3 74.32 7.21
Example 3 40 3 Yes 3 481.23 6.48
Example 3 80 3 Yes 3 3805.06 7.91
Example 3 160 3 Yes 3 33944.20 8.92

Example 4 5 4 Yes 4 23.02 -
Example 4 10 4 Yes 4 154.00 6.69
Example 4 20 4 Yes 4 115.55 0.75
Example 4 40 4 Yes 4 3867.51 33.47
Example 4 80 4 Yes 4 6671.20 1.72
Example 4 160 4 - - - -

Example 5 3 5 Yes 5 16.43 -

Execution times were measured with the Port library routine ETIME. All times are
given in CPU seconds.

6.3. Test results. We present the numerical results in Table 6.1. The column
labels of the table are as follows:

Problem: names of the problems identified in section 6.1,
n: number of independent variables,
Heuristic degree: the heuristic value of the degree computed by the heuristic

described in section 5,
Success: whether the algorithm was successful,
Verified degree: topological degree verified by the algorithm,
CPU time: CPU time in seconds of the algorithm,
Time ratio: the ratio of two successive CPU times. This column is only meaningful

for Examples 2, 3, and 4.
The algorithm, that is, existence verification, succeeded for all problems except

Example 4 when n = 160. For that problem, we aborted the program after it ran for
36 hours.

We can see from the CPU time ratios that the algorithm is approximately of
order O(n3) for Examples 2 and 3. However, as we pointed out at the end of sec-
tion 6.1, when the degree is higher, the system F (x) is flatter near the singular
solution. Because of this ill-conditioning, the interval Newton method to verify the
unique solutions of F̃¬un in step 5 of Algorithm 2 and step 5 of Algorithm 3 will
be less efficient: More iterations should be expected, and more irregularity in timing
could occur. We can see this from the timing results of Example 4. The experimental
results are consistent with our expectations.

In certain preliminary experiments, the heuristic failed to compute the correct
value of d. The subsequent verification then returned fairly rapidly with “failure to
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verify” (generally due to failure to verify that there were no solutions to uk = 0 on xk
or xk or to vk = 0 on yk or yk). The heuristic is the weakest part of the verification
process.

Although we arranged x̌ to be exactly the solution x∗, this should not be crucial
to the functioning of the algorithm, as long as the box center x̌ is a sufficiently
accurate approximation to an actual root x∗ to allow us to choose a box that is large
in relationship to this accuracy but small enough to satisfy our other criteria.

Finally, we expect that additional tuning (selection of initial box size, maximum
number of inner iterations in the interval Gauss–Seidel method, etc.) could signif-
icantly change timing and success for particular problems. The actual times could
improve significantly with a more efficient interval arithmetic environment than that
of [10, 11], such as direct use of Sun’s interval data type in Fortran.

Acknowledgments. We wish to thank both referees for their careful reading
and their valuable suggestions to make the exposition more lucid.
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Abstract. Several a posteriori error estimators are introduced and analyzed for a discontin-
uous Galerkin formulation of a model second-order elliptic problem. In addition to residual-type
estimators, we introduce some estimators that are couched in the ideas and techniques of domain
decomposition. Results of numerical experiments are presented.
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1. Introduction. One of the important objectives of the numerical approxi-
mation of differential equations has been to obtain approximations whose error, as
measured in some norm, falls in a given range, preferably as narrow as possible. In
the finite element method, and specifically for elliptic boundary value problems, such
a goal became possible with the advent of a posteriori estimates pioneered by Babuška
and Rheinboldt [4, 5]. Acting on an approximation uh calculated on a given mesh,
such a posteriori estimates give lower and upper bounds on the error expressed in
terms of contributions from individual triangles and interfaces. This makes it possi-
ble to calculate a new mesh by means of refinement and coarsening. For a survey of
the vast amount of work spurred by the above two references, we refer the reader to
the book by Verfürth [18]. More recently, attention has increasingly focused on the
important issue of convergence, whereby a given tolerance is achieved after a finite
number of refinement steps; cf., e.g., [10, 17, 15].

Our aim is to present a posteriori error estimates in the energy norm for a discon-
tinuous Galerkin formulation of a simple second-order elliptic problem. In contrast to
standard Galerkin methods, such work is still very rare. Indeed, we are aware only of
[8] as taking the a posteriori approach; also, only the estimator (3.1) is treated, and
with a different proof which relies on a Helmholtz-type decomposition of the gradient
of the error, thus following a technique first used in the context of a posteriori esti-
mates for nonconforming methods. See also [16] for a posteriori estimates in the L2

norm. Recall that in discontinuous Galerkin methods the trial and test spaces consist
of piecewise totally discontinuous polynomials. That is, no continuity constraints are
explicitly imposed on the trial and test functions across the element interfaces. As a
consequence, weak formulations must include jump terms across interfaces, and typi-
cally penalty terms are (artificially) added to control the jump terms. Several variants
of this approach exist; cf., e.g., [2, 9, 19]. For a nice survey of various discontinuous
Galerkin methods, see [3].
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Discontinuous Galerkin methods have several advantages over other types of finite
element methods. For example, the trial and test spaces are very easy to construct;
they can naturally handle inhomogeneous boundary conditions and curved bound-
aries; and they allow the use of highly nonuniform and unstructured meshes. In
addition, the fact that the mass matrices are block diagonal is an attractive feature
in the context of time-dependent problems, especially if explicit time discretizations
are used.

In this paper, we will concentrate on the construction and analysis of error esti-
mators, postponing to a subsequent work the study of other important issues such as
convergence of the adaptive scheme. In section 3 we present residual-type estimators
whose form and analysis follow traditional lines, with the exception of some technical
issues caused by the discontinuous nature of the finite element spaces.

In section 4 we present estimators requiring the solution of local problems. In a
departure from more traditional techniques, ours flow from the ideas and techniques
of domain decomposition, and specifically those expounded in [11]. In a nutshell, we
view the computed solution uh corresponding to a mesh Th as a “coarse-mesh” approx-
imation to a more accurate approximation u′h to u, with an eye towards using u

′
h−uh

to estimate u− uh. Obviously computing u′h would prove too costly; instead, a good
approximation thereof is obtained by adding to uh the solutions of local problems, the
supports of these local contributions playing the role of the subdomains. Indeed, our
technique offers the tightest coupling yet known between a posteriori error estimation
and domain decomposition, to the extent that the matrices involved in the solution
of the local problems consist of the diagonal blocks of the global stiffness matrix that
correspond to the individual triangles. A somewhat similar idea is found in [20] in the
context of mortar finite elements. There are, however, substantial differences between
the two approaches.

In section 5, we present results of numerical experiments focusing on the behavior
of the effectivity indices as well as other characteristics of the various estimators.

2. Preliminaries. Let Ω ⊂ Rd, d = 1, 2, 3, be a bounded domain. We consider
the following model problem:

−∆u = f in Ω,(2.1)

u = 0 on ∂Ω.(2.2)

The treatment of second-order elliptic problems with more general coefficients and
boundary conditions will be contained in a parallel work [13].

Throughout this paper, the standard space, norm, and inner product notation
are adopted. Their definitions can be found in [1]. Also, c is used to denote a generic
positive mesh-independent constant.

The discontinuous Galerkin method considered in this paper for discretizing prob-
lem (2.1)–(2.2) is the one proposed in [6] and [7, 12], where the biharmonic and Stokes
problems, respectively, were considered.

Let Th = {Ki : i = 1, 2, . . . ,mh} be a family of star-like partitions (triangula-
tions) of the domain Ω parametrized by 0 < h ≤ 1. We assume the following:

(i) The elements of Th satisfy the minimal angle condition. Specifically, there is
a constant θ0 > 0 such that hK/ρK ≥ θ0 ∀K ∈ Th, where hK and ρK denote,
respectively, the diameters of the circumscribed and inscribed balls to K.

(ii) Th is locally quasi-uniform; that is, if two elements Kj and K� are adjacent
in the sense that µd−1(∂Kj ∩ ∂K�) > 0, then diam(Kj) ≈ diam(K�).
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Here µd−1 denotes the (d − 1)-dimensional Lebesgue measure. On Th we define
the “energy space” Eh = ΠK∈ThH

2(K) ⊂ L2(Ω). For r ≥ 2, we define the finite
element space V rh ⊂ Eh by V rh = ΠK∈ThPr−1(K), where Pr−1(K) denotes the space
of polynomials of total degree r − 1.

Given the discontinuous nature of the piecewise polynomial functions, we define
EI and EB to be the set of all interior and boundary edges (faces in the case d = 3),
respectively:

EI= {e = ∂Kj ∩ ∂K�, µd−1(∂Kj ∩ ∂K�) > 0},
EB= {e = ∂K ∩ ∂Ω, µd−1(∂K ∩ ∂Ω) > 0}.

We also set E = EI ∪EB . We note that elements of EB may be curved. Also, if e ∈ EI ,
then e = ∂K+ ∩ ∂K− for K+,K− ∈ Th. We may designate as K+ the triangle with
the higher of the two indices.

Note that elements of the energy space Eh are not functions in the proper sense,
and care must be applied in defining their values on E . This is done in the sense of
trace.

In order to construct a weak formulation for the problem (2.1)–(2.2), we introduce
the bilinear form aγh : Eh × Eh → R:

aγh(u, v) =
∑
K∈Th

(∇u,∇v)K −
∑
e∈EI

[
〈{∂nu} , [v]〉e + 〈{∂nv} , [u]〉e − γh−1

e 〈[u], [v]〉e
]

−
∑
e∈EB

[
〈∂nu, v〉e + 〈∂nv, u〉e − γh−1

e 〈u, v〉e
]
,(2.3)

where he = diam(e) and

(u, v)D =

∫
D

u · v dx,

〈u, v〉Γ =
∫

Γ

uv ds, edge/surface integrals, |v|Γ = 〈v, v〉1/2Γ ,

[v] |e = v+|e − v−|e, v+ = v|K+ , v− = v|K− , e ∈ EI ,
{∂nv}

∣∣
e
=
∂v+

∂n+

∣∣∣∣
e

,
[
∂nv

]∣∣
e
=
∂v+

∂n+

∣∣∣∣
e

− ∂v
−

∂n+

∣∣∣∣
e

, e ∈ EI ,

∂nv
∣∣
e
=
∂v+

∂n+

∣∣∣∣
e

, e ∈ EB .

Some further comments on the nature of the form aγh are in order:
(a) The third and sixth terms have been added to symmetrize aγh. Note that the

former is zero for smooth u, while the latter is a known quantity since u
∣∣
∂Ω

is given. The a priori estimates remain valid if these terms are removed.
(b) γ is a positive (penalty) parameter that must be chosen appropriately in order

for aγh to be coercive.
Remark 2.1. There is an alternative formulation due to Arnold [2], which is

obtained by setting {∂nv}
∣∣
e
= 1

2 (
∂v+

∂n+ +
∂v−
∂n+ )|e. The results presented in this paper

should be valid for Arnold’s formulation as well.
The form aγh(·, ·) is consistent with the Laplacian in the sense that if u ∈ H2(Ω),

then

aγh(u, v) = −(∆u, v)−
∑
e∈EB

〈
u, ∂nv − γh−1

e v
〉
e
∀v ∈ Eh.(2.4)
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Thus, we define the discontinuous Galerkin approximation of u to be the element uγh
in V rh that satisfies

aγh(u
γ
h, v) = F (v) := (f, v) ∀v ∈ V rh .(2.5)

The existence of a unique uγh follows from Lemma 2.1.
We define the “energy” norm on Eh by

‖v‖1,h =
( ∑
K∈Th

||∇v||2K +
∑
e∈EI

[
he |{∂nv}|2e + h−1

e |[v]|2e
]

+
∑
e∈EB

[
he |∂nv|2e + h−1

e |v|2e
])1/2

.

Concerning the continuity and coercivity of the form aγh, we have the following
result (cf. [7]).

Lemma 2.1. (i)

|aγh(u, v)| ≤ (1 + γ)‖u‖1,h‖v‖1,h ∀u, v ∈ Eh.(2.6)

(ii) There exist positive constants γ0 and ca such that for γ ≥ γ0
aγh(v, v) ≥ ca‖v‖21,h ∀v ∈ V rh .(2.7)

Here γ0 depends only on r and the (aspect) ratios hK/ρK of the elements. In
view of condition (i) on the mesh, γ0 can grow only as a function of r. Numerical
experiments reveal that γ0 ≈ 5 for r = 2 and γ0 ≈ 15 for r = 3.

The proofs of the above rely on the following trace and inverse inequalities. Let
D be a regular and starlike domain, and let µ = diam (D). Then

|v|2∂D ≤ ctr(µ−1‖v‖2D + µ‖∇v‖2D) ∀v ∈ H1(D).(2.8)

Let | · |j,D denote the seminorm of Hj(D). Then

|v|j,D ≤ cinvµi−j |v|i,D ∀v ∈ Pr, 0 ≤ i ≤ j ≤ 2,(2.9)

the constant cinv in (2.9) depending only on r.
We shall assume that the following approximation property holds: Let 0 ≤ m ≤ r.

Then there exists a constant c > 0, independent of Th, such that for any u ∈ Hm(Ω)
and K ∈ Th there exists χ ∈ Pr−1(K) satisfying

|u− χ|j,K ≤ chm−jK |u|m,K , 0 ≤ j ≤ m.(2.10)

It can be shown that the following error estimates hold (cf. [7]).
Theorem 2.1. Let u and uγh be the solutions of (2.1)–(2.2) and (2.5), respectively,

and suppose that u ∈ Hr(Ω)∩H1
0 (Ω) with r ≥ 2. Then there exists a positive constant

c, which is independent of h and u, such that

‖u− uγh‖1,h ≤ c
( ∑
K∈Th

h
2(r−1)
K |u|2r,K

)1/2

,(2.11)

‖u− uγh‖ ≤ chr|u|r,Ω.(2.12)
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2.1. An approximation result. For our first residual-type a posteriori esti-
mate we will need to see how well an element of V rh can be approximated by elements

of
0

V rh = V
r
h ∩H1

0 (Ω). The result, Theorem 2.2 below, can also be found in [14]. The
proof we give here is constructive and differs entirely from the one given in [14]. We
also consider separately in Theorem 2.3 the case when the mesh is nonconforming,
i.e., is characterized by the presence of hanging nodes.

Lemma 2.2. Given N real numbers {α1, . . . , αN} let β = 1
N

∑N
j=1 αj. Then,

N∑
j=1

|αj − β|2 ≤ C
N−1∑
j=1

|αj+1 − αj |2,(2.13)

where C depends only on N .

Proof. For any j, the Cauchy–Schwarz inequality gives

|αj − β|2 = 1

N2

∣∣∣∣ N∑
i=1

(αj − αi)
∣∣∣∣2 ≤ N − 1N2

N∑
i=1

|αj − αi|2.

Summing over j, we obtain
∑N
j=1 |αj − β|2 ≤ 2(N−1)

N

∑
j>i |αj − αi|2. The required

result now follows, upon writing αj−αi =
∑j−1
k=i(αk+1−αk) and using the arithmetic-

geometric mean inequality.

Theorem 2.2. Let Th be a conforming mesh consisting of triangles when d = 2,
and tetrahedra when d = 3. Then for any vh ∈ V rh there exists χ ∈

0

V rh satisfying

∑
K∈Th

‖∇(vh − χ)‖2K ≤ C
(∑
e∈EI

h−1
e |[vh]|2e +

∑
e∈EB

h−1
e |vh|2e

)
(2.14)

for some constant C independent of h and vh but which may depend on the constant
θ0 in assumption (i) on the mesh.

Proof. The main argument is quite natural. Given vh ∈ V rh , we construct a func-
tion χ ∈

0

V rh as follows: At every node of the mesh Th corresponding to a Lagrangian-
type degree of freedom for

0

V rh , the value of χ is set to the average of the values of vh
at that node.

For each K ∈ Th let NK = {x(j)
K , j = 1, . . . ,m} be the Lagrange nodes (points)

of K and {φ(j)
K , j = 1, . . . ,m} the corresponding (local) basis functions satisfying

φ
(j)
K (x

(i)
K ) = δij . Set N = ∪K∈ThNK . We view N as the union of three disjoint

classes:

Ni = {ν ∈ N : ν is interior to some element},
Nb = {ν ∈ N : ν ∈ e ∈ EB},
Nv = N \ (Ni ∪Nb).

For each ν ∈ N , let ων = {K ∈ Th| ν ∈ K} and denote its cardinality by |ων |. If
ν ∈ Ni, then |ων | = 1. On the other hand if ν ∈ Nb ∪ Nv, then |ων | is bounded by a
constant depending only on the constant θ0.
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Now let
0

N be the collection of distinct Lagrange nodes ν needed to construct a

function χ ∈
0

V rh . To each node ν ∈
0

N we associate the basis function φ(ν) given by

suppφ(ν) =
⋃
K∈ων

K, φ(ν)
∣∣
K
= φ

(j)
K , x

(j)
K = ν.

We make it a point to include the boundary nodes Nb in
0

N even though this is not

necessary in view of the vanishing on ∂Ω of the functions in
0

V rh . We then can state

the following characterization:
0

N ⊆ N and the mesh Th is conforming if and only if
0

N = N .
Now, given vh ∈ V rh , written vh =

∑
K∈Th

∑m
j=1 α

(j)
K φ

(j)
K , we define the function

χ ∈
0

V rh by (note that
0

N = N since the mesh is conforming)

χ =
∑
ν∈

0
N

β(ν)φ(ν), where β(ν) =

{
0 if ν ∈ Nb,

1
|ων |

∑
x
(j)
K =ν

α
(j)
K , if ν ∈

0

N \ Nb.
(2.15)

Now set β
(j)
K = β(ν) whenever x

(j)
K = ν.

A simple scaling argument shows that ‖∇φ(j)
K ‖2K ≤ chd−2

K . Hence

∑
K∈Th

‖∇(vh − χ)‖2K ≤ cm
∑
K∈Th

hd−2
K

m∑
j=1

∣∣α(j)
K − β(j)

K

∣∣2
≤ c

∑
ν∈N

hd−2
ν

∑
x
(j)
K =ν

∣∣α(j)
K − β(ν)

∣∣2 (
hν = max

K∈ων

hK

)
= c

∑
ν∈Nv

hd−2
ν

∑
x
(j)
K =ν

∣∣α(j)
K − β(ν)

∣∣2 + c ∑
ν∈Nb

hd−2
ν

∑
x
(j)
K =ν

∣∣α(j)
K |2.(2.16)

Note that there are no contributions from Ni. We now temporarily focus on the case
d = 2. For ν ∈ Nv, we enumerate the elements of ων as {K1, . . . ,K|ων |} so that any
consecutive pair Ki,Ki+1 in that list share an edge. Then from Lemma 2.2, with
some constant c depending only on |ων | and thus on θ0, we have

∑
x
(j)
K =ν

∣∣∣α(j)
K − β(ν)

∣∣∣2 ≤ c |ων |−1∑
i=1

∣∣∣α(ji)
Ki
− α(ji+1)

Ki+1

∣∣∣2 .(2.17)

For d = 3, it may not be possible to enumerate ων in such a way. However, by allowing
some repetitions of its elements, we can write ων = {K�1 , . . . ,K�n(ν)

} for some n(ν),
so that in this case also K�i and K�i+1 share a face or an edge. Having done so, by
applying Lemma 2.2 to the list obtained by removing all repetitions of elements of ων
and then using the arithmetic-geometric mean inequality, we obtain

∑
x
(j)
K =ν

∣∣∣α(j)
K − β(ν)

∣∣∣2 ≤ c n(ν)−1∑
i=1

∣∣∣α(j�i )

K�i
− α(j�i+1

)

K�i+1

∣∣∣2 .(2.18)
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Using (2.17) if d = 2, or (2.18) if d = 3, from (2.16) we have∑
K∈Th

‖∇(vh − χ)‖2K ≤ c
∑
e∈EI

∑
ν∈e
hd−2
ν

∣∣∣α(j+ν )

K+ − α(j−ν )

K−

∣∣∣2(2.19)

+ c
∑
ν∈Nb

∑
x
(j)
K =ν

hd−2
ν

∣∣∣α(j)
K

∣∣∣2 ,
with x

(j+ν )

K+ = x
(j−ν )

K− = ν. Note that α
(j+ν )

K+ − α(j−ν )

K− is the jump in the values of vh at ν
across e. Also, since the mesh Th is locally quasi-uniform, it follows that∑

ν∈e
hd−2
ν

∣∣∣α(j+ν )

K+ − α(j−ν )

K−

∣∣∣2 ≤ chd−2
e |[vh]|2L∞(e)(2.20)

≤ ch−1
e |[vh]|2e,

where the constant c depends on the number of nodes in e.
Similarly, it can be shown that for ν ∈ e ∈ EB ,∑

x
(j)
K =ν

hd−2
ν

∣∣∣α(j)
K

∣∣∣2 ≤ ch−1
e |vh|2e.(2.21)

The required result now follows from (2.19)–(2.21).
We now consider the case when the mesh is nonconforming. We make the following

observations, using the notation established in Theorem 2.2:
(i) The hanging nodes are precisely the members of N \

0

N .
(ii) A hanging node cannot be a member of Nb or Ni.
(iii) For every hanging node ν there is a nonempty proper subset ω̃ν of ων such

that if K̃ ∈ ω̃ν , then ν is not a local node of K̃. For d = 2, |ω̃ν | = 1.
We shall also require that Th be obtained from a conforming mesh T 0

h via a
finite number of refinement/coarsening steps. In particular, we assume that there is
a mapping Level : Th → N , the set of nonnegative integers, such that

(iv) Level(K) = 0 ∀K ∈ T 0
h (T 0

h ⊆ Th).
(v) If K ∈ ων \ ω̃ν and K̃ ∈ ω̃ν are as in (iii) above, then Level(K) > Level(K̃).
An example of the mapping Level can be constructed for d = 2 as follows. Sup-

pose that we refine a given triangle (the father) by cutting it in the usual way (see, e.g.,
Figure 3.2) into four triangles of equal area (the sons). On the other hand, we coarsen
the mesh by merging four sons of the same father. Then we define Level(K), K ∈ Th,
by |K| = |K0|( 14 )Level(K), where K0 is the triangle in T 0

h that contains K and where
| · | denotes area.

We have the following result.
Theorem 2.3. Let Th be a nonconforming mesh consisting of triangles when

d = 2 and tetrahedra when d = 3. We shall also assume that Th can be described in
terms of the mapping Level as discussed above. Then (2.14) holds, but the constant C
may also depend on Lmax = max{Level(K),K ∈ Th}.
Proof. Noting that an element of

0

V rh is still defined by its values at the nodes in
0

N , we define the approximant χ ∈
0

V rh of vh via (2.15). This uniquely determines the

values of χ at the hanging nodes, so we let β(ν) = χ(ν) for ν ∈ N \
0

N . In a similar
fashion, we introduce the quantities α̃

(ν)

K̃
= (vh

∣∣
K̃
)(ν), K̃ ∈ ω̃ν , ν ∈ N \

0

N .
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Proceeding as in (2.16), we obtain

∑
K∈Th

‖∇(vh − χ)‖2K ≤ c
Lmax∑
�=0

∑
K∈T �

h

hd−2
K

m∑
j=1

∣∣α(j)
K − β(j)

K

∣∣2
≤ c

∑
ν∈

0
N

hd−2
ν

∑
x
(j)
K =ν

∣∣α(j)
K − β(ν)

∣∣2 + c ∑
ν∈N\

0
N

hd−2
ν

∑
x
(j)
K

=ν

K∈ων\ω̃ν

∣∣α(j)
K − β(ν)

∣∣2,(2.22)

where T �h = {K ∈ Th | Level(K) = ,}. The first sum on the right-hand side of (2.22)
can be handled as in the conforming case using steps (2.17)–(2.21). As for the second

sum, for a given x
(j)
K = ν, K ∈ ων \ ω̃ν , we choose K̃ ∈ ω̃ν such that K and K̃ share

an edge or a face. A crucial observation is that Level(K̃) < Level(K). Then∣∣α(j)
K − β(ν)

∣∣2 ≤ 2∣∣α(j)
K − α̃(ν)

K̃

∣∣2 + 2∣∣α̃(ν)

K̃
− β(ν)

∣∣2.
Now |α(j)

K − α̃(ν)

K̃
| is the jump in the values of vh at the node ν which belongs to

the interface e between K and K̃, and thus hd−2
ν |α(j)

K − α̃(ν)

K̃
|2 can be bounded by

ch−1
e |[vh]|2e as was done in (2.20). On the other hand,

α̃
(ν)

K̃
− β(ν) =

(
vh
∣∣
K̃

)
(ν)− (χ∣∣

K̃

)
(ν) =

m∑
j=1

(α
(j)

K̃
− β(j)

K̃
)φ

(j)

K̃
.

Thus,

∣∣α̃(ν)

K̃
− β(ν)

∣∣2 ≤ m∑
j=1

∣∣α(j)

K̃
− β(j)

K̃

∣∣2 · m∑
j=1

∣∣φ(j)

K̃
(ν)
∣∣2 ≤ c m∑

j=1

∣∣α(j)

K̃
− β(j)

K̃

∣∣2
for some constant c independent of h. Gathering these results, we have

∑
ν∈N\

0
N

hd−2
ν

∑
x
(j)
K

=ν

K∈ων\ω̃ν

∣∣α(j)
K − β(ν)

∣∣2 = ∑
ν∈N\

0
N

hd−2
ν

Lmax∑
�=0

∑
K∈T �

h

∑
x
(j)
K

=ν

K∈ων\ω̃ν

∣∣α(j)
K − β(ν)

∣∣2

≤ c
∑
e∈EI

h−1
e |[vh]|2e + c

L∑
�=0

∑
K∈T �

h

hd−2
K

m∑
j=1

∣∣α(j)
K − β(j)

K

∣∣2
≤ c

∑
e∈EI

h−1
e |[vh]|2e + c

∑
ν∈

0
N

hd−2
ν

∑
x
(j)
K =ν

∣∣α(j)
K − β(ν)

∣∣2(2.23)

+ c
∑

ν∈N\
0
N

hd−2
ν

L∑
�=0

∑
K∈T �

h

∑
x
(j)
K

=ν

K∈ων\ω̃ν

∣∣α(j)
K − β(ν)

∣∣2

for some L that satisfies 0 ≤ L < Lmax. Repeating this argument a finite number of
times, the last sum in (2.23) (over the hanging nodes) will be eventually replaced by

c
∑
e∈EI h

−1
e |[vh]|2e + c

∑
ν∈

0
N
hd−2
ν

∑
x
(j)
K =ν

|α(j)
K − β(ν)|2. As we mentioned earlier, the

latter term can be bounded by c
(∑

e∈EI h
−1
e |[vh]|2e +

∑
e∈EB h

−1
e |vh|2e

)
just as in the

conforming case. This concludes the proof.



2382 OHANNES A. KARAKASHIAN AND FREDERIC PASCAL

3. A posteriori estimates. This section is devoted to residual-type a poster-
iori estimates. The estimators as well as the exposition follow the lines found in
Verfürth [18], with the exception of the technical details stemming from the discon-
tinuous nature of V rh . We also note that our estimators (3.11) and (3.12) are entirely
local.

Again for the sake of simplifying the exposition, and in this section only, we shall
assume that f is a piecewise polynomial function on the mesh Th. Given that we have
decided not to worry about quadrature errors, this is not an unreasonable assumption,
since any given quadrature rule used to evaluate (f |K , v) cannot distinguish between
f |K and the Lagrange interpolant of f at the quadrature points in K.

Theorem 3.1. Let e = u− uγh. Then∑
K∈Th

‖∇e‖2K ≤ c
{ ∑
K∈Th

h2
K‖f +∆uγh‖2K +

∑
e∈EI

he
∣∣[∂nuγh]∣∣2e(3.1)

+ γ2
∑
e∈EI

h−1
e |[uγh]|2e + γ2

∑
e∈EB

h−1
e |uγh|2e

}
.

Proof. From (2.4) and (2.5) there follows the orthogonality relation aγh(e, vh) =
0 ∀vh ∈ V rh . Now for v ∈ Eh and vh ∈ V rh , let η = v − vh. We have
aγh(e, v) = a

γ
h(e, η) = (f, η)− aγh(uγh, η)

= (f, η)−
{ ∑
K∈Th

(∇uγh,∇η)K

−
∑
e∈EI

[
〈{∂nuγh} , [η]〉e + 〈{∂nη} , [uγh]〉e − γh−1

e 〈[uγh], [η]〉e
]

−
∑
e∈EB

[
〈∂nuγh, η〉e + 〈∂nη, uγh〉e − γh−1

e 〈uγh, η〉e
]}
.(3.2)

Now, integrating by parts, we see that∑
K∈Th

(∇uγh,∇η)K =
∑
K∈Th

(−∆uγh, η)K +
∑
K∈Th

〈∂nuγh, η〉∂K

=
∑
K∈Th

(−∆uγh, η)K +
∑
e∈EI

[
〈{∂nuγh} , [η]〉e + 〈[∂nuγh] , η∗〉e

]
(3.3)

+
∑
e∈EB

〈∂nuγh, η〉e ,

where η∗ = η− for Baker’s method and η∗ = 1
2 (η

+ + η−) for Arnold’s method. Now,
using (3.3) in (3.2), we obtain

aγh(e, v) =
∑
K∈Th

(f +∆uγh, η)K(3.4)

+
∑
e∈EI

[
〈{∂nη} , [uγh]〉e −

〈[
∂nu

γ
h

]
, η∗
〉
e
− γh−1

e 〈[uγh], [η]〉e
]

+
∑
e∈EB

[
〈∂nη, uγh〉e − γh−1

e 〈uγh, η〉e
]
.
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From the definition of aγh(e, v) and using (3.4), we get∑
K∈Th

(∇e,∇v)K + γ
∑
e∈EI

h−1
e 〈[e], [v]〉e + γ

∑
e∈EB

h−1
e 〈e, v〉e = aγh(e, v)

+
∑
e∈EI

[
〈{∂ne} , [v]〉e + 〈{∂nv} , [e]〉e

]
+
∑
e∈EB

[
〈∂ne, v〉e + 〈∂nv, e〉e

]
=
∑
K∈Th

(f +∆uγh, η)K +
∑
e∈EI

[
〈{∂nη} , [uγh]〉e −

〈[
∂nu

γ
h

]
, η∗
〉
e

(3.5)

+ 〈{∂ne} , [v]〉e + 〈{∂nv} , [e]〉e − γh−1
e 〈[uγh], [η]〉e

]
+
∑
e∈EB

[
〈∂nη, uγh〉e + 〈∂ne, v〉e + 〈∂nv, e〉e − γh−1

e 〈uγh, η〉e
]
.

First note that

〈{∂nη} , [uγh]〉e + 〈{∂nv} , [e]〉e = −〈{∂nvh} , [uγh]〉e , e ∈ EI ,

and

〈∂nη, uγh〉e + 〈∂nv, e〉e = −〈∂nvh, uγh〉e , e ∈ EB .

We will choose vh to be piecewise constant on Th. Thus these four terms are zero.
Hence (3.5) reduces to∑
K∈Th

(∇e,∇v)K + γ
∑
e∈EI

h−1
e 〈[e], [v]〉e + γ

∑
e∈EB

h−1
e 〈e, v〉e =

∑
K∈Th

(f +∆uγh, η)K

+
∑
e∈EI

[
− 〈[∂nuγh], η∗〉e + 〈{∂ne} , [v]〉e − γh−1

e 〈[uγh], [η]〉e
]

(3.6)

+
∑
e∈EB

[
〈∂ne, v〉e − γh−1

e 〈uγh, η〉e
]
.

At this point, we set v = e and observe that∑
e∈EI
〈{∂ne} , [e]〉e +

∑
e∈EB

〈∂ne, e〉e = −
∑
e∈EI
〈{∂ne} , [uγh]〉e −

∑
e∈EB

〈∂ne, uγh〉e

= −
∑
e∈EI
〈{∂ne} , [uγh − χ]〉e −

∑
e∈EB

〈∂ne, uγh − χ〉e(3.7)

for any χ ∈
0

V rh . Since a
γ
h(e, u

γ
h − χ) = 0, we replace the terms

∑
e∈EI 〈{∂ne} , [e]〉e +∑

e∈EB 〈∂ne, e〉e on the right-hand side of (3.6) with

−
∑
K∈Th

(∇e,∇(uγh − χ))K −
∑
e∈EI

[
〈{∂n(uγh − χ)} , [uγh]〉e − γh−1

e |[uγh]|2e
]

−
∑
e∈EB

[
〈∂n(uγh − χ), uγh〉e − γh−1

e |uγh|2e
]
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to obtain∑
K∈Th

‖∇e‖2K =
∑
K∈Th

(f +∆uγh, η)K −
∑
e∈EI

[ 〈[
∂nu

γ
h

]
, η∗
〉
e
+ γh−1

e 〈[uγh], [η]〉e
]

− γ
∑
e∈EB

h−1
e 〈uγh, η〉e −

∑
K∈Th

(∇e,∇(uγh − χ))K

−
∑
e∈EI
〈{∂n(uγh − χ)} , [uγh]〉e −

∑
e∈EB

〈∂n(uγh − χ), uγh〉e .(3.8)

Here we have used the facts that η = e − vh, [e]|e = −[uh]|e ∀e ∈ EI , and e|e =
−uh|e ∀e ∈ EB .

We now obtain bounds for the terms on the right-hand side of (3.8). Those that
contain η are bounded by 1

2 times

1

ε1

∑
K∈Th

h2
K‖f +∆uγh‖2K +

1

ε2

∑
e∈EI

he
∣∣[∂nuγh]∣∣2e + 1

ε3
γ
∑
e∈EI

h−1
e |[uγh]|2e(3.9)

+
1

ε4
γ
∑
e∈EB

h−1
e |uγh|2e + ε1

∑
K∈Th

h−2
K ‖η‖2K + ε2

∑
e∈EI

h−1
e |η∗|2e

+ ε3γ
∑
e∈EI

h−1
e |[η]|2e + ε4γ

∑
e∈EB

h−1
e |η|2e

for any εi > 0, i = 1, . . . , 4. To estimate the “η” terms in (3.9) we choose as vh the
best piecewise constant approximation of e. From (2.10) this gives

h−2
K ‖η‖2K = h−2

K ‖e− vh‖2K ≤ c‖∇e‖2K .
Also, using the trace inequality (2.8) and (2.10), we obtain

h−1
e

(|η∗|2e + |[η]|2e) ≤ c ∑
K=K+,K−

h−1
e (h−1

K ‖η‖2K + hK‖∇η‖2K)

≤ c
∑

K=K+,K−
h−1
e hK‖∇e‖2K .

The local quasiuniformity of the mesh implies that he ≈ hK+ ≈ hK− . Thus h−1
e hK ≤

c. A similar bound holding for
∑
e∈EB h

−1
e |η|2e, we can now hide the “η” terms in the

left-hand side of (3.8) by taking the ε’s sufficiently small. In particular, we must take
ε3 ≈ 1/γ and ε4 ≈ 1/γ.

To obtain (3.1), we need to estimate the terms containing uγh − χ. Indeed these
are bounded by

ε
∑
K∈Th

‖∇e‖2K +
1

ε

∑
K∈Th

‖∇(uγh − χ)‖2K +
∑
e∈EI

he
∣∣ {∂n(uγh − χ)} ∣∣2e(3.10)

+
∑
e∈EI

h−1
e |[uγh]|2e +

∑
e∈EB

he
∣∣∂n(uγh − χ)∣∣2e + ∑

e∈EB
h−1
e |uγh|2e.

Using the estimates (2.8) and (2.9), we see that the two terms in (3.10) that contain
∂n(u

γ
h − χ) are bounded by

∑
K∈Th ‖∇(u

γ
h−χ)‖2K . In view of Theorem 2.2, the latter

is bounded by
∑
e∈EI h

−1
e |[uγh]|2e +

∑
e∈EB h

−1
e |uγh|2e. Using this fact completes the

proof.
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Theorem 3.2. Suppose that f is a piecewise polynomial on Th. Then
(i) for each K ∈ Th,

h2
K‖f +∆uγh‖2K ≤ c ‖∇e‖2K ;(3.11)

(ii) for e = K+ ∩K− ∈ EI ,
he
∣∣[∂nuγh]∣∣2e ≤ c(‖∇e‖2K+ + ‖∇e‖2K−).(3.12)

Proof. To estimate ‖f+∆uγh‖K , we set vh = 0 and v
∣∣
K
= (f+∆uγh) bK , where bK

is the “bubble” function 27λ1λ2λ3 expressed in terms of the barycentric coordinates
of K; we extend v to the outside of K by zero. Using this v in (3.6), we obtain∫

K

(f +∆uγh)
2 bK dx = (∇e,∇((f +∆uγh) bK))K .

Now since bK > 0 on int(K), (
∫
K
(·)2 bK dx)1/2 defines a norm on L2(K), equivalent

to the L2 norm on Pm(K) for any fixed m. Thus, there exists a constant c > 0 such
that ∫

K

(f +∆uγh)
2 bK dx ≥ c ‖f +∆uγh‖2K .(3.13)

Since ‖bK‖L∞(K) = 1, a scaling argument can be used to show that, while the constant
c may depend on r and the degree of f , it is independent of hK . On the other hand,
using the inverse inequality (2.9), we have

(∇e,∇((f +∆uγh) bK))K ≤ ‖∇e‖K‖∇((f +∆uγh) bK)‖K
≤ cε‖f +∆uγh‖2K +

1

ε
h−2
K ‖∇e‖2K .

This gives (i). We next estimate he|[∂nuγh]|2e. Let e = ∂K+ ∩ ∂K− and suppose that
e is a full edge of both K+ and K−. (See Remark 3.1 below.) Extend

[
∂nu

γ
h

]
to a

function φ defined over K̃ = K+ ∪K− by extending by constants along lines normal
to e; see Figure 3.1. Also, let b denote the bubble function on K̃ given by

b
∣∣
K+ = 4λ

+
1 λ

+
2 , b

∣∣
K− = 4λ

−
1 λ
−
2 .

Let v = φ b and set vh = 0. Using this v in (3.6), we get

he

∫
e

[
∂nu

γ
h

]2
b ds = he

∑
K=K+,K−

[
(f +∆uγh, φ b)K − (∇e,∇(φ b))K

]
≤ he

∑
K=K+,K−

[
‖f +∆uγh‖K‖φ b‖K + ‖∇e‖K‖∇(φ b)‖K

]
≤ 1

2ε

∑
K=K+,K−

{
h2
K‖f +∆uγh‖2K + ‖∇e‖2K

}
(3.14)

+
ε

2

∑
K=K+,K−

{
‖φ b‖2K + h2

K‖∇(φ b)‖2K
}
.

Using arguments similar to those leading to (3.13), we obtain∫
e

[
∂nu

γ
h

]2
b ds ≥ c∣∣[∂nuγh]∣∣2e(3.15)
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K + K
−

s

Fig. 3.1.

K
~

K
+

K
_

_

Fig. 3.2.

for some positive constant c depending only on r. Moreover,

‖φ b‖2
K̃
≤ ‖φ‖2

K̃
=

∫
e

[
∂nu

γ
h

]2
l(s)ds ≤ he

∣∣[∂nuγh]∣∣2e,(3.16)

where l(s) is as in Figure 3.1. Using the inverse inequality (2.9), we see that∑
K=K+,K−

h2
K‖∇(φ b)‖2K ≤ c‖φ b‖2K̃ ≤ che

∣∣[∂nuγh]∣∣2e.(3.17)

The required estimate now follows from (3.14)–(3.17).
Remark 3.1. If e is not a full edge of one of the triangles, say K−, then we can

work with K̃− instead; see Figure 3.2.

4. Estimates based on the solution of local problems. In this section, we
shall introduce and analyze a posteriori estimates that are based on domain decom-
position techniques proposed in [11]. The approach consists of viewing the computed
solution uγh as the coarse-mesh approximation to some function which is arguably a
more accurate approximation to u. Before suggesting some choices for this quan-
tity, let us say that there will be no attempt to compute it directly, but rather to
approximate it by adding to uγh a function obtained through the solution of “local”
problems. For simplicity, we restrict the exposition to d = 2 and assume that Th is
a conforming mesh of triangles. Also, we should note that the results of [11] concern
Baker’s formulation only; however, we believe that similar results can be obtained for
Arnold’s formulation.

4.1. A nonoverlapping approach. To begin, let Th/2 be the mesh obtained
by cutting every K ∈ Th into four equal triangles. In a similar way, we may define
Th′ := Th/2p , h′ := h/2p by repeating this process p times. On the latter, we define
a finite element space V ′ := V r

′
h′ of discontinuous piecewise polynomial functions of

degree less than or equal to r′−1, where r′ ≥ r. This way, V rh is a subspace of V ′. On
V ′ × V ′ we define the bilinear form a′ := aγ′h′ just as in the definition of a

γ
h in (2.3).

It is crucial for the analysis that aγh be the restriction of a
′ to V rh in the sense that

aγh(v, w) = a
′(v, w) ∀v, w ∈ V rh .(4.1)

Remark 4.1. By comparing the penalty terms in aγh and a
′, we see that (4.1)

requires the condition γ′(h′)−1 = γh−1, which, in view of the fact that h′ = h/2p,
is equivalent to γ′ = γ2−p. Now since the coercivity of the forms a′ and aγh can be
guaranteed only if γ′ ≥ γ′0(r′) and γ ≥ γ0(r), respectively (see Lemma 2.1(i)), we see
that γ must be chosen sufficiently large in order to have γ2−p ≥ γ′0. This does not



A POSTERIORI ERROR ESTIMATES FOR A DG METHOD 2387

present any theoretical difficulties, since γ can take on arbitrarily large values without
having any result discussed in this work break down. On the other hand, the quality
of the a priori and a posteriori estimates may suffer, as is the case with (3.1). (In this
respect, see the discussion at the beginning of section 5 and Figures 5.5 and 5.6.) In
practice, however, we anticipate that r′ = r+ 1 and/or h′ = h/2 should be sufficient.
This was indeed the case in all our numerical experiments.

For each K ∈ Th, we consider the “local” space V ′(K) obtained by restricting V ′
to K. By extending the elements of V ′(K) by zero to the rest of Ω, V ′(K) becomes
a subspace of V ′. Indeed, the latter is the direct sum of these local subspaces. On
V ′(K)× V ′(K) we introduce the bilinear form a′K(·, ·) as the restriction of a′(·, ·) to
V ′(K)× V ′(K) (see (4.4) in [11]). As such, a′K inherits the symmetry and coercivity
of a′ on V ′(K). In particular, for any γ′ ≥ γ′0 there holds

a′K(v, v) ≥ c‖v‖21,K ∀v ∈ V ′(K),(4.2)

where ‖ · ‖1,K denotes the restriction of the ‖ · ‖1,h′ norm to V ′(K). Adopting the
terminology of [11], we consider Th as the coarse mesh of Th′ . Also, each K ∈ Th is
considered as a subdomain in Th′ . In other words, Th is both the coarse mesh and the
subdomain partition of Th′ .

Now let u′ := uγ
′
h′ ∈ V ′ be the discontinuous Galerkin approximation of u in the

space V ′; i.e.,

a′(u′, v) = (f, v) ∀v ∈ V ′.(4.3)

At this point, we observe that, by virtue of (4.1), (2.5) and (4.3) imply the following
orthogonality relation:

a′(u′ − uγh, v) = 0 ∀v ∈ V rh .(4.4)

Next, let the functions {ηK ∈ V ′(K) |K ∈ Th} be given as the solutions of the local
problems

a′K(ηK , v) = (f, v)− a′(uγh, v) ∀v ∈ V ′(K).(4.5)

The functions {ηK} can be computed independently of each other and in parallel.
Moreover, the function η :=

∑
K∈Th ηK approximates ζ := u′ − uγh in the following

sense.
Theorem 4.1. There exist positive constants C1 and C2 such that

C1 ‖η‖1,h′ ≤ ‖ζ‖1,h′ ≤ C2
h

h′
‖η‖1,h′ .(4.6)

Proof. Since (f, v) = a′(u′, v), v ∈ V ′, from (4.5) we have

a′K(ηK , v) = a
′(ζ, v) ∀v ∈ V ′(K).(4.7)

Thus, ∑
K∈Th

a′K(ηK , ηK) = a
′(ζ, η) ≤ c‖ζ‖1,h′‖η‖1,h′ .(4.8)

From (4.2) it follows that
∑
K∈Th a

′
K(ηK , ηK) ≥ c

∑
K∈Th ‖ηK‖21,K . On the other

hand, it is easy to see that
∑
K∈Th ‖ηK‖21,K ≥ ‖η‖21,h′ . Thus, the first half of (4.6)

follows.
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To prove the second inequality, let ζ =
∑
K∈Th ζK , ζK ∈ V ′(K). Let ζ0 be the

piecewise constant function on Th defined by

ζ0
∣∣
K
:= ζK,0 =

1

|K|
∫
K

ζK dx.

Now since ζ0 ∈ V rh , it follows from (4.7) and (4.4) that

a′K(ηK , ζK − ζK,0) = a′(ζ, ζK − ζK,0) = a′(ζ, ζK).
Summing over K ∈ Th, we obtain∑

K∈Th
a′K(ηK , ζK − ζK,0) = a′(ζ, ζ) ≥ c‖ζ‖21,h′ .(4.9)

Now, it follows from the Cauchy–Schwarz inequality that

∑
K∈Th

a′K(ηK , ζK − ζK,0) ≤
( ∑
K∈Th

a′K(ηK , ηK)

)1/2

×
( ∑
K∈Th

a′K(ζK − ζK,0, ζK − ζK,0)
)1/2

.(4.10)

Also from (4.8) it follows that( ∑
K∈Th

a′K(ηK , ηK)

)1/2

≤ c‖ζ‖1/21,h′‖η‖1/21,h′ .(4.11)

On the other hand, with the interface bilinear form I ′(·, ·) defined in (4.5) of [11],

I ′(u, v) =
∑
e′∈EI

{〈{∂nu} , v−〉e′ + 〈{∂nv} , u−〉e′
− γ′(h′)−1

[〈
u+, v−

〉
e′ +

〈
v+, u−

〉
e′
] } ∀u, v ∈ V ′,

we have∑
K∈Th

a′K(ζK − ζK,0, ζK − ζK,0) = a′(ζ − ζ0, ζ − ζ0)− I ′(ζ − ζ0, ζ − ζ0)

≤ 2a′(ζ, ζ) + 2a′(ζ0, ζ0) +
∣∣I ′(ζ − ζ0, ζ − ζ0)∣∣.(4.12)

In [11] it is proved that a′(ζ0, ζ0) and |I ′(ζ − ζ0, ζ − ζ0)| are bounded by c hh′ a
′(ζ, ζ).

Thus from (4.9)–(4.12) it follows that

‖ζ‖21,h′ ≤ c
(
h

h′

)1/2

‖ζ‖3/21,h′‖η‖1/21,h′ ,

from which the second inequality of (4.6) follows.
We shall use the equivalence just proved to obtain estimates for e = u − uγh.

Letting e′ = u − u′, we have e = e′ + ζ. We now argue as follows: It is reasonable
to expect that e′ is much smaller than e, say in the energy norm; therefore e and ζ
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are nearly equal. Since ζ is not computed, we shall approximate it, and hence e, by
η, where the latter is obtained by solving local problems. To quantify matters, since
a′(e′, v) = 0 ∀v ∈ V ′ and ζ ∈ V ′, we obtain

a′(e, e) = a′(e′, e′) + a′(ζ, ζ).(4.13)

It follows from this and (2.7) that a′(e′, e′) = ε a′(e, e) for some 0 < ε < 1. Based on

a priori estimates, it is reasonable to expect that ε = O( (h
′)r

′−1

hr−1 )� 1. Thus,

a′(e, e) =
1

1− ε a
′(ζ, ζ).

In view of the equivalence between η and ζ provided by Theorem 4.1, we can use
a′(η, η) to obtain lower and upper bounds for a′(e, e).

4.2. An overlapping approach. Let Ω = ∪e∈EΩe be an overlapping decom-
position of Ω, where each Ωe is the following union of the triangles in Th: If e ∈ EI ,
then e = ∂K+ ∩ ∂K− and Ωe = K+ ∪ K−; else if e ∈ EB , then e = ∂K ∩ ∂Ω and
Ωe = K.

On Th, we define a finite element space V ′ := V r
′
h of discontinuous piecewise

polynomial functions of degree less than or equal to r′ − 1, where r′ ≥ r + 1; let us
recall that r ≥ 2 is fixed. We construct a subspace decomposition of this latter finite
element space by defining the subspaces {V ′e}e∈E associated with the subdomains
{Ωe}e∈E by

V ′e = {vh ∈ V ′, vh = 0 in Ω \ Ω̄e}.
Thus the following decomposition, which is not direct, holds:

V ′ = V rh +
∑
e∈E
V ′e .(4.14)

On V ′ × V ′, we define the bilinear form a′ := aγ
′
h as in the definition of aγh in

(2.3), and again it is crucial for the analysis that aγh be the restriction of a
′ to V rh in

the sense that

aγh(v, w) = a
′(v, w) ∀v, w ∈ V rh .(4.15)

For each edge e ∈ E , we consider on V ′e ×V ′e the symmetric and coercive bilinear form
a′e(·, ·) as the restriction of a′(·, ·) to V ′e × V ′e (see (4.4) in [11]),

a′e(v, w) = a
′(v, w) ∀v, w ∈ V ′e .(4.16)

Following [11], we are able to define the additive operator T = T0 +
∑
e∈E Te,

where T0 is a projection operator from V
′ to V rh defined by

aγh(T0u, v) = a
′(T0u, v) = a

′(u, v) ∀v ∈ V rh(4.17)

and Te is a projection operator from V
′ to V ′e defined by

a′e(Teu, v) = a
′(Teu, v) = a′(u, v) ∀v ∈ V ′e .(4.18)

Lemmas 5.1–5.5 in [11] can easily be adapted to the present case with H = h, and
δ ∼ h, and Theorem 5.7 in [11] then reads as follows.
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Theorem 4.2. There exist positive constants c1, c2, which are independent of h
and of the number of edges, such that there holds the estimate

c1a
′(v, v) ≤ a′(Tv, Tv) ≤ c2a′(v, v) ∀v ∈ V ′.(4.19)

Now let u′ := uγ
′
h ∈ V ′ be the discontinuous Galerkin approximation of u in the

space V ′; i.e.,

a′(u′, v) = (f, v) ∀v ∈ V ′.(4.20)

Next, let the functions ηe ∈ V ′e be given as the solutions of the local problems

a′e(ηe, v) = (f, v)− a′(uγh, v) ∀v ∈ V ′e .(4.21)

The functions {ηe}e∈E can be computed independently of each other and in parallel,
and the function η :=

∑
e∈E ηe approximates ζ := u

′ − uγh in the following sense.
Theorem 4.3. There exist positive constants C1 and C2 such that

C1 ‖ζ‖1,h ≤ ‖η‖1,h ≤ C2‖ζ‖1,h.(4.22)

Proof. Let us prove that η = Tζ. Indeed, from (4.20) and (4.21) we get

a′e(ηe, v) = a
′(u′ − uγh, v) ∀v ∈ V ′e ,(4.23)

which means from the definition (4.18) of Te that ηe = Teζ ∀e ∈ E .
Now, by virtue of (4.15), (2.5) and (4.20) imply the orthogonality relation

a′(u′ − uγh, v) = 0 ∀v ∈ V rh ,(4.24)

which means from the definition of T0 that T0ζ = 0.
Thus (4.22) follows from Theorem 4.2.
We conclude, in a similar way as in section 4.1, that we can use a′(η, η) to obtain

lower and upper bounds for a′(e, e).
Remark 4.2. As for the nonoverlapping approach, we could define the finite

element space V ′ := V r
′
h′ with h′ = h/2p, where the mesh is obtained in dimension 2

by cutting p times every triangle into four equal triangles.

5. Numerical results in one dimension. In this section, we present numerical
results obtained from the one-dimensional (1-d) model problem

−d
2u

dx2
= f, 0 < x < 1, u(0) = u(1) = 0,(5.1)

with the exact solution u(x) = e−α(x− 1
2 )2 , α = 100.

For the sake of brevity, we shall consider in these numerical experiments only
the weak formulation (2.3) due to Baker; for some comparisons with the Arnold
formulation, we refer to the technical report [13].

5.1. Convergence with respect to γ and h. For a number of years we have
been interested in the behavior of the discontinuous Galerkin approximations as a
function of the penalty parameter γ, and indeed we had a proof (unpublished) that

lim
γ→∞u

γ
h = u

G
h ,(5.2)
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Fig. 5.1. ‖uγh − uGh ‖1,h versus γ.
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Fig. 5.2. ‖uγh − uGh ‖ versus γ.

10
0

10
1

10
2

10
3

10
4

10
5

10
−20

10
−18

10
−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

γ

J(
U

γ h)

 

r=2
r=3
r=4
r=5
r=6
1/γ2

Fig. 5.3. J(uγh) versus γ.
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Fig. 5.4. J ′(uγh) versus γ.

where uGh is the standard Galerkin approximation of u defined by

(∇uGh ,∇χ) = (f, χ) ∀χ ∈
0

V rh .(5.3)

A more recent proof can be found in [14]. Besides its intrinsic value, this result can be
used to show that the discontinuous Galerkin method can yield more accurate results
than the standard Galerkin version for a range of values of γ, as shown later in Figure
5.5.

In the first experiments, the domain [0, 1] is divided into a uniform mesh of 20
subintervals. The approximations uγh, solution of (2.5), and u

G
h , solution of (5.3), are

computed using piecewise polynomials of degree up to 5. Figures 5.1 and 5.2 show the
difference between uγh and u

G
h in the energy norm ‖·‖1,h and the L2 norm, respectively,

as a function of γ. These plots highlight the convergence (5.2) according to the rate
O( 1

γ ). Similarly, Figure 5.3 shows the behavior of the jump in u
γ
h,

J(uγh) ≡
∑
e∈EI

h−1
e |[uγh]|2e +

∑
e∈EB

h−1
e |uγh|2e,(5.4)

as a function of γ. Note that J(uγh) = J(u
γ
h − uGh ). We see that J(uγh) behaves as

1
γ2 when γ tends to infinity. In the same way, one can observe in Figure 5.4 that the
jump of the derivative

J ′(uγh) ≡
∑
e∈EI

he
∣∣{∂n(uγh − uGh )}∣∣2e + ∑

e∈EB
he
∣∣∂n(uγh − uGh )∣∣2e(5.5)
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behaves also as 1
γ2 .

We now study the difference between the discontinuous Galerkin and exact so-
lutions of the problem. For h = 1

20 and r = 2, ‖uγh − u‖ and |uγh − u|1,h ≡
(
∑
K∈Th ||∇(u

γ
h − u)||2K)1/2 are plotted in Figures 5.5 and 5.6, respectively. We see

that these converge to values (represented by the dashed lines) which, in view of (5.2),
must be ‖uGh −u‖ and ‖∇(uGh −u)‖, respectively. We also observe that there exists an
optimal value γopt of the penalty parameter γ, for which ‖uγh−u‖ is minimized. From
these and other numerical experiments not reported here (see the report [13] for other
values of r), we claim that, in the case of the Baker formulation, this optimal value
does not depend either on the mesh size or on u (or, from an equivalent point of view,
on the function f), but depends on the degree of the polynomial approximations: It
follows approximately the rule

γopt = (r − 1)(r + 3),(5.6)

as can be seen in Figure 5.7, where the circles represent the numerical value of γopt for
different values of r− 1 and the continuous line represents the (r− 1)(r+3) function.
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For the parameter γ chosen approximately equal to γopt, we now investigate the
convergence of uγh to u on a sequence of uniformly refined meshes. The differences
‖uγh−u‖ and ‖uγh−u‖1,h are plotted in Figures 5.8 and 5.9, respectively, for piecewise
polynomials of degree r − 1 = 1, 2, 3, 4. The observed rates of convergence of O(hr)
and O(hr−1), respectively, conform to the a priori estimates expressed in (2.12) and
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in (2.11): The distorted line for r = 5 is due to the limitations of computations in
double precision.

5.2. Effectivity indices. In order to judge the quality of the various error es-
timators presented above, we compute for each an effectivity index, defined as the
ratio of the estimator to the exact error. First, we study three estimators featured in
Theorems 3.1 and 3.2. Specifically, in Figure 5.10, the effectivity index η1 of the first
estimator corresponding to Theorem 3.1 and formula (3.1) is plotted as a function of
1/h and for values of r − 1 between 1 and 4:

η21 =

∑
K∈Th

h2
K‖f +∆uγh‖2K +

∑
e∈EI
he
∣∣[∂nuγh]∣∣2e + γ2

∑
e∈EI
h−1
e |[uγh]|2e + γ2

∑
e∈EB

h−1
e |uγh|2e∑

K∈Th
‖∇e‖2K

.

(5.7)

In Figure 5.11, we plot the effectivity index η2 of the second estimator, which corre-
sponds to Theorem 3.2(i) and to (3.11):

η22 =

∑
K∈Th

h2
K‖f +∆uγh‖2K∑

K∈Th
‖∇e‖2K

.(5.8)
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Finally, Figures 5.12 and 5.13 represent for odd and even degrees of polynomials,
respectively, the effectivity index η3 of the estimator associated with Theorem 3.2(ii)
and (3.12):

η23 =

∑
e∈EI

he
∣∣[∂nuγh]∣∣2e∑

K∈Th
‖∇e‖2K

.(5.9)

It is seen that, as h decreases, these indices converge to values larger than 1. We also
observe that η1 and η2 attain their respective asymptotic values rather quickly. On
the other hand, while η3 is somewhat slower in that respect, it is still nearly constant
over a wide range of values of h.

Additionally, the asymptotic values depend strongly on r. Since it is desirable
to have effectivity indices close to 1, we tried to find simple laws describing this
dependence. As evidenced by Figure 5.14, the following functions seem to “fit” the
asymptotic values reasonably well:

η1 ∼ η2 ∼ 2.1(r − 1)
√
r,(5.10)

η3 ∼ r − 2 if r − 1 is even,(5.11)

η3 ∼ r + 2 if r − 1 is odd.(5.12)

Indeed, dividing the above estimators by the corresponding asymptotic values should
result in effectivity indices that are very close to 1.
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Fig. 5.16. Effectivity index of the
nonoverlapping approach–based estimator
with h′ = h/2 and r′ = r + 1 versus h.

The previous experiments are repeated with the two error estimators based on the
nonoverlapping and overlapping domain decomposition approaches. More precisely,
we define η4 by

η4 =
‖η‖1,h′

‖e‖1,h′
,(5.13)

where η =
∑
K∈Th ηK and ηK is the solution of the local problem (4.5). Among the

various values of parameters that are possible, we chose the two combinations h′ = h,
r′ = r + 1 and h′ = h/2, r′ = r + 1, the results being reported in Figures 5.15 and
5.16, respectively. In the former case, we observe that the index is exactly equal to
1 even for relatively large values of h and does not depend on r or on r′ > r. In the
latter case, the index is slightly less than 1 and depends on r and not on r′ ≥ r + 1.

In the same way,

η5 =
‖η‖1,h′

‖e‖1,h′
,(5.14)

where η =
∑
K∈Th ηK and ηK is the solution of the local problem (4.21). The results

for the case h′ = h and r′ = r + 1 are reported in Figure 5.17. We observe that the
effectivity index in this case is equal to 2, which is also the number of triangles in a
subdomain Ωe. In the case of h

′ = h/2 and r′ = r + 1, this index is slightly higher
than 1, as can be seen in Figure 5.18.

If any conclusions can be drawn after such a limited number of experiments,
they would be that, while the estimators η4 and η5 based on the ideas of domain
decomposition seem to be very robust, the estimators η2 and η3 are, in contrast, less
expensive to implement, and offer the added advantage of being entirely local.

5.3. Adaptive mesh strategy. In order to gauge the efficiency of the a poster-
iori error estimates that we have derived, we present here two h-adaptive methods for
approximating the solution of problem (5.1). We based our numerical experiments on
the second estimate, which corresponds to Theorem 3.2(i) and to the effectivity index
η2 plotted in Figure 5.11.

Both strategies modify the mesh by refinement of some marked elements while
keeping the degree of the polynomials constant. The goal is to generate a mesh in a
finite number of steps such that a given tolerance is met by the approximate solution
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Fig. 5.18. Effectivity index of
the overlapping approach–based estimator
with h′ = h/2 and r′ = r + 1 versus h.

on this mesh. To do this, some optimality criteria have to be imposed. The first
technique is based on the convergent adaptive algorithm proposed in [10] for solving
Poisson’s equation and used, for instance, in [17]. In order to minimize the total
number of degrees of freedom, this strategy equidistributes the given tolerance (tol) on
each element. Consequently, the local error of the optimal mesh Th satisfies ηK(uγh)2 ∼
tol2

mh
, where mh is the number of elements and u

γ
h the discontinuous Galerkin solution

on Th. Since the number of iterations required to get this optimal mesh is quite
large, we derived a second strategy, which turned out to require less cpu-time. We
shall next describe these two strategies and apply them to problem (5.1), with the
following exact solution:

u(x) = (1− x)
(
tan−1

(
α

(
x− 1

2

))
+ tan−1

(α
2

))
, α = 100.

Given an error tolerance tol and a coarse mesh T0, let uγ0 denote the discontinuous
Galerkin solution on T0. In this study, for simplicity reasons, we are not considering
the effect of data oscillations as in [15]. Let k = 0. The first strategy involves the
following steps:

(i) compute the local indicator ηkK(u
γ
k) such that

ηkK(u
γ
k)

2
=
hkK

2‖f +∆uγk‖2K
r(r − 1)2 ;(5.15)

(ii) compute the total error estimate

ηk(uγk) =

( ∑
K∈Tk

ηkK(u
γ
k)

2
)1/2

;(5.16)

(iii) select a set T̂k of “marked” elements to be refined such that, for a given
parameter θ (fixed in our experiments to 0.5),( ∑

K∈T̂k
ηkK(u

γ
k)

2
)1/2

≥ θηk(uγk) ;(5.17)
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Fig. 5.19. Strategy 1: estimate and exact
error versus h-adaptive iterations (r = 2).
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Fig. 5.20. Strategy 1: mesh size versus
x (r = 2).
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Fig. 5.21. Strategy 1: estimate and exact
error versus h-adaptive iterations (r = 4).
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Fig. 5.22. Strategy 1: mesh size versus
x (r = 4).

(iv) obtain a refined mesh Tk+1 by dividing each element K ∈ T̂k (in two parts
for a 1-d problem);

(v) compute the discontinuous Galerkin solution on Tk+1;
(vi) k ← k + 1 and go to step (i).

The algorithm is stopped when ηk(uγk) ≤ tol in step (ii). In practice, for computing
marked elements in step (iii), we follow the procedure proposed in [10]. Let us remark
that, for changing to the other estimates, formula (5.15) just has to be adapted in
step (i).

For r = 2 and tol = 0.01, this strategy required 37 iterations to reach the optimal
mesh, which has 1411 elements and whose distribution of mesh size is plotted in
Figure 5.20. For r = 4 and tol = 10−6, 50 iterations were necessary, the final mesh
has 471 elements, and the mesh size distribution is plotted in Figure 5.22. In both
cases, the error estimate is an accurate approximation of the exact error (in energy
norm), as can be seen in Figures 5.19 and 5.21.

Now let us observe that, to get
∑
K ‖∇e‖2K ≤ tol2, it is sufficient to distribute

(not to equidistribute) the errors as follows:

‖∇e‖K ≤
√
|K|
|Ω| tol .(5.18)
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Fig. 5.23. Strategy 2: estimate and exact
error versus h-adaptive iterations (r = 2).
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Fig. 5.24. Strategy 2: mesh size versus
x (r = 2).
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Fig. 5.25. Strategy 2: estimate and exact
error versus h-adaptive iterations (r = 4).
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Fig. 5.26. Strategy 2: mesh size versus
x (r = 4).

Therefore, we developed a strategy in which an element K, whose local error estimate
ηK is larger than

√|K|/|Ω| tol, has to be refined as many times as necessary to reduce
the local error by the amount

√|K| tol/√|Ω| ηK . Let us recall that from the a priori
estimation (2.11) the rate of convergence in the energy norm is O(hr−1). Thereafter,
the number of times the element has to be divided can be estimated to be

nbr =

log

(√
|Ω| ηK√
|K| tol

)
log 2r−1

.(5.19)

In one dimension, this is equivalent to determining into how many segments, nbs, the
element K has to be divided:

nbs =

(√|Ω| ηK√|K| tol
) 1

r−1

.(5.20)

The second strategy consists in the following steps:
(i) compute the local indicator ηkK(u

γ
k) given by (5.15),

(ii) compute the total error estimate ηk(uγk) according to (5.16),
(iii) compute for each element the nearest power of 2 of nbs defined in (5.20),
(iv) obtain a refined mesh Tk+1 by dividing each element by this power of 2 for a

1-d problem,
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(v) compute the discontinuous Galerkin solution on Tk+1,
(vi) k ← k + 1 and go to step (i).

The algorithm is stopped when ηk(uγk) ≤ tol in step (ii).
For r = 2 and tol = 0.01, in only 5 steps this strategy reaches the mesh such

that ηk ≤ tol. The cpu-time is then significantly reduced. However, this time the
number of elements is not optimal anymore and is equal to 2316 elements. For r = 4
and tol = 10−6, we get the given tolerance in 4 iterations, and the final mesh has 573
elements. The distribution of mesh size plotted in Figures 5.24 and 5.26 is almost
the same as in the first strategy, and, except for the first iteration, the a posteriori
estimate gives a good approximation of the exact error, as shown in Figures 5.23
and 5.25.
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